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PREPARATION OF Bi2O3 NANOSTRUCTURES AND THEIR LIGHT 

DRIVEN CATALYTIC ACTIVITY TOWARDS THE ERASURE OF 

TEXTILE DYES 

 

ABSTRACT 

 

Azo dyes are widely used in the textile industry and as they exhibit undesirable 

aftereffect such as eutrophication, considerable amounts of research were dedicated 

towards its removal. Wide spectrums of technologies were devised and amongst 

them, heterogeneous photocatalysis incorporating bismuth trioxide (Bi2O3) surfaces 

as a potential means for wastewater treatment. Bi2O3 nanoflakes were synthesized 

via a co-precipitation method using cetyltrimethyl ammonium bromide (CTAB) as a 

surfactant. XRD, FESEM-EDX and UV-Vis DRS analyses were conducted to 

determine the crystal phase, morphology and band gap energy of the photocatalyst. 

The synthesised Bi2O3 was identified to be in the α-monoclinic phase and a 

determined band gap of 2.95 eV. The nanostructure was observed to be a flake-like 

Bi2O3 and had an average length of 250 nm and 60 nm thickness. The possible 

growth mechanism of Bi2O3 nanoflakes was also proposed. The photocatalytic 

activity of Bi2O3 nanoflakes were tested in the degradation of methyl green (MG) 

under fluorescent light irradiation. Comparison studies were conducted on 

commercial Bi2O3 and TiO2 and were found that the Bi2O3 nanoflakes exhibited 

superior degradation of MG. Sedimentation test was conducted on the nanoflakes 

and commercial TiO2 and was found that the nanoflakes settled well after 30 minutes 

as compared to TiO2. The optimal operational parameters were determined to be 10 

mM H2O2, 5 mg/L MG and pH 7. 100% of MG degradation was achieved within 20 

minutes of irradiation while 81% of chemical oxygen demand (COD) was removed 

after 80 minutes of irradiation. Other dyes such as methylene blue (MB) and 

rhodamine B (RhB) could also be degraded by Bi2O3 under similar experimental 

conditions with their degradation efficiency in descending order MG > MB > RhB.  
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CHAPTER 1 

INTRODUCTION 

1.1 Wastewater in the dyestuff industry 

 

The most widespread industrial use of dyes falls to the textile industry. As this is the 

largest industry, its average water consumption was 100 m
3
/ton of product. In 

addition, it was estimated that there were more than 100,000 types of dyes available 

commercially with an annual production of up to 1,000,000 tons (Pang and Abdullah, 

2013). The report added that the global demand for pigments and dyes were expected 

to grow at an average of 3.5% per year, from 1.9 million tons in 2008 to 2.3 million 

tons in 2013 and it is steadily increasing. It is because of this high demand in dyes 

that promoted the increase of dye presence in wastewaters. It is a widely recognized 

public perception that the water quality is greatly influenced by its colour. Colour is 

the first contaminant to be identified in wastewater (Crini, 2006).  

 

Among the dyes, azo dyes are commonly used as colourants, consisting of 

one or more azo (-N=N-) bond couplings with several aromatic groups in their 

structure. (Rauf, Meetani and Hisaindee, 2011). They are the largest class (60-70%) 

of synthetic dyes used in the combination of textile, rubber, food, plastic, paper and 

cosmetic industry (Hosseini Koupaie, Alavi Moghaddam and Hashemi, 2011). These 

wastewaters are very stable in the environment and are resistant to oxidation and 

biodegradation. The dyes are a considerable source of aesthetic pollution, 

eutrophication and disruption of the aquatic ecosystem. Some azo dyes can be 

reduced to aromatic amines, which are potent carcinogens (Chen et al., 2015). 
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Furthermore, they are a well-known carcinogenic, mutagenic, allergic and cytotoxic 

agent that poses a threat to all life forms (Khandare and Govindwar, 2015). 

 

Most of the dyes utilized in the textile industry are highly stable as they are 

intentionally designed to be able to resist biological, chemical and photolytic 

degradation. Other than the negative aesthetic effects of azo dyes, it is a hazardous 

material as a result of its slow biological degradation and their harmful intermediate 

degradation products (Papić et al., 2014). Hence, it is of utmost importance that these 

dyes require to be completely removed from the wastewaters. 

 

According to Muhd Julkapli, Bagheri and Bee Abd Hamid (2014), the 

complete degradation of dyes were unable to be fully achieved through conventional 

methods such as adsorption, precipitation, flocculation, flotation, electrochemical, 

oxidation, reduction, biological, aerobic and anaerobic treatment as it was mentioned 

in various literatures that these methods have certain limitations such as production 

of secondary sludge production, lower efficiency, large area requirement and the 

costly affair of sludge disposal (Brillas and Martínez-Huitle, 2015; Hafshejani, 

Ogugbue and Morad, 2013;  Saratale et al., 2010).   

 

Weighing down these facts, much of the work at present focuses on the 

degradation and mineralization of synthetic dyestuff in the industry via 

heterogeneous photocatalyst (Muhd Julkapli, Bagheri and Bee Abd Hamid, 2014). 

Advanced oxidation processes (AOPs) have been gaining wide interest especially 

semiconductor mediated advanced oxidation process (SAOP). Heterogeneous 

semiconductor photocatalysis is an AOP and is considered as an outstanding method 

for the treatment of organic and inorganic pollutants in an aqueous suspension (Raza 

et al., 2016). 
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1.2 Problem statement 

Wastewaters containing azo dyes are one of the most recalcitrant classes of organic 

compounds to treat. This is because according to Sreelatha et al. (2015), the presence 

of sulfo and azo groups in the dye structure protects the dye molecule from the attack 

of oxygenases, hence making them resistant to oxidative biodegradation. Dyes are 

highly dangerous as it could affect the photosynthesis activities within the aquatic 

system resulted from the decrease in light penetration. The presence of aromatics, 

metals and other materials within the dye makes them toxic towards certain marine 

life. Dyes are also carcinogenic, teratogenic or mutagenic in various species 

(Sreelatha et al., 2015). In addition, it can also cause severe damage to human beings 

such as dysfunctional reproductive system, kidneys, brain, liver and the central 

nervous system (Yagub et al., 2014). Therefore, it is crucial that the removal of dyes 

is properly dealt with. In this paper, three azo dyes will be focused on namely Methyl 

Green (MG), Methylene Blue (MB) and Rhodamine B (RhB). 

 

Heterogeneous photocatalysis has proved to be of real interest as an efficient 

tool for degrading both aquatic and atmospheric organic pollutants. The 

heterogeneous photocatalysis involves the acceleration of photoreaction in the 

presence of a semiconductor photocatalyst (Gaya and Abdullah, 2008). Amongst the 

heterogeneous photocatalyst, titanium dioxide (TiO2) proves to be the most 

destructive technology as reported by Konstantinou and Albanis in 2004. TiO2 or 

titania is a very well-known and well-researched material as it has a stable chemical 

structure, physical, biocompatibility and electrical properties (Akpan and Hameed, 

2009). TiO2 is a conventional photocatalyst and is considered to be a semiconductor 

with a wide band gap (Ebg = 3.2 eV). Due to this high band gap, it can only be 

activated under UV irradiation with a wavelength of lower than 387 nm (Daghrir, 

Drogui and Robert, 2013).  

 

In a report by Hameed et al. in 2009, bismuth trioxide (Bi2O3) has gained 

interest as it has an absorption edge at 2.8 eV with a suitable band edge potential for 

water oxidation, thermal stability and high refractive index. A p-type Bi2O3 

heterogeneous semiconductor is considered as an efficient photocatalyst as it 
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possesses band gap energy in the visible region (Raza et al., 2016). It can oxidize 

water and produce highly reactive species for initiating oxidation reaction for the 

degradation of dyes, gases and drugs. Thus Bi2O3 was selected for this study to be 

utilized in the degradation of the three azo dyes. 

 

1.3 Objective of study 

Three dyes namely methylene blue (MB), methyl green (MG) and Rhodamine B 

(RhB) were selected as modal pollutants to be degraded by Bi2O3 under visible light. 

The objectives of this research are: 

 

1. To synthesize nanostructure of Bi2O3 using a co-precipitation method 

2. To characterize the synthesized Bi2O3 nanostructure using X-Ray 

Diffraction (XRD), Field Emission Scanning Electron Microscope- 

Energy Dispersive X-ray (FESEM-EDX) and Ultraviolet-Visible Diffuse 

Reflectance Spectroscopy (UV-Vis DRS) analyses 

3. To determine the effect of parameters such as hydrogen peroxide 

concentration, initial dye concentration  and solution pH on the 

photocatalytic degradation of dyes under fluorescent light irradiation 

 

1.4 Scope of study 

Bi2O3 nanostructure was fabricated through a co-precipitation method. The 

developed catalyst will be analyzed using XRD, FESEM-EDX and UV-Vis DRS 

analysis methods in order to characterize the morphology, size, structure, 

composition and band gap energy of the synthesized Bi2O3. 

 

Three azo dyes namely MG, MB and RhB were selected as pollutants to be 

degraded. The photocatalytic test of these three dyes will be carried out using a batch 

photocatalytic reactor. The changes in dye concentration by Bi2O3 will be performed 

using a UV-vis spectrophotometer by measuring its absorbance. In addition, the 

mineralization extent of the photocatalyst will be measured using a COD analyzer. 
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CHAPTER 2 

 LITERATURE REVIEW 

2.1 Azo dyes 

 

Dye molecules were comprised of two significant components; the chromophores, 

responsible for the creating colour and the auxochromes, which can not only 

supplement the chromophore but also enhance the affinity of the dye molecules to 

attach towards the fibres and render it soluble in water (Gupta and Suhas, 2009). In 

another report, Clarke and Anliker (1980) mentioned that there were several ways of 

classifying commercial dyes whereby it can be catalogued in terms of its colour, 

structure and application methods.  

 

Dyes could also be classified according to its solubility. Soluble dyes include 

direct, basic, acid, metal complex, reactive and mordant dyes. On the other hand, 

insoluble dyes encompass azoic, sulphur, disperse and vat dyes (Gupta and Suhas, 

2009). Being a class, azo dyes are cost effective, exhibit good all round fastness 

properties and spans the whole shade range from yellow all through red and blue to 

green and strong (Waring and Hallas, 2013; Hunger, 2007). Azo dyes were defined 

by Singh, Singh and Singh (2015) to be electron deficient xenobiotic compounds as 

they possess electron withdrawing groups in the dye molecules that generated 

electron deficiency, making them resilient against degradation. These compounds 

attracted the electrons towards them and away from the main reaction required for 

the breakdown.  
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Azo dyes are chemically characterized by their nitrogen to nitrogen double 

bonds (-N=N). These are usually attached to two moieties in which typically were 

both aromatic groups; naphthalene rings or benzene, that can contain various 

substituents for instance methyl (-CH3), chloro (-Cl), amino (-NH2), nitro (-NO2), 

carboxyl (-COOH), sulphonic (-SO3
-
) and hydroxyl (-OH), giving diversity to azo 

dyes (Saratale et al., 2011). Rauf, Meetani and Hisaindee  (2011) added that 

depending on the number of (–N=N-) groups present in the molecule, azo dyes can 

be categorized into monoazo, diazo and triazo azo dyes and the cleavage of these 

bonds led towards the discolouration of dyes. Colour removal was connected to the 

number of azo bonds in the dye molecule. The colours of monoazo dyes were 

removed much faster comparative to the colour of the diazo and triazo dye (Erkurt, 

2010).  

