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ABSTRACT 

 

 

BOND PORTFOLIO OPTIMISATION USING STOCHASTIC 

CONTROL UNDER LIBOR MARKET MODEL 

 

 

 Foong Shee Heng, Dennis  

 

 

 

 

 

 

This study aims to find the optimum positions of each bond in a bond 

portfolio that is available in the market that would maximize the utility of the 

investor. This help investors to strategically allocate their limited funds into the 

bonds to suit their investment needs. The study consists of two parts: the interest 

rate model and the optimisation process. Different interest rate models would 

affect investors' bond portfolio value and ultimately affect the utility of the 

investors. Using the Vasicek model, a closed form formula for the optimal 

weight has been found in Puhle 2008. Here we propose using the LIBOR Market 

Model (LMM), which describes the interest rate dynamic that would affect the 

bond prices in the market. The LMM parameters were calibrated using cap 

volatilities and swaption volatilities. The optimisation process is viewed as a 

maximisation problem of investors' utility. The dynamic programming method 

used to optimise the utility functional is the Hamilton-Jacobi-Bellman (HJM) 

equation. A closed form formula for the optimal weight under LMM is 

determined. Based on the optimal weights for both LMM and Vasicek model, 

the actual portfolio performance and simulated portfolio performance are 

computed. The results of both models are then being analysed and compared. 
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CHAPTER 1

INTRODUCTION

Asset allocation is one of the common topics in finance and invest-

ment which deals with selecting the best investment vehicles under certain con-

straints. Investment vehicles may include bonds, equities and alternative in-

vestments; constraints including limited initial capital, current and forecasted

future economic conditions as well as investor specific requirements. There are

two types of asset allocations: (i) static asset allocation and (ii) dynamic asset

allocation.

Static asset allocation is a strategy that involves a combination of buy-

ing and short selling some assets over a period of time. In other words, the port-

folio selected would remain the same throughout the investment period. The

research done by Markowitz (1952) tackles this static asset allocation problem

using the mean variance approach. This approach works with the expectation

on investment vehicle future return. Different portfolios, i.e. different combina-

tions of investment vehicles, would give different means and variances on future

expected returns. The paper explains that it is possible, with the appropriate di-

versification, that some portfolios are superior to others, i.e. portfolios that give

the highest expected return for a given risk or portfolios that give the small-

est risks for an expected return. The set of portfolios which satisfy the above

conditions forms the efficient frontier.

The research done by Tobin (1958) considered an riskless investment

vehicle, i.e. money market account, on top of the portfolio of investment vehi-

cles considered by Markowitz (1952) and the economic conditions which will

affect the allocation between the money market account and the portfolio. In

other words, how would investors adjust their allocation into riskless investment

vehicle and the risky portfolio when certain economic conditions occur? This



idea of investing a portion in the chosen portfolio and money market account is

called the Tobin’s Separation Theorem.

The static asset allocation, however, has some limitations. In practical

sense, it is very time consuming in finding the optimal portfolios as there are

many possible combination of investment vehicles to consider. Static asset allo-

cation assumes that every investor has the same and only one investment period

and would prefer the same risk and return profile. These assumptions are not

true in reality. Furthermore, return and variance, which are used to determine

the optimal portfolios and the market portfolio, are insufficient in capturing the

extreme events. This is very dangerous to the economic and financial insti-

tutions as many historical financial disasters are tail risk events. However, if

Value-at-Risk (”VaR”) or the expected shortfall is used to measure risk, then the

static asset allocation may cover tail risk events.

Dynamic asset allocation relaxs the one investment period assumption

made in static asset allocation by breaking down one investment period into

multiple shorter investment periods. The decision period to select investment

vehicles span throughout the investment period. The early 70s marks the start of

the dynamic asset allocation period. Research work such as Samuelson (1969),

Merton (1969) and Merton (1971) are the pioneers of dynamic asset allocation.

They employed the calculus of variation in solving the optimsation problem.

The dynamic asset allocation assumes that the portfolio could change even in

an instantaneous time. Obviously, this is one of the drawbacks of this method,

as in reality, it is hard to find an investor who constantly changes his portfolio

instantaneously. Another difference between dynamic asset allocation and static

asset allocation is the variables to be optimised. In static asset allocation, the ob-

jective is to either minimise risk or maximise the return while in dynamic asset

allocation, the objective is to maximise the utility function as well as to max-

imise the consumption of an investor. The variables for such utility functions

would normally be the wealth of the investor in the future. Li and Ng (2000) has

2



expanded the work of Markowitz (1952) from 1 investment period to multiple

investment period.

Both static and dynamic asset allocation do not specify the investment

vehicle, i.e. whether the investment vehicle are stocks, bonds, derivatives or al-

ternative investments. Research has been done by Korn and Kraft (2002) which

narrows the scope of investment vehicles to only bonds in the dynamic asset al-

location problem. In view that dynamic asset allocation often take the utility of

terminal wealth of the investor as one of the variables and with the investment

vehicle in consideration is bonds, it is logical to find out what would highly im-

pact the bond prices. Litterman and Scheinkman (1991) states that the prices of

bonds are greatly affected by the interest rate level, slope and curvature. Hence,

a model is needed to describe the future interest rate levels. Therefore, interest

rate models are introduced into the dynamic asset allocation problem. Some of

the interest rate models considered by Korn and Korn (2001) are Ho and Lee

(1986), Vasicek (1977), Dothan (1978), Black and Karasinksi (1991) and Cox

et al. (1985) models. Note that the interest rate models considered by Korn and

Korn (2001) are short rate models which only models the interest rate over an

infinitesimal period of time. The short rate model is a stochastic process which

can be described by a stochastic differential equation with certain drift and dif-

fusion functions. Some drift function exhibits mean reverting properties like

those proposed by Vasicek (1977) and Cox et al. (1985).

However, there is another type of interest rate models which differs

from the short rate interest rate models. This dissertation will consider to use

one of the market models, particularly, the LIBOR Market Model (LMM) as

the model to describe the interest rate level in this dynamic asset allocation

problem. The LMM was first introduced by Brace et al. (1997). LMM is also

known as Brace-Gaterak-Musiela (BGM) model. LMM enjoys all properties of

the market models such as modeling of forward rates instead of instantaneous

interest rates. LMM is popular among practitioners as it is consistent with the

3



standard practice of using Black (1976) to price cap. This means that the error

between the market price of cap and the price implied by LMM is smaller than

the error using short rate models.

The natural question to ask is where LMM could price bond as effec-

tive as pricing interest rate related derivatives. This dissertation will use LMM

to price bond and also determine the optimal bond weights. The parameters of

LMM is calibrated using cap volatilities and swaption volatilities. These param-

eters will be used to determine the optimal bond weights.

The structure of this dissertation is as follow: Chapter 2 contains the lit-

erature review. Chapter 3 will show the derivation of the optimal bond weights.

The numerical illustration of the optimisation process will be covered in Chapter

4. Finally, conclusion and future work will be discussed in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

This chapter covers some basic knowledge on mathematics and finan-

cial products that will be used in this dissertation. Section 2.1 starts by intro-

ducing some of the financial products which are commonly found in the market.

The financial products which will be highlighted in this dissertation would be

bonds. Certain properties of these financial products will be discussed. Assum-

ing that the interest rate remain constant throughout the investment period, the

discount formula and accumulation formula for fixed periodic payment will be

shown here, however, these formula will not be proved. Basic concepts in math-

ematical finance such as Brownian Motion, Itô Integral and Itô Lemma will be

discussed in Section 2.2. One of the dynamic programming used is the Bellman

equation. The background of this equation will stated in Section 2.3.1 while

its derivation, will be briefly discussed in Section 2.3.2. The Bellman equa-

tion caters for only discrete value functions. The continuous counterpart of the

Bellman equation is the Hamilton-Jacobi-Bellman equation.

2.1 Financial products

This section covers the different financial products that will be used

throughout this dissertation. Products that are covered are (i) zero coupon bond,

(ii) cap and (iii) swaption.

2.1.1 Bond

We only discuss zero coupon bond in this dissertation as our optimisa-

tion process only consider zero coupon bond. The zero coupon bond is defined

in Hull (2014) as follows:

Definition 2.1.1. A bond that provides no coupons

5



This means that the zero coupon bond, unlike the coupon paying bonds

which pay coupons to the holder periodically as stated by Hull (2014).

2.1.2 Derivative

As defined by Hull (2014), derivative is a financial instrument whose

value depends on the values of other, more basic, underlying variables. Some of

the derivatives that will be used in this dissertation are cap and swaption. The

underlying variable of cap and swaption is interest rate. Cap is also called as

interest rate cap which is defined by Hull (2014) as follows:

Definition 2.1.2. An option that provides a payoff when a specified interest

rate is above a certain level. The interest rate is a floating rate that is reset

periodically

An interest rate cap consists of many interest rate caplets. The definition

of interest rate caplet is one component of an interest rate cap as mentioned by

Hull (2014).

The combined understanding of the two definition above implies that

the valuation of a cap is the summation of each caplets’ value. Each caplet is

valued using the Black formula as found in Black (1976). There is a proce-

dure of stripping the cap volatility into caplet volatilites in the later part of this

dissertation. This procedure relies on these concepts.

Hull (2014) defines swaption as

Definition 2.1.3. Swaption is an option to enter into an interest rate swap where

a specified fixed rate is exchanged for floating.

Hull (2014) suggests that swaption is to be valued using a Black formula

as it was assumed that the underlying swap rate at the maturity of the option is

lognormal.

6



2.2 Mathematical finance

Mathematical finance deals with problems that involve stochastic pro-

cesses rather than deterministic variables. Therefore, the normal calculus could

not be used and stochastic calculus is used instead. The difference between nor-

mal calculus and stochastic calculus is the introduction of randomness in the

stochastic calculus. This randomness could arise from the introduction of the

Brownian motion into the differential equation.

2.2.1 Brownian motion

Shreve (2004) define the Brownian motion as follows:

Definition 2.2.1. Let (Ω,F ,P) be a probability space. For each ω ∈ Ω, the

continuous function Z(t) of t ≥ 0 that satisfies Z(0) = 0 and depends on ω is

called a Brownian motion if it satisfies the following condition

• for all 0 = t0 < t1, . . . , tm the increments

Z(t1) = Z(t1)− Z(t0), Z(t2)− Z(t1), . . . , Z(tm)− Z(tm−1)

are independent normal distribution

• EP [Z(ti+1)− Z(ti)] = 0

• V arP [Z(ti+1)− Z(ti)] = ti+1 − ti

Shreve (2004) has also listed the following properties of the Brownian

motion.

