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ABSTRACT 

 

PRICING OF ANNUITIES WITH  

GUARANTEED MINIMUM WITHDRAWAL BENEFITS UNDER 

STOCHASTIC INTEREST RATES  

 

Khow Weai Chiet 

 

 

Variable annuity with Guaranteed Minimum Withdrawal Benefits 

(GMWB) has become a popular tool in retirement planning as it provides 

downside protection against investment risk while policyholder may enjoy the 

potential upside gain when the market performance is good. GMWB is 

purchased by paying a fee proportionate to the policyholder’s fund value. 

  

Our main objective of this research is to explore the pricing model of 

variable annuities with GMWB, to determine the insurance fee that needs to 

be charged for providing the guarantee under a deterministic withdrawal rate. 

Besides, we estimate the model parameters based on Malaysia market. 

 

We first examine pricing models of GMWB under constant interest 

rate and extend to Vasicek and CIR interest rate model with parameters 

estimated from bond market using least square method. As the model becomes 

complex when stochastic interest rate is incorporated, a change of numéraire is 

performed to simplify the computational work. Furthermore, sensitivity tests 
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are also performed to examine the GMWB pricing behavior when different 

parameters of the model are changed, as well as under different interest rate 

models. We find out that the pricing of GMWB is sensitive to the volatility of 

interest rate and the correlation between underlying asset and interest rate.  
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CHAPTER 1 

1.0 INTRODUCTION 

 

Variable annuity has been widely used as a retirement planning instrument. 

Recently variable annuity with Guaranteed Minimum Withdrawal Benefits 

(GMWB) rider is widely used as a retirement planning instrument in the US as 

it provides downside protection against investment risk while policyholder 

may enjoy the potential upside gain when the market performance is good. To 

enjoy this benefit, the policyholder is required to pay a fee proportionate to the 

policyholder’s fund value.  

 

In this research, we will explore the pricing of variable annuity with 

GMWB rider by using the Monte Carlo simulation approach. As the GMWB 

could be decomposed into an annuity certain and an Asian put option 

(Milevsky and Salisbury, 2006), its value could be approximated by 

quantifying the Asian put option’s value. To achieve this, we simulate the 

performance of the subaccount. Assumption is made that the underlying asset 

follows a Geometric Brownian Motion. Using the risk neutral valuation 

approach, the option value is determined by discounting the terminal payoff 

using risk free rate. 

 

We begin with a simpler model by assuming a constant risk free rate to 

serve as a benchmark. This will be compared against the results produced by 

the proposed models. By leveraging on a similar methodology, we further 
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expand the pricing model to allow for stochastic interest rate models, where 

the model’s parameters are calibrated to Malaysia’s historical data using least 

square method. Using the calibrated parameters, future interest rates are 

simulated to determine the discount factor that will be used to find the present 

value of the terminal payoff. The process is then repeated for Vasicek model 

and the Cox-Ingersoll Ross (CIR) model. Lower bound of the GMWB pricing 

model under Vasicek model is deduced as an approximation of the option 

value. Furthermore, sensitivity tests are also performed to examine the 

GMWB pricing behavior when different parameters are used in the model, as 

well as under different interest rate models. 

 

1.1 Variable Annuity 

 

Variable annuity is an agreement between an insurer and a policyholder where 

policyholder will make a purchase payment to the insurer and the insurer will 

make a serial of payments to the policyholder. The purchase payment can be a 

single payment or a series of payments begins at the inception or sometime in 

the future. In this thesis, we will assume single purchase payment and the 

policyholder will receive the payment immediately. 

 

 When a variable annuity is purchased, the premium paid is allocated in 

a subaccount where the policyholder is offered to invest the purchase payment 

in a selection of investment fund comprising of equities, bonds, money market 

or a combination of these three classes of asset. At any time  , the value of the 

policyholder’s account is depending on the performance of the investment 
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fund. In other words, the investment risk is borne by the policyholder. Thus, 

by purchasing a variable annuity there is a possibility to lose all of the money. 

As variable annuity is commonly used as a retirement planning instrument, the 

washed-out of the account value could be a nightmare to a retiree.  

 

1.2 Types of Guaranteed Minimum Benefit in Variable Annuity 

 

Optional guarantees are often offered to variable annuity for additional 

charges. Guaranteed Minimum Benefits (GMBs) that are currently available in 

the market are Guaranteed Minimum Death Benefit (GMDB), Guaranteed 

Minimum Accumulation Benefit (GMAB), Guaranteed Minimum Income 

Benefit (GMIB) and Guaranteed Minimum Withdrawal Benefit (GMWB). 

Generally GMAB, GMIB and GMWB are categorized as Guaranteed 

Minimum Living Benefit (GMLB).  

 

Traditionally, a variable annuity with GMDB will guarantee the 

policyholder a lump sum payment of the higher of account value or the return 

of purchase payment upon death. Nowadays, a great variety of GMWB is 

offered.  For example, the policyholder is guaranteed the death benefit equal 

to the minimum of the roll up benefit base, or death benefit equal to the higher 

of the annual ratchet benefit base or the account value. 

 

With GMAB, the return of the purchase payment is guaranteed at the 

end of the specified period, typically five to ten years from issue, regardless of 

the investment performance.  In other words, if the subaccount value is less 
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than the guaranteed amount at the specified period, the insurer has to top up to 

the guaranteed amount. 

 

GMIB guarantees the policyholder to receive periodical payment for 

life when the GMIB amount is annuitized. The income amount that is received 

by the policyholder is calculated based on the greater of the subaccount value 

or the guaranteed amount. 

 

Basically GMWB guarantees a return of purchase payment over a 

specified time through a series of periodic withdrawal. We will look into this 

further in the next section. 

 

Among these GMBs, GMWB has attracted significant attentions and 

become more popular. 

 

1.3 Overview of GMWB 

 

GMWB was first introduced in Canada in the last decade. The key reason of 

the emerging of GMWB was due to the baby boomer who has accumulate a 

large amount of saving will be retiring in the next 10 to 15 years. A 

conventional annuities is relatively not exciting as people are more willing to 

have a control over their saving. 

 

GMWB manages to attract more than $2 billion asset for Canadian 

insurance companies. But during the global financial crisis, the insurers faced 
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a difficult time to set up reserve for the guaranteed provided. Thus, fees were 

increased or the features were cut back and some even discontinued the 

product. Nowadays, GMWB is still popular among those who want to have a 

peace of mind in their retirement years. 

 

 GMWB is a rider attached to variable annuity. With GMWB rider, the 

insurer guarantees the policyholder to have periodic withdrawal up to the 

value of the initial capital. When the GMWB is purchased, initial capital is 

paid to the insurance company.  This capital can be invested in a series of 

investment funds at the policyholder’s discretion. At maturity, any balance in 

the account will be given back to the policyholder. Thus, the policyholder can 

enjoy the upside equity gain while downside risk is protected.  However, the 

GMWB does not provide protection against inflation as the initial capital can 

only be recovered after a long period. 

 

To have a better view, we will illustrate the calculation of a variable 

annuity with GMWB rider under two scenarios using the following example:- 

 Single premium (initial investment) = RM100 

 Annual withdrawal amount = RM 5 

 Contract term = 20 years 

 Assuming no insurance fee 

In this example we assume no insurance fee but in reality, insurer charges a 

proportional fee, α ranging from 35bps to 75bps per annum. 
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Table 1.1 shows the scenario under bullish market while Table 1.2 

describes the scenario under bearish market. From table 1.1, in the bullish 

market, investors of the GMWB enjoy the potential gains from the equity 

market. Throughout the 20 years, total amount that will be received by the 

investors are the guaranteed periodical withdrawal (RM5 for 20 years) and the 

sub-account value at maturity (RM 60.95), a total of RM160.95. Table 1.2 

shows that in year 15, the subaccount value at the end of the year is RM 0.63. 