The properties of azo dyes were enhanced to provide the dyes a high degree 

of biological and chemical stability, to resist breakdown due to sunlight exposure, 

time, soap and water. In other words, they were resilient towards degradation (Solís 

et al., 2012). As a huge amount of non-biodegradable dyes were released into 

receiving water bodies, it culminated towards a persistent, accumulative, mutagenic, 

carcinogenic and detrimental impact towards aquatic life, flora, fauna and the 

environmental matrix such as water and soil (Foo and Hameed, 2010).  

Prolonged human exposure towards coloured effluents resulted in a wide 

spectrum of immune suppression, circulatory, respiratory, central nervous and 

neurobehavioral disorders indications such as vomiting, allergy, autoimmune 

diseases, salivation, cyanosis, leukaemia and lung edema amongst others (Verma, 

Dash and Bhunia, 2012). 

Dye degradation, dye discolouration and dye removal are terms that are 

widely used in this field of research. Dye degradation was defined by Zhang et al. 

(2016) as the breaking down of the organic molecules into simpler forms such as 

CO2, H2O and other small molecules. In other words, any transformation of dyes 

resulted from irradiation and photocatalyst was considered as its degradation. For azo 

dyes, their degradation would mean its decomposition into simpler organic 

compounds by breaking of azo bonds and chromophores.  
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Discolouration of dyes was termed by Rai et al. (2014) as simply the 

disappearance of colour in the wastewater without any breaking of bonds. 

Discolouration does not necessarily coincide with the degradation of the dye 

molecules. They were determined by observing the absorbance reduction at the 

maximum wavelength of the dyes. Removal of dyes are quantified by determining 

the removal efficiency or percentage of dye removal using a formula.  

 

In the present work, three azo dyes; MB, MG and RhB were utilized to 

undergo photocatalytic processes through heterogeneous photocatalytic reactions 

using Bi2O3. The structures and properties of these dyes are given in Table 2.1. 
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Table 2.1: Physical characteristics and molecular structure of Methylene Blue (MB), Methyl Green (MG) and Rhodamine B (RhB).  

 Methylene Blue 

 

Methyl Green  

 

 

 

 

 

Rhodamine B 

 

 

 

 

Alternate name Basic Blue 9 Ethyl Green Basic Violet 10 

Abbreviation MB MG RhB 

Empirical formula C16H18ClN3S C27H35BrClN3 · ZnCl2 C28H31ClN2O3 

Molar mass 319.9 g/mol 653.24 g/mol 479.02 g/mol 

C.I number 52015 42590 45170 

Colour Blue Blue-Green Red-light purple 

λmax  665 nm  631 nm 553 nm 

References Rauf, Meetani and Hisaindee, 

2011; Wang et al., 2005 

 

Geethakrishnan and Palanisamy, 

2006 

Al-Kadhemy, Alsharuee and Al-

Zuky, 2011; Merouani et al., 2010 

88
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2.2 Methods of dye removal 

 

Owing to the hazards of dyes in water bodies, inventions of a wide variety of 

treatment technologies has stimulated a dramatic progress in the scientific society. 

The available technologies for dye removal can be classified into three categories: 

physical, biological and chemical. These treatment methods were extensively used in 

handling the removal of dyes in order to ensure compliance with the environmental 

regulations which are increasing in stringency these days (Lam et al., 2012).  

 

2.2.1 Physical treatment 

 

Physical methods such as membrane-filtration processes, reverse osmosis, 

nanofiltration and electrodialysis were applicable for textile wastewater treatment 

(Abid, Zablouk and Abid-Alameer, 2012; Nataraj, Hosamani and Aminabhavi, 2009; 

Scialdone, D’Angelo and Galia, 2015). Electrodialysis is a process where the ionic 

components of the effluent were separated through semipermeable ion-selective 

membranes by an electrical potential (Tchobanoglous, Burton and Stensel, 2003).  It 

was however mentioned by Ejder-Korucu et al. (2015) that the major disadvantage of 

the membrane technique was that they have a limited lifetime before membrane 

fouling begins to occur and the high cost of periodic replacements. To avoid 

membrane fouling in electrodialysis, it is vital that any suspended solids, colloids, 

turbidity and trace organics are to be removed prior to treatment (Ghaly et al., 2013). 

 

Adsorption is also one of the leading methods applied to treat dyes from 

aqueous media. This treatment was categorized under physicochemical treatment 

method. There were large varieties of materials that were used as an adsorbent such 

as regenerated clay, rice bran and pine cone (Ogata, Imai and Kawasaki, 2015; 

Dawood and Sen, 2012; Meziti and Boukerroui, 2012). These authors reported 

having produced materials with effective adsorption capacities. However, this 

treatment came with a few restrictions such as the requirement of regeneration after 

material exhaustion and the loss of adsorption efficiency following regeneration 

(Salleh et al., 2011). In addition, adsorption presented the drawback of requiring 
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pretreatment of the wastewater to lower the suspended solid content before it was fed 

into the adsorption column and the eco-friendly disposal of the spent adsorbents 

(Paul, 2015; Mandal, 2014) 

 

Physical or physicochemical treatments have several shortcomings whereby 

they are non-destructive in nature as they transfer the dye molecules to another phase 

rather than destroying them and are only effective when the effluent to be treated is 

small in volume (Vijayaraghavan, Basha and Jegan, 2013). 

 

2.2.2 Biological treatment 

 

Biological treatments for dyes usually involve aerobic and anaerobic processes 

(Malik and Grohmann, 2011). Microbial degradation of dyes were achieved through 

various microorganisms or instance yeast, bacteria, algae, fungi, phytoremediation 

and others  (Tan et al., 2016; Tan et al., 2014; Daâssi et al., 2013; Tan et al., 2013; 

Zhou and Xiang, 2013; Doğar et al., 2010; Kagalkar et al., 2009; Saratale et al., 

2009; Yang et al., 2009;  You and Teng, 2009; Daneshvar et al., 2007; dos Santos, 

Cervantes and van Lier, 2007; Guo et al., 2007). The effectiveness of microbial 

discolouration heavily depends on the activity and adaptability of the selected 

microorganisms.  

 

However, these treatments have its drawbacks in which biological treatments 

require large land area, has less flexibility in design and operation, are inhibited by 

sensitivity towards variation in toxicology of some chemicals and also takes a longer 

time for the discolouration-fermentation process (Yuan and Sun, 2010). Aerobic 

processes produces large amounts of biological sludge and required a huge disposal 

ground while anaerobic processes do not lower the pollutant content to a suitable 

level (Lam et al., 2012). Although many organic molecules were able to be degraded, 

many other recalcitrant materials were left behind due to the dye’s complex chemical 

structure and synthetic organic origin (Crini, 2006). Particularly because of their 

xenobiotic nature, azo dyes are not totally degraded.  
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2.2.3 Chemical treatment 

 

Processes such as oxidation, sodium hypochlorite (NaOCl) and chemical 

precipitation (coagulation) are some of the chemical treatment procedures that could 

be performed on wastewaters containing dyes. For one, the oxidation process has an 

advantage of application simplicity but on the flip side, this process requires the 

agent (H2O2) to be activated by some means (Salleh et al., 2011). The various 

methods of chemical oxidation vary depending on the way in which H2O2 is 

activated.  

 

Other than direct oxidation, dyes can be removed electrochemically by 

indirect electrolysis whereby the main oxidizing agent was active chlorine, either in 

the form of gaseous chlorine (Cl2), hypochlorous acid or hypochlorite ions, which 

were anodically produced from chlorides present or added into the solution (Panizza 

et al., 2007). Gogate and Bhosale (2013) reported that although the usage of chlorine 

gas was cost-effective, its use inevitably causes side reactions, producing 

organochlorine compounds including the toxic trihalomethane (THM). Generally, 

these chemical methods are costly and even though azo dyes were able to be 

effectively removed, the formation and accumulation of sludge caused a secondary 

disposal problem with an addition of excessive chemical usage leading towards the 

same problem (Sreethawong, 2012). 

 

Although the treatment of azo dye-containing wastewater could be achieved 

with some of the available treatment processes, it was however only able to treat dye-

containing wastewater to a certain extent as each process has its own degree of 

effectiveness. Granted that the physical, biological and chemical treatments have 

benefits, such processes produced large amounts of sludge and toxic by-products that 

have to be disposed of accordingly and also require substantial amounts of oxidant 

chemicals (Rahmani et al., 2015). In recent years, AOPs were considered as one of 

the most attractive methods of treating water containing toxic pollutants including 

organic dyes. Amongst the AOPs, heterogeneous photocatalysis offered to be a 

promising method and widely applied in the degradation of dyes.  
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2.3 Advanced oxidation process  

 

AOPs were broadly defined by Klavarioti, Mantzavinos and Kassinos (2009) as 

aqueous phase oxidation techniques based on the production of highly reactive 

species such as primarily hydroxyl radicals (OH) that led towards the destruction of 

target pollutants. This process, in which highly oxidizing species like OH radicals 

are produced, can be created by the means of oxidizing agents such as H2O2, O3, 

ultrasound, ultraviolet (UV) irradiation and catalyst (homogeneous or heterogeneous) 

(Atalay and Ersöz, 2015). Heterogeneous photocatalysis focuses on the use of 

semiconductors as a photocatalyst to aid in the degradation of dyes. As the process 

relies on the photoactivation of the semiconductor material, the efficiency of the 

catalyst is qualified by the semiconductor’s capacity to generate electron-hole pairs 

with the addition of radical production (Muhd Julkapli, Bagheri and Bee Abd Hamid, 

2014).  

 

Cheng et al. (2016) stated the advantage of using AOPs above all biological 

and chemical processes was that they were extremely “environmental-friendly” as 

they neither produce massive amounts of hazardous sludge nor transfer pollutants 

from one phase to another as in adsorption and chemical precipitation. Other 

advantageous of AOPs are listed below (Abbas and Zaheer, 2014; Khataee and 

Kasiri, 2010; Poyatos et al., 2009):    

 

1. Can be implemented under ambient conditions wherein atmospheric oxygen is 

adequate as an oxidant and may lead to the complete mineralization of organic 

carbon into CO2. 

2. Produce complete mineralization of wastewater dyestuff into CO2, H2O and 

inorganic compounds or into a more innocuous product. 

3. Does not produce materials that require further treatment such as ‘spent carbon’ 

from activated carbon. 

