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ABSTRACT 

 

 

STATISTICAL MODELS FOR DAILY RAINFALL DATA: A CASE 

STUDY IN SELANGOR, MALAYSIA 
 

 

Chuah Hock Lung 

 

 

 

 

 

 

 

 Rainfall volume and occurrence analysis is one of the most commonly 

applied methods in rainfall data, while probability distributions such as Normal, 

Log-normal, Gamma, Gumbel and Weibull are among the important 

distributions that are commonly used in the rainfall analysis. In this study, the 

daily rainfall volume for a period of 10 years is investigated and fitted using 

various continuous distributions. The candidate distributions are selected from 

continuous distribution and beta related distributions. In addition, the analysis 

of distributions on rainfall occurrence is investigated and it is fitted to the daily 

rainfall data for the same 10 years period. The candidate distributions are 

Hurwitz-Lerch Zeta distribution, Eggenberger-Polya distribution, logarithmic 

distribution, truncated Poisson distribution and geometric distribution. Three 

new distributions are proposed in this research: the new generalized beta 

distribution, modified beta distribution and mixture of 2 modified lognormal 

distributions. The parameters of the distributions are estimated using the 

maximum likelihood estimation method; with the help of simulated annealing 
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optimization method. The distributions are then plotted and compared to the 

histogram of daily rainfall volume and occurrence. Model selection techniques 

such as AIC and BIC are employed to examine the fittings of those distributions.  
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CHAPTER 1 

 

INTRODUCTION 

 

Malaysia’s climate is well known of its hot and humid tropical rainfall that 

is very much dependent on the monsoon seasons. A monsoon is defined as a 

seasonal wind that commonly brings changes to the precipitation. The monsoon 

seasons in Malaysia are divided into two periods: the north east monsoon (NEM) 

season and the south west monsoon (SWM) season. North east monsoon season 

occurs from November to March while south west monsoon season occurs from 

May to September. Between these seasons, Malaysia tends to experience a dry 

weather which is on average having approximate 100mm of rainfall per month. The 

annual rainfall volume for the Peninsular Malaysia and East Malaysia (Sabah and 

Sarawak state) are averaging at 2500 mm and 5080 mm respectively.  

 

Figure 1.1 Map of Malaysia
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Figure 1.1 shows the location of Peninsular Malaysia, East Malaysia and the Straits 

of Malacca. 

Malaysia has more than hundred rivers system in Peninsular Malaysia and 

they contribute 97% of the total raw water supply to the Peninsular Malaysia. One 

particularly important river basin at Peninsular Malaysia is the Langat river basin. 

This is because Putrajaya, the federal administrative centre of Malaysia is located 

at this area, and the river basin supplies fresh water to about 67% of the state of 

Selangor which has 1.2 million people are living in the region. Langat river basin 

drains the westward water from the central region to the Straits of Malacca, 

occupying an area of 2200 2km  at the southern region of Selangor State and there 

are 2 reservoirs and 8 water treating plants can be found at the river basin itself.  

During the beginning of 2014, over 300,000 of households nearby Klang 

Valley, the central of Selangor state experienced water rationing for the whole 

month of March, as drought scorched the Peninsular Malaysia with 2 months dry 

spell have depleted the reservoirs. “The hot weather and lack of rain in catchment 

areas have caused all reservoirs in Selangor to recede,” said the National water 

commission’s chairperson Ismail Kasim. The dry weather may have affected the 

local businesses that are highly dependent on waters and also Malaysian economy, 

which its agricultural is the world’s second largest producer of palm oil. During the 

same year, many areas of the Klang Valley were suffering flash flood due to the 

heavy rain during the monsoon season. According to the local newspaper, The Star, 

22nd of December, 2014 reported the downpour of rain lasted for at least 90 minutes 

with 77mm of rain fell within an hour. This had brought large amount of rain water 
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since the average daily rainfall is only around 12.03mm.  This had resulted many 

major roads and more than 100 vehicles submerged in the water causing serious 

damages. 

Recent water crisis that occurred in Selangor of Malaysia has raised the 

importance of understanding the rainfall characteristics. Hence, it is important to 

model a rainfall processes, so that the runoff of water and natural disaster due to 

heavy rainfall can be supervised, and the appropriate solutions can be carried out. 

A frequency analysis of the rainfall data is the most commonly method used in 

understanding the rainfall characteristic. Generally it is assumed that a hydrological 

variable can be modelled by a certain type of distribution. Among the well known 

distributions that are used in hydrological analysis are normal, lognormal, gamma, 

Gumbel, and Weibull. The lognormal distribution is a transformed model from 

normal distribution which is known to be well fit in many distributions of 

hydrological variables (Aksoy, 2000). In a similar manner, the gamma distribution 

has the convenient properties of having only positive variable for application to 

hydrological data since hydrological variable, e.g. rainfall is always non-negative 

(Markovic, 1965).  The Weibull and Gumbel distributions are usually being used 

to model data with exaggerated such as low flow values observed in river and 

frequency analysis of flood respectively (Gumbel, 1954). 

The developments of rainfall occurrence models have expanded in demand. 

Considering Malaysia’s economy is very much dependent on its agriculture, the 

rainfall occurrence models provide much useful information to the water resources 

management, hydrological and agricultural sectors.  Besides, the climate might 
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change over the years due to global warming that has recently caught world 

attention. Therefore, understanding the rainfall characteristics has become crucial 

issue for natural disaster management such as flood and draught. 

In our research, different types of rainfall studies will be carried out. We 

divide the rainfall data into rainfall volume (in mm) per day and rainfall occurrence. 

Rainfall occurrences are divided into dry and wet spell. Dry spell is defined as the 

consecutively number of days remain as dry day after the last wet day, and vice 

versa for the wet spell. The objective of this study is to propose three new 

distributions to examine the rainfall characteristics and to do comparisons of their 

fittings with some existing distributions using the rainfall data from Langat river 

basin. We first proposed generalized beta distribution and modified beta 

distribution which can be reduced to generalized beta of the 1st kind, transformed 

Kumaraswamy, Gauss hypergeometric and arcsine distribution. However in this 

study we will be focusing on the proposed generalized beta distribution. Secondly, 

a mixture of 2 modified lognormal distributions is also proposed which it can be 

reduced to mixture of 2 lognormal distributions and modified lognormal 

distribution. We then fit the proposed distributions to an observed rainfall data 

taken from one of the station at Selangor, Malaysia. We also compared with its 

reduced model and various beta type and continuous distributions. Under the 

rainfall occurrence, Hutwitz-Lerch Zeta distribution and other discrete distributions 

that are well known in hydrology studies such as Eggenberger-Polya, logarithmic 

and geometric distributions were studied and fitted to dry and wet spell at six 

stations around Langat river basin. The probability density function (PDF) of the 
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proposed distributions and distributions chosen will be plotted based on the 

parameter estimated using Maximum Likelihood Estimation (MLE) method. 

Comparisons between distributions are done using model selection criteria such as 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) to 

help in selecting the best fit distribution. The result will be discussed in 2 parts, 

which are the results of continuous distributions based on rainfall volume, and the 

results of the discrete distributions based on rainfall day occurrence. This study 

provides factual information on the rainfall characteristics and some studies on the 

proposed new distributions. Results have shown the flexibility of the proposed 

distributions’ probability density functions, and also the comparisons of the fitting 

on rainfall data at chosen station with the existing selected model. 

The structure of the dissertation will be as follows: Chapter 2 reviews the 

literature about continuous distributions for rainfall volume and discrete 

distributions for rainfall occurrence. We will propose two new distributions based 

on beta-type distribution and one new mixture distribution on modified lognormal 

distribution in Chapter 3. The proposed distributions will then be compared with 

some existing distributions that are well known in hydrology analysis. This study 

will only examine the data taken from Langat river basin. In Chapter 4, the relative 

frequency of the rainfall will be plotted for the selected rainfall station (Station 

3118102) from Langat river basin and its properties will be discussed. Followed by 

Chapter 5, the comparison among different distributions based on the AIC and BIC 

criteria will be discussed. The histograms and the probability density functions will 
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also be plotted. We conclude our dissertation with conclusion and future work in 

Chapter 6.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Background 

 

 In this chapter, we will be discussing the recent issues of climate change 

and rainfall modelling in Section 2.2. Many countries from different parts of the 

world are experiencing different level of effects resulting from climate change. The 

climate change is mainly due to global warming and has resulted in extreme 

weather like greater rainfall, longer draught and freezing winter. All of these 

phenomena have cost millions of losses towards the economy and even lives. 

Therefore researchers are inspired to study the climate particularly to identify the 

cycle of the rainfall trend. In Section 2.3, we will discuss the rainfall distribution in 

Malaysia and why rainfall study in Malaysia is important. The study on rainfall 

distribution can be separated into two types: the rainfall volume and the rainfall 

occurrence. Rainfall volume in this study is based on the daily rainfall volume in 

millimeter (mm), which assumed to follow continuous distributions. On the other 

hand, rainfall occurrence is assumed to follow discrete distribution. Both the 

continuous and discrete distributions will be discussed in Section 2.4 and 2.5. 
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2.2 Climate change and rainfall trend 

 

 In recent years, there has been an increasing interest in the study of climatic 

change as it is becoming a main challenge faced by the global leaders, 

Environmental Non-Governmental Organization (ENGO) leaders and others which 

they have sat down together in the effort of finding the best resolution to solve the 

problems caused by the change of climate. Such problems include extreme 

temperature, droughts, floods and many more. As mentioned in N.I. Obot et al. 

(2010), every aspect of the ecological system is being affected by the climate 

change, inclusive of flora and fauna, particularly us as human, from agricultural 

sectors to finance and insurance sectors. The climate plays a very important role in 

a country’s economy. However, Onyenechere (2010) regrettably stated that 

countries that are most susceptible to the effect of climate change has the least in 

participation of fighting this global issue. The main reason is that they are 

vulnerable to climate change is because they do not have the related technology and 

sufficient resources to overcome it.  

 Based on the studies done by Adger et al. (2003), Novotny and Stefan (2007) 

and Frich et al. (2002), climate change can be assessed by rainfall trend or 

precipitation as it is one of the climate indicator. Hatzianastassiou et al. (2008) also 

stated that spatial and temporal distributions of rainfall are important in modelling 

and forecasting the weather and change in climate. Globally, many researches were 

done on rainfall analysis to understand the characteristics of precipitation so that 

the appropriate measure can be taken.  For example, analysis on the trends of annual 
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precipitation in Sri Lanka was carried out over 100 years from 15 meteorology 

stations, and the findings  were mentioned by Jayawardene et al. (2008). It is found 

that there is a noticeable increasing rainfall trend at Colombo and decreasing trend 

at Nuwara Eliya and Kandy with the rate of 3.15mm per year, 4.87 mm per year 

and 2.88 mm per year respectively. Jayawardene et al. (2008) also concluded that 

the downward trends during the last 10 years are greater than the long term 

fluctuation. Another study done by Smadi and Zghoul (2006) focuses on inspecting 

the drift of the total precipitation and rainfall day occurrence in Jordan. The study 

was carried out for the period from 1922 to 2003 at Amman Airport Meteorological 

(AAM) station in Amman. The result showed that there was a sudden change of the 

total rainfall and today number of wet days during the year of 1957, which there 

was a decline in both rainfall volume and days for the last 46 years. At the same 

time, Partal and Kahya (2006) also have published a study regarding the trend of 

its precipitation in Turkey. They studied the rainfall trend from 1920 to 1993 over 

96 stations around Turkey. The results showed that there are significant downwards 

trend in their rainfall volume, though there are few upwards trend.  

