

UART DESIGN, INTEGRATION AND SYNTHESIS ON FPGA

BY

LEE ZHI YONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology

(Perak Campus)

MAY 2016

CHAPTER 1: INTRODUCTION

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title : __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

CHAPTER 1: INTRODUCTION

UART DESIGN, INTEGRATION AND SYNTHESIS ON FPGA

BY

LEE ZHI YONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology

(Perak Campus)

MAY 2016

CHAPTER 1: INTRODUCTION

CHAPTER 1: INTRODUCTION

ii
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

DECLARATION OF ORIGINALITY

I declare that this report entitled "UART DESIGN, INTEGRATION AND

SYNTHESIS ON FPGA" is my own work except as cited in the references. The

report has not been accepted for any degree and is not being submitted concurrently in

candidature for any degree or other award.

Signature : ______________________

Name : ______________________

Date : ______________________

CHAPTER 1: INTRODUCTION

iii
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

ACKNOWLEDGEMENTS

First of all, I would like express deepest gratitude to my project supervisor, Mr. Mok

Kai Ming who has been providing me invaluable guidance and constructive

suggestions throughout the planning and development of this project.

I would also like to express my appreciation to my family members who have been

giving me endless support and encouragement since the starting of my undergraduate

years. Nevertheless, I would like to thank all my course mates and friends who

supported my throughout the entire course of this project.

Once again, I appreciate all the guidance and generous support that provided by

people I have mentioned above. All the supports and helps contribute to the

accomplishment of this project.

CHAPTER 1: INTRODUCTION

iv
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

ABSTRACT

This project is about the design of Universal Asynchronous Receiver/ Transmitter

(UART), integrate the UART into RISC32 processor and synthesis the UART design

on field programmable gate array (FPGA).

The UART is design by using Verilog hardware description language (HDL). The

design work includes modeling of UART core and verification of UART core. The

architecture of the UART core and the verification plan is based on the architecture

and verification plan designed by a senior student in Universiti Tunku Abdul Rahman,

Tan Yew Siong.

The UART core will be integrate into a RISC32 processor which was modeled by a

previous student. The integration will use memory-mapped I/O technique and

interrupt driven technique for the communication method between UART and CPU.

A software (Interrupt Service Routine) will be construct to handle the operation

between UART and CPU.

In the end of this project, the UART core will be synthesis on FPGA and the

synthesized UART will be able to communicate with the UART on another FPGA.

CHAPTER 1: INTRODUCTION

v
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY ii

ACKNOWLEDGEMENTS.. iii

ABSTRACT.. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES.. ix

LIST OF TABLES... xii

LIST OF ABBREVIATIONS... xiii

CHAPTER 1: INTRODUCTION ... 1

1-1 Motivation and Problem Statement ..1

1-1-1 Motivation.. 1

1-1-2 Problem Statement.. 2

1-2 Project Scope... 2

1-3 Project Objectives.. 2

1-4 Impact, Significance and Contribution ...2

1-5 Background Information.. 3

1-5-1 MIPS.. 3

1-5-2 UART .. 4

1-6 Report Organization .. 5

CHAPTER 2: LITERATURE REVIEW .. 6

2-1 UART ... 6

2-1-1 UART Protocol Layer... 6

2-2 Variation of UART Available.. 7

2-2-1 C8051F700 UART ... 7

CHAPTER 1: INTRODUCTION

vi
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

2-2-2 UART (Digital System Design Using VHDL, by Charles H. Roth)........... 8

2-2-3 UART (by Tan Yew Siong) .. 10

2-3 MIPS Memory Map... 10

2-4 Exception Handler and Interrupt Service Routine (ISR) 13

CHAPTER 3: PROPOSED METHOD AND APPROACH................................. 15

3-1 Design Specifications .. 15

3-1-1 Design Methodology ..15

3-1-2 Design Tools .. 17

CHAPTER 4: SYSTEM SPECIFICATION... 20

4-1 Naming Convention... 20

4-2 Integration of UART into RISC32 processor ... 21

4-2-1 RISC32 Processor Interface .. 21

4-2-2 Input Pin Description.. 21

4-2-3 Output Pin Description ... 22

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATION (UNIT L EVEL)24

5-1 Micro-Architecture of RISC32 Microprocessor ... 24

5-2 Design Hierarchy... 25

5-3 Datapath Unit .. 27

5-3-1 Datapath Unit Interface... 27

5-4 Control Path Unit... 28

5-4-1 Control Path Unit Interface...28

5-5 Memory Unit ... 29

5-5-1 Memory Unit Interface ...29

5-6 UART Unit.. 29

5-6-1 Operating Procedure ... 29

5-6-2 UART Unit Interface .. 33

5-6-3 Input Pin Description.. 33

CHAPTER 1: INTRODUCTION

vii
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-6-4 Output Pin Description ... 35

5-7 Micro-Architecture Specification of UART ... 36

5-7-1 UART Address Decoder... 37

5-7-2 CPU Interface Block... 39

5-7-3 Receiver Block ... 44

5-7-4 Transmitter Block... 51

5-7-5 Baud Rate Generator Block .. 58

CHAPTER 6: VERIFICATION SPECIFICATION.............. 60

6-1 UART Test.. 60

6-1-1 Test Plan of UART... 60

6-1-2 Simulation Result of UART Test .. 62

6-1-3 Testbench Code of UART Test... 71

6-2 UART Integration Test with CPU.. 77

6-2-1 Test Plan of UART Integration ... 78

6-2-2 Test Program of "dut1_crisc".. 79

6-2-3 Test Program of "dut2_crisc".. 80

6-2-4 Pseudocode of Exception Handler .. 81

6-2-5 Pseudocode of UART ISR.. 81

6-2-6 Simulation Result ... 83

6-2-7 Testbench Code of UART Integration Test ... 92

CHAPTER 7: SYNTHESIS ..95

7-1 FGPA Design Summary .. 95

7-2 Timing Analysis .. 97

7-3 Power Analysis.. 99

7-4 Verification Circuit.. 100

7-5 Setting Up the Testing Environment on PC.. 101

CHAPTER 1: INTRODUCTION

viii
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

CHAPTER 8: CONCLUSION.. 103

8-1 Conclusion .. 103

8-2 Discussion and Future Work..104

BIBLIOGRAPHY.. 105

CHAPTER 1: INTRODUCTION

ix
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

LIST OF FIGURES

Figure 1-1-2-F1: System Micro-Architecture of RISC32.. 1

Figure 1-5-1-F1: MIPS 5-stage pipeline (Integrated Device Technology. Inc, 1994,

pg1-2).. 4

Figure 2-1-1-F1: Interface format of Serial Data for UART. 7

Figure 2-2-1-F1: Block diagram of UART in C8051F700 microcontroller family...... 8

Figure 2-2-2-F1: Block diagram of UART in “Digital System Design Using VHDL”

book. (Roth, 1998)... 9

Figure 2-3-F1: Memory Allocation in MIPS. ... 11

Figure 2-3-F2: Memory Allocation in Kernel Address Space................................... 12

Figure 2-4-F1: Interrupt Handling Process. .. 14

Figure 3-1-1-F1: Top-down design methodology. .. 15

Figure 4-2-1-F1: Block diagram of RISC32 processor... 21

Figure 5-1-F1: Architecture of RISC32 microprocessor. .. 24

Figure 5-2-F1: Full architecture and micro-architecture partitioning. 26

Figure 5-3-1-F1: Block diagram of RISC32's Datapath Unit. 28

Figure 5-4-1-F1: Block diagram of RISC32's Control Path Unit. 29

Figure 5-5-1-F1: Block diagram of Memory Unit. ... 29

Figure 5-6-1-F1: Timing diagram of handshaking protocol between UART and

external modem. .. 29

Figure 5-5-1-F2: UART data transfer protocol. .. 30

Figure 5-6-1-F3: Flow chart of UART transmission protocol. 30

Figure 5-6-1-F4: Diagram of UART receive protocol. ... 31

Figure 5-6-1-F5: Flow chart of UART receive protocol. .. 32

Figure 5-6-2-F1: Block diagram of UART Unit. .. 33

Figure 5-7-F1: Micro-architecture of UART. ... 36

Figure 5-7-1-1-F1: Block diagram of UART address decoder. 37

Figure 5-7-2-1-F1: Block diagram of CPU Interface. ... 39

Figure 5-7-2-5-F1: Register layout for UART configuration register.................Error!

Bookmark not defined.

Figure 5-7-2-4-F2: Register layout of UART status register.Error! Bookmark not

defined.

CHAPTER 1: INTRODUCTION

x
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 5-7-3-1-F1: Block diagram of receiver..44

Figure 5-7-3-6-F1: Block diagram of receiver controller sub-block.......................... 47

Figure 5-7-3-9-F1: FSM of receiver... 50

Figure 5-7-4-1-F1: Block diagram of transmitter. .. 51

Figure 5-7-4-6-F1: Block diagram of transmitter controller sub-block. 55

Figure 5-7-4-6-F1: FSM of transmitter... 57

Figure 5-7-5-1-F1: Block diagram of baud rate generator. 58

Figure 6-1-2-F1: Simulation result of test case #1..62

Figure 6-1-2-F2: Simulation result of test case #2..63

Figure 6-1-2-F3: Simulation result of test case #2..63

Figure 6-1-2-F5: Simulation result of test case #3..64

Figure 6-1-2-F6: Simulation result of test case #4..65

Figure 6-1-2-F7: Simulation result of test case #4..65

Figure 6-1-2-F8: Simulation result of test case #5..66

Figure 6-1-2-F9: Simulation result of test case #5..66

Figure 6-1-2-F10: Simulation result of test case #6. ... 67

Figure 6-1-2-F11: Simulation result of test case #6. ... 67

Figure 6-1-2-F12: Simulation result of test case #7.. 68

Figure 6-1-2-F13: Simulation result of test case #7. ... 68

Figure 6-1-2-F14: Simulation result of test case #8. ... 69

Figure 6-1-2-F15: Simulation result of test case #8. ... 69

Figure 6-1-2-F16: Simulation result of test case #9. ... 70

Figure 6-1-2-F17: Simulation result of test case #9. ... 70

Figure 6-2-F1: Verification circuit of integration test. ..77

Figure 6-2-6-F1: Simulation result of test case #1..83

Figure 6-2-6-F1: Simulation result of test case #1..84

Figure 6-2-6-F3: Simulation result of test case #1..85

Figure 6-2-6-F4: Simulation result of test case #1..86

Figure 6-2-6-F5: Simulation result of test case #2..87

Figure 6-2-6-F6: Simulation result of test case #2..88

Figure 6-2-6-F7: Simulation result of test case #2..89

Figure 6-2-6-F8: Simulation result of rest case #2..90

Figure 6-2-6-F9: Simulation result of test case #2..91

Figure 7-1-F1: Device utilization summary of UART synthesis. 95

CHAPTER 1: INTRODUCTION

xi
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 7-1-F2: IO pin report of UART synthesis.. 96

Figure 7-3-F1: Power analysis report of UART synthesis. 99

Figure 7-4-F1: Block diagram of UART verification circuit................................... 100

Figure 7-5-F1: Configuration settings of serial com. on Tera Term. 102

CHAPTER 1: INTRODUCTION

xii
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

LIST OF TABLES

Table 2-3-T1: Functions of Kernel Memory-Map. ... 12

Table 3-1-2-T1: Comparison between 3 Verilog Simulators..................................... 17

Table 4-1-T1: Naming convention. .. 20

Table 4-2-2-T1: Input pin description of RISC32 chip. .. 22

Table 4-2-3-T1: Output pin description of RISC32 chip... 22

Table 5-2-T1: Formation of a design hierarchy for Full Integration of UART into

RISC32 microprocessor through top-down design methodology. 25

Table 5-6-3-T1: Input pin description of UART unit.. 34

Table 5-6-4-T1: Output pin description of UART unit. .. 35

Table 5-7-1-2-T1: Input pin description of UART address decoder.......................... 38

Table 5-7-1-3-T1: Output pin description of UART address decoder. 38

Table 5-7-2-2-T1: Input pin description of CPU Interface.. 41

Table 5-7-2-3-T1: Output pin description of CPU Interface. 43

Table 5-7-3-2-T1: Input pin description of receiver.. 46

Table 5-7-3-3-T1: Output pin description of receiver. .. 47

Table 5-7-3-7-T1: Input pin description of receiver controller sub-block.................. 48

Table 5-7-3-8-T1: Output pin description of receiver controller sub-block. 49

Table 5-7-4-2-T1: Input pin description of transmitter. .. 53

Table 5-7-4-3-T1: Output pin description of transmitter... 54

Table 5-7-4-7-T1: Input pin description of transmitter controller sub-block. 56

Table 5-7-4-8-T1: Output pin description of transmitter controller sub-block........... 57

Table 5-7-5-2-T1: Input pin description of baud rate generator. 59

Table 5-7-5-3-T1: Output pin description of baud rate generator.............................. 59

Table 6-1-1-T1: Test plan for UART unit. ... 62

Table 6-2-1-T1: Test plan of UART integration... 78

Table 7-2-T1: Timing analysis report of UART synthesis. 98

Table 8-1-T1: Enhancement outcome. ... 103

CHAPTER 1: INTRODUCTION

xiii
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

LIST OF ABBREVIATIONS

UART Universal Asynchronous Receiver Transmitter

FPGA Field Programmable Gate Array

IP Intellectual Property

IC Integrated Circuit

I/O Input Output

ISA Instruction Set Architecture

ISR Interrupt Service Routine

HDL Hardware Description Language

MIPS Microprocessor without Interlocked Pipeline Stages

RISC Reduced Instruction Set Computer

DTE Data Terminal Equipment (UART)

DCE Data Communication Equipment (External modem)

FSM Finite State Machine

CHAPTER 1: INTRODUCTION

1
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

CHAPTER 1: INTRODUCTION

1-1 Motivation and Problem Statement

1-1-1 Motivation

A 32-bit pipelined RISC microprocessor has been developed in Faculty of

Information and Communication Technology, UniversitiTunku Abdul Rahman

(UTAR) using Verilog which is a hardware description language (HDL). The project

is based on the Reduced Instruction Set Computing (RISC) architecture. The

motivations to initiate the project are due to following reasons:

Microchip design companies designed microprocessor as Intellectual Property or IP

for commercial purpose. The microprocessor IP includes information on the entire

design process for the front-end (modeling and verification) and back-end (physical

design) integrated circuit (IC) design. These are trade secrets of a company and

certainly not made available in the market at an affordable price for research purpose.