Under the regular plan without GMWB rider, the policyholder can no longer 

withdraw from the policy as there is not enough money to be withdrawn. But 

under GMWB, the policyholder can withdraw RM 5 until the total withdrawal 

is equal to the initial investment (RM100), which means he can continue to 

withdraw until year 20, even though the subaccount value is negative. Thus, 

the policyholder is protected against downside risk during bad performance 

year. 
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Table 1.1 Example cash flow of GMWB under Bullish Market 

Time Beginning of 

Year 

Investment Return 

(%) 

Withdrawal 

(GMWB) 

Balance 

(EOY) 

1 100.00 4.00 5.00 99.00 

2 99.00 10.00 5.00 103.90 

3 103.90 (1.33) 5.00 97.52 

4 97.52 4.89 5.00 97.29 

5 97.29 6.00 5.00 98.12 

6 98.12 8.20 5.00 101.17 

7 101.17 8.05 5.00 104.31 

8 104.31 13.93 5.00 113.85 

9 113.85 (6.00) 5.00 102.01 

10 102.01 (1.23) 5.00 95.76 

11 95.76 4.45 5.00 95.02 

12 95.02 (13.64) 5.00 77.06 

13 77.06 (3.08) 5.00 69.69 

14 69.69 (10.00) 5.00 57.72 

15 57.72 7.36 5.00 56.97 

16 56.97 13.04 5.00 59.39 

17 59.39 9.98 5.00 60.32 

18 60.32 19.79 5.00 67.26 

19 67.26 3.04 5.00 64.30 

20 64.30 2.56 5.00 60.95 
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Table 1.2 Example cash flow of GMWB under Bearish Market 

Time Beginning of 

Year 

Investment Return 

(%) 

Withdrawal 

(GMWB) 

Balance 

(EOY) 

1 100.00 0.40 5.00 95.40 

2 95.40 (3.57) 5.00 86.99 

3 86.99 (1.33) 5.00 80.84 

4 80.84 4.89 5.00 79.79 

5 79.79 (20.38) 5.00 58.53 

6 58.53 (26.71) 5.00 37.90 

7 37.90 8.05 5.00 35.95 

8 35.95 13.93 5.00 35.95 

9 35.95 (17.47) 5.00 24.67 

10 24.67 25.54 5.00 25.97 

11 25.97 4.45 5.00 22.13 

12 22.13 (13.64) 5.00 14.11 

13 14.11 (3.08) 5.00 8.68 

14 8.68 18.09 5.00 5.25 

15 5.25 7.36 5.00 0.63 

16 0.63 r 5.00 0.00 

17 0.00 r 5.00 0.00 

18 0.00 r 5.00 0.00 

19 0.00 r 5.00 0.00 

20 0.00 r 5.00 0.00 
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1.4 Literature Review 

 

Milevsky and Salisbury (2006) presented a model to evaluate the price of 

variable annuities with GMWB rider from financial economic perspective. 

They considered two different withdrawal behaviors in the pricing model, 

which are static and dynamic withdrawal policy. The static approach assumes 

an individual periodically withdraws a fixed amount from their account while 

the dynamic approach assumes individual can withdraw a flexible amount 

from their account in accordant to economic advantages. Assuming that the 

underlying assets follow a Geometric Brownian Motion (GBM) with constant 

interest rate, they have shown that under static withdrawal policy, variable 

annuity with GMWB rider can be decomposed into a type of Quanto Asian put 

option plus a generic annuity certain. While under dynamic withdrawal policy, 

assuming that investors were to maximize the embedded options, the 

evaluation is similar to the pricing of an American put option. Hence the 

existing pricing techniques can readily be used for the evaluation of a GMWB. 

Besides, it provides an alternative for the insurance company to use those 

options as a hedging tool as both Asian option and American put option 

markets are well established. They also concluded that the insurance fee 

charged in the market (as of mid-2004) is too low to cover the hedging cost for 

providing the guarantee under two extreme withdrawal approach (static and 

dynamic withdrawal). 

 

Since policyholder is assumed to be rational, under dynamic 

withdrawal approach, they will lapse the product at an optimal time to 
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maximize the annuity value. Thus, Dai et al. (2008) explored the optimal 

withdrawal strategy for the pricing of variable annuities with GMWB and 

constructed a singular stochastic control model. In the model, withdrawal is 

used as the control variable under both continuous and discrete withdrawal 

framework. 

 

Dai et al. (2008) used Hamilton-Jacobi-Bellman (HJB) approach to 

evaluate the value of a variable annuity with GMWB since the value function 

can be shown as the generalized solution to the HJB equation. Using penalty 

approximation approach, Dai et al. (2008) proposed an efficient finite 

difference scheme to obtain the fair value of a GMWB. For both continuous 

and discrete withdrawal policy, a penalty fee is imposed for the withdrawal 

greater than the contractual withdrawal. Their pricing model is performed 

under risk neutral framework assuming deterministic interest rate.  

 

Based on the idealized contract discussed by Dai et al. (2008), Chen et 

al. (2008) examined the assumptions of the model in detail. Besides, the effect 

of different parameters on the fair fee is examined. They have included mutual 

fund fees in the model with the argument that mutual fund charges a separate 

management fees on top of the hedging fees. Furthermore, both optimal 

investor behavior and sub-optimal behavior are studied. Besides assuming 

underlying asset follows a Geometric Brownian Motion, jump diffusion 

processes is incorporated in the model. Incorporating jumps in the model is 

believed to be more realistic especially for the pricing of a long term product. 
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Ignoring the interest rate risk, their model shows that insurances companies 

are not charging enough to cover the cost of the contract.  

 

Huang and Kwok (2014) extended the singular stochastic control 

model proposed by Dai et al. (2008). In the pricing model, optimal dynamic 

withdrawal policies are analyzed. The analytical approximation of the pricing 

model is derived under numerous limiting conditions. In this paper (Huang 

and Kwok, 2014), they showed that the pricing formulation can be simplified 

to an optimal stopping problem if the penalty charge is imposed on the 

withdrawal amount.  

 

Bauer et al. (2008) proposed a general framework that fits all types of 

guarantees offered within a variable annuity contract in the US, namely 

Guaranteed Minimum Death Benefits (GMDB), Guaranteed Minimum 

Accumulation Benefits (GMAB), Guaranteed Minimum Income Benefits 

(GMIB) and Guaranteed Minimum Withdrawal Benefits (GMWB). The 

pricing model is developed under risk neutral measure assuming underlying 

fund follows a Geometric Brownian Motion (GBM). In the framework, both 

deterministic withdrawal strategies and optimal withdrawal strategies are 

considered. As there is no closed form solution for the complex valuation, 

Monte Carlo simulation and generalized finite mesh discretization approach 

are used to determine the cost for the guarantee provided.  According to the 

paper, Monte Carlo methods are not preferable for the evaluation under 

optimal withdrawal strategies, thus discretization approach is applied. The 

numerical results showed that some of the guarantees provided in the market 
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are overpriced whereas variable annuities with GMIB options are underpriced. 

As their model does not include charges other than insurance fees, it tends to 

underestimate the option values. Thus, they concluded that the insurer should 

reexamine their pricing schemes if the guaranteed provided is underpriced 

under their model. 

 

The pricing model assumption is usually simplified to make the model 

tractable. However over simplification of the model might lead to mispricing. 

Extending the existing literature on GMWB, Yang and Dai (2013) proposed a 

tree model to evaluate the values of GMWB with complex provision. The tree 

model allowed the flexibility to include deferred withdrawal, penalty for 

surrender, mortality risk, rollup interest rate guarantee as well as discrete 

withdrawal behavior in the structure. To verify the accuracy of the tree model, 

Monte Carlo simulation is used as the benchmark. From the numerical 

analysis and sensitivity analysis, they conclude that developing a pricing 

model that incorporates provision of GMWB contract is important for risk 

management. As this tree model employs a deterministic mortality model, it 

will be more capable to capture the mortality risk if stochastic mortality was 

being used. Furthermore, construct a tree model assuming stochastic interest 

rate will be more sensible especially for the pricing of a long term product. 

 

Hyndman and Wenger (2014) considered the fair pricing of variable 

annuities with GMWB from financial economic perspective. As numerical 

method is used to solve for the insurance fees, it raises a theoretical question 

of existence and uniqueness of the insurance fee. In this paper, they have 



 

13 
 

proven that the insurance fee exist and is unique. They further extend the work 

of Peng et al. (2012) to decompose the contract value when lapses are allowed. 

However their model only account for equity risk, interest rate risk is not 

considered in the model. 

 

All of the paper mentioned assumed constant interest rate in their 

pricing model. As GMWB is a long term product, it will be more realistic to 

assume stochastic interest rate.  

 

Benhamou and Gauthier (2009) considered both stochastic volatility 

and stochastic interest rate model in the pricing of GMB. Combining Heston 

model and Hull-White interest rate model in the pricing model, they found out 

that there is an impact of stochastic volatility and stochastic interest rate on the 

insurance fees charge by insurer. The impact is even more significant with 

longer maturity period. 