4. Rapid reaction rates. 

5. Small footprint. 
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The main objective of AOPs is the generation of OH in water. This radical is 

a powerful oxidant, is highly reactive and hence very short lived, and is non-selective 

electrophilic oxidizing agent (Naddeo, Rizzo and Belgiorno, 2011). The oxidation 

potentials of some important oxidizing agents are shown in Table 2.2 below. OH is 

shown to possess the second highest oxidizing potential.  

 

Table 2.2: Summary of Oxidants and Their Oxidation Potential (Naddeo, Rizzo 

and Belgiorno, 2011). 

Oxidant Oxidation potential (eV) 

Fluorine (F2) 3.03 

Hydroxyl radical (OH) 2.80 

Atomic oxygen (O) 2.42 

Ozone (O3) 2.07 

Hydrogen peroxide (H2O2) 1.78 

Perhydroxyl radical (HO2
) 1.70 

Hypochlorous acid (HOCl) 1.49 

Chlorine dioxide (ClO2) 1.36 
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2.3.1 Basic principles of heterogeneous photocatalysis 

 

The photocatalytic process was termed as a photoinduced reaction in which was 

accelerated by the presence of a catalyst (Akpan and Hameed, 2009). Semiconductor 

molecules have a valence band (VB) which is occupied with stable energy electrons 

and an empty higher energy conduction band (CB). Photocatalytic reactions were 

initiated when a photoexcited electron was promoted from the filled VB of the 

semiconductor photocatalyst to the empty CB when the absorbed photon energy, hv 

was equal to or exceeds the band gap energy (Ebg) of the semiconductor 

photocatalyst (hv > Ebg), leaving behind a hole in the valence band (Gaya and 

Abdullah, 2008). From this, an electron-hole pair (e
-
-h

+
) was generated. These charge 

carriers were then migrated to the surface of the catalyst where they were able to 

undergo redox reactions with organic pollutants (Daghrir, Drogui and Robert, 2013). 

The excited electron-hole pairs may either recombine without any chemical 

reactivity or migrate to the surface of the semiconductor and participate in the redox 

process whereby the electron proceeded to reduce the available chemical species 

while the hole engaged in the oxidation process (Adhikari et al., 2015). 

 

The initiation of the photocatalytic reaction is through the irradiation 

absorption of a semiconductor (Sc), whereby it produces a hole (h
+
) in the VB and 

electrons (e
-
) in the CB. This is shown in Eq. (2.1) (Cheng et al., 2016). 

 

Sc + hv (UV) → Sc (e
-
CB

 
 + h

+ 
VB)                                            (2.1) 

 

Once appropriate scavengers (H2O and/or HO
-
) are present, oxidation process 

takes place to form the reactive OH radicals. This reaction is shown in Eqs. (2.2) 

and (2.3). Relevant reactions occurring on the surface of the semiconductor causing 

the degradation of dyes can be expressed by the following Eqs. (2.4) - (2.8) (Akpan 

and Hameed, 2009).  

 

Sc(h
+ 

VB)  + H2O → Sc + H
+
 + OH                                       (2.2) 

Sc(h
+ 

VB)  + OH
-
 → Sc + OH                                               (2.3) 

Sc(e
- 

CB)  + O2 → Sc  + O2
-                                                                              

(2.4) 

O2
- + H

+
 → HO2

                                                                           (2.5) 
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Dye + OH → degradation products                                                          (2.6) 

Dye + h
+ 

VB → oxidation products                                                                          (2.7) 

Dye + e
- 

CB → reduction products                                                                          (2.8) 

 

In an aerated system, oxygen was reduced and in turn formed superoxides 

(O2
-). This species later reacted with protons and adsorbed H2O from the hydrated 

surface to produce perhydroxyl radicals (HO2
) and hydrogen peroxide (H2O2), 

another source of OH radicals (Lam, Sin and Mohamed, 2010). A schematic 

diagram illustrating the reaction taking place on the surface of TiO2 is shown in 

Figure 2.1. 

 

 

Figure 2.1: Schematic Diagram of the Reactions Taking Place on the Surface of 

a Semiconductor (Cheng et al., 2016) 
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2.3.2 Bi2O3 as semiconductors 

 

Bi2O3 is a potential metal-oxide semiconductor with a direct band gap of 2.80 eV that 

is easily excited by visible light (λ ≥ 420 nm) with a CB and VB edges at  +0.33 and 

+3.13 eV respectively (Hameed et al., 2008). It is a common semiconductor 

extensively used in fields such as electronics and chemical engineering.  

 

This semiconductor has three main crystallographic polymorphs symbolized 

by α-, β-, and γ- phases with an indirect band gap that differed for different crystal 

structures (Ho et al., 2013; Jalalah et al., 2015). The band gaps of α-, β-, and γ- Bi2O3 

are 2.80eV, 2.58 eV and 2.80 eV respectively (Sun et al., 2012).  The different 

phases of Bi2O3 are obtained by varying the temperature during the synthesis 

process. Amongst the various polymorphisms of Bi2O3, both α and β phases have 

been proven to be the most sensitive and effective photocatalysts to be operated 

under the visible light region (Cheng et al., 2010; Jalalah et al., 2015).  

 

Salazar-Pérez et al., (2005) reported in their study that their selected starting 

materials, bismuth (III) nitrate and sodium borohydride, began oxidizing at 200°C 

using thermal oxidation. Phase transitions were observed at the temperature ranges of 

200-750°C: β-Bi2O3 (200-300°C) to α-Bi2O3 (400-600°C) to γ-Bi2O3 (700-750°C). 

Figures 2.2a-c shows the crystal structures of α-, β-, and γ- Bi2O3 whereby the red 

and blue spheres indicate Bi and O atoms respectively.  
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        (a)               (b) 

         (c) 

Figure 2.2: Illustrations of the Crystal Structures of (a) α-Bi2O3 (b) β-Bi2O3 and 

(c) γ-Bi2O3 (Thompson, 2010) 

 

 

2.3.2.1 Synthesis of Bi2O3 nanostructures 

 

Numerous techniques have been employed in the development of Bi2O3 

nanostructures such as co-precipitation, hydrothermal, chemical precipitation, 

microwave-assisted, electrospinning, gel to crystalline conversion and others (Hou et 

al., 2013; Iyyapushpam, Nishanthi and Pathinettam Padiyan, 2013; Iyyapushpam, 

Nishanthi and Pathinettam Padiyan, 2012; Zhu et al., 2012; Huang et al., 2011; 

Wang, Zhao and Wang, 2011; Wang et al., 2009). Table 2.3 summarizes the relevant 

synthesis works of Bi2O3 nanostructures.  
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Table 2.3: Summary of relevant synthesis works of Bi2O3 nanostructures. 

Synthesis route Surfactants/ 

additives 

Crystalline phase Morphology Reference 

Chemical Oleic acid  α-Monoclinic Agglomerated crystals Iyyapushpam et al. 

(2012) 

Microwave-assisted Ethylene glycol, 

Poly-ethylene glycol 

(PEG-400) 

α- and β- Bi2O3 Crystalized sheet-like 

nanoparticles  

Huang et al. (2011) 

Electrospinning Polyacrylonitrile (PAN) β -Tetragonal Nanofibers  Wang et al. (2009) 

Sol-gel Triton-X α -Monoclinic Compact rod-like/needle 

structure  

Raza et al. (2015) 

Hydrothermal Benzyl alcohol α- and β-Bi2O3 sheets(2D), nanowires, 

nanocrystals 

Hou et al. (2013) 

Co-precipitation Poly-ethylene glycol 

(PEG-8000) 

α -Monoclinic Nanorods  Zhu et al. (2012) 

Solvothermal Ethylene glycol β -Tetragonal Nanospheres Xiao et al. (2013) 

Hydrothermal L-Lysine Phase selective α/β Nanoflakes  Chen et al. (2011) 

Sonochemical - α -Monoclinic Nanorods  Sood et al. (2015) 

Hydrothermal  - α/γ composites Agglomerated nanoparticles 

with smooth plate structures 

Sun et al. (2012) 

1
8
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Chen at al. (2011) prepared a mesh-like Bi2O3 single crystalline nanoflake via 

bismuth oxalate as a precursor under different doses of lysine dispersant (as a crystal 

growth modifier) and different pH values and subsequently the effects of these 

variations in synthesis parameters on the morphology were studied. Their studies 

have shown that the different morphologies and crystalline phases have a significant 

impact on the photodegradation of RhB. Xiao et al. (2013) have accomplished in 

producing a 3-dimensional (3D) β-Bi2O3 nanospheres. From their report, the 

synthesized nanospheres exhibit an excellent removal percentage of acetaminophen 

(a human-derived pharmaceutical) at 93.6% compared to commercial Bi2O3 at 59.3% 

under visible light irradiation.  

   

Oudghiri-Hassani et al. (2015) reported the synthesis of monolithic α-Bi2O3 

nanoparticles via a solid-state reaction between the nitrate salt of bismuth and oxalic 

acid. The photodegradation of RhB was studied using this photocatalyst and it had 

shown a lower efficiency of photodegradation in which the degradation with the 

absence of photocatalyst took 16 min to be completed compared to the 12 min taken 

with the presence of photocatalyst under UV light irradiation. This could be inferred 

by the presence of Bi2(C2O4)3xH2O and Bi(C2O4)OH within the mixture signalling 

the existence of impurities. This concluded that various synthesis methods produced 

varying outcomes on the structure and consequently the photodegradation 

performance was affected.  

 

In this current study, the co-precipitation method was selected as the 

synthesis route to produce Bi2O3. The advantages of using co-precipitation method 

include low costing, produces large quantities of particles with high purity and also 

being easy to use (Chu et al., 2013). Additionally, it enables control over the 

chemical composition of the synthesized product (Milenova et al., 2013). 

 

Zhu et al. (2012) synthesized α-Bi2O3 and silver oxide (Ag2O) nanoparticle 

composite photocatalysts. The Ag2O-Bi2O3 composites were fabricated using the co-

precipitation method. α-Bi2O3 nanorods were synthesized using bismuth nitrate 

pentahydrate and poly-ethylene glycol. The photocatalytic removal of MO was 

reported to be at 78% under visible light irradiation. 
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2.4 Parameter studies 

 

Photocatalytic reactions are usually governed by many operating parameters such as 

photocatalyst loading, initial pollutant concentration, calcination temperature, light 

intensity, pH and temperature (Gaya and Abdullah, 2008). In this study, three 

parameters including initial dye concentration, solution pH and H2O2 concentration 

were discussed as to determine their role in the photocatalytic process of dye 

degradation. 