Several freely available microprocessor cores can be found in internet, most of them

can be found at OpenCores (http://www.opencores.org/). Unfortunately, these

processors do not implement the entire MIPS Instruction Set Architecture (ISA) and

lack comprehensive documentation. This makes them unsuitable for reuse and

customization.

The verification specification for a freely available RISC microprocessor core that is

available on the Internet is not well developed and incomplete. Therefore, without a

good verification specification, the verification process will be slow and hence, will

slow down the overall design process.

The lack of well-developed verification specifications for these microprocessor cores

will inevitably affect the physical design phase. A design needs to be functionally

proven before the physical design phase can proceed smoothly. Otherwise, if the

front-end design has to be changed, the physical design process has to be redone.

This project will aim to provide solutions to the above problems by creating a 32-bit

RISC core-based development environment to assist research work in the area of soft-

core and also application specific hardware modeling.

CHAPTER 1: INTRODUCTION

2
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

In RISC32 project, it is divided into several units based on the MIPS architecture. Up

to date, the RISC32 project that initiated in UTAR has completed the CPU designs

that support basic instructions similar to MIPS instructions. The system control

coprocessor, Coprocessor 0 (CP0) available as well to interface I/O device and handle

interrupt.

1-1-2 Problem Statement

So far, there is MIPS-compatible ISA which includes the Central Processing Unit

(CPU), PS/2 mouse system, PS/2 keyboard system, basic memory, coprocessor 0

(CP0), and Universal Asynchronous Receiver/Transmitter (UART). However, the

existing UART architecture and the Interrupt Service Routine (ISR) of UART are not

integrated in RISC32 yet. Hence, this project is initiated to synthesis the existing

UART and integrates the ISR into RISC32 processor. Figure 1-1-2-F1 shows the

system micro-architecture of RISC32.

CHAPTER 1: INTRODUCTION

1
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 1-1-2-F1: System Micro-Architecture of RISC32.

CHAPTER 1: INTRODUCTION

2
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

As shown in Figure 1-1-1, the bus arbiter is not implemented in the RISC32 processor

does not support multiple I/O, therefore the UART unit has to connect point-to-point

to bus system.

1-2 Project Scope

This project is aim to design an UART model with Verilog HDL. The specifications

of UART and its internal block will be developed and the functional behavior will be

verified by using test bench. The UART will be integrated into the existing RISC32

processor. An Interrupt Service Routine (ISR) will be developed to handle the data

received by UART.A test program will be written to test the functionality of the ISR.

Lastly, the UART will be synthesis on FGPA.

1-3 Project Objectives

There are several objectives in this project, they are:

• To design a UART and integrate it to the RISC32 processor.

• To develop the Interrupt Service Routine (ISR) into RISC32 processor.

• To synthesis the UART module on Field Programmable Gate Array (FPGA)

with completes documented timing and resource usage information.

• To develop a test bench to verify the UART functionality.

1-4 Impact, Significance and Contribution

As a conclusion of problem statement, there is lack of well-developed and well-

founded RISC32 processor available. After this project is done, it can provide a

complete RISC microprocessor core-based development environment and the

interface system that connects the UART to the microprocessor. The development

environment refers to the availability of the following:

• A well-developed design documentation of chip specification, architecture

specification and micro-architecture specification.

CHAPTER 1: INTRODUCTION

3
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

• A fully functional well-developed CPU UART Interfacing in the form of

synthesis-ready RTL written in Verilog.

• A well-developed verification specification of the UART. The verification

specification should contain suitable verification methodology, verification

techniques, test plan, test bench architecture etc.

• A complete physical design in FPGA with documented timing and resources

usage information.

This project is to develop an environment that mentioned above: to integrate the

multi-cycle pipelined RISC microprocessor core-based platform with the UART

which can support hardware modeling research work.

With the available well-developed basic RISC RTL model (which has been

functionally fully verified), the verification environment and the design documents, a

researcher will be able to develop their own research specific RTL model as part of

the MIPS environment and can quickly verify his model to obtain result.

Consequently, the research work could be done easier and speed up significantly.

1-5 Background Information

1-5-1 MIPS

MIPS also known as Microprocessor without Interlocked Pipelined Stage, which

based on the Reduced Instruction Set Computer (RISC) architecture is developed by a

team led by John L. Hennessy and David A. Patterson. The MIPS architecture can be

found in the book call Computer Organization and Design: The Hardware/ Software

Interface (Patterson and Hennessy, 2005). This book will show the architecture of

MIPS, the instruction and all the related stuff need to understand the function and

build a microprocessor. MIPS processors operate by breaking instruction execution

into multiple small independent stages (Integrated Device Technology. Inc, 1994,

pg1-2).

CHAPTER 1: INTRODUCTION

4
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 1-5-1-F1: MIPS 5-stage pipeline (Integrated Device Technology. Inc, 1994,

pg1-2).

The instruction execution is divided to 5 stages, IF (“Instruction Fetch”), RD (“Read

Register”), ALU (“Arithmetic/ Logical Unit), MEM (“Memory”) and WB (”Write

Back”).

IF: gets the next instruction from the instruction catch (I-cache).

RD: decodes the instruction and fetches the contents of any CPU registers it

uses.

ALU: performs an arithmetic or logical operation in one clock.

MEM: the stage where the instruction can read/ write memory variables in

the data cache (D-cache).

WB: store the value obtained from an operation back to the register file.

1-5-2 UART

Universal Asynchronous Receiver Transmitter (UART) is a chip inside a computer

which translates data between parallel and serial interface. UART become commonly

use in 1960 when IBM standardize the use of 8-bit ASCII character. UART has some

common components which are clock generator; input and output shift register,

receiver and transmitter control and read or write control. RS232 is commonly used

with UART in embedded design system for communication purpose (Cohen, 2001).

This report contain 9 chapters in total, which are introduction, literature review,

proposed method and approach, system specification, architecture specification,

micro-architecture specification, result and simulation, synthesis and conclusion.

In chapter 1, the motivation of this project is stated, follow by the problem statement,

project scope and objective, background of MIPS and UART and the flow of this

report.

In Literature Review chapter, the functions and protocol of UART is explained and 3

different UART model is discussed. For the next chapter Method Proposed and

Approach, shows the methodology used in this project and the technologies and tools

involved in the design phase of the UART.

Moving on to System specification chapter, in this chapter the top level of the design

is shown and described. The subsequence chapter shows the architecture of the top

level design and the pin in-out description. After that the micro-architecture of UART

is shown in the next chapter which is chapter 6, Micro-architecture specification.

The test result of UART and the integration test of UART is showed in Result and

Simulation chapter. The next chapter is Synthesis. This chapter shows the summary

report of synthesis and how the UART is tested. Finally the last chapter, Conclusion,

concludes the whole project and the future improvement that can be make to this

project is mentioned.

2-1 UART

UART is a serial communication device which consists two major blocks that is

receiver and transmitter. The device is asynchronous because the receiver and the

transmitter clock are not synchronized with each other. The word asynchronous

transmitter is base on the start and stop bit to receive or transmit data (Cohen, 2001).

Due to the asynchronous problem, a baud rate must be set to agree the operation

between receiver and transmitter. It will configure the clock to be 8 times faster than

the baud rate. Transmitter will start sending and the receiver will start receiving the

data when both transmitter terminal and receiver terminal are ready to process. Both

Receiver and Transmitter will check for error before proceed to process another data.

2-1-1 UART Protocol Layer

• START Bit: This bit is set to LOW to initiate bit synchronization of the

message at the receiver.

• Data Word: Represent the data that will be transmitted. The least significant

bit (LSB) will be sent out first follow by next bit until the most significant bit

(MSB).

• Parity Bit: This bit represents even or odd parity if parity is enable. The CPU

is in charge of manipulating the even or odd parity.

• STOP Bit: This bit is set to HIGH to provide message-framing indication for

use in bit synchronization at the receiver.

Figure 2-1-1-F1 shows the interface format of the serial data for UART.

2-2 Variation of UART Available

Three freely available UART core was used as benchmarking purpose. The first

UART core is C8051F700 UART by Silicon Labs. The second UART core is the

UART in a book, “Digital System Design Using VHDL” by Charles H. Roth. The last

UART core is a UART designed by a graduate student in UTAR, Tan Yew Siong.

The criteria of the benchmarking are documentation, the architecture and hardware

description language used to modeling the design.

2-2-1 C8051F700 UART

This UART can be found in C8051F700 microcontroller family. It consists of 3 main

blocks which is baud rate generator, transmitter and a receiver. Besides, it also

consists of 2 special function register (SFR) – SBUFx and SCONx. These special

function register are used to control and manage the serial communication. Figure 2-

2-1-F1 shows the block diagram of UART in C8051F700 microcontroller family. Due

to this UART is designed for commercial purpose, the design documents are not

available for free.

Figure 2-2-1-F1: Block diagram of UART in C8051F700 microcontroller family.

2-2-2 UART (Digital System Design Using VHDL, by Charles H. Roth)

This UART used VHDL hardware description language to design. It consists of three

main blocks in architecture level which is baud rate generator, receiver and

transmitter. There are 6 register in the UART,

• RSR : Receiver Shift Register

• RDR : Receiver Data Register

• TSR : Transmitter Shift Register

• TDR : Transmitter Data Register

• SCCR : Serial Communication Control Register

• SCSR : Serial Communication Status Register

The documentation of this UART includes the theory of how UART functioning and

the flow of how UART operate. Besides, the code for the UART module is also

available in the book, but there is no verification part describe in the book. Figure 2-2-

Figure 2-2-2-F1: Block diagram of UART in “Digital System Design Using VHDL”

book. (Roth, 1998).

The UART designed by Tan Yew Siong are well documented and it has verification

plan too. The design is modeled using Verilog HDL. The architecture of the UART is

more complicated where it contains CPU interface, clock generator, receiver,

transmitter, receiver FIFO and transmitter FIFO. The UART is successfully integrated

into RICS32 processor. The exception handler has been developed in this project too.

But it is not fully complete as it did not handle some cases, for example overflow

exception, breakpoint exception and address error exception.

2-3 MIPS Memory Map

The RISC32 uses a conventional memory layout that divides the memory into user

address space and kernel address space. A program’s address space consists of 3 parts

which is text segment, data segment and stack segment. The bottom of the user

address space, which is text segment, is used to stores program codes or instructions.

While the data segment divided into static data and dynamic data, the dynamic area

grows as memory is allocated to dynamic data structures. At the end of the user

address space, there is a stack segment which will grows downward towards the lower

memory address. This placement of segments allows sharing of unused memory by

both data and stack segments (Dandamudi, 2005). The following figure shows the

memory allocation:

Figure 2-3-F1: Memory Allocation in MIPS.

The address starting from 0x8000_0000 until the end of the memory map is the kernel

address space. Figure 2-3-F2 shows the memory allocation in kernel address space.

32’h0000 0000

Reserved

Program Code

(Instructions)

Static data

32’h0040 0000 (PC)

32’h1000 0000

32’h1000 8000

32’h7FFF FFFC Stack

Dynamic data

(heap)

Text segment

Data segment

Stack segment

Data segment

∞/2

0

32’h8000 0000

Figure 2-3-F2: Memory Allocation in Kernel Address Space.

The function of the kernel memory space is described in the table below:

Segment Purpose Size Starting Address

kseg2
Kernel module:

Page table allocation
1GB 0xC000_0000

kseg1
Boot Rom:

I/O register
512MB 0xA000_0000

kseg0

Direct view of memory to 512MB kernel

code and data. Exception and Page Table

Base Register allocated here.