• Z(t) is continuous for almost all ω

• The covariance of Z(s) and Z(t) is min(s, t)

• the moment generating function of the random vector (Z(t1), Z(t2), . . . , Z(tm))

is

e
1
2
u2m(tm−tm−1) · e

1
2

(um−1+um)2(tm−1−tm−2) · e
1
2

(u1+u2+...+um)2t1

• Brownian motion is a martingale
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• The quadratic variation of the Brownian motion, [Z,Z](t) = t for all

t ≥ 0 almost surely.

Shreve (2004) has stated that the quadratic variation of the Brownian

motion, Z(t) is t, i.e

dZ(t)dZ(t) = t

In other words, Brownian motion accumulates quadratic variation at rate one

per unit time. Other results that are stated are

dZ(t)dt = 0

dtdt = 0

2.2.2 Itô integral

Itô (1944) has constructed the stochastic integral where the integrator

is a normalised Brownian motion on the probability space (Ω,F ,P). The Itô is

defined as

I(t) =

∫ t

0

∆(u)dZ(u) (2.1)

Note that the Itô integral does not have drift component. Shreve (2004)

states the generalisation of the Itô integral with the definition of the Itô process

which adds a drift component to the Itô integral. Let X(t) be the Itô process.

X(t) is defined as

X(t) =

∫ t

0

µ(u)du+

∫ t

0

σ(u)dZ(u)

where µ(u) is the drift coefficient of the Itô process.

There is a need to differentiate a function which has Itô process as it’s

variable, f(t,X(t)). This is where Itô comes in. Shreve (2004) that the Itô

lemma is the result of applying the non zero quadratic variation of the Brownian

motion to df(t,X(t)). The Itô lemma is stated as follows:

8



Theorem 2.2.1. Let f(t, x) be any twice differentiable function of two (2) real

variables t and x. Let the Itô process be X(t) =
∫ t

0
µ(u)du+

∫ t
0
σ(u)dZ(u). We

have the following

df(t,X(t)) =

(
∂f

∂t
+ µ(t)

∂f

∂X(t)
+

1

2
σ(t)2 ∂2f

∂X2(t)

)
dt+ σ(t)

∂f

∂X(t)
dZ(t)

2.3 Dynamic programming

Dynamic programming involves breaking one large optimisation prob-

lem into many smaller subproblems. This is achieved by first obtaining a solu-

tion to the first optimisation subproblem as used this solution to be the starting

point for the next optimisation subproblem. This procedure is iterated in a re-

cursive manner for all subsequent subproblems.

There are many ways to solve these subproblems. One of the ways is to

apply the greedy algorithm which chooses the local optimsed solution for each

subproblem. However, this doesn’t gurantee the best solution to the optimisation

problem. For example, considering the problem of one driver in getting from

point A to point B during rush hour as fast as possible. The application of the

greedy algorithm may lead the driver to a traffic jam causing him to be slower

in subsequent subproblems.

The other way of solving the optimisation problem is by solving it back-

ward recursively. Olver and Sookne (1972) states that computing the optimised

solution of a system of difference equation by forward recurrence is not practical

due to instability where as backward recursive computation is a stable way.

Bellman (1957) proposed the Bellman equation which solves discrete

optimisation problem in a backward recursive manner. This Bellman equation

can be seen as an extension to the Hamilton-Jacobi-Bellman equation to solve

optimisation problem with stochastic variables in the continuous setting.

9



2.3.1 Background of Bellman equation

Bellman (1957) has studied the structure of the dynamic programming

process. He defined the multi stage optimisation problem based on the follow-

ing:

• A physical system characterised at any stage, t, by a small set of parame-

ters which are called state variables, Xt.

• The variables that would change the state variables are called the control

variables, q.

• At each stage, there is a number of decisions which would cause transfor-

mation, Tq, of the state variables by changing the control variables.

• The set of all obtainable control variables is denoted by S.

• The determination of which decision to take would based on the objective

function, f .

• The set that consists of all decisions made is called policy, p. The policy

which optimise the objective function is said to be the optimal policy

2.3.2 Bellman equation

Next, the Bellman’s Principle of Optimality is also defined in Bellman

(1957) which states that an optimal policy has the property that whatever the

initial state and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision.

He has mentioned in Bellman (1957) that the result from the definition

above is the following basic recurrence relation: each stage of the multi stage

optimisation problem will be related to the next stage of the multi stage optimi-

sation problem. In other words, if the optimal policy is selected at the beginning

stage, the policy will contain the decision which will optimise the next stage.

10



The Bellman equation is written as

f(Xt) = max
q∈S

f(Tq(Xt)) (2.2)

This method is useful as the bond portfolio considered in this disserta-

tion will be rebalanced at fixed interval. Therefore, it is similar to breaking one

single long term bond portfolio optimisation problem into multiple short term

bond portfolio optimisation problem.

Other optimisation involves determine the optimised outcome of the

problem at the end of the optimisation process and then only determine the

process to archieve that optimised outcome. This is not applicable to the bond

portfolio optimisation as investors would naturally not limit themselves to the

gain they could obtain from their portfolio.

2.4 LIBOR market model

2.4.1 Background of LMM

LIBOR stands for London Interbank Offer Rates. Banks use this inter-

est rate as a reference for unsecured loans to other banks in the London whole-

sale money market. The valuation of interest rate derivatives such as Bermudan

swaptions, caps and floors are commonly based on LIBOR.

LMM was introduced by Brace et al. (1997). LMM was built on the

Heath et al. (1992) (HJM) framework. The HJM framework allows the pricing

of bond under no arbitrage pricing condition. They have shown that, under the

no arbitrage pricing condition, the market price of interest rate risk could be

removed from the forward rate process.

LMM was made popular as it agrees with the well-established Black

formula from Black (1976) in pricing interest rate derivatives such as caps,

11



floors and swaptions unlike most short rate models. The lognormal forward-

LIBOR model (LFM) coincide with Black’s cap formula while the lognormal

forward-swap model (LSM) coincide with the Black’s swaption formula. Brace

et al. (1997) has shown that pricing interest rate derivatives such as cap, floor

and swaption through simulation assuming LMM describing the changes in the

interest rate levels would produce small deviation from the Black formula. How-

ever, this dissertation will focus on bonds pricing under LMM rather than valu-

ation of interest rate derivatives.

The idea that LMM is part of the HJM framework is discussed in Sec-

tion 2.4.2. The definition of a market model is detailed in Section A.1. In

Section A.2, the derivation of LMM process under different measures by using

the change of numeraire technique. In Section 2.4.3, the calibration process of

LMM process parameter such as standard deviation and correlation coefficient

is discussed.

2.4.2 The connection between HJM and LMM

The Heath et al. (1992) has introduced a unifying theory for valuing

default free zero coupon bonds and contingent claims under a stochastic term

structure of interest rates as well as formulated the martingale representation of

the forward rate under no-arbitrage pricing. The following equation is famous

HJM equation.

df(0; t, T − t) =

(
σ(0; t, T )

∫ T

t

σ(0; t, s)ds

)
dt+ σ(0; t, T )dZ(t)

where σ(0; t, T ) is the volatility for the forward rate from time t to time T ob-

served at time 0 and Z(t) is the standard Brownian motion. Note that the drift

term of the forward rate process in the HJM framework consists of only the stan-

dard deviation of the forward rate. The standard deviation dictates the drift term

12



Table 2.1: Piecewise-constant function for volatility

of the forward rate process and this is called the forward rate drift restriction.

2.4.3 Calibration

The discussion of the calibration process for the LMM’s parameters

will make reference to the following LMM process which is Equation (A.3).

The LMM process contains parameters such as σ and ρ. These parameters are

interpreted as the instantaneous volatility and instantaneous correlation respec-

tively.

Brigo and Mercurio (2006) mentioned that the instantaneous volatility,

σ could be assumed to follow a piecewise-constant or a parametric function

while the instantaneous correlation, ρ could be assumed to follow either a full

rank or a reduced rank parametric function. The next few subsections will de-

scribe these in more detail.

Volatility function

An example of a σ function that follows a piecewise-constant function

would be as in Table 2.1. Consider a cap which consists of M caplets. Each

caplets would have their respective σ, therefore, there would beM caplet volatil-

ities spanning theM periods. The volatility for each period could assumed to be

constant throughout the period. In this case, there would be M(M−1)
2

piecewise

constant volatilities to calibrate from given market cap volatilities.

On the other hand, the cap volatiltiy could be described by a parametric

13



function. Most parametric function used by practitioners would be less than

M(M−1)
2

.

Correlation function

Brigo and Mercurio (2006) states some properties that an instantaneous

correlation matrix ρ used in LMM should have after observing the trends of the

forward rates. The properties as as follows:

• positive correlation, ρik ≥ 0 for all i, j

• monotonic decreasing when moving away from the diagonal entry

• more correlated changes among adjacent forward rates when the tenor

gets larger

There 2 types of correlation functions which are

• full rank

• reduced rank

The full rank correlation is similar to piecewise volatility structure in

the sense that there are M(M−1)
2

entries in the correlation matrix. Each entry of

the correlation matrix need to be estimated from the swaption volatility. There

are times where the size of the correlation matrix is so huge that it takes a long

time in order to calibrate all entries from the swaption volatilities. This leads to

the introduction of reduced rank correlation matrix.

Reduced rank correlation matrix uses less parameters to describe the

correlation matrix. One of the methods is to define a parametric equation which

could describe the correlation matrix with a few parameters. Gatarek et al.

(2006) suggested that the number of parameters could be as few as 8 parameters.

Therefore, its calibration process would be faster than the calibration process of

the full rank correlation matrix.