 

Peng et al. (2012) considered the pricing of a GMWB under the 

Vasicek stochastic interest rate framework, assuming deterministic withdrawal 

rates. They use the lower and upper bound approximation method to estimate 

the option value. Furthermore, the sensitivity of the pricing model is examined 

using different parameter values. But the drawback is, Vasicek interest rate 

model has positive possibility of having negative interest rate, a situation that 

is not usually seen in a normal market condition. Thus, we believe that CIR 

interest rate model with zero probability of negative rate under certain 

restriction of its parameters should be a more realistic model.  However, 
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recently a number of major central banks in Europe have reduced the interest 

rate below zero in order to fight the growing trend of deflation. This has 

challenged the conventional economic theory saying that the rates cannot stay 

in negative territory, as investor will withdraw their cash, emptying the banks 

and crash the financial system. It has sparked a debate whether negative 

interest rate is a temporary phenomenon or a new normal.     

 

A summary of literature review on GMWB is shown in table below:-



 

 
 

Paper Withdrawal  

Assumption 

Withdrawal  

Process 

Underlying Asset Interest Rate Method 

Milevsky and Salisbury 

(2006) 

Static and 

dynamic 

Continuous GBM Constant PDE 

Dai et al. (2008) Dynamic Continuous and 

discrete 

GBM Constant PDE - singular stochastic 

control 

Chen et al. (2008) Dynamic Continuous and 

discrete 

GBM with jump 

diffusion 

Constant PDE 

Bauer et al. (2008) Static and 

dynamic 

Discrete GBM Constant Monte Carlo and 

generalized finite mesh 

discretization approach 

Bacinello et al. (2011) Static, dynamic 

and mixed 

Discrete Stochastic 

volatility Heston 

Model 

Stochastic  

(CIR) 

Least square Monte Carlo 

Peng et al. (2012) Static Continuous GBM Stochastic 

(Vasicek) 

Analytical approximation 

(lower bound and upper 

bound) 

 

1
5
 



 

 
 

Paper Withdrawal  

Assumption 

Withdrawal  

Process 

Underlying Asset Interest Rate Method 

Yang and Dai (2013) Static Discrete GBM Constant Tree model and Monte 

Carlo 

Bacinello et al. (2013) Dynamic Discrete Levy Process Constant Dynamic Programming 

Huang and Kwok (2014) Dynamic Continuous GBM Constant Analytical approximation 

Hyndman and Wenger 

(2014) 

Static Continuous GBM Constant Binomial model 

1
6
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CHAPTER 2 

2.0 PRICING MODEL OF GMWB 

 

A simple model with constant withdrawal rate and fixed total withdrawal 

amount is first considered for pricing GMWB. In addition, we assume 

constant interest rate and there are no lapses or mortalities throughout the 

period. The pricing formulation considered here follows the method 

introduced by Milevsky and Salisbury (2006). One of the advantages of using 

simple model is that it allows us to have a better visualization of the annuity 

problem. Thus, it can be served as a benchmark for future analysis. Then, in 

section 2.2, we will extend the pricing model to incorporate stochastic interest 

rate. As the interest rate in the long run tends to fluctuate, we believe that 

pricing of a long term product will be more realistic under stochastic interest 

rate. 

 

2.1 Pricing under Constant Interest Rate 

 

Pricing model with constant interest rate will be discussed in this section. 

From the policyholder’s perspective, there are two cash inflows, that is 

periodical withdrawal and the balance in the subaccount at maturity. Let   be 

the maturity time and     be the subaccount value at maturity. To evaluate 

   we need to understand the dynamics of the subaccount. As GMWB allows 

policyholders to invest their initial capital in a selected fund, the value of the 

subaccount is affected by the performance of the underlying fund. We assume 
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the value of underlying fund follows a Geometric Brownian motion which is 

defined by the following stochastic differential equation (SDE) under risk 

neutral measure: 

                   (1) 

where 

   : Underlying asset value before deduction of proportionate insurance fees  

r    : Risk free interest rate 

   : Volatility of the underlying asset 

  : Standard Brownian process 

In our model we ignore lapses, partial withdrawals and mortalities to simplify 

the model as our main focus is on interest rate. 

 

Under risk neutral valuation framework, the value of the subaccount is  

accumulated at the risk free rate of return,   and deducted for periodical 

withdrawal at a constant rate   and proportionate insurance fees,  . We 

assume policyholder’s initial investment amount is     We let       and 

  
  

 
. Thus the dynamic of the subaccount value could be shown to satisfy 

the following SDE:- 

     (   )                 for      (2) 

This dynamic holds when    is positive. Once the subaccount value hits zero, 

it will remain at zero. This is the time the insurer has to fund the guaranteed 
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withdrawal from its own account rather than deducted from the policyholder’s 

subaccount.  

 

Let    be the first time    hits zero. Then    satisfies 

     (   )                ,         

                                                                     

(3) 

As    has an absorbing barrier at zero, we let  ̃ be the unrestricted process of 

  , then the dynamic of  ̃  is:- 

   ̃  (   ) ̃           ̃     (4) 

where    and  ̃  is linked by    ( ̃ )
 

(Karatzas, 1991) 

We find    by first solving SDE (4) for the unrestricted process  ̃ . We use 

method of integrating factor to solve for   ̃. The integrating factor is 

 
 ( )    (    

 

 
  

 )       
(5) 

Differentiate the integrating factor yields 

  ( )    (      
 )          

 (    
 

 
  

 )       

               (      
 )          ( ) 

Rearrange (4) as  

   ̃  (   ) ̃       ̃          (6) 

Multiply both side of equation (6) by  ( ), we get 
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 ( )  ̃   ( )(   ) ̃     ( )   ̃       ( )    

 ( )  ̃   ̃  ( ) (   )            ( )    

 ( )  ̃   ̃  ( )  (      
 )            

  ̃  ( )     ( )    

 ( )  ̃   ̃   ( )    ̃   ( )    ( )    

 ( ( ) ̃ )    ( )    

Integrate both sides of the equation yields 

 ( ) ̃      ∫  ( )   
 

 

 

Denote  ( )  
 

  
, then 

 ̃ 

  
     ∫

 

  
  

 

 

 

 
 ̃    (   ∫

 

  
  

 

 

) (7) 

where     
(    

 

 
  

 )       

As    and  ̃  is linked by    ( ̃ )
 

, hence 

 
      (   ∫

 

  
  

 

 

)

 

 (8) 

 

By purchasing a GMWB rider, the policyholder is eligible to receive 

periodical withdrawal and the remaining subaccount value at maturity if there 

is still a positive balance. Thus, from a policyholder’s perspective, the value of 
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a variable annuity with GMWB rider at time   can be articulated 

mathematically as 

 
 (     )    [  ∫  

 
     |    ∫   ∫  

 
    

 

 

  ] 

   [   (   )  |   ∫    (   ) 
 

 

  ] 

   [   (   )  |  ]  
 

 
[     (   )] 

(9) 

Where    is the filtration generated by the Brownian motion up to time   and 

   denotes the expectation under risk neutral measure Q. In other words, the 

first term can be viewed as a present value of sub account value at maturity, 

while second term is present value of an annuity certain. 

Present value of the cash flow of GMWB at time     is therefore:  

 
 (     )             

 

 
         (10) 

By substituting    into the equation, we can view the value of a variable 

annuity with GMWB rider as an Asian option added to a term-certain annuity, 

 
 (     )        [  (   ∫

 

  
  

 

 

)

 

]  
 

 
         (11) 

 

The difference between a GMWB rider and most of the normal 

insurance products is that the insurance fee is charged based on the asset value 

instead of an upfront charge. The insurance fee is determined based on 

equivalence principle. According to the equivalence principle, the net 

premiums are chosen so that the actuarial present value of the benefits equals 
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the actuarial present value of the net premiums. To fairly price a GMWB, 

proportional fee is determined so that the amount invested by the policyholder 

at inception,    is equal to the present value of the total amount of money 

being received. Therefore, 

     (     ) 

                  
 

 
         (12) 

The proportionate insurance fee,   can be determined by solving the 

equation above. Thus in order to determine the value of  (     ) , we 

separate equation (12) into two parts. We will first use Monte Carlo simulation 

to approximate the value of the first term of equation (12) and sum it up with 

the annuity certain, 
 

 
        .  The insurance fee,    is charged as a 

percentage of the sub account value. Typically a GMWB carries a fee range 

from 35 to 75 basis points.  