 

2.3 Analysis of rainfall distribution in Malaysia 

 

Malaysia is situated on a seismically stable plate, a geographical region that 

being protected from most major natural disasters e.g. earthquakes and volcanoes. 

Malaysia is less likely to be hit by tsunamis due to the surrounding landmasses and 

free from typhoons as it is not in the tropical cyclone basins. However, flash flood 
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and drought are the two extreme contrary of natural disasters that are likely to occur 

in Malaysia within the same year in the recent years. These natural phenomenon 

can be very unhealthy to the Malaysia’s economy when these calamities happen at 

the capital of Malaysia; which can cause million in losses, not to forget that the 

country’s agricultural plantation is highly dependent on the rainfall. Furthermore, 

it is costing hundreds of life being taken away during the flood and the exposure to 

the risk of diseases. Besides flood, landslide is also one of the destructive disasters 

that caused by the heavy rain as there was a strong correlation between the rainfall 

and landslides (Ratnayake and Herath, 2005). Therefore, by understanding the 

characteristics of the rainfall, precaution steps to overcome or reduce problems can 

be planned and done earlier (Suhaila et al., 2011). 

The precipitation in Malaysia cannot be detached from the influences of 

monsoon seasons; in fact, the rainfall of most countries in the area of tropical is 

greatly affected by the monsoon seasons. A study was carried out by Wong et al. 

(2009) to examine the rainfall’s spatial pattern and time-variability in Peninsular 

Malaysia over 3 regions from 1971 to 2006. The regions are the east coast, west 

coast and inland of the Peninsular. The monsoon that hit on Malaysia can be shared 

by two different monsoon seasons, the north east monsoon (NEM) season from 

November to March, and the south west monsoon (SWM) season from May to 

September. The findings from the study showed that NEM season brought the most 

rainfall during the end of year as general. On average, there was 55% and 31% of 

rainfall received at the east coast region during NEM and SWM season respectively. 

On the other side of Peninsular Malaysia, the west coast regions had 37% and 41% 
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of the average rainfall during NEM and SWM seasons. Meanwhile, the inland 

region received 80% of its average yearly rainfall during the monsoon seasons.  

 

2.4 Modelling of rainfall volume 

 

 Researchers have been finding the physical and statistical properties of 

precipitation based on past rainfall data. This can help in better understanding the 

rainfall characteristics, by fitting probability density function from many theoretical 

distributions to model the rainfall volume is one of the alternative (Meneghini and 

Jones, 1993). As mentioned by Kedem (1990), the PDF of a rainfall is indispensable 

from a meteorological and climatological viewpoints on the estimation of the total 

rainfall. However, Cho et al. (2004) stated that for a given set of parameters of a 

distribution, it may not fit at all areas though it may fit at certain location. Therefore 

there is a need of generalized distribution to model the precipitation. 

One of the ways in examining the rainfall volume is to fit theoretical 

distribution with the assumption that daily rainfalls are independent. Under this 

study, continuous distribution is used to model the non-zero rainfall volume. Two 

types of continuous distributions will be discussed in the next section: the 

continuous distribution and beta type distribution.  
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2.4.1 Continuous distribution 

 

The commonly used continuous distributions used in rainfall data are gamma 

distribution and lognormal distribution (Cho et al., 2004). Gamma distribution was 

used to describe daily rainfall at 2 sites in Ghana to model the forecasted rainfall, 

and its applicability on the model was assured by Adiku et al. (1997). Besides, other 

continuous distribution that are widely used are exponential distribution (Todorovic 

and Woolhiser, 1975), mixture of two exponential distribution (Whitesides et al., 

1972) and two-parameter Gamma distribution (Buishand, 1978). In this study, we 

select 8 continuous distributions to model a rainfall station at Malaysia’s Langat 

river basin and compare with each other. The chosen distributions are as follows: 

1. Exponential distribution     

2. Mixture of two exponential distributions   

3. Lognormal distribution     

4. Mixture of two lognormal distributions   

5. Modified lognormal distribution    

6. Pareto distribution      

7. Marginal of linear and angular distribution  

8. Gamma distribution     

The PDF and the properties of the above distributions are presented in Equation 1 

to Equation 8 and Table 2.1 to Table 2.8 respectively. 

 

 



13 

 

Table 2.1: Properties of exponential distribution 

 

Table 2.2: Properties of mixture of 2 exponential distributions 

Parameters 01  , 02  , 10  p  

Probability  

Density Function 

xx
epepxf 21

21 )1()(
  

 ,  (2)
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Distribution 

Function 

xx
eppexF 21 )1(1)(

 
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 x0  

Mean 
21 /)1(/  pp       

Variance 

2

2
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2

1

1

2

1

)22(
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


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



p

ppp
   

General Moment )/)1(/(! 21

nn
ppn  

   

The probability density function of the mixture of 2 exponential distributions (Equation (2)) will 

reduce to exponential distribution (Equation (1)) when p = 0. 
 

Parameters 0  

Probability  

Density Function 

xexf  )(  ,    (1)

 x0  

Cumulative 

Distribution  

Function 

xexF  1)( ,  

 x0  

Mean /1        

Variance 2/1         

General Moment nn /!        
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Table 2.3: Properties of lognormal distribution 

Parameters 0 ,   

Probability  

Density Function 
2

2

2

)(ln

2

1
)( 










x

e
x

xf ,   (3)

 x0  

Cumulative 

Distribution 

Function 







 






2

ln

2

1

2

1
)(

x
ErfxF  , 

  x0  

Mean 2/2e       

Variance 22 2)1(   ee      

General Moment 22)2/1(  nne 
      

 

Table 2.4: Properties of mixture of 2 lognormal distributions 

Parameters 0, 21  , 21, , 10  p  

Probability  

Density Function 

2
2

2
2

2
1

2
1

2

)(ln

2

2

)(ln

1

2

1

2
)(
























x

x

e
x

p

e
x

p
xf

 ,  (4)

 x0  

Cumulative 

Distribution 

Function 

































 














 



2

2

1

1

2

)ln(
)1(

2

)ln(

2

1
)(









x
Erfcp

x
pErfc

xF , 
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 x0  

Mean 2/)(2/)(
2

22
2

11 )1(
 

 eppe     

Variance 

22/)(2/)(

)(2)(2

))1((

))1((
2

22
2

11

2
22

2
11













eppe

eppe
   

General Moment 2/)(2/)(
2

2
2

2
2

1
2

1 )1(
 nnnn

eppe


    

The probability density function of the mixture of 2 lognormal distribution (Equation (4)) will 

reduce to lognormal distribution (Equation (3)) when p = 0. 
 

Table 2.5: Properties of modified lognormal distribution 

Parameters 0 ,  , 11  c  

Probability  

Density Function 

 































c

e

x t

x

dte
t

e
x

xf

0

2

ln

2

)(ln

2

2

2

2

1

2

1
2)(

,   (5)

 x0  

The probability density function of the modified lognormal distribution (Equation (5)) will reduce 

to lognormal distribution (Equation (3)) when c = 0.

 

 

Table 2.6: Properties of Pareto distribution 

Parameters 0 , 0  

Probability  

Density Function   1
1

)(










x
xf ,    (6)

 x0  

Cumulative 

Distribution 

Function 


















)/1(

/1
1)(

x
xF ,  
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 x0  

Mean 

)1(

1


   , α > 1   

Variance 
22)1)(2( 




  , α > 2   

General Moment 

)(

)()1(







 nnn

  , α > n   

 

Table 2.7: Properties of marginal of linear and angular distribution 

Parameters 0   

Probability  

Density Function 
  xexIxf   0

22)( ,   (7)

 x0 where 0I is the modified Bessel function 

of the 1st kind and order 0 

Mean 
22 




     

 

Variance 

 222

222








     

 

General Moment  

 22

12

22)1(

,1,2)1(,2)2(

1









nnF

nn

  
 

The probability density function of the marginal of linear and angular distribution (Equation (7)) 

will reduce to exponential distribution (Equation (1)) when  = 0. Modified Bessel function of 

the 1st kind and order n from equation (7) can be defined by the contour integral 

dtte
i

zI nttz

n 
 1)/1)(2/(

2

1
)(


 , where the contour encloses the origin and is traversed in a 

counterclockwise direction. 
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Table 2.8: Properties of gamma distribution 

Parameters 0k , 0  

Probability  

Density Function 




xk

k
ex

k
xf 


 1

)(

1
)( ,   (8)

 x0  where )(k is the Gamma function 

Cumulative 

Density Function   xk
k

xF ,
)(

1
)(


  ,   (9)

 x0  where    xk,  is lower incomplete 

gamma function 

Mean k        

Variance 2k        

General Moment 

)(

)(

k

nkn




      

Gamma function from Equation (8) can be defined by 



0

1)( dxext xt
 and lower 

incomplete gamma function from Equation (9) can be defined by 


x

ts dtetxs
0

1),( . 

 

2.4.2 Continuous distribution: beta-type 

 

In precipitation, many kinds of data are modelled by finite distribution 

including hydrological data. This section gives beta-type distribution with finite 

range for an advantage in modelling the data. An example of a beta-type 

distribution that is applied in hydrology is the Kumaraswamy distribution. It was 

introduced by Kumaraswamy (1980) for a double bounded random process and it 
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has considerably caught attention in hydrology study. Kumaraswamy (1980) 

claimed that beta distribution does not fit hydrological random variable such as 

daily rainfall.   

Beta densities are versatile and able to model many types of uncertainty 

since it can be unimodal, uniantimodal, increasing, decreasing or constant 

depending on the values of   and q (Johnson et al., 1996). However, it is not so 

fabulous in some ways, as in the two-parameter distribution can only provide 

limited precision in fitting the data. It is preferable to have more parametrically 

flexible versions of beta to allow a richer empirical description of data, while 

offering more structure than a nonparametric estimator.  

Therefore, we select a few beta-type distributions to describe the empirical 

data. The distributions are as follows: 

1. Beta distribution    

2. Gauss hypergeometric distribution  

3. Generalized beta of the 1st kind (McDonald and Xu, 1995) 

distribution     

4. Kumaraswamy distribution  

5. Standard arcsine distribution   

The PDF and properties of the above distributions are presented in Equation 10 to 

Equation 15 and Table 2.9 to Table 2.13 respectively. 
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Table 2.9: Properties of beta distribution 

Parameters 0 , 
0q

 

Probability  

Density Function 
),(

)1(
)(

11

qB

xx
xf

q



  
  ,   (10)

10  x  

Cumulative 

Distribution 

Function 
),(

),;(
)(

qB

qxB
xF




 ,    (11)

10  x , ),;( qxB   is the incomplete beta 

function 

Mean 

q


       

Variance 

   12
 qq

q




     

General Moment 

)()(

)()(

nq

nq








     

The incomplete beta function from Equation (11) can be defined by 




 




0 )(!

)1(
),;(

n

nna z
nan

b
zbazB  where )1()2)(1()(  nxxxxx n   is 

Pochhammer’s symbol.  
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Table 2.10: Properties of Gauss hypergeometric distribution 

Parameters 0 , 
0

,    

Probability  

Density Function 
),();;,(

)1()1(
)(

12

11





BtF

txxx
xf








,  (12)

10  x   where 12 F is the hypergeometric 

function.  