Brigo and Mercurio (2006) states that the size of the correlation matrix

that is being considered in this bond optimisation problem depends on the num-
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ber of forward rates. In general, the full rank correlation has more entries to be

calibrated and it is not practical to do so. Therefore, the natural alternative is to

describe the correlation matrix using reduced rank correlation matrix. This can

be archieved by Rebonato’s angles parameterisation.
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CHAPTER 3

PORTFOLIO OPTIMISATION PROCESS

This dissertation seeks to optimise a portfolio which consists of a zero

coupon bond and money market account using dynamic programming. The

end result of this dissertation is the optimal weights in the zero coupon bond

throughout the investment period.

The advantages of dynamic asset allocation over static asset allocation.

• The static asset allocation only cover 1 investment period while dynamic

asset allocation covers multiple investment periods.

• The static asset allocation maximise the expected future returns or min-

imise the risk involved while the dynamic asset allocation maximise the

utility function with the terminal wealth being the variable.

The next few subsections will compare the optimal bond weights which

lead to a maximised utility function on the terminal wealth of a bond investor

as a result of investing a fixed amount of initial capital in either a zero coupon

bond or money market account under two different interest rate models which

are (i) Vasicek model and (ii) LIBOR Market Model (”LMM”).

3.1 Assumptions

A few assumptions will be made in deriving the optimal bond weights

for both models. The following list are the assumption being made:

• There is no transaction cost.

• There is no restriction in buying or selling any less than one unit of zero

coupon bond.

• There is no restriction in depositing and borrowing of any amount of cash

from the money market account.
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• The interest rate for the money market account is fixed throughout the

investment period.

• There is no consumption throughout the investment period. All interest

gained and capital gain obtained will be either be invested in the zero

coupon bond or deposited in the money market account.

• The maturity date of the zero coupon bond, TB, is later than the end of the

investment period, T , i.e. T < TB.

• The market price of interest rate risk is assumed to be constant.

• The bond portfolio is rebalance at a fixed interval, ∆t. This means that the

portfolio (one zero coupon bond and money market account) will be read-

justed to the weights suggested by the models after ∆t time has passed.

∆t taken to be (i) daily, (ii) weekly and (iii) monthly.

3.1.1 Optimal bond weights under Vasicek model

Puhle (2008) considered the same dynamic asset allocation problem,

however, assuming interest rate dynamics follow Vasicek model, dr(t) = a(b−

r(t))dt+σrdZ(t). He has derived the optimal bond weights to be the following:

π∗(t) =
1

1− γ

(
λa

σr(1− e−a(TB−t))
− γ 1− e−a(T−t)

1− e−a(TB−t)

)
(3.1)

where

• λ is the market price of interest rate risk

• γ is the risk aversion coefficient of the investor where 0 < γ < 1

• a is the mean reverting rate in the Vasicek model

• σr is the volatility of the short rate in the Vasicek model

• t is the current time

• TB is the maturity date for the zero coupon bond

• T is the end of the investment period
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The market price of interest rate risk, λ , as suggested by Ahmad and

Wilmott (nd), is determined by letting the slope of the yield curve to be equal to

(µ − λσr)/2, where µ is the drift term of the interest rate model. When Vasick

model is considered as the interest rate model, the equation to describe the slope

is as follows:

Slope = (a(b− r(t))− λσr)/2

where

• σr is the volatility of the Vasicek model

• Slope is the slope of the yield curve which is measured by the gradient of

the shortest term rate and the longest term rate

Rearranging the above equation,

λ =
a(b− r(t))− 2× Slope

σr

The market price of interest rate risk, λ is assumed to be constant

throughout this dissertation. The consideration of a non-constant λ is left for

future work. The λ is calibrated and fixed at the start of the investment period.

3.2 Optimal bond weights under LMM

The derivation of the optimal bond weight is the similar as Korn and

Kraft (2002) and Puhle (2008) however instead of using short rate model to

model future interest rates, the LMM was used as the interest rate model.

3.2.1 Deriving the optimal bond weights under LMM

The following are the steps used in deriving the optimal bond weights

under LMM:

• Derive the wealth process which is based on the money market account

process and the bond process assuming that LMM describes the changes
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in the interest rate level

• Maximise the utility function which takes the terminal wealth as the vari-

able using the HJB equation. The end product of this step would be the

optimsed bond weights under LMM

Moving on to the first step in deriving the optimal bond weights under

LMM which is to derive the wealth process which is based on the money market

account process and the bond process under LMM. No one would not know

anyone’s wealth at the end of a future day. One of the workaround would be

to describe the wealth process based on the investor’s portfolio and how the

value each assets in the portfolio would change in the future. Note that for

this bond optimisation problem, the investor’s portfolio could only consists of

money market account and a zero coupon bond.

Let P (t, T ) be the price of the zero coupon bond at time twhich matures

at time T . Define the forward rate, f(t, T ) as follows:

P (t, T ) =
1

1 + f(t, T )τ

where τ = T − t denote the time to maturity of the zero coupon bond.

Apply Itô lemma on the above equation, the following holds:

dP (t, T )

P (t, T )
=

f(t, T )

1 + f(t, T )τ

[
(1 +

σ2(t, T )f(t, T )τ

1 + f(t, T )τ
)dt− σ(t, T )τdZQ(t)

]

where σ(t, T ) is the standard deviation of the forward rate for the period [t, T ].

The Q-measure is suitable for derivative pricing as the payoff of the

derivative can be replicated by a portfolio that grows at risk free rate which

consists of the underlying asset and zero coupon bond. In portfolio optimisation,

investors are interested in the real probability measure, P rather than the Q-

measure. Therefore, the zero coupon bond process that should be used has to be

under P-measure.
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Girsanov (1960) has shown that it is possible to change the measure of

the zero coupon bond process from the Q-measure to P-measure by applying the

Girsanov theorem and the Radon-Nikodym derivative. The relationship between

Q-measure and P-measure is described by the following equation:

dZP(t) = dZQ(t) + λ(t)dt

where λ(t) is called the market price of risk. In view that the process is the zero

coupon bond process, this λ(t) is called the market price of interest rate risk. As

for the Vasicek model, the market price of interest rate risk, λ(t) for LMM is

also assumed to be constant throughout time.

Therefore, the zero coupon bond process, under P-measure is

dP (t, T )

P (t, T )

=
f(t, T )

1 + f(t, T )τ
×[(

1 +
(σf (t, T ))2f(t, T )τ

1 + f(t, T )τ
+ σf (t, T )τλ

)
dt− σf (t, T )τdZP(t)

]

Recall that P (t, T ) is the price at time t of the zero coupon bond which

matures at time T . However, in this dissertation, the zero coupon bond consid-

ered is assumed to mature at time TB. Therefore, rewriting the above equation

as follows,

dP (t, TB)

P (t, TB)
(3.2)

=
f(t, TB)

1 + f(t, TB)τB
×[(

1 +
(σf (t, TB))2f(t, TB)τB

1 + f(t, TB)τB
+ σf (t, TB)τBλ

)
dt− σf (t, TB)τBdZ

P(t)

]

where τB is define as τ = TB − t.
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The money market account, under HJM framework, follows a process

called the money market account process, M(t). It is defined as follows:

dM(t) = r(t)dt (3.3)

where r(t) is the interest rate generated by the money market account.

One additional assumption in deriving the optimal weight for LMM is

that the money market account will generate interest at a fixed rate. Therefore

the above equation would be written as follows:

dM(t) = rdt

Since the bond investor could only invest in either the zero coupon bond

maturing at TB or in the money market account, the wealth of the investor would

be the sum of the values in the zero coupon bond and the money market account.

The changes in the wealth of the investor would be reflected by the changes in

the zero coupon bond value and the changes in the money market account. By

denoting, W (t) as the wealth of the investor at time t and π as the weights in

the zero coupon bond, the changes in the investor’s wealth could be written in

an equation as:

dW (t) = W (t)(1− π(t))dM(t) +
W (t)π(t)

P (t, TB)
dP (t, TB) (3.4)

The above equation could be interpreted as the investor holdingW (t)(1−

π(t)) in the money market account which will grow at dM(t) while at the

same time holding W (t)π(t)
P (t,TB)

units of the zero coupon bond which will grow at

dP (t, TB).

Note that π(t) is not restricted between 0 and 1 due to the assumption

that there is no restriction in depositing and borrowing of any amount of cash
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from the money market account.

Substitute equations (3.2) and (3.3) into Equation (3.4),

dW (t)

= W (t)(1− π(t))rdt

+
W (t)π(t)f(t, TB)

1 + f(t, TB)τB
×[(

1 +
(σf (t, TB))2f(t, TB)τB

1 + f(t, TB)τB
+ σf (t, TB)τBλ

)
dt− σf (t, TB)τBdZ

P(t)

]

which is the wealth process that describes the investor’s wealth over the period

[t, T ]. Note that dW (t) is a controlled SDE with the optimal bond weights

process, π being the control variable.

Moving on to the second step in deriving the optimal bond weights

under LMM which is to maximise the utility function which takes the terminal

wealth as the variable using the HJB equation.

The stochastic control method, particularly the HJB equation, is used

in portfolio optimisation problem as seen by Merton (1969), Merton (1971) and

Kamien and Schwartz (1991), while HJB equation is used in bond portfolio

optimisation problem as seen by Korn and Kraft (2002) and Puhle (2008). Note

that the bond weights are the control variable of this bond optimisation problem.

In this setting, the investor chooses the optimal bond weights process,

π∗ which maximise the utility function on the terminal wealth u(W (T )), consid-

ering potential changes in the future forward curves, df(u, TB) associated with

the real measure, P and the potential changes in the future total wealth, dW (u)

where t < u < T . The problem could be written mathematically as follows:

max
π
{EP[u(W (T ))]}
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subject to the initial wealth of the investor, W (0) = W0 and the LMM dynamic,

Equation (A.3).

Bond portfolio optimisation in terms of functional J(t, f(t, TB),W (t);π)

Define the optimised functional, J(t, f(t, TB),W (t); π) as

J(t, f(t, TB),W (t);π) = max
π
{EP[u(W (T ))]}

There are certain conditions in which the above functional should sat-

isfy in order to for it to be bounded. Such conditions are as follows:

• Recall from Definition 2.3.1 that the control variable has to satisfy the

definition admissible control variable.

• The function u(W (T )) is a continuous function that satisfy the polyno-

mial growth conditions, ||u(W (T ))|| ≤ C(1 + ||W (T )||k) where C > 0

and k ∈ N.