Simulation algorithm for GMWB model under constant interest rate  

 

for i=1:PathNum 
At=0; 
Bt=0; 
## To simulate subaccount value using Euler method 
for j=1:N 

t=(j-1)*dt; 
 Bt=Bt+sqrt(dt)*randn; 
      At=At+G*exp((alpha-r-
0.5*sigmas^2)*t+sigmas*Bt)*dt; 
end; 

 
W(i)=max(0,1-At); 

end; 
## To find the expected value 
M=exp(-alpha*T)*mean(W) 
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2.2 Pricing Under Stochastic Interest Rate 

 

After presenting GMWB model with constant interest rate, we now 

incorporate stochastic interest rate model, namely, Vasicek model of Vasicek 

(1977) and CIR model (Cox et al., 1985)  into the GMWB model. 

 

Vasicek interest model can be categorized as a Gaussian interest rate 

model, in which the interest rate is normally distributed. It is commonly used 

because of its mean reverting property and its simplicity.  However, the 

production of negative rate is a major drawback for this model. In real market, 

negative interest rate rarely occurred. 

 

While CIR model shares the same mean reverting property as Vasicek 

model, it preserves the positivity of interest rate. However, derivative pricing 

under CIR model is much more complex as the model involves square root 

process which has a non-central Chi Square distribution.  

 

2.2.1 Model Formulation 

 

We assume the same set of pricing assumptions as stated in the constant 

interest rate pricing model. As we incorporate stochastic interest rate into the 

model, the underlying asset is assumed to satisfy the following SDE under risk 

neutral measure Q 
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            √                         (13) 

Under Vasicek Model, the stochastic interest rate    is governed by the 

following SDE: 

      (    )           (14) 

While under CIR Model, the rate    satisfies: 

      (    )     √        (15) 

where 

    : Underlying asset value before deduction of proportional  

    insurance fees.  

          : Independent standard  -Brownian process. 

   : Correlation coefficient between    and   . 

   : Speed of conversion to long term interest rate  

   : Long term interest rate  

    : Volatility of    

    : Volatility of    

It can be proven that (Cairns, 2004) under Vasicek interest rate model, the 

price of a zero coupon bond at time   with maturity     is given by  

  (   )   (   )   (   )   (16) 

where  
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 (   )  
 

 
      (   )  

 (   )      ((  
  

 

   
)   (   )  (   )  

  
 

  
 (   ) ) 

While bond price  (   ) for CIR interest rate model is 

  (   )   (   )   (   )   (17) 

where 

 (   )  
 (   {(   ) }   )

   (   )(   {(   ) }   )
 

 (   )  [
     {(   )(   )  }

   (   )(   {(   ) }   )
]

      
 

 

  √       

The dynamic of the bond price  (   ), satisfies the SDE below:- 

   (   )   (   )        (   )     (18) 

where   (   ) is the volatility term. It can be shown that the volatility term of 

Vasicek model is     (   ) . Thus, Vasicek model has a deterministic 

volatility term, while the volatility term of CIR model is   √   (   ), which 

is a stochastic variable. 

 

As we introduce stochastic interest rate model into the pricing model, 

the dynamic of subaccount value follows:- 
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      (    )                (19) 

   (√            ) 

   (
    

    
) 

The equation above holds for     , that is when     , where    is the 

first time    hits zero. Once the subaccount value hits zero, it is considered 

ruined. Hence, it will continue to remain zero, that is              . As 

   has an absorbing barrier at zero, we let  ̃  be the unrestricted process of 

  , then the dynamic of  ̃  is:- 

   ̃  [(    ) ̃   ]    ̃       (20) 

We solve the SDE using method of integrating factor as shown in previous 

section with  ( )     [ ∫ (     
 

 
    

 )
 

 
   ∫   

 

 
   ]. 

By differentiating the integrating factor we have 

  ( )     [ ∫ (     
 

 
    

 )
 

 

  

 ∫   

 

 

   ]   (         
 )          

   (         
 )          ( ) 

Rearrange equation (20) as 

   ̃  (    ) ̃     ̃            (21) 

Multiply both side of equation (21) by  ( ), we get 
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 ( )  ̃   ( )(    ) ̃     ( )   ̃       ( )    

 ( )  ̃   ̃  ( ) (    )            ( )    

 ( )  ̃   ̃  ( )  (         
 )              

  ̃  ( )  

   ( )    

 ( )  ̃   ̃   ( )    ̃   ( )    ( )    

 ( ( ) ̃ )    ( )    

Integrate both sides of the equation yields 

 ( ) ̃      ∫  ( )   
 

 

 

Substitute  ( )  
 

  
 

 ̃ 

  
     ∫

 

  
  

 

 

 

 ̃    (   ∫
 

  
  

 

 

) 

Where       (∫ (     
 

 
‖  ‖

 )
 

 
   ∫   

 

 
   ) 

As    and  ̃  is linked by    ( ̃ )
 

, hence 

 
      (   ∫

 

  
  

 

 

)

 

 (22) 

Therefore by considering equity and interest risk, the fair value of a variable 

annuity with GMWB at time   can be shown as 
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 (     )    [∫   ∫     

 
    

 

 

   ∫     
 
   |   ] (23) 

where    is the filtration generated by the stochastic process and       is the 

expectation under risk measure Q. 

At time     this value is reduced to  

 
 (     )    [∫   ∫     

 
    

 

 

   ∫     
 
   ] (24) 

Note that   ∫     
 
  is a stochastic discount factor, hence the value of the first 

term in the equation above can be expressed as  ∫  (   ) 
 

 
   where 

 (   ) is the bond price at time  , with maturity at time  . Hence, the value 

of GMWB at   can be written as:- 

 
 (     )  ∫  (   ) 

 

 

     [  ∫     
 
   ] (25) 

Evaluation of the option value part or the second term of the value of GMWB 

is complex as it is an expectation of a product of three correlated random 

variable,       and ∫
 

  
  

 

 
. The calculation would become easier if we 

perform a change of measure from risk neutral measure. Thus, we will apply 

the technique of change of numéraire to simplify the calculation of the 

expectation. 

Recall that in term of   ̃  , the value of GMWB at time     is 

 (     )  ∫  (   ) 
 

 

     [  ∫   
 
 

  ( ̃ )
 
] 
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 ∫  (   ) 
 

 

       [  ∫   
 
 

    (  ∫
 

    

 

 

  )

 

] 

Define    ∫
 

    

 

 
   , then 

 
 (     )  ∫  (   )  

 

 

       [  ∫   
 
     (    ) ] (26) 

Evaluation of the second term of GMWB is then: 

  [  ∫   
 
     (    ) ] 

 ∫   ∫   
 
 

    (    ) 

 

   

 ∫   ∫   
 
     (    ) 

 

  

   
    

  ∫   ∫   
 
     

  
    (    ) 

 

  

   
    

where    is the measure we wish to choose so that the integral become 

tractable. Hence, let   ∫   
 
     

  

  

   
  , or    

   

  
 

  ∫   
 
     

  
 

  ∫   
 
     

  
 , 

thus we have 

∫   ∫   
 
     

  
    (    ) 

 

  

   
    ∫     (    ) 

 

    

                                                                                 
 (    )    

It can be shown that   ( )  
 

  
∫  ( )   

   is a measure on  , the set of 

all possible outcome and 
   

  
 is the Radon Nikodym derivative of    with 

respect to  .   
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Therefore if we know the distribution law of  
 

  
 under    probability measure, 

we can evaluate 

       
 (    )           

[(  ∫
 

    

 

 

  )

 

] 

To determine the distribution law of 
 

  
, recalled that SDE of the underlying 

asset under    measure is 

           √                            or 

                  , 

Where 

   (√                   ) 

   (
    

    
) 

Solving the SDE yield 

 
        (∫ (   

 

 
‖  ‖

 )    ∫      

 

 

 

 

) (27) 

Suppose  (   ) and    are denominated in the same currency. If we 

take the asset price    as the numéraire, in terms of this numéraire, the asset 

price is equal to 1. The measure defined by this numéraire is given by   

    ( )  
 

  
∫  ( )   

   for all    , or   

  
   

  
|  ( )  

 

  
 ( )   
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The price of  (   ) denominated in units of shares of    is 
 (   )

  
. Differentiate 

by using Ito’s lemma find that 

 (
 (   )

  
)    (   ) (

 

  
)   (

 

  
) (   )    (   ) (

 

  
) 

 
 (   )

  

             
 (   )

  

(             
   )

  (   )(          ) ( 
 

  
) (             

   ) 

 
 (   )

  

               
            

 
 (   )

  

 (     )(         )  

 
                     

 (   )

  
[(     )   

  ] (28) 

By Girsanov theorem,   
      ∫   

 

 
   is a  -dimensional Brownian 

motion under    measure which is equivalent to the Q measure. We can see 

that the process 
 (   )

 ( )
 is a   -martingale as there is no drift term in the 

equation and    and   
  

 are related by    
         . 