Exception Entry Point:

Software exception handling

512MB

0x8000_0000

Stack

kseg0

(512MB)

kseg1

(512MB)

Stack segment

Total: 230 words

32’h7FFF FFFC
∞/2 32’h8000 0000

Exception

Entry point

32’hA000 0000

(1GB)

32’hC000 0000

Exception handler is a piece of code that place in a specific address in memory (MIPS

fix the starting address at 0x8000_0180). This piece of code will be executes

whenever an exception happened, it will deal with the exception condition and return

back to normal program execution after it is done.

An interrupt service routine (ISR) is software routine that hardware or software

invokes in response to an interrupt. ISRs then examine an interrupt and determine

how to handle it then return from interrupt and resume the program execution.

Most processors generally share the same process of interrupt processing but some

minor differences in how these processors save their status and call the Interrupt

service routine. When an interrupt is issued, the processor will finish the current

instruction and store status and return address. The processor then will call the

correspond ISR and start execute the ISR. Finally, once the processor finished

executes the ISR, it will return from interrupt and resume the program execution.

Figure 2-4-F1: Interrupt Handling Process.

3-1 Design Specifications

3-1-1 Design Methodology

There are two types of design methodology are available, Top-down design

methodology and Bottom-up design methodology. In top-down design methodology,

the top level representation of a chip is first defined then partitioned into lower level

representations. For bottom-up design methodology, the leaf nodes are first defined.

The leaf nodes are then integrated to form a higher level model of the chip. This

process is repeated until the top level of the chip is reached. Since digital system often

uses the abstraction concepts to simplify the design process, thus top-down design

methodology is used in this project.

Top-down design methodology process flow is shown in Figure 3-1-1. This

methodology will keep on repeat until the system design meets the requirement on

functionality. If the design does not meet the requirement, the design flow has to be

repeated. This project only focused on micro-architecture level design.

Micro-architecture specification describes the internal design of a unit. The internal

design is described with design-specific technical information for RTL coding to

begin. For this project, the information included for each internal block of UART are:

• UART functionality description

• UART operating procedures

• UART interfaces and I/O pin description

• UART internal operation

• UART functional partitioning into blocks (transmitter, receiver, etc..)

• For each blocks,

o Block interfaces and I/O description

o Block functionality

o Block internal operation

o Finite-state machine (FSM)

o Block test plan

RTL Modeling and Verification

With the micro-architecture specification developed, the RTL coding on UART

internal block can begin. The functional correctness of the model is verified at two

levels:

• Micro-architecture level: Internal blocks of UART are individually verified

before they are integrated into the architecture level.

• Architecture level: The individual blocks of UART are integrated into a unit.

Verification is performed on the UART unit.

After UART unit and all the internal block of UART are verified for functional

correctness, the model is ready for logic synthesis. Logic synthesis is the process of

converting RTL codes into an optimize gate level representation. From the synthesis

result, the gate level netlist is verified for functional correctness. If the specific

requirements are not met, corrections are made either to the gate level netlist or the

RTL models.

3-1-2 Design Tools

The RTL model of UART is designed by using Verilog hardware description

language (HDL), thus a verilog simulator is needed to emulate the Verilog HDL.

Some of the simulators are as shown in Table 3-1-2-T1:

Simulator
Incisive Enterprise

Simulator
ModelSim VCS

Company

Language

Supported

VHDL-2002

V2001

SV2005

VHDL-2002

V2001

SV2005

VHDL-2002

V2001

SV2005

Platform

supported

-Sun-solaris

-Linux

-Windows

XP/Vista/7

-Linux

-Linux

Availability

for free?

(SE edition only)

Table 3-1-2-T1: Comparison between 3 Verilog Simulators.

features as well, but the price are too expensive ($25,000 - $100,000) and not

affordable.

As for the synthesis tools, there are a lot of logic synthesis tools that targeting FPGA

e.g. Quartus by Altera, Synplify by Synopsys, ISE by Xilinx, Encounter RTL

Compiler by Cadence Design System, etc. The Xilinx ISE is selected as the synthesis

tools for this project as the Xilinx ISE supports the FPGA that we have in UTAR,

which is Spartan FPGA and both of the tools is already freely available in UTAR.

Mentor Graphics ModelSim PE Student Edition 10.4a

ModelSim from Mentor Graphic is the industry-leading simulation and debugging

environment for HDL (Hardware Description Language) based design which its

license can be obtained for free. Both Verilog and VHDL are supported. This

software provides syntax error checking and waveform simulation. The timing

diagrams and the waveforms can be used to verify the model functionality by writing

a program called a test-bench. Student version instead of full version of the ModelSim

is sufficient for this project.

Xilinx ISE

The ISE development software is designed by Xilinx. This software is designed for

synthesis and analysis of HDL designs, enabling the developer to synthesize their

designs, perform timing analysis, examine RTL diagrams, simulate a design’s

reaction to different stimuli, and configure the target device with the programmer.

Xilinx ISE is a design environment for FPGA products from Xilinx, and cannot be

used with FPGA products from other vendors. The FPGA product that is supported by

Xilinx ISE is Spartan FPGA, Virtex FPGA, Coolrunner and XC9500 Series CPLD.

The FPGA that is going to be used in this project is Spartan FPGA.

FPGA is an integrated circuit designed to be configured by a designer after

manufacturing. The designer can specify the FPGA by using a HDL to configure the

interconnection of the array of programmable logic blocks inside the FPGA. Spartan-

3E FPGA is the logic optimized series. It is ideal for logic integration and for

applications where logic densities matter more than I/O count.

4-1 Naming Convention

Module - [lvl][mod. name]

Instantiation - [lvl][abbr. mod. name]

Pin - [lvl][type][abbr. mod. name]_[pin name]

 - [lvl][type][abbr. mod. name]_[stage]_[pin name]

 - [lvl][type][abbr. mod. name]_[abbr. mod. name]_[pin name]

 Description Case Available Remark

lvl Level Lower

c : Chip

u : Unit

b : Block

sb : sub-block

mod. name Module name Lower all Any

abbr. mod.

name

Abbreviated

module name
Lower all Any

Maximum 3

characters

type Pin type Lower
o : output

i : input

stage Stage name Lower all
if, id ,ex, mem,

wb

pin name Pin name Lower all Any

Several word

separated by

"_"

Table 4-1-T1: Naming convention.

4-2-1 RISC32 Processor Interface

Figure 4-2-1-F1: Block diagram of RISC32 processor.

4-2-2 Input Pin Description

Pin Name:

uirisc_ua_rx_data,

Receive data

Source -> Destination:

DCE -> crisc

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Serial data to be received from DCE to DTE. When no data is transfer, this port is held at

logic "1".

**DCE - Data Communication Equipment (External Modem)

**DTE - Data Terminal Equipment (UART)

Pin Name:

uirisc_ua_cts,

Clear-To-Send

Source -> Destination:

DCE -> crisc

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To inform DTE that it can start transmit at uorisc_ua_tx_data port.

Pin Name: Source -> Destination: Size: Active: Registered:

System clock for the integration of UART and RISC32 processor.

Pin Name:

uirisc_rst,

Reset

Source -> Destination:

External source -> crisc

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

System reset for the full chip. It is synchronous to the system clock.

Table 4-2-2-T1: Input pin description of RISC32 chip.

4-2-3 Output Pin Description

Pin Name:

uorisc_ua_tx_data,

Transmit Data

Source -> Destination:

crisc -> DCE

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Serial data to be sent from DTE to DCE. DTE shall hold this line at logic ‘1’ when no data is

transfer.

Pin Name:

uorisc_ua_rts,

Request-To-Send

Source -> Destination:

crisc -> DCE

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Transmission circuit will be enabled by this signal. Together with Clear-To-Send signal, data

transmission between DTE and DCE will be coordinated. Request-To-Send shall be asserted

by UART when UART has data in transmission buffer. Can be de asserted any time after

START bit is sent.

Table 4-2-3-T1: Output pin description of RISC32 chip.

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

CHAPTER 5: MICRO -ARCHITECTURE SPECIFICATION (UNIT LEVEL)

1 Micro-Architecture of RISC32 Microprocessor

-1-F1: Architecture of RISC32 microprocessor.

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

25
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-2 Design Hierarchy

Chip

Partitioning at

System Level

Unit Partitioning at

Architecture Level

Block and Functional

Block Partitioning at RTL

Level (Micro-Architecture

Level)

Sub-block

balb

bbp_4way

bcp0

bfw_ctrl

bitl_ctrl

add_lv1_lastrow

adder_lvl1

adder_lvl1_firstrow

adder_lvl2

adder_lvl2_lastrow

adder_lvl3

adder_lvl4

adder_lvl5

bmult32

 sub_lvl1_lastrow

udata_path

 brf

balb_ctrl uctrl_path

 bmain_ctrl

u_text_seg

u_ktext_kseg0

u_data_seg

u_data_kseg0

bua_decoder

bcpuif

brx

btx

crisc

uuart

 bbaud

Table 5-2-T1: Formation of a design hierarchy for Full Integration of UART into

RISC32 microprocessor through top-down design methodology.

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

26
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 5-2-F1: Full architecture and micro-architecture partitioning.

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

27
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-3 Datapath Unit

5-3-1 Datapath Unit Interface

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

28
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 5-3-1-F1: Block diagram of RISC32's Datapath Unit.

5-4 Control Path Unit

5-4-1 Control Path Unit Interface

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

29
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 5-4-1-F1: Block diagram of RISC32's Control Path Unit.

5-5 Memory Unit

5-5-1 Memory Unit Interface

Figure 5-5-1-F1: Block diagram of Memory Unit.

5-6 UART Unit

5-6-1 Operating Procedure

To start a transmission, Data Terminal Equipment (DTE) (UART) must send a

Request-To-Sent (RTS) signal to Data Communication Equipment (DCE) (E.g.

external modem). After a Clear-To-Send (CTS) signal from DCE to DTE is received,

transmission process will take place. However, receiving and transmitting of data

should not occur simultaneously for the same device. To ensure transmission

correctness, both receiving and transmitting side must also agree to a same baud rate.

Figure 5-6-1-F1: Timing diagram of handshaking protocol between UART and

external modem.

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

30
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 5-5-1-F2: UART data transfer protocol.

Figure 5-5-1-F2 shows the data protocol of UART. During transmission, data is

loaded to transmitter block from internal data bus. The data is then used to generate

parity bit. To initiate transmission, start bit ‘0’ is generated and transmitted to DCE.

Followed by 8-bit data and 1 parity bit, shifted out bit by bit. After all the data is

transmitted, a stop bit ‘1’ is transmitted to DCE to indicate the end of transmission.

Figure 5-6-1-F3: Flow chart of UART transmission protocol.

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

31
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 5-6-1-F4: Diagram of UART receive protocol.

The bit stream coming in on rx_data port is not synchronized with the local bit clock.

If we attempt to read rx_data at the rising edge of transmitter clock (baud rate), we

would have a problem is rx_data changed near the clock edge. This could have setup

and hold time problems. If the bit coming in is differed by transmitter clock by a

small amount, we could end up reading some bits at wrong time. To avoid this

problem, the bit coming in from rx_data is sampled at tenth times during each bit time.

Only the middle of the bit will be read for maximum reliability. From Figure 5-5-1-F4,

when the rx_data first goes to '0', it will wait for 5 bclkx10 ticks before it read the start

bit. Then it will wait for another 10 bclkx10 tick to read the first data bit. This will

continue until the stop bit is read.

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

32
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 5-6-1-F5: Flow chart of UART receive protocol.

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

33
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-6-2 UART Unit Interface

Figure 5-6-2-F1: Block diagram of UART Unit.

5-6-3 Input Pin Description

Pin Name:

uiua_mem_addr,

Memory address

Source -> Destination:

CPU -> uuart

Size:

16 bit

Active:

High

Registered:

No

Pin Function:

Memory address from datapath unit. Used to determine the operation of UART.

Pin Name:

uiua_data_in,

Data input

Source -> Destination:

CPU -> uuart

Size:

8 bit

Active:

High

Registered:

No

Pin Function:

Represent the CPU data to be asserted into UART.

Pin Name:

uiua_lb_en,

Load byte enable

Source -> Destination:

CPU -> UART

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Use as control signal to read from UART.

Pin Name:

uiua_sb_en,

Store byte enable

Source -> Destination:

CPU -> UART

Size:

1 bit

Active:

High

Registered:

No

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

34
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Pin Function:

Use as control signal to write to UART.

Pin Name:

uiua_grant,

Grant

Source -> Destination:

Arbiter -> UART

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Use as control signal to read from UART.

Pin Name:

uiua_rx_data

Receive data

Source -> Destination:

DCE -> DTE

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Serial data to be received from DCE to DTE. When no data is transfer, this port is held at

logic "1".

Pin Name:

uiua_cts

Clear-to-Send

Source -> Destination:

DCE -> DTE

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To inform UART that it can start transmit at uoua_tx_data port.

Pin Name:

uiua_sysclk,

System Clock

Source -> Destination:

CPU -> UART

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

System clock for all synchronous transfer. The system clock speed is set at 50MHz and it will

be further scale down to 10MHz inside UART.