Referring to LMM that is described in Equation (A.3). The LMM pro-

cess would be different when different measure is considered. The above func-

tional is assumed to be subjected to the following case of the LMM process

df(t, TB) = σf (t, TB)f(t, TB)dZQ(t)

The above form of the LMM process assumes forward measure is taken to be

the measure. The forward measure is associated with a numeraire which is a

zero coupon bond. The LMM process would coincide with the Black formula

if the forward measure is chosen as stated in Section A.2.1, i.e. the interest

rate follows a lognormal process. More information could be found in appendix

A.2.1.
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However, in real measure, P, the LMM process would be

df(t, TB) = −σ(t, TB)f(t, TB)λ+ σf (t, TB)f(t, TB)dZP(t)

As observed in Merton (1969) and Merton (1971), that the functional at

terminal time T is

J(T, f(T, TB),W (T );π) = u(W (T ))

Note that the above equation only holds at time T , i.e. the end of the

investment period. As for time between the start of the investment period and the

end of the investment period, the HJB equation is applied to obtain the following

equation:

J(t, f(t, TB),W (t); π) = max
π
{EP[J(t+∆t, f(t+∆t, TB),W (t+∆t)]} (3.5)

Next is to find J(t+ ∆t, f(t+ ∆t, TB)),W (t+ ∆t). Applying Taylor’s

theorem on optimsed functional J around (t, f(t, TB),W (t)),

J(t+ ∆t, f(t+ ∆t, TB),W (t+ ∆t))

= J(t, f(t, TB),W (t)) + Jt∆t+ Jf∆f(t, TB) + JW∆W (t)

+
1

2
Jff (∆f(t, TB))2 + JWf∆W (t)∆f(t, TB) +

1

2
JWW (∆W (t))2(3.6)

Taking expectation at time t on Equation (3.6) with EP are short written
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as E,

E[J(t+ ∆t, f(t+ ∆t, TB),W (t+ ∆t)]

= J(t, f(t, TB),W (t)) + Jt∆t+ JfE[∆f(t, TB)] + JWE[∆W (t)]

+
1

2
JffE[(∆f(t, TB))2] + JWfE[∆W (t)∆f(t, TB)]

+
1

2
JWWE[(∆W (t))2] (3.7)

Insert Equation (3.7) into Equation (3.5) and simplify,

0 = max
π
{Jt∆t+ JfE[∆f(t, TB)] + JWE[∆W (t)]

+
1

2
JffE[(∆f(t, TB))2] + JWfE[∆W (t)∆f(t, TB)]

+
1

2
JWWE[(∆W (t))2]} (3.8)

The expectations in the above equation have to be found before pro-

ceeding further.

Taking conditional expectation on the wealth process, conditioned that

the current wealth is W , on the LMM process under the P measure, the follow-

ing follows:

• E[∆f(t, TB)] = −σf (t, TB)f(t, TB)λ∆t

• E[(∆f(t, TB))2] = [σf (t, TB)f(t, TB)]2∆t

• E[∆W (t)] = W (t)(1−π(t))r∆t+W (t)π(t)f(t,TB)
1+f(t,TB)τB

[(1+ (σf (t,TB))2f(t,TB)τB
1+f(t,TB)τB

+

σf (t, TB)τBλ)∆t]

• E[(∆W (t))2] = −W 2(t)π2(t)f2(t,TB)
(1+f(t,TB)τB)2

(σf (t, TB))2τ 2
B∆t

• E[∆f(t, T )dW (t)] = −W (t)π(t)f(t,TB)
1+f(t,TB)τB

(σf (t, TB))2f(t, TB)τB∆t
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Substitute the above expectations to Equation (3.8), divide by ∆t,

0 = JτB − Jfσf (t, TB)f(t, TB)λ+
1

2
Jff (σ

f (t, TB))2f 2(t, TB)

−JWfW (t)π(t)(σf (t, TB))2f 2(t, TB)τB
1 + f(t, TB)τB

+
JWWW

2(t)π2(t)(σf (t, TB))2f 2(t, TB)τ 2
B

2(1 + f(t, TB)τB)2

+JWW (t)(1− π(t))r

+
JWW (t)π(t)f(t, TB)

1 + f(t, TB)τB
×(

1 +
(σf (t, TB))2f(t, TB)τB

1 + f(t, TB)τB
+ σf (t, TB)τBλ

)
(3.9)

In order to find the optimal bond weights, π∗ which will maximise the

above equation, differentiate the above equation with respect to π and rearrange

the equation :

π∗(t) =
JWf (1 + f(t, TB)τB)

JWWW (t)τB

+
JW r(1 + f(t, TB)τB)2

JWWW (t)(σf (t, TB))2f 2(t, TB)τ 2
B

− JW (1 + f(t, TB)τB)

JWWW (t)(σf (t, TB)2f(t, TB)τ 2
B

×(
1 +

(σf (t, TB))2f(t, TB)τB
1 + f(t, TB)τB

+ σf (t)τBλ

)
(3.10)

There are unknown variables in Equation (3.10) such as JW , JWf and

JWW . Additional assumptions are needed in order to remove these unknown

variables from the optimal bond weight equation. The derivation of the opti-

mal bond weights under LMM will continue from Equation (3.10). The partial

differential equation, Equation (3.9) will only be brought to our attention when

there is no way to remove the unknown variables from the optimal bond weight

equation.

26



The form of the utility function

As proposed by Merton (1971) and Puhle (2008), the utility function

is assumed to be the form yielding Constant Relative Risk Aversion (”CRRA”),

particularly, u(W (T )) = W γ(T ) where 0 < γ < 1 is called the risk aversion

coefficient of the investor. Other forms of utility functions could be considered

as future work.

Note that the CRRA function satisfy the second condition in order for

the functional to be bounded by∞. The second condition states that the CRRA

function should be a continuous function and satisfies the polynomial growth

function.

Bond portfolio optimisation in terms of functional G(t, f(t, TB);π)

Note that the optimal bond weights in Equation (3.10) depends on the

optimised functional, J(t, f(t, TB),W (t); π) which is so far, unknown. In order

to proceed further, Korn and Kraft (2002) recommends the following separation,

J(t, f(t, TB),W (t); π) = G(t, f(t, TB); π)W γ(t)

where 0 < γ < 1 and the functional G(t, f(t, TB)) has a boundary condition

G(T, f(T, TB)) = 1.

The partial derivatives of J(t, f(t, TB),W (t); π) in terms ofG(t, f(t, TB);π)

and W (t) would be as follows:

• Jt = GtW
γ(t)

• Jf = GfW
γ(t)

• Jff = GffW
γ(t)

• JW = γGW γ−1(t)

• JWW = γ(γ − 1)GW γ−2(t)

• JWf = γGfW
γ−1(t)
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Substitute the above equations into Equation (3.10),

π∗(t) =
Gf (1 + f(t, TB)τB)

(γ − 1)GτB

+
r(1 + f(t, TB)τB)2

(σf (t, TB))2f 2(t, TB)τ 2
B

− (1 + f(t, TB)τB)

(γ − 1)(σf (t, TB)2f(t, TB)τ 2
B

×(
1 +

(σf (t, TB))2f(t, TB)τB
1 + f(t, TB)τB

+ σf (t)τBλ

)
(3.11)

Bond portfolio optimisation in terms of functions A(t) and f(t, TB)

As per in the previous section, next is to further separate the interde-

pendency of t and f(t, TB) in G(t, f(t, TB)). Express G(t, f(t, TB)) as follows:

G(t, f(t, TB)) = A(t)f(t, TB) (3.12)

such that A(T ) = 1
f(T,TB)

. The end point for A(t) is fixed in this manner so that

G(T, f(T, TB)) = 1 is satisfied.

With the above expression of G(t, f(t, TB)) in terms of A(t), some of

the partial derivative of G(t, f(t, TB)) are as follows,

• Gt = A′(t)f(t, TB)

• Gf = A(t)

• Gff = 0

Substituting Equation (3.12) into Equation (3.11), the optimal bond

weights would then be:

π∗(t) =
1 + f(t, TB)τB

(γ − 1)f(t, TB)τB

+
r(1 + f(t, TB)τB)2

(σf (t, TB))2f 2(t, TB)τ 2
B

− (1 + f(t, TB)τB)

(γ − 1)(σf (t, TB)2f(t, TB)τ 2
B

×(
1 +

(σf (t, TB))2f(t, TB)τB
1 + f(t, TB)τB

+ σf (t, TB)τBλ

)
(3.13)
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Note that A(t) is not present in π∗(t).

In the next chapter, this optimisation method will be presented using a

numerical illustrated with real life data.
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CHAPTER 4

NUMERICAL ILLUSTRATION

This chapter illustrates the proposed optimisation method mentioned in

previous chapter using real life data. Calibration method is found in Section 4.1.

Section 4.2 contains the calibration results, optimal bond weights and simulated

portfolio return.

4.1 Calibration method

Calibration is the process where the model parameters are set in such a

way so that the agreement between the proposed model and the data provided is

maximised.

4.1.1 Calibration of Vasicek model

The Vasicek model is defined as follows:

dr(t) = a(b− r(t))dt+ σrdZQ(t)

where

• r(t) is the short rate at time t

• a is the mean reverting rate

• b is the long run rate

• σr is the volatility of the short rate

• ZQ(t) is the Brownian motion under Q-measure

The calibration is done using maximum likelihood estimator method as

suggested by Berg (2011). The formulas are attached in the appendix C.
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4.1.2 Calibration of LMM

For this dissertation, σf (t, TB) is assumed to take the form of a paramet-

ric equation while ρ(i, j) takes the form of a reduced rank parametric function.

The specific parametric equation for σf (t, TB) and ρ(i, j) are (4.1) and (4.2)

respectively.

σf (t, Ti) = (α4 + α1(Ti − t))e−α2(Ti−t) + α3 (4.1)

where −2 ≤ α1, α4 ≤ 2, 0 ≤ α2, α3 ≤ 2 and

ρ(i, j) = cos Φ(i)− cos Φ(j) (4.2)

− sin Φ(i) sin Φ(j)(1− cos Θ(i)−Θ(j))

Φ(t, Ti) = φ1 + (φ2 + φ3(Ti − t))e−φ4(Ti−t)

Θ(t, Ti) = θ1 + (θ2 + θ3(Ti − t))e−θ4(Ti−t)

where −π
2
≤ φi, θi ≤ π

2
for i = 1, 2, 3, 4 and Ti, i = 1, 2, 3, . . . are the

reset dates.

Brigo and Mercurio (2006) suggested this parametric equation for σf (t, TB)

because of the faster calibration process compared to piecewise-constant func-

tions. This is because parametric equation has fewer paremeters compared to the

number of parameters in piecewise-constant function. Fewer parameters would

speed up the calibration process.

Gatarek et al. (2006) suggested this parametric equation for ρ(i, j).

They have noted that the correlation matrix produced by this parametric equa-

tion deviates further from to the historical correlations compared to piecewise-

constant correlation function. However, this algorithm may need to be run many

times unlike derivative pricing which run only once, therefore, calibration speed

would become a deciding factor on which method to use. They have commented
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that though the result is worse for parametric equation compared to piecewise-

constant function, the calibration results of the parametric equation is accept-

able.

Calibration algorithm

The algorithm in Nelder and Mead (1965) is called the downhill sim-

plex algorithm or the Nelder-Mead method which is used to calibrate the LMM

parameters. This method is commonly used to find the minimum or maximum

of an objective function in a many-dimensional space. The advantage of this

method is its application to non-linear optimisation problem without using the

gradient.

Calibration of LMM’s σf (t, TB) to the cap volatilities

The market data provider would normally quote cap volatilities. This

cap volatilities provided by the market data provider describe a constant volatil-

ity in the forward rate throughout the duration of the cap. As assumed in Section

4.1.2 that the volatilty, particularly, σf (t, TB) for LMM would follow Equation

(4.1). The work around this rely on the understanding that a cap is a series of

caplets. Therefore, it is possible to strip the cap volatilities into caplet volatili-

ties. Thus, LMM’s σf (t, TB) would be calibrated to the stripped caplet volatili-

ties instead.

The following describes the procedure for stripping the caplet volatili-

ties from the market quoted cap volatilities and then calibrate the parameters of

the parametric volatility function to the stripped caplet volatilities. This algo-

rithm is taken from Gatarek et al. (2006).

1. Determine the parameters such as forward rate, strike rate, starting date

and maturity date (reset date) for each caplet.
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2. Denote Tm as the time at m. The standard KLIBOR has a tenor of 3

months, therefore, the caplet volatility should reflect a 3 months volatility.

Linear interpolate the market cap volatilities to obtain σ(t, T0.25), σ(t, T0.5),

. . . , σ(t, TN) where TN is the maturity time for the longest duration cap

volatility.

3. Set the first caplet volatility to the first linear interpolated cap volatility,

σ(t, T0.25).

4. Compute this cap value .

5. Compute the cap value for the next reset date using the next linear inter-

polated cap volatility.

6. The difference between these cap values would be the value of the caplet

maturing in the next reset date. Use numerical root finding methods to

find the caplet volatility.

7. Repeat step (4) to (6) with next reset date with the recently computed

caplet volatiltiy and continue up to the last reset date.

These caplet volatilities will be then used to calibrate the parameters in

the parametric function for σf (t, Ti) as mentioned in Section 4.1.2. The param-

eters will be chosen such that the sum of all differences between the parametric

volatilities and the caplet volatilities would be minimal.

The procedure is as follow

1. Initialise the volatility parameters, α1, α2, α3 and α4.

2. Compute σf (t, Ti) = (α4 + α1(Ti − t))e−α2(Ti−t) + α3.

3. Repeat step (1) to (2) with different initialisation of α1, α2, α3 and α4

which are determined by simplex downhill algorithm until the difference

between the market cap volatilities and σfi (t) are minimised.

Calibration of LMM’s ρ(i, j) to the swaption volatilities

This calibration process requires the calibrated parameters of the para-

metric volatility function from previous section. The following describes the
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procedure for calibrating the correlation, ρ(i, j) of LMM to the market swap-

tion volatilities. This algorithm is modified from Gatarek et al. (2006).

1. Initialise intermediate correlation parameters ξ1, . . . , ξ4 and η1, . . . , η4.

2. Compute θ(Ti, Ti+1) = ξ1+(ξ2+ξ3f(Ti, Ti+1))e−ξ4f(Ti,Ti+1), φ(Ti, Ti+1) =

η1 + (η2 + η3f(Ti, Ti+1))e−η4f(Ti,Ti+1) and ψ(Ti, Ti+1) = 0.25f(Ti, Ti+1)2

for i = 0, . . . , N − 1 where N is the number of caplet determined from

earlier section.

3. Compute the correlation using the following formula:

ρ(i, j) = cos (φ(i)− φ(j))− sin (φ(i)) sin (φ(j))(1− cos (θ(i)− θ(j)))

4. Compute Ψ =
∑N

i=1 ψ(Ti, Ti+1).

5. Compute

σswaption(i, j) =
ψ(Ti, Ti+1)ψ(Tj, Tj+1)

Ψ2
×

ρ(i, j)
N∑
k=1

σf (t, Ti−k)σ
f (t, Tj−k)f(Ti, Ti+1)

6. Repeat step (2) to (5) with different initialisation of ξ1, . . . , ξ4, η1, . . . , η4

which are determined by simplex downhill algorithm until the difference

between the market swaption volatilities and σswaption are minimised.

4.2 Numerical results

4.2.1 Investment strategy

The investment period selected is from 31st December 2012 to 31st

December 2013. Considering a hypothetical 2 year zero coupon bond issued

on 31st December 2012 and matures on 31st December 2014 that is available

for investment at any amount without transaction cost. There are two cases: (i)

the optimal weight algorithm will run at fixed rebalancing period throughout

the investment period, i.e. new bond optimal weight is generated after every

34



rebalancing period and (ii) the optimal weight algorithm will only run on the

first day of the investment period.

4.2.2 Source of data

The 1 year KLIBOR from 31st December 2003 to 31st December 2013

were used to parameters calibration for the Vasicek model. These rates are taken

from Bloomberg. For the case where the optimal weight algorithm that will be

run at fixed rebalancing period, 2 years of data will be used in the calibration

while for the case where running the optimal weight algorithm at the first day

of the investment period, 10 years historical data is used during the calibration

process. The term structure on 31st December 2012 will be used to determine

the market price of interest rate risk, λ.

The σ and ρ found in the LMM process are calibrated using the cap

volatilities and swaption volatilities. The cap volatilities and swaption volatili-

ties chosen have KLIBOR as the underlying . The cap volatilities and swaption

volatilities from 31st December 2012 to 31st December 2013 were taken from

Bloomberg. A point to mention is that both cap volatilities and swaption volatil-

ities are the volatility implied from the at the money (”ATM”) cap and ATM

swaption respectively. Volatility smile is not considered, i.e. a flat volatility

surface was assumed in the parameter calibration process.

An example of the cap volatility and swaption ATM volatility are as per

Table 4.1 and 4.2 respectively.

Table 4.1: ATM Cap Volatility (non percentage) on 31st December 2012
quoted by Bloomberg
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Table 4.2: ATM Swaption Volatility (non percentage) on 31st December
2012 quoted by Bloomberg

4.2.3 Initial values for calibration

An example of the parameters’ initial values for volatility function and

correlation function are as per Table 4.3 and 4.4 respectively.

Table 4.3: Initial Volatility Parametric Parameters

Table 4.4: Initial Correlation Parametric Parameters

Note that there are 3 initial values for all 4 parameters of the parametric

volatility function. This is because the simplex downhill algorithm uses as little

as 3 points located in the search region and iteratively find the next 3 points in

the search region, using certain rules, until one of the points is the optimal point.
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4.2.4 Calibration results

An example of the calibrated parameters for Vasicek model volatility

function, LMM instantaneous volatility function and LMM instantaneous cor-

relation function are as per Table 4.5, 4.6 and 4.7 respectively.

Table 4.5: Calibrated Vasicek Parameters

Table 4.6: Calibrated Volatility Parametric Parameters

Table 4.7: Calibrated Correlation Parametric Parameters

4.2.5 Optimal bond weights

There are a few options when deriving the optimal bond weights under

Vasicek. The options are:

• Moving window and non moving window.

• Risk averse, risk neutral and risk taking investors.

• Daily, weekly and monthly rebalancing periods.
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The rationale for each options

The advantage for considering the moving window option is the in-

corporation of latest data during the parameters calibration process. The non

moving window option has its merit with its calibrated parameters being stable.

Each investors will have different risk appetite, i.e. some investors are

wiling to risk more than other investors. Therefore, this behavior is roughly

captured in the parameter called risk aversion coefficient parameter.

In the dynamic asset allocation process, the portfolio weights are being

rebalance (adjusted) after a period of time. This dissertation considers daily,

weekly and monthly rebalancing periods as these are the common rebalancing

periods considered by many fund and portfolio managers.

Explanation of each options

The moving window option is not considered in the optimal bond weights

under LMM. This is because the data used to calibrate the LMM’s parameter de-

pends on one day’s cap volatility and swaption volatility and not a period of his-

torical cap volalitities and swaption volatilities. Therefore, only the non moving

average window option is considered for LMM which uses the current day’s cap

volatility and swaption volatility in the parameters calibration process. The op-

tion of risk averse, risk neutral and risk taking investors option is still considered

in the derivation of optimal bond weights under LMM.

The moving window option will use past 2 years data for the calibration

of Vasicek model’s parameters. Subsequently, these calibrated parameters will

be used to forecast the changes in the interest rate. The data for next business

day’s calibration process will use the same past 2 years data however, removing

the oldest data while incorporates the latest forecasted interest rate. This process

is repeated until the end of the investment period.
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The non moving window option will use past 10 years data for the cali-

bration of Vasicek model’s parameters. The same calibrated parameters will be

used to forecast the interest rate throughtout the investment period.

The risk averse, risk neutral and risk taking investors are captured using

the risk aversion coefficient, γ , which takes the values of 0.25, 0.5 and 0.75 for

risk averse, risk neutral and risk taking investor respectively.

The optimal bond weights are presented as per the following subsec-

tions:

• Vasicek model with moving window application of optimal bond weight

algorithm.

• Vasicek model with non moving window application of optimal bond

weight algorithm.