Replace   by  ,  and   by  , 

 (
 (   )

  
)  

 (   )

  
[(  (   )    )     

  ] 

 
 (   )

  
   

(   )     
           

    ( (   )   ⁄ )   
 

 
‖   

(   )‖
 
      

(   )     
   

Integrate with respect to   from   to   and observe that  (   )     we have 
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 (   )

  
 

 (   )
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∫ ‖   

(   )‖
 
  

 

 

 ∫    
(   )     
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∫ ‖   

(   )‖
 
  

 

 

 ∫    
(   )     
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  (   )   ( 

 

 
∫ ‖   

(   )‖
 
  

 

 

 ∫    
(   )     

  

 

 

) (29) 

where  

   
       

Note that          

  
. Hence the distribution law of 

 

  
 under probability 

measure    is, 

 

  
    

  

  
      (   )   ( 

 

 
∫ ‖   

(   )‖
 
  

 

 

 ∫    
(   )   

  

 

 

) 

Replace   by   and then   by   to obtain 

  

  
     (   )   ( 

 

 
∫ ‖   

(   )‖
 
  

 

 

 ∫    
(   )   

  

 

 

) 

(30) 

Observe from the equation above that the computational works can be 

simplified if    
 is a deterministic function. As    is a deterministic function, 

   
will be a deterministic function if    is a deterministic function. By 

changing from risk neutral measure Q to a new measure Qs, the evaluation of 

option value can be simplified if the volatility term of bond price,    is 

deterministic. Therefore change of numéraire technique can reduce the 

calculation work for the pricing model under Vasicek interest rate model but it 
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is not the same for CIR interest rate model which has a stochastic volatility 

term. Thus under Gaussian interest rate model where the volatility term is 

deterministic, the value of variable annuity with GMWB is simplified to 

 (     ) 

 ∫  (   )   
 

 

   [  ∫     
 
   ] 

 ∫  (   )   
 

 

        
[(  ∫

 

    

 

 

  )

 

] 

 ∫  (   )   
 

 

          [( 

 
 

  
∫     (   )   ( 

 

 
∫ ‖   

(   )‖
 
  

 

 

 

 

 ∫    
(   )   

  

 

 

)  )

 

] 

(31) 

In order to perform simulation to approximate the option value we will need to 

evaluate  (   ), ∫ ‖   
(   )‖

 
  

 

 
 and  ∫    

(   )   
   

 
  

As there are closed form solutions for bond price under both Vasicek and CIR 

interest rate model,  (   ) is a deterministic function that readily available. 

As for ∫ ‖   
(   )‖

 
  

 

 
, under Vasicek interest rate model it is 

∫    
(   )   

(   )   
 

 

 

 ∫ ( √                    (   (   )     ))
 

 

 ( √                    (   (   )     ))
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 ∫   
    

   (   )         (   )
 

 

   

 (   )  
 

 
      (   )   

   
(   )    

    
   (   )         (   )  

    
(   )    

    
   (   )         (   )  

For the stochastic integral ∫    
(   )   

   

 
, since    

 is a deterministic 

function, it has a centered Gaussian distribution. So it has mean zero and 

variance 

   [∫    
(   )   

  

 

 

] 

  [(∫    
(   )   

  

 

 

)

 

]  ( [∫    
(   )   

  

 

 

])

 

 

   [(∫    
(   )   

  

 

 

)

 

] 

By Ito Isometry, 

 [(∫    
(   )   

  

 

 

)

 

]  ∫ ‖   
(   )‖

 
  

 

 

 

 ∫   
    

   (   )         (   )  
 

 

 

Let  ( )  ∫   
    

   (   )         (   )  
 

 
 

Hence, ∫    
(   )   

   

 
 has a centered Gaussian distribution with variance 

 ( ). 
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∫    
(   )   

  

 

 

  (   ( )) √ ( ) (   ) 

Thus, simulation can be performed based on this information. 

Algorithm to simulate        
     under Vasicek model:- 

% Define the variable 

r0=0.03025; % initial interest rate 
sigmas=0.1280;    %   , volatility of stock market 
T=10;             % Time to maturity 
alpha=0.006; %  , the insurance fee 
w0=1; % subaccount value at t=0 
G=w0/T; % periodical withdrawal rate 
rho=-0.05; %  , correlation coefficient between 

equity and interest rate 
theta=0.0291; %  , long term interest rate 
k=0.2718; %  , Speed of conversion to long term 

interest rate sigmar=0.0036; %   ,interest rate volatility 
N=10000; % No of partition 
PathNum=100000; % No of simulation 
dt=T/N; % considering discretized process 
  
% Repeat the simulation to find the expected value  
For i=1:PathNum 
  At=0; 
  Bt=0; 
 % Simulate the subaccount value using Euler method 

for j=1:N 
t=(j-1)*dt; 
Bt=Bt+sqrt(F1_Func(sigmas,k,sigmar,rho,dt))*ra
ndn; 
At=At+G*D(r0,theta,k,sigmar,0,t)*exp(alpha*t- 
1/2*F1_Func(sigmas,k,sigmar,rho,t)+Bt)*dt; 

end; 

% Bt for ∫    
(   )   

   

 
 

% At for 
 

  
∫     (   )   ( 

 

 
∫ ‖   

(   )‖
 
  

 

 
 

 

 

∫    
(   )   

   

 
)   

W(i)=max ((1-At),0); 
end; 
 
% To find the expected value 
y= exp(-alpha*T)*mean(W); 
 

Listing 1 



 

36 
 

Listing 1 is used to perform the simulation of the option value,        
    . 

The random number generator, randn is used. Thus, each call to randn will 

produce a random number generated from the standard normal distribution. 

F1_Func() is a function created for ∫   
    

   (   )         (   )  
 

 
 

while D()is for  (   )   (   )  . As for Vasicek model,  (   )  
 

 
   

   (   )  and  (   )      ((  
  

 

   
)   (   )  (   )  

  
 

  
 (   ) ) . 

The function for F1_Func() and D() is shown in Listing 2 and Listing 3. 

 

F1_Func(sigmas,k,sigmar,rho,dt) 
 

y =sigmas.^2.*t + (sigmar.^2.*(t - (1./(2.*exp(2.*k.*t)) 
- 2./exp(k.*t) + 3./2)./k))./k.^2 + 
(2.*rho.*sigmar.*sigmas.*(1./exp(k.*t) - 1))./k.^2 + 
(2.*rho.*sigmar.*sigmas.*t)./k; 

Listing 2 

 

 
D(r0,theta,k,sigmar,0,t) 
 

bts=(1-exp(-k.*(s-t)))./k; 
ats=exp((theta-sigmar.^2./(2.*k.^2)).*(bts-s+t)- 
sigmar.^2.*bts.*bts./(4.*k)); 
 
v=ats.*exp(-bts.*r0); 

Listing 3  
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2.2.2 Simulation of GMWB under CIR Model 

 

As CIR interest rate model has a non-central Chi square distribution, the 

change of numéraire technique does not help to reduce the computational 

work. Thus, to approximate the price of GMWB under CIR interest rate model, 

we will only consider Monte Carlo simulation under probability measure Q.  