 

2.4.1 Initial dye concentration  

 

An increment in the initial dye concentration significantly reduces the degradation 

efficiency of the photocatalyst (Gnanaprakasam, Sivakumar and Thirumarimurugan, 

2015). The explanation for this phenomenon was that an increase in dye 

concentration enabled more dye molecules to be adsorbed onto the surface of the 

photocatalyst causing most of the catalyst to be occupied (Gnanaprakasam, 

Sivakumar and Thirumarimurugan, 2015). These resulted in the unavailability of 

active sites to generate OH thus reducing the photocatalytic activity (Schlesinger et 

al., 2013; Mai et al., 2008). Additionally, elevated dye concentrations decreased the 

path length or the number of photons that arrived on the surface of the photocatalyst, 

reducing the photoexcitation of electrons from the VB to CB. These resulted in 

decreased activity of the photocatalyst (Schlesinger et al., 2013; Sanatgar-Delshade, 

Habibi-Yangjeh and Khodadadi-Moghaddam, 2011). 

 

This effect was proven in Sharma et al. (2011) report whereby the efficiency 

of photocatalytic activity increases with the increase in malachite green dye 

concentration. The activity of Bi2O3 then decreased upon concentrations of 2.00 × 

10
-5

 M and above of the dye. Similarly, in Sharma et al. (2013) report, the efficiency 

of dye removal was observed to decrease with a further increase in dye 

concentrations above 1.8 ×10
-5

 M of Azure B. These two cases were attributed to the 

fact that after a certain concentration, the dye itself began to act as a filter for the 

incident light and do not permit the required light intensity to reach the surface of the 
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photocatalyst, decreasing the photocatalytic degradation of the dyes (Sharma et al., 

2013). 

 

 

2.4.2 Solution pH 

 

It is crucial to study the role of solution pH on the removal of dyes (Gupta et al., 

2012). The solution pH impacts the adsorption and dissociation of the dye molecules, 

oxidation potential of the VB, surface charge of the photocatalyst and also including 

the amount of charged radicals produced during the photocatalytic oxidation process 

(Gnanaprakasam, Sivakumar and Thirumarimurugan, 2015; Guo et al., 2014; 

Ananpattarachai, Kajitvichyanukul and Seraphin, 2009; Belessi et al., 2009; Li et al., 

2008; Venkatachalam et al., 2007).  

 

Barrera-Mota et al. (2015) in their research have found the optimal pH for the 

degradation of methyl orange (MO) dye using their synthesized β-Bi2O3 nanofilms to 

be at pH 3. This was associated with the surface charge of MO in an acidic nature as 

when tested in a neutral pH, the degradation activity was found to be very low. The 

observed discolouration at pH 3 was 80% in 180 min under UV light irradiation.   

 

Sood et al. (2015) have synthesized α-Bi2O3 nanorods and have found that the  

point zero charge (pzc) of the nanorods were 4.6 and has exhibited a tremendous 

photocatalytic activity at a pH lower than 3 for the degradation of RhB. This is 

because in an acidic medium, it was discovered that perhydroxyl radicals (HO2
) 

were formed. This radical in turn produced OH. As a result, it caused the 

photocatalytic activity to increase. The observed degradation was 97% in 45 min 

under solar light irradiation.  
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2.4.3 H2O2 concentration 

The e
-
-h

+
 pair recombination that occurs in a photocatalyst can be reduced by 

the addition of some electron acceptors such as hydrogen peroxide (H2O2), 

ammonium persulfate ((NH4)2S2O8), potassium bromate (KBrO3) and potassium 

persulfate (K2S2O8) in order to increase the photocatalytic activity of the 

photocatalyst (Bazkiaei and Giahi, 2016; Gnanaprakasam, Sivakumar and 

Thirumarimurugan, 2015; Barka et al., 2013; Shanthi and Kuzhalosai, 2012). In most 

cases, H2O2 is more commonly used to increase the photocatalytic activity of the 

photocatalyst. Based on Eq. (2.9), H2O2 was able to generate OH radicals through 

photolysis. In addition, H2O2 assisted in the trapping of e
-
 and hence prevented the 

recombination of e
-
-h

+
 pair, producing more OH radicals as a result as shown in Eq. 

(2.10). As a consequence, an improvement on the degradation of pollutants was able 

to be achieved. (Sapawe, Jalil and Triwahyono, 2013; Belgiorno and Rizzo, 2012; 

Tseng, Juang and Huang, 2012). 

H2O2 + hv → 2 OH (2.9) 

H2O2 + e
-
 → OH + OH

-
 (2.10) 

H2O2 + O2
- → OH + OH

-
 +O2 (2.11) 

 

Conversely, beyond the optimum concentration of H2O2, an increased level of 

H2O2 decreased the degradation as observed in various literature reports due to the 

quenching effect of OH radicals by H2O2 (de Lima et al., 2016; Dalbhanjan et al., 

2015; Palácio et al., 2012; Saggioro et al., 2011).  

Ma et al. (2014) demonstrated the effect of various H2O2 concentrations 

ranging from 2.5 mM of H2O2 to 15 mM H2O2 on the degradation of 2,4-

dinitrophenol organic pollutant using ζ-Bi2O3/Bi2MoO6 composites. It was observed 

that using 5 mM of H2O2 resulted in a 100% removal of the dye within 40 minutes of 

a simulated solar light irradiation. An increase in concentrations above this optimum 

concentration exhibited an elongated degradation time of the pollutant with 15 mM 

H2O2 taking up to 80 minutes of irradiation before it was fully degraded.  

Similarly, Samarghandi et al. (2015) reported the effect of various H2O2 

concentrations on the photocatalytic degradation of pentachlorophenol (PCP) using 

ZrO2 by varying the concentrations between 2.9 to 29.4 mM H2O2. The degradation 
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of PCP increased with an increase up to 14.7 mM H2O2, in which 100% of PCP was 

degraded in 30 minutes of UV light irradiation. An additional increase of H2O2 

concentrations up to 29.4 mM resulted in a decrease in photocatalytic degradation 

whereby the degradation achieved was 77% in 30 minutes. It indicated the influence 

of the generated radicals on the degradation of PCP as at higher concentrations above 

14.7 mM H2O2, OH radicals were consumed by excess H2O2 to produce the less 

reactive perhydroxyl radicals (HO2
). This in turn resulted in the lowered degradation 

efficiency. 

 

2.5 Summary of literature review 

 

Azo dyes are the largest group of dyes used in the textile industry. Effluents 

containing these dyes are difficult to be treated as they are engineered to be 

recalcitrant in nature. Conventional treatment processes such as physical, biological 

and chemical treatments on their own are only able to remove these dyes to a certain 

degree. Furthermore, some of these treatments produce additional problems such as 

sludge disposal and phase transfer of pollutants. Upon extensive research, AOPs 

have proved to be an attractive method in treating textile wastewaters. Hence, 

heterogeneous photocatalysis was selected in this study for the removal of azo dyes, 

namely MB, BG and RhB using Bi2O3. Bi2O3 as a photocatalyst possess a good 

potential in dye treatment as it can be activated under visible light irradiation. In this 

study, various Bi2O3 nanostructures will be synthesized using the co-precipitation 

method. Three operating parameters namely H2O2 concentration, initial pollutant 

concentration and solution pH will be studied in the degradation of dyes.  
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CHAPTER 3 

RESEARCH METHODOLOGY 

This chapter describes the experimental works for this report. The contents of the 

chapter are divided into eight subsections; materials and chemicals, apparatus, 

analytical procedure, preparation of photocatalyst, characterization of photocatalyst, 

photocatalytic activity, operational parameters and various dyes degradation studies. 

A flow chart of the overall work is given in Figure 3.1. 

 

 

 

 

 

      

 

 

 

 

Figure 3.1: Flowchart of Experimental Work Involved in this Study. 
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3.1 Materials and chemicals 

 

All the chemicals used were of analytical grade and used without further purification. 

Dye solutions were prepared by dissolving a certain amount of stock solution in 

distilled water (DI) (Favorit Water Still, 0.3 MΩ∙cm). The chemicals used are listed 

in Table 3.1. 

 

Table 3.1: List of Chemicals Used in this Study. 

Chemical Purity 

(%) 

Supplier Purpose 

Bismuth (III) nitrate 

pentahydrate  

(Bi(NO3)35H2O) 

98 Acros Organics Photocatalyst 

preparation 

Cetyl 

trimethylammonium 

bromide (CTAB) 

99 Acros Organics Photocatalyst 

preparation 

Ethanol 95 HmbG Chemicals Photocatalyst 

preparation 

Commercial Bismuth 

(III) Oxide (Bi2O3) 

99.9 Acros Organics Photocatalyst 

comparison 

Commercial Titanium 

Dioxide (TiO2) 

>98 Acros Organics Photocatalyst 

comparison 

MG 83 Aldrich Model dye 

MB 98.5 HmbG Chemicals Model dye 

RhB 90 Merck Millipore Model dye 

Hydrogen Peroxide 

(H2O2) 

35 R&M Chemicals Oxidizing agent 

Hydrochloric Acid (HCl) 37 Quality Reagent 

Chemical (QreC) 

pH adjuster 

Sodium Hydroxide 

(NaOH) 

50 Macron Fine 

Chemicals 

pH adjuster 

High Range COD 

Digestion Vials 

- HACH COD analysis 
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3.2 Apparatus  

 

The apparatus used and set-up of the experiment are shown in Figure 3.2. A 

schematic diagram of the set-up is shown in Figure 3.3. The photocatalytic reaction 

was performed in an acrylic black box as to prevent any leakage of UV light. The 

black box was equipped with two fans to provide ventilation and reduce heating 

within the box during the conduction of the experiments. In addition, air was bubbled 

from an air pump through a flow meter that was set to regulate the flow. The light 

source was provided by a 45 W compact fluorescent lamp (Universal) that held a 12 

cm distance between itself and the surface of the model pollutant contained in a 250 

mL beaker. A magnetic stirrer was used to provide constant stirring to keep the 

catalyst in constant suspension within the solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Experimental Set-up for Photocatalytic System. 
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Fan  
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Figure 3.3: Schematic Illustration of Experimental Set-up.  

 

3.3 Analytical procedure 

 

3.3.1 UV-vis spectrophotometer analysis 

 

A Hach DR 6000 UV-vis spectrophotometer was used to monitor the concentration 

change of the dyes. The system uses a rectangular cuvette with a 1 cm internal size 

and the absorbance spectra for MG, MB and RhB were determined by measuring 

their respective maximum absorbance at a wavelength (λ) of 632, 664 and 553 nm 

respectively for each dye with distilled water as a blank sample (Merouani et al., 

2010; Geethakrishnan and Palanisamy, 2006; Wang et al., 2005). All tests were 

performed in duplicate and the average values were used in the calculations. The 

absorbance of each dye was calculated using Eqn. (3.1). 

 

Absorbance (%) = 
A0 - At 

 A0 - Aa
  × 100 

(3.1) 

 

Fluorescent 

light   

Magnetic 

stirrer  

Acrylic 

black box  

Beaker 

Air pump 

Magnetic 

bar 

Fan  

Flow meter  
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where A0 is the initial absorbance of the sample at a time equal to zero minutes (abs), 

At is the absorbance at time t minute (abs) and Aa is the absorbance at a time equal a 

minute (abs). 