• LMM with non moving window application of optimal bond weight algo-

rithm.

Vasicek model with moving window application of optimal bond weight al-

gorithm

The bond weights for Vasicek model with risk aversion coefficient of

0.25, 0.5, 0.75 and daily, weekly and monthly rebalancing are as per Figures

4.1, 4.2 and 4.3 respectively.
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Figure 4.1: Bond Weights under Vasicek Model with Daily Rebalancing,
Moving Window and Risk Aversion Coefficient of 0.25, 0.5 and 0.75

Figure 4.2: Bond Weights under Vasicek Model with Weekly Rebalancing,
Moving Window and Risk Aversion Coefficient of 0.25, 0.5 and 0.75
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Figure 4.3: Bond Weights under Vasicek Model with Monthly
Rebalancing, Moving Window and Risk Aversion Coefficient of 0.25, 0.5

and 0.75

Vasicek model with non moving window application of optimal bond weight

algorithm

The bond weights for Vasicek model with risk aversion coefficient of

0.25, 0.5, 0.75 and daily, weekly and monthly rebalancing are as per Figure 4.4,

4.5 and 4.6 respectively.

Figure 4.4: Bond Weights under Vasicek Model with Daily Rebalancing,
non Moving Window and Risk Aversion Coefficient of 0.25, 0.5 and 0.75
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Figure 4.5: Bond Weights under Vasicek Model with Weekly Rebalancing,
non Moving Window and Risk Aversion Coefficient of 0.25, 0.5 and 0.75

Figure 4.6: Bond Weights under Vasicek Model with Monthly
Rebalancing, non Moving Window and Risk Aversion Coefficient of 0.25,

0.5 and 0.75

LMM with non moving window application of optimal bond weight algo-

rithm

The bond weights for LMM with risk aversion coefficient of 0.25, 0.5,

0.75 and daily, weekly and monthly rebalancing are as per Figures 4.7, 4.8 and

4.9 respectively.
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Figure 4.7: Bond Weights under LMM with Daily Rebalancing, non
Moving Window and Risk Aversion Coefficient of 0.25, 0.5 and 0.75

Figure 4.8: Bond Weights under LMM with Weekly Rebalancing, non
Moving Window and Risk Aversion Coefficient of 0.25, 0.5 and 0.75
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Figure 4.9: Bond Weights under LMM with Monthly Rebalancing, non
Moving Window and Risk Aversion Coefficient of 0.25, 0.5 and 0.75

The y-axis of the above graphs should be interpreted as whole num-

ber rather than in percentage. Suppose the graph show that the bond weight is

100 and investor has an initial capital of MYR 1,000,000. The investor should

borrow additional MYR 99,000,000 and invest MYR 100,000,000 into the zero

coupon bond.

It is natural that the optimal bond weights, π would be in the [0, 1]

region. However, the assumption that there is no restriction in depositing and

borrowing of any amount of cash from the money market account implicitly

allow investors to borrow money for the purpose of investing the money into the

zero coupon bond. Therefore, it is possible for the optimal bond weights to be

outside of the [0, 1] region.

4.2.6 Simulated invesment returns

The simulated investment returns are generated using the optimal bond

weights computed from Section 4.2.5 and the interest models, particularly Va-

sicek model and LMM, which describe the changes in the interest rate. Firstly,

the future possible interest rate paths are generated using the interest rate mod-

els. These interest rates will be used to value the zero coupon bond. Lastly, the
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investment returns are computed using the zero coupon bond prices on the last

investment period date and the first investment period date.

This simulated returns are then compared to the actual investment return

as the actual data is available during the time when this research is done. This

step is used to gauge how far would the simulated investment returns deviate

from the actual investment return.

The simulated investment returns are presented as per the following

subsections:

• Vasicek model with moving window application of optimal bond weight

algorithm

• Vasicek model with non moving window application of optimal bond

weight algorithm

• LMM with non moving window application of optimal bond weight algo-

rithm

Vasicek model with moving window application of optimal bond weight al-

gorithm

The simulated investment returns assuming Vasicek model with risk

aversion coefficient of 0.25, 0.5, 0.75 and with daily, weekly and monthly rebal-

ancing are as per Tables 4.8, 4.9 and 4.10 respectively.
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Table 4.8: Return Distribution under Vasicek model with Daily
Rebalancing, Moving Window and Risk Aversion Coefficient of 0.25, 0.5

and 0.75

Table 4.9: Return Distribution under Vasicek model with Weekly
Rebalancing, Moving Window and Risk Aversion Coefficient of 0.25, 0.5

and 0.75

Table 4.10: Return Distribution under Vasicek model with Monthly
Rebalancing, Moving Window and Risk Aversion Coefficient of 0.25, 0.5

and 0.75
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Vasicek model with non moving window application of optimal bond weight

algorithm

The simulated investment returns assuming Vasicek model with risk

aversion coefficient of 0.25, 0.5, 0.75 and with daily, weekly and monthly rebal-

ancing are as per Tables 4.11, 4.12 and 4.13 respectively.

Table 4.11: Return Distribution under Vasicek model with Daily
Rebalancing, non Moving Window and Risk Aversion Coefficient of 0.25,

0.5 and 0.75

Table 4.12: Return Distribution under Vasicek model with Weekly
Rebalancing, non Moving Window and Risk Aversion Coefficient of 0.25,

0.5 and 0.75
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Table 4.13: Return Distribution under Vasicek model with Monthly
Rebalancing, non Moving Window and Risk Aversion Coefficient of 0.25,

0.5 and 0.75

LMM with non moving window application of optimal bond weight algo-

rithm

The simulated investment returns assuming LMM with risk aversion

coefficient of 0.25, 0.5, 0.75 and with daily, weekly and monthly rebalancing

are as per Tables 4.14, 4.15 and 4.16 respectively.

Table 4.14: Return Distribution under LMM with Daily Rebalancing, non
Moving Window and Risk Aversion Coefficient of 0.25, 0.5 and 0.75
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Table 4.15: Return Distribution under LMM with Weekly Rebalancing,
non Moving Window and Risk Aversion Coefficient of 0.25, 0.5 and 0.75

Table 4.16: Return Distribution under LMM with Monthly Rebalancing,
non Moving Window and Risk Aversion Coefficient of 0.25, 0.5 and 0.75

The main point of generating the investment return distribution is to

know how much return could an investor expects from the initial wealth over

the investment period. For example, an investor assuming Vasicek model to

describe the changes in the interest rates, daily moving window and with a risk

aversion coefficient of 0.25 would expect a return of 74.4175% at the end of the

investment period.

The observations based on the bond weights and simulated results are,

• Risk taking investors would leverage more than risk averse investors

• The expected return for risk taking investors are higher than risk averse

investors and likewise for the volatility

• Under Vasicek model, the optimal bond weights computed using param-

eters which are calibrated using moving window are more reactive com-
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pared to those where its parameters are calibrated using non-moving win-

dow

• Under Vasicek model, more frequent rebalancing of the portfolio would

have more volatile optimal bond weights.

• With the same risk aversion coefficient, Vasicek model suggests higher

leverage compared to LMM. Under Vasicek model, the optimal bond

weights, Equation (3.1), is high with high mean reverting rate, a and low

volatility, σr. As shown in Figure 4.5, the mean reverting rate is high

while the volatility is low. The values of these 2 parameters caused the

optimal bond weights under Vasicek model to be high.

• Under both Vasicek model and LMM, as the time approaches the end of

the investment period, there would be less volatility in either the short

rates or the forward rates. This leads to a smaller volatility number and

thus a larger optimal bond weights. Recall that the optimal bond weights

for both models are inversely proportional to the volatility. This is natural,

as there are less volatility among the interest rates, investors should be

more confident in investing into interest rate related products such as the

zero coupon bond.

• The higher simulated return based on Vasicek model is due to higher lever-

age than LMM with the exception for LMM with weekly rebalancing and

non moving window. Close to 3000 times leverage for risk taking in-

vestors based on Vasicek model with moving window to as high as 300

times leverage for risk taking investors based on LMM other than weekly

rebalancing and non moving window. Should the monthly rebalancing

for LMM is as responsive as the daily and weekly rebalancing, I believe

the optimal bond weights would be much higher than the optimal bond

proposed by Vasicek model.

Caution should be taken for those who wish to invest based on Vasicek

model on a moving window, daily rebalancing and weekly rebalancing basis, in
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view that the actual result is higher than the simulated results and avoid other

strategies mentioned here. In hindsight, these results hold true, however, these

results may not hold true in the future. Furthermore, the assumptions made

earlier are not reflective of the actual financial market conditions.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Consider the situation where an investor has set a fixed period to invest

as well as a fixed amount of initial wealth. This investor would invest certain

percentage of the wealth (called the bond weights) in a chosen zero coupon

bond or deposit in a money market account. How would the investor allocate

the wealth into these investment vehicles at the start of the investment period

and how should the these bond weights would change, on a fixed interval basis,

such that the investor would maximise his utility from the total wealth at the end

of the investment period. In other words, what should be the bond weights in

the zero coupon bond and the remaining in the money market account such that

the investor’s satisfaction will be the highest at the end of the investment period.

Assume that money market would generate interest at a fixed rate while

most finance literature will state that the price of the zero coupon bond is in-

versely proportional to the interest rate level. This dissertation assume that the

changes in the interest rate level follow certain models.

Korn and Kraft (2002) and Puhle (2008) has studied such problem as-

suming that the changes in the interest rate level follow some short rate models

such as Vasicek (1977) model and Cox et al. (1985) model. This dissertation,

however, studied such problem assuming that the changes in the interest rate

level follow some market models such as the Brace et al. (1997) (BGM) model

also known as LIBOR Market Model (LMM). A comparison was done on the

bond weights process produced by assuming Vasicek model and LMM.

The potential future works mentioned throughout this dissertation are

(i) optimsation methods other than stochastic control, (ii) other form of util-

ity function for u(W (T )), (iii) taking volatility smile into consideration during
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the calibration of parameters for LMM, (iv) assume non constant market price

of interest rate risk, λ, (v) considering more than one (1) bond to constitute

the portfolio, (vi) adding stock into the portfolio and (vii) subject the optimsed

portfolio to Value at Risk (VaR) constraint as a risk management tool.