 

Under probability measure Q, the value of a GMWB is  

 (     )  ∫  (   ) 
 

 

     [  ∫   
 
   ( ̃ )

 
] 

Thus, we will approximate the value of   [  ∫   
 
   ( ̃ )

 
] based on Monte 

Carlo simulation. We divide the interval [0 T] into N subintervals, with each 

time step        and approximate the value  ̃  based on the discretized 

equation 

 ̃      ̃   ̃ [(    )   √(    )          √    ]      (32) 

Where     (   ) and     (   ) , a standard normal distribution. Thus we 

calculate  ̃   from  ̃ , where  ̃  is the initial subaccount value which is 

denoted as   .  ̃    is calculated from  ̃   and so on until we reach  ̃    

 ̃ . 
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As the simulation of CIR model involves square root process, it raises 

some problems in generating the Monte Carlo paths on discrete timeline. The 

classical discretization is using Euler Method, where the discretization process 

could be written as 

          (    )    √        

But we notice that under this method, the discretization process for    can 

become negative when the last term is comparatively a large negative number. 

For instance, when    is a large negative number, then the last term may 

become a large negative number, hence    can become negative. If    can 

become negative, it is impossible for us to compute √   that make the 

simulation fail. The problem can be fixed by replacing    with (  )
  which 

mean whenever    fall negative, it will be considered as 0.  

          (  (  )
 )    √(  )       

Another drawback of this method is that it has first order weak convergence 

which can be further improved by Milstein approximation. The Milstein 

approximation increases the accuracy of discretization by applying Ito-Taylor 

expansion. This is a higher order scheme which adds an additional correction 

term to Euler Approximation where the discretization process is as follow: 

          (    )    √       
 

 
    (  

   ) 

Although this method can improve the accuracy of discretization, it failed to 

preserve the positivity of   . Therefore it cannot be used without suitable 

modification.  As discussed by Andersen et al, one of the Milstein-type 
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approximations that control the probability of getting negative value is 

implicit Milstein scheme which is defined as:- 

      
         √       

 

 
    (  

   )

    
 

This discretization will ensure positive paths for    if       . Thus in our 

simulation, we will use implicit Milstein scheme for the cases where     

   and Euler discretization with adjustment when the bound is not hold to 

prevent the problem of generating negative   .  

 

Simulation of option value under CIR interest rate 

 

% Initialize the variable 
r0=0.03025; % initial interest rate 
sigmas=0.1280;    %   , volatility of stock market 
T=10;             % Time to maturity 
alpha=0.006; %  , the insurance fee 
w0=1; % subaccount value at t=0 
G=w0/T; % periodical withdrawal rate 
rho=-0.05; %  , correlation coefficient between 

equity and interest rate 
theta=0.0291; %  , long term interest rate 
k=0.2718; %  , Speed of conversion to long 

term interest rate sigmar=0.0036; %   ,interest rate volatility 
N=10000; % No of partition 
PathNum=100000; % No of simulation 
randn('seed'); % Generate random number from 

standard normal distribution 
r(N,PathNum)=0; % Preallocate arrays for efficiency 
normV(N)=0;  
exprt(PathNum)=0;  
Payoff(PathNum)=0;  
Annuity(PathNum)=0;  
SubAcc(PathNum)=0;  
w(1)=w0;  
GSum=0;  
GSumDelta=G*dt;  
dt=T/N; % considering discretized process 
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% Repeat the process to find the mean 
for path=1:PathNum 
r(1,path)=r0; 
w(N)=0;w1(N)=0; 
tmp = r(1,path); 
GSum=GSum+exp(-tmp*dt)*GSumDelta;  

 
% Simulate the interest rate under CIR model based on 
equation 33 
if 4*k*theta > sigmar^2 

for j=2:N 
normV(j)=randn; 
r(j,path)=(r(j-1,path)+k*theta*dt+sigmar*sqrt(r(j-
1,path))*normV(j)*sqrt(dt)+0.25*sigmar^2*dt*(normV(
j)^2-1))/(1+k*dt);  
tmp=tmp+r(j,path); 
GSum=GSum+exp(-tmp*dt)*GSumDelta; 
end; 

else 
for j=2:N 
normV(j)=randn; 
if r(j-1,path)<0  

r(j,path)=r(j-1,path)+k*(theta-max(r(j-
1,path),0))*dt+sigmar*sqrt(max(r(j-
1,path),0))*sqrt(dt)*normV(j); 

else 
r(j,path)=(r(j-1,path)+k*theta*dt 

+sigmar*sqrt(r(j-1,path))*normV(j)*sqrt(dt) 
+0.25*sigmar ^2*dt*(normV(j) ^ 2- 1))/(1+k*dt); 
end 
tmp=tmp+r(j,path); 
GSum=GSum+exp(-tmp*dt)*GSumDelta; 
end; 

end; 
 
% Simulate the subaccount value using discretization 
method based on equation 32  
for j=2:N 

w(j)=w(j-1)*(1+r(j,path)-alpha)*dt+sqrt(1-
ro^2)*sigmas*sqrt(dt)*randn+ro*sigmas*sqrt(dt)*normV(j))-
G*dt; 
end; 
 
% To get the present value of the subaccount value 
Payoff(path)=exp(-tmp*dt)*w(N); 
end; 
 
% To get the mean of present value of subaccount value 
M=mean(Payoff); 
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CHAPTER 3 

3.0 LOWER BOUND UNDER VASICEK MODEL 

 

As shown in previous chapter, the pricing of an annuity with GMWB can be 

shown as an option plus an annuity certain. The option term    
 (    )   

can be evaluated as an Asian option.  Although there is no closed form 

formula for pricing an Asian option, its analytic approximation does exist. 

Following the method introduced by Rogers and Shi (1995), Peng et al. (2012) 

deduced a lower bound for pricing of GMWB. It turns out that, this lower 

bound itself is a good approximation for Asian Option pricing. In this chapter, 

we compute the lower bound by modifying slightly the method proposed by 

Peng et al. (2012). 

The lower bound is based on the concept of conditional expectation. 

As    is a convex function, by Jensen Inequality,  

   
 (    )   

    
[   

 (    ) |  ] 

    
[(   

     |  )
 
] 

    

where   is a conditional variable. Rogers and Shi (1995) found out that it will 

give a good lower bound approximation for fixed strike Asian Option if  

  ∫     
 

 
 is chosen. 
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The error of lower bound approximation can be deduced based on the idea 

below.  

For any random variable  , it can be stated that         and  | |  

     . Substitute          , we have 

 (  )    ( )    (  )    (  )   (  )   

                                    {
 (  )     (  )   (  ) 

 (  )      (  )   (  )
 

On the other hand,  

( (| |)  | ( )|)

 
 

  (  )   (  )  | (  )   (  )|

 
 

                 {
 (  )     (  )   (  ) 

 (  )      (  )   (  )
 

Hence,  (  )    ( )   
 

 
( (| |)  | ( )|) 

Write      ( )   ( )   By triangle inequality, we obtain  

| |  |   ( )|  | ( )|  

 (| |)  | ( )|   |   ( )| 

Combining the equation we get 

  (  )    ( )   
 

 
( (| |)  | ( )|)  

 

 
 |   ( )|  

 

 
√   ( ) 

Therefore, substitute        and the inner expectation by conditional 

expectation accordingly, we find that the error of lower bound is 
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[   

 (    ) |  ]     
[(   

     |  )
 
] 

     
 

 
   

[√   (  | )] 

Thus it can be seen that the quality of the lower bound is highly dependent on 

the choice of  . It is the best choice if    
[√   (  | )] is minimized. Here 

we follow the choice as shown in  Peng et al. (2012) and consider  
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Under    measure,   is normally distributed with mean zero and standard 

deviation of one. 
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Based on the properties of jointly normal random variable  
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By Ito Isometry,  
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As a result, we obtain  

      
[(   

     |  )
 
] 

          
[(   

[  ∫
  

  

 

 

|  ])

 

] 

          
[(  ∫    

    ⁄ |    
 

 

)

 

] 

          
[(  ∫    (   )        

  
 

   
 

 

)

 

] 

          
[(  ∫    (   )    ( )

 

 

  )

 

] 

where  ( )       
  

 

 . 

To derive the analytic formula for    recall: 
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As we define       
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Changing the integration order yields, 
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in Figure 3.1 shows that there is a unique root. 
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Figure 3.1 Plot of   ( )  
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where  ( ) is the standard normal distribution function.  
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Since  ( )  
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Mathlab programs were written to implement the put option value,    
     . 