 

3.3.2 Chemical Oxygen Demand  (COD) 

To measure the mineralization extent during photocatalysis, the COD was measured 

using a HACH DRB200 COD digital reactor. Prior to the COD measurement, 2 mL 

of sample was withdrawn and was tested for its COD measurement. The reactor 

block was preheated to 150°C prior to use and the samples were left in the reactor to 

react for 2 hours. Upon the completion of the reaction, the vials containing the 

samples were left to cool and were then measured using a Hach DR 6000 UV-vis 

spectrophotometer. A blank was prepared using distilled water. The COD reduction 

was calculated using Eq. (3.2).  

 

COD (%) = 
 COD0 − COD

 COD0
  × 100 

(3.2) 

 

where COD0 is the initial COD value at t=0 (mg/L) and COD is the COD value after 

a particular reaction time (mg/L). 

 

3.4 Preparation of photocatalyst 

 

Bi2O3 was synthesised via a co-precipitation method that was adapted from 

Hariharan et al. (2016). 100 mL (0.05 M) of bismuth nitrate solution was prepared 

using Bi(NO3)35H2O and distilled water and was magnetically stirred and heated up. 

Subsequently, 1 g of cetyl trimethylammonium bromide (CTAB) was added into the 

solution. 5 M of NaOH was then added drop by drop until the colour of the mixture 

was observed to change from white to yellow under constant stirring at 80°C.  
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Upon cooling to room temperature, the as-formed yellow Bi2O3 precipitates 

were collected and followed by washing with ethanol and distilled water several 

times. After a drying treatment at 120°C for 3 h in an oven, the precipitates were 

calcined at 500°C for 2 h in a muffle furnace. Figure 3.4 depicts the schematic flow 

diagram for the synthesis process. 

 

3.5 Characterization of photocatalyst 

 

The as-synthesized Bi2O3 nanoflakes were characterized using standard XRD, 

FESEM-EDX, UV-Vis DRS analyses. XRD and FESEM-EDX analysis were 

performed in the Faculty of Engineering and Green Technology in University Tunku 

Abdul Rahman (UTAR), Kampar while UV-Vis DRS was performed at Universiti 

Sains Malaysia (USM), School of Chemical Science. 

 

3.5.1 Crystal phase analysis 

 

The crystal size and crystal phase of the fabricated Bi2O3 nanoflakes were 

characterized via X-ray Powder Diffraction (XRD) analyzer. The patterns were 

measured using a Shimadzu X-ray Diffractometer (XRD-6000) with a graphite 

monochromatic copper radiation (CuKα) with λ = 1.5418 Å. The scan rate was at 

0.05° and 0.5 s
-1

 in the 2θ range of 20-60°.  
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Bi(NO3)35H2O  

(2.43 g) 

Distilled water  

(100 mL) 

Constantly stirred while 1 g 

CTAB was added 

Precursor mixture 

Precipitates  

Bi2O3 agglomerated nanoflakes 

Precipitates calcined at 500°C for 2 h in a 

muffle furnace.  

Heated to 80°C while 5 M NaOH was 

added and continuously stirred until 

mixture turned from white to yellow 

Collected by filtering and washed with 

ethanol and distilled water. Oven dried 

for 3 h at 120°C 

Figure 3.4: Schematic Flow Chart for the Synthesis of Bi2O3 nanoflakes. 
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3.5.2 Morphology analysis 

 

A Jeol JSM 7601-f Field Emission Scanning Electron Microscope was used to 

measure the surface morphology of the as-synthesized Bi2O3 nanoflakes. FESEM 

analysis enables the measurement of the particle sizes of Bi2O3 nanoflakes. Prior to 

the analysis, carbon tape was used as a conductive adhesive for the Bi2O3 nanoflake 

samples on the aluminium stub. 

 

Energy-dispersive X-ray Spectroscopy analysis was also carried out to 

determine the elemental composition of the as-synthesised Bi2O3 nanoflakes. EDX 

was conducted on the same analyser as FESEM and readings were taken from 

several spots on the Bi2O3 nanoflake samples. 

 

3.5.3 Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) 

analysis 

The band gap energy of the as-synthesized Bi2O3 nanoflakes was tested using an UV-

Vis diffuse reflectance spectroscopy (DRS) Perkin Elmer Lambda 35 UV-Vis 

spectrometer. The spectra were recorded in the range of 400 – 600 nm using BaSO4 

as a standard reference. The analysis was performed at Universiti Sains Malaysia 

(USM), School of Chemical Sciences. 

BaSO4 was placed in a quartz cell cuvette and held in the sample holder. Its 

spectrum was recorded. Upon completion, the cuvette containing the standard was 

removed and was replaced with Bi2O3 nanoflakes. The cuvette was placed back into 

the sample holder and was scanned for its corresponding absorbance spectrum from 

400 – 600 nm.  
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3.6 Photocatalytic activity of Bi2O3 nanoflakes under UV-vis irradiation  

 

Three dyes namely Methyl Green, Methylene Blue and Rhodamine B were used as 

model pollutants. The photocatalytic activities of Bi2O3 nanoflakes were evaluated 

under a compact fluorescent light. Experiments were conducted in a glass beaker of 

250 mL whereby 100 mL of the dye to be degraded that contained 1 g/L of Bi2O3 

nanoflakes were placed in a black box.  

 

During all the experiments, air was bubbled through the solution via a tube at a fixed 

flow rate of 3 L/min. Constant mixing of the solution was also provided with an aid 

of a hotplate stirrer. Prior to the test, the solution was first kept in the dark for 30 

minutes to ensure the adsorption-desorption equilibrium of the dye compound on the 

catalyst is reached. Later, the solution was irradiated under a 45 W compact 

fluorescent lamp (Universal) and the average light intensity reaching the reaction 

surface was 4100 lx. The light source was placed 12 cm above the reaction solution. 

During the reaction, 5 mL of the sample was collected at every 5 minutes and was 

centrifuged for 1 h to separate the Bi2O3 nanoflakes. Then, the supernatant was 

filtered using a PTFE membrane syringe filter (0.45 µm pore size) and subsequently 

analyzed using a UV-vis spectrophotometer and COD analyzer. The percentage of 

degradation was calculated using Eq. (3.3). 

 

Dye degradation (%)  = 
C0 – C

C0
  × 100 (3.3) 

 

where C0 is the initial concentration of the dye at t=0 (mg/L), C is the concentration 

at a given time (mg/L). 
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3.7  Operating parameters studies 

 

Photocatalytic reactions can be governed by many operating parameters such as 

photocatalyst loading, initial pollutant concentration, calcination temperature, light 

intensity, pH and temperature (Gaya and Abdullah, 2008). Three operating 

parameters namely H2O2 concentration, initial pollutant concentration and solution 

pH were selected in this work. 

 

3.7.1 H2O2 concentration 

 

To determine the effect of H2O2 as an oxidant on the photocatalytic activity of the 

dyes, various concentrations of H2O2 from 1 mM to 20 mM H2O2 was investigated. 

The concentration range was selected based on various literature reports (Petrović et 

al., 2015; Jakab et al., 2012; Abo-Farha, 2010). The experiment was conducted at a 

fixed condition using catalyst loading of 1 g/L with 5 mg/L MG concentration and at 

the natural pH 6.  

 

3.7.2 Initial dye concentration 

 

The effect of initial pollutant concentrations on the photocatalytic degradation was 

studied by varying the concentration of MG between 2.5 mg/L to 20 mg/L (Tayeb 

and Hussein, 2015; Martínez-de la Cruz and Obregón Alfaro, 2009). This experiment 

was conducted at a constant condition with catalyst loading 1 g/L at the natural pH of 

MG at pH 6. 
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3.7.3 Solution pH 

The pH of the solution is an important parameter in the photocatalytic removal 

reactions on the surface of Bi2O3 nanoflakes as it dictates the surface charge 

properties of the photocatalyst (Barka et al., 2013).  Hence, the photocatalytic 

degradation of the dyes were studied at different pH values including acidic (pH 3), 

neutral (pH 7), alkaline (pH 10) and natural pH of MG at pH 6. The solution pH was 

measured on a HI 2550 HANNA Instruments pH meter. The experiment was kept at a 

fixed condition at an initial dye concentration of 5 mg/L. 

 

3.8 Various dyes degradation studies 

Comparison studies between the degradation of various dyes were tested using 

different dyes namely MG, RhB and MB. The study was conducted to determine the 

feasibility of the as-synthesized Bi2O3 nanoflakes in the degradation of various dyes 

with different chemical structures. The experiment was conducted at photocatalyst 

loading = 1 g/L, H2O2 concentration = 10 mM, initial dye concentration = 5 mg/L 

and at pH 7. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

This chapter presents the results and data analysis of the current research. The 

contents of the chapter were outlined into five subsections; characterization of 

photocatalyst, photocatalytic activity, process parameter, mineralization study and 

lastly comparative studies on various dyes.  

 

4.1 Characterization of photocatalyst 

Characterizations of the as-synthesized Bi2O3 nanoflakes were performed in order to 

assess its physicochemical and also optical properties. These properties were 

determined via XRD, FESEM, EDX and UV-Vis DRS. Determination of these 

properties enabled better understanding of the synthesized photocatalyst in terms of 

its efficient or inefficient performance in dye removal. XRD was utilized in the 

analysis of the crystal phase and the crystal structure of Bi2O3. The surface 

morphology and particle size of Bi2O3 was confirmed via FESEM while EDX 

revealed the elemental composition of the photocatalyst. The band gap energy (Ebg) 

was ascertained by means of UV-Vis DRS analysis. 
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4.1.1 Crystal phase analysis 

Figure 4.1 depicts the XRD pattern of the synthesized Bi2O3 photocatalyst. Most of 

the prominent peaks in the range of 20°-60° were readily indexed to the monoclinic 

α-Bi2O3. It revealed that the prepared photocatalyst was in a single crystalline phase. 

The major peaks were observed at the angles of 2θ = 24.68°, 25.80°, 26.96°, 27.42°, 

28.06°, 33.04°, 33.24°, 35.06°, 37.62°, 46.36°, 52.42° and 54.84° that corresponded 

to (- 1 0 2), (0 0 2), (1 1 1), (1 2 0), (0 1 2), (1 2 1), (2 0 0), (2 1 0), (1 1 2), (0 4 1), (- 

3 2 1) and (- 2 4 1) crystal planes respectively. These results were also in accordance 

to other literatures that have obtained similar results from the JCPDS database 

(Hariharan et al., 2016; Karnan and Samuel, 2016; Jalalah et al., 2015; Karthikeyan, 

Udayabhaskar and Kishore, 2014). The sharp and strong diffraction peaks also 

implied that the photocatalyst possessed a good crystalline nature. In addition, Cheng 

et al. (2010) stated that the high crystallinity of α-Bi2O3 is favorable towards the 

decrease of recombination sites of the free carriers. This meant that more 

photogenerated e
-
-h

+ 
are able to partake in the photocatalytic activity and hence could 

result in a higher photocatalytic activity. 

Figure 4.1: XRD pattern of synthesized Bi2O3 nanoflakes. 
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4.1.2 Surface morphology analysis 

Figures 4.2a and b show the FESEM image of the as-synthesized Bi2O3 

photocatalyst. It was identified that the morphology was of a 2D agglomerated 

nanoflake structure with an approximate average length of 250 nm and thickness of 

60 nm. As seen from a lower magnification in Figure 4.2a, the as-synthesized Bi2O3 

photocatalyst exhibited a cluster composed of flake-like rectangular shaped 

structures. Upon higher magnification (Figure 4.2b), it was revealed that the 

nanoflakes possessed smooth surfaces with a rounded edge. 2D nanostructures 

present a large percentage of active sites, enabling them to have highly reactive 

surfaces for photocatalytic reactions (Wang and Rogach, 2014). 

 

Figure 4.2: FESEM image of the as-synthesized Bi2O3 nanoflakes at a 

magnification of (a) × 30,000 and (b) × 80,000 magnifications. 

 

In the current study, the growth mechanism of Bi2O3 nanoflakes was 

postulated based on the reaction processes in aqueous solution as follows (Eqs. (4.1) 

– (4.6)) (Mousa, Bayoumy and Khairy, 2013) :  

Bi
3+ 

+ 3OH
-
 ↔ Bi(OH)3 (4.1) 

Bi(OH)3 ↔ Bi2O3 + H2O (4.2) 

(a) 

(a) (b) 
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Bi(OH)3 + OH
-
 ↔ [Bi(OH)4]

-
 (4.3) 

CTAB ↔ CTA
+
 + Br

-
 (4.4) 

[Bi(OH)4]
-
 + CTA

+
 ↔ CTA

+ 
− [Bi(OH)4]

-
 (4.5) 

CTA
+ 

− [Bi(OH)4]
-
 ↔ Bi2O3 + H2O + CTA

+
 (4.6) 

  

In a weakly basic solution, the starting material of Bi(OH)3 dissolved to a 

smaller extent to form [Bi(OH)4]
- 
complex (Eq. (4.3)). The CTAB surfactant does not 

only accelerate the growth units’ reaction, but it also led to their oriented growth 

(Mousa, Bayoumy and Khairy, 2013; Chen et al., 2012). CTAB is an ionic 

compound which is able to be completely ionized in water as shown in Eq. (4.4). 

[Bi(OH)4]
- 
existed in the form of a negatively charged tetrahedral while CTA

+ 
was 

positively charged with a tetrahedral head and a long hydrophobic tail. At the start of 

the CTAB-assisted solution process, CTA
+ 

− [Bi(OH)4]
- 
ion pairs were formed by an 

electrostatic interaction (Eq. (4.5)) between the dissociated CTA
+ 

and [Bi(OH)4]
-
. 

Later the CTA
+ 

− [Bi(OH)4]
- 
ion pairs formed the combination of CTAB and Bi2O3 

as depicted in Eq. (4.6). These interactions lead towards the crystal growth of the 

[Bi(OH)4]
-
, resulting in the development of Bi2O3 nanoflakes.  

 

4.1.3 EDX analysis 

EDX measurements were conducted to identify the presence of Bi and O elements in 

the prepared nanoflakes. Figure 4.3 shows the EDX spectrum for the Bi2O3 

nanoflakes. The spectrum showed the highest peak for Bi at 2.4 eV and for O at 0.6 

eV approximately. The spectrum confirmed that the Bi2O3 nanoflakes were mainly 

composed of Bi and O based on atomic percent. It was determined that the elemental 

composition of the synthesized nanoflakes based on its atomic percent was 23.13% 

of Bi and 76.87% of O. The result also showed no other impurities were found in the 

as-synthesized nanoflakes.  
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Figure 4.3: EDX spectrum and inset show the atomic percent of the synthesized 

Bi2O3 nanoflakes. 

 

4.1.4 Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) 

Figure 4.4 shows the UV-Vis DRS spectra of the as-synthesized Bi2O3 nanoflakes. 

The wavelength of the absorption edge was determined by extrapolation of the linear 

portion of the curve to the horizontal axis. The wavelength of the edge was defined 

by the intersection between them. The absorption edge was thus found to be  

approximately 420 nm. Subsequently, the band gap energy of the as-synthesized 

Bi2O3 nanoflakes were calculated using the Planck’s equation (Eq. 4.3) (Benhebal et 

al., 2013).  

Ebg = 
hc

λ
  

       = 
1240

λ
  

 

(4.3) 
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where Ebg is the band gap energy (eV), h is the Planck’s constant  (6.626 × 10
-34

 Js), 

c is the speed of light  (2.998 ×10
8
 ms

-1
) and λ is the wavelength (nm) of the 

absorption onset.  

Figure 4.4: UV-Vis DRS spectra of synthesized Bi2O3 nanoflakes. 

 

By applying the obtained wavelength into Eq. 4.3, the band gap was 

calculated to be 2.95 eV. This result was also supported by other literature reports 

(Hajra et al., 2015; Iljinas and Marcinauskas, 2015). It was worth noting that the 

absorption was more than 400 nm, indicating that the absorption edge was at the 

visible light region of the light spectrum. This was indicative that the synthesized 

Bi2O3 nanoflakes can be activated under visible light irradiation. Therefore, it was 

concluded that the Bi2O3 nanoflakes could be promising under sunlight irradiation. 
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4.2 Photocatalytic activities of the Bi2O3 nanoflakes 

Figure 4.5 illustrates the UV-Vis absorption spectra of MG solution during different 

time intervals of the photocatalytic reaction conducted under fluorescent light 

irradiation. The absorption peak observed at 633 nm was due to the green color of 

the chromophore of MG (Bel Hadjltaief et al., 2015). Upon 20 minutes of irradiation, 

it was found that the peak corresponding to the chromophore almost disappeared. 

This confirmed the breaking of the azo bonds of the dye structure and hence its 

degradation (Sasikala et al., 2016; Cabansag et al., 2013). 

Figure 4.5: Evolution of UV-Vis spectra of MG solution with Bi2O3 nanoflakes 

at various time intervals ([MG] = 5 mg/L ; photocatalyst loading = 1 g/L ; 

[H2O2] = 10 mM ; natural pH of MG = 6). 

 

The as-synthesized Bi2O3 nanoflakes were tested for its photocatalytic 

degradation of an azo dye, MG, under fluorescent light irradiation. In addition, H2O2 

plays an important role in the photocatalytic activities of Bi2O3 nanoflakes. Its 

presence as an e
-
 accepting oxidizing agent was depicted to contribute towards 

improved photocatalytic activity by other researchers (Qiu et al., 2016; Deng et al., 

2015; Felix, Andrew and Mededodec, 2014). Hence, its role was tested in the 

degradation of MG in the presence of Bi2O3 nanoflakes.  
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Figure 4.6 depicts the results of the conducted photocatalytic experiments on 

five various conditions on the removal of MG dye. As shown, the photolysis test 

resulted in 27% removal of MG within the irradiation time of 30 mins while during 

the dark run with the absence of fluorescent light irradiation, it was observed that the 

removal of MG was 63%. Two other tests were conducted in the presence of 10 mM 

H2O2 comparing the photocatalytic degradation of Bi2O3 nanoflakes with commercial 

Bi2O3 and commercial TiO2. It was discovered that 100% degradation using Bi2O3 

nanoflakes was obtained within 20 minutes while commercial Bi2O3 and TiO2 

exhibited a lower degradation with 79% and 68% respectively in 30 minutes of 

irradiation.  

Figure 4.6: Photocatalytic experiments of MG degradation contained 10 mM 

H2O2 in photolysis, Bi2O3 nanoflakes, commercial Bi2O3 and commercial TiO2 

([MG] = 5 mg/L ; photocatalyst loading = 1 g/L; natural pH of MG = 6). 

 

Substantial degradation of MG was accomplished during photolysis. In a 

research carried out by Bousnoubra et al. (2016), it was stated that the elimination of 

the dye shows that MG possessed good absorbance of light thus leading to a decent 

removal during photolysis. The degradation of MG in the dark could be well 

attributed towards the direct adsorption of MG onto the surface of the Bi2O3 

nanoflakes. This was supported by Chen et al. (2015) and Xu et al. (2015). Chen et 
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al. have succeeded in synthesizing various ratios of Bi2WO6/graphene oxide 

nanoflakes and had observed a maximum adsorption of 93.8% of RhB after 40 

minutes in the dark while Xu et al. obtained approximately 25% removal of MB after 

30 minutes dark adsorption using g-C3N4 nanoflakes. The large surface area of the 

as-synthesized photocatalyst provided more active sites for photocatalytic reactions. 

The Bi2O3 nanoflakes exhibited excellent photocatalytic degradation of MG  

compared to both commercial Bi2O3 and TiO2 in the presence of 10 mM H2O2. This 

could be well accredited towards the high crystallinity, morphology, surface area and 

band gap energy of the nanoflakes. Identical results were reported by Xiao et al. 

(2013) whereby their synthesized β-Bi2O3 nanospheres showed an outstanding 93.6% 

degradation of acetaminophen under visible light irradiation in 180 minutes. 

Commercial Bi2O3 and TiO2 exhibited 59.3% and less than 10% degradation 

respectively. As high crystallinity corresponded with the towards the reduction of 

recombination sites of the photogenerated e
-
-h

+
, the enhancement in the 

photocatalytic activity of Bi2O3 nanoflakes was possibly credited to its high 

crystallinity as compared to both commercial Bi2O3 and TiO2 as there would be a 

presence of large amounts of reactive species production owing to the availability of 

e
-
-h

+
 for the process.  

In addition, the morphology and crystal size plays a vital role as well. As the 

synthesized Bi2O3 consisted of agglomerated nanoflakes, the offered number of 

active sites increased. 2D nanostructures have high surface areas and their small 

thickness contributed to a reduced distance for the photogenerated e
-
-h

+ 
to diffuse 

onto the surface (Cho et al., 2014). The crystal size of Bi2O3 nanoflakes was found to 

be approximately 250 nm in length while for commercial Bi2O3 and TiO2 it was 

determined to be approximately 100 nm and 85 nm respectively (Hsieh et al., 2012; 

Ruslimie, Razali and Khairul, 2011; Martirosyan et al., 2009). The large particle size 

encouraged the photocatalytic degradation as it increased the number of active sites 

and light absorption to improve the generation of charge carriers (Park et al., 2015; 

Wang and Rogach, 2014).  