Some papers that would be a leading point to some of the above poten-

tial future work mentioned above are as follows:

Chiu and Wong (2014) has applied the same optimisation method on a

Markowitz portfolio efficient portfolio while considering the contingent claims

arising from insurance products. In other words, this optimisation method is not

only applicable for portfolios managed under asset approach but also for portfo-

lios managed using asset liability approach. This dissertation can be expanded

to optimising a bond portfolio such that it is sufficient in meeting all contingent

claims of an insurance companies.

Dai and Yue (2016) developed an optimal control approach to recover

the risk neutral drift term of the stochastic volatility. This paper shows the cal-

ibration of a stochastic volatility’s drift term to the available option volatilities

found in the market. This calibration process also consider the relationship be-

tween volatilty and option’s strike, i.e. volatility smile.

The observations based on the bond weights and simulated results are

(i) higher simulated return based on Vasicek model is due to higher leverage than

LMM. Close to 3000 times leverage for risk taking investors based on Vasicek

model to 4 times leverage for risk taking investors based on LMM, (ii) higher

expected return and volatility for risk taking investors than risk averse investors

and (iii) Vasicek model with moving window performed better than non moving

window where slight improvement for LMM with moving window over non

moving window.
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APPENDIX A

LIBOR MARKET MODEL

A.1 Definition of a market model

Prior to 1997 where the LMM process has yet to be introduced to the

quantitative community, many traders will usually price interest rate derivatives

using the standard Black formula. Back then, there was no SDE that would

describe the LIBOR or the forward rate as most interest rate SDEs of those time

describe short rate.

There is a need for a SDE that describes the forward rate especially

LIBOR and that SDE would coinside with the market practice of using Black

formula to price interest rate derivatives. There are many ways to define a SDE,

such as Hunt and Kennedy (2004) has specified some steps to identify a SDE

that fulfills the two requirements mentioned above. The steps are:

1. Specify a SDE for the forward LIBOR and determine the necessary rela-

tionship between the drift and diffusion terms for any corresponding term

structure model to be arbitrage free

2. Prove that a solution exists and it is unique to the SDE defined in step 1

3. Check that, for this solution, there exists a numeraire pair (N,N) for

which all numeraire re-based bonds defined by the SDE are martingales

under the measure N

4. Demonstrate that this particularly defined model can be extended to a

model for the whole term structure in such a way that the extended model

also admits a numeraire pair
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A.2 LMM process

The concept of martingale measure is important in the models for pric-

ing financial derivatives. The valuation of financial derivatives are viewed as

stochastic processes. There are some stochastic processes in financial deriva-

tives that are supermartingale with an American style option being the standard

example. However, most processes would be a martingale once these stochastic

processes are adjusted using a numeraire.

A numeraire is defined to be a tradeable economic entity which all other

prices are expressed. An example of numeraire is currency of a country. In other

words, when a stock is said to be traded at $1.20, this means that $1.20 would

be the tradeable economic entity where the price of a stock is expressed.

This paper would first assume that LMM is a no-arbitrage model then

prove it mathematically later that it is indeed no-arbitrage. Heuristically, if

LMM is not a no-arbitrage model i.e. the application of LMM model would

lead to a situation where arbitrage might exist, it is common understanding that,

on the buy side, investors will exploit this arbitrage. Eventually, the arbitrage

opportunity would vanish. On the other hand, on the sell side, traders who are

aware that LMM would lead to an arbitrage opportunity would adjust down their

valuation, else no one would buy from them. This rejects the initial hypothesis

that LMM is a no-arbitrage model.

Harrison and Kreps (1979) states that if a pricing model admits no sim-

ple free lunches i.e. no arbitrage exists then there is a one-to-one correspon-

dence between equivalent martingale measure Q∗ and the pricing functional.

This means that each price or valuation of the interest rate derivative or bond

would correspond to an equivalent martingale measure.

What should the equivalent martingale measure be? Before answering

that question, some understanding of forward rates and the HJM framework
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have to be established.

Let P (0, T ) be the price of a zero coupon bond expiring at time T ob-

served at time 0.

Definition A.2.1. The forward rate, f(0;T,∆T ) for the period [T, T + ∆T ]

observed at time 0, is defined as

P (0, T ) = P (0, T + ∆T )(1 + ∆Tf(0;T,∆T ))

Rearranging the above equation, we have

f(0;T,∆T ) =
1

∆T

(
P (0, T )

P (0, T + ∆T )
− 1

)

Under the HJM framework, the forward rate process would be

df(0;T,∆T ) =

(
σ(T, T + ∆T )

∫ ∆T

0

σ(T, T + s)ds

)
dt+σ(T, T+∆T )dZ(T )

A.2.1 LMM process under forward measure and forward tenor

Theorem A.2.1. The process of a forward rate, f(t;T,∆T ), is a martingale

under the forward measure QT+∆T .

Proof. With the following forward rate,

f(t;T,∆T ) =
1

∆T

(
P (t, T )

P (t, T + ∆T )
− 1

)

Apply Itô’s Lemma

d

(
P (t, T )

P (t, T + ∆T )

)
=

P (t, T )

P (t, T + ∆T )
(σ(t, T )− σ(t, T + ∆T ))

× (dZ(t)− σ(t, T + ∆T )dt)

(A.1)

Since Ẑ(t) = Z(t) −
∫ t

0
σ(s, T + ∆T )ds is a QT+∆T Brownian motion. So,

f(t, T,∆T ) is a QT+∆T martingale.
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By Theorem A.2.1, we can write the forward rate process under the forward

measure as

df(t, T,∆T ) = σ(T, T + ∆T )f(t, T,∆T )d̂Z(t) (A.2)

Note that this Equation (A.2) holds true only for the one particular for-

ward rate that will be used to determine the interest cash flow at time T + ∆T .

In general, there will be a drift term whenever a different measure is considered.

Equation (A.2) implies that the LMM process follows a lognormal distribution

with mean 0 and standard deviation of σ(T, T+∆T ) under the forward measure.

Recall from Section A.1, Equation (A.2) fulfills the third step in defin-

ing the market model. However, this equation is restricted to the forward mea-

sure. Step one in defining the market model requires that the SDE for the for-

ward LIBOR be able to describe the process of forward LIBOR under measures

different from the forward measure. This leads to the next subsection.

A.2.2 LMM process under non forward measure

In Section A.2.1 we consider the LMM process under forward measure.

How would the LMM process looks like if the measure is not the forward mea-

sure. This situation arises frequently especially in bonds with more than one

coupon payment or swaps. There will be a lot of cash flow to considered and it

would be hard to justify which period should be chosen as the forward period

where the forward measure is defined on.

Under measure different from the forward measure, the LMM process

under these measures make some adjustment in the drift term to account for the

difference in measure.

Recall that the LMM process models the forward rate process, i.e. the

LMM process describe how forward rates would be in the future with a certain

probability.
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In the following derivation of the LMM process, we will use slightly

different notional for forward rate as to make equation neat. Consider the situa-

tion where there is a multiple coupon paying bond which pays coupons at time

T1, T2, . . . , Tn. The tenor, i.e. the time between two coupon paying times is

denoted by τ . The instantaneous forward rate is the forward rate starting today

to the maturity date observed date, i.e. f(0, 0,∆T ). The simplified notation for

instantaneous forward rate for time Tk to time Tk+1 observed at time t would be

fk(t, T ).

Theorem A.2.2. The process of fk(t, T,∆T ) under the measure Qi for the cases

(i) i < k, (ii) i = k and (iii) i > k are

dfk(t, Ti) =



σk(t, Ti)fk(t, Ti)
∑k

j=i+1
ρ(i,j)τjσk(t,Tj)fk(t,Tj)

1+τjfk(t,Tj)
dt

+σk(t, Ti)fk(t, Ti)dZk(t), i < k, t ≤ Ti

σk(t, Ti)fk(t, Ti)dZk(t), i = k, t ≤ Ti

−σk(t, Ti)fk(t, Ti)
∑i

j=k+1
ρ(i,j)τjσk(t,Tj)fk(t,Tj)

1+τjfk(t,Tj)
dt

+σk(t, Ti)fk(t, Ti)dZk(t), i > k, t ≤ Ti

(A.3)

where Zk(t) is a Brownian motion under measure Qi.

Note that this satisfies the first specification of a market model stated in

Section A.1. The proof could found in Brigo and Mercurio (2006). This satisfies

the first step in defining a market model as mentioned in Section A.1.

The correlation, in the short rate models, is often interpreted as the cor-

relation between Brownian shocks. The correlation, however, in LMM could

be viewed as the correlation between the movement between different pairs of

LIBOR that are of different reset period. For instance, ρ3M,6M describes the

correlation between the 3 month LIBOR and the 6 month LIBOR. This is rather

more intuitive and have a better economics interpretation than the correlation in

the short models.
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The next subsection describes the second step in defining a market

model.

A.2.3 Existence and uniqueness of the LMM process

The Picard-Lindelof Theorem proves the existence and pathwise unique-

ness for ODE. Itô (1946) has extend this theorem to prove the existence and

pathwise uniqueness for SDE. This satisfies the second specification of a mar-

ket model stated in Section A.1. The next subsection will describe the fourth

step in defining the market model.

A.2.4 A martingale solution for the LMM process

As a result of the non-arbitrage of the HJM framework, there exist an

equivalent martingale measure. Based on Harrison and Pliska (1981), the exis-

tence of an equivalent martingale measure implies that the market is complete.

A market is said to be complete when every contingent claim is attainable.

The existence of the equivalent martingale measure implies that there is

a numeraire N(t) and also a probability measure N such that the price of every

contingent claim X(t, ω) relative to N(t) is a martingale under N. This means

that the following equation holds

X(t, ω)

N(t)
= EN

[
X(T, ω)

N(T )
|Ft
]

where t is the current time and T is the time in the future where there is cash

movement resulting from the contingent claim. Note that ω is to specify the

particular state of the economy from all possible state of the economy, Ω.

Substitute X(t, ω) with fk(t) and N(t) with M(t), where fk(t) is the

unique solution of the LMM process as shown in subsection A.2.3 and M(t) is

the money market account. Therefore, the forward rate process fk(t) relative to
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the money market account, M(t) is a martingale process. This satisfies the third

specification of a market model stated in Section A.1.

Combining the technique of change of measure and the existence of the

equivalent martingale measure, we have another important equation

EN
[
X(T, ω)

N(T )
|Ft
]

= EQ
[
X(T ′, ω)

Q(T ′)
|Ft
]

where Q(t) is another numeraire with Q being its respective measure and T ′ is

a time different from T . This satisfies the fourth specification of a market model

stated in Section A.1.
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APPENDIX B

DERIVATION OF OPTIMAL BOND WEIGHTS FOR VASICEK

MODEL

From Puhle (2008), the zero coupon bond price process follows

dP (t, T )

P (t, T )
= (r(t) + σ(t, T )λ)dt− σ(t, T )dZ(t) (B.1)

where

• λ is the market price of interest rate risk

• σ(t, T ) is the volatility of the zero coupon bond process for the period

[t, T ]

.

The money market account process follows

dM(t) = M(t)r(t)dt (B.2)

where r(t) is the short rate.

Suppose that the π(t) portion of the investor’s portfolio consists of one

zero coupon bond at time t and the remaining 1 − π(t) portion is held as some

cash in the money market account and this constitute the investor’s total wealth.

Therefore the total wealth of the investor follows the following process

dW (t)

W (t)
= (r(t) + π(t)σ(t, T )λ)dt− π(t)σ(t, T )dZ(t) (B.3)

B.0.5 Deriving the optimal bond weights under Vasicek model

The goal of the investor is to invest in a certain way such that the util-

ity gained from the wealth at the end of the investment period is maximised.
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Mathematically,

max
π
{Et[u(W (T ))]}

where u(·) is the utility function of the investor and this decision is made on

time t.

Define the optimised functional at time t as

J(t, r(t),W (t)) = max
π
{Et[u(W (T ))]}

Likewise, the optimsed functional at time T is

J(T, r(T ),W (T )) = u(W (T ))

Suppose the portfolio is rebalanced after a period of time say, ∆t. The

optimised functional at time T −∆t is

J(T −∆t, r(T −∆t),W (T −∆t)) = max
π
{ET−∆t[u(W (T ))]}

= max
π
{ET−∆t[J(T, r(T ),W (T ))]}

Note that the optimised functional at time T −∆t depends on time T .

Recursively, the optimised functional at time t depends on time t+ ∆t

J(t, r(t),W (t)) = max
π
{Et[J(t+ ∆t, r(t+ ∆t),W (t+ ∆t))]} (B.4)

Applying Taylor’s theorem on the functional J around (t, r(t),W (t))

J(t+ ∆t, r(t+ ∆t),W (t+ ∆t)) = J(t, r(t),W (t)) + Jt∆t+ JW∆W + Jr∆r

+ JWr∆W∆r +
1

2
JWW∆W 2 +

1

2
Jrr∆r

2

Taking expectation on the above equation as the variables such as r(t)
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and W (t) are stochastic processes

Et[J(t+ ∆t, r(t+ ∆t),W (t+ ∆t))] (B.5)

= J(t, r(t),W (t)) + Jt∆t+ JWEt[∆W ] + JrEt[∆r]

+ JWrEt[∆W∆r] +
1

2
JWWEt[∆W 2] +

1

2
JrrEt[∆r2]

Substitute Equation (B.5) into Equation (B.4)

0 = max
π
{Jt∆t+ JWEt[∆W ] + JrEt[∆r] (B.6)

+ JWrEt[∆W∆r] +
1

2
JWWEt[∆W 2] +

1

2
JrrEt[∆r2]}

The above equation relies on the expectation of Equation (C.1) and

(B.3) which are

• E[∆r] = a(b− r(t))∆t

• E[∆W ] = W (t)(r(t) + π(t)σ(t, T )λ)∆t

• E[∆r2] = (σr)2∆t

• E[(∆W )2] = W 2(t)π2(t)σ2(t, T )∆t

• E[∆W∆r] = −W (t)π(t)σ(t, T )σr∆t

The expectations, Et are short written as E.

Inserting these expectations into Equation (B.6)

0 = max
π
{Jt∆t+ JWW (t)(r(t) + π(t)σ(t, T )λ)∆t (B.7)

+ Jra(b− r(t))∆t− JWrW (t)π(t)σ(t, T )σr∆t

+
1

2
JWWW

2(t)π2(t)σ2(t, T )∆t+
1

2
Jrr(σ

r)2∆t}

Divided the above by ∆t

0 = max
π
{Jt + JWW (t)(r(t) + π(t)σ(t, T )λ) + Jra(b− r(t))

− JWrW (t)π(t)σ(t, T )σr +
1

2
JWWW

2(t)π2(t)σ2(t, T ) +
1

2
Jrr(σ

r)2}
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Differentiate the above equation with respect to π(t) and set it to 0 in

order to find the π∗(t) which is the portfolio process that would maximise the

utility gained from the total wealth at the end of the investment period.

π∗(t) =
JWrs− JWλ

JWWW (t)σ(t, T )
(B.8)

Substitute the above equation into Equation (B.7) and simplify

0 = JtJWW + JWJWWW (t)r(t) + JWJWrσ
rλ (B.9)

+ JrJWWa(b− r(t))− J2
Wr(σ

r)2

2
+
JrrJWW (σr)2

2

with the boundary condition

J(T, r(T ),W (T )) = E[u(W (T ))]

Assume that the utility function follows the Constant Relative Risk

Aversion (CRRA) form which is u(W (T )) = W γ where γ is called the risk

aversion coefficient of the investor which satisfy 0 < γ < 1. Therefore, the

boundary condition for Equation (B.9 is

J(T, r(T ),W (T )) = W γ

Note that J(t, r(t),W (t)) is a general function. Korn and Kraft (2002)

suggested the following seperation

J(t, r(t),W (t)) = G(t, r(t))W γ

The boundary condition for G(t, r(t)) is G(T, r(T )) = 1.

The partial derivatives for J(t, r(t),W (t)) in terms ofG(t, r(t)) andW

are
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• Jt = GtW
γ

• Jr = GrW
γ

• Jrr = GrrW
γ

• JW = γGW γ−1

• JWW = γ(γ − 1)GW γ−2

• JWr = γGrW
γ−1

Substitute the above partial deriviatives into Equation (B.9) and sim-

plify

0 = (γ − 1)GGt + γ(γ − 1)G2r(t) + γGGrσ
rλ (B.10)

+ (γ − 1)GGra(b− r(t))− γG2
r(σ

r)2

2
+

(γ − 1)GGrr(σ
r)2

2

with the boundary condition G(T, r(T )) = 1.

The optimal bond weights would be

π∗(t) =
Grσ

r −Gλ
(γ − 1)Gσ(t, T )

(B.11)

=
1

1− γ

(
λ

σ(t, T )
− σr

σ(t, T )

Gr

G

)

Likewise, the following seperation on G(t, r(t)) can be made

G(t, r(t)) = A(t)eB(t)r

with the boundary condition B(T ) = 0.

The partial derivatives for G(t, r(t)) in terms of A(t) and B(t) are

• Gt = A′(t)eB(t)r + A(t)B′(t)reB(t)r

• Gr = A(t)B(t)eB(t)r

• Grr = A(t)B2(t)eB(t)r

Subsititute the above partial derivatives into Equation (B.10) and sim-
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plify

0 = (γ − 1)(A′(t) + A(t)B′(t)r) + γ(γ − 1)A(t)r + γA(t)B(t)σrλ

+ (γ − 1)A(t)B(t)a(b− r)− A(t)B2(t)(σr)2

2

The optimal bond weights after simplification is then

π∗(t) =
1

1− γ

(
λ

σ(t, T )
− σr

σ(t, T )
B(t)

)

As mentioned by Korn and Kraft (2002), the seperation would be mean-

ingful if the following holds

0 = (γ − 1)A(t)r(B′(t) + γ − aB(t))

i.e. the coefficient of the r term is zero.

This involves solving an inhomogeneous ODE

0 = B′(t)− aB(t) + γ

such that B(T ) = 0 and the solution is as follows

B(t) =
1− e−a(T−t)γ

a
(B.12)

In Vasicek case, note that the zero coupon bond price dynamic is

dP (t, T )

P (t, T )
= r(t)dt− σrB∗(t, T )dZ(t)

= r(t)dt− σ(t, T )dZ(t)

where B∗(t, T ) = 1−e−a(T−t)

a
and σ(t, T ) is the volatility for the zero coupon

bond process for the period [t, T ] with σ(t, T ) = σrB∗(t, T ).

70



Note the relation between B(t) and B∗(t, T )

B(t) = γ
1− e−a(T−t)

a
= γB∗(t, T )

Combine the above two equations

σ(t, T ) =
σrB(t)

γ

Substitute the above relationship and Equation (B.12) into (B.11) and

simplify

π∗(t) =
1

1− γ

(
λa

σr(1− e−a(TB−t))
− γ 1− e−a(T−t)

1− e−a(TB−t)

)
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APPENDIX C

CALIBRATION OF VASICEK MODEL USING MAXIMUM

LIKELIHOOD ESTIMATOR

The SDE for the Vasicek Model is

dr(t) = a(b− r(t))dt+ σdZ(t) (C.1)

where

• r(t) is the current interest rate level

• a is the mean reversion rate

• b is the long term interest rate level

• σ is the interest rate volatility

• Z(t) is the Brownian motion

Let δ = 1
252

(one (1) day expressed in term of year) be the fixed time

step. Define the following:

Sx =
N∑
i=1

ri−1

Sy =
N∑
i=1

ri

Sxx =
N∑
i=1

r2
i−1

Sxy =
N∑
i=1

ri−1ri

Syy =
N∑
i=1

r2
i

where N is the number of historical interest rate used in the calibration.
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Apply the following formula to obtain the calibrated parameters for Va-

sicek model using maximum likelihood estimator:

b =
SySxx − SxSxy

N(Sxx − Sxy)− (S2
x − SxSy)

a = −1

δ
ln
Sxy − bSx − bSy +Nb2

Sxx − 2bSx +Nb2

σ =
2a

N(1− e−2aδ)
·(

Syy − 2e−aδSxy + e−2aδSxx − 2b(1− e−aδ)(Sy − e−aδSx) +Nb2(1− e−aδ)2
)
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