Pin Name:

uiua_reset,

Reset

Source -> Destination:

CPU -> UART

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

This pin represents the master reset for UART. Once it activate, UART will be at begin state

and in idle mode with no data in UART buffer.

Table 5-6-3-T1: Input pin description of UART unit.

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

35
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-6-4 Output Pin Description

Pin Name:

uoua_data_out,

Data output

Source -> Destination:

UART -> CPU

Size:

8 bit

Active:

High

Registered:

Yes

Pin Function:

Represent the UART data output to be sent to CPU. The size of the data shall be the same as

the size of Data Input.

Pin Name:

uoua_done,

Done

Source -> Destination:

UART -> Arbiter

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

To indicate that UART has complete its operation with CPU after UART acquire the CPU

data bus.

Pin Name:

uoua_interrupt,

Interrupt

Source -> Destination:

UART -> CPU

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

An interrupt will be generated when the receiver of UART needs to acquire data bus for their

operation.

Pin Name:

uoua_tx_data,

Transmit data

Source -> Destination:

DTE -> DCE

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Serial data to be sent from DTE to DCE. DTE shall hold this line at logic "1" when no data is

transfer.

Pin Name:

uoua_rts,

Request-to-Sent

Source -> Destination:

DTE -> DCE

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Transmission circuit will be enabled by this signal. Together with Clear-to-Send signal, data

transmission between DTE and DCE will be coordinated, Request-to-Sent shall be asserted by

UART when UART has data in transmission buffer. Can be de-asserted any time after

START bit is sent.

Table 5-6-4-T1: Output pin description of UART unit.

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATTION (UNIT LEVEL)

36
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7 Micro-Architecture Specification of UART

Figure 5-7-F1: Micro-architecture of UART.

CHAPTER 6: VERIFICATION SPECIFICATION

37
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-1 UART Address Decoder

Functions of UART address decoder:

• IO memory mapping for the following:

o Reads from Status Register

o Reads received data from receiver FIFO

o Writes to Configuration Register

o Writes transmit data to transmitter FIFO

5-7-1-1 UART Address Decoder Interface

Figure 5-7-1-1-F1: Block diagram of UART address decoder.

CHAPTER 6: VERIFICATION SPECIFICATION

38
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-1-2 Input Pin Description

Pin Name:

biud_mem_addr,

Memory address

Source -> Destination:

CPU -> bua_decoder

Size:

16 bit

Active:

High

Registered:

No

Pin Function:

Used to determine the operation of UART.

Pin Name:

biud_lb_en,

Load byte enable

Source -> Destination:

CPU -> bua_decoder

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Use as control signal to read from UART.

Pin Name:

biud_sb_en,

Store byte enable

Source -> Destination:

CPU -> bua_decoder

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Use as control signal to write to UART.

Table 5-7-1-2-T1: Input pin description of UART address decoder.

5-7-1-3 Output Pin Description

Pin Name:

boud_address,

Address

Source -> Destination:

bua_decoder -> bcpuif

Size:

2 bit

Active:

High

Registered:

No

Pin Function:

Used to determine the operation of UART.

Pin Name:

boud_write_en,

Write enable

Source -> Destination:

bua_decoder -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Use as control signal to write to UART.

Pin Name:

boud_read_en,

Read enable

Source -> Destination:

bua_decoder -> bcpuif

Size:

2 bit

Active:

High

Registered:

No

Pin Function:

Use as control signal to read from UART.

Table 5-7-1-3-T1: Output pin description of UART address decoder.

CHAPTER 6: VERIFICATION SPECIFICATION

39
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-2 CPU Interface Block

Functions of CPU Interface:

• UART (transmitter and receiver blocks) updated its own status on the status

register such as parity error, framing error, FIFO full and FIFO empty.

• CPU reads from UART (CPUIF) status register.

• CPU writes to UART (CPUIF) configuration register.

5-7-2-1 CPU Interface's Interface

Figure 5-7-2-1-F1: Block diagram of CPU Interface.

CHAPTER 6: VERIFICATION SPECIFICATION

40
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-2-2 Input Pin Description

Pin Name:

bici_data_in,

Data input

Source -> Destination:

CPU -> bcpuif

Size:

8 bit

Active:

High

Registered:

No

Pin Function:

Represent the CPU data to be asserted into UART.

Pin Name:

bici_rx_data,

Received data

Source -> Destination:

brx -> bcpuif

Size:

8 bit

Active:

High

Registered:

No

Pin Function:

Represent the data received from transmitting device and to be asserted to CPU.

Pin Name:

bici_address,

Address

Source -> Destination:

bua_decoder -> bcpuif

Size:

2 bit

Active:

High

Registered:

No

Pin Function:

Represent by 2 bit of CPU address to select which register in the UART to be asserted.

Pin Name:

bici_tx_fifo_full,

Transmitter FIFO full

Source -> Destination:

btx -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate transmitter FIFO is full. This signal is to be stored in status register.

Pin Name:

bici_rx_fifo_empty,

Receiver FIFO empty

Source -> Destination:

brx -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate receiver FIFO is empty. This signal is to be stored in status register.

Pin Name:

bici_parity_err,

Parity error

Source -> Destination:

brx -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Represent parity error of the data. This signal is to be stored in status register.

Pin Name:

bici_framing_err,

Framing error

Source -> Destination:

brx -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

CHAPTER 6: VERIFICATION SPECIFICATION

41
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Pin Function:

Represent framing error of the data. This signal is to be stored in status register.

Pin Name:

bici_write_en,

Write enable

Source -> Destination:

bua_decoder -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Use as enable signal to write data and status to UART.

Pin Name:

bici_read_en,

Read enable

Source -> Destination:

bua_decoder -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Use as enable signal to read data and status from UART.

Pin Name:

bici_sysclk,

System clock

Source -> Destination:

CPU -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

System clock for all synchronous operation.

Pin Name:

bici_reset,

Reset

Source -> Destination:

CPU -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

This pin represents the master reset for UART.

Table 5-7-2-2-T1: Input pin description of CPU Interface.

CHAPTER 6: VERIFICATION SPECIFICATION

42
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-2-3 Output Pin Description

Pin Name:

boci_data_out,

Data input

Source -> Destination:

bcpuif -> CPU

Size:

8 bit

Active:

High

Registered:

No

Pin Function:

Represent the UART data output to be sent to CPU. The size of the data shall be the same as

the size of Data In.

Pin Name:

boci_tx_data,

Transmit data

Source -> Destination:

bcpuif -> btx

Size:

8 bit

Active:

High

Registered:

No

Pin Function:

Represent the data to be transmitted to DCE.

Pin Name:

boci_select_baud,

Select baud rate speed

Source -> Destination:

bcpuif -> bbaud

Size:

3 bit

Active:

High

Registered:

No

Pin Function:

To select the baud rate speed for clock controller block. From 000 to 111, there are 8 different

baud rate speeds that can be selected.

Pin Name:

boci_parity_en,

Parity enable

Source -> Destination:

bcpuif -> btx & brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To inform btx and brx whether the data contain a parity bit.

Pin Name:

boci_parity_bit,

Parity bit

Source -> Destination:

bcpuif -> btx & brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To inform btx and brx whether the data is odd or even parity.

Pin Name:

boci_tx_fifo_write_en,

Transmitter FIFO write

enable

Source -> Destination:

bcpuif -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

An enable signal to write data into transmitter FIFO

CHAPTER 6: VERIFICATION SPECIFICATION

43
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Pin Name:

boci_rx_fifo_read_en,

Receiver FIFO read

enable

Source -> Destination:

bcpuif -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

An enable signal to read data from receiver FIFO.

Pin Name:

boci_interrupt,

Interrupt

Source -> Destination:

bcpuif -> CPU

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

An interrupt will be generated when the receiver of UART needs to acquire data bus for their

operation.

Table 5-7-2-3-T1: Output pin description of CPU Interface.

CHAPTER 6: VERIFICATION SPECIFICATION

44
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-3 Receiver Block

Functions of receiver:

• Receive data from DTE

• Parallelized serial data received before passing to receiver FIFO.

• Check for parity error.

• Check for framing error.

• Able to generate receiver FIFO full and empty signal.

5-7-3-1 Receiver Interface

Figure 5-7-3-1-F1: Block diagram of receiver.

CHAPTER 6: VERIFICATION SPECIFICATION

45
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-3-2 Input Pin Description

Pin Name:

birx_rx_data,

Receive Data

Source -> Destination:

DTE -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Serial data to be receive from transmitting device to receiver block. When no data is transfer,

this port is held at logic ‘1’.

Pin Name:

birx_parity_en,

Parity enable

Source -> Destination:

bcpuif -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate whether the data contain a parity bit.

Pin Name:

birx_parity_bit,

Parity bit

Source -> Destination:

bcpuif -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate whether the parity bit is odd parity or even parity.

Pin Name:

birx_fifo_read_en,

Receiver FIFO read

enable

Source -> Destination:

bcpuif -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Enable signal to read data from receiver FIFO.

Pin Name:

birx_bclkx10,

Baud clock x10

Source -> Destination:

bbaud -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

This pin is the 10 times faster baud rate clock. It is used to sample at the middle of each

received data bit.

Pin Name:

birx_ua_clock,

UART clock

Source -> Destination:

bbaud -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Represent the clock for UART to perform all synchronous operation.

CHAPTER 6: VERIFICATION SPECIFICATION

46
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Pin Name:

birx_sysclk,

System clock

Source -> Destination:

CPU -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

System clock for receiver FIFO read operation.

Pin Name:

birx_reset,

Reset

Source -> Destination:

CPU -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

This pin represents the master reset for UART. Once it activate, brx will be at begin state and

in idle mode.

Table 5-7-3-2-T1: Input pin description of receiver.

5-7-3-3 Output Pin Description

Pin Name:

borx_data_out,

Data output

Source -> Destination:

brx -> bcpuif

Size:

8 bit

Active:

High

Registered:

No

Pin Function:

Represents the parallelized data received from birx_rx_data port. This data is send to bcpuif

and directed to CPU data bus.

Pin Name:

borx_parity_err,

Parity error

Source -> Destination:

brx -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Represent parity error of the data.

Pin Name:

borx_framing_err,

Framing error

Source -> Destination:

brx -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Represent framing error of the data.

Pin Name:

borx_fifo_empty,

Receiver Fifo Empty

Source -> Destination:

brx -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate the receiver FIFO is empty. This signal will pass to bcpuif and store in status

CHAPTER 6: VERIFICATION SPECIFICATION

47
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

register.

Pin Name:

borx_fifo_full,

Receiver FIFO Full

Source -> Destination:

brx -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate the receiver FIFO is full. This signal will pass to transmitter block. If receiver

FIFO is full, DTE shall not start the transmission to DCE.

Table 5-7-3-3-T1: Output pin description of receiver.

5-7-3-6 Receiver Controller Sub-block

Figure 5-7-3-6-F1: Block diagram of receiver controller sub-block.

5-7-3-7 Input Pin Description of Receiver Controller

Pin Name:

sbirx_rx_data,

Receive Data

Source -> Destination:

DTE -> sbrx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Serial data to be receive from transmitting device to receiver block. When no data is transfer,

this port is held at logic ‘1’.

Pin Name:

sbirx_parity_en,

Parity enable

Source -> Destination:

bcpuif -> sbrx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate whether the data contain a parity bit.

Pin Name:

sbirx_fifo_full,

Receiver FIFO Full

Source -> Destination:

bcpuif -> sbrx_ctr

Size:

1 bit

Active:

High

Registered:

No

CHAPTER 6: VERIFICATION SPECIFICATION

48
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Pin Function:

Used to indicate receiver FIFO is full. If its full, the receive operation will not begin.

Pin Name:

sbirx_bclkx10,

Baud clock x10

Source -> Destination:

bbaud -> sbrx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

This pin is the 10 times faster baud rate clock. It is used to sample at the middle of each

received data bit.

Pin Name:

sbirx_ua_clock,

UART clock

Source -> Destination:

bbaud -> sbrx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Represent the clock for UART to perform all synchronous operation.

Pin Name:

sbirx_reset,

Reset

Source -> Destination:

CPU -> sbrx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

This pin represents the master reset for UART. Once it activate, sbrx_ctr will be at begin state

and in idle mode.

Table 5-7-3-7-T1: Input pin description of receiver controller sub-block.

CHAPTER 6: VERIFICATION SPECIFICATION

49
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-3-8 Output Pin Description of Receiver Controller

Pin Name:

sborx_fifo_write_en,

Receiver FIFO write

enable

Source -> Destination:

sbrx_ctr -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

An enable signal to enable write to receiver FIFO.

Pin Name:

sborx_framing_err,

Framing error

Source -> Destination:

sbrx_ctr -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Represent framing error of the data.

Pin Name:

sborx_shift_en,

Shift enable

Source -> Destination:

sbrx_ctr -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Enable signal for shift register in brx to sample data.

Table 5-7-3-8-T1: Output pin description of receiver controller sub-block.

CHAPTER 6: VERIFICATION SPECIFICATION

50
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-3-9 Receiver Finite State Machine

Figure 5-7-3-9-F1: FSM of receiver.

CHAPTER 6: VERIFICATION SPECIFICATION

51
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-4 Transmitter Block

Functions of transmitter:

• Generate a parity bit based on odd or even parity.

• Serialize data before transmission.

• Transmit serialized data to receiving device.

• Able to generate transmitter FIFO full and empty signal.

5-7-4-1 Transmitter Interface

Figure 5-7-4-1-F1: Block diagram of transmitter.

CHAPTER 6: VERIFICATION SPECIFICATION

52
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-4-2 Input Pin Description

Pin Name:

bitx_fifo_data_in,

FIFO data input

Source -> Destination:

bcpuif -> btx

Size:

8 bit

Active:

High

Registered:

No

Pin Function:

Represent the data to be transmitted to receiving device. This data will store to transmitter

FIFO first before it’s transmit at botx_tx_data port.

Pin Name:

bitx_cts,

Clear-To-Send

Source -> Destination:

DCE -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To inform DTE that it can start to transmit data on botx_tx_data port.

Pin Name:

bitx_parity_en,

Parity enable

Source -> Destination:

bcpuif -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate whether the data contain a parity bit.

Pin Name:

bitx_parity_bit,

Parity bit

Source -> Destination:

bcpuif -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate whether the parity bit is odd parity or even parity.

Pin Name:

bitx_fifo_write_en,

Transmitter FIFO write

enable

Source -> Destination:

bcpuif -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Enable signal to write to transmitter FIFO.

Pin Name:

bitx_rx_fifo_full,

Receiver FIFO full

Source -> Destination:

brx -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate whether the receiver FIFO is full. If it is not full, transmitter will reply a CTS

signal to DTE.

CHAPTER 6: VERIFICATION SPECIFICATION

53
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Pin Name:

bitx_tx_bclk_short,

Transmitter baud clock

short

Source -> Destination:

bbaud -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

This is the one-cycle-tick signal to enable the serial transmission on botx_tx_data port.

Pin Name:

bitx_ua_clock,

UART clock

Source -> Destination:

bbaud -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Represent the clock for UART to perform all synchronous operation.

Pin Name:

bitx_sysclk,

System clock

Source -> Destination:

CPU -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

System clock for transmitter FIFO write operation.

Pin Name:

bitx_reset,

Reset

Source -> Destination:

CPU ->btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

This pin represents the master reset for UART. Once it activate, btx will be at begin state and

in idle mode.

Table 5-7-4-2-T1: Input pin description of transmitter.

CHAPTER 6: VERIFICATION SPECIFICATION

54
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-4-3 Output Pin Description

Pin Name:

botx_tx_data,

Transmit data

Source -> Destination:

btx -> DCE

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Serial data to be sent from DTE to DCE. DTE shall hold this line at logic ‘1’ when no data is

transfer.

Pin Name:

botx_rts,

Request-To-Send

Source -> Destination:

btx -> DCE

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Transmission circuit will be enabled by this signal. Together with Clear-To-Send signal, data

transmission between DTE and DCE will be coordinated. Request-To-Send shall be asserted

whenever there is data in transmitter FIFO. Can be de asserted any time after START bit is

sent.

Pin Name:

botx_fifo_full,

Transmitter FIFO Full

Source -> Destination:

btx -> bcpuif

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate whether the transmitter FIFO is full. This signal pass to bcpuif and store inside

status register.

Table 5-7-4-3-T1: Output pin description of transmitter.

CHAPTER 6: VERIFICATION SPECIFICATION

55
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-4-6 Transmitter Controller Sub-block

Figure 5-7-4-6-F1: Block diagram of transmitter controller sub-block.

5-7-4-7 Input Pin Description of Transmitter Controller

Pin Name:

sbitx_cts,

Clear-To-Send

Source -> Destination:

DCE -> sbtx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To inform DTE that it can start to transmit data on botx_tx_data.

Pin Name:

sbitx_parity_en,

Parity enable

Source -> Destination:

bcpuif -> sbtx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate whether the data contain a parity bit.

Pin Name:

sbitx_tx_fifo_empty,

Transmitter FIFO empty

Source -> Destination:

btx -> sbtx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate whether transmitter FIFO is empty. If it is not empty, transmitter will read the

data and begin the transmit operation.

Pin Name:

sbitx_rx_fifo_full,

Receiver FIFO full

Source -> Destination:

brx -> sbtx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

To indicate whether the receiver FIFO is full. If it is not full, transmitter will reply a CTS

signal to DTE.

CHAPTER 6: VERIFICATION SPECIFICATION

56
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Pin Name:

sbitx_tx_bclk_short,

Transmitter enable

Source -> Destination:

bbaud -> sbtx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Enable signal to transmit serial data on botx_tx_data port.

Pin Name:

sbitx_ua_clock,

UART clock

Source -> Destination:

bbaud -> sbtx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Represent the clock for UART to perform all synchronous operation.

Pin Name:

sbitx_reset,

Reset

Source -> Destination:

CPU -> sbtx_ctr

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

This pin represents the master reset for UART. Once it activate, sbtx_ctr will be at begin state

and in idle mode.

Table 5-7-4-7-T1: Input pin description of transmitter controller sub-block.

5-7-4-8 Output Pin Description of Transmitter Controller

Pin Name:

sbotx_rts,

Request-To-Send

Source -> Destination:

sbtx_ctr -> DCE

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Transmission circuit will be enabled by this signal. Together with Clear-To-Send signal, data

transmission between DTE and DCE will be coordinated. Request-To-Send shall be asserted

whenever there is data in transmitter FIFO. Can be de asserted any time after START bit is

sent.

Pin Name:

sbotx_fifo_read_en,

Receiver FIFO read

enable

Source -> Destination:

sbtx_ctr -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Enable signal to read from transmitter FIFO.

Pin Name:

sbotx_shift_en,

Shift enable

Source -> Destination:

sbtx_ctr -> btx

Size:

1 bit

Active:

High

Registered:

No

CHAPTER 6: VERIFICATION SPECIFICATION

57
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Pin Function:

Enable signal for shift register in btx to send data.

Pin Name:

sbotx_load_shift_reg,

Load shift register

Source -> Destination:

sbtx_ctr -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

An enable signal to load data into shift register.

Table 5-7-4-8-T1: Output pin description of transmitter controller sub-block.

5-7-4-6 Transmitter Finite State Machine

Figure 5-7-4-6-F1: FSM of transmitter.

CHAPTER 6: VERIFICATION SPECIFICATION

58
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

5-7-5 Baud Rate Generator Block

Functions and specifications of baud rate generator:

• Clock synchronization.

• Able to scale down 50MHz clock speed to 10MHz.

• 8 baud rate speeds.

• Able to generate an enable signal for transmitter.

• Able to generate a 10 times faster than baud rate speed signal for receiver.

5-7-5-1 Baud Rate Generator Interface

Figure 5-7-5-1-F1: Block diagram of baud rate generator.

5-7-5-2 Input Pin Description

Pin Name:

bibg_select_baud,

Select baud rate

Source -> Destination:

bcpuif -> bbaud

Size:

3 bit

Active:

High

Registered:

No

Pin Function:

To select the baud rate speed for clock controller block. From 000 to 111, there are 8 different

baud rate speeds that can be selected.

Pin Name:

bibg_sysclk,

System clock

Source -> Destination:

CPU -> bbaud

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

System clock for all synchronous operation. This clock speed is 50MHz and will be scale

down to 10MHz for UART synchronous operation.

Pin Name: Source -> Destination: Size: Active: Registered:

CHAPTER 6: VERIFICATION SPECIFICATION

59
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

bibg_reset,

Reset

CPU -> bbaud 1 bit High No

Pin Function:

This pin represents the master reset for UART. Once it activate, all the outputs of bbaud will

be reset to initial state.

Table 5-7-5-2-T1: Input pin description of baud rate generator.

5-7-5-3 Output Pin Description

Pin Name:

bobg_ua_clock,

UART clock

Source -> Destination:

bbaud -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

10MHz clock signal for all the UART synchronous operation.

Pin Name:

bobg_tx_bclk_short,

Transmit baud clock

short

Source -> Destination:

bbaud -> btx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Enable signal for transmitter to transmit data.

Pin Name:

bobg_bclkx10,

Baud clock x10

Source -> Destination:

bbaud -> brx

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

This pin is the 10 times faster baud rate clock. It is used by receiver to sample at the middle of

each received data bit.

Table 5-7-5-3-T1: Output pin description of baud rate generator.

CHAPTER 6: VERIFICATION SPECIFICATION

60
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

CHAPTER 6: VERIFICATION SPECIFICATION

6-1 UART Test

6-1-1 Test Plan of UART

Test
Function to be
Tested

Expected Output

Test Case #1: Reset
• Set the reset pin to high.
• Hold for 10 clock cycle.
• Set the reset pin to low.

Reset the whole
UART unit.

uoua_data_out = 8’b0
uoua_rts = 1’b0
uoua_tx_data = 1’b1

Test Case #2: Send data with Odd Parity
• Assert the enable parity bit in

configuration register.
• Assert the parity bit in configuration

register.
• Send transmit data to UART,

uiua_data_in = 8’b10101010.
• Set uiua_cts to high.

• Hold for 1 clock cycle.
• Set uiua_cts to low.

Transmit a data
with Odd Parity.

uoua_tx_data =
11 1010_1010 0

* Parity bit (Bit 10 of
transmit data) = 1

Test Case #3: Send data with Even Parity
• Assert the enable parity bit in

configuration register.
• De-assert the parity bit in configuration

register.
• Send transmit data to UART,

uiua_data_in = 8’b11110000.
• Set uiua_cts to high.
• Hold for 1 clock cycle.
• Set uiua_cts to low.

Transmit a data
with Even Parity.

uoua_tx_data =
10 1111_0000 0

*Parity bit (Bit 10 of
transmit data) = 0

Test Case #4: Send data with no parity
• De-assert the enable parity bit in

configuration register.

• Send transmit data to UART,
uiua_data_in = 8’b11001100.

• Set uiua_cts to high.
• Hold for 1 clock cycle.
• Set uiua_cts to low.

Transmit a data
with no parity

uoua_tx_data =
1 1100_1100 0

*No parity is
transmitted

Test Case #5: Receive data with Odd Parity
• Assert the enable parity bit in

configuration register.
• Assert the parity bit in configuration

register.
• Transmit 11_0100_0100_0 bit by bit to

Receive an odd
parity data from
external side.
Interrupt signal
will be generated.
The data and

uoua_interrupt = 1’b1
uoua_data_out =
8’b01000100
uoua_data_out =
8’b00000010

CHAPTER 6: VERIFICATION SPECIFICATION

61
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

uiua_rx_data.
• Hold for 11 baud rate cycle.

• uiua_mem_addr = 15'hbf1c.
• uiua_lb_en = 1'b1.
• Hold for 1 clock cycle.
• uiua_mem_addr = 15'hbf14.

status will be
read by CPU.

Test Case #6: Receive data with Even Parity
• Assert the enable parity bit in

configuration register.
• De-assert the parity bit in configuration

register.
• Transmit 10_0110_0110_0 bit by bit to

uiua_RxD.
• Hold for 11 baud rate cycle.
• uiua_mem_addr = 15'hbf1c.
• uiua_lb_en = 1'b1.
• Hold for 1 clock cycle.

• uiua_mem_addr = 15'hbf14.

Receive aneven
parity data from
external side.
Interrupt signal
will be generated.
The data and
status will be
read by CPU.

uoua_interrupt = 1’b1
uoua_data_out =
8’b01100110
uoua_data_out =
8’b00000010

Test Case #7: Receive data with no parity
• De-assert the enable parity bit in

configuration register.
• Transmit 1_1001_1001_0 bit by bit to

uiua_rx_data.
• Hold for 11 baud rate cycle.
• uiua_mem_addr = 15'hbf1c.
• uiua_lb_en = 1'b1.
• Hold for 1 clock cycle.
• uiua_mem_addr = 15'hbf14.

Receive a data
with no parity bit
from external
side. Interrupt
signal will be
generated. The
data and status
will be read by
CPU.

uoua_interrupt = 1’b1
uoua_data_out =
8’b10011001
uoua_data_out =
8’b00000010

Test Case #8: Receive data with Parity Error
• Assert the enable parity bit in

configuration register.
• De-assert the parity bit in configuration

register.
• Transmit 11_0000_1111_0 bit by bit to

uiua_rx_data.
• Hold for 11 baud rate cycle.
• uiua_mem_addr = 15'hbf1c.

• uiua_lb_en = 1'b1.
• Hold for 1 clock cycle.
• uiua_mem_addr = 15'hbf14.

Receive a data
with parity error
from external
side. Interrupt
signal will be
generated. The
data and status
will be read by
CPU.

uoua_interrupt = 1’b1
uoua_data_out =
8’b00001111
uoua_data_out =
8’b00000110

Test Case #9: Receive data with Framing Error
• Assert the enable parity bit in

configuration register.
• De-assert the parity bit in configuration

register.
• Transmit 00_1111_0000_0 bit by bit to

Receive a data
with framing
error from
external side.
Interrupt signal
will be generated.

uoua_interrupt = 1’b1
uoua_data_out =
8’b11110000
uoua_data_out =
8’b00001010

CHAPTER 6: VERIFICATION SPECIFICATION

62
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

uiua_rx_data.
• Hold for 11 baud rate cycle.

• uiua_mem_addr = 15'hbf1c.
• uiua_lb_en = 1'b1.
• Hold for 1 clock cycle.
• uiua_mem_addr = 15'hbf14.

The data and
status will be
read by CPU.

Table 6-1-1-T1: Test plan for UART unit.

6-1-2 Simulation Result of UART Test

Test Case #1: Reset

Figure 6-1-2-F1: Simulation result of test case #1.

1. Before the reset signal is asserted, the signals are in unknown state.

2. Reset signal asserted.

3. All output signals are set to a default state.

CHAPTER 6: VERIFICATION SPECIFICATION

63
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Test Case #2: Send data with Odd Parity

Figure 6-1-2-F2: Simulation result of test case #2.

1. Data input from CPU to be written to configuration register.

2. Data input is written to configuration register. Enable parity (bit 3) and parity

bit (bit 4) is asserted.

3. Data input to be transmit to external side.

Figure 6-1-2-F3: Simulation result of test case #2.

1. Transmitted data = 8’b01010101.

2. The data contain even number of 1’b1, so the parity bit should be 1’b1 to

make the data odd parity. In figure 7-1-2-F3, the parity bit generated = 1’b1.

CHAPTER 6: VERIFICATION SPECIFICATION

64
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Test Case #3: Send data with Even Parity

Figure 6-1-2-F4: Simulation result of test case #3.

1. Data input to be written to configuration register.

2. Data input is written to configuration register. Enable parity (bit 3) is asserted

and parity bit (bit 4) is de-asserted.

3. Data input to be transmit to external side.

Figure 6-1-2-F5: Simulation result of test case #3.

1. Transmitted data = 8’b00001111.

2. The data contain even number of 1’b1, so the parity bit should be 1’b0 to

make the data even parity. In figure 7-1-2-F5, the parity bit generated = 1’b0.

CHAPTER 6: VERIFICATION SPECIFICATION

65
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Test Case #4:Send data with no Parity

Figure 6-1-2-F6: Simulation result of test case #4.

1. Data input to be written to configuration register.

2. Data input is written to configuration register. Enable parity (bit 3) and parity

bit (bit 4) is de-asserted.

3. Data input to be transmit to external side.

Figure 6-1-2-F7: Simulation result of test case #4.

1. Transmitted data = 8’b11001100.

2. Stop bit = 1’b1, no parity bit is transmitted in this transmission.

CHAPTER 6: VERIFICATION SPECIFICATION

66
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Test Case #5: Receive data with Odd Parity

Figure 6-1-2-F8: Simulation result of test case #5.

1. Received data (including start bit, parity bit and stop bit) from external side.

2. No framing error and parity error is detected from the data received.

3. Interrupt signal is asserted and received data to be read by CPU, 8’b01000100.

Figure 6-1-2-F9: Simulation result of test case #5.

1. Received data read by CPU, 8’b01000100.

2. Status of the current data read by CPU, 8’b01000000.

CHAPTER 6: VERIFICATION SPECIFICATION

67
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Test Case #6: Receive data with Even Parity

Figure 6-1-2-F10: Simulation result of test case #6.

1. Received data (including start bit, parity bit and stop bit) from external side.

2. No framing error and parity error is detected from the data received.

3. Interrupt signal is asserted and received data to be read by CPU, 8’b01100110.

Figure 6-1-2-F11: Simulation result of test case #6.

1. Received data read by CPU, 8’b01100110.

2. Status of the current data read by CPU, 8’b01000000.

CHAPTER 6: VERIFICATION SPECIFICATION

68
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Test Case #7: Receive data with no Parity

Figure 6-1-2-F12: Simulation result of test case #7

1. Received data (including start bit, parity bit and stop bit) from external side.

2. No framing error and parity error is detected from the data received.

3. Interrupt signal is asserted and received data to be read by CPU, 8’b10011001.

Figure 6-1-2-F13: Simulation result of test case #7.

1. Received data read by CPU, 8’b10011001.

2. Status of the current data read by CPU, 8’b00000000.

CHAPTER 6: VERIFICATION SPECIFICATION

69
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Test Case #8: Receive data with Parity Error

Figure 6-1-2-F14: Simulation result of test case #8.

1. Received data (including start bit, parity bit and stop bit) from external side.

2. Parity error is detected in this data. Framing error is not detected.

3. Interrupt signal is asserted and received data to be read by CPU, 8’b00001111.

Figure 6-1-2-F15: Simulation result of test case #8.

1. Received data read by CPU, 8’b00001111.

2. Status of the current data read by CPU, 8’b00000001.

CHAPTER 6: VERIFICATION SPECIFICATION

70
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Test Case #9: Receive data with no Framing Error

Figure 6-1-2-F16: Simulation result of test case #9.

1. Received data (including start bit, parity bit and stop bit) from external side.

2. Framing error is detected in this data. Parity error is not detected.

3. Interrupt signal is asserted and received data to be read by CPU, 8’b11110000.

Figure 6-1-2-F17: Simulation result of test case #9.

1. Received data read by CPU, 8’b11110000.

2. Status of the current data read by CPU, 8’b00000010.

CHAPTER 6: VERIFICATION SPECIFICATION

71
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

6-1-3 Testbench Code of UART Test

//**********************************
// Define declaration.
//**********************************
`include "../util/macro.v"

//**********************************
// Test Bench for Transmitter.
//**********************************
module tb_uuart
();

//**********************************
// Wire declaration.
//**********************************
wire [`BYTE_NB - 1 : 0] tb_data_out;
wire tb_rts;
wire tb_tx_data;
wire tb_interrupt;

//**********************************
// Register declaration.
//**********************************
reg [15 : 0] tb_mem_addr;
reg [`BYTE_NB + 3 : 0] tb_test_data;
reg [`BYTE_NB - 1 : 0] tb_data_in;
reg tb_rx_data;
reg tb_cts;
reg tb_lb_en;
reg tb_sb_en;
reg tb_sysclk;
reg tb_reset;

//**********************************
// Instantiation Of Module.
//**********************************
uuart
dut_uart
(.uoua_data_out(tb_data_out),
 .uoua_tx_data(tb_tx_data),

CHAPTER 6: VERIFICATION SPECIFICATION

72
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

 .uoua_rts(tb_rts),
 .uoua_done(),
 .uoua_interrupt(tb_interrupt),
 .uiua_data_in(tb_data_in),
 .uiua_mem_addr(tb_mem_addr),
 .uiua_rx_data(tb_rx_data),
 .uiua_lb_en(tb_lb_en),
 .uiua_sb_en(tb_sb_en),
 .uiua_grant(1'b1),
 .uiua_cts(tb_cts),
 .uiua_sysclk(tb_sysclk),
 .uiua_reset(tb_reset));

//**********************************
// Contain of Test Bench
//**********************************
always #4 tb_sysclk = ~tb_sysclk;

always@(posedge tb_sysclk)
 tb_rx_data <= tb_test_data[0];

always@(posedge dut_uart.uua_tx_en)
 tb_test_data <= {1'b1, tb_test_data[`BYTE_NB+3:1]};

initial
begin
 tb_mem_addr = 16'h0000;
 tb_data_in = 8'b0;
 tb_cts = 1'b0;
 tb_lb_en = 1'b0;
 tb_sb_en = 1'b0;
 tb_test_data = 12'b111111111111;
 tb_sysclk = 1'b1;
 tb_reset = 1'b0;

 //Test Case #1: Reset
 repeat(10)@(posedge tb_sysclk);
 tb_reset = 1'b1;
 repeat(10)@(posedge tb_sysclk);
 tb_reset = 1'b0;
 repeat(10)@(posedge tb_sysclk);
 tb_reset = 1'b1;
 repeat(10)@(posedge tb_sysclk);

CHAPTER 6: VERIFICATION SPECIFICATION

73
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

 tb_reset = 1'b0;
 repeat(10)@(posedge tb_sysclk);

 //End Case #1

 //Test Case #2: Send data with odd parity
 tb_data_in = 8'b00011000; //Configuration
 tb_mem_addr = 16'hbf10;
 tb_sb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);
 tb_data_in = 8'b10101010; //Data
 tb_mem_addr = 16'hbf18;
 repeat(1)@(posedge tb_sysclk);
 tb_sb_en = 1'b0;

 repeat(3)@(posedge dut_uart.uua_ua_clock);
 tb_cts = 1'b1;
 repeat(1)@(negedge dut_uart.uua_tx_en);
 tb_cts = 1'b0;
 repeat(13)@(posedge dut_uart.uua_tx_en);
 //End Case #2

 //Test Case #3: Send data with even parity
 tb_data_in = 8'b00001000; //Configuration
 tb_mem_addr = 16'hbf10;
 tb_sb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);
 tb_data_in = 8'b11110000; //Data
 tb_mem_addr = 16'hbf18;
 repeat(1)@(posedge tb_sysclk);
 tb_sb_en = 1'b0;

 repeat(3)@(posedge dut_uart.uua_ua_clock);
 tb_cts = 1'b1;
 repeat(1)@(negedge dut_uart.uua_tx_en);
 tb_cts = 1'b0;
 repeat(13)@(posedge dut_uart.uua_tx_en);
 //End Case #3

 //Test Case #4: Send data with no parity
 tb_data_in = 8'b00000000; //Configuration
 tb_mem_addr = 16'hbf10;
 tb_sb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);

CHAPTER 6: VERIFICATION SPECIFICATION

74
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

 tb_data_in = 8'b11001100; //Data
 tb_mem_addr = 16'hbf18;
 repeat(1)@(posedge tb_sysclk);

 tb_sb_en = 1'b0;

 repeat(3)@(posedge dut_uart.uua_ua_clock);
 tb_cts = 1'b1;
 repeat(1)@(negedge dut_uart.uua_tx_en);
 tb_cts = 1'b0;
 repeat(13)@(posedge dut_uart.uua_tx_en);
 //End Case #4

 //Test Case #5: Receive data with odd parity
 tb_data_in = 8'b00011000;
 tb_mem_addr = 16'hbf10;
 tb_sb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);
 tb_sb_en = 1'b0;
 tb_test_data = 12'b110100010001;
 repeat(13)@(posedge dut_uart.uua_tx_en);
 //CPU Read Status Reg & Data
 tb_mem_addr = 16'hbf1c;
 tb_lb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);
 tb_mem_addr = 16'hbf14;
 repeat(2)@(posedge tb_sysclk);
 tb_lb_en = 1'b0;
 //End Case #5

 //Test Case #6: Receive data with even parity
 tb_data_in = 8'b00001000;
 tb_mem_addr = 16'hbf10;
 tb_sb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);
 tb_sb_en = 1'b0;
 tb_test_data = 12'b100110011001;
 repeat(13)@(posedge dut_uart.uua_tx_en);
 //CPU Read Status Reg & Data
 tb_mem_addr = 16'hbf1c;
 tb_lb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);
 tb_mem_addr = 16'hbf14;
 repeat(2)@(posedge tb_sysclk);

CHAPTER 6: VERIFICATION SPECIFICATION

75
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

 tb_lb_en = 1'b0;
 //End Case #6

 //Test Case #7: Receive data with no parity

 tb_data_in = 8'b00000000;
 tb_mem_addr = 16'hbf10;
 tb_sb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);
 tb_sb_en = 1'b0;
 tb_test_data = 12'b111001100101;
 repeat(13)@(posedge dut_uart.uua_tx_en);
 //CPU Read Status Reg & Data
 tb_mem_addr = 16'hbf1c;
 tb_lb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);
 tb_mem_addr = 16'hbf14;
 repeat(2)@(posedge tb_sysclk);
 tb_lb_en = 1'b0;
 //End Case #7

 //Test Case #8: Receive data with parity error
 tb_data_in = 8'b00001000;
 tb_mem_addr = 16'hbf10;
 tb_sb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);
 tb_sb_en = 1'b0;
 tb_test_data = 12'b110000111101;
 repeat(13)@(posedge dut_uart.uua_tx_en);
 //CPU Read Status Reg & Data
 tb_mem_addr = 16'hbf1c;
 tb_lb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);
 tb_mem_addr = 16'hbf14;
 repeat(2)@(posedge tb_sysclk);
 tb_lb_en = 1'b0;
 //End Case #8

 //Test Case #9: Receive data with framing error
 tb_data_in = 8'b00001000;
 tb_mem_addr = 16'hbf10;
 tb_sb_en = 1'b1;
 repeat(1)@(posedge tb_sysclk);
 tb_sb_en = 1'b0;

CHAPTER 6: VERIFICATION SPECIFICATION

76
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

 tb_test_data = 12'b001111000001;
 repeat(13)@(posedge dut_uart.uua_tx_en);
 //CPU Read Status Reg & Data
 tb_mem_addr = 16'hbf1c;
 tb_lb_en = 1'b1;

 repeat(1)@(posedge tb_sysclk);
 tb_mem_addr = 16'hbf14;
 repeat(2)@(posedge tb_sysclk);
 tb_lb_en = 1'b0;
 //End Case #9

 repeat(10)@(posedge tb_sysclk);
 $stop;
end
endmodule

CHAPTER 6: VERIFICATION SPECIFICATION

77
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

6-2 UART Integration Test with CPU

The behavior of integrated UART with CPU is verify by connecting two CPU

together. The connection of the verification circuit is shown in the figure below.

Figure 6-2-F1: Verification circuit of integration test.

To begin the test, first the data has to be load into the UART in RISC32

microprocessor. The instruction sb and lb is used to write data into the UART or load

data from the UART. A test program is developed to test the integration of UART

into RISC32 microprocessor. In the test program of "dut1_crisc", data will be load

into the UART and wait until the transmission is complete before another test is begin.

While the test program of "dut2_crisc" will be responsible to wait until the

transmission is complete and the interrupt signal is asserted. The interrupt signal will

trigger the interrupt handling mechanism in CP0, which will dispatch CPU to jump in

to exception handler code. In the exception handler, the cause of the interrupt is

examined and the CPU will jump to the appropriate Interrupt Service Routine (ISR).

CHAPTER 6: VERIFICATION SPECIFICATION

78
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

In the ISR, the received data will be read by CPU and place into a register. After the

data is loaded into register file, the ISR will read the status register of UART to check

for the available data in receiver FIFO. If there is available data in receiver FIFO, the

ISR will continue to load data from receiver FIFO and placed it into register. Until

there is no available data, eret function will be call to resume to user program as

before the interrupt happens.

6-2-1 Test Plan of UART Integration

Test
Function to be
Tested

Expected Output

Test Case #1: Transmit 1 data
• Load 1 data into "dut1_crisc".

*data = 8'b0110_0001.

Transmit the data
from "dut1_crisc"
and received by
"dut2_crisc". At
the same time,
the handshaking
between two
device is tested
too.

dut1_crisc
uoua_tx_data =
11_0110_0001_0

dut2_crisc
uiua_rx_data =
11_0110_0001_0

Test Case #2: Transmit 5 data continuously
• Load 5 data into "dut1_crisc".

• Force the interrupt signal to LOW until
the transmission of 4th data is complete.
* 1st data = 8'b0110_0111.
* 2nd data = 8'b0011_0000.
* 3rd data = 8'b1010_0111.
* 4th data = 8'b0011_0011.
* 5th data = 8'b0110_1101.

Transmit 5 data
continuously to
"dut2_crisc". The
transmission
should be stop at
the 5th data, due
to "dut2_crisc"'s
receiver FIFO
has full.

dut1_crisc
uoua_tx_data =
11_0110_0111_0
uoua_tx_data =
10_0011_0000_0
uoua_tx_data =
11_1010_0111_0
uoua_tx_data =
10_0011_0011_0
uoua_tx_data =
11_0110_1101_0

dut2_crisc
uoua_rx_data =
11_0110_0111_0
uoua_rx_data =
10_0011_0000_0
uoua_rx_data =
11_1010_0111_0
uoua_rx_data =
10_0011_0011_0
uoua_rx_data =
11_0110_1101_0

Table 6-2-1-T1: Test plan of UART integration.

CHAPTER 6: VERIFICATION SPECIFICATION

79
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

6-2-2 Test Program of "dut1_crisc"

 .text 0x00400024
 .globl main

main: lui $t0, 0xbf00
 ori $s0, $t0, 0x000c #base address of UART memory map
 addi $t0, $zero, 0x8 #even parity, 38400 baud speed
 sb $t0, 4($s0) #write configuration to config reg

#test case #1: Transmit 1 data
test1: addi $t0, $zero, 0x61 #data 1: 0110_0001
 sb $t0, 12($s0)
 addi $t0, $zero, 6500
wait1: addi $t0, $t0, -1 #wait for UART transmit 1 data
 bne $t0, $zero, wait1
 nop

#test case #2: Transmit 5 data continuously
test2: addi $t0, $zero, 0x67 #data 1: 0110_0111
 addi $t1, $zero, 0x30 #data 2: 0011_0000
 addi $t2, $zero, 0xa7 #data 3: 1010_0111
 addi $t3, $zero, 0x33 #data 4: 0011_0011
 addi $t4, $zero, 0x6d #data 5: 0110_1101
 sb $t0, 12($s0)
 sb $t1, 12($s0)
 sb $t2, 12($s0)
 sb $t3, 12($s0)
 addi $t0, $zero, 6500
wait2: addi $t0, $t0, -1 #wait for UART transmit 1 data
 bne $t0, $zero, wait2
 nop

 sb $t4, 12($s0)
 addi $t0, $zero, 26500
wait3: addi $t0, $t0, -1 #wait for UART transmit 4 data
 bne $t0, $zero, wait3
 nop

exit: j exit
 nop

CHAPTER 6: VERIFICATION SPECIFICATION

80
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

6-2-3 Test Program of "dut2_crisc"

 .text 0x00400024
 .globl main

main: lui $t0, 0xbf00
 ori $s0, $t0, 0x000c
 addi $t0, $zero, 0x8 #even parity, 38400 baud speed
 sb $t0, 4($s0) #write configuration to config reg

 addi $t1, $zero, 6505 #wait to receive 1 data
test1: addi $t1, $t1, -1
 bne $t1, $zero, test1
 nop

 addi $t1, $zero, 6505 #wait to receive 5 data
 addi $t2, $zero, 5
test2: addi $t1, $t1, -1
 bne $t1, $zero, test2
 nop
 addi $t2, $t2, -1
 bne $t2, $zero, test2
 nop

exit: j exit
 nop

CHAPTER 6: VERIFICATION SPECIFICATION

81
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

6-2-4 Pseudocode of Exception Handler

BEGIN

 STORE current status of user program

 Extract Exception Code of Cause Register

 CASE of Exception Code OF

 0: Branch to exception routine of Interrupt

 4: Branch to exception routine of Address Error Trap LOAD

 5: Branch to exception routine of Address Error Trap STORE

 6: Branch to exception routine of Bus Error on IF Trap

 7: Branch to exception routine of Bus Error on LOAD/STORE Trap

 8: Branch to exception routine of Syscall

 9: Branch to exception routine of Breakpoint Trap

 10: Branch to exception routine of Reserved/Undefined Instruction

 12: Branch to exception routine of Arithmetic Overflow

 ENDCASE

 Read Status Register to default state

 Read Cause Register to default state

 Restore state of user program

 Increment EPC address by 4

 Return the user program based on EPC register address

END

6-2-5 Pseudocode of UART ISR

BEGIN

 LOAD base address of UART memory map

 LOAD received data

 Extract the UART receiver FIFO status from UART status register

 IF receiver FIFO is not empty THEN

 JUMP to the begin of ISR

 ENDIF

 Return to main exception handler code

CHAPTER 6: VERIFICATION SPECIFICATION

82
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

END

CHAPTER 6: VERIFICATION SPECIFICATION

83
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

6-2-6 Simulation Result

Test Case #1: Transmit 1 data

Figure 6-2-6-F1: Simulation result of test case #1.

1. Transmitting data from dut1_crisc to dut2_crisc. Data = 11_0110_0001_0.

2. Received data from dut1_crisc.

3. Interrupt signal is asserted after dut2_crisc received the data from dut1_crisc.

CHAPTER 6: VERIFICATION SPECIFICATION

84
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 6-2-6-F1: Simulation result of test case #1.

1. After the interrupt signal is asserted, the urisc_pc changes from normal program execution to the first line of the exception handler code,

which is from 32'h0040_0050 to 32'h8000_0180.

CHAPTER 6: VERIFICATION SPECIFICATION

85
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 6-2-6-F3: Simulation result of test case #1.

1. The transition of instruction from 32'h8000_0240 to 32'h8000_02b0 indicated the exception handler is entering the UART ISR.

2. The UART ISR reads the data in receiver FIFO and store in register 27 ($k0), the data received is 8'h61 and it is sign extended to 32-bits.

3. After the reads of received data, the ISR reads the UART status register to decide whether to continue read data or exit from the ISR.

CHAPTER 6: VERIFICATION SPECIFICATION

86
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 6-2-6-F4: Simulation result of test case #1.

1. After the UART ISR done its operation, the ISR returns to exception handler code. The instruction at 32'h8000_0230 is eret, it return the

program execution back to user program. As in figure 7-2-6-F5, the value of urisc_pc jumps from 32'h8000_0234 to 32'h0040_0054.

CHAPTER 6: VERIFICATION SPECIFICATION

87
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Test Case #2: Transmit 5 data continuously

Figure 6-2-6-F5: Simulation result of test case #2.

1. Transmission of 4 data continuously to dut2_crisc.

2. Receive 4 data continuously from dut1_crisc. The interrupt signal is forced to LOW until all the fourth data is received (to let the receiver

FIFO full).

3. dut1_crisc has send a request-to-send signal (uoua_rts = 1'b1) to dut2_crisc, but due to the receiver FIFO in dut2_crisc is full, thus it did not

assert the clear-to-send signal to dut1_crisc (uiua_cts = 1'b0). After the interrupt signal of dut2_crisc is asserted and the data in receiver FIFO is

read by CPU (which makes the receiver FIFO not empty), it reply dut1_crisc a clear-to-send signal. The transmission of the fifth data is started

after uiua_cts = 1'b1.

CHAPTER 6: VERIFICATION SPECIFICATION

88
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

4. The transmission of the fifth data.

Figure 6-2-6-F6: Simulation result of test case #2.

1. The transition from user program execution to exception handler after the interrupt signal is asserted (urisc_intr_uart = 1'b1).

CHAPTER 6: VERIFICATION SPECIFICATION

89
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 6-2-6-F7: Simulation result of test case #2.

1. The second data and the value of status register is read by CPU. The status register value indicate that the receiver FIFO is not empty, thus the

UART ISR will jump back to the beginning of ISR instead of jumping back to exception handler code.

2. The program execution jump to the beginning of the UART ISR.

CHAPTER 6: VERIFICATION SPECIFICATION

90
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 6-2-6-F8: Simulation result of rest case #2.

1. Continuous reading of data and status register until the receiver FIFO is empty.

2. The interrupt signal is de-asserted after all the data in receiver FIFO is read.

CHAPTER 6: VERIFICATION SPECIFICATION

91
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 6-2-6-F9: Simulation result of test case #2.

1. CPU read the fifth data and its status.

2. The interrupt signal is de-asserted after CPU read the data from receiver FIFO.

CHAPTER 6: VERIFICATION SPECIFICATION

92
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

6-2-7 Testbench Code of UART Integration Test

//*** *************
/*
Project/Module: tb_r32_pipeline
File Name: tb_r32_pipeline.v
Date Created: 22/8/2016
Author: Lee Zhi Yong
Description: RISC32 microprocessor with UART integrated testbench in
Verilog code.
*/
//*** *************

`include "../util/macro.v"
module tb_r32_pipeline();
//declaration
//======= INPUT =======
// System signal
reg tb_u_clk;
reg tb_u_rst;

// UART signal
reg tb_u_reset;
wire dut1_tx_data;
wire dut1_rts;
wire dut2_tx_data;
wire dut2_rts;

//==============================
// INSTANTIATION
//==============================
crisc dut1_crisc
(// UART signal
.uorisc_ua_tx_data(dut1_tx_data),
.uorisc_ua_rts(dut1_rts),
.uirisc_ua_rx_data(dut2_tx_data),
.uirisc_ua_cts(dut2_rts),

//======= INPUT =======
// System signal
.uirisc_clk(tb_u_clk),
.uirisc_rst(tb_u_rst)
);

CHAPTER 6: VERIFICATION SPECIFICATION

93
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

crisc dut2_crisc

(// UART signal
.uorisc_ua_tx_data(dut2_tx_data),
.uorisc_ua_rts(dut2_rts),
.uirisc_ua_rx_data(dut1_tx_data),
.uirisc_ua_cts(dut1_rts),

//======= INPUT =======
// System signal
.uirisc_clk(tb_u_clk),
.uirisc_rst(tb_u_rst)
);

//************************************
//Clock waveform generation
initial tb_u_clk <= 1'b1;
always #10 tb_u_clk =~ tb_u_clk;

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Signals initialization.
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//========================

//read memory to get instruction
initial begin

//UART integration test by Lee Zhi Yong (201605)
//DUT 1
$readmemh("test_loader_new.txt",tb_r32_pipeline.dut1_crisc.rom.data_ram);
$readmemh("exc_handler.mips",tb_r32_pipeline.dut1_crisc.u_ktext_kseg0.u_cm_r_
memory);
$readmemh("test_program.txt",tb_r32_pipeline.dut1_crisc.u_text_seg.u_cm_r_memo
ry);
//DUT 2
$readmemh("test_loader_new.txt",tb_r32_pipeline.dut2_crisc.rom.data_ram);
$readmemh("exc_handler.mips",tb_r32_pipeline.dut2_crisc.u_ktext_kseg0.u_cm_r_
memory);
$readmemh("uart_config.txt",tb_r32_pipeline.dut2_crisc.u_text_seg.u_cm_r_memory
);

CHAPTER 6: VERIFICATION SPECIFICATION

94
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

//DUT 1
//tb_r32_pipeline.dut1_crisc.urisc_intr_uart = 1'b0;
tb_r32_pipeline.dut1_crisc.urisc_intr_ps2_mouse = 1'b0;
tb_r32_pipeline.dut1_crisc.urisc_intr_ps2_keyboard = 1'b0;
//DUT 2
tb_r32_pipeline.dut2_crisc.urisc_intr_ps2_mouse = 1'b0;
tb_r32_pipeline.dut2_crisc.urisc_intr_ps2_keyboard = 1'b0;

tb_u_rst = 1'b0;
repeat(1)@(posedge tb_u_clk);
tb_u_rst = 1'b1;
repeat(2)@(posedge tb_u_clk);
tb_u_rst = 1'b0;
//========================

repeat(13)@(posedge dut1_crisc.uuart.uua_tx_en);
force dut2_crisc.urisc_intr_uart = 1'b0;
repeat(52)@(posedge dut1_crisc.uuart.uua_tx_en);

release dut2_crisc.urisc_intr_uart;
repeat(13)@(posedge dut1_crisc.uuart.uua_tx_en);

$stop;
end
endmodule

CHAPTER 7: SYNTHESIS

95
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

CHAPTER 7: SYNTHESIS

After successful behavioral simulation of UART module by ModelSim simulator, it

was synthesized on Xilinx Spartan-3E XC3S500 FG320 series FPGA by using Xilinx

ISE design suite. In order to test the behavior of the synthesized UART, a verification

circuit is added to the original UART design. Then, the FGPA board will be

connected with a software in PC called "Tera Term" through RS232 interface.

7-1 FGPA Design Summary

Design Summary

Figure below shows the total amount of the hardware and the amount being utilized

by the UART module.

Figure 7-1-F1: Device utilization summary of UART synthesis.

CHAPTER 7: SYNTHESIS

96
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Pinout Report

Figure below is the placement and configuration of UART's input and output pins.

Figure 7-1-F2: IO pin report of UART synthesis.

CHAPTER 7: SYNTHESIS

97
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

7-2 Timing Analysis

From the timing analysis report, the timing constraint set on "uiua_sysclk" (system

clock pin) is 20ns period and 50% high which is 50MHz clock speed and 50% duty

cycle. The minimum period indicates the minimum required period for the clock in

order to sustain the data path delay.

The full timing analysis report is shown in the table below. In the report, the 3 longest

delay path is shown together with the source and destination of the path.

===
Timing constraint: NET "uiua_sysclk_BUFGP/IBUFG" PERIOD = 20 ns HIGH
50%;

 945 items analyzed, 0 timing errors detected. (0 setup errors, 0
hold errors)
 Minimum period is 6.609ns.

Slack: 13.391ns (requirement - (data path - clock
path skew + uncertainty))
 Source: debouncer_data1/PB_sync_1 (FF)
 Destination: debouncer_data1/PB_state (FF)
 Requirement: 20.000ns
 Data Path Delay: 6.609ns (Levels of Logic = 2)
 Clock Path Skew: 0.000ns
 Source Clock: uiua_sysclk_BUFGP rising at 0.000ns
 Destination Clock: uiua_sysclk_BUFGP rising at 20.000ns
 Clock Uncertainty: 0.000ns

 Data Path: debouncer_data1/PB_sync_1 to debouncer_data1/PB_state
 Delay type Delay(ns) Logical Resource(s)
 ---------------------------- -------------------
 Tcko 0.652 debouncer_data1/PB_sync_1
 net (fanout=1) 2.079 debouncer_data1/PB_sync_1
 Tilo 0.759 debouncer_data1/_not00021
 net (fanout=9) 0.074 debouncer_data1/_not0002
 Topxb 1.344 debouncer_data1/_not0003_wg_lut<4>
 debouncer_data1/_not0003_wg_cy<4>
 net (fanout=1) 1.146 debouncer_data1/_not0003_wg_cy<4>
 Tceck 0.555 debouncer_data1/PB_state
 ---------------------------- ---------------------------
 Total 6.609ns (3.310ns logic, 3.299ns route)
 (50.1% logic, 49.9% route)

Slack: 13.560ns (requirement - (data path - clock
path skew + uncertainty))
 Source: btx/synchronizer_r2w/op_data_0 (FF)
 Destination: btx/inst_Mram_mem51.WE (RAM)
 Requirement: 20.000ns
 Data Path Delay: 6.440ns (Levels of Logic = 3)
 Clock Path Skew: 0.000ns
 Source Clock: uiua_sysclk_BUFGP rising at 0.000ns
 Destination Clock: uiua_sysclk_BUFGP rising at 20.000ns
 Clock Uncertainty: 0.000ns

 Data Path: btx/synchronizer_r2w/op_data_0 to btx/inst_Mram_mem51.WE
 Delay type Delay(ns) Logical Resource(s)
 ---------------------------- -------------------

CHAPTER 7: SYNTHESIS

98
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

 Tcko 0.652 btx/synchronizer_r2w/op_data_0
 net (fanout=2) 0.757 btx/synchronizer_r2w/op_data<0>
 Tilo 0.704 btx/asynfifo_r1_3/op_full_w_SW1
 net (fanout=1) 0.762 N220
 Tilo 0.704 btx/asynfifo_r1_3/op_full_w
 net (fanout=6) 0.099 uua_tx_fifo_full
 Tilo 0.704 btx/asynfifo_r1_3/w_inc_w1
 net (fanout=8) 1.666 btx/asynfifo_r1_3/w_inc_w
 Tws 0.392 btx/inst_Mram_mem51.WE
 ---------------------------- ---------------------------
 Total 6.440ns (3.156ns logic, 3.284ns route)
 (49.0% logic, 51.0% route)

Slack: 13.560ns (requirement - (data path - clock
path skew + uncertainty))
 Source: btx/synchronizer_r2w/op_data_0 (FF)
 Destination: btx/inst_Mram_mem61.WE (RAM)
 Requirement: 20.000ns
 Data Path Delay: 6.440ns (Levels of Logic = 3)
 Clock Path Skew: 0.000ns
 Source Clock: uiua_sysclk_BUFGP rising at 0.000ns
 Destination Clock: uiua_sysclk_BUFGP rising at 20.000ns
 Clock Uncertainty: 0.000ns

 Data Path: btx/synchronizer_r2w/op_data_0 to btx/inst_Mram_mem61.WE
 Delay type Delay(ns) Logical Resource(s)
 ---------------------------- -------------------
 Tcko 0.652 btx/synchronizer_r2w/op_data_0
 net (fanout=2) 0.757 btx/synchronizer_r2w/op_data<0>
 Tilo 0.704 btx/asynfifo_r1_3/op_full_w_SW1
 net (fanout=1) 0.762 N220
 Tilo 0.704 btx/asynfifo_r1_3/op_full_w
 net (fanout=6) 0.099 uua_tx_fifo_full
 Tilo 0.704 btx/asynfifo_r1_3/w_inc_w1
 net (fanout=8) 1.666 btx/asynfifo_r1_3/w_inc_w
 Tws 0.392 btx/inst_Mram_mem61.WE
 ---------------------------- ---------------------------
 Total 6.440ns (3.156ns logic, 3.284ns route)
 (49.0% logic, 51.0% route)

Table 7-2-T1: Timing analysis report of UART synthesis.

CHAPTER 7: SYNTHESIS

99
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

7-3 Power Analysis

The figure below is the power analysis report for this UART synthesis. The report

shows the estimation of power consumption of the design. Apart from that, the report

includes the thermal summary and decoupling network summary which shows the

estimated junction temperature and the capacitor recommended for the design.

Figure 7-3-F1: Power analysis report of UART synthesis.

CHAPTER 7: SYNTHESIS

100
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

7-4 Verification Circuit

To test the UART's operation, a loop-back circuit is build on the UART. In the circuit,

the serial port of Spartan-3E board is connected to the serial port of PC. When a

character a sent from PC, Spartan-3E will received the character and stored in receiver

FIFO. When retrieved, the data is send back to transmitter to transmit out through

uoua_tx_data port. The debounced push button produces a single one-clock-cycle tick

when pressed and it is connected to the uiua_pop_rx_fifo. When the tick is generated,

it removes one byte of data from receiver's FIFO and writes to transmitter's FIFO for

transmission. The data will then be pop out from transmitter's FIFO and transmit to

PC through the RS232 interface. On PC site, the software "Tera Term" is used to

received the data and display on the software interface.

The switch[2:0] is referring to the 3 switches on the Spartan-3E board. These

switches is used to configure the baud rate of UART. The figure below shows the

block diagram of the verification circuit.

Figure 7-4-F1: Block diagram of UART verification circuit.

CHAPTER 7: SYNTHESIS

101
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

7-5 Setting Up the Testing Environment on PC

The software "Tera Term" is used to communicate with the synthesized UART on

Spartan-3E board. To be compatible with the UART on Spartan-3E board, it has to be

configured to the same configuration as the UART. By default, the UART

configuration is 9600 baud, 8 data bits, 1 stop bit and no parity. To configure the Tera

Term,

1. Open the software Tera Term from PC.

2. Select "Setup" from menu bar and click on "Serial port". A serial port setup

window will appears. Configure the setup as below:

• Port : COM5 (select the desired serial port)

• Baud rate : 9600

• Data : 8 bit

• Parity : none

• Stop : 1 bit

• Flow control : none

3. Click "Ok".

Now, the Tera Term is set up and ready to communicate with the Spartan-3E board.

Type any character on the software and press "Enter" to transmit to the board. The

configuration setting can be changed according to the configuration of the UART on

the board.

CHAPTER 7: SYNTHESIS

102
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

Figure 7-5-F1: Configuration settings of serial com. on Tera Term.

CHAPTER 8: CONCLUSION

103
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

CHAPTER 8: CONCLUSION

8-1 Conclusion

A UART module and a UART address decoder has been successfully modeled and

integrated into RISC32 microprocessor. All the behavior has been tested working.

The purpose of UART address decoder is to produce CPU Interface compatible output

signals to UART. Hence, the RISC32 microprocessor is able to communicate with

UART by using instruction sw to transmit data or configuration to UART and

instruction lw to read the 8-bits data or status from UART. The I/O serial

communication follows the protocol mentioned in Chapter 2 of this project.

The integration of UART into RISC32 architecture has been accomplished, as shown

is Chapter 4. In addition, the UART address decoder was modeled using Verilog HDL

based on the developed micro-architecture specification as shown in Chapter 5. The

full integration verification was also completed and its shown in Chapter 7. Apart

from that, the software handling part, which are the Exception Handler and Interrupt

Service Routine (ISR) are also proven to be working. The received data by UART

was successfully transferred to the register file.

The UART module has been successfully synthesized on Spartan-3E board by using

Xilinx ISE Foundation 8.2i software. An extra circuit is build in order to test the

functionality of synthesized UART, the circuit is shown in Chapter 7. The synthesized

UART is tested and proven to be working.

 Based on the following table, the objectives stated in Chapter 1 has been achieved.

Table 8-1-T1: Enhancement outcome.

Objectives Status

Development of the RTL model of UART Enhanced

Integration of the UART model into existing RISC32 architecture Enhanced

Development of the Interrupt Service Routine (ISR) of UART Enhanced

Synthesis of UART on FPGA New

CHAPTER 8: CONCLUSION

104
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

8-2 Discussion and Future Work

The current design of the UART is not capable to handle the received data with parity

error or framing error. The error status is stored in status register but no action is

taken to the data. An error handling mechanism can be implement in future to handle

the data with error.

The Interrupt Service Routine (ISR) of UART is only able to read the receive data and

store in a register file. Further development should place the received data in memory

mapped address rather than a register file.

For future, the RISC32 microprocessor with I/O integrated can be synthesis on FGPA

to test the software exception handling part in the actual hardware.

BIBLIOGRAPHY

105
BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UART

BIBLIOGRAPHY

Chu, P. (2008). FPGA prototyping by Verilog examples. Hoboken, N.J.: J. Wiley &

Sons.

Chuah, H. P. (2012) Integration of I/O Serial Communication into Enhanced RISC32

Architecture, Final Year Report, UniversitiTunku Abdul Rahman.

Cohen, B. (2001). Component design by example. Los Angeles, Calif.: VhdlCohen

Publisher.

Dandamudi, S. (2005).Guide to RISC processors. New York: Springer.

Integrated Device Technology.Inc (1994), IDT R30xx Family Software Reference

Manual.

Mok, K. M. (2015) Digital Systems Designs, lecture notes distributed in Faculty of

Information and Communication Technology at UniversitiTunku Abdul Rahman.

Patterson, D. and Hennessy, J. (2005). Computer organization and design.

Amsterdam: Elsevier/Morgan Kaufmann.

Roth, C (1998), Digital System Design Using VHDL. Boston: PWS Pub. Co.

Tan, Y. S. (2008) The development of UART IP core using Verilog HDL as a part of

32-bit MIPS microprocessor, Final Year Report, University Tunku Abdul Rahman,

Malaysia.