Lastly, the band gap energy of the synthesized Bi2O3 nanoflakes was 

computed to be 2.95 eV, indicating that the photocatalyst had an extended light 

absorption of up to 420 nm (Magalhães et al., 2015). This meant that Bi2O3 
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nanoflakes were able to absorb a larger portion of the light spectrum up to the visible 

light region. Commercial Bi2O3 and TiO2 had band gap energies of 2.80 eV and 3.15 

eV respectively (Soroodan Miandoab and Fatemi, 2015; Anandan et al., 2010; 

Anandan and Wu, 2009). Both nanoflakes and commercial Bi2O3 were able to be 

effectively activated under fluorescent light. Due to its light absorption edge at 393 

nm, TiO2 can only be activated under UV light irradiation (Soroodan Miandoab and 

Fatemi, 2015). This meant that commercial TiO2 was inefficient under fluorescent 

light irradiation. Fluorescent light was used as an imitation source for natural 

sunlight irradiation. The photon energy emitted from the irradiation source was not 

strong enough to separate the e
-
-h

+ 
pair (Hay et al., 2015). As a result, the 

photocatalytic activity of TiO2 was observed to be reduced as only a small portion of 

UV light was available to be absorbed.  

An economical photocatalyst should provide an ease of particle separation 

and their recovery from the reaction system upon completion of the photocatalytic 

activity (Pamt et al., 2013). A sedimentation test was carried out to compare the 

performance of Bi2O3 and commercial TiO2. The samples after its photocatalytic 

activity were left untouched for 30 minutes. Figure 4.7a and b show the 

sedimentation performance of Bi2O3 and commercial TiO2 respectively. It was 

observed that after 30 minutes, the samples containing Bi2O3 to be less turbid with a 

visible layer of photocatalyst at the bottom of the beaker while commercial TiO2 

exhibited a more turbid mixture with no visible layer of settled photocatalyst. This 

could be attributed to the density of the photocatalyst. The densities for Bi2O3 and 

TiO2 are 8.9 g/cm
3
 and 4.23 g/cm

3
 respectively (Perry, 2016; Zhang et al., 2012). The 

higher density of Bi2O3 promoted the sedimentation of the photocatalyst. This factor 

could boost the ease of recovery of the photocatalyst from the aqueous suspension 

for its reusability when applied in wastewater treatments.  
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Figure 4.7: Sedimentation test after 30 minutes of MG photocatalytic activity 

using (a) Bi2O3 nanoflakes and (b) TiO2 photocatalysts. 

 

4.3 Process parameter studies 

 

4.3.1 Effect of H2O2 concentration 

Figure 4.8 illustrates the effect of various H2O2 concentrations on the photocatalytic 

degradation of MG. It was observed that in the absence of H2O2, the degradation of 

MG within 20 minutes of fluorescent light irradiation was 26.9%. However, the 

addition of H2O2 showed a significant effect on the degradation of MG.  A decrease 

in degradation was seen with an increase in H2O2 concentration from 1 mM to 5 mM 

H2O2 from 50.1% to 32.1%. Complete degradation was attained at 10 mM of H2O2 

within 20 minutes. This degradation efficiency then decreases with an increase of 

H2O2 concentration up to 20 mM (43.5%).  Therefore, the best H2O2 concentration 

was found to be 10 mM H2O2. 

.  

 

 

(a) (b) 
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Figure 4.8: Effect of various H2O2 concentrations on the photocatalytic 

degradation of MG ([MG] = 5 mg/L ; photocatalyst loading = 1 g/L ; natural pH 

of MG = 6).  

 

Several researchers have studied the effect of H2O2 concentrations on the 

degradation of various organic pollutants using Bi2O3. Yin et al. (2010) studied the 

effect of H2O2 on the degradation of pentachlorophenol (PCB) using Ti-doped β-

Bi2O3. They found that 30.1% of PCB was degraded using 10 mM H2O2 under 30 

minutes of visible light irradiation. In another report, Ma et al. (2014) tested the 

effects of H2O2 concentrations ranging from 2.5 to 15 mM for the degradation of 2,4-

dinitrophenol via ζ-Bi2O3/Bi2MoO6 composites. They discovered that at 15 mM 

H2O2, 90% of 2,4-dinitrophenol was degraded within 80 minutes of visible light 

irradiation.  

The enhancement of the rate of photocatalytic activity was mainly attributed 

towards two reasons. First was that H2O2 was a better electron acceptor than 

molecular oxygen as they have an oxidation potential of 1.78 eV and 1.23 eV 

(Giménez and Bisquert, 2016; Viswanathan, Hansen and Nørskov, 2015). Secondly, 

H2O2 may photolytically split directly to produce OH radicals under UV light 

irradiation (Li et al., 2011). H2O2 increased the production of OH radicals through 

the reduction of H2O2 at the CB as shown in Eq. (4.4) or even if H2O2 was not 
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reduced at the CB, it would accept an e
-
 from the superoxide (O2

-), producing OH  

radicals (Eq. (4.5)) (Sapawe, Jalil and Triwahyono, 2013).  

H2O2 + e
- 
→ OH + OH

-
 (4.4) 

H2O2 + O2 → OH + H
+
 + O2

-
 (4.5) 

At higher concentrations above 10 mM, the H2O2 adsorbed onto the surface 

of the photocatalyst could very effectively scavenge the OH radicals formed and 

inhibit the major pathway for the heterogeneous generation of OH radicals. The 

reactions are shown in Eqs. (4.6) and (4.7) (Tseng, Juang and Huang, 2012; 

Modirshahla, Behnajady and Jangi Oskui, 2009). The formed HO2
 as a result of 

excess H2O2 were known to be less reactive than OH radicals (2.80 eV) with an 

oxidation potential of 1.70 eV and as a consequence, the degradation decreased as a 

longer period of time was required to achieve complete degradation.  

H2O2 + OH → HO2
 + H2O (4.6) 

HO2
 + OH → H2O + O2 (4.7) 

 

4.3.2 Effect of initial dye concentration 

The effects of initial MG concentrations were studied in the concentration range of 

2.5 to 20 mg/L. As shown in Figure 4.9 the degradation efficiency of MG increased 

from 2.5 mg/L to 5 mg/L up to 100% for 5 mg/L in 20 minutes under fluorescent 

light irradiation and subsequently decreased upon this point to 24.2% for 20 mg/L. 

This demonstrated the best MG concentration was found at 5 mg/L. 
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Figure 4.9: Effect of various initial dye concentrations on the degradation of 

MG in the presence of 10 mM H2O2 (photocatalyst loading = 1 g/L ; natural pH 

of MG = 6). 

 

The increase in photocatalytic degradation of dyes with an increase in initial 

dye concentration up to an optimum concentration have been documented by several 

literature reports (Ambreen et al., 2014; Mohaghegh et al., 2014; Ameta, Ameta and 

Ahuja, 2013; Kumawat, Bhati and Ameta, 2012; Avasarala, Tirukkovalluri and 

Bojja, 2010). Ambreen et al. (2014) tested the effect of various initial concentrations 

of RhB on its degradation by varying them from 2.5 – 17.5 mg/L using Ta2O5 

photocatalyst under UV irradiation. The photocatalytic degradation increased up to 

12.5 mg/L and subsequently decreased at 17.5 mg/L.  90% of degradation was 

obtained within 150 minutes using 12.5 mg/L where else 70% of RhB degradation 

was achieved for 2.5 mg/L under the same irradiation time. Avasarala, 

Tirukkovalluri and Bojja (2010) experimented on the degradation of various 

concentrations of monocrotophos (MCP), an organophosphate insecticide, using Be-

doped TiO2. They tested on a concentration range of 10 mM to 90 mM MCP under 

visible light irradiation for 250 minutes. The degradation increased from 10 mM 

MCP to 50 mM MCP and decreased when the concentration was increased to 90 mM 

MCP. 100% of degradation was observed at 75 minutes of visible light irradiation 
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using 50 mM MCP. 100% degradation was accomplished after 125 minutes of 

irradiation using 10 mM MCP. 

The occurrence of an increased degradation of MG until an optimum 

concentration could be explained as follows. The degradation of MG was dependent 

upon the probability of OH radical formation on the surface of Bi2O3 nanoflakes 

and also the OH radicals reacting with MG molecules. As the initial concentration 

of MG increased, more molecules were available for excitation and subsequently its 

degradation (Mohaghegh et al., 2014; Kumawat, Bhati and Ameta, 2012). In 

addition, an increasing concentration of MG increases the probability of collision 

between MG molecules and Bi2O3 nanoflakes (Puentes-Cárdenas et al., 2016; Hassan 

and Hameed, 2011). This could contribute towards the improved degradation of MG. 

When the optimum concentration was reached, the reduction in MG degradation was 

attributed towards the increased MG molecules within the system. As the Bi2O3 

surface area was fixed, only limited number of dye molecules could attach on the 

active sites of the Bi2O3 nanoflakes causing the remainder molecules to persist in the 

solution until the pre-attached molecules have been degraded (Khemani, Srivastava 

and Srivastava, 2011). Another factor contributing to the decrease in degradation 

efficiency is the decrease in light penetration through the MG solution as large 

quantities of MG molecules shielded the fluorescent light from reaching the surface 

of Bi2O3. According to the Beer-Lambert law, the path length of photons entering the 

solution decreased and caused a lower photon absorption on Bi2O3 nanoflakes. In 

turn, it inhibited the separation of the e
-
-h

+
 pair, reducing the production of OH 

radicals. (Nezamzadeh-Ejhieh and Shahriari, 2011).  

 

4.3.3 Effect of solution pH 

The effect of pH on the degradation of MG was investigated by varying the pH of the 

solution while all other parameters were kept constant. Figure 4.10 displays the MG 

degradation by varying the solution pH. At an acidic pH 3, the degradation of MG 

was recorded to be 18.2% while an increase in pH to its natural pH 6 observed a  

100% degradation of MG within 20 minutes. A similar result was also observed for 
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pH 7.  The minor difference between the degradation of MG could be seen at the 15 

minute mark whereby the degradation for pH 6 was found to be at 62.2% while it 

was 55.8% for pH 7. Further increase in pH value to pH 10 recorded a decrease in 

degradation in which 25.9% of MG was degraded. This proved that both pH 6 and 

pH 7 showed a comparable degradation effectiveness on the degradation of MG.  

Figure 4.10: Effect of various pH on the degradation of MG in the presence of 

10 mM H2O2 ([MG] = 5 mg/L ; photocatalyst loading = 1 g/L). 

 

The influence of pH has been related to the surface charge of the 

photocatalyst and could be explained based on the point zero charge (pzc). The point 

zero charge was where the surface of the photocatalyst was understood to be 

uncharged at a certain pH value (Chen and Lu, 2007). Above and below this value, 

the photocatalyst was either negatively or positively charged.  

At an acidic pH 3, the pH was noted to be below the pzc of Bi2O3 which was 

4.6 (Sood et al., 2015). When the pH of the solution was lesser than 4.6, the surface 

of Bi2O3 nanoflakes became positively charged. The ionization state on the surface of 

a photocatalyst could be protonated under acidic conditions. It was noted by Fu et al. 

(2008) that the dissolution of Bi2O3 into BiOH2
+
 could occur within an acidic 

medium. This protonated group repelled the similarly positive charge of MG. The 

cationic MG was unable to be adsorbed onto the surface of the photocatalyst to 

undergo degradation.  
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On the other hand, pH 6 and 7 showed exceptional photocatalytic degradation 

of MG. As these pHs were above the pzc of Bi2O3, the surface charge of Bi2O3 was 

negatively charged. This promoted the attraction of the positively charged MG 

molecules onto the surface of Bi2O3 nanoflakes. In addition, a slightly alkaline 

medium encouraged the production of OH radicals as more OH
-
 ions were present 

in the system to be converted. However, at a very high pH (pH 10), competition 

between the excessive OH
-
 and dye molecules existed for the active sites on the 

surface of Bi2O3 nanoflakes (Rajabi and Farsi, 2015; Rajabi et al., 2013). As a result, 

the formation of the reactive OH radicals and the degradation of MG were affected 

as the quantity of active sites on the nanoflakes were greatly reduced. 

As mentioned in Ejhieh and Khorsandi (2010) and Kasiri, Aleboyeh and 

Aleboyeh (2008), in an acidic medium, the acidification of the solution through the 

addition of HCl induced a high amount of conjugate base into the solution. Upon 

dissociation, the anionic Cl
-
 was able to react with the available OH radicals which 

lead towards the formation of inorganic radical ions (ClO
-). The ClO

- 
ions exhibit a 

much lower reactivity (1.49 eV) than OH and hence do not partake in the 

degradation of MG.  

On the contrary, in alkaline pHs, the presence of huge quantities of OH
-
 ions 

caused the formation of more OH radicals which enhanced the degradation of MG 

significantly (Nezamzadeh-Ejhieh and Shahriari, 2011). MG is a cationic dye that is 

positively charged due to the ionization of the ammonium groups in water. Its 

electrostatic attraction onto the surface of the photocatalyst is favorable within basic 

solutions and weak in acidic solutions. At highly alkaline pHs, the excess OH
-
 

competes with the MG molecules for the active sites on the photocatalyst.     

It was shown that various parameters such as H2O2 concentration, initial MG 

concentration and solution pH played an important role in the degradation of MG. 

The addition of an oxidizing agent, at 10 mM H2O2 exhibited an improved 

degradation of MG within 20 minutes of fluorescent light irradiation. The variation 

between initial MG concentrations depicted an enhanced degradation of MG until 5 

mg/L and this was determined to be its best concentration. Finally, the study 

conducted on the effects of pH on the degradation of MG revealed the great 

influence of the solution pH on the surface charge of the Bi2O3 nanoflakes. It was 
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found that the natural pH 6 showed and efficient degradation of MG. The combined 

parameters enabled the complete degradation of MG dye in 20 minutes of irradiation. 

 

4.4          Mineralization study 

Figure 4.11 shows the variation of MG in terms of photocatalytic degradation and 

COD efficiency in the presence of Bi2O3 nanoflakes. As indicated, MG was 

photocatalytically degraded by 100% within the first 20 minutes under fluorescent 

light irradiation whereas the maximum COD reduction observed after 20 minutes of 

irradiation was approximately 65%. The percentage COD reduction was then 

observed to decrease as the time increased up to 80 minutes in which 81% of COD 

was reduced. 

The results obtained were in accordance to those produced by Saikia et al. 

(2015), Vignesh, Rajarajan and Suganthi (2014) and Zhang et al. (2013). Saikia et al. 

using ZnO as the photocatalyst managed to obtain 100% degradation of Malachite 

Green under 100 minutes of UV light irradiation while obtaining 90.8% COD 

reduction under similar duration. Vignesh, Rajarajan and Suganthi achieved 93% of 

MB degradation under 180 minutes of visible light irradiation using Ni and Th co-

doped ZnO nanoparticles. Under the same 180 minutes, only 70% of COD was 

reduced. Zhang et al. used a novel BiOCl thin film as their photocatalyst and have 

recorded 98% degradation under UV light irradiation for 8 hours while obtained a 

73.47% COD reduction.  
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Figure 4.11: Variations of MG and COD efficiency in the presence of Bi2O3 

nanoflakes ([MG] = 5 mg/L; photocatalyst loading = 1 g/L; [H2O2] = 10 mM; 

solution pH = 7). 

 

According to Divya, Bansal and Jana (2013) and Rauf and Ashraf (2009), 

during the photocatalytic degradation, the production of OH radicals enabled the 

oxidation or reduction via h
+
 or  e

-
 of the azo bonds that held the colour of the dye. 

These cleavages of the bonds lead to the degradation of MG. When the azo bonds 

were broken down, they in turn produced a more stable transformation by-products 

or intermediates. It was confirmed by Mai et al. (2008) that there were 32 identified 

colourless intermediates of MG that were formed under 12 hours of visible light 

irradiation. The photocatalytic degradation managed to degrade the smaller organic 

molecules that were formed during the initial stages of degradation, leaving behind 

the less decomposable by-products. As a result, the decrease in COD percentage 

would take a longer time to be achieved compared to the photocatalytic degradation 

of the MG.  
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4.5 Various dye degradation studies  

In order to determine the feasibility of Bi2O3 nanoflakes, they were experimented in 

the treatment of various dyes such as MG, MB and RhB and their photocatalytic 

degradation were tested in the presence of H2O2.  Herein, the dyes were degraded 

under previously optimized conditions with the presence of 10 mM H2O2, initial dye 

concentration of 5.0 mg/L and pH 7. Figure 4.12 illustrates the photocatalytic 

degradation of various dyes using Bi2O3 nanoflakes. MB was shown to possess a 

better degradation as compared to RhB. Upon 20 minutes of fluorescent irradiation, 

69.9% of MB was degraded while 42.4% of RhB was degraded. In comparison, the 

optimized conditions enabled 100% MG degradation within 20 minutes. The 

degradation efficiency followed the order of MG > MB > RhB.   

Figure 4.12: Photocatalytic degradation of various dyes using Bi2O3 nanoflakes 

containing 10 mM of H2O2 ([dye] = 5 mg/L; photocatalyst loading = 1 g/L; 

solution pH = 7). 

 

Similar results were obtained by Hashemzadeh, Rahimi and Gaffarinejad 

(2013) whereby the photocatalytic degradation of MB was higher than RhB. Several 

factors could be linked to the degradation efficiency of MB and RhB. The enhanced 

degradation of MB over RhB could be attributed towards the complex molecular 

structure of RhB making it less degradable. In the process of adsorption of dye 

molecules, the presence of diethylamine group in MB made it less negative than RhB 
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as the carboxylic acid group in RhB made it more negatively charged, hence a strong 

repulsion by the negatively charged Bi2O3 nanoflake surface (Natarajan, Bajaj and 

Tayade, 2014). This strong repulsion could have led towards a lower degradation of 

RhB.  

Hashemzadeh, Rahimi and Gaffarinejad (2013) proposed that the inefficient 

degradation of RhB was contributed to its functional group. Functional groups that 

tend to decrease the solubility of the molecules in water decreases the degradation 

process (Muhd Julkapli, Bagheri and Bee Abd Hamid, 2014). RhB with two longer 

side groups (diethylamino) compared to the two shorter side groups (dimethylamino) 

of MB increased the hydrophobicity of the dye molecules.  

The synthesized Bi2O3 nanoflakes showed different degradations of different 

pollutants. However, it was demonstrated that it could enhance the degradation of the 

various pollutants such as MB and RhB because of its photocatalytic ability. It 

contributed towards the practicality of the synthesized Bi2O3 nanoflakes as it could 

be applied in the degradation of other organic pollutants. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In summary, Bi2O3 nanoflakes were successfully synthesized via a co-precipitation 

route using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The 

synthesized photocatalyst was characterized using XRD, FESEM-EDX and UV-Vis 

DRS analyses. The XRD analysis proved that the synthesized Bi2O3 photocatalyst 

was of the α-monoclinic phase and possessed high crystallinity. FESEM showed the 

surface morphology of the photocatalyst and it was determined to be a nanoflake 

structure with an average length of 250 nm and 60 nm thickness. In addition, the 

EDX analysis confirmed that the synthesized Bi2O3 was mainly composed of Bi and 

O elements with its atomic percent being 23.13% Bi and 76.87% O. The UV-Vis 

DRS enabled the band gap energy measurement of Bi2O3. This was calculated to be 

2.95 eV. This meant that the photocatalyst can be activated under visible light 

irradiation.  

 A comparison study was conducted using Bi2O3 nanoflakes, commercial 

Bi2O3 and TiO2 in the presence of H2O2. It was found that the as-synthesized Bi2O3 

nanoflakes exhibited superior photocatalytic activity compared to both commercial 

Bi2O3 and TiO2. The photodegradation achieved for commercial Bi2O3 and TiO2 

were 79% and 68% of MG under 30 minutes of fluorescent light irradiation 

respectively while the as-synthesized nanoflakes achieved 100% degradation in 20 

minutes. In addition, a sedimentation test was carried out to assess the ease of 

removal of the Bi2O3 nanoflakes from the solution. It was proven that within 30 

minutes, the nanoflakes were able to settle and formed a layer at the bottom while the 
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comparison TiO2 was unable to settle within 30 minutes. This feature allows for the 

reusability of the photocatalyst in the wastewater treatment industry.  

Under fluorescent light irradiation, several parameters were tested including 

the effects of H2O2 concentration, initial dye concentration and also pH for the 

degradation of MG. Under optimized conditions, 100% degradation of MG was 

achieved within 20 minutes of fluorescent light irradiation.  A COD analysis was 

also conducted to determine the mineralization extent of the photocatalyst under 

optimized experimental conditions. A longer time was taken in order to achieve a 

complete mineralization of MG. 81% of COD decrease was obtained under 80 

minutes of irradiation. 

Various dye degradation using MG, MB and RhB in the presence of Bi2O3 

nanoflakes was also examined under optimized conditions. It was discovered that the 

photocatalytic degradation efficiency was MG > MB > RhB. This showed that the 

as-synthesized photocatalyst exhibited a wide suitability in the visible light 

photocatalytic activity of organic pollutants in the presence of H2O2. 

 

5.2 Recommendations 

Upon completion of the present study, several fundamental aspects should be paid 

attention to in future photocatalytic studies. 

1. The study could be given focus on synthesizing a 3D and porous Bi2O3 structure 

as they are able to enhance the adsorption of organic pollutants.  

2. The synthesized photocatalyst should be tested using solar light irradiation as the 

light source. As solar light is an abundant, free and clean source it would be 

beneficial for the photocatalysis technology. 

3. Bi2O3 photocatalytic ability should be tested using real textile wastewater as 

mixtures of dyes are present in the wastewater. 
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APPENDICES 

Appendix 1: MG wavelength scan 

Appendix 2: MG calibration curve 
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Appendix 3: MB wavelength scan 

Appendix 4: MB calibration curve 
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Appendix 5: RhB wavelength scan 

Appendix 6: RhB calibration curve 
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