It is found that this value is very close to the value reported in table 5.1. 
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CHAPTER 4 

4.0 EMPIRICAL STUDY IN MALAYSIAN MARKET 

 

In order to use the pricing model in practice, it is essential to estimate the 

model parameters. Vasicek and CIR model will be fitted to the data to 

estimate the interest rate model parameters. As we would like to explore the 

pricing of GMWB in Malaysia, Malaysian Government Securities (MGS) with 

one year maturity will be used as a proxy to risk neutral rate while Kuala 

Lumpur Composite Index (KLCI) will be used to estimate the parameters for 

equities portfolio. The parameters will be estimated using historical data 

instead of calibrating using option price as options data are not easily available. 

For parameter estimation of an interest rate model, different methods can be 

used since there are three dimensions that can be considered: time to maturity, 

yield rate and time. One method is to do a cross-sectional estimation where 

different maturity times are considered at a fixed moment of time. Another 

method is using time series estimation. This method considers the evolution of 

yield rate over a time period with fixed maturity. In this research, time series 

estimation method will be used for both Vasicek and CIR model. 

 

4.1 Data 

 

MGS are long term bonds issued by Malaysian government and they are the 

most actively traded bonds. Thus MGS will be used to estimate the parameter 



 

51 
 

for interest rate model. Since we are considering the pricing of a long term 

product, 8 years of data will be used in our study covering the period from Jan 

2006 to Dec 2013, a total of 1973 trade days. Table 4.1 shows the fraction of 

the data used while Figure 4.2 shows the trend of KLCI and one year MGS for 

the past 8 years. Figure 4.1 shows the daily yield curve for the MGS from 

2006 to 2013. The bold line highlights one year MGS rate which is the yield 

rate being used in this research. From Figure 4.1, it can be seen that in general 

the interest rate has a great drop for all maturity time around year 2008 to 

2009 and its movement is seen to be stable after year 2009. The decrease in 

interest rate was consistent with the action of central bank of Malaysia to 

reduce its Overnight Policy Rate (OPR). From November 2008 to February 

2009, Bank Negara Malaysia has cut the OPR by a total of 150 basis points. 

During that time, Malaysian economy experienced a severe fundamental 

slowdown as an impact of global financial crisis. The interest rate cut was to 

prevent Malaysian economy from entering a deep and prolonged recession.   
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Figure 4.1 3D-plot of Malaysian Government Securities over 8 year 

period 
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Table 4.1  Sample of data used for parameters estimation 

DATE MGS1Y KLCI 

20060103         3.347  892.85 

20060104         3.350  897.13 

20060105         3.333  906.66 

20060106         3.325  911.67 

20060109         3.323  913.80 

20060111         3.327  909.59 

20060112         3.321  911.16 

20060113         3.307  911.90 

20060116         3.303  906.53 

20060117         3.297  907.52 

20060118         3.300  901.32 

 

Figure 4.2 Trend of KLCI and 1 year MGS over 8 year period. 
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4.2 Estimation of parameters 

 

For the parameter estimation of both the short rate model and stock price 

model, we will first obtain the discretize model using Euler discretization 

method and then least square method is used to estimate the parameter. The 

least square method estimates the coefficient by minimizing the sum of square 

of the deviation. The SDE of the short rate model consists of drift term and 

volatility term. The drift term is mainly driven by different legislative, 

regulatory, and economic environment; while the volatility term can be seen 

as the noise that is affected by the market supply and demand.  Different 

interest rate data used will imply different parameter estimates. In this 

research, one year maturity yield is used. As we are considering the parameter 

estimation for a short rate model, the time to maturity should not be too long. 

Since daily data is used, each time step     is equal to 1/247 where we assume 

there are 247 trading days in a year. 

 

4.2.1 Stock Price Model 

 

Volatility of the return of the equity market    is estimated using least square 

method by considering the discretized stock price model as follow: 

  (
     

  
)  (  

 

 
  

 )      √       

where       (   ) 
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In this study, we will not estimate the drift tern from the historical data 

as the pricing model is built under risk neutral measure. Under risk neutral 

measure, the drift term is replaced by the risk free rate. 

Since our main purpose is to investigate the pricing of a GMWB under 

stochastic interest rate which can be viewed as an option, it is needed to 

estimate the correlation coefficient between interest rate and stock return. The 

correlation coefficient   is estimated from the same set of historical data.  

 

4.2.2 Vasicek Model 

 

To estimate the parameters via time series data, we make use of the Ordinary 

Least Square method. A discrete time version model is needed for the 

parameter estimation. The discretization scheme of Vasicek model is written 

as:- 

                      √       

where       (   ) 

Parameter   and   is estimated by solving the following equation. 

(   )        
(   )

∑( (   )                    )
 

   

   

 

  

In this research we use Microsoft Excel Solver to solve the equation 

above. Solver is an optimization tool that helps to find an optimal value in the 

target cells by changing a group of cells linked to the target cell. In our case, 
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we set the parameter   and   as the target cells by minimizing the sum of 

square of the residual. As for    , the standard deviation of the residual will be 

used as an estimator. 

 

4.2.3 CIR Model 

 

Same estimation method is applied to the CIR model. We will first discretized 

the CIR model using Euler discretization method which is: 

                      √         

Then, Solver will be used to estimate the parameter   and   by solving this 

equation. 

(   )        
(   )

∑ (
 (   )                    

√      
)

    

   

 

Where       (   ) 

 

After we have obtained   and  ,    is estimated by calculating the 

standard deviation of the sum of square of the residual. 

 

The parameters estimated based on 8 years historical data will be used 

as the input to our pricing model to determine the insurance cost that need to 

be charged. The results are shown in Table 4.2. We find out that all parameters 

estimated are almost the same for both model except    is higher for Vasicek 

model.  
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Besides, we are also interested to examine the movement of the 

parameters for both interest rate models. A total of 8 years data is used to 

examine the movement of the parameter over 2 years. We will first obtain the 

parameters for the first 6 years (1 Jan 2006 - 31 Dec 2011). Then we will shift 

the time frame by one day (2 Jan 2006 - 1 Jan 2012) to get the second set of 

parameters. This process is performed for a total of 493 different time frames, 

a period of two years. The results of the movement of parameters are shown in 

Figure 4.3 to Figure 4.5. Figure 4.3 and Figure 4.4 show that parameter   and 

  estimated for both Vasicek and CIR model are close to each other. Although 

   has the same trend for both models, the level is different. As predicted, CIR 

model has a higher    as compared to Vasicek model. The higher      for CIR 

model is due to the √   in the volatility term of CIR model. As the volatility of 

CIR model depends on current interest rate, the higher the interest rate, the 

higher the volatility.  

 

As a conclusion, the parameters estimated based on two different 

models give similar results for the data set we considered. Thus, we are unable 

to determine which model is better to be used in modeling interest rate in 

Malaysia.   

Table 4.2 Parameter estimated for Vasicek and CIR model (Jan 2006-Dec 

2013) 

Parameter Vasicek CIR 

  0.2718 0.2963 

  0.0291 0.0292 

   0.0036 0.0021 
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As there is a major change in interest rate for the period of Nov 2008 to Feb 

2009, we split the data into two partition: before Feb 2009 and after Feb 2009 

to examine the impact of it. We find out that there is a huge different in the 

parameters calibrated. The estimation of the parameters is shown in Table 4.3.  

Table 4.3 Parameter estimated for Vasicek and CIR model (before 2009 

and after 2009) 

 Before Feb 2009 After Feb 2009 

 Vasicek CIR Vasicek CIR 

  -0.7320 -0.7685 0.5345 0.4683 

  0.0388 0.0386 0.0312 0.0318 

   0.0042 0.0231 0.0022 0.0137 

 

 

Figure 4.3 Estimation of Parameter   for Vasicek and CIR model from 

Jan 2012 to Dec 2013 



 

59 
 

 

Figure 4.4 Estimation of Parameter   for Vasicek and CIR model from 

Jan 2012 to Dec 2013 
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Figure 4.5 Estimation of Parameter    for Vasicek and CIR model from 

Jan 2012 to Dec 2013 

 

Based on the data set, the volatility of stock return is 0.1279. We notice that 

the stock return and interest rate return in Malaysia is negatively correlated 

with         . That is, when interest rate increases, the stock market will 

not be performing. This is consistent with conventional economic argument 

that the raise of interest rate will negatively affect the stock market. When the 

interest rate increased, it will shift the investor behavior to invest in 

government securities instead of invest in stock market. Besides, the company 

profit is seen to be lower with increasing debt expenses. Thus all else being 

equal, it will lower the company stock price as expected future cash flow will 

drop. 
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CHAPTER 5 

5.0 NUMERICAL RESULTS 

 

5.1 Comparison with Benchmark  

 

The simulation result of    
 (    )   under Vasicek interest rate model 

has been verified with the result obtained from Peng et al. (2012). Table 5.1 

shows the comparison of the results. The simulation is performed with 

100,000 trials for 10 years maturity and 15 years maturity. The parameter that 

is used in the model is       ,         , and        .  The results 

that we obtained is quite close to the result obtained from Peng et al. (2012) 

The maximum difference is 1.41% observed from 15 years maturity with 

       . We noticed that the gap is smaller for lower  

  . When the time to maturity is increased from 10 years to 15 years, the 

difference is increased as well. 

 

  



 

62 
 

Table 5.1 Comparison of the result  

          Peng et al. Result Our Results % Diff 

10 0.01 0.2 -0.2 0.2404 0.2412 0.35 

  0.2 0 0.2440 0.2444 0.18 

  0.2 0.2 0.2476 0.2476 0.01 

  0.3 -0.2 0.2942 0.2942 0.01 

  0.4 -0.2 0.3492 0.3495 0.07 

 0.02 0.2 -0.2 0.2370 0.2385 0.63 

  0.3 -0.2 0.2902 0.2908 0.22 

 0.03 0.2 -0.2 0.2340 0.2356 0.69 

  0.3 -0.2 0.2851 0.2873 0.78 

15 0.01 0.2 -0.2 0.3102 0.3102 0.00 

  0.2 0 0.3154 0.3156 0.05 

  0.2 0.2 0.3203 0.3217 0.43 

  0.3 -0.2 0.3667 0.3680 0.35 

  0.4 -0.2 0.4261 0.4271 0.22 

 0.02 0.2 -0.2 0.3031 0.3055 0.79 

  0.3 -0.2 0.3588 0.3604 0.45 

 0.03 0.2 -0.2 0.2952 0.2994 1.41 

  0.3 -0.2 0.3501 0.3539 1.07 
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5.2 Sensitivity Analysis 

 

We explore the sensitivity of the pricing of an annuity with GMWB against 

different parameter values. In particular, we would like to study the behavior 

of option value,    
 (    )   against the interest rate volatility,     and the 

instantaneous correlation coefficient,  . Table 5.2 shows the sensitivity of the 

option price against interest rate volatility and correlation coefficient 

respectively under Vasicek model and CIR model. From Table 5.2, it can be 

seen that option value is increasing with interest rate volatility except for 

postive correlation coefficient and decreasing for negative correlation 

coefficient. While under CIR interest model, option price is less sensitive to 

interest rate volatility where the gap of the option price is narrower compare to 

the option value under Vasicek model. We notice that the sensitivity of option 

value against correlation coefficient has the same trend under two different 

interest rate models, which is the sensitivity of option value to correlation 

coefficient increases when interest rate volatility increases. However, option 

value under CIR model is less sensitive compared to Vasicek model. 
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Table 5.2 Sensitivity analysis of option value under Vasicek and CIR 

model 

  

 
   

 
   

 
  

 

Vasicek  

 

CIR 

 

10 0 0.2 -0.2 0.1767 0.1754 

      0 0.1767 0.1753 

      0.2 0.1767 0.1769 

    0.3 -0.2 0.2359 0.2334 

      0 0.2342 0.2325 

      0.2 0.2351 0.2315 

    0.4 -0.2 0.2921 0.2913 

      0 0.2907 0.2834 

      0.2 0.2928 0.2912 

  0.004 0.2 -0.2 0.1761 0.1752 

      0 0.1767 0.1766 

      0.2 0.1775 0.1744 

    0.3 -0.2 0.2350 0.2354 

      0 0.2351 0.2377 

      0.2 0.2359 0.2319 

    0.4 -0.2 0.2916 0.2927 

      0 0.2924 0.2886 

      0.2 0.2942 0.2899 

  0.008 0.2 -0.2 0.1757 0.1774 

      0 0.1769 0.1764 

      0.2 0.1778 0.1757 

    0.3 -0.2 0.2335 0.2377 

      0 0.2351 0.2324 

      0.2 0.2375 0.2320  

    0.4 -0.2 0.2904 0.2875 

      0 0.2921 0.2873 

      0.2 0.2926 0.2951 

  0.012 0.2 -0.2 0.1742 0.176 

      0 0.176 0.1769 

      0.2 0.1807 0.1787 

    0.3 -0.2 0.232 0.2357 

      0 0.2342 0.2339 

      0.2 0.2375 0.2336 

    0.4 -0.2 0.2896 0.2866 

      0 0.2921 0.2851 

      0.2 0.296 0.2955 
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5.3 Insurance Fees 

 

The proportionate insurance fee is determined based on the parameters 

estimated from Malaysian market data. Table 5.3 shows the parameters 

estimated from one year MGS and KLCI for the period from Jan 2006 to Dec 

2013. This set of parameters is used as an input to our pricing model.  

For the pricing model under constant interest rate model, initial interest rate is 

assumed throughout the period.  

 

Table 5.3 Parameter used for the pricing model 

Parameter Constant Vasicek CIR 

   0.1279 0.1279 0.1279 

   0.03025 0.03025 0.03025 

  - -0.050 -0.050 

  - 0.2718 0.2963 

  - 0.0291 0.0292 

   - 0.0036 0.0021 

 

 

The proportionate insurance fee is determinded such that the amount invested 

at inception is equal to the present value of the total amount of money 

received.  The insurance charges computed based on different interest rate 

model as shown in Table 5.4. It can be seen that the insurance charges under 

Vasicek and CIR model is indifferent at 0.0081 while insurance charges under 
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constant interest rate is lower at 0.0079. Since the difference in the insurance 

fees is insignificant, pricing under constant interest rate will be more practical 

due to its feasibility.  

 

Table 5.4 Insurance charges based on different interest rate model  

Interest Rate Model Insurance Cost,   

Constant Rate 0.0079 

Vasicek 0.0081 

CIR 0.0081 

 

  



 

67 
 

CHAPTER 6 

6.0 CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

 

We have estimated the parameters for Vasicek and CIR model based on 1 year 

MGS. The results shown that parameters estimated for both model have a 

quite similar trend over two year period which implies the two models were 

indifferent based on the data set.  

 

In answering which interest rate model to be chosen, it depends on the 

derivative product. In general, if the interest rates are not close to zero, or far-

off from zero, Vasicek model could be a better choice. Vasicek model is more 

tractable and the closed form solution for more complex financial product is 

also available. On the other hand, if the interest rates are approaching zero, the 

chances of getting negative interest rate is higher especially when volatility is 

high. In that case, CIR model would be a better choice as compare to Vasicek 

model as working with Vasicek model has the possibility to get negative 

interest rate which yields illogical results and prices. 

 

We have considered the pricing of an annuity with GMWB rider under 

stochastic interest rate. We compared the insurance charges assuming constant 

rate, Vasicek model and CIR model. Our results show that pricing model 

under Vasicek and CIR interest rate model is indifferent. While the insurance 
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charges based on the pricing model assuming constant interest rate would be 

slightly lower based on the same scenario.  

 

The sensitivity analysis shows that the stochastic interest rate volatility 

could have a significant impact on the option price, especially under Vasicek 

interest rate model.  As a consequent, insurance charges could be affected. 

Thus, under high volatility regime, this model needs to be used cautiously. 

 

The results obtained in this research are noteworthy in implementing the 

model in practice. 

  

6.2 Future Work 

 

Several European Central Banks have reduced interest rate to below zero to 

fight deflation and the interest rates stay negative for more than a year. This 

has challenged the saying of not possible for the interest rates to stay at 

negative territory. Thus, future research could be extended to study the interest 

rate model under negative interest rate environment. Under negative interest 

era, the interest rate model that prevents generating negative interest rate, such 

as CIR model and Black-Derman-Toy model will break down. Frankena 

(2016) discussed three solution methods to cope with negative interest rate. 

First method is to use the normal models where negative rates are allowed 

naturally. Second method is shifting the boundary condition by a positive 

constant s, such that rates larger than −s are allowed. The third method is 

removing the boundary condition. The disadvantage of the normal models is 
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that there is a possibility to get extreme negative values. Shifted model will 

need additional shift parameter, where choosing the shift parameter is more of 

an art than a science. Although no extra parameter is introduced in free 

boundary models, there is no analytical solution and the approximation is 

inaccurate. 
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