Design and Implementation of
a 32-bit Lite Version ARM ISA CPU
By
Tan Beng Liong

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF INFORMATION TECHNOLOGY (HONS)
COMPUTER ENGINEERING

Faculty of Information and Communication Technology
(Perak Campus)

JAN 2017

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Academic Session:

(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in
Universiti Tunku Abdul Rahman Library subject to the regulations as follows:
1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

(Author’s signature) (Supervisor’s signature)

Address:

Supervisor’s name

Date:

Design and Implementation of
a 32-bit Lite Version ARM ISA CPU
By
Tan Beng Liong

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF INFORMATION TECHNOLOGY (HONS)
COMPUTER ENGINEERING

Faculty of Information and Communication Technology
(Perak Campus)

JAN 2017

DECLARATION OF ORIGINALITY

I declare that this report entitled “Design and Implementation of a 32-bit Lite Version ARM ISA
CPU” is my own work except as cited in the references. The report has not been accepted for any

degree and is not being submitted concurrently in candidature for any degree or other award.

Signature

Name

Date

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

ACKNOWLEDGEMENTS

I would like to thank to Mr. Mok Kai Ming for giving me the opportunities to contribute in this

project which help me improve my understanding toward the processor design skill.

Beside thank to University Tunku Abdul Rahman for provide the facilities and comfortable

environment to all students to complete their project.

BIT (Hons) Computer Engineering Il
Faculty of Information and Communication Technology (Perak Campus), UTAR

ABSTRACT

This project is a processer design with Verilog HDL for academic purpose. The processor
is built in pipelined stage and divided to 5 stages which are instruction fetch (IF),
instruction decode (ID), instruction execution (EX), memory (MEM) and write back
(WB). It contain the methodology, design hierarchy, connection between each blocks and
pin description for each blocks. The processor is built based on ARM instruction
structure architecture (ISA). To understand the how the instructions work, an ARM
assembly stimulator, ARMSim which is free simulator developed by University of
Victoria is downloaded, the ARMSim also used to verify the output of the designed

Verilog module by comparing the register file and memory content.

The instruction format and addressing mode of each type of instructions in ARM is
studied. The data path of the processor is designed according to the addressing modes of
the instructions need to implement to the design. However the arithmetic logic unit
(ALU) and barrel shifter block which can perform add, subtract, logical shift (LSL and
LSR), arithmetic shift right (ASR) and rotate right (ROR) is designed. For memory cache
the address of each segment is refer to the memory map stated in Digital Design and
Computer Architecture ARM edition by Sarah L. Harris and David Money Harris.
Hazard problem in the pipelined register is solved by implement extra blocks instead of
using NOP to achieve a better performance. After designed the Verilog module

verification is carry out to make sure the processor work.

The verification is done by using 2 converted ARM assembly program with ARMSim, as
stated above the content of both register file and memory cache need to be same. First
program used is to test the all instruction implemented worked individually however
another is converted from c¢ program to verify that the instructions can worked with each

other.

BIT (Hons) Computer Engineering 1l
Faculty of Information and Communication Technology (Perak Campus), UTAR

TABLE OF CONTENTS

Contents
DECLARATION OF ORIGINALITY ..oeeeiiiiiieeieeeeee e e I
ACKNOWLEDGEMENTS ...ttt et Il
ABSTRACT ...ttt st e sb e st s eneesneenne e I
TABLE OF CONTENTS ...t s vV
LIST OF FIGURES ...ttt sttt sttt ettt e ne e Vi
LIST OF TABLES ...ttt ettt sttt ettt sae e XI
LIST OF ABBREVIATIONS ..ottt ettt st X1
Chapter 1 — INrOAUCTIONveeeiiiieiieeciee ettt e s e s aae e sbaeesans 1
1.1 Project Background..........ccceiiiiiiiiiiiiiiecee et 1
1.2 ARM S HISTOTY ..eiiiiiiiiiiieiiiee ettt ettt st et s 1
1.3 Problem Statement & MOtIVAIONccc.eeiiiiiiiiiiiiieieeieeeeeee et 3
Chapter2 — Literature REVIEWc.civiiiiriiiiiiiieciieceiie ettt 4
2.0 ISA (Instruction Set Architecture) of ARM...........cooovvviiviiiiiiiiiiieeeeeeee e, 4
2.0.1 InStruction FOIMAL........ccueeiiiiiiiiiiieeeiee e 6
2.0.2 Condition Encode INStrUCIONcooveriiierienieeieenieeieeee e 8
2.1 Single cycle, multi-cycle and pipelined proCessor...........ceveeriernieriieeneenieeieeneens 9
2.2 BeNChMATKING ...ceoiviiiiiieeiieeeitee ettt et e st e st 11
P BN 111015 W G0) (TP PPP PPN 11
B N 10) 4 11 W o0 (< P PP PPPOPPP 13
2.2.3 ARMYT7 COT@..ueiiiiiiiiiiiiiie ettt ettt ettt s e e e s sbae e e s s ata e e s s nateeeesabaeeeenen 14
2.2.4 ARMO COTC...eeiiiiiiiiiiiiiie ettt ettt ettt srtae e e s st e e s s bta e e s s ateeeeennbaeeeenen 15
2.2.5 ARMIOTDMI ..o e s 16
2.2.60 ARMIT COTE..coiiieiieiieeieeiee ettt ettt s s s 17
Chapter 3 — Project ODJECHIVEueviuiiiiiieiriieeriieeeiteesiteesiee e ee e sireessbaeesbeeesibeessareesbaeenas 19
3.1 PIOJECE SCOPE .nveiiieiieeeet ettt ettt ettt 19
3.2 ODBJECLIVE ..ttt ettt ettt b e ettt ettt e bt e 19
3.3 Significance and IMPACESc.eeeriiiiriiiiiiiiieiie et 20
Chapter 4 - Methodology and Technologies Involvedccccceevvierviieniieeniieenieeeeen 21
4.1 Design MethodOIOZYcoouiiiiiiiiiiieiiieeite ettt et 21
BIT (Hons) Computer Engineering Y,

Faculty of Information and Communication Technology (Perak Campus), UTAR

4.2 Universal Design MethodOlOgYccocuiiiiiiiiiiiiiiiiiiiieeieeceeeteeeee e 21

4.3 Development TOOISc.uiiiiiieiiiieeieeeciee ettt et e e e e teeesraeesneeeenseeees 23
[or VA YZ=] a1 Lo - RO PRPT 23

4.4 Desi@n HICTAICHYcoeiiiiiiiiieciie ettt et eee e et svee e saae e eanee e e 23
4.5 Implementation Issues and Challenges.........ccccueeereeeiriieniiieiiieeiieeeieeeeeesiee e 24
4.6 Schedule and tIMEIINEcccueeriiiiiiiniiiieeeeecceee e 27
Chapter 5 — System SPeCIfiCAtION ...ccevuviiriuieiiiieeitee ettt esiaeeeas 28
ST FRALUTE ...ttt ettt ettt ettt et ettt ebe e 28
5.2 NamMing CONVENLIONeeeiuiieeiieeeiiieeiieeeieeeeieeesteeesaeeessreeessreeessreessseessseesseeesnses 28
5.3 RISC32 PIOCESSOT ..eeueiieiiiieeiieeeitee ettt e eite et te et e et e ettt e sabeesbbeesabteesabeeesaseeesanes 30
5.3.1 Processor INtEIfacCe........covveeriieiieirieiieeeereeeeeee e 30
5.3.2 1/O Pin DESCIIPLION ..coueviiiiiiiiiciiciiccrceeee e 30

5.4 SYStEM REZISTET ..uvvieiiiiieiiiieeite ettt ettt e st e st esbee e s e e 31
5.4.1 General Purpose ReZISter.......covuiiiiiiiiiiiiieiiieeiieesiee ettt 31
5.4.2 Special PUrpose REZISIET.......ciivviiiiiiiiiiieiiee ettt 31

5.5 InStruction FOIMAL........cocuiiiiiiiiiieiieececec et 32
5.6 AdAressing MOEueeeiuiieeiiieeiiieeiie ettt et e et e e eeeaeeeaaeessaeeenreeennnes 34
5.7 Instruction Set and DesCriPtion........ccc.ueeiiiiiriieeriie et 37
S8 MEMOTY MAPD ..ottt ettt et e st 41
5.9 Operating ProCeAUIEcuieeiiieiiiieciieecite ettt et e eeve e eaae e s eree e 42
Chapter 6 — Microarchitecture SPecifiCationcccveivieinieiiiiiniiireceese s 43
6.1 DeSign NIETAICHYcooiiiiiiiieciee ettt et e e e s e e eesee e 43
6.2 Unit level functional partitionIng..........eeecveeeriieenieeeniieenieeeiteeeiree e e e siee e 44
6.3 Unit block level partitioningccccceeevveeernveennen. Error! Bookmark not defined.
Chapter 7 — Data path of CRISC (Unit & Block [evel)coocvviviiieiniiiniieiniicenieeeienn 45
T1 FRATUTE......eieeieeitee ettt et ettt sttt e st et e e st e e e 45
7.2.1 Block diagram of udp (Data path)ccccceeeveiiiniiiiiiiniiiieccceceeee 47
7.2.2 Data path block level hierarchyccocceeeriiiiniiiiiiiieieeee e 53
7.2.3 Block level partition of udpcccceevvveerieeerineenns Error! Bookmark not defined.

7.3 ReIStEr fI1€ (DIT)..ccuuiieiiiieeiieeeiee ettt e s e s e e eanee e 54
7.3.1 FUNCHONANILY ...ooiiiiiiiiiicciie et 54
7.3.2 BIOCK DIQ@TAIMviieiiiiieiieeciie ettt ettt sanee s 54
7.3.3 FUNCIONAL tADIE.....coeeiiieieeeieeeeee e 57
7.3.4 Internal block diagram of Register Filecccooiviviiiiiniiiniiiiiiecniccieee 58

BIT (Hons) Computer Engineering \Y;

Faculty of Information and Communication Technology (Perak Campus), UTAR

7.4 Arithmetic Logic Block with shift (balb_shift)ccccoooiiiiiiiniiiiniis 59

7.4.1 FUNCHONAIILY ..veviiiieiiiieeiieesiee ettt ettt st sbe e s sbaeesanee s 59
7.4.2 BlocK DIagramccccoviiiiiiiiiiiiiiiiiiicniecice e 59
7.4.3 Functional table...........ccoceeiviiiiiiiiniiiiiieciees Error! Bookmark not defined.
7.4.4 Internal block diagram of ALB............ccocueennenee Error! Bookmark not defined.
745 TSt PlAN..coeiiiiiiiiiiece e 62
7.4.6 SIMUIAtION TESULL ...eouvieiieiieieeee e 64
7.5 Data forwarding control (bfW_cCtrl)......c..ceouieeriiieiiieeiieeeeceeeeeee e 67
7.5.1 FUNCHONANILY ...oeiviiiiiiiiiiiie et 67
7.5.2 Forwarding Block Function Tablesccccceiviiiiniiiinieeniececeiee e 71
7.5.3 BIOCK QIaZIam..cc.uviieiiiiiiiieciieesiee ettt sttt s s s s 72
7.6 Interlock control (DItL_CEIL)oovvieiiiiiiiiiiieieeeeeee e 75
7.6.1 FUNCHONALILY ...oeouviiiiriiiieiiectccecse e e 75
7.6.2 BIOCK QIaZIaM ..ccuuviiiiiiieiiieciie ettt sttt s e s e st e e e sanae s 75
7.6.3 FUNCIONAL tADIE.....coveiiiiiieeieeeee e 77
Chapter 8 — Control Path of CRISC (Unit & Block Ievel)ccovvevriieiniieiniiiiieeiiieens 78
8.1 Control Path Unit (UCP).....vveeereeeiiieiiiieeiiee et eetee et e e e eareeetaeeeaaeesnneees 78
8. 1.1 FUNCHONALILY .eevuviiieiiieiiiie ettt ettt st e e s e e sabeessareesbaeesaneee e 78
8.1.2 Control Path’s Unit interface — (Block diagram)..........cccoceveviieeinieiinieenieennns 78
8.1.3 Block partitioning N UCP «..veeerveerrveeriieeriieesieessreesiteessireessieeesreeesseessaseesas 83
8.1.4 Block level partition diagram...........ccceeeiriiiiiiiiniiniiiiicnieeieeec e 84
8.1.5 Functional table.........cccceevviieriieiniiieiieeiieeeee, Error! Bookmark not defined.
8.2 Main Control Block (bmain_Ctrl)cccovviiiieiiiiiiiiiiieiee e 85
8.2.1 FUNCHONALILY .eevvviiriiiieiiie ettt ettt st e e sabeessaaeesbaeesaneee e 85
8.2.2 Block dIagram.......c.cooeiiiiiiiiiiiiiiiciienieccse e 85
8.2.3 Functional table.........ccceeevvieriieiniiieiiiieiieeeee, Error! Bookmark not defined.
8.3 Instruction Control Block (binStr_Ctrl)oceeeeieiiiiiieiieiiiiiiiiiieeeeee e 90
8.3.1 FUNCHONALILY ..eovviiiiiiiiiiiiiiccee e 90
8.3.2 Block dIagram.......c.cooeviiiiiiiiniiiiiciiniccee e 90
8.3.3 Functional table.........c.ccceeevvieriieiniiiennieeiieeee, Error! Bookmark not defined.
Chapter 9 — Memory Cache unit (UCAChE)cccovviiiriiriiiiiiiicc e 95
9.1 FUNCHONALILY ..ottt et 95
9.2 BIOCK IA@TAIMooiuiiiiiiiieiieeite ettt e sttt et 95
BIT (Hons) Computer Engineering Vi

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 10 — UART UNIC....cooiiiiiiiiiiiiiciieceeeee e e 97

JO.1 UART Qddress...ccueeeiiiiienieeiiecieee ettt sttt s 97
10.2 Operating PrOCEAUTIE.c.ueeriurieriieeeitee ettt e eite e et e e st e e siteeesabeesireesbbeesbteesabeeenanes 97
10.3 uuart functionalities and pin deSCTIPION........ccc.eerieeriieriiiiienieeeeeeeee e 99
10.4 belketr functionalities and pins deSCIIPLIONcc.veeevveeeriieeriieeriieeniiee e 103
10.5 brx functionalities and pins dESCIIPLONcc.ueeeviiieriieeriieeiieeeiiee e 105
10.6 btx functionalities and pins dESCIIPLIONc.eeeevreeriireeriieeriieeeeeeveeeireeeieeeaes 108
10.7 UART address dECOAETcouiiuiiriiiiiieieeiieeeeie ettt 111
Chapter 11 — Verification SpecifiCationcccceereuiiiiiniiiiiieiiecieecscerec e 112
11.1 Verification fOI CIISCeivtiriiiriiiieeiieeieeee ettt et 112
11.2 Test Program for RISC 32ccooiiiiiiieeeeee ettt 113
T1.2.1 TSt PrOZram 1cceeeiiiiiiiiiiiieeeiiitee ettt et e e s e s sine e e e s 114
11.2.2 Verification for test program 1 for RISC32.......ccoccvvviiiiniiennieeiiieeniieee 117
11.2.3 TESt PrOZIAM 2 ...oeeeieiiiieeeeiiieeeeeitteeesirte e e sitre e e e e s sibeeessireeeessnnneeessnneeessnnees 121
11.2.4 Verification on teSt PrOZram 2eeevcveeerveeriieeesiieeesreessieeessseeeessseesssseesnnees 123

11.3 Verification on UART and cOre interaction.............cueeerveeeneeennieeennieeeniueeesiueennns 124
Chapter 12 — CONCIUSION......iiiiiiiiiieeriee ettt s sbe e e sabe e s beeesnee s 125
RETEIENCES ..ot s 126
APPEIAIX 1ttt e 127
BIT (Hons) Computer Engineering VI

Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure Number

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6.1

Figure 5.6.2

Figure 5.7
Figure 5.8

Figure 5.9

Figure 5.10
Figure 5.11

Figure 6.1

Figure 6.2
Figure 6.3

Figure 7.1
Figure 7.2
Figure 7.3

BIT (Hons) Computer Engineering

LIST OF FIGURES
Title

Data-processing instruction format
Memory instruction format

Branch instruction format

Single cycle, multicycle vs pipeline processor
3-Stages and 5-Stages pipeline
Design of ALU in Amber 23

Data path of ARM7

Data path of ARM9

Pipelined stage of ARM10DTMI
Pipelined stage of ARM11

Grouped pipelined stage of ARM 11

UDM flow

Pipeline stage of instruction in different cycle(1)
Pipeline stage of instruction in different cycle(2)
Pipeline stage of instruction in different cycle(3)
MOV and MVN detector

ALU to be design and implement

Block diagram for RISC32 processor
Data-processing instruction format

Memory instruction format

Branch instruction format

Immediate addressing

Register addressing (1)

Register addressing (2)

Base addressing

Register indexed displacement addressing with
register scaling

Register indexed displacement addressing with
immediate scaling

Pseudodirect addressing

Memory map

crisc architecture and micro-architecture
partitioning

Unit level functional partition

Unit block level functional partition

Solution for status flag problem
Block diagram of data path
Partition of data path unit

Faculty of Information and Communication Technology (Perak Campus), UTAR

Page

AN N

10
11
14
15
16
17
17

21
25
25
25
26
27

31
33
33
34
36
37
37
37
38

38

39
44

46

47
48

50
51
57

Vil

Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5

Figure 9.1

Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8
Figure 10.9
Figure 10.10
Figure 10.11
Figure 10.12

Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7

BIT (Hons) Computer Engineering

Connection between block in data path unit
Block diagram of brf (register file)

Design of register file

Single element of register file

Block diagram of balb_shift (ALU and shifter)
Design of ALU

Design of barrel shifter

Simulation result (1) — addition

Simulation result (2) - subtraction

Simulation result (3) — subtraction

Simulation result (4) — logical

Simulation result (5) — shift/ rotate

Instruction format

Data processing instruction

Memory instruction

Block diagram of bfw_ctrl (forwarding control)
Block diagram of bitl_ctrl (interlock control)