Cumulative 

Distribution 

function 
 


















),;2;,1;1(

),;1;,;(1

),();;,()1(
)(

1

1

12

xtxxF

xtxF

BtF

x
xF









 

 

Mean 





























)1;;,(

),()1(

);1;,1()1,(

),();;,(

1

12

12

12

tF

Bt

tFB

BtF











 

 

General Moment 





























)1;1;1,(

)1,()1(

);;,(),(

),();;,(

1

12

12

12

tnnF

nBt

tnnFnB

BtF











 

 

The hypergeometric function from Equation (12) can be defined by: 

.
!)(

)()(
);;,(

0

12
n

z

c

ba
zcbaF

n

n n

nn





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Table 2.11: Properties of generalized beta of the 1st kind distribution 

Parameters 0a , 0 , 0q
 

Probability  

Density Function 
),(

))(1(
)(

11

qBb

bxax
xf

a

qaa



  
 ,    (13)

bx 0  

Cumulative 

Distribution 

Function 

  
   qBb

bxqFx
a

aa

,

;1;,112






 
   

 

Mean  
 



,

1,

qB

a
qbB 

     

 

General Moment  
 



,

,

qB

a
nqBbn 

     

 

 

Table 2.12: Properties of Kumaraswamy distribution 

Parameters 0 ,
0

 

Probability  

Density Function 

11 )1()(    xxxf ,   (14)

10  x  

Cumulative 

Distribution 

Function 

 )1(1)( xxF      

10  x  

Mean  11, aB     
 

General 

Moments 

 1, anB      
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Table 2.13: Properties of standard arcsine distribution 

Probability  

Density Function 
)1(

1
)(

xx
xf





,    (15)

10  x  

Cumulative 

Distribution 

Function 


)(sin2
)(

1 x
xF



 ,    

10  x  

Mean 1/2 

Variance 1/8 

General Moment  

)1(

2/1





n

n


      

 

 

2.5 Modelling of rainfall occurrence – discrete distribution 

 

Besides modelling the rainfall amount, understanding the rainfall 

occurrence also important in studying the rainfall characteristic. The definition of 

rainfall occurrence or spell is based on the consecutive number of days of having 

dry (wet) day after every wet (dry) day. In this study, we considered a wet day when 

it has the rainfall volume greater or equal to 1mm for the day. One of the objectives 

of this study is to find the best fitting distribution in both dry spell and wet spell 

from a number of chosen distributions to a few selected important rainfall stations 

of Malaysia. Logarithmic distribution was suggested by Williams (1952), who was 

among the first to be involved in the study of the distribution of wet and dry 
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sequences, using data from England and it is found that logarithmic distribution 

fitted very well to the distribution of dry spells. Other most frequently used model 

in dry and wet spell is the Markov chain. The Markov chain has been applied by 

many authors e.g. Gabriel and Neumann (1962), Richardson (1981) and Dubrovský 

(1997). However, the Markov chain model tends to exhibit geometric distribution 

for the probability of extreme long dry or wet spells. In fact, this model normally 

underestimates the long dry spells but overestimates the very short dry spells. 

Therefore, Berger and Goossens (1983) and Nobilis (1986) have reproduced the 

short and long spells by using higher order Markov chain and Eggenberger-Polya 

distribution. It is found that Eggenberger-Polya distribution is the best fit in the 

long spells. Later, a model constituting two different geometric distributions is 

proposed by Racsko et al. (1991). The mixed distributions were divided according 

to the length of dry sequences. Results suggested that mixed distributions could be 

favorable in reproduction the long dry spells while for wet spells, simple geometric 

distribution could be promising. At the same time, it was realized that Poisson 

distribution fits well to the excessive dry events at the Catalonia (69 stations) (Lana 

and Burgueño, 1998).  

In this research, Hurwitz-Lerch Zeta (HLZ) distribution is studied and 

compared with the other well-known distributions since it is a relatively new 

distribution that has not been applied in precipitation studies. The candidate 

distributions are as follows: 

1. Hurwitz-Lerch Zeta distribution  

2. Eggenberger-Polya distribution  
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3. Logarithmic distribution   

4. Truncated Poisson distribution   

5. Geometric distribution   

 

The probability mass function (PMF) and properties of above distributions are 

presented in Equation 16 to Equation 20 and Table 2.14 to Table 2.18 respectively.  

 

Table 2.14: Properties of Hurwitz-Lerch Zeta distribution 

Probability  

Mass Function 1)(),,(

1



s

k

k
akasT

P



, ,2,1k  (16) 

where 







1
1)(

),,(

k
s

k

ak
asT


 , 

10   ; Cs ; 1a ; 0s  when 

1  

Mean 
a

asT

asT




),,(

),1,(




     

 

Table 2.15: Properties of Eggenberger-Polya distribution 

Probability  

Mass Function 1
)1)(1(

)2(





 kk P

dk

dkh
P , ,3,2k   (17)  

dhdP /

1 )1(   

1
2


h

s
d where 0, hs  
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Table 2.16: Properties of logarithmic distribution 

Probability  

Mass Function 
)1ln( 








k
P

k

k , ,...2,1k    (18) 

  

where 10    

CDF  
)1ln(

0,1;
1)(










kB
kF    

 

where B is the incomplete beta function 

Mean 




 



1)1ln(

1
     

 

Variance 

)1(ln)1(

)1ln(

22 







     

 

 

Table 2.17: Properties of truncated Poisson distribution 

Probability  

Mass Function 
!)1( ke

P
k

k






, ,...2,1k    (19)  

where 0  

Mean 

1



e
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Variance 



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





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 1
1

1 

 

ee

e
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Table 2.18: Properties of geometric distribution 

Probability  

Mass Function 
ppP k

k  1)1( , ,...2,1k    (20)  

where 10  p  

CDF kp)1(1       
 

Mean 
p

1
      

 

Variance 
2

1

p

p
      

 

 

We will be discussing three proposed new distributions in the next chapter, 

where two new distributions will be based on beta-type distribution. A distribution 

chart between proposed distributions and the commonly used distributions in 

rainfall modelling discussed above is illustrated in the next chapter as well. 
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CHAPTER 3 

 

PROPOSED NEW DISTRIBUTIONS 

 

3.1 Background 

 

In recent years, there has been as increasing interest in applying mixed 

distribution in modelling precipitation data. Fadhilah et al. (2007) had found that a 

mixed-exponential distribution is the best fit distribution among exponential, 

Weibull and gamma distribution. Suhaila and Jemain (2007) also claimed that a 

mixed lognormal distribution is a better fit in precipitation compared with 

lognormal and skewed normal distribution. Studies from both Suhaila et al. (2007) 

and Jamaludin and Jemain (2008) have concluded that a mixed-distribution will be 

better in modelling the rainfall of Peninsular Malaysia.  

In this chapter, three new distributions will be proposed. The first and 

second proposed distribution will be beta-type distribution while another proposed 

model is a mixture distribution. The proposed beta-type distributions are 

generalized beta distribution that consists of 6 parameters and modified beta 

distribution with 5 parameters. On the other hand, the mixed proposed model is a 

mixture of 2 modified lognormal distributions with 7 parameters. Figure 3.3 

illustrates the relationship between one distribution and another with the proposed 

distributions.  
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3.2 Proposed generalized beta distribution 

 

The proposed generalized beta distribution with 6 parameters , , ,  ,  

and z is constructed from the generalized hypergeometric function. The proposed 

generalized beta distribution includes many beta-type distributions, e.g. Gauss 

hypergeometric by Armero and Bayarri (1994), generalized beta of the 1st kind by 

McDonald (1984), Kumaraswamy (1980) distribution and arcsine distribution.  The 

probability density function of the proposed generalized beta distribution is given 

by: 

 

   
           
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23 F  is a generalized hypergeometric function and defined by: 
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




,

 

where Re 0 , Re 0 , 
Re 0)(   , |arg (1-z)|< 

(Gradshteyn and Ryzhik 2007, p. 813, 7.512.9). 

Then it can be easily shown that  
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xFzxxxz
. 

The advantages of the proposed generalized beta distribution is it can be 

very versatile and flexible. The flexibility is able to provide good description to 

many different types of data, including unimodal, uniantimodal, increasing, 

decreasing, or bath-tub shape distribution depending on the value of its parameters. 

Table 3.1 and Figure 3.1 illustrate the shapes of the proposed generalized 

distribution’s PDF given different values for the parameters. 

 

Table 3.1: Values of parameters for proposed generalized beta distribution 

 z           

Green 0.3 2 1 1 1 2 

Yellow 0.4 2 1 -1 2 1 

Blue 0.4 2 -1 0.5 2 0.5 

Black 0.4 0 1 0.5 1.5 0.5 

Orange 0.4 2 -2 1 2 5 

Purple -1 2 -2 2 5 6 

Red 0.4 0 1 0.5 5 1.5 

Brown 0.4 0 -1 10 10 1 
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Figure 3.1: PDF of the proposed generalized beta density 

Section 3.2.1 to 3.2.4 show how the proposed generalized beta distribution can be 

reduced to Gauss hypergeometric, generalized beta of the 1st kind, Kumaraswamy 

and arcsine distribution.  

 

3.2.1 Gauss hypergeometric  

When 𝛼 = 𝛾;   𝜌 = 𝛽 + 𝜃;   𝑧 = −𝑡, 

𝐹(𝛾, 𝛽; 𝛾; 𝑥) = 𝐹0(𝛽; 𝑥)1 = (1 − 𝑥)−𝛽, 

𝐹(𝛼, 𝛽; 𝛾; 𝑧) = (1 − 𝑧)−𝛼𝐹(𝛼, 𝛾 − 𝛽; 𝛾; 𝑧 𝑧 − 1⁄ ), 

 

Γ(𝛾+𝜌−𝛼)Γ(𝛾+𝜌−𝛽)

Γ(𝛾+𝜌)Γ(𝛾+𝜌−𝛼−𝛽)
(1 − 𝑧)𝜎𝑥𝛾−1(1 − 𝑥)𝜌−1(1 − 𝑧𝑥)−𝜎𝐹(𝛼, 𝛽; 𝛾; 𝑥)

𝐹23 (𝜌, 𝜎, 𝛾 + 𝜌 − 𝛼 − 𝛽; 𝛾 + 𝜌 − 𝛼, 𝛾 + 𝜌 − 𝛽; 𝑧 𝑧 − 1⁄ )𝐵(𝛾, 𝜌)
 

=

Γ(𝛽+𝜃)Γ(𝛾+𝜃)

Γ(𝛾+𝛽+𝜃)Γ(𝜃)
(1 + 𝑡)𝜎𝑥𝛾−1(1 − 𝑥)𝛽+𝜃−1(1 + 𝑡𝑥)−𝜎(1 − 𝑥)−𝛽

𝐹23 (𝛽 + 𝜃, 𝜎, 𝜃; 𝛽 + 𝜃, 𝛾 + 𝜃;
𝑧

𝑧−1
) 𝐵(𝛾, 𝛽 + 𝜃)
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=

Γ(𝛽+𝜃)Γ(𝛾+𝜃)

Γ(𝛾+𝛽+𝜃)Γ(𝜃)
(1 + 𝑡)𝜎𝑥𝛾−1(1 − 𝑥)𝜃−1(1 + 𝑡𝑥)−𝜎

𝐹12 (𝜎, 𝜃; 𝛾 + 𝜃;
𝑧

𝑧−1
)

Γ(𝛾)Γ(𝛽+𝜃)

Γ(𝛾+𝛽+𝜃)

 

=

Γ(𝛾+𝜃)

Γ(𝛾)Γ(𝜃)
(1 + 𝑡)𝜎𝑥𝛾−1(1 − 𝑥)𝜃−1(1 + 𝑡𝑥)−𝜎

𝐹12 (𝜎, 𝜃; 𝛾 + 𝜃;
𝑧

𝑧−1
)

 

 𝐿𝑒𝑡 𝑢 = 𝛾 + 𝜃 ⟹  𝜃 = 𝑢 − 𝛾 

 𝐹12 (𝜎, 𝜃; 𝛾 + 𝜃;
𝑧

𝑧−1
) 

 = 𝐹12 (𝜎, 𝑢 − 𝛾; 𝑢;
𝑧

𝑧−1
) 

 = 𝐹12 (𝜎, 𝛾; 𝛾 + 𝜃; 𝑧)(1 − 𝑧)𝜎 

 = 𝐹12 (𝜎, 𝛾; 𝛾 + 𝜃; −𝑡)(1 + 𝑡)𝜎 

 

=

Γ(𝛾+𝜃)

Γ(𝛾)Γ(𝜃)
(1 + 𝑡)𝜎𝑥𝛾−1(1 − 𝑥)𝜃−1(1 + 𝑡𝑥)−𝜎

𝐹12 (𝜎, 𝛾; 𝛾 + 𝜃; −𝑡)(1 + 𝑡)𝜎
 

=
𝑥𝛾−1(1 − 𝑥)𝜃−1(1 + 𝑡𝑥)−𝜎

𝐹12 (𝜎, 𝛾; 𝛾 + 𝜃; −𝑡)𝐵(𝜃, 𝛾)
, 0 < 𝑥 < 1. 

This is the pdf of Gauss hypergeometric distribution. 

 

3.2.2 Generalized beta of the 1st kind 

Let 𝑧 = 0;    𝛼 = 𝛾;    𝜌 − 𝛽 = 𝑞, 

𝐹(𝛾, 𝛽; 𝛾; 𝑥) = 𝐹0(𝛽; 𝑥)1 = (1 − 𝑥)−𝛽, 

Γ(𝛾+𝜌−𝛼)Γ(𝛾+𝜌−𝛽)

Γ(𝛾+𝜌)Γ(𝛾+𝜌−𝛼−𝛽)
(1 − 𝑧)𝜎𝑥𝛾−1(1 − 𝑥)𝜌−1(1 − 𝑧𝑥)−𝜎𝐹(𝛼, 𝛽; 𝛾; 𝑥)

𝐹23 (𝜌, 𝜎, 𝛾 + 𝜌 − 𝛼 − 𝛽; 𝛾 + 𝜌 − 𝛼, 𝛾 + 𝜌 − 𝛽;
𝑧

𝑧−1
) 𝐵(𝛾, 𝜌)

 

=

Γ(𝛾+𝜌−𝛼)Γ(𝛾+𝜌−𝛽)

Γ(𝛾+𝜌)Γ(𝛾+𝜌−𝛼−𝛽)
𝑥𝛾−1(1 − 𝑥)𝜌−1𝐹(𝛼, 𝛽; 𝛾; 𝑥)

𝐵(𝛾, 𝜌)
 

=

Γ(𝛾+𝜌−𝛾)Γ(𝛾+𝜌−𝛽)

Γ(𝛾+𝜌)Γ(𝛾+𝜌−𝛾−𝛽)
𝑥𝛾−1(1 − 𝑥)𝜌−1(1 − 𝑥)−𝛽

Γ(𝛾)Γ(𝜌)

Γ(𝛾+𝜌)
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=

Γ(𝜌)Γ(𝛾+𝜌−𝛽)

Γ(𝛾+𝜌)Γ(𝜌−𝛽)
𝑥𝛾−1(1 − 𝑥)𝜌−𝛽−1

Γ(𝛾)Γ(𝜌)

Γ(𝛾+𝜌)

 

=
Γ(𝛾 + 𝜌 − 𝛽)𝑥𝛾−1(1 − 𝑥)𝜌−𝛽−1

Γ(𝛾)Γ(𝜌 − 𝛽)
 

=
Γ(𝛾 + 𝑞)𝑥𝛾−1(1 − 𝑥)𝑞−1

Γ(𝛾)Γ(𝑞)
 

=
𝑥𝛾−1(1 − 𝑥)𝑞−1

B(γ, q)
 

By transformation 

Let 𝑦 = 𝑏𝑥1/𝑎 ⟹ 𝑥 = (
𝑦

𝑏
)

𝑎

  

           
𝑑𝑥

𝑑𝑦
=

𝑎𝑦𝑎−1

𝑏𝑎
  

𝑓𝑦(𝑦) = 𝑓𝑥(𝑥)
𝑑𝑥

𝑑𝑦
  

=
[(

𝑦

𝑏
)

𝑎
]

𝛾−1

[1−(
𝑦

𝑏
)

𝑎
]

𝑞−1

𝐵(𝛾,𝑞)
∙

𝑎𝑦𝑎−1

𝑏𝑎
  

=
𝑎𝑦𝑎𝛾−1 [1 − (

𝑦

𝑏
)

𝑎

]
𝑞−1

𝑏𝑎𝛾𝐵(𝛾, 𝑞)
  ,     0 < 𝑦 < 𝑏. 

This is the pdf of generalized beta of the 1st kind. 

 

3.2.3 Kumaraswamy distribution 

Let 𝑧 = 0;    𝛼 = 𝛾;    𝜌 − 𝛽 = 𝑞;     𝑏 = 1;     𝛾 = 1 

𝐹(𝛾, 𝛽; 𝛾; 𝑥) = 𝐹0(𝛽; 𝑥)1 = (1 − 𝑥)−𝛽 

 

Γ(𝛾+𝜌−𝛼)Γ(𝛾+𝜌−𝛽)

Γ(𝛾+𝜌)Γ(𝛾+𝜌−𝛼−𝛽)
(1 − 𝑧)𝜎𝑥𝛾−1(1 − 𝑥)𝜌−1(1 − 𝑧𝑥)−𝜎𝐹(𝛼, 𝛽; 𝛾; 𝑥)

𝐹23 (𝜌, 𝜎, 𝛾 + 𝜌 − 𝛼 − 𝛽; 𝛾 + 𝜌 − 𝛼, 𝛾 + 𝜌 − 𝛽;
𝑧

𝑧−1
) 𝐵(𝛾, 𝜌)

 

=

Γ(𝛾+𝜌−𝛼)Γ(𝛾+𝜌−𝛽)

Γ(𝛾+𝜌)Γ(𝛾+𝜌−𝛼−𝛽)
𝑥𝛾−1(1 − 𝑥)𝜌−1𝐹(𝛼, 𝛽; 𝛾; 𝑥)

𝐵(𝛾, 𝜌)
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=

Γ(𝛾+𝜌−𝛾)Γ(𝛾+𝜌−𝛽)

Γ(𝛾+𝜌)Γ(𝛾+𝜌−𝛾−𝛽)
𝑥𝛾−1(1 − 𝑥)𝜌−1(1 − 𝑥)−𝛽

Γ(𝛾)Γ(𝜌)

Γ(𝛾+𝜌)

 

=

Γ(𝜌)Γ(𝛾+𝜌−𝛽)

Γ(𝛾+𝜌)Γ(𝜌−𝛽)
𝑥𝛾−1(1 − 𝑥)𝜌−𝛽−1

Γ(𝛾)Γ(𝜌)

Γ(𝛾+𝜌)

 

=
Γ(𝛾 + 𝜌 − 𝛽)𝑥𝛾−1(1 − 𝑥)𝜌−𝛽−1

Γ(𝛾)Γ(𝜌 − 𝛽)
 

=
Γ(𝛾 + 𝑞)𝑥𝛾−1(1 − 𝑥)𝑞−1

Γ(𝛾)Γ(𝑞)
 

=
𝑥𝛾−1(1 − 𝑥)𝑞−1

B(γ, q)
 

By transformation 

Let 𝑦 = 𝑏𝑥
1

𝑎 ⟹ 𝑥 = (
𝑦

𝑏
)𝑎  

𝑑𝑥

𝑑𝑦
=

𝑎𝑦𝑎−1

𝑏𝑎   

𝑓𝑦(𝑦) = 𝑓𝑥(𝑥)
𝑑𝑥

𝑑𝑦
  

=
[(

𝑦

𝑏
)

𝑎

]
𝛾−1

[1 − (
𝑦

𝑏
)

𝑎

]
𝑞−1

𝐵(𝛾, 𝑞)
∙

𝑎𝑦𝑎−1

𝑏𝑎
 

=
𝑎𝑦𝑎𝛾−1 [1 − (

𝑦

𝑏
)

𝑎

]
𝑞−1

𝑏𝑎𝛾𝐵(𝛾, 𝑞)
       0 < 𝑦 < 𝑏 

= 𝛼𝑞𝑦𝛼−1(1 − 𝑦𝛼)𝑞−1,        0 < 𝑦 < 1. 

This is the pdf of Kumaraswamy distribution. 

 

3.2.4 Standard arcsine distribution 

Let 𝑧 = 0;    𝛼 = 0;    𝛽 = 0;    𝛾 = 0.5;    𝜌 = 0.5 

Γ(𝛾+𝜌−𝛼)Γ(𝛾+𝜌−𝛽)

Γ(𝛾+𝜌)Γ(𝛾+𝜌−𝛼−𝛽)
(1 − 𝑧)𝜎𝑥𝛾−1(1 − 𝑥)𝜌−1(1 − 𝑧𝑥)−𝜎𝐹(𝛼, 𝛽; 𝛾; 𝑥)

𝐹23 (𝜌, 𝜎, 𝛾 + 𝜌 − 𝛼 − 𝛽; 𝛾 + 𝜌 − 𝛼, 𝛾 + 𝜌 − 𝛽;
𝑧

𝑧−1
) 𝐵(𝛾, 𝜌)

 

=

Γ(𝛾+𝜌−𝛼)Γ(𝛾+𝜌−𝛽)

Γ(𝛾+𝜌)Γ(𝛾+𝜌−𝛼−𝛽)
𝑥𝛾−1(1 − 𝑥)𝜌−1𝐹(𝛼, 𝛽; 𝛾; 𝑥)

𝐵(𝛾, 𝜌)
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=

Γ(1−𝛼)Γ(1−𝛽)

Γ(1−𝛼−𝛽)
𝐹12 (𝛼, 𝛽; 0.5; 𝑥)

𝜋√𝑥(1 − 𝑥)
 

=
1

𝜋√𝑥(1 − 𝑥)
 . 

This is the pdf of standard arcsine distribution. 

 

3.3 Proposed modified beta distribution 

 

The proposed modified beta distribution is constructed based on the generalized 

hypergeometric function as well. It has 5 parameters , , , , . Table 3.2 shows 

the basic properties of the modified beta distribution: 

 

Table 3.2: Properties of modified beta distribution 

Probability  

Density Function 
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where Re 0 , Re 0 , 
Re 0)(    (Gradshteyn and Ryzhik 2007, 

p. 813, 7.512.5). 

Then it can be easily shown that  

1
)1;,;,,(),(

);;,()1(1

0
23

12

11













FB

xFxx
 

The advantages of modified distribution are it is very flexible and relates with many 

existing distributions such as beta, Gauss hypergeometric, generalized beta and 

arcsine distributions. However, the disadvantage is the difficulty to get 

mathematical properties of the distribution because of its complex form of the pdf.

 
 

3.4 Proposed mixture of 2 modified lognormal distributions 

 

The proposed mixture of 2 modified lognormal distributions consists of 7 

parameters pcc ,,,,,, 222111  . The mixture of 2 modified lognormal 

distributions can be reduced to mixture of 2 lognormal distributions when c=0, 

modified lognormal when p=1, and lognormal distribution when c=0 and p=1. The 

probability density function of the mixture of 2 modified lognormal distributions is 

given by: 
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,   

where 0, 21  , 21, , 1,1 21  cc  and 10  p . 
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It can be shown that the integration of the probability density function of the 

mixture of 2 modified lognormal distributions equals to 1 since the mixture of 2 

modified lognormal distribution is a transformation distribution from skewed 

normal distribution. A skew-normal distribution has been introduced by Azzalini 

(1985). Its probability density function is of the form with parameter c (-∞ < c < 

∞). 

𝑓(𝑢) = 2𝜙(𝑢)𝛷(𝑐𝑢) 

where 𝜙  denotes a standard normal PDF and 𝛷  a standard normal distribution 

function. Transforming 𝑢 =  log 𝑦, we have the skewed lognormal pdf: 

𝑓(𝑦)𝑑𝑦 = 2 ×
1

√2𝜋 ∙ 𝑦
𝑒−

(ln𝑦)2

2 [∫
1

√2𝜋 ∙ 𝑡
𝑒−

(ln𝑡)2

2

𝑦𝑐

0

𝑑𝑡] 𝑑𝑦 

Let    ln𝑦 =
ln𝑥−𝜇

𝜎
 → 𝑦 = 𝑒

1

𝜎
ln(

𝑥

𝑒𝜇)
       ;            

1

𝑦
𝑑𝑦 =

1

𝜎𝑥
𝑑𝑥 

=
2

√2𝜋 ∙ 𝜎𝑥
𝑒

−
(ln𝑥−𝜇)2

2𝜎2 [∫
1

√2𝜋 ∙ 𝑡
𝑒−

(ln𝑡)2

2

(
𝑥

𝑒𝜇)

𝑐
𝜎

0

𝑑𝑡] 𝑑𝑥 

 

This is the PDF of the modified lognormal distribution. From there, the mixture of 

2 modified lognormal distribution is derived. The advantage of the mixture of 2 

modified lognormal is the PDF can be flexible e.g. unimodal and bimodal. The 

disadvantage is it is very difficult to get mathematical properties of the distribution 

because of its number of parameters and the complex form of the pdf. Figure 3.2 

shows the graphs of its PDF with the parameter given in Table 3.3. 
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Table 3.3: Parameter values for mixture of 2 modified lognormal 

distributions 

 
1  1  1c  2  2  2c  p 

Green 1 1 -1 1 1 -1 0.8 

Blue 1 1 1 1 1 1 0.8 

Red 1 5 0.5 1 2 1 0.8 

Black 0 1 0.2 1.5 0.1 -0.1 0.85 

 

 

Figure 3.2: PDF of mixture of 2 modified lognormal distributions with 

difference parameter values 

 

Figure 3.3 shows the relationship between the proposed distributions and some 

other distributions in chart with certain respective parameters.  
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Figure 3.3:  Relationship chart of various distributions   
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CHAPTER 4 

 

DATA AND METHODOLOGY 

 

4.1 Data collection and statistics (with maps) 

 

The rainfall data were collected from Ministry of Natural Resources and 

Environment Malaysia and were recorded at 15 minutes interval from 1st of January 

1995 to 31st of December 2004. However, the data were tabulated into daily interval 

as it illustrates simple method of analysis (Stern et al., 1982). In this study, we 

selected the Langat river basin as it is an important water catchment area that 

provides water supply to the 1.2 million people living in Kuala Lumpur and 

Selangor, the capital city of Malaysia.  

 

Figure 4.1: The map location for chosen rainfall stations in Selangor, 

Malaysia 
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Figure 4.1 shows the location of where all six rainfall stations 2815001, 2916001, 

2818110, 3118102, 3119001 and 3119104 (in red dot) on the map of Malaysia. The 

Langat river basin is located at the region of Selangor and Negeri Sembilan states, 

where it is near to the straits of Malacca. This rainfall over this region is likely to 

be influenced by the south west monsoon over the north east monsoon seasons 

where the wind on average is below 15 knots. 

For simplicity, the stations will be renamed using alphabets instead of 

station number as follows: 

Table 4.1: Renamed rainfall station 

Original Rainfall Station Number Renamed Rainfall Station 

2815001 A 

2916001 B 

2818110 C 

3118102 D 

3119001 E 

3119104 F 

 

We use one of the rainfall stations (Station D) that is located at Sungai Lui 

of the Langat river basin. The rainfall data set has 2057 days (56.31%) of zero 

rainfall days out of 3653 days (10 years) recorded. Non-zero rainfall is studied and 

the rainfall volume is measured in millimeters (mm). During the 10 years period, 

the highest recorded volume of rainfall per day is 121.5mm. It has mean of 

12.03mm with variance 264.57mm, while median, mode, kurtosis and skewness are 
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5.50mm, 0.50mm, 6.80mm and 2.37mm respectively. The modelling of rainfall 

volume will only to be fitted on rainfall data from Station D. Figure 4.2 shows the 

histogram of the relative frequency versus rainfall volume. 

 

Figure 4.2: Relative frequency versus rainfall volume (mm) 

 

With the same source of data from year 1995-2004, we tabulated the data 

into number rainfall occurrence or dry/wet spell. In this instance, we consider the 

day as dry day when the rainfall volume is less than 1mm per day. A dry spell is 

the number of days consecutively having dry day after each wet day. While for the 

wet spell, it is defined by the number of having wet days consecutively after each 

dry day. Therefore dry/wet spell data follow a discrete distribution. The modelling 

of rainfall occurrence will be fitted on data from 6 rainfall stations which are the 

Station A, Station B, Station C, Station D, Station E and Station F. Figure 4.3 shows 

the histogram of the relative frequency versus number of dry spell for Station D 

while Figure 4.4 shows the histogram of the relative frequency versus number of 

wet spell for Station D. 
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Figure 4.3: Relative frequency versus dry spell days 

 

 

Figure 4.4: Relative frequency versus wet spell days 

 

4.2 Parameter estimation 

 

The Maximum Likelihood Estimation (MLE) is the backbone of statistical 

estimation and the basis for deriving estimation of unknown parameters for a given 
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model or a set of data. MLE method is used since MLE is asymptotically normally 

distributed and able to provide consistent approach to the problem of parameter 

estimation. Therefore it is optimal for large samples and has the minimum variance 

unbiased estimators when the sample size is large.  

Suppose nXXX ,,, 21  is the random variables with its probability density 

function 

𝑓𝜽(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = 𝑓(𝑋1, 𝑋2, ⋯ , 𝑋𝑛|𝜽), 

where  is the vector ),,,( 21 k  for the function.  

Given observed values ,,,, 2211 nn xXxXxX    the likelihood of  which is 

the probability of observing the given data as a function of  is given by:  

𝐿(𝜽; 𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛|𝜽). 

If nXXX ,,, 21  are independent and identically distributed with𝑓𝜽(𝑥𝑖) , 

then the likelihood function will be 𝐿(𝜽; 𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = ∏ 𝑓(𝑥𝑖|𝜽)𝑛
𝑖=1 . The 

maximum likelihood estimator of   is the values of parameters where it maximized 

the likelihood function 𝐿(𝜽; 𝑥1, 𝑥2, ⋯ , 𝑥𝑛). To some extent maximizing the product 

function can be quite tedious, we often maximize the log-likelihood since logarithm is also 

an increasing function.  

 



n

i

ixfl
1

)|(log)(  . 

In regular cases, we equivalently maximize 𝐿(𝜽; 𝑥1, 𝑥2, ⋯ , 𝑥𝑛) by solving  

0),,,;(log 21 



nxxxL 


, 
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which called the likelihood equation. However, the complexity of the proposed 

generalized distributions create serious complications for parameter estimation. 

This resulted in the likelihood function formed could be numerically intractable as 

the likelihood function cannot be solved analytically. Therefore, a global 

optimization method, simulated annealing algorithm is used in the assist to find the 

maximize likelihood estimator (Goffe, 1996). Simulated annealing algorithm is a 

form of stochastic optimization has been chosen since it is explicitly designed for 

multi-optimal points function. It optimizes the function by exploring the entire 

surface of the function and it makes fewer assumptions than classical optimization 

methods such as Newton-Raphson, the Davidon-Fletcher-Powel, and the simplex 

method. The simulated annealing algorithm method will evaluate the cost function 

by random so that it is possible for the transitions to be out of local maximum and 

it is able to differentiate the “gross behavior” and the finer “wrinkles” of the 

function. The algorithm could first find the global maximum of the function domain, 

and then it will continue with its finer details in finding the optimal maximum, or a 

point that is very near to it. Corana et al. (1989) has proven that it is much more 

robust and reliable than those classical algorithms as it always able to discover the 

optimum point or a point that is close to it. However, the drawback will be it takes 

longer time to compute. Since the proposed generalized distributions have more 

than 3 parameters, the simulated annealing algorithm is the alternate solution to 

compute the MLE.  
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4.3 Model selection criteria 

 

We considered Akaike’s information criterion (AIC) (Akaike, 1974) and 

Bayesian information criterion (BIC) (Schwarz, 1978) as measures of relative 

quality among all the distributions for each station. The AIC and BIC are used to 

determine the best fit distributions. The AIC and BIC consider the statistical 

goodness of fit with the number of parameters of the model taken into account as a 

penalty for increasing in the number of parameters, with BIC penalizes more on the 

number of parameters compared to AIC.  

LkAIC ln22  ,     

LnkBIC ln2ln  ,  

where    

k = number of parameter in the model, 

L= maximum likelihood value, 

n = number of data . 

Therefore, with the same value of maximum likelihood, the less parameter will 

return a smaller value for AIC and BIC. In other words, the model that with the 

minimum index of AIC and BIC among others will be preferred as the adequate fit 

to the data. Noted that the values of AIC and BIC themselves only provide the 

comparison of the quality of each model relative to other distributions, whose the 

values by themselves do not provide any useful information. 
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4.4 Research procedures 

 

The modelling of rainfall data in Langat river basin will be separated into 

modelling the daily rainfall volume and rainfall occurrence. Both will be carried 

out as follows: 

(i) Estimate the parameters of each distribution discussed earlier by 

using maximum likelihood estimation method.  

(ii) An optimal model will be chosen based on the criteria of AIC and 

BIC 

(iii) Based on the parameters estimated, the graph of the PDF of the 

distributions will be plotted and compared with the histogram of 

data. 
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CHAPTER 5 

 

RESULTS AND DISCUSSIONS 

5.1 Overview 

 

The first part of this chapter will discuss the modelling of rainfall volume 

using continuous distributions on station D.  The results of the AIC and BIC of all 

distributions will be organized in a table and graphs for comparisons. The graphs 

of every candidate model’s PDF will be plotted together with the histogram of data 

for comparison. Next, the best model will be used to examine whether there is 

changes on rainfall pattern by using hypothesis testing.  

The second part of this chapter will focus on modelling of the rainfall 

occurrence for both dry and wet spells using discrete distributions on the 6 chosen 

rainfall stations (A, B, C, D, E and F). The results will be organized in the tables. 

However, only the graphs of Hurwitz-Lerch Zeta (HLZ) distribution will be plotted 

for the comparison with the histogram of the rainfall data since HLZ distribution 

have the best fitting among all in general. In addition, it is relatively new model in 

exploring the hydrology analysis compared with other existing distributions that 

have already been studied by many researchers. Therefore we would like to 

emphasis on the performance of the HLZ distribution in model fitting.  
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5.2 Results on daily rainfall volume modelling 

 

Based on the maximum likelihood estimation that computed from the 

simulated annealing algorithm, we obtained the maximum log-likelihood 

function’s values. We compiled and listed out the results of AIC and BIC computed 

from the maximum log-likelihood in Table 5.1. 

 

Table 5.1: Comparison of AIC and BIC for difference distributions 

No. Distribution Maximum Log-

Likelihood 

AIC BIC 

1 Transformed Beta 

distribution 

-5492.99 10989.99 11000.74 

2 Transformed Gauss 

hypergeometric distribution 

-5458.32 10924.66 10942.59 

3 Generalized beta of the 1st 

kind distribution 

-5424.28 10854.56 10870.69 

4 Lognormal distribution -5404.83 10813.66 10824.41 

5 Mixture of two lognormal 

distribution 

-4442.28 8894.56 8921.44 

6 Modified lognormal 

distribution 

-5404.52 10815.06 10831.18 

7 Exponential distribution -5566.35 11134.70 11140.08 
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8 Mixture of two exponential 

distribution 

-5391.38 10788.75 10804.88 

9 Transformed Kumaraswamy 

distribution 

-5470.50 10945.00 10955.75 

10 Pareto distribution -5446.70 10897.40 10908.15 

11 Marginal of linear and 

angular distribution 

-5395.70 10795.40 10806.15 

12 Gamma distribution -5466.71 10937.42 10948.17 

13 Proposed generalized beta 

distribution 

-5418.35 10848.71 10880.96 

14 Modified beta distribution -5467.35 10944.69 10971.57 

 

From the results based on the Table 5.1, the best fit model has been bolded 

and it is obvious that the mixture of two lognormal distributions has the lowest 

index in both AIC and BIC. The comparisons in results of the AIC and BIC among 

all the distributions are also shown in Figure 5.1 and Figure 5.2. 
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Figure 5.1: Graph of AIC for different distributions 

 

 

Figure 5.2: Graph of BIC for different distributions 
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From both the graphs on Figure 5.1 and Figure 5.2, it is very obvious that 

the mixture of two lognormal has a significant different in both the index of AIC 

and BIC compared with other distributions. Different distribution might be selected 

by different criteria. However for this data set, the same distribution which is 

mixture of two lognormal was selected using different AIC and BIC criteria.  

 

5.2.1 Graphs of histogram and probability density function 

 

Graphs of probability density function versus rainfall volume are plotted for 

every distribution and compare with the histogram of rainfall data from station D. 

Note that since the range of x for the beta-type distribution is from 0 to 1, therefore 

transformation for beta type distribution is needed to extend the range of x to fit 

into the data set. The maximum daily rainfall volume at station D throughout the 

10 years periods is 121.4mm. It is prudent to assume the maximum rainfall volume 

per day to be 150mm. To transform, we let
150

y
x  , then dydx

150

1
 , 

dyyfdxxf

x y

 
0

150

0

)150(
150

1
)( , where 1500  y . 

 

 



52 

 

 

Figure 5.3: PDF of transformed beta distribution and histogram for 

rainfall amount 

 

Figure 5.3 shows the histogram of the rainfall amount and the transformed 

beta distribution’s probability density function using the estimated parameters 

obtained by using the MLE approach. The PDF and estimated parameters are as 

follows: 

f(y) = 
),(150

)150/1()150/( 11

qB

yy q



  
 

 = 0.6115 

q = 6.7800. 
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Figure 5.4: PDF of transformed Gauss hypergeometric distribution 

and histogram for rainfall amount 

 

Figure 5.4 shows the histogram of the rainfall amount and the transformed 

Gauss hypergeometric distribution’s probability density function using the 

estimated parameters obtained by using the MLE approach. The PDF and estimated 

parameters are as follows: 

f(y) = 
),();;,(150

)150/1()150/1()150/(

12

11





BtF

tyyy



 

 

 = 0.7011 

 = 0.7044 

 = 15.3543 

t = 0.6741. 

 



54 

 

 

Figure 5.5: PDF of generalized beta of the 1st kind distribution and 

histogram for rainfall amount 

 

Figure 5.5 shows the histogram of the rainfall amount and the generalized 

beta of the 1st kind distribution’s probability density function using the estimated 

parameters obtained by using the MLE approach. The PDF and estimated 

parameters are as follows: 

f(x) = 
),(

))(1( 11

qBb

bxax
a

qaa



  
 

 = 0.0389 

 = 32.2878 

q = 4.5343 

b = 150. 
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Figure 5.6: PDF of transformed Kumaraswamy distribution and 

histogram for rainfall amount 

 

Figure 5.6 shows the histogram of the rainfall amount and the transformed 

Kumaraswamy’s distribution probability density function using the estimated 

parameters obtained by using the MLE approach. The PDF and estimated 

parameters are as follows: 

f(y) = 150/]))150/1()150/([ 11    yy  

 = 0.0625 

 = 0.6630. 
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Figure 5.7: PDF of lognormal distribution and histogram for rainfall 

amount  

 

Figure 5.7 shows the histogram of the rainfall amount and the lognormal 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach. The PDF and estimated parameters are as follows: 

f(x) = 
2

2

2

)(ln

2

1









x

e
x

 

 = 1.5801 

 = 1.4733. 

 

Figure 5.8: PDF of mixture of 2 lognormal distributions and 

histogram for rainfall amount 
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Figure 5.8 shows the histogram of the rainfall amount and the mixture of 2 

lognormal distributions’ probability density function using the estimated 

parameters obtained by using the MLE approach. The PDF and estimated 

parameters are as follows: 

f(x) = 
2

2

2
2

2
1

2
1

2

)(ln

2

2

)(ln

1 2

1

2















 



xx

e
x

p
e

x

p
 

1  = 1.8561 

1  = 1.3155 

2  = -0.6931 

2  = 0.0010 

p = 0.8917. 

 

 

Figure 5.9: PDF of modified lognormal distribution and histogram for 

rainfall amount 

 

Figure 5.9 shows the histogram of the rainfall amount and modified 

lognormal distributions’ probability density function using the estimated 



58 

 

parameters obtained by using the MLE approach. The PDF and estimated 

parameters are as follows: 

f(x) = 
 

























c

e

x tx

dte
t

e
x 0

2

ln

2

)(ln 2

2

2

2

1

2

1
2  

  = 2.3638 

  = 1.6687 

c = -0.7272. 

 

 

Figure 5.10: PDF of exponential distribution and histogram for 

rainfall amount 

 

Figure 5.10 shows the histogram of the rainfall amount and exponential 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach. The PDF and estimated parameters are as follows: 

f(x) = xe  
 

  = 0.0831 
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Figure 5.11: PDF of mixture of 2 exponential distributions and 

histogram for rainfall amount 

Figure 5.11 shows the histogram of the rainfall amount and the mixture of 

2 exponential distributions’ probability density function using the estimated 

parameters obtained by using the MLE approach. The PDF and estimated 

parameters are as follows: 

f(x) = 
xx

epep 21

21 )1(
  

  

1  = 0.0556 

2  = 0.4546 

p = 0.6231. 
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Figure 5.12: PDF of Pareto distribution and histogram for rainfall 

amount 

 

Figure 5.12 shows the histogram of the rainfall amount and the Pareto 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach. The PDF and estimated parameters are as follows: 

f(x) =   1
1









x

 

  = 1.9059 

  = 0.0794. 
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Figure 5.13: PDF of marginal of linear and angular distribution and 

histogram for rainfall amount 

 

Figure 5.13 shows the histogram of the rainfall amount and the marginal of 

linear and angular distribution’s probability density function using the estimated 

parameters obtained by using the MLE approach. The PDF and estimated 

parameters are as follows: 

f(x) =   xexI   0

22  

  = 0.5483 

  = 0.5051 
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Figure 5.14: PDF of gamma distribution and histogram for rainfall 

amount 

 

Figure 5.14 shows the histogram of the rainfall amount and the gamma 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach. The PDF and estimated parameters are as follows: 

f(x) = 




/1

)(

1 xk

k
ex

k




 

k = 0.66998 

  = 17.9609. 
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Figure 5.15: PDF of transformed proposed generalized beta 

distribution and histogram for rainfall amount 

 

Figure 5.15 shows the histogram of the rainfall amount and the transformed 

proposed generalized beta distribution’s probability density function using the 

estimated parameters obtained by using the MLE approach. The PDF and estimated 

parameters are as follows: 

f(y) = 
   
           

   








,1;,;,,150

150/;;,150/1150/1)150/(1

23

11

BzzF

yFzyyyz










 

  = 0.8743 

  = 5.125 

  = -29.9999 

  = 0.6393 

  = 6.8720 

z = 0.29588. 
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Figure 5.16: PDF of transformed modified beta distribution and 

histogram for rainfall amount 

 

Figure 5.16 shows the histogram of the rainfall amount and the modified 

beta distribution’s probability density function using the estimated parameters 

obtained by using the MLE approach. The PDF and estimated parameters are as 

follows: 

f(y) = 
)1;,;,,(),(

)150/;;,()150/1()150/(

23

12

11







 

FB

yFyy
 

  = 0.0009 

  = 0.6543 

  = 5.3545 

  = 0.0001 

  = 9.4622 

 

Since both the proposed generalized beta and modified beta distribution are 

the beta-type distribution, therefore transformation is needed to transform the 

maximum of the variable from 1 to 150 as well.  
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5.2.2 Discussion on daily rainfall volume modelling 

 

Based on the selection of minimum AIC as the model selection criterion, 

Table 5.1 shows that mixture of 2 lognormal distributions has the lowest AIC and 

BIC values which are 8894.56 and 8921.44 among all the distributions compared. 

This result indicates that mixture of 2 lognormal distributions is an optimal fit to 

the rainfall data among the distributions considered. Although from Figure 5.8, the 

mixture of 2 lognormal distributions’ PDF may not fit perfectly well during the low 

rainfall amount, that should not affect much on the heavy rainfall modelling. This 

is because in the view point of water resources management, it is more important 

to understand the rainfall behavior that brings high amount of rainfall. Note that the 

mixture of 2 modified lognormal distributions has not been estimated, due to its 

complexity of 7 parameters that make it very difficult in computing of its maximum 

likelihood. However, since mixture of 2 modified lognormal is a general model to 

mixture of 2 lognormal distributions, it is presumed that the mixture of 2 modified 

lognormal will perform close to the mixture of 2 lognormal distributions.  

Among the beta-type distributions, the proposed generalized beta 

distribution was fitted better than the other beta-type distributions, in this rainfall 

data set. Based on the plotted graphs, the proposed generalized beta distribution, 

generalized beta of the 1st kind and Kumaraswamy distribution are all generally 

fitted well in the rainfall data. Beta-type distributions generally have longer tail as 

it can be seen in the plotted graphs. The longer tails show that they have the higher 

tendency to have high rainfall amount per day, which usually resulted in flash flood 



66 

 

due to heavy rainfall. Therefore these models are better fit for natural disaster 

prevention. 

Generally a mixture distribution will create a longer tail as compared to its 

sole distribution (e.g. mixture of exponential distribution versus exponential 

distribution) and performs better than its sole distribution. It has a longer tail 

because it involved more parameters that able to give its probability density 

function’s curve more versatile to describe a data set. The reason a mixture 

distribution will have a better fit is because of the seasonal effect of rainfall in 

Malaysia that can be divided to dry and wet season, or monsoon season. Pareto 

distribution is also a mixture of exponential and gamma distribution. Therefore 

Pareto distribution is better fit than exponential and gamma distributions.  

 

5.2.3 Change of rainfall pattern within study period 

 

Since the study period is from 1995 to 2004, we do concern if there is a 

change of rainfall pattern throughout this 10 years.  Therefore, a hypothesis testing 

is carried out to examine on the change of rainfall pattern. The mixture of 2 

lognormal distributions has the best fit among all the other continuous distributions 

that has been compared. Therefore it is chosen to test on the change of climate by 

using hypothesis test. The hypothesis test will be based on likelihood ratio test 

under the assumption that the rainfall distributions of the two seasons are given by 
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Let )',,,,( 2211 jjjjjj p  , j=1,2, where 1 is the parameter vector 

estimated for the first 5 years, and 2 is the parameter vector estimated for the 

second 5 years, out of 10 years. Let )',,,,( 2211 p   be the parameter 

vector estimated for the whole 10 years. Then, null vs. alternative hypotheses are  

210 :  H  vs. 211 :  H . 

The likelihood of j is 
























 


j

j

ji

j

jin

i

x

ij

j

x

ij

j

j e
x

p
e

x

p
L

1

2

)(ln

2

2

)(ln

1

2
1

2
1

2
1

2
1

2

1

2
)( 








 , 

with joint likelihood of 1  and 2 is given by 

 


 


2

1 1

21 )(),(
j

n

i

j

j

LL  , 

and that of  is 






















 


n

i

x

i

x

i

ii

e
x

p
e

x

p
L

1

2

)(ln

2

2

)(ln

1

2
2

2
2

2
1

2
1

2

1

2
)( 








 ,

 

where jn is the number of days for positive rainfall amount during first and second 

5 years, and 21 nnn  for total 10 years. The maximized log-likelihood values of

1 , 2  and  are: 

52.1869)(ln 1 L , 

28.2540)(ln 2 L  ,  

28.4442)(ln L . 

Therefore, ,80.4409)(ln)(ln),(ln 2121   LLL  and we have  
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Test statistic 96.64)],(ln)([ln2
),(

)( 
ln2 21

21









 




LL

L

L
D  

2

510;05.0~  D  ; P-value < 0.00001. 

Since P-value < α = 0.05, therefore null hypothesis is rejected. This may suggest 

that there is change in climate throughout the 10 years from statistical point of view. 

  

The same hypothesis test is carried out on lognormal distribution  
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Let )',( jjj   , j=1,2, where 1  is the parameter vector estimated for the 

first 5 years, and 2  is the parameter vector estimated for the second 5 years, out 

of 10 years. Let )',(    be the parameter vector estimated for the whole 10 

years. Then, null vs. alternative hypotheses are  
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where jn is the number of days for positive rainfall amount during first and second 

5 years, and 21 nnn  for total 10 years. The likelihood function is written by 

)(L for the total lognormal rainfall. The maximized log-likelihood values of 1 , 2  

and  are: 

53.2664)(ln 1 L  ,  

98.2736)(ln 2 L  ,  

83.5404)(ln L . 

Therefore, 51.5401)(ln)(ln),(ln 2121   LLL , and we have 

Test statistic 64.6)],(ln)([ln2
),(

)( 
ln2 21

21









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


LL

L

L
D  

2

510;05.0~  D  ; P-value = 0.036153. 

Since P-value < α = 0.05, therefore null hypothesis is rejected. This shows the same 

result with mixture of two lognormal distributions as it may suggest that there is 

change in rainfall pattern throughout the 10 years from statistical point of view. 

 

5.3 Results on rainfall occurrence modelling 

 

Based on the maximum likelihood estimation that computed from the 

simulated annealing algorithm, we obtained the maximum log-likelihood 

function’s values. We compiled and listed out the results of AIC and BIC computed 

from the maximum log-likelihood in Table 5.2.1 to Table 5.7.2. 
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Table 5.2.1: Result of the model selection at Station A (Dry Spells) 

No. Distribution Maximum  

Log-Likelihood 

AIC BIC 

1 Hurwitz-Lerch 

Zeta distribution 

-1372.95 2751.903 2765.402 

 

2 Eggenberger-

Polya distribution 

-1394.18 2792.366 2801.366 

 

3 Logarithmic 

distribution 

-1381.90 2765.809 2770.308 

 

4 Truncated Poisson 

distribution 

-2351.63 4705.251 

 

4709.75 

5 Geometric 

distribution 

-1440.01 2882.019 

 

2886.518 

 

 

From Table 5.2.1, it is shown that the HLZ distribution has the best fit 

among all from the criteria of both AIC and BIC at Station A under dry spell 

modelling.  
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Table 5.2.2: Result of the model selection at Station A (Wet Spells) 

No. Distribution Maximum  

Log-Likelihood 

AIC BIC 

1 Hurwitz-Lerch Zeta 

distribution 

-803.18 1612.352 

 

1625.851 

 

2 Eggenberger-

Polya distribution 

-803.06 1610.12 

 

1619.119 

 

3 Logarithmic 

distribution 

-804.23 1610.453 

 

1614.904 

 

4 Truncated Poisson 

distribution 

-860.39 1722.777 

 

1727.277 

 

5 Geometric 

distribution 

-807.52 1617.049 

 

1621.548 

 

 

From Table 5.2.2, it is shown that the Eggenberger-Polya distribution has 

the best fit among all from the criteria of AIC while logarithmic distribution has the 

best fit in term of BIC at Station A under wet spell modelling.  

 

Table 5.3.1: Result of the model selection at Station B (Dry Spells) 

No. Distribution Maximum  

Log-Likelihood 

AIC BIC 

1 Hurwitz-Lerch 

Zeta distribution 

-1277.08 2560.161 

 

2573.381 

 

2 Eggenberger-Polya 

distribution 

-1307.16 2618.32 2627.134 
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3 Logarithmic 

distribution 

-1293.68 2589.37 

 

2593.777 

 

4 Truncated Poisson 

distribution 

-2990.33 5982.663 

 

5987.069 

 

5 Geometric 

distribution 

-1390.65 2783.306 

 

2787.713 

 

 

From Table 5.3.1, it is shown that the HLZ distribution has the best fit 

among all from the criteria of both AIC and BIC at Station B under dry spell 

modelling.  

 

Table 5.3.2 Result of the model selection at Station B (Wet Spells) 

No. Distribution Maximum  

Log-Likelihood 

AIC BIC 

1 Hurwitz-Lerch Zeta 

distribution 

-774.86 1555.725 

 

1568.94 

 

2 Eggenberger-Polya 

distribution 

-776.27 1556.538 1565.349 

3 Logarithmic 

distribution 

-776.48 1554.836 

 

1559.241 

 

4 Truncated Poisson 

distribution 

-852.88 1707.767 

 

1712.172 

 

5 Geometric 

distribution 

-781.19 1564.376 1568.782 
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From Table 5.3.2, it is shown that the logarithmic distribution has the lowest 

value of AIC and BIC at Station B under wet spell modelling. Therefore it suggests 

that logarithmic distribution is the best fit at Station B for wet spell.  

 

Table 5.4.1: Result of the model selection at Station C (Dry Spells) 

No. Distribution Maximum  

Log-Likelihood 

AIC BIC 

1 Hurwitz-Lerch 

Zeta distribution 

-1319.41 2644.813 

 

2658.17 

 

2 Eggenberger-Polya 

distribution 

-1333.39 2670.776 

 

2679.68 

 

3 Logarithmic 

distribution 

-1326.17 2654.345 

 

2658.797 

 

4 Truncated Poisson 

distribution 

-2456.02 4914.046 

 

4918.498 

 

5 Geometric 

distribution 

-1404.13 2810.26 

 

2814.712 

 

 

From Table 5.4.1, it is shown that the HLZ distribution has the best fit 

among all from the criteria of both AIC and BIC at Station C under dry spell 

modelling.  
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Table 5.4.2: Result of the model selection at station C (Wet Spells) 

No. Distribution Maximum Log-

Likelihood 

AIC BIC 

1 Hurwitz-Lerch Zeta 

distribution 

-823.67 1653.35 

 

1666.701 

 

2 Eggenberger-

Polya distribution 

-823.10 1650.207 

 

1659.108 

 

3 Logarithmic 

distribution 

-828.89 1659.776 

 

1664.226 

 

4 Truncated Poisson 

distribution 

-868.53 1739.06 

 

1743.511 

 

5 Geometric 

distribution 

-1403.07 2808.14 

 

2812.59 

 

 

From Table 5.4.2, it is shown that the Eggenberger-Polya distribution has 

the best fit among all from the criteria of both AIC and BIC at station C under wet 

spell modelling.  

 

Table 5.5.1: Result of the model selection at Station D (Dry Spells) 

No. Distribution Maximum Log-

Likelihood 

AIC BIC 

1 Hurwitz-Lerch 

Zeta distribution 

-1378.32 2762.644 

 

2776.089 

 

2 Eggenberger-Polya 

distribution 

-1389.40 2782.797 2791.76 
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3 Logarithmic 

distribution 

-1382.67 2767.346 

 

2771.827 

 

4 Truncated Poisson 

distribution 

-2395.27 4792.548 

 

4797.029 

 

5 Geometric 

distribution 

-1458.38 2918.76 

 

2923.242 

 

 

From Table 5.5.1, it is shown that the both HLZ and logarithmic distribution 

shared the best fitting at Station D for dry spell. HLZ distribution has the best fit 

among all from the criteria of AIC while logarithmic distribution has the best fit in 

term of BIC at Station D under dry spell modelling.  

 

Table 5.5.2: Result of the model selection at Station D (Wet Spells) 

No. Distribution Maximum Log-

Likelihood 

AIC BIC 

1 Hurwitz-Lerch Zeta 

distribution 

-990.03 1986.059 

 

1999.509 

 

2 Eggenberger-

Polya distribution 

-990.52 1985.05 

 

1994.016 

 

3 Logarithmic 

distribution 

-996.24 1994.48 

 

1998.963 

 

4 Truncated Poisson 

distribution 

-1093.55 2189.105 

 

2193.588 
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5 Geometric 

distribution 

-993.28 1988.566 

 

1993.049 

 

 

From Table 5.5.2, it is shown that the Eggenberger-Polya distribution has 

the best fit among all from the criteria of AIC while geometric distribution has the 

best fit in term of BIC at Station D under wet spell modelling.  

 

Table 5.6.1: Result of the model selection at Station E (Dry Spells) 

No. Distribution Maximum Log-

Likelihood 

AIC BIC 

1 Hurwitz-Lerch 

Zeta distribution 

-941.53 1889.056 

 

1901.404 

 

2 Eggenberger-Polya 

distribution 

-1005.16 2014.328 

 

2022.56 

 

3 Logarithmic 

distribution 

-1004.93 2011.864 

 

2015.98 

 

4 Truncated Poisson 

distribution 

-4486.36 8974.729 

 

8978.845 

 

5 Geometric 

distribution 

-1204.87 2411.74 

 

2415.856 

 

 

From Table 5.6.1, it is shown that the HLZ distribution has the best fit 

among all from the criteria of both AIC and BIC at Station E under dry spell 

modelling.  
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Table 5.6.2: Result of the model selection at Station E (Wet Spells) 

No. Distribution Maximum Log-

Likelihood 

AIC BIC 

1 Hurwitz-Lerch Zeta 

distribution 

-717.07 1440.131 

 

1452.472 

 

2 Eggenberger-Polya 

distribution 

-712.37 1428.74 

 

1436.967 

 

3 Logarithmic 

distribution 

-727.67 1457.343 

 

1461.457 

 

4 Truncated Poisson 

distribution 

-754.50 1510.994 

 

1515.108 

 

5 Geometric 

distribution 

-712.53 1427.05 

 

1431.164 

 

 

From Table 5.6.2, it is shown that the Geometric distribution has the best fit 

among all from the criteria of both AIC and BIC at Station E under wet spell 

modelling.  

 

Table 5.7.1: Result of the model selection at Station F (Dry Spells) 

No. Distribution Maximum Log-

Likelihood 

AIC BIC 

1 Hurwitz-Lerch 

Zeta distribution 

-1125.38 2256.75 

 

2269.647 

 

2 Eggenberger-Polya 

distribution 

-1165.99 2335.978 2344.576 
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3 Logarithmic 

distribution 

-1160.49 2322.975 

 

2327.274 

 

4 Truncated Poisson 

distribution 

-3283.82 6569.636 

 

6573.935 

 

5 Geometric 

distribution 

-1306.43 

 

2614.86 

 

2619.159 

 

 

From Table 5.7.1, it is shown that the HLZ distribution has the best fit 

among all from the criteria of both AIC and BIC at Station F under dry spell 

modelling.  

 

Table 5.7.2: Result of the model selection at Station F (Wet Spells) 

No. Distribution Maximum Log-

Likelihood 

AIC BIC 

1 Hurwitz-Lerch Zeta 

distribution 

-802.52 1611.043 

 

1623.934 

 

2 Eggenberger-

Polya distribution 

-802.93 1609.86 

 

1618.454 

 

3 Logarithmic 

distribution 

-806.89 1615.773 

 

1620.071 

 

4 Truncated Poisson 

distribution 

-882.20 1766.398 

 

1770.695 
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5 Geometric 

distribution 

-805.46 

 

1612.926 

 

1617.223 

 

 

From Table 5.7.2, it is shown that the Eggenberger-Polya distribution has 

the best fit among all from the criteria of AIC while geometric distribution has the 

best fit in term of BIC at Station F under wet spell modelling.  

As an overall comparison, the best fit model of all stations for dry and wet 

spell will be summarized in a table below: 

 

Table 5.8: Summary of best fit distributions 

Station Spell AIC BIC 

A Dry HLZ HLZ 

  Wet EP L 

B Dry HLZ HLZ 

  Wet L L 

C Dry HLZ HLZ 

  Wet EP EP 

D Dry HLZ L 

  Wet EP G 

E Dry HLZ HLZ 

  Wet G G 

F Dry HLZ HLZ 

  Wet EP G 

HLZ = Hurwitz-Lerch Zeta; EP = Eggenberger-Polya;  

L = Logarithmic; G = Geometric distribution 
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5.3.1 Graphs of histogram and probability mass function 

 

Graphs of relative frequency versus rainfall volume are plotted for HLZ 

distribution and compared with the rainfall data’s histogram. The probability mass 

function of HLZ is given by: 
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Figure 5.17: PMF of HLZ distribution and dry spell (days) histogram at  

 Station A  
 

Figure 5.17 shows the histogram of the rainfall dry spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station A. The estimated parameters are as follows: 

 = 0.9408 
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s = 0.7088 

a = 0.9999 

 

Figure 5.18: PMF of HLZ distribution and dry spell (days) histogram at 

Station B 

 

Figure 5.18 shows the histogram of the rainfall dry spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station B. The estimated parameters are as follows: 

 = 0.9754 

s = 0.9450 

a = 0.9999 
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Figure5.19: PMF of HLZ distribution and dry spell (days) histogram at 

Station C 

 

Figure 5.19 shows the histogram of the rainfall dry spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station C. The estimated parameters are as follows: 

 = 0.9583 

s = 0.8265 

a = 0.9999 

Figure 5.20: PMF of HLZ distribution and dry spell (days) histogram at  

Station D 
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Figure 5.20 shows the histogram of the rainfall dry spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station D. The estimated parameters are as follows: 

 = 0.9531 

s = 0.7556 

a = 0.9999 

 

Figure 5.21: PMF of HLZ distribution and dry spell (days) histogram at  

Station E 

 

Figure 5.21 shows the histogram of the rainfall dry spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station E. The estimated parameters are as follows: 

 = 0.9998 

s = 1.2328 

a = 0.9999 
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Figure 5.22: PMF of HLZ distribution and dry spell (days) histogram at 

Station F 

 

Figure 5.22 shows the histogram of the rainfall dry spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station F. The estimated parameters are as follows: 

 = 0.9947 

s = 1.1689 

a = 1.0000 
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Figure 5.23: PMF of HLZ distribution and wet spell (days) histogram at 

Station A 

 

Figure 5.23 shows the histogram of the rainfall wet spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station A. The estimated parameters are as follows: 

 = 0.6060 

s = 0.0003 

a = 0.4849 
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 Figure 5.24: PMF of HLZ distribution and wet spell (days) histogram 

at Station B 

 

Figure 5.24 shows the histogram of the rainfall wet spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station B. The estimated parameters are as follows: 

 = 0.6859 

s = 0.4762 

a = 0.9998 
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Figure 5.25: PMF of HLZ distribution and wet spell (days) histogram at 

Station C 

 

Figure 5.25 shows the histogram of the rainfall wet spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station C. The estimated parameters are as follows: 

 = 0.6118 

s = 0.00004 

a = 0.9999 
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Figure 5.26: PMF of HLZ distribution and wet spell (days) histogram at 

Station D 

 

Figure 5.26 shows the histogram of the rainfall wet spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station D. The estimated parameters are as follows: 

 = 0.6930 

s = 0.00002 

a = 0.9999 
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Figure 5.27: PMF of HLZ distribution and wet spell (days) histogram 

at Station E 

 

Figure 5.27 shows the histogram of the rainfall wet spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station E. The estimated parameters are as follows: 

 = 0.7119 

s = 0.00001 

a = 0.9999 
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Figure 5.28: PMF of HLZ distribution and wet spell (days) histogram 

at Station F 

 

Figure 5.28 shows the histogram of the rainfall wet spell and the HLZ 

distribution’s probability density function using the estimated parameters obtained 

by using the MLE approach for Station F. The estimated parameters are as follows: 

 = 0.6806 

s = 0.00006 

a = 0.9998 

 

5.3.2 Discussion on rainfall occurrence modelling 

 

 For dry spell, Hurwitz-Lerch Zeta distribution is a better fit among all other 

distributions under the criterion of AIC. Under the BIC criterion, HLZ distribution 

has the best fit among all stations except at Station D (Table 5.5.1) as logarithmic 

distribution has the lowest index for BIC at Station D.  

In the case of wet spell, Eggenberger-Polya distribution has the best fit 

under the AIC criterion in wet spell for 4 stations, which are Station A (Table 5.2.2), 
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Station C (Table 5.4.2), Station D (Table 5.5.2) and Station F (Table 5.7.2). 

Logarithmic and geometric distributions both have the best fit in wet spell on 

Station B (Table 5.3.2) and Station E (Table 5.6.2) respectively under the criterion 

of AIC.  However, using BIC, it suggests that logarithmic distribution is the best fit 

model at Station A and Station B, while geometric distribution has the best fit at 

Station D, E and F, with Eggenberger-Polya distribution has the best fit at Station 

C for wet spell.  

In general, HLZ distribution has the best fit for the dry spell among other 

distributions, while for wet spell, Eggenberger-Polya distribution generally fits 

slightly better than all other distributions as it has 4 best fit across all stations in 

terms of AIC or BIC. Although Eggenberger-Polya distribution fits better than HLZ 

distribution in the wet spell, the indexes of AIC and BIC of HLZ distribution are 

not too much different from the Eggenberger-Polya distribution and other 

distributions. The graphs of HLZ’s PMF on the histogram of wet spell also suggest 

that HLZ fits well in the wet spell data graphically.  
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 

 

Rainfall modelling on the rainfall volume and rainfall occurrence is 

essential in assisting us in understanding the characteristic of the precipitation, 

especially in a country like Malaysia that is located at the tropical region. By 

understanding the precipitation, many precaution procedures can be done before 

devastating disasters strike. When it happens, the people are more ready in 

overcoming it. For example, a water reservoir can be built to collect the rain water 

when raining season is happening, and the water in the reservoir can be supplied to 

the people or plantation during the dry season. Besides, safety precaution like 

expanding the drainage system can be done appropriately especially at the city area 

to cope with the large amount of rainfall during the wet season. Therefore reducing 

the damages caused by the flood and drought. Hence, a study on the rainfall is 

important to evaluate the worthiness of building a water reservoir or any other 

precaution solution. Besides, the insurance company is able to quantify the risk that 

associate with the rainfall, e.g. flash flood in the city area. Therefore many damages 

that may cause by the flash flood can be insured.  

In rainfall modelling, it is important to discover what types of distribution 

describe the rainfall pattern well. We studied the rainfall data around the Langat 

river basin. The types of distribution used for rainfall volume are the continuous 

distributions. The past thirty years have seen increasingly rapid advances in the 
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field of applying generalized or mixed distribution in modelling the rainfall data. 

Therefore we proposed a generalized beta distribution and modified beta 

distribution for beta-type distributions, and mixture of two modified lognormal 

distributions.  

From our research, we found that in general the mixture of two lognormal 

distributions has the best fit among all the distributions. Regrettably, it was unable 

to compute the maximum likelihood of the mixture of two modified lognormal 

distributions due to its complexity in parameters. However, since the mixture of 2 

modified lognormal fits well in the rainfall data, thus it is presumed that the mixture 

of 2 modified lognormal will fit well too as the mixture of 2 modified lognormal 

distributions is a general distribution to mixture of 2 lognormal distributions. It can 

be seen via the performance of the proposed beta generalized distribution fits better 

than its sub-distributions. Therefore, the proposed generalized beta distribution has 

the best fit to the rainfall data among the beta-type distributions. As a conclusion 

for rainfall volume modelling, the mixture of two lognormal is the best model to 

describe the rainfall data at station D.  

Meanwhile, for the study of rainfall occurrence modelling, HLZ distribution 

fits the best among other distributions for all stations, for dry spell. While 

Eggenberger-Polya distribution describes the rainfall wet spell slightly better than 

the other distributions discussed. 

Future work includes studying the general properties of the proposed 

generalized beta distribution, modified beta distribution with graphs and mixture of 

two modified lognormal distributions including the mean, variance and the general 
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moments. Thus help to understand the new distributions better. Besides, more work 

can be done on solving the computational problem on computing the maximum 

likelihood estimator of the mixture of two modified lognormal distributions due to 

its complexity of 7 parameters. Other potential work includes studying the 

performances of the proposed distributions on the most recent rainfall data. This 

can be done by dividing the study period into different smaller intervals to examine 

the fitting of the distributions. Last but not least, forecasting future rainfall pattern 

using the proposed distributions can be considered. Multivariate analyses such as 

regression models and Bayesian statistics can be applied to our proposed 

distributions.   
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