Block diagram of control path
Partitioning in ucp

Internal connection between block in ucp
Block diagram of main control block
Block diagram of binstr_ctrl

Block diagram of ucache

Transmission of data by UART
UART data transfer protocol
UART data receiving protocol
Block diagram of uuart

Internal connection of uuart
Block diagram of bclketr
Internal connection of bclketr
Block diagram of brx

State diagram for brx controller
Block diagram of btx

State diagram for btx controller
Circuit for CPU-UART address decoder

Memory map & program code segment
Test program 1 result (1)
Test program 1 result (2)
Test program 1 result (3)
Test program 1 result (4)
Test program 1 result (5)
Test program 1 result (6)

Faculty of Information and Communication Technology (Perak Campus), UTAR

58
59
63
63
64
68
69
72
72
73
73
74
75
75
76
80
83

86
91
92
96
103

110

112
113
113
114
118
119
121
122
124
125
127
128

129
134
134
135
135
136
136

Figure 11.8

Figure 11.9

Figure 11.10
Figure 11.11
Figure 11.12
Figure 11.13
Figure 11.14
Figure 11.15
Figure 11.16

BIT (Hons) Computer Engineering

Test program 1 result (7)

Test program 1 result (8)

Test program 1 result (9)

Test program 1 result (10)

Test program 2 result (1) — factorial (5)
Test program 2 result (2) — factorial (4)
Waveform result(1)

Waveform result(2)

Transmitter FIFO content

Faculty of Information and Communication Technology (Perak Campus), UTAR

136
136
136
137
140
140
141
141
141

Table Number
Table 1.1

Table 2.1
Table 2.2
Table 2.3
Table 2.4

Table 2.5

Table 4.1
Table 4.2
Table 4.3

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 5.9
Table 5.10
Table 5.11
Table 5.12
Table 5.13

Table 6.1

Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5
Table 7.6
Table 7.7
Table 7.8
Table 7.9
Table 7.10
Table 7.11
Table 7.12

BIT (Hons) Computer Engineering

LIST OF TABLES
Title
List of ARM microarchitectures

Instruction set of ARM

Condition encoding

Pin description of Amber’s ALU

Comparison among Amber 23, Amber 25 and
Strom core

Comparison among ARM 7, ARM 9, ARM 10 &

ARMI11

Comparison among Development Tools
Pin description for ALU to be design
Gantt Chart for project 1 & 2

RISC32 features

Naming convention

RISC32 Input pins description

RISC32 Output pins description

Register file

Status flag register

Encoded immediate value
Data-processing instruction set and description
Operand 2 for data processing instruction
Memory instruction set and description
Source 2 for memory instruction

Branch instruction set and description
Condition encoding

Formation of a design hierarchy for crisc
microprocessor through top down design

Status flag problem

Input pins description for data path unit
Output pins description for data path unit
General register

Input pins description of brf

Output pins description of brf
Functional table for write enable signal
Functional table for address pin

Input pins description of balb_shift
Output pins description of balb_shift
Functional table for ALU

Functional table for barrel shifter

Faculty of Information and Communication Technology (Perak Campus), UTAR

Page

12
13

23
27
28

29
30
31
31
32
32
35
40
41
41
43
43
44

46

50
51
55
59
60
61
62
62
64
66
67
67

Xl

Table 7.13 Test plan for balb_shift 70

Table 7.14 ARM assembly instruction 77
Table 7.15 Functional table for forwarding block 79
Table 7.16 Input pins description of bfw_ctrl 80
Table 7.17 Output pins description of bfw_ctrl 82
Table 7.18 Input pins description of bitl_ctrl 83
Table 7.19 Output pins description of butl_ctrl 84
Table 7.20 Functional table of bitl_ctrl 85
Table 8.1 Input pins description of ucp 86
Table 8.2 Output pins description of ucp 88
Table 8.3 Functional table for ucp (data-processing 93
instruction)
Table 8.4 Functional table for ucp (memory instruction) 94
Table 8.5 Functional table for ucp (program flow instruction) 94
Table 8.6 Relationship between condition mask and status 95
flag
Table 8.7 Input pin description of main control block 96
Table 8.8 Output pin description of main control block 98
Table 8.9 Status flag for each condition mask 101
Table 8.10 Functional table for bmain_ctrl 102
Table 8.11 Input pins description of binstr_ctrl 103
Table 8.12 Output pins description of binstr_ctrl 105
Table 8.13 Functional table of binstr_ctrl (Data-processing 108
instruction)
Table 8.14 Functional table of binstr_ctrl (Memory instruction) 109
Table 8.15 Functional table of binstr_ctrl (Program flow 109
instruction)
Table 9.1 Input pins description of ucache 110
Table 9.2 Output pins description of ucache 111
Table 10.1 Address for UART register and FIFO 112
Table 10.2 Input pins description for uuart 114
Table 10.3 Output pins description for uuart 116
Table 10.4 Input pins description for belketr 119
Table 10.5 Output pins description for belketr 120
Table 10.6 Input pins description for brx 122
Table 10.7 Output pins description for brx 123
Table 10.8 Input pins description for btx 125
Table 10.9 Output pins description for btx 127
Table 11.1 Test program 1 (without data dependency, interlock 131
and hazard.)
Table 11.2 Test program 2 with data dependency, interlock and 138
hazard
BIT (Hons) Computer Engineering Xl

Faculty of Information and Communication Technology (Perak Campus), UTAR

LIST OF ABBREVIATIONS

RISC Reduced instruction set computing

CISC Complex instruction set computing

GUI Graphic based user interface

ISA Instruction set architecture

1P Intellectual property

GPIO General purpose input/output

IF Instruction fetch (pipeline stage)

ID Instruction decode (pipeline stage)

EX Execute (pipeline stage)

MEM Memory (pipeline stage)

WB Write back (pipeline stage)

ALU Arithmetic logic unit

RTL Register transfer level

/0 Input / output

PC Program counter

UART Universal asynchronous receiver/ transmitter
BIT (Hons) Computer Engineering Xl

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 1
Introduction

Chapter 1 — Introduction

1.1 Project Background

ARM is a computer processors developer company with reduced instruction set
computing (RISC) architectures. A RISC-based processor requires lesser transistors than
CISC (complex instruction set computing) processor such as x86 processors in most of
personal computer. This means reduces in cost, heat produced and power use can be
achieving which is importance factor for light, portable and battery-powered devices such
as smartphone, laptops, tablet and embedded systems. Most of the cores introduced by
ARM support a 32-bits address space except ARMv8-A architectures support 64-bits.
ARM licenses their design to companies that incorporate those core designs into their

own products.

1.2 ARM’s History

ARM is a British company start at 1980 with the name of Acorn Computer at first. Its
first product was a coprocessor module for BBC Micro series of computers. Then they
start relatively simple MOS Technology 6502 processor in1981. But the 6502 processor
is not strong enough for GUI (graphics based user interface), so ARM decides to design
their own processor after studies all the lacking of existing processors. Sophie Wilson
developed the instruction set and in 1983, the official Acorn RISC Machine with
cooperation with VSLI Technology as silicon partner. Then the ARM?2 was introduced
which enable lower power consumption, but better performance than Intel 80286. And
ARM continue introduce ARM3 and ARM6. ARM 3 had better performance than
ARM2. But ARM 6, result of cooperation between Apple and ARM manage to remained
essentially same size with ARM2 with further better performance; ARM2 had 30,000
transistors, while ARM6 had 35,000.

BIT (Hons) Computer Engineering 1
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 1
Introduction

Architecture | Core bit-width | ARM holding cores

ARMv1 32 ARMI1

ARMv2 32 ARM?2, ARM250, ARM3

ARMV3 32 ARM6, ARM7

ARMv4 32 ARMS8

ARMv4T 32 ARM7TDMI, ARM9TDMI, SecurCore SC100

ARMVSTE 32 ARMT7EJ, ARM9E, ARM10E

ARMv6 32 ARMI11

ARMv6-M 32 ARM Cortex-M0, ARM Cortex-M0+, ARM Cortex-
M1, SecurCore SC000

ARMvV7-M 32 ARM Cortex-M3

ARMvV7E-M | 32 ARM Cortex-M4, ARM Cortex-M7

ARMv8-M 32 ARM Cortex-M23, ARM Cortex-M33

ARMvV7-R 32 ARM Cortex-R4, ARM Cortex-R5, ARM Cortex-R7,
ARM Cortex-R8

ARMvVE-R 32 ARM Cortex-R52

ARMV7-A 32 ARM Cortex-AS5, ARM Cortex-A7, ARM Cortex-AS,
ARM Cortex-A9, ARM Cortex-Al12, ARM Cortex-
A15, ARM Cortex-Al7

ARMvVS-A 32 ARM Cortex-A32

ARMVS-A 32/64 ARM Cortex-A35, ARM Cortex-A53, ARM Cortex-

AS57, ARM Cortex-A72, ARM Cortex-A73

Table 1.1: List of ARM microarchitectures (Source: https://en.wikipedia.org/wiki/ARM _architecture#Coprocessors)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 1
Introduction

1.3 Problem Statement & Motivation

The ARM cores project are available on some sources such as www.opencore.org, the

ARM information center (infocenter.arm.com), and other website with ARM
documentation. But the ARM’s core microarchitecture include in the documentation is
very limited, hence the functionalities and implementation of ISA to hardware of the
cores are not presented well and the Verilog codes included in the project are hard to
understand since the microarchitecture are not well presented in documentation and
inconvenience naming conversion used. Since there is no proper or complete
documentation that described microarchitecture of 32-bit microprocessor with ARM
Instruction Set Architecture in open source website. Hence there is only a very limited
details can be obtaining from the project which show how the inside parts of processor
work together to achieve the specification that had been described in the documentation.

This has affected the use of the ARM softcore, in particular for research purpose.

Microchip design companies design microprocessor as IP for commercial purpose. The
IP is not available in the market at an affordable price for research purpose. ARM does
offers several licensing models for ARM technology-based product but the license will
expire within 3 years a payment needed for the license, which is not suitable for a long

run project.

Besides, the verification plan for an ARM microprocessor that are made available on the
internet is not well defined and yet not compatible to every design. Therefore, there is a
necessary to develop a verification plan to verify the functionality of the module

designed.

BIT (Hons) Computer Engineering 3
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 2
Literature Review

Chapter2 — Literature Review

ARM is a computer processors developer company with reduced instruction set
computing (RISC) architectures. A RISC-based processor requires lesser transistors than
CISC (complex instruction set computing) processor such as x86 processors in most of
personal computer. This means reduces in cost, heat produced and power use can be
achieving which is importance factor for light, portable and battery-powered devices such
as smartphone, laptops, tablet and embedded systems. Most of the cores introduced by
ARM support a 32-bits address space except ARMv8-A architectures support 64-bits.
ARM licenses their design to companies that incorporate those core designs into their

own products.

2.0 ISA (Instruction Set Architecture) of ARM

ARM instructions support data transfer, arithmetic and programs flow instructions. The

table 2.1 below showed the instructions and its function.

Instruction

Operation

Instruction

Operation

add Rd, Rn, Opd2
adc Rd, Rn, Opd2
sub Rd, Rn, Opd2
sbc Rd, Rn, Opd2
rsb Rd, Rn, Opd2
rsc Rd, Rn, Opd2
tst Rn, Opd2

teq Rn, Opd2

and Rd, Rn, Opd2
eor Rd, Rn, Opd2
orr Rd, Rn, Opd2
bic Rd, Rn, Opd2
cmp Rn, Opd2

cmn Rn, Opd2

asr Rd, Rm, <Rslsh>
Isl Rd, Rm, <Rslsh>
Isr Rd, Rm, <Rslsh>

Rd < Rn + Opd2

Rd «<— Rn + Opd2 + carry

Rd < Rn - Opd2

Rd < Rn — Opd2 — (~carry)
Rd < Opd2 - Rn

Rd < Opd2 — Rn — (~carry)
Set flags based on Rn & Opd2
Set flags based on Rn » Opd2
Rd < Rn & Opd2

Rd < Rn * Opd2

Rd < RnlOpd2

Rd < Rn & (~Opd2)

Set flags based on Rn — Opd2
Set flags based on Rn + Opd2

Rd < Rm >>> (Rslsh) (Arithmetic)

Rd < Rm << (Rslsh) (Logical)
Rd < Rm >> (Rslsh) (Logical)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

small Rdh, Rn, Rm, Rdl
str Rd, [Rn], +Opd2
str Rd, [Rn], -Opd2
str Rd, [Rn, + Opd2]
str Rd, [Rn, - Opd2]
str Rd, [Rn, + Opd2]!
str Rd, [Rn, - Opd2]!
ldr Rd, [Rn], +Opd2
1dr Rd, [Rn], -Opd2
1dr Rd, [Rn, + Opd2]
1dr Rd, [Rn, - Opd2]
ldr Rd, [Rn, + Opd2]!
ldr Rd, [Rn, - Opd2]!
strb Rd, [Rn], +Opd2
strb Rd, [Rn], -Opd2
strb Rd, [Rn, + Opd2]
strb Rd, [Rn, - Opd2]

{Rdh, Rdl} < Rn* Rm + {Rdh, Rdl}
Mem[Rn] < Rd, Rn <« Rn + Opd2
Mem[Rn] < Rd, Rn < Rn — Opd2
Mem[Rn + Opd2] < Rd

Mem[Rn — Opd2] < Rd

Rn < Rn + Opd2, Mem[Rn] « Rd
Rn < Rn - Opd2, Mem[Rn] < Rd

Rd < Mem[Rn], Rn < Rn + Opd2
Rd < Mem[Rn], Rn <— Rn — Opd2
Rd < Mem[Rn + Opd2]

Rd < Mem[Rn - Opd2]

Rn < Rn + Opd2, Rd «— Mem[Rn]
Rn < Rn - Opd2, Rd <~ Mem[Rn]
Mem[Rn] < Rd{7.0;, Rn «— Rn + Opd2
Mem[Rn] < Rd[7.0, Rn «<— Rn — Opd2
Mem[Rn + Opd2] < Rd7.0)

Mem[Rn — Opd2] < Rdj7.0

Chapter 2
Literature Review

ror Rd, Rm, <RslIsh>
rrx Rd, Rm, <Rslsh>
mov Rd, Opd2

mvn Rd, Opd2

mul Rd, Rn, Rm

mula Rd, Rn, Rm, Ra
umullRdh, Rn, Rm, Rdl
umlalRdh, Rn, Rm, Rdl
smullRdh, Rn, Rm, Rdl

Rd < Rn ror (Rslsh) (Rotate right)
{Rd, C} « {C, Rd} (Rotate right extend)
Rd < Opd2
Rd « (~Opd2)
Rd — Rn *Rm [31:0]
Rd < (Rn*Rm) + Ra
{Rdh, Rdl} «<— Rn *Rm
{Rdh, Rdl} «<— Rn*Rm + {Rdh, Rdl}
{Rdh, Rdl} < Rn*Rm

[31:0]

Table 2.1: Instruction set of ARM

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

strb Rd, [Rn, + Opd2]!
strb Rd, [Rn, - Opd2]!
1drb Rd, [Rn], +Opd2
1drb Rd, [Rn], -Opd2
1drb Rd, [Rn, + Opd2]
1drb Rd, [Rn, - Opd2]
1drb Rd, [Rn, + Opd2]!
1drb Rd, [Rn, - Opd2]!
b <label>

bl<label>

Rn < Rn + Opd2, Mem[Rn] < Rd7:01
Rn < Rn - Opd2, Mem[Rn] « Rd[7.0)

Rd < Mem[Rn] (7.0, Rn <~ Rn + Opd2
Rd < Mem[Rn] 7.0;, Rn «— Rn — Opd2
Rd < Mem[Rn + Opd2] (7.0

Rd <« Mem[Rn — Opd2] 7.0

Rn < Rn + Opd2, Rd «— Mem[Rn] [7.0]
Rn < Rn - Opd2, Rd <~ Mem[Rn] 7.0

PC « label

LR < PC+4, PC « label

Chapter 2
Literature Review

2.0.1 Instruction Format

The ARM instruction had classified to 4 general formats:
e data-processing instruction format
® memory instruction format
® multiplication instruction format
® Branch instruction format.

The figure 2.1, 2.2, 2.3 and 2.4 show the differences between instruction formats:

31 28 27 26 25 24 212019 16 15 12 11 0
| cond |ool#|opcodefs|] rn | Rra | operand 2 |

destination register
first operand register
set condition codes
arithmetic/logic function

e = -

25 11 8 7 0
-------------- » [#ot | 8-bitimmediate |
; immediate alignment —I "
1 1 76543 0
: e e > [#shit [shfo] rRm]
LA
25 : immediate shift length —I
E ety shift type
: second operand register 1 1
: 11 876543 0
fmmmmmm e =| Rrs |o|sn[1] rm |
|

register shift length

Figure 2.1: Data-processing instruction format

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 2
Literature Review

31 28272625242322212019 16 15 121

[cond [o1]#fplulsML] Rn | Ra | offset

source/destination register:
base register
load/store

write-back (auto-index)
unsigned byte/word

P ——

1
1
1
1
1
1
1
1
1
1
1
L 4 pre-/post-index
2

up/down
5 1

I_E_l mmmsmmemem==ee=s | 12-bit immediate

1
' i
25 1 76543
-------------- > [#shit TsnJo] Rm
immediate shift length —I |
shift type

offset register

Figure 2.2: Memory instruction format

31 n n M ouomn
Cond 101 L offset
L
Link bit
0= Branch
1= Branch with Link
Condition field

Figure 2.3: Branch instruction format

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 2
Literature Review

2.0.2 Condition Encode Instruction

The ARM processor support condition encoding instructions. The condition encoded
instruction only will execute when the condition is met with the 4-bits status flag in

CPSR updated by previous instructions

Condition |Mnemonic Meaning Condition flag
extension state

4'h0 Eq Equal Z set

4'hl Ne Not equal Z clear

4'h2 cs / hs Carry set / unsigned higher or same.|C set

4'h3 cc/lo Carry clear / unsigned lower C clear

4’h4 Mi Minus / negative N set

4’h5 Pl Plus / positive or zero N clear

4’h6 Vs Overflow V set

4’h7 Ve No overflow V clear

4’h8 Hi Unsigned higher C set and Z clear

4’h9 s Unsigned lower or same C clear or Z set

4’h10 Ge Signed greater than or equal N ==V

4’h11 [t Signed lesser than N 1=V

4’h12 Gt Signed greater than /. ==0,N==V

4’h13 [e Signed lesser than or equal /. ==10orN!=V

4°’h14 Al Always (unconditional) -

4’h15 - [nvalid condition - Or same.

Table 2.2 condition encoding

BIT (Hons) Computer Engineering 8
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 2
Literature Review

2.1 Single cycle, multi-cycle and pipelined processor
Single cycle
e The instructions execute and complete in 1 clock cycle.
¢ No data dependency and hazard problem.
e Longer clock cycle needed to complete 1 instruction.

Multi-cycle

e The instruction subdivided into few steps (depend on instruction)
o Arithmetic and logical instruction — 4 steps (IF, ID, EX, WB)
o Save instruction — 4 steps (IF, ID, EX, MEM)
o Load instruction — 5 steps (IF, ID, EX, MEM, WB)
o Branch instruction — 2 steps (IF, ID)
o Branch and link instruction — 3 steps (IF, ID, WB)
e | instruction execute at the same time.
¢ No data dependency and hazard problem.

e In average, shorter clock cycle needed to complete 1 instruction compare to single

cycle.

Pipeline

e The instruction subdivided into few steps (maximum step of the instruction)
e Few instructions execute in same time (number of pipeline stage)

e Data dependency and hazard problem (can be solved by implement of addition

hardware)

e Execute in clock cycle with number of pipeline stage times shorter than single

cycle processor.

BIT (Hons) Computer Engineering 9
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 2
Literature Review

Single Cycle, Multiple Cycle, vs. Pipeline

e e 0] - Cyrle 2 m—|
k| | [I —
Single Cycle Implementation: | '

I Load | Store | Waste |

l |
1

:Cycle1:c“h::c,»c1e3:c,-ch4:c,ﬂes:cwhﬁ:c,»cle'r:cmea:c,»chg}cwhm.
Clk

1 | |
Multple Cycle Implementation: | |

' Load | Stoxre |R-type

.| Hetch | Reg | Exer | Mem | Wr || Ifetch | Rez | Exer || Mem | Iiich |

1

1
Pipeljne Implementation:
Load| Ifetch | Reg || Exec | Mem | wr |

Store| Ifetch | Reg || Exee | Mem | Wwr |

R-type | Ifetch | Reg | Exec | Mem || Wr |

Figure 2.4: Single cycle, multi-cycle vs pipeline processor

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

10

Chapter 2
Literature Review

2.2 Benchmarking

Two project from www.opencore.org done by ConorSantifort (Amber), and Stephan
Nolting (Strom Core) respectively will be used for benchmarking purpose. Beside the
ARM7, ARM9, ARMI10, and ARMI1 introduced by ARM will be used for further

benchmarking.

2.2.1 Amber Core

Amber processor is an ARM-compatible 32-bit RISC processor done by ConorSantifort.
The Amber core are fully compatible to ARMv2 Instruction set architecture (ISA), the
project will develop with Verilog 2001. The Amber project provides a complete
embedded system incorporating the Amber core and a number of peripherals, including
UARTS, timers, and an Ethernet MAC. There are 2 version of Amber project done which
is Amber 23 and Amber 25.

Amber 23 is a 3 —stage pipelined processor which can be represent in fetch, decode and
execute. It is capable of 0.8 DMIPS per MHz.

The Amber 25 is a 5-stage pipelined processor which the stages are separate based on
fetch, decode, execute, memory, and write-back. Amber 25 have a 15% to 20% better
performance compared to the Amber 23 which is 1.0 DMIPS per MHz, but a larger size

and more hardware implement needed in Amber 25.

3-Stage
ARM Inst. decode
FETCH DECODE EXECUTE
5-Stage

ARM Inst Decode
P:tgﬁcnon Reg Reg Ot wggggy
Decode Read
FETCH DECODE EXECUTE MEMORY WRITE

Figure 2.5: 3-Stages and 5-Stages pipeline

BIT (Hons) Computer Engineering 11
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 2
Literature Review

ALU in Amber Core

a in [31:0] b_in [31:0] cpsr_carry barrel_shift_carry

v I
A B
Select Select 1—|

¥

r
Mot
Select not_sel

i h 4 l A l h 4 h 4 l h 4
Zero Full
EER R

h

cin_sel[1:0]

5y iy 3 ¥ 2y ly 0y
out_sel[2:0] —P\ Out Select /

[EET]
o

F

Cout 4
E_I St _/4™ 0%

BE bit [31]
ﬁ‘“
v

be [3:0] out [31:0] n z v c flags={n, z,c,v}

Figure 2.6: Design of ALU in Amber 23

The alu_function[6:0] is the control signals for the ALU. It make up from {swap_sel,

not_sel, cin_sel[1:0], cout_sel, out_sel[2:0]}.

Pin Description
swap_sel Swap between input a and b.
not_sel 1’b0: use original b, 1°b1: use inverted b
cin_sel[1:0] Select carry in for the full adder. (1, 0, cpsr_carry, cpsr_carry’)
cout_sel Select carry out for the ALU.

1’b0 : From full adder, 1°bl from barrel_shift_carry
Out_sel[2:0] Select the output for ALU.

3°d0: b

3’d1: adder_out

3’d2: b_zero_extend_8
3°d3: xor_out

3’d4: or_out

3’d5: and_out

Table 2.3: pin description of Amber’s ALU

BIT (Hons) Computer Engineering 12
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 2
Literature Review

2.2.2 Storm core

The Storm core processor project is done by Stephen Nolting which obtains from

www.opencores.org. Same with Amber 23 & 25, Storm also follow ARMv2 instruction

architecture with 2 separate caches (Instruction & Data). It is an 8-stage pipelined
processor which is instruction access (IA), instruction fetch (IF), instruction decode (ID),

operand fetch (OF), multiplication/ shift (MS), execution (EX), memory access (MA),

and data write back (WB).
PROESSOR AMBER 23 AMBER 25 STORM
Opcode and function | ARMv2 ARMV2 ARMV2
compatible to
Software compatible? Yes Yes Yes
Pipelined Yes Yes Yes
Number of pipelined stage | 3 5 8
Number of cache needed 1 2 2
(Instruction and | (Instruction and
memory) memory)
Little /big endian Little Little Both
Wishbone bus system 32-bits 32-bits 32-bits
FPGA implement Xilinx SP605 | Xilinx SP605 | 80 MHz on
Spartan-6 FPGA | Spartan-6 FPGA | Xilinx Spartan-3
board board XC3S5400A

Table 2.4: Comparison among Amber 23, Amber 25 &Storm core

BIT (Hons) Computer Engineering 13
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 2
Literature Review

2.2.3 ARM7 core

ARMT7 core is a 3-stages pipelined processor (Fetch - IF, Decode - ID, Execute - EX)
introduced by ARM from 1994 and update periodic. The ARM 7 operate on 32-bits
address space. It is compatible to ARMv3 ISA.

Features:

e Register bank:
1. 2read ports, 1 write port, access any register.

2. 1 additional read and write port for r15 (pc).

e Barrel shifter
1. Shift or rotate the operand by any number of bits.
e ALU.
e Address register and increment.
.

Data registers
1. Hold data passing to and from memory

2. Instruction decoder and control

A[m.n]/T control £

address regrster

l i instruction

-->i multply | &
- ister
FB

wCo oD

woco P

[

I data out register | | data in register |

A] 7
— l_ Figure 2.7: data path of ARM 7

BIT (Hons) Computer Engineering 14
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 2
Literature Review

2.2.4 ARMO core

ARM 9 core is 5 stages pipelined processor (instruction fetch-IF, instruction decode-ID,
execute-EX, memory access — MEM, data write back - WB). Same with ARM 7, it
operate on 32 bits addresses. It is compatible to ARMv5 ISA.

Fetures :

1. Register bank:
e 3 source operand read ports and 2 write port.

2. Inclusion of address incrementing hardware (for multiple load and store

instructions)
3. Memory (Havard architecture)
e Sepearte instruction and data memory (cache)

4. Higher clock frequency (more pipelined stage)

. _1F |'__
next pc
P +4 ‘
g e l-cache 5 fetch
pc+4d |
- ;
Instruction
decode
immediate
“siin .rrelds
reg
shift
execute
forwardingd
paths
B, BL
MOV pe
5UBS pe '
byte repl. §
B,]
loadistore q D-cachs 1 oumer
address gyt | CAL2
rotisan exf’
LDR pc| |4 coxald B

e :_
— i
register write i write-back

Figure 2.8: data path of ARM 9

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

15

Chapter 2
Literature Review

In ARM 9 model, data forwarding is allowed to improve the performance. The result are
passed between stages as soon as they are available. E.g

ADD 12,13, 4 /2=1r3 +14

ADDrl, 12,15 //r1 =12 +r5
The 12 value is immediately forwarded to next operation as soon as it compete the ADD
operation by ALU to prevent data Hazard. But for load Hazard problem the data is only

ready at the last stage so either insert a NOP or stall the instruction until the data is ready.

2.2.5 ARM10TDMI

ARMIOTDMI is a 6 stages pipelined processor. The additional state compared to ARM9
is the issue state (ISS). In issue state, the processor is interpret the instruction fetched
from i-cache and determines whether it is an ARM or Thumb instructions. Besides that,
ARMIOTDMI had hardware to predict branch, which will operate at fetch state to

determine the PC value after fetch a branch instruction.

branch adf data memory data
pm:ir:inn“ calc - -t Wi :
T T
Insichon PR Rleg. Read shiltiA L) mubplher reg
fetch sl muliply | |parkals add || Wile
Fetch Issue Decode Execute Memory Wiite

Figure 2.9: pipelined stages of ARM 10 DTMI

BIT (Hons) Computer Engineering 16
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 2
Literature Review

2.2.6 ARM11 Core

ARM 11 is an 8-stages pipelined processor. The stages are shown in the figure 2.11.

Decods lasus

Falch Feizh
i

Figure 2.10: pipelined stages of ARM 11

After the issue stage, there is 3 group of different hardware to handle different
instructions. The block in orange color is the stage where shift or integer arithmetic
instructions go through. While the blocks in blue handle multiplication instructions and
block in red will be load/store operation. The ARMI11 can maximum handle 4
instructions simultaneously, which is branch prediction, multiplication, ALU operation
related instructions and data transfer instructions, which had a much higher performance

compared to other ARM core. It also supports data forwarding.

Figure 2.11: grouped pipelined stsges of ARM 11

BIT (Hons) Computer Engineering 17
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 2
Literature Review

Features ARM 7 ARM 9 ARM 10 ARM 11

Pipeline length 3 5 6 8

Java Decode (ARM9 26 EJ) (ARM10 26 EJ) Yes

Branch No No Static Dynamic

Prediction

Independent No No Yes Yes

Load/Store unit

Concurrency None None ALU, MAC,LSU | ALU, MAC,

LSU

Architecture ARMV3 ARMVSTE /| ARMVSTE ARMvV6
ARMvV4T

Clock Speed < 130 MHz 130 MHz ~ 200 | 300 MHz 1 GHz
MHz

Table 2.5: Comparison among ARM7, ARMY9, ARM10 & ARM11

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

18

Chapter 3
Project Objective

Chapter 3 — Project Objective

3.1 Project Scope

The project scope is to modeling and complete verification of the pipelined 32-bit ARM
processor, which will be, used as a platform for hardware IP-based research by using
Verilog HDL (Hardware Description Language).

The microprocessor model operates on 32-bits data and address. The Instruction Set
Architecture used in this project is ARMv2. It consists of three main blocks: control unit,
data path unit and memory unit, which will model in Verilog.

After the modeling process, the model will be undergoing verification process to ensure
the functionalities and features of the processor. A complete testbench is created to test

the functionalities of the whole processor and instructions implemented.

3.2 Objective

The main objective is to design a 32-bits ARM pipelined processors. The sub-objective
showed below need to be complete in order to achieve the main objective

e Chip specification: To design an ARM microprocessor which compatible to
ARMV2 instruction set architecture (ISA).

e Microarchitecture requirement: To develop an ARM microprocessor, which
supports integer arithmetic, multiplication with Booth’s algorithm, data-transfer
operation, and program flow control instruction.

e RTL: To develop a complete set of Verilog modules that fulfilled and described
the microarchitecture requirements above.

e Verification: To create a complete test bench that can verify the all functionalities
and instructions implemented to the microprocessor might need remodel of RTL
if expected output didn’t achieve at the end of verification.

To ensure the processor can be further expand with other research related to ARM
architecture, the verification and redesign might need to repeat several time to debug and

achieve 100% functionalities.

BIT (Hons) Computer Engineering 19
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 3
Project Objective

3.3 Significance and Impacts

The ARM microprocessor will allow researcher to change the micro-architecture based in
ARM architecture for experimentation of new design. The microprocessor IP is cheap
and affordable with complete documentation. The development environment will allow
rapid modeling and verification of experimental hierarchy such as memory, specialized

data path, peripherals and etc.

BIT (Hons) Computer Engineering 20
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 4
Methodology and Technologies Involved

Chapter 4 - Methodology and Technologies Involved

4.1 Design Methodology

Design Methodologies help us to carry out the design work successfully with a set of

guidelines. Design methodologies ensure the following (Wolf.W, 2004)

4.2 Universal Design Methodology

Universal Design Methodology (UDM) is a structured method for planning and designing
hardware. UDM can be used to design ASICs, FPGAs, CPLDs, and PCBs, in large or
small organizations. While some differences occur in designing different hardware types,
the basic technique remains the same. The UDM can help:

e Design a that’s free from manufacturing defects, that work reliably over device’s

lifetime and that functions correctly in your system.
e Using least amount of time and resource during design.

e (reating a better schedule on the project.

Choose lechnology and tools

Y

— Design

Verification

Physical implementation -

Y

- Formal werification [———

System integration and test

BIT (Hons) Computer Engineering 21
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 4
Methodology and Technologies Involved

Specification and design

The specification need to include:

e External block diagram showing how the device fit into the system.
¢ Internal block diagram showing each major functional section.

e Description of I/O pins, including output drive capability and input threshold

levels

¢ Timing estimates, including setup and hold times for inputs pins, propagation

times for output pins, and clock cycle time.
e Test procedure.

As shown in the diagram after write a specification, a review need to be done in order to
know anything being left out or wrong. All functionality decisions must be refer to the

specification returned and all subsequent change need to be entered to the specification.

Verification

Verification involved the following stages: simulation, design review, physical
implementation, and formal verification. During the simulation, we might need to
redesign and repeat the simulation to obtain correct functionality described in
specification in earlier state.

After finished the design and simulation, another design review need to be done to make
sure whole functionalities include and the accuracy.

Physical implementation stage involves synthesis and place and route but result in a
pattern of bits used to program the device.

In formal verification, the physical implementation is checked to ensure the design fully

simulated is functionally equivalent to physical implementation of the design.

BIT (Hons) Computer Engineering 22
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 4
Methodology and Technologies Involved

Completion
The design should be formality with all the steps followed, the final should be a simple
sign off. However, the system testing is necessary to ensure that all part of the system

work correctly.

4.3 Development Tools

Since in this project will be design by using Verilog HDL therefore the stimulation tool
that able to compile and simulate Verilog syntax is necessary. The available and price of
the simulation tools are main factor to decide which to be choose. There is a few

examples of Verilog development tools and comparison among them:

Simulator ISE Simulator ModelSim Icarus Verilog

Company /| Xilinx Mentor Graphics Stephen Williams

Author

Language Support VHDL-93, Verilog VHDL, Verilog | Verilog 2001,
2001 2001, System | limited Verilog

Verilog 2005 2005
Availability for No Yes (For student Yes
free version)

Table 4.1: Comparison among Development Tools

ModelSim is chosen from the 3 development since it is available for free and support
more language compare to other.

Beside to verify the ARM assembly program, ARMSim (ARM assembly simulator) is
used. It will execute the ARM assembly program based on ARM7TDMI processor.
ARMSim was developed by Department of Computer Science at the University of

Victoria, in Victoria, British Columbia, Canada. It was choosing to use since it was free.

4.4 Design Hierarchy

The module is break into smaller module (chip — unit — block) and each partitioned
block and functional verification.

BIT (Hons) Computer Engineering 23
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 4

Methodology and Technologies Involved

4.5 Implementation Issues and Challenges

1. Data Hazzard:

Happen when there is a data dependency within 5 clock cycle (number of pipelined

stages). The result of single assembly instruction (not include multiplication instruction)

need 5

clock cycles to write back into register file in a pipelined data path (IF, ID, EX,

MEM, WB).

There are 3 situations:

Read after write (RAW), e.g.

ADD R1, R2, R3 @EX

MOV RO, R1 @ID

The R1 is read during ID stage after ADD R1, R2, R3 instruction where still at
EX stage of data path.

Write after read (WAR), e.g.

ADD R1, R2,R3 @EX

SUB R2, R3, R4 @ID

The R2’s value is going to change at SUB R2, R3, R4 but the data is read 1clock
cycle earlier before it occurs.

Write after write (WAW), e.g.

ADD RI, R2, R3 @EX
ADD RI1, R4, R5 @ID
The R1 is going to write by 2 instructions, only the result of latest instruction

should store in R1.

For, WAR and WAW only will cause a Data Hazards problem when the assembly

program executes in concurrent environment. However, this project is no doing a

concurrent environment processor therefore only RAW will be the problem to solve.

To solve the problem an extra block (Data forwarding control block) need to implement

in the data path to control the data flow.

BIT (Hons) Computer Engineering 24
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 4

Methodology and Technologies Involved

E.g.
Ist cycle 2nd cycle 3rd cycle 4th cycle Sth cycle 6th cycle
ADDRI, R2, R3 E E % MEM
MOV Ré, R1 E E _‘ % @—
ADD, RS, R1, R1 E E % MEM
CMP R6, R1 E E %

Figure 4.2: Pipeline stage of instruction in different cycle (1)

Note: When execute CMP R6, R1 the new value already wrote to the R1 (half cycle),

therefore there is no need data forwarding.

2. Bypassing backwards in time:

There is a bypassing backwards problem when the data from memory is use as operand in

next instruction, e.g.

Figure 4.3: Pipeline stage of instruction in different cycle (2)

Ist cycle 2nd cycle 3rd cycle 4th cycle Sth cycle 6th cycle
LDRRI, [R2] IF + ID % MEM
MOV R4, Rl F + ID % { MEM

The data from the memory is not ready yet. Data only read from memory at the end of 4™

clock cycle but the data is needed at early of 4" clock cycle. Therefor a stall added with

the implementation of interlock block.

Ist cycle

2nd cycle

3rd cycle

4th cycle

Sthcycle

6th cycle

LDRRI, [R2]

MOV R4, R1

{0

E

&

D

N

Figure 4.4: Pipeline stage of instruction in different cycle (2)

The instruction delayed 1 clock cycle to complete.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

=
o m
=

—=

iy

25

Chapter 4

Methodology and Technologies Involved

3. PC as destination register for Data-processing instruction:

PC is one of the 16 registers in the register file therefor it also can use as destination

of Data-processing instruction such as MOV PC, LR. This make four NOP needed to

insert after the instruction until the PC being updated e.g.

MOV PC, LR

NOP
NOP
NOP
NOP

To solve the problem, we can update the PC after ID stage as long as no need ALB

(EX), and data from memory (MEM). The instruction which can be improve are only

MOV and MVN (without LSL, LSR, ASR and ROR)

IF ID EX MEM 1 WB
|
Update PC
Detect
MOV,
MVN

Figure 4.5: MOV and MVN detector

Note: MOVS PC is not supposed to use in User mode. It will affect CPSR and SPSR.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

26

Chapter 4
Methodology and Technologies Involved

4.6 Schedule and timeline

FYP1 (May 2016) FYP2 (Jan 2017)
Week 1 2 3 4 5 6 7 8 9 10 11 12 13 141 2 3 4 5 6 7 8 9 10 11 12 13
Background Study

Specification of
design

Design Verilog
module

Develop verification
code

Verify the design

Re-design of Verilog
module (if needed)
UART
implementation
Project proposal/

result report

Table 4.3: Gantt chart for project 1 & 2.

BIT (Hons) Computer Engineering 27
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 5
System Specification

Chapter 5 — System Specification

Chip level design: RISC32 processor

5.1 Feature
RISC32

Dummy Instruction Cache (KB) 16
Dummy Data Cache (KB) 16
Data width (bits) 32
Instruction width (bits) 32
General Purpose Register 16
Special Purpose Register Status flag registers
Pipelined Stage 5
Hazard Handling Yes
Interlock Handling Yes
Data Dependency Forwarding Yes
Branch Prediction No
Multiplication (size of multiplier and No
multiplicand)
Branch Delay Slot Not supported
Instruction supported 27

Table 5.1 RISC32 features

5.2 Naming Convention

Instantiation - [Ivl][abbr. mod. name]

- E.g. udp — [unit][data path]

Pin - [Ivl][Type][abbr. mod. name]_[pin name]

- E.g. uidp_imm — [unit][input][data path]_[immediate]

Wire - [lvl][abbr. mod. name]_[stage]_[pin name]

- E.g. udp_ex_out — [unit][data path]_[EX stage]_[ALU output]

Pipeline register - [Ivl][abbr. mod. name]_[pre-stage][post-stage]_[pin name]
- E.g. udp_ifid_instr — [unit][data path]_[IF stage][ID stage]

_[instruction’s contain]

BIT (Hons) Computer Engineering 28
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 5
System Specification

Abbreviation:
Description Case Available Remark
vl Level lower ¢ : Chip
u : Unit
b : Block
abbr. mod. Abbreviated | lower all any e.g. dp — data path
name module name
type Pin type lower o0 : output
i:input
r : register
W : wire
f- :function
stage Stage name | lower all if, id, ex, Only for data path module
mem, wb
pin name Pin name lower all any Several word separate by “_”
pre-stage Stage name if, id, ex,
before mem, wb
pipeline
Post-stage Stage name if, id, ex,
after pipeline mem, wb

Table 5.2 Naming Convention

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 5
System Specification

5.3 RISC32 processor

5.3.1 Processor Interface

crisc
—cicd_clk cocd TxXD —

cicd_rst

Figure 5.1 Block diagram for RISC32 processor

5.3.2 I/O Pin Description

Pin name : cicd_clk Registered : No
Pin class : clock signal

Source — Destination : external — crisc

Bit size : 1-bit

Active : Rising edge

Pin Function: Provide a periodic signal for synchronize purpose.

Pin name : cicd_rst Registered : No
Pin class : control signal
Source — Destination : external — crisc
Bit size : 1-bit
Active : Active high
Pin Function: 1°b 0: normal operation.
1’b 1: reset the chip.

Table 5.3: RISC32 Input Pins Description

Pin name : cocd_TxD Registered : Yes
Pin class : data signal

Source — Destination : crisc — external device

Bit size : 1-bit

Active : -

Pin Function: Data transmission from UART to external device

Table 5.4: RISC32 Output Pins Description

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

30

Chapter 5

System Specification

5.4 System Register

5.4.1 General Purpose Register

Width

Size

: 32-bit

: 16 units

Retrieving method : 4-bit address as index

Name Address | Use Preserved Across A Call?
RO 0 Argument/ return value/ temporary No
variable
R1-R3 1-3 Argument/ temporary variable No
R4-R11 4-11 Saved variable Yes
R12 12 Temporary variable No
R13(SP) | 13 Stack pointer Yes
R14 (LR) | 14 Link register Yes
R15 (PC) | 15 Program counter No
Table 5.5 Register file
5.4.2 Special Purpose Register
Width : 1-bit
Size : 4-units
Name Use
Carry Flag (C) Carry out of the ALB
Overflow Flag (V) Set when there is an overflow
Zero Flag (Z) Set when the result of ALB is zero
Negative Flag (N) Set when the result of ALB is negative

Table 5.6Status Flag Register

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

31

Chapter 5
System Specification

5.5 Instruction Format

The ARM instruction had classified to 3 general formats:
e data-processing instruction format
® memory instruction format

e Branch instruction format.

The figure 5.2, 5.3, and 5.4 show the differences between instruction formats:

31 2827262524 212019 1615 121 0
|cond [00|#Inpc0delsl Rn I Rd I operand 2

destination register

first operand register
sel condition codes
arithmetic/logic function

e m———--

11 87 0

-------------- > | #ot | s-bitimmediate |
immediate alignment — :

11 76543 0

rmmmmmmemeeme [#shit [snfo] Rm |

I
I I
: immediate shift length
S shift type
1
I
I
I

o L

second operand register 1
11 876543

_____-----_.-»I Rs Iolshl1] Rm l

—

register shift length

Figure 5.2: Data-processing instruction format

2827 262524 2322212019 16 15 12 11 0
Icand lo1|#[p[ulsfM] rRn [Rra | offset

source/destination register:

base register

load/store

write-back (auto-index)
unsigned byte/word

e = ==

up/down
5 1 0

1
1
1
1
1
1
1
1
1
1
1
v pre-/post-index
2

El S P EEE LR 12-bit immediate |

Y
11 76543 0

v
25
______________ > [#shit [sn]o] Rm |

immediate shift length —I |

shift type
offset register

Figure 5.3: Memory instruction format

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

32

Chapter 5
System Specification

Cond 101 L

offset

T L
Link bit

= Hranch
1 = Branch with Link

Condition field

Figure 5.4: Branch instruction format

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

33

Chapter 5
System Specification

5.6 Addressing Mode

Instruction field repetitive

I (instruction[25]) :
e [f I’bl: indicate immediate addressing mode
e If 1’b0: indicate register addressing mode
%+ cond (instruction[31:28]): determine whether to execute the instruction or not
depend on the status flag.
+¢ op (instruction[27:26]): 2’b 00 — Data-processing instruction
2’b 01 — Memory instruction
2’b 10 — Branch instruction
+¢ funct/cmd (instruction[24:21]): Indicate which logical or arithmetic instruction
to be perform.
+¢ S (instruction [20]): Update the status flag if 1’b1 else hold the status flag.
% Rn (instruction [19:16]): 1% operand register address.
+¢* Rd (instruction [15:12]): Destination register address.
%+ rot (instruction [11:8]): amount of rotate.

¢ imm_8 [7:0] (instruction [7:0]): 8-bit immediate. (data-processing instruction)

Rotation value rot | 32-bit immediate value

4’h0 { 24’h0, imm_8([7:0]}

4’hl { imm_8[1:0], 24’h 0, imm_38[7:2]}
4’h2 { imm_8[3:0], 24’h 0, imm_38[7:5]}
4’h3 { imm_8[5:0], 24°h 0, imm_8[7:6]}
4’h4 { imm_8[7:0], 24’h 0}

4’h5 { 2’h0, imm_8[7:0], 22’h0}

4’h6 { 4’h0, imm_8[7:0], 20’h0}

4’h7 { 6’h0, imm_8([7:0], 18’h0}

4’h8 { 8’h0, imm_8[7:0], 16’h0}

4’h9 { 10’h0, imm_8[7:0], 14’h0}
4’h10 { 12°’h0, imm_8[7:0], 12°’h0}

4’h11 { 14°h0, imm_38[7:0], 10’h0}
4’h12 { 16°h0, imm_8[7:0], 8’h0}

4’h13 { 18°h0, imm_8[7:0], 6’h0}

4’h14 { 20’h0, imm_8[7:0], 4’h0}

4’h15 { 22’h0, imm_8[7:0], 2’h0}

Table 5.7: Encoded immediate value

< imm_12 (instruction [11:0]): 12-bit immediate value.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

34

Chapter 5
System Specification

7

% Rs (instruction [11:8]): 3™ operand register address
%+ sh (instruction [6:5]): 2’b 00 — LSL
2’b01 — LSR
2’b 10 — ASR
2’b 11 - ROR
< Rm (instruction [4:0]): 2" operand register address
+» shamt (instruction [11:7]): shift amount (1-31)
¢ P (instruction [24]): Post index or pre-index
U (instruction [23]): minus or plus offset
% B (instruction [22]): Byte (if 1°’b1)
«» W (instruction [21]): Word (if 1’b1)
¢ L (instruction [20]): Load if 1’b1 else Store (memory instruction)
¢ Offset (instruction [23:0]): 24-bit value of offset
% L (instruction [24]) (program flow instruction):
e If 1’bl: store PC+4 to Link Register
e If 1°’b0: hold Link Register’s value.

o [mmediate Addressing, where operand is constant within the instruction itself
(show in figure 5.5). E.g. (Note: when sh =2’b 11, shifter will perform rotation)
o ADD Rd, Rn, #16
o MOV Rd, #16

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

35

Chapter 5
System Specification

® Register Addressing, where operand is a register (show in figure 5.6), the 2" can

be shift according value stored in Rs register or a 5-bit immediate. E.g.

o MOV Rd, Rm, LSR Rs @ sh — LSR — 2°b01
o MOV Rd, Rm, LSR #4 @ sh — LSR — 2’b01
o MOV Rd, Rm @ sh default to LSL — 2°b00, shamt — 0

® Based Displacement Addressing, where operand is at the memory location whose
address is value stored in a register (show in figure 5.7). E.g.

o LDRRJ, [Rn]

® Register indexed displacement addressing with register scaling, where the
operand is at the memory location whose address is the sum of a register with base
address (Rn) and register with offset address (Rm). The offset can be shift depend
on the instruction, e.g.
o LDRRd, [Rn, Rm, LSL #2] @ sh — LSL — 2°b00
o STR Rd, [Rn, Rm] @ sh default to LSL — 2°b00, shamt — 0

® Register indexed displacement addressing with immediate scaling, where the
operand is at the memory location whose address is the sum of a register with base
address (Rn) and signed extend immediate value of offset address which carry by
instruction itself. E.g.

o LDRRd, [Rn, #4]

e Pseudodirect Addressing, where the jump address is the 24-bit of the instruction
concatenated with the upper bits of the PC (show in figure 5.10). E.g
o BL label @ label’s target address — Oxff fff0

BIT (Hons) Computer Engineering 36
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 5
System Specification

5.7 Instruction Set and Description

Operation Assembler Machine Language S update Register Transfer notation
e [R [E P [EP 10| (condition flag)
Add Add ADD({S} Rd, Rn, <Operand2> 1110 | 00 A | 0100 | A | Rn Rd NZCV Rd < Rn + Operand2
With carry ADC{S} Rd, Rn, <Operand2> 1110 | 00 A | 0101 | A | Rn Rd NZCV Rd <« Rn + Operand2 + C
Subtract Subtract SUB{S} Rd, Rn, <Operand2> 1110 | 00 A | 0010 | A | Rn Rd NZCV Rd <« Rn — Operand2
With carry SBC{S} Rd, Rn, <Operand2> 1110 | 00 A | 0110 | A | Rn Rd NZCV Rd < Rn — Operand2 - C
Reverse subtract RSB{S} Rd, Rn, <Operand2> 1110 | 00 A | 0011 | A | Rn Rd NZCV Rd « Operand2 — Rn
Reverse subtract with carry RSC{S} Rd, Rn, <Operand2> 1110 | 00 A | 0111 | A | Rn Rd NZCV Rd « Operand2 — Rn - C’
Logical Test TST Rn, <Operand2> 1110 | 00 A | 1000 | 1 Rn XXXX NzZC Set flags based on Rn & Src2
Test equivalence TEQ Rn, <Operand2> 1110 | 00 A | 1001 | 1 Rn XXXX NzZC Set flags based on Rn ” Src2
Bitwise AND AND{S} Rd, Rn, <Operand2> 1110 | 00 A | 0000 | A | Rn Rd NZC Rd <« Rn & Operand2
Bitwise XOR EOR({S} Rd, Rn, <Operand2> 1110 | 00 A | 0001 | A | Rn Rd NZC Rd <« Rn ” Operand2
Bitwise OR ORR({S} Rd, Rn, <Operand2> 1110 | 00 A 1100 | A | Rn Rd NZC Rd <« Rn | Operand2
Bitwise Clear BIC{S} Rd, Rn, <Operand2> 1110 | 00 A 1110 | A | Rn Rd NzZC Rd < Rn & (~Operand2)
Compare Compare CMP Rn, <Operand2> 1110 | 00 A | 1010 | 1 Rn XXXX NZCV Set flags based on Rn - Src2
Negative CMN Rn, <Operand2> 1110 | 00 A | 1011 | 1 Rn XXXX NZCV Set flags based on Rn + Src2
Move Move MOV({S} Rd, <Operand2> 1110 | 00 1 1101 | A | Rn Rd NzC Rd « Operand2
data Not MVN({S} Rd, <Operand2> 1110 | 00 X | 1111 | A | Rn Rd NzC Rd « ~(Operand2)
Table 5.8 Data-processing Instruction Set and Description
Note: A — available for both 1 and 0. Refer to table 5.8.
BIT (Hons) Computer Engineering 37

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 5
System Specification

Operand 2 I (instruction[25]) Instruction bits RTL Addressing mode
1171098765 |4 |3[2]|1|0
#4 1 0 (rot) 4 (8-bit immediate) Operand 2 =4 Immediate addressing
Rm 0 0 (shamt) 00(sh) | O Rm Operand 2 = Rm Register addressing(2)
Rm, LSL #shamt 0 shamt 00(sh) | O Rm Operand 2 = Rm << shamt | Register addressing(2)
Rm, LSR #shamt shamt 01 (sh) Operand 2 = Rm >> shamt
Rm, ASR #shamt shamt 10 (sh) Operand 2 = Rm >> shamt
Rm, ROR #shamt shamt 11 (sh) Operand 2 = Rm ror shamt
Rm, LSL Rs 0 Rs 0]100(sh)| 1 Rm Operand 2 = Rm << Rs Register addressing(1)
Rm, LSR Rs 01 (sh) Operand 2 = Rm >> Rs
Rm, ASR Rs 10 (sh) Operand 2 = Rm >>> Rs
Rm, ROR Rs 11 (sh) Operand 2 = Rm ror Rs
Table 5.9 Operand 2 for data processing instruction
BIT (Hons) Computer Engineering 38

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 5

System Specification

Operation Assembler Machine Language S update Register Transfer notation
AT [[R [P P [5E]I | (condidion
flag)
Store Post-index STR Rd, [Rn], + Src2 1110 | 01 A |0 1 0 0 0 Rn Rd - Mem [Rn] < Rd, Rn—Rn+Src2

. STR Rd, [Rn], — Src2 1110 | 01 A |0 0 0 0 0 Rn Rd Mem [Rn] < Rd, Rn—Rn-Src2

TEZISIET | (fpe STR Rd, [Rn, + Stc2] oot |Alt |1 |0 |0 |0 |Rn |Rd Mem [Rn + Stc2] < Rd
STR Rd, [Rn, — Src2] 1110 | 01 A 1 0 0 0 0 Rn Rd Mem [Rn - Src2] < Rd
Pre-index STR Rd, [Rn, + Src2]! 1110 | 01 A1 |1 [0 |1 |0 |Rn |Rd Rn—Rn+Src2, Mem [Rn] — Rd
STR Rd, [Rn, — Src2]! 1110 | 01 A|1 |0 [0 |1 |0 |Rn |Rd Rn«<—Rn-Src2, Mem [Rn] < Rd
Load Post-index LDR Rd, [Rn], +Src2 1110 | o1 AJo {1]o]o |1 [Rn [Rd - Rd — Mem [Rn], Rn—Rn+Src2
] LDR Rd, [Rn], — Src2 1110 | 01 A|0O |0 [0 |0 |1 |[Rn |Rd Rd < Mem [Rn], RnRn-Src2
TEZISIET | (fpe LDR Rd, [Rn, + Stc2] oot |A |t |1]o|o |1 |Rn |Rd Rd « Mem [Rn + Src2]
LDR Rd, [Rn, — Src2] 1110 | 01 A |1l 0 0 0 1 Rn Rd Rd <« Mem [Rn - Src2]
Pre-index LDR Rd, [Rn, + Src2]! 1110 | 01 A 1 1 0 1 1 Rn Rd Rn<Rn+Src2, Rd < Mem|Rn]
LDR Rd, [Rn, — Src2]! 1110 | 01 A1 |0 [0 |1 |1 |[Rn |Rd Rn—Rn-Src2, Rd < Mem[Rn]
Store Post-index STRB Rd, [Rn], + Src2 1110 | o1 AJo {1 |1]0o [0 [Rn [Rd - Mem [Rn] < Rdz.0, Rn—Rn+Src2

] STRB Rd, [Rn], — Src2 1110 | 01 A|0O |0 |1 |0 |0 |Rn |Rd Mem [Rn] < Rd7, Rn—Rn-Src2
TEISEr | (fpger STRB Rd, [Rn, + Src2] oot |A|1 |1]|1]0o]0o|Rn |Rd Mem [Rn + Src2] < Rdro
byte STRB Rd, [Rn, — Src2] 1110 | 01 A1 |0 |1 |0 |0 |Rn |Rd Mem [Rn - Src2] < Rd7o

Pre-index STRB Rd, [Rn, + Src2]! 1110 | 01 A 1 1 1 1 0 Rn Rd Rn—Rn+Src2, Mem [Rn] < Rd7.0
STRB Rd, [Rn, — Src2]! 1110 | 01 A 1 0 1 1 0 Rn Rd Rn«—Rn-Src2, Mem [Rn] < Rd7.0
Load -

. Post-index LDRB Rd, [Rn], +Src2 1110 | 01 A|O 1 1 0 1 Rn Rd Rd < Mem [Rn] 7.0, Rn<—Rn+Src2
register LDRB Rd, [Rn], — Src2 oot |Alo]o|1]o]|1 |Rn |Rd Rd « Mem [Rn] 0, Rne—Rn-Src2
byte Offset LDRB Rd, [Rn, + Src2] 1110 | 01 A1 |1 |1 |0 |1 |[Rn |Rd Rd < Mem [Rn + Src2] 70

LDRB Rd, [Rn, — Src2] 1110 | 01 A1 |0 |1 |0 |1 |[Rn |Rd Rd «— Mem [Rn - Src2] 7.0
Pre-index LDRB Rd, [Rn, + Src2]! 1110 | 01 A 1 1 1 1 1 Rn Rd Rn—Rn+Src2, Rd « Mem[Rn] 7.0
LDRB Rd, [Rn, — Src2]! 1110 | 01 A |1l 0 1 1 1 Rn Rd Rn—Rn-Src2, Rd <« Mem[Rn] 7.0
Table 5.10 Memory instruction set and description
Note: A — available for both 1 and 0. Refer to table 5.10
BIT (Hons) Computer Engineering 39

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 5
System Specification

Source 2 (Src2) |I(instruction[25]) Instruction bits RTL Addressing mode
11/10(9 |87]16| 5 43|21
none 0 0 (12-bit immediate) Src2 =0(none) |Based Displacement Addressing
#4 0 4 (12-bit immediate) Src2 =4 Register indexed displacement
addressing with immediate scaling
Rm 1 0 (shamt) 00(sh) | O Rm Src2 =Rm Register indexed displacement
Rm, LSR #shamt 1 shamt 01(sh) | O Rm Src2 = Rm >> shamt|addressing with register scaling
Table 5.11 Source 2 for Memory instruction
Operation Assembler Machine Language S update Register Transfer notation
(condition
flag)
31:28 27:26 25:24 23:0
cond op 1L Imm24
(funct)
Branch Without link B <Address> 0xff0000 1110 | 10 10 0xff0000 (24- bits immediate word address) _ PC—(PC+8)+0xff0000<<2
With link BL <Address> 0xff0000 110 | 10 | 11 0xff0000 (24-bit immediate word address) LR (PC+8)-4; PC—(PC+8)+0xf0000<<2
Table 5.12 Branch Instructions Set and Description

Note: the addressing mode of branch is pseudodirect addressing.

BIT (Hons) Computer

Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

40

Chapter 5
System Specification

Condition |Instruction Meaning Condition flag
(Instruction |extension state to execute
[31:28)) instruction

4'h0 Eq Equal Z set

4'hl Ne Not equal Z clear

4'h2 cs / hs Carry set / unsigned higher or same. |C set

4'h3 cc/lo Carry clear / unsigned lower C clear

4’h4 Mi Minus / negative N set
4’h5 Pl Plus / positive or zero N clear
4’h6 Vs Overflow V set

4’h7 Ve No overflow V clear

4’h8 Hi Unsigned higher C set and Z clear
4’h9 [s Unsigned lower or same C clear or Z set
4’h10 Ge Signed greater than or equal N ==V

4’h11 [t Signed lesser than N 1=V

4’h12 Gt Signed greater than /. ==0,N==V
4’h13 [e Signed lesser than or equal /. ==10orN!=V
4’h14 Al Always (unconditional) -

4’h15 - [nvalid condition - Or same.

Table 5.13 condition encoding

5.8 Memory Map

OxFFFF FFFC

0xC000 0000

0xBEFF FAES

0x0400 0000

00000 8000

0x0000 0000

Operating System & L'O
Stack «——5P
Drvnamic Data
Helap +— 5
Global Data

«—5B

Text

Exception handlers

«—FPC

Figure 5.11: Memory Map

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

41

Chapter 5
System Specification

+» Text Segment
» Store machine language program.
» Also known as read only (RO) segment.
% Global Data Segment
» Store global data which can access by all functions in a program.
» Also known as read/write (RW) segment.
» Access using static base (SB) register that point to the start of global segment.
» SB is conventionally store in R9.
++ Dynamic Data Segment
» Holds stack and heap.
» Stack pointer (SP) point to top of stack, normally grow downward.
» SPstore in R13
» Heap store data allocate by program during runtimes, grow upward.

« Exception Handler, OS, and I/O Segments

» Reserved for exception vector table.

5.9 Operating Procedure

e Start the system

® Porting sequence of instruction into cache (instruction or data)

e Reset the system for at least 2 clocks

e While release the reset, the system will automatically run the program inside
instruction cache

e Observe the waveform from the development tools.

BIT (Hons) Computer Engineering 42
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 6
Microarchitecture Specification

Chapter 6 — Microarchitecture Specification

6.1 Design hierarchy

Chip partitioning at System | Unit partitioning at | Block partitioning at RTL

level Architecture level level (Microarchitecture
level)
crisc (full chip) udp (data path) brf (register file)

balb_shift (ALU & shifter)

bitl_ctrl (interlock)

bfw_ctrl (forwarding)

ucp (control path) bmain_ctrl

binstr_ctrl

ucache (memory cache)

uuart (UART) belketr

btx (transmitter)

brx (receiver)

Structural description Structural description/ | Behavioral description
Behavioral description

Table 6.1 Formation of a design hierarchy for crisc microprocessor through top down design methodology

crisc

udp

brf balb_shift bfw_ctrl bitl_ctrl

ucp

bmain_ctr binstr_ctrl

ucache ucache
(text segment) (data segment)

uuart

belketr btx brx

Figure 6.1 crisc architecture and micro-architecture partitioning

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 6
Microarchitecture Specification

6.2 Unit level functional partitioning

Text segment

3 ucache
Z P uicm_addr uvocm rd_data
74 uicm_wr_data
———{ uicm_wr
———uicm_shv
———{uicm sh
—Juicm slb
——{uicm_clk
ucp
_ udp &4;» uicp_cond uocp_imm
B — u!dp_clk Zig 2 uicp_op uocp_sign_or_rot
—uidp_sreset P{uicp_finct uocp_rf wrl
2 o . 2 uocp_1f wr2
P uidp_if_instr vodp_if_pe > uicp_zero uocp_carry_wr
L 32 uicp_carry UOCp_7ero_wr
—{udp_id_imm uodp_id_instr > uicp_ngtv uocp_ngtv_wr
———uidp_id_sign or_rot PP {uicp_ovfs uocp_ovls_wr
—{uidp_id_rf wrl uocp_branch
———uidp_id_rf wr2 uocp_co;ld_tme
———{uidp_id_carry_wr
——{uidp_id_zero_wr uocp_inva
———{uidp_id_ngtv_wr uocp:in\b —
—_— qggiggigl\'ﬁi\\r uocp_ctrl +3 >
——{uidp_id_mv
uidp_id_invb uocp_index
u!gpiggif:l;l uocp_word_or_byte
{uidp_id_index uocp_mem wr
uidp_id_mdata_or_alb o
— qﬂg_ﬂ_ﬁ;a:]ch . uocp_mdata_or_alb
—{uidp_id_mem w
—{uidp_id_word_or_byte
744> uidp_id_cond_true vodp_id_carry -——— A
uodp_id_zero |——— N
wodp_id_ovfs Data segment
uodp_id_ngtv
- ucache
%2 »{uidp_mem data uodp_mem addr 32 qcm_addr pecnintIcaty
wodp_mem wr . uicm_wr_data.
uodp_mem word_or_byte -
uodp_mem data > | emwr
-Doi ———{ uicm_shv
———{uicm sh
— . uicm_slb
——{uicm_clk
UUART
=32 C000_)
0004 —|uwa_RxD uoua_TxD
——{uia_CTS uoua_RTS
:1 ——|uiva_UARTIE uoua_IRQ
8

4'b 0100——(0

4 0000—11

Y __

Figure 6.2: unit level functional partitioning of crisc

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

M 4,7 > uiua_wb_sel
—Juiva_wb_we
4 0pO1—

uiva_wb_din

—— | uiva_wb_stb

———{uiua_wb_clk
—| uiua_wb_rst

uoua_wb_dout

uoua_wb_ack

o |

44

Chapter 7
Data path of CRISC (Unit & Block)

Chapter 7 — Data path of CRISC (Unit & Block level)

7.1 Feature

Include the addressing mode:

Register addressing

Based displacement addressing

Register indexed displacement addressing with register scaling
Register indexed displacement addressing with immediate scaling
Pseudo-direct addressing

Combination of ALB, register file, data forwarding control, and interlock control.

ALB: perform algorithm and logical operation, generate 4 status flags.
Register file: 16 Register with width of 32-bit.

Data forwarding control: overcome data hazard and data dependency problem
Interlock control: overcome data dependency.

Data dependency in status flags:

2 NOP needed for a branch instruction since the status flag registers generate by ALB in
EX stage and store the flag generated at next rising edge of clock. To reduce the NOP the
branch instruction should done in 2 stages. Both combination output and register value of
status register is used based on the timing of branch instruction (conditional) in the ID
stage and status flag register will be place on ID stage and here come the data hazard in
status flag register.

1% cycle:
Instruction Status flag Status flag
(value in the register) (end of EX stage)
(combination output)
MOVS RO, #-10 ID [N:0C:0Z:0V:0 N:0C:0Z:0V:0
BMI Label IF
2nd eycle:
Instruction Status flag Status flag
(value in the register) (end of EX stage)
(combination output)
MOVS RO, #-10 EX |[N:0C:0Z:0V:0 N:1C:0Z:0V:0
BMI Label ID
MOV RO, #0 IF
3" cycle:
BIT (Hons) Computer Engineering 45

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7
Data path of CRISC (Unit & Block)

Instruction Status flag Status flag
(value in the register) (end of EX stage)
(combination output)
MOVS RO, #10 | N:1C:0Z:0V:0 N:1C:0Z:0V:0
MEM
BMI Label EX
MOV RO, #0 ID

Table 7.1: Status flag problem

The status flag only update after the MOVS RO, #-10 pass EX stage. To solve this the
status flag in EX stage is forward to ID so branch can be determined in ID stage.

IF ID EX
(MOVE RO, #10 '-I(.)
s) "
5 BMI Labe MOVS RO, 210
cycle A
Znd A 7
___*"FIE (MOV RO, #0 (BMI Label [- MOVS RO, £10 [-)
. —
forward the status flag
from EXio ID
\\ /,-- 3 ?/-' ~, Y /
) (D) [EX | (MEM)
S b L d N, L N L
T S
ranch detector)
e S _,.-"'
3 ALB S
reset the ide
pipeline
register if L Ll
— condition false —» C—
) S
) i M 3
status flag write enable =
Vi—

P

{ control unit Y\

| (cnodition | i
\ test c:iru:uit]/.-’ :
*, J../_

\H'-_

o ¥

-,

Figure 7.1: Solution for status flag problem.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

46

Chapter 7
Data path of CRISC (Unit & Block)

7.2.1 Block diagram of udp (Data path)

udp
——{uidp ck
—uidp_sreset

—Z idp_if instr vodp_if pe FoZp

32
— Juidp_id_imm wodp_id_instr (P>

—{uidp id_sign or rot
—uidp_id rf wrl
—— uidp _id rf wr2
—{uidp id carry wr
——{uidp_id zero wr
—{uidp_id ngtv wr
—{uidp_id ovfs wr
—uidp_id mnva
uidp id invb
—3luidp_id_ctrl
—uidp_id index
— uidp id mdata or alb
—{uidp_id branch

uidp id mem wr
uidp id word or byte

744> uidp id cond true uodp id carry —
uodp id zero ——
uodp id ovfs ——
uodp id ngtv ——

7324} uidp mem data uodp mem addr 52

uodp mem wr
uodp mem word or byte
uodp mem data

Figure 7.2: block diagram of data path

Input

Pin name : uidp_clk

Pin class : clock signal

Source — Destination : external — udp
Bit size : 1-bit

Active : Rising edge

Pin Function: Periodic signal for synchronize purpose.

Registered : No

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

47

Chapter 7
Data path of CRISC (Unit & Block)

Pin name : uidp_sreset Registered : No

Pin class : control signal

Source — Destination : external — udp

Bit size : 1-bit

Active : Active high

Pin Function: Reset the data path when active high else perform normal operation.

Pin name : uidp_if_instr Registered : No
Pin class : data signal

Source — Destination : u_cache — udp

Bit size : 32-bit

Active : -
Pin Function: Instruction in text segment with uodp_if_pc as the address.
Pin name : uidp_id_imm Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high when the operand 2 is an immediate else active low
I’b 0 : non-immediate operand
1’b 1: immediate operand

Pin name : uidp_id_sign_or_rot Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high when operand 2 will undergoes sign extension else active
low for rotation extension
1’b 0 : rotation extension operand 2
1’b 1: sign extension operand 2

Pin name : uidp_id_rf_wrl Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 1% write port else active low
1’b 0 : hold the data
1’b 1: write the data to 1*" write address

Pin name : uidp_id_rf_wr2 Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 2™ write port else active low
I’b 0 : hold the data
1’b 1: write the data to 2" write address

Pin name : uidp_id_carry_wr Registered : Yes

BIT (Hons) Computer Engineering 48
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7
Data path of CRISC (Unit & Block)

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update carry flag else active low
1’b 0 : hold previous carry flag
1’b 1: update carry flag

Pin name : uidp_id_zero_wr Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update zero flag else active low
1’b O : hold previous zero flag
1’b 1: update zero flag

Pin name : uidp_id_ngtv_wr Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update negative flag else active low
1’b 0 : hold previous negative flag
1’b 1: update negative flag

Pin name : uidp_id_ovfs_wr Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update overflow flag else active low
1’b 0 : hold previous overflow flag
1’b 1: update overflow flag

Pin name : uidp_id_branch Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to change PC to branch target address else active low for
normal increment of PC (+4)
I’b 0 : branch to target address
1’b 1: normal +4 increment of PC

Pin name : uidp_id_cond_true Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high if the condition meet else active low to skip the instruction

BIT (Hons) Computer Engineering 49
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7
Data path of CRISC (Unit & Block)

1’b 0 : skip the instruction
1’b 1: execute the instruction

Pin name : uidp_id_inva Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 1*' operand (from Rn) else active low to use
original operand
1’b 0 : use original data from Rn for ALB
1’b 1: invert the data from Rn before going through ALB

Pin name : uidp_id_invb Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 2" operand (from Rm or immediate) else active
low to use original operand
I’b 0 : use original data from Rm or immediate for ALB
1’b 1: invert the data from Rm or immediate before going through ALB

Pin name : uidp_id_ctrl Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 3-bit
Active : -
Pin Function: opcode for the ALB.
3’b 000 : addition
3’b 001: addition with carry
3’b 010: subtraction
3’b 011: subtraction with carry
3’b 100: and AND
3’b 101: or OR
3’b 110: exclusive or XOR
3’b 111: by pass operand b (from Rm)

Pin name : uidp_id_index Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: decide the address mode for memory read and load
I’b O : Post-index
1’b 1 : Pre-index

Pin name : uidp_id_word_or_byte Registered : Yes
Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

BIT (Hons) Computer Engineering 50
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7
Data path of CRISC (Unit & Block)

Active : Active high

Pin Function: Active high for load or save a byte of data else active low for a word of
data
1'b 0 : word
1’b 1: byte

Pin name : uidp_id_mem_wr Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to update memory else active low to hold the previous
memory data.
1'b 0 : hold previous memory data
1’b 1: update memory data

Pin name : uidp_id_mdata_or_alb Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high for write data from memory to register file else active low
for write data from ALB to register file.
1'b O : use data from ALB
1’b 1: use data from memory cache

Pin name : uidp_if_instr Registered : No
Pin class : data signal

Source — Destination : u_cache — udp

Bit size : 32-bit

Active : -

Pin Function: data in data segment with uodp_mem_addr as the address.

Table 7.2: Input pins description for data path unit

Output

Pin name : uvodp_if _pc Registered : Yes
Pin class : address signal

Source — Destination : udp — ucache

Bit size : 32-bit

Active : -

Pin Function: Address for instruction.

Pin name : uodp_id_instr Registered : Yes
Pin class : data signal

Source — Destination : udp — ucp

Bit size : 32-bit

Active : -

Pin Function: Instruction content.

Pin name : uodp_id_carry Registered : Yes
Pin class : address signal

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

51

Chapter 7
Data path of CRISC (Unit & Block)

Source — Destination : udp — ucp

Bit size : 1-bit

Active : Active high

Pin Function: Carry flag.
1’b0 : not carry produce
1’bl : carry produce

Pin name : uodp_id_zero Registered : Yes
Pin class : address signal
Source — Destination : udp — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Zero flag.
1’b0 : result is non-zero
1’b1 : result is zero

Pin name : uodp_id_ovfs Registered : Yes
Pin class : address signal
Source — Destination : udp — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Overflow flag.
1'b0 : no overflow
1'bl : overflow

Pin name : uodp_id_ngtv Registered : Yes
Pin class : address signal
Source — Destination : udp — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Negative flag.
1'b0 : positive
1’bl : negative

Pin name : uodp_mem_addr Registered : Yes
Pin class : address signal

Source — Destination : udp — ucache

Bit size : 32-bit

Active : -

Pin Function: memory address of data in main memory.

Pin name : uodp_mem_wr Registered : Yes

Pin class : control signal

Source — Destination : udp — ucache

Bit size : 1-bit

Active : Active high

Pin Function: write the uodp_mem_data to main memory with address

uodp_mem_addr if the signal is active high else hold the data in the main
memory.
Pin name : uodp_mem_word_or_byte Registered : Yes

Pin class : control signal

BIT (Hons) Computer Engineering 52
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7

Data path of CRISC (Unit & Block)

Source — Destination : udp — ucache

Bit size : 1-bit

Active : Active high

Pin Function: 1°b0 : write or read a word of data

I;b1 : write or read a byte of data

Pin name : uodp_mem_data

Pin class : data signal

Source — Destination : udp — ucache

Bit size : 32-bit

Active : -

Pin Function: data to write to main memory.

Registered : Yes

Table 7.3: output pins description for data path unit

7.2.2 Data path block level hierarchy

udp

brf balb_shift bfw_ctrl

bitl_ctrl

Figure 7.3: partition of data path unit

The data path unit builds up with

Register file (brf)

Arithmetic logic block with shift (balb_shift)
Data forwarding control (bf_ctrl)

Interlock control (bitl_ctrl)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

53

Chapter 7

Data path of CRISC (Unit & Block)

7.3 Register file (brf)

7.3.1 Functionality

A set of 32-bits register bank with number of 16 registers.

Function of the registers:

Name Use

RO Argument/ return value/ temporary variable
R1-R3 Argument/ temporary variable

R4-R11 Saved variables

R12 Temporary variable

R13 (SP) Stack pointer

R14 (LR) Link register (return address)

R15 (PC) Program counter

Table 7.4: General register

7.3.2 Block Diagram

brf

——birf rn4
— —birf_m¥
——birf rs4

—%birf_wr_datal borf 32
—|birf wr_addrl borf rm32

birf wr_enl borf rs32

—3% 3 birf wr data2
— % ,birf wr addr2

birf wr _en2

birf clk
birf sreset

—% S birf pe

—
32:)

Figure 7.5: block diagram of brf (register file)

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

54

Chapter 7
Data path of CRISC (Unit & Block)

Input

Pin name : birf_rn4 Registered : No
Pin class : address signal

Source — Destination : udp — brf

Bit size : 4-bit

Active : -

Pin Function: Address for Rn register.

Pin name : birf_rm4 Registered : No
Pin class : address signal

Source — Destination : udp — brf

Bit size : 4-bit

Active : -

Pin Function: Address for Rm register.

Pin name : birf_rs4 Registered : No
Pin class : address signal

Source — Destination : udp — brf

Bit size : 4-bit

Active : -

Pin Function: Address for Rs register.

Pin name : birf_wr_datal Registered : No
Pin class : data signal

Source — Destination : udp — brf

Bit size : 32-bit

Active : -
Pin Function: Data to write in specific register with 1% write port.
Pin name : birf_wr_addrl Registered : No

Pin class : address signal

Source — Destination : udp — brf
Bit size : 4-bit

Active : -

Pin Function: Address for register where the data should write to (for 1% write port).

Pin name : birf_wr_enl Registered : No

Pin class : control signal

Source — Destination : udp — brf

Bit size : 1-bit

Active : High

Pin Function: Update the data of the register when active high (for 1% write port).

Pin name : birf_wr_data2 Registered : No
Pin class : data signal

Source — Destination : udp — brf

Bit size : 32-bit

Active : -
Pin Function: Data to write in specific register with 2" write port.
Pin name : birf_wr_addr2 Registered : No

Pin class : address signal
Source — Destination : udp — brf

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

55

Chapter 7
Data path of CRISC (Unit & Block)

Bit size : 4-bit
Active : -

Pin Function: Address for register where the data should write to (for 2" write port).

Pin name : birf_wr_en2 Registered : No

Pin class : control signal

Source — Destination : udp — brf

Bit size : 1-bit

Active : High

Pin Function: Update the data of the register when active high (for 2" write port).

Pin name : birf_pc Registered : No
Pin class : data signal

Source — Destination : udp — brf

Bit size : 32-bit

Active : -

Pin Function: Current PC value.

Table 7.5: input pins description of brf

Output

Pin name : borf_rn32 Registered : No
Pin class : data signal

Source — Destination : brf — udp

Bit size : 32-bit

Active : -

Pin Function: Data from Rn register.

Pin name : borf_rm32 Registered : No
Pin class : data signal

Source — Destination : brf — udp

Bit size : 32-bit

Active : -

Pin Function: Data from Rn register.

Pin name : borf_rs32 Registered : No
Pin class : data signal

Source — Destination : brf — udp

Bit size : 32-bit

Active : -

Pin Function: Data from Rs register.

Table 7.6: output pins description of brf

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

56

Chapter 7

Data path of CRISC (Unit & Block)

7.3.3 Functional table

birf wr_enl | birf wr _en2 | birf clk Operation
1'b0 1’b0 At negative edge | Hold the previous values
1’b0 I’bl At negative edge | Write new data to register file (2"
write port data)
I’bl 1’b0 At negative edge | Write new data to register file (1%
write port data)
1'b0 1’bl At negative edge | Write new data to register file (both
write port data will write. If the
location if same, 2" write port has
higher priority.)
1’bx 1’bx At positive edge | Read data from register file
Table 7.7: functional table for write enable signal.
Address pin Operation
birf_rn4 Read data from register file and output
with borf_rn32
birf_rm4 Read data from register file and output
with borf_rm32
birf_rs4 Read data from register file and output

with borf_rs32

birf_wr_addrl

Address of register which the
birf_wr_datal will write to it

birf_wr_addr2

Address of register which the

birf_wr_data2 will write to it

Table 7.8: functional table for address pin.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

57

Chapter 7
Data path of CRISC (Unit & Block)

7.3.4 Internal block diagram of Register File

birf_wr_addr1
decoder
[de o 0 0
1 1 1
ol 2 2
3 S ri 3
r 4
‘5‘ — 5 L 5 32 5 birf_ m32
6— | i 6 —3
7—] I 7 320 My birf_rm32
birf 1 8l—] s 8 —q
irf_wr_en L 9 i
Wr¢ S 9
birf_wr_en2 12 L 10 10 ﬁ&f'_} birf_rs32
11— il 1 —q
12 S r12 12
13 S r13 13
14— 14 14
— |15
5 birf_clk
birf_wr_addr1
4
birf_clk 3 3
o i 7
birf_wr_data1 _ birf rsd
birf wr_data2 birf_rm4
birf_m4
birf_pc
Figure 7.6: Design of register file.
324
. 3
birf wr datal 3 register element 2
-7 3
birf_wr_en1 J
birf_wr_en2
birf_wr_data2

Figure 7.7: Single element of register file

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7
Data path of CRISC (Unit & Block)

7.4 Arithmetic Logic Block with shift (balb_shift)

7.4.1 Functionality

Combinations of arithmetic logic block and barrel shifter which operates on 32-bits

integer operand.
Perform:
e Addition
e Subtraction
e AND (logic)
¢ OR (logic)
¢ XOR (logic)
e Logical shift left
® Logical shift right
® Arithmetic shift right
e Rotate right
® Rotate right with extend
e MOV/MVN instruction (copy value to register)

7.4.2 Block Diagram

- balb_shift
—32% bialb op a
=P bialb op b

——24—bialb_ctrl
— bialb_shamt
——% Ibialb sh
——1bialb_cin flag

bialb inva
bialb_invb

boalb out

boalb_zero
boalb_carry
boalb ovfs
boalb ngtv

32

Figure 7.8: Block diagram of balb_shift (ALU and shifter)

Input

Pin name : bialb_op_a

Pin class : data signal

Source — Destination : udp — balb_shift
Bit size : 32-bit

Active : -

Pin Function: 1*' 32-bits operand.

Registered : No

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7
Data path of CRISC (Unit & Block)

Pin name : bialb_op_b Registered : No
Pin class : data signal

Source — Destination : udp — balb_shif

Bit size : 32-bit

Active : -

Pin Function: 2" 32-bits operand.

Pin name : bialb_ctrl Registered : No
Pin class : control signal

Source — Destination : udp — balb_shif

Bit size : 3-bit

Active : -

Pin Function: Opcode to select operation to perform.

Pin name : bialb_shamt Registered : No
Pin class : control signal

Source — Destination : udp — balb_shif

Bit size : 5-bit

Active : -

Pin Function: Number of bit need to shift or rotate.

Pin name : bialb_sh Registered : No
Pin class : control signal

Source — Destination : udp — balb_shif

Bit size : 2-bit

Active : -
Pin Function: Represent shift type need to perform.
00 =LSL
01 =LSR
10 = ASR
11 = ROR, RRX
Pin name : bialb_cin_flag Registered : No

Pin class : data signal

Source — Destination : udp — balb_shif
Bit size : 1-bit

Active : -

Pin Function: Current C bit in CPSR.

Pin name : bialb_inva Registered : No
Pin class : control signal

Source — Destination : udp — balb_shif

Bit size : 1-bit

Active : High

Pin Function: invert value pass in to bi_alb_op_a while active high.

Pin name : bialb_invb Registered : No
Pin class : control signal

Source — Destination : udp — balb_shif

Bit size : 1-bit

Active : High

Pin Function: invert value pass in to bi_alb_op_b while active high.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

60

Chapter 7
Data path of CRISC (Unit & Block)

Table 7.9: Input pins description of balb_shift

Output

Pin name : boalb_out Registered : Yes
Pin class : data signal

Source — Destination : balb_shif — udp

Bit size : 32-bit

Active : -

Pin Function: Result from balb_shif.

Pin name : boalb_zero Registered : Yes
Pin class : data signal

Source — Destination : balb_shif — udp

Bit size : 1-bit

Active : High

Pin Function: Active high while bo_alb_out equal to 32’h 0000_0000.

Pin name : boalb_carry Registered : Yes
Pin class : data signal

Source — Destination : balb_shif — udp

Bit size : 1-bit

Active : High

Pin Function: Active high while carry out is 1’bl when perform addition.

Pin name : boalb_ovfs Registered : Yes
Pin class : data signal

Source — Destination : balb_shif — udp

Bit size : 1-bit

Active : High

Pin Function: Active high while there is an overflow.

Pin name : boalb_ngtv Registered : Yes
Pin class : data signal

Source — Destination : balb_shif — udp

Bit size : 1-bit

Active : High

Pin Function: Active high while the bo_alb_out is a negative value.

Table 7.10: Output pins description of balb_shift

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

61

Chapter 7
Data path of CRISC (Unit & Block)

7.4.5 Test plan
Test case Input Expected output
1. Addition: bi_alb_op_a =32"h 1010_ffff
bi_alb_op_b=32"h 1111_3fed
bi_alb_ctrl[2:1] =2"b 00
bi_alb_inva = 1"b0
bi_alb_invb = 1’b0
bi_alb_cin_flag = 1°bl
A+B bi_alb_ctrl[0] = 1°b0 bo_alb_out = 32’h 2122_3fec
A+B+Cin bi_alb_ctrl[0] = 1’bl bo_alb_out =32"h 2122_3fed

2. Subtraction:

A-B

A-B-Cin

B-A

B-A-Cin

bi_alb_op_a = 32’h fO10_ffff
bi_alb_op_b=32"h 1111_3fed
bi_alb_ctrl[2:1] =2’b 01
bi_alb_cin_flag = 1°bl

bi_alb_ctrl[0] = 1’b0
bi_alb_inva = 1’b0
bi_alb_invb = 1’bl

bi_alb_ctrl[0] = 1’bl
bi_alb_inva = 1’b0
bi_alb_invb = 1’bl

bi_alb_ctrl[0] = 1’b0
bi_alb_inva = 1’bl
bi_alb_invb =1’b0

bi_alb_ctrl[0] = 1’bl
bi_alb_inva = 1’bl
bi_alb_invb = 1’b0

bo_alb_out = 32’h deff c012
bo_alb_ngtv = 1’bl

bo_alb_out = 32’h deff c012
bo_alb_ngtv = 1’bl

bo_alb_out =32’h 2100 3fee
bo_alb_ngtv = 1’b0

bo_alb_out =32’h 2100 3fee
bo_alb_ngtv = 1’b0

3. Logical operation:

AND
OR

XOR

bi_alb_op_a =32"h 1010_ffff
bi_alb_op_b=32"h 1111_3fed
bi_alb_ctrl[2]=1'b 1
bi_alb_inva = 1’b0
bi_alb_invb = 1’b0
bi_alb_ctrl[1:0] =2’b 00

bi_alb_ctrl[1:0] =2’b 01

bi_alb_ctrl[1:0] =2’b 10

bo_alb_out =32’h 1010_3fed
bo_alb_out=32"h 1111_ffff

bo_alb_out =32’h 0101_c012

4. Move operation:

bi_alb_op_b = 32’h 1010_ffff
bi_alb_ctrl[2:0] =3’b 111

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

62

Chapter 7
Data path of CRISC (Unit & Block)

MOV

MVN

bi_alb_invb=1b0

bi_alb_invb=1'b 1

bo_alb_out =32’h 1010 _ffff

bo_alb_out = 32’h efef 0000

5. Shift/ rotate:

LSL

LSR

ASR

ROR

bi_alb_op_a = 32’h fO10_ffff
bi_alb_op_b = 32’h fO10_ffff
bi_alb_inva = 1’b0
bi_alb_cin_flag = 1’bl
bi_alb_shamt = 5’b 00100
bi_alb_ctrl[2:0] =3’b 111
bi_alb_invb=1'b 0

bi_alb_sh[1:0] =2’b 00
bi_alb_sh[1:0] =2’b 01
bi_alb_sh[1:0] =2’b 10

bi_alb_sh[1:0] =2’b 11

bo_alb_out = 32’h 010f_fff0
bo_alb_out = 32’h 0f01_Offf
bo_alb_out = 32’h ffO1_Offf

bo_alb_out = 32’h ffO1_Offf

Table 7.13: test plan for balb_shift

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

63

Chapter 7
Data path of CRISC (Unit & Block)

7.4.6 Simulation result

Addition:

/tb_balb/boalb_out { znzzme:

/tb_balb/boalb_ovfs |

[tb_balb/boalb_zero |

ftb_balb/boalb_carry |

/tb_balb/boalb_ngtv |

/tb_balb/bialb_op_a { 32'h1010ffff

I

[tb_balb/bialb_op_b { 32'h11113fed

Jtb_balbfbialb_ctrd { 3'h0

3'hl

Jtb_balb/bialb_sh { 2'h0

Jtb_balb/bialb_shamt { 5'h00

/tb_balb/bialb_cin_flag !
[tb_balb/bialb_inva |

[tb_balb/bialb_invb |

A=32h 1010_fff
B=32'h1111_3fed

ADD [Green)
S5UM = 32'h2122_3fec

ADC (Red)
SUM = 32’h 2122_3fed

Figure 7.11: simulation result (1) - addition

Subtraction:

Jtb_balb/boalb_out'! 32hdeffco12 ﬂ

/tb_balb/boalb_ovfs

E

A =32hf010_ffff

Jtb_balb/boalb_zero

52h21003fee C
B=32h1111 3fed, Cin=1

ftb_balb/boalb_carry q

Jftb_balb/boalb_ngtv

A-B (Green)
c Result = 32’hdeff_c012

bo alb ngtv=1'b1

Jtb_balb/bialb_op_a [32'hfo 10

A-B-Cin’ (Red)

[tb_balb/bialb_op_b

Result = 32°h deff c012

bo alb ngtv=1'b1

[tb_balb/bialb_ctrl | 3'h2

3'h3

3'h2 3'h3

[tb_balb/bialb_sh

B-A (Yellow)

Result = 32"h 2100_3fee

[ftb_balb/bialb_shamt

bo alb _ngtv=1"b0

Jtb_balb/bialb_cin_flag
ftb_balb/bialb_inva

B-A-Cin’ (Blue)

[tb_balb/bialb_invb

Figure 7.12: simulation result (2) - subtrac

BIT (Hons) Computer Engineering

Result = 32'h 2100_3fee
bo_alb_ngtv=1'h0

tion

64

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7
Data path of CRISC (Unit & Block)

Jtb_balb/boalb_out{immomY smmmms | A= 32h010_ffff

. —— B = 32°h 1010_ffff
ﬂh_halhfboaih_mﬁl shamt = 5'b 00100 (4)
[tb_balb/boalb_zero

MOV (B) (Red)

[ftb_balb/boalb_carry Result = 32'h 1010_ffff
o bebfbosngty | MVN (B) (Yellow)
/tb_balb/bialb_op_a Result = 32'h efef 0000

tb_balb/bialb_op_b 3Zhi010f
/tb_balb/bialb_ctri Fh7
/tb_balb/bialb_sh
/tb_balbbialb_shamt
Jtb_balb/bialb_cin_flag i
/tb_balb/bialb_inva

[th_balb/bialb_invb .
Figure 7.13: simulation result (3) - subtraction

Logical operation:

[ftb_balbfboalb_out I'srn:mu.m MILLLIY | Tnn0icii?

A=32h 1010 fiff
th_balb/boalb_ovfs &
ftb_ = B=32'n1111 3fed
ftb_balb/boalb_zero

r A AND B (Green)
[tb_balb/boalb_carry Result = 32'h 1010_3fed
ith_belo/bbostts_mgly A OR B (Red)
Jtb_balb/bialb_op_a 32'h1010t Result = 32°h 1111 _ffff
Jtb_balb/bialb_op_b A XOR B (Yellow)
/tb._balb/bialb_ctrl TT3 e e Result = 32’h 0101_c012

ftb_balb/bialb_sh
/tb_balb/bialb_shamt
Jtb_balb/bialb_cin_flag
Jtb_balb/bialb_inva
[tb_balb/bialb_invb

Figure 7.14: simulation result (4) - logical

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

65

Chapter 7
Data path of CRISC (Unit & Block)

Shift/ rotate:

Jtb_balbfboalb_out "3zmoromo fazroniom Y 32 hi010fF g

/tb_balb/boalb_ovfs

[ftb_balb/boalb_zero

ftb_balb/boalb_carry

ftb_balb/boalb_ngtv

ftb_balb/bialb_op_a

[tb_balb/bialb_op_b

/tb_balb/bialb_ctrl

ftb_balb/bialb_sh

2'h1

2'h2

2'h3

[tb_balb/bialb_shamt

5'h04

Jtb_balb/bialb_cin_flag
Jtb_balbfbialb_inva

ftb_balb/bialb_invb

A=32'h fOL10_fff

B=32h1111_3fed
shamt = 5'b 00100 {4)

LSL (&) (Green)

Result = 32'h O10f_fff0
LSR [A) (Red)

Result = 32'h Of01_Offf

ASR [A) [Yellow)
Result = 32'h ff01_OFff

ROR (A) (Blue)
Result = 32'h ff01_OFff

Figure 7.15: simulation result (5) — shift/ rotate

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

66

Chapter 7
Data path of CRISC (Unit & Block)

7.5 Data forwarding control (bfw_ctrl)

7.5.1 Functionality

The Forwarding Block is responsible for detecting data dependency problem. When an
instruction write to the register destination and the following instruction read from the
previous instruction’s register destination, data dependency occur, when it occur and then
forward the proper data from the corresponding stage to the EX Stage so that the data
which goes into ALU is the correct value.

Rn forwarding
a1 28 27 28 25 24 2120 10 16 15 12 14
cond |00 |#]| opcode |S] Rn Rd operand 2
[| | Data processing instruction
31 ZB2726265242322212019 16 15 12 11 0
cond (01 [|#|PIUIB U\lL Rn Rd offset]]
FTTTT1 i] Memory mstruction
L] i L T [
Cond 101 L offset

Figure 7.16: Instruction format

From the instruction format,

Branch instruction

e The field of Rn’s address (19:16 bits) is fixed and always used in both data-
processing and memory instruction.

e The branch instruction used 24 bits (23:0) to store the offset mean that 19:16 bits of
instruction is not represent as Rn’s address, in this case, multiplexer in data path
will pass PC and offset to ALU, so Rn value will no affect the result.

Rm and Rs forwarding
25

1

8 7

0

-------------- =S | #rot | 8-bit immediate |
H immediate alignment — !
1 11 76543 0
1 -
; e e B > | shift [Sh|o| Rm |
v
25 : immediate shift length —I
Iﬂ -=1 shift type
: second operand register 1 1
! 1 B76543 0
1
tmemmmmeenaa = | Rrs [o|sn]1] Rm |

register shift length

Figure 7.17: Data processing instruction

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

67

Chapter 7
Data path of CRISC (Unit & Block)

25 1 0
E] e ——— I 12-bit immediate |
1

]
Y '
25 i) 76543 0

-------------- = | #shit [snfo] rRm |

immediate shift length —| |

shift type

offset reqister

Figure 7.18: Memory instruction

e Rm only used when there is non-immediate instruction.
e Rm’s address field located at 3:0 bits of both instructions.

However,

e Rs only appear in Data processing instruction with condition that non-immediate
and bit 4 is set (1’b1).

e Rs’s address field located at bit11:8 of the data-processing instruction

BIT (Hons) Computer Engineering 68
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7

Data path of CRISC (Unit & Block)

Type Type description Instruction | Assembly format
Data processing | Arithmetic (signed | Add add Srd, Srn, Opd2
or unsigned) or Adc adc $rd, $rn, Opd2
logical operations Sub sub $rd, $rn, Opd2
between two Sbc Sbc Srd, Srn, Opd2
registers, $rn and Srb srb $rd, $rn, Opd2
Opd2 which can Src src Srd, S$rn, Opd2
be immediate Mov mov $rd, Opd2
value or register Mvn mvn Srd, Opd2
value $rm, then Nop nop (itis equivalent to
store the results into mov $0, $0)
register Srd. Orr orr rd, Srn, Opd2
And and $rd, $rn, Opd2
Eor eor Srd, S$rn, Opd2
Bic bic $rd, $rn, Opd2
Tst tst Srn, Opd2
Teq teq $rn, Opd2
Cmp cmp $rn, Opd2
Cmn cmn $rn, Opd2
Lsl mov $rd, Opd2,LSL shamt
Lsr mov $rd, Opd2,LSR shamt
Asr mov $rd, Opd2,ASR shamt
Ror mov $rd, Opd2,ROR shamt
Rrx mov $rd, Opd2,RRX shamt
Load Instructions that are | 1dr
loading a data from | post idx | ldr $rd, [Srn], Srm
the Data Cache into | offset ldr $rd, [$rn, Srm]
register Srd pre idx ldr $rd, [S$rn, S$rm]!
Store Instructions that are | srt
storing a data post idx | str $rd, [$rn], Srm
storing in register offset str $rd, [$rn, Srm]
$rd into the Data pre idx str $rd, [S$rn, Srm]!
Cache
Branch Instructions that B b label
will jump to the
B1 bl label

specified location
of program if the
condition is
fulfilled

Table 7.14: ARM assembly instruction

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

69

Chapter 7
Data path of CRISC (Unit & Block)

Among the instructions, instructions that will update the Register File (RF) are the
1. Data processing (except tst, teq, cmp, cmn),

2. Load

These instructions might cause data hazards to the later instructions. When data
dependencies happen, forwarding or stalling is needed to solve them. These instructions
can be further categorised based on the stages they get their results, since the principle of
forwarding is to provide data to the data depending instructions once the data is ready, to
ease the design of forwarding circuitry.

1. Results is ready in EX stage
- Data processing

2. Results is ready in MEM stage
- Load

BIT (Hons) Computer Engineering 70
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7

Data path of CRISC (Unit & Block)

7.5.2 Forwarding Block Function Tables

Forward Rn, Rm, Rs

No. Input Output | Source
ID EX MEM
Reg Write DestReg Reg Write DestReg
RegRn |Wr_ 1|Wr 2|Rd_1|Rd_2 |Wr 1|Wr 2|Rd_1|Rd_2

1. A 0 0 X X 0 0 X X 00 ID

2. A 1 0 B X 1 0 C X 00 ID

3. A 1 0 A X 0 0 X X 01 EX

4. A X 1 X A 0 0 X X 01 EX

5. A 0 0 X X 1 0 A X 10 |MEM.Rd1

6. A 0 0 X X 0 1 X A 11 MEM.Rd2

7. A 0 0 X X 1 1 A A 11 MEM.Rd2

8. A 0 1 X A 0 1 X A 01 EX
Table 7.15: functional table for forwarding block
Explanations:

1. The value from register file itself is used as Rn, Rm, and Rs (value from ID stage)

BIT (Hons) Computer Engineering

since there is not overwrite value in EX and MEM stages.

The value from register file itself is used as Rn, Rm, and Rs (value from ID stage)
since there the Register destination to be update in EX and MEM stages are B and
C respectively which is not related to register A will read in ID stage.

The value from ALU output (EX satge) is used as Rn, Rm, and Rs, since there is a
write enable and address of register destination in EX stage same with address of
register to be read in ID stage.

This case is similar to case no. 3.

The value from data memory (MEM stage) is used as Rn, Rm, and Rs, since there
is a write enable (wrl) and address of register destination (rdl1) in MEM stage
same with address of register to be read in ID stage. (MEM.Rd1)

The value which ALUpassed to MEM stage is used as Rn, Rm, and Rs, since
there is a write enable (wr2) and address of register destination (rd2) in MEM
stage same with address of register to be read in ID stage. (MEM.Rd2)

When both write enable (wr2 and wrl) are asserted and register destinations (rd1
and rd2) are both same address with read register, the 2" write port had higher
priority (wr2 and rd2), therefore the MEM.Rd2 is used.

When same address of register destination in EX and MEM are both same with
read address in ID stage, value from EX will forward to ID instead of MEM
because EX had latest data of the register.

71

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7
Data path of CRISC (Unit & Block)

7.5.3 Block diagram

bfw_ctrl
bifw ex rf wrl
bifw_ex rf wr2
bifw_mem rf wrl
bifw mem rf wr2

4

A\ 4

vVVvYy

bifw mem rd4 2

bifw id rn4
» bifw_id rm¢d
bifw id rs4

Fle e ¥

A 4

bifw_ex m4
bifw_ex rmé
bifw ex rs4

A 4

bifw ex rd4 1 bofw m32 ctrl
bifw ex rd4 2 bofw rm32 ctrl
bifw mem rd4 1 bofw rs32 ctrl—

Figure 7.19: block diagram for bfw_ctrl (forwarding control)

Input

Pin name : bifw_ex_rf wrl

Pin class : control signal

Source — Destination : udp — bfw_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: 1% write port enable signal at EX stage.

Registered : No

Pin name : bifw_ex_rf wr2

Pin class : control signal

Source — Destination : udp — bfw_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: 2" write port enable signal at EX stage.

Registered : No

Pin name : bifw_mem_rf wrl

Pin class : control signal

Source — Destination : udp — bfw_ctrl
Bit size : 1-bit

Active : Active high

Pin Function: 1*' write port enable signal at MEM stage.

Registered : No

Pin name : bifw_mem_rf wr2

Pin class : control signal

Source — Destination : udp — bfw_ctrl
Bit size : 1-bit

Registered : No

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

72

Chapter 7
Data path of CRISC (Unit & Block)

Active : Active high
Pin Function: 2" write port enable signal at MEM stage.

Pin name : bifw_ex_rd4_1 Registered : No
Pin class : data signal

Source — Destination : udp — bfw_ctrl

Bit size : 4-bit

Active : -
Pin Function: Address for 1* write port Rd (destination register) at EX stage.
Pin name : bifw_ex_rd4_2 Registered : No

Pin class : data signal
Source — Destination : udp — bfw_ctrl
Bit size : 4-bit

Active : -
Pin Function: Address for 2" write port Rd (destination register) at EX stage.
Pin name : bifw_mem_rd4 1 Registered : No

Pin class : data signal
Source — Destination : udp — bfw_ctrl
Bit size : 4-bit

Active : -
Pin Function: Address for 1% write port Rd (destination register) at MEM stage.
Pin name : bifw_mem_rd4 2 Registered : No

Pin class : data signal

Source — Destination : udp — bfw_ctrl
Bit size : 4-bit

Active : -

Pin Function: Address for 2™ write port Rd (destination register) at MEM stage.

Pin name : bifw_id_rn4 Registered : No
Pin class : data signal

Source — Destination : udp — bfw_ctrl

Bit size : 4-bit

Active : -

Pin Function: Address for Rn register at ID stage.

Pin name : bifw_id_rm4 Registered : No
Pin class : data signal

Source — Destination : udp — bfw_ctrl

Bit size : 4-bit

Active : -

Pin Function: Address for Rm register at ID stage.

Pin name : bifw_id_rs4 Registered : No
Pin class : data signal

Source — Destination : udp — bfw_ctrl

Bit size : 4-bit

Active : -

Pin Function: Address for Rs register at ID stage.

Pin name : bifw_ex_rn4 Registered : No
Pin class : data signal

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

73

Chapter 7
Data path of CRISC (Unit & Block)

Source — Destination : udp — bfw_ctrl

Bit size : 4-bit

Active : -

Pin Function: Address for Rn register at EX stage.

Pin name : bifw_ex_rm4 Registered : No
Pin class : data signal

Source — Destination : udp — bfw_ctrl

Bit size : 4-bit

Active : -

Pin Function: Address for Rm register at EX stage.

Pin name : bifw_ex_rs4 Registered : No
Pin class : data signal

Source — Destination : udp — bfw_ctrl

Bit size : 4-bit

Active : -

Pin Function: Address for Rs register at EX stage.

Table 7.16: input pins description of bfw_ctrl

Output

Pin name : bofw_rn32_ctrl Registered : Yes
Pin class : control signal

Source — Destination : bfw_ctrl — udp

Bit size : 2-bit

Active : -

Pin Function: Control signal that decide whether there is a forwarding for Rn register or
not.

Pin name : bofw_rm32_ctrl Registered : Yes

Pin class : control signal
Source — Destination : bfw_ctrl — udp
Bit size : 2-bit

Active : -

Pin Function: Control signal that decide whether there is forwarding for Rm register or
not.

Pin name : bofw_rs32_ctrl Registered : Yes

Pin class : control signal

Source — Destination : bfw_ctrl — udp

Bit size : 2-bit

Active : -

Pin Function: Control signal that decide whether there is forwarding for Rs register or
not.

Table 7.17: output pins description of bfw_ctrl

BIT (Hons) Computer Engineering 74
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7
Data path of CRISC (Unit & Block)

7.6 Interlock control (bitl_ctrl)

7.6.1 Functionality
To overcome the problem that data from memory is not ready yet for next instruction.
E.g. LDR RO, [R1] @load value to RO, EX

MOV R2, RO @copy RO to R2, ID
RO is not ready for R2 since it only reaches EX stage.

7.6.2 Block diagram

4 bitl_ctrl
7L> biitl id m4 boitl Id use pc en —-
74> biitl id rmé
—— 4= biitl_id_rs4 boitl 1d use ifid en ——
—4>biitl ex_rd4 boitl Id use_fush ex ———

biitl ex mem re

biitl id imm
biitl id sign or rot
biitl id instr 4th bit

Figure 7.20: block diagram of bitl_ctrl (interlock control)

Input

Pin name : biitl_id_rn4 Registered : No
Pin class : data signal

Source — Destination : udp — bitl_ctrl

Bit size : 4-bit

Active : -

Pin Function: Address for Rn register in ID stage.

Pin name : biitl_id_rm4 Registered : No
Pin class : data signal

Source — Destination : udp — bitl_ctrl

Bit size : 4-bit

Active : -

Pin Function: Address for Rm register in ID stage.

Pin name : biitl_id_rs4 Registered : No
Pin class : data signal

Source — Destination : udp — bitl_ctrl

Bit size : 4-bit

Active : -

Pin Function: Address for Rs register in ID stage.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

75

Chapter 7
Data path of CRISC (Unit & Block)

Pin name : biitl_ex_rd4 Registered : No
Pin class : data signal

Source — Destination : udp — bitl_ctrl

Bit size : 4-bit

Active : -
Pin Function: Address for Rd (destination register) register in EX stage.
Pin name : biitl_ex_mem_re Registered : No

Pin class : control signal

Source — Destination : udp — bitl_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Active high when there will be a data read from data memory else active
low.

Pin name : biitl_id_imm Registered : No

Pin class : control signal

Source — Destination : udp — bitl_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Active high if the 2" operand is an immediate value else active low.

Pin name : biitl_id_sign_or_rot Registered : No

Pin class : control signal

Source — Destination : udp — bitl_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Active high if the immediate will be sign extend to form a 32-bits data
else active low where the immediate undergo rotation extension.

Pin name : biitl_id_instr_4th_bit Registered : No

Pin class : control signal

Source — Destination : udp — bitl_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Active high when shift amount stored in Rs register else active low for
immediate shift amount

Table 7.18: input pins description of bitl_ctrl

Output

Pin name : boitl_Id_use_pc_en Registered : Yes
Pin class : control signal

Source — Destination : bitl_ctrl — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable pc else active low to hold the pc value.

Pin name : boitl_ld_use_ifid_en Registered : Yes
Pin class : control signal

Source — Destination : bitl_ctrl — udp

Bit size : 1-bit

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

76

Chapter 7

Data path of CRISC (Unit & Block)

Active : Active high
Pin Function: Active high to enable ifid pipeline register else active low to hold the ifid
pipeline register value.

Pin name : boitl_1d_use_flush_ex
Pin class : control signal

Source — Destination : bitl_ctrl — udp

Bit size : 1-bit
Active : Active high

Pin Function: Active high to flush idex pipeline register

operation.

Registered : Yes

else active low for normal

Table 7.19: output pins description of bitl_ctrl

7.6.3 Functional table

ex_rd ex_mem_re |id_imm id_sign_or_rot | id_instr_4th_bit | Lock
=id_rn 1’bl X X X Enable
=id_rm 1’bl 1'b0 X X Enable
=id_rs 1’bl 1'b 0 I'b0 1'bl Enable
!=id_rn X X X X Disable
'=id_rm

=id_rs

Lock boitl_ld_use_pc_en | boitl_ld_use_ifid_en | boitl_Id_use_flush_ex
Enable I'b0 I'b0 I'b1

Disable 1'b 1 1'b 1 1I'b 0

Table 7.20: functional table of bitl_ctrl

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

77

Chapter 8
Control path of CRISC (Unit & Block Level)

Chapter 8 — Control Path of CRISC (Unit & Block level)
8.1 Control Path unit (ucp)

8.1.1 Functionality

Generate several control signal based on the instruction passed in. The output is stated in

internal operation section (8.1.4).

8.1.2 Control Path’s Unit interface — (Block diagram)

ucp
» uicp_cond uocp _imm
fuicp_op uocp_sign or rot ——
4_) uicp_funct vocp rf wrl ——
uocp rf wr2 g

uicp_zero uocp_carry wr
uicp_carry uocp_Zero_ wr
uicp_ngtv uocp ngtv_wr
uicp_ovfs uocp ovfs wr
uocp_branch

uocp _cond_true

uocp_inva
uocp_invb

vocp_ctrl +>

uocp _index
uocp_word or byte
uocp_mem Wwr

uocp_mdata or alb

Figure 8.1: block diagram of control path
Input

Pin name : uicp_cond Registered : No

Pin class : data signal

Source — Destination : udp — ucp

Bit size : 4-bit

Active : -

Pin Function: mask that represent different condition where the instruction should
execute.

Pin name : uicp_op Registered : No
Pin class : data signal

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

78

Chapter 8
Control path of CRISC (Unit & Block Level)

Source — Destination : udp — ucp

Bit size : 2-bit

Active : -

Pin Function: represent instruction type.
2’b 00: Data-processing
2’b 01: Memory
2’b 10: Program flow

Pin name : uicp_funct Registered : No

Pin class : data signal

Source — Destination : udp — ucp

Bit size : 6-bit

Active : -

Pin Function: Carry the information of instruction for each instruction type. Such as
operand 2 is an immediate, operation to be carry out and etc.

Pin name : uicp_zero Registered : No
Pin class : data signal
Source — Destination : udp — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Latest zero flag that base on instruction that executing or executed in EX
stage.
1’b O: the result is non-zero.
1’b 1: the result is zero.

Pin name : uicp_carry Registered : No
Pin class : data signal
Source — Destination : udp — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Latest carry out flag that base on instruction that executing or executed
in EX stage.
I’b 0: no carry is produced.
1’b 1: carry is produced.

Pin name : uicp_ngtv Registered : No
Pin class : data signal
Source — Destination : udp — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Latest negative flag that base on instruction that executing or executed in
EX stage.
1’b 0: the result’s MSB is 1°b0.
1’b 1: the result’s MSB is 1’b1.

Pin name : uicp_ovfs Registered : No
Pin class : data signal

Source — Destination : udp — ucp

Bit size : 1-bit

Active : Active high

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 8
Control path of CRISC (Unit & Block Level)

Pin Function: Latest overflow flag that base on instruction that executing or executed
in EX stage.

1’b 0: no overflow occurs.

1’b 1: overflow occurs.

Table 8.1: Input pins description of ucp

Output

Pin name : uocp_imm Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high when the operand 2 is an immediate else active low
I’b 0 : non-immediate operand
1’b 1: immediate operand

Pin name : uocp_sign_or_rot Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high when operand 2 will undergoes sign extension else active
low for rotation extension
1’b 0 : rotation extension operand 2
1’b 1: sign extension operand 2

Pin name : uvocp_rf_wrl Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 1* write port else active low
1’b O : hold the data
1’b 1: write the data to 1*" write address

Pin name : uocp_rf_wr2 Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 2™ write port else active low
1’b O : hold the data
1’b 1: write the data to 2" write address

Pin name : uocp_carry_wr Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update carry flag else active low
1’b 0 : hold previous carry flag

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 8
Control path of CRISC (Unit & Block Level)

1’b 1: update carry flag

Pin name : uocp_zero_wr Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update zero flag else active low
1’b 0 : hold previous zero flag
1’b 1: update zero flag

Pin name : uocp_ngtv_wr Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update negative flag else active low
1’b 0 : hold previous negative flag
1’b 1: update negative flag

Pin name : uocp_ovfs_wr Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update overflow flag else active low
1’b 0 : hold previous overflow flag
1’b 1: update overflow flag

Pin name : uocp_branch Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to change PC to branch target address else active low for
normal increment of PC (+4)
1’b 0 : branch to target address
1’b 1: normal +4 increment of PC

Pin name : uocp_cond_true Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high if the condition meet else active low to skip the instruction
1’b 0 : skip the instruction
1’b 1: execute the instruction

Pin name : uocp_inva Registered : Yes
Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

BIT (Hons) Computer Engineering 81
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 8
Control path of CRISC (Unit & Block Level)

Active : Active high
Pin Function: Active high to invert 1% operand (from Rn) else active low to use
original operand

1’b 0 : use original data from Rn for ALB

1’b 1: invert the data from Rn before going through ALB

Pin name : uocp_invb Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 2" operand (from Rm or immediate) else active
low to use original operand
I’b O : use original data from Rm or immediate for ALB
1’b 1: invert the data from Rm or immediate before going through ALB

Pin name : uocp_ctrl Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 3-bit
Active : -
Pin Function: opcode for the ALB.
3’b 000 : addition
3’b 001: addition with carry
3’b 010: subtraction
3’b 011: subtraction with carry
3’b 100: and AND
3’b 101: or OR
3’b 110: exclusive or XOR
3’b 111: by pass operand b (from Rm)

Pin name : uocp_index Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: decide the address mode for memory read and load
I’b O : Post-index
1’b 1 : Pre-index

Pin name : uocp_word_or_byte Registered : Yes

Pin class : control signal

Source — Destination : ucp — udp

Bit size : 1-bit

Active : Active high

Pin Function: Active high for load or save a byte of data else active low for a word of
data
1'b 0 : word
1’b 1: byte

Pin name : uocp_mem_wr Registered : Yes

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 8
Control path of CRISC (Unit & Block Level)

Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to update memory else active low to hold the previous
memory data.
1'b 0 : hold previous memory data
1’b 1: update memory data

Pin name : uocp_mdata_or_alb Registered : Yes
Pin class : control signal
Source — Destination : ucp — udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high for write data from memory to register file else active low
for write data from ALB to register file.
1'b O : use data from ALB
1’b 1: use data from memory cache

Table 8.2: Output pins description of ucp

8.1.3 Block partitioning in ucp

ucp

bmain_ctrl binstr_ctrl

Figure 8.2: partitioning in ucp

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

83

Chapter 8
Control path of CRISC (Unit & Block Level)

8.1.4 Block level partition diagram

uocp_sign_or_rot

| biic_mem_wr

binstr_ctrl

biic_cmd boic_imm
biic_instr_type boic_rf wrl
boic_rf wr2
| biic_rf wr2 boic_zero wr
| biic_zero_wr boic_carry wr
| biic_carry_wr boic_ngtv_wr
| biic_ngtv_wr boic_ovfs wr

biic_ovfS_ wr
boic_inva
biic_inva boic_invb
boic_ctrl
biic_index boic_index

boic_mem_wr

biic word or byte boic_ word or byte

uocp_imm
uocp_rf_wr1
uocp_rf_wr2
uocp_zero_wr

uocp_carry_wr
uocp_ngtv_wr
uocp_ovfs_wr

uocp_inva
uocp_invb
uocp_ctrl

—
R
—— { uocp_word_or_byte

% uocp_mdata_or_alb

uicp_funct NN 8
B 2
: 5 . bmain_ctrl ' —
uicp_op bime_op bomce_sign or_rot —
bome_rf wr2 — PP
bomc zero wr — NP
bome_carry wr — NP
bome_ngtv_wr — NP
bomc_ovfs_wr —_
bomc_branch —
N—
bomc_inva J
bomc_index N——o
bomc_mem wr N—
bomc_word _or_byte NN—
bome mdata or alb
4 bomc_instr_type
uicp_cond bimc_cond
uicp_zero bimc_zero
|__uicp carry | bimc_carry
uicp_ngtv | bime_ngtv
uicp_ovfs | bime_ovfs bome_true

Figure 8.3: internal connection between block in ucp

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

84

Chapter 8
Control path of CRISC (Unit & Block Level)

8.2 Main Control Block (bmain_ctrl)

8.2.1 Functionality

Generate some control signals that are same within a single instruction type (e.g. Data-
processing instruction, Memory instruction).

8.2.2 Block diagram

bmain_ctrl
+’ bimc_op bome sign or rot ———
bomc rf wr2 >

bomc zero wr
bomc carry wr
bomc ngtv wr
bomc ovfs wr
bomc_branch

bomc inva

bomc_index
bomc mem wr
bomc word or byte

bomc mdata or alb

bomc_instr_type #»
+> bimec_cond

— {bimc_zero

1bimc_carry

|bimc_ngtv

|bime_ovfs bome_true

Figure 8.4: Block diagram of main control block

Input

Pin name : bimc_op Registered : No
Pin class : data signal

Source — Destination : ucp — bmain_ctrl

Bit size : 2-bit

Active : -

Pin Function: 27" and 26™ bit of the instruction, differentiate among the instruction
type

Pin name : bimc_cond Registered : No

Pin class : data signal
Source — Destination : ucp — bmain_ctrl

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 8
Control path of CRISC (Unit & Block Level)

Bit size : 4-bit

Active : -

Pin Function: mask that represent different condition where the instruction should
execute.

Pin name : bimc_zero Registered : No

Pin class : data signal

Source — Destination : ucp — bmain_ctrl

Bit size : 1-bit

Active : -

Pin Function: Latest zero flag that base on instruction that executing or executed in EX
stage.
1’b O: the result is non-zero.
1’b 1: the result is zero.

Pin name : uicp_carry Registered : No
Pin class : data signal
Source — Destination : ucp — bmain_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Latest carry out flag that base on instruction that executing or executed
in EX stage.
I’b 0: no carry is produced.
1’b 1: carry is produced.

Pin name : uicp_ngtv Registered : No
Pin class : data signal
Source — Destination : ucp — bmain_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Latest negative flag that base on instruction that executing or executed in
EX stage.
1’b O: the result’s MSB is 1°b0.
1’b 1: the result’s MSB is 1°b1.

Pin name : uicp_ovfs Registered : No
Pin class : data signal
Source — Destination : ucp — bmain_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Latest overflow flag that base on instruction that executing or executed
in EX stage.
1’b 0: no overflow occur.
1’b 1: overflow occur.

Table 8.7: Input pin description of main control block

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 8
Control path of CRISC (Unit & Block Level)

Output

Pin name : bomc_sign_or_rot Registered : Yes
Pin class : control signal
Source — Destination : bmain_ctrl — u_cp
Bit size : 1-bit
Active : Active high
Pin Function: Active high when operand 2 will undergoes sign extension else active
low for rotation extension
1’b O : rotation extension operand 2
1’b 1: sign extension operand 2

Pin name : bomc_rf_wr2 Registered : Yes
Pin class : control signal
Source — Destination : bmain_ctrl — binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 2™ write port else active low
I’b 0 : hold the data
1’b 1: write the data to 2" write address

Pin name : bomc_carry_wr Registered : Yes

Pin class : control signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update carry flag else active low
I’b 0 : hold previous carry flag
1’b 1: update carry flag

Pin name : bomc_zero_wr Registered : Yes

Pin class : control signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update zero flag else active low
I’b 0 : hold previous zero flag
1’b 1: update zero flag

Pin name : bomc_ngtv_wr Registered : Yes

Pin class : control signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update negative flag else active low
I’b 0 : hold previous negative flag
1’b 1: update negative flag

Pin name : bomc_ovfs_wr Registered : Yes
Pin class : control signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

BIT (Hons) Computer Engineering 87
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 8
Control path of CRISC (Unit & Block Level)

Active : Active high

Pin Function: Active high to enable update overflow flag else active low
1’b 0 : hold previous overflow flag
1’b 1: update overflow flag

Pin name : bomc_branch Registered : Yes

Pin class : control signal

Source — Destination : bmain_ctrl — ucp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to change PC to branch target address else active low for
normal increment of PC (+4)
1’b 0 : branch to target address
1’b 1: normal +4 increment of PC

Pin name : uocp_inva Registered : Yes
Pin class : control signal
Source — Destination : bmain_ctrl — binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 1*' operand (from Rn) else active low to use
original operand
1’b 0 : use original data from Rn for ALB
1’b 1: invert the data from Rn before going through ALB

Pin name : uocp_index Registered : Yes

Pin class : control signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : -

Pin Function: decide the address mode for memory read and load
1’b 0 : Post-index
1’b 1 : Pre-index

Pin name : uocp_mem_wr Registered : Yes
Pin class : control signal
Source — Destination : bmain_ctrl — binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high to update memory else active low to hold the previous
memory data.
1’b 0 : hold previous memory data
1’b 1: update memory data

Pin name : uocp_word_or_byte Registered : Yes

Pin class : control signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Active high for load or save a byte of data else active low for a word of
data

BIT (Hons) Computer Engineering 88
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 8
Control path of CRISC (Unit & Block Level)

1’b 0 : word
1’b 1: byte

Pin name : uocp_mdata_or_alb Registered : Yes
Pin class : control signal
Source — Destination : bmain_ctrl — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high for write data from memory to register file else active low
for write data from ALB to register file.
1’b O : use data from ALB
1’b 1: use data from memory cache

Pin name : bomc_instr_type Registered : Yes
Pin class : control signal
Source — Destination : bmain_ctrl — binstr_ctrl
Bit size : 2-bit
Active : -
Pin Function: Represent the instruction type based on the bimc_op
2’b 00 : data-processing instruction
2’b 01 : memory instruction
2’b 10 : program flow instruction

Pin name : uocp_cond_true Registered : Yes

Pin class : control signal

Source — Destination : bmain_ctrl — ucp

Bit size : 1-bit

Active : Active high

Pin Function: Active high if the condition meet else active low to skip the instruction
I’b 0 : skip the instruction
1’b 1: execute the instruction

Table 8.8: Output pin description of main control blo

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

89

Chapter 8
Control path of CRISC (Unit & Block Level)

8.3 Instruction Control Block (binstr_ctrl)

8.3.1 Functionality
Generate the control signals that might be different within a sing type of instruction type.

8.3.2 Block diagram

binstr_ctrl
Sl biic_cmd boic_imm
+ 1 biic_instr_type boic_rf wrl
boic_rf wr2
| biic_rf wr2 boic_zero wr
|biic_zero_wr boic_carry wr
|biic_carry wr boic_ngtv wr
| biic_ngtv_wr boic_ovfs wr
{ biic_oviS wr
boic_inva
1 biic_inva boic_invb ————
boic_ctrl #»
1biic_index boic_index
|biic_ mem wr boic_mem wr
1 biic_word _or byte boic_word or byte

Figure 8.5: block diagram of binstr_ctrl

Input

Pin name : biic_cmd Registered : No

Pin class : data signal

Source — Destination : ucp — binstr_ctrl

Bit size : 6-bit

Active : -

Pin Function: Carry the information of instruction for each instruction type. Such as
operand 2 is an immediate, operation to be carry out and etc.

Pin name : biic_instr_type Registered : No

Pin class : data signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 2-bit

Active : -

Pin Function: Intruction type of the current instruction generated by bmain_ctrl
2’b 00 : data processing instruction
2’b 01 : memory instruction
2’b 10 : program flow instruction

Pin name : biic_rf wr2 Registered : No
Pin class : data signal

BIT (Hons) Computer Engineering 90
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 8
Control path of CRISC (Unit & Block Level)

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Generated by bmain_ctrl, the value might change based on
instruction type

Pin name : biic_zero_wr Registered : No

Pin class : data signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Generated by bmain_ctrl, the value might change based on
instruction type

Pin name : biic_carry_wr Registered : No

Pin class : data signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Generated by bmain_ctrl, the value might change based on
instruction type

Pin name : biic_ngtv_wr Registered : No

Pin class : data signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Generated by bmain_ctrl, the value might change based on
instruction type

Pin name : biic_ovfs_wr Registered : No

Pin class : data signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Generated by bmain_ctrl, the value might change based on
instruction type

Pin name : biic_inva Registered : No

Pin class : data signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Generated by bmain_ctrl, the value might change based on
instruction type

Pin name : biic_index Registered : No

Pin class : data signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Generated by bmain_ctrl, the value might change based on

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

91

Chapter 8
Control path of CRISC (Unit & Block Level)

instruction type

Pin name : biic_mem_wr Registered : No

Pin class : data signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Generated by bmain_ctrl, the value might change based on
instruction type

Pin name : biic_word_or_byte Registered : No

Pin class : data signal

Source — Destination : bmain_ctrl — binstr_ctrl

Bit size : 1-bit

Active : Active high

Pin Function: Generated by bmain_ctrl, the value might change based on
instruction type

Table 8.11: input pins description of binstr_ctrl

Output

Pin name : boic_imm Registered : Yes

Pin class : data signal

Source — Destination : binstr_ctrl — ucp

Bit size : 1-bit

Active : Active high

Pin Function: Active high when the operand 2 is an immediate else active low
I’b 0 : non-immediate operand
1’b 1: immediate operand

Pin name : boic_rf_wrl Registered : Yes
Pin class : data signal
Source — Destination : binstr_ctrl — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 1% write port else active low
I’b 0 : hold the data
1’b 1: write the data to 1*" write address

Pin name : boic_rf_wr2 Registered : Yes
Pin class : data signal
Source — Destination : binstr_ctrl — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 2™ write port else active low
I’b 0 : hold the data
1’b 1: write the data to 2" write address

Pin name : boic_carry_wr Registered : Yes
Pin class : data signal

Source — Destination : binstr_ctrl — ucp

Bit size : 1-bit

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

92

Chapter 8
Control path of CRISC (Unit & Block Level)

Active : Active high

Pin Function: Active high to enable update carry flag else active low
I’b 0 : hold previous carry flag
1’b 1: update carry flag

Pin name : boic_zero_wr Registered : Yes

Pin class : data signal

Source — Destination : binstr_ctrl — ucp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update zero flag else active low
I’b 0 : hold previous zero flag
1’b 1: update zero flag

Pin name : boic_ngtv_wr Registered : Yes

Pin class : data signal

Source — Destination : binstr_ctrl — ucp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update negative flag else active low
I’b 0 : hold previous negative flag
1’b 1: update negative flag

Pin name : boic_ovfs_wr Registered : Yes

Pin class : data signal

Source — Destination : binstr_ctrl — ucp

Bit size : 1-bit

Active : Active high

Pin Function: Active high to enable update overflow flag else active low
1’b 0 : hold previous overflow flag
1’b 1: update overflow flag

Pin name : boic_inva Registered : Yes
Pin class : data signal
Source — Destination : binstr_ctrl — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 1*' operand (from Rn) else active low to use
original operand
1’b 0 : use original data from Rn for ALB
1’b 1: invert the data from Rn before going through ALB

Pin name : boic_invb Registered : Yes
Pin class : data signal
Source — Destination : binstr_ctrl — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 2" operand (from Rm or immediate) else active
low to use original operand
1’b O : use original data from Rm or immediate for ALB
1’b 1: invert the data from Rm or immediate before going through ALB

BIT (Hons) Computer Engineering 93
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 8
Control path of CRISC (Unit & Block Level)

Pin name : boic_ctrl Registered : Yes
Pin class : data signal
Source — Destination : binstr_ctrl — ucp
Bit size : 3-bit
Active : -
Pin Function: opcode for the ALB.
3’b 000 : addition
3’b 001: addition with carry
3’b 010: subtraction
3’b 011: subtraction with carry
3’b 100: and AND
3’b 101: or OR
3’b 110: exclusive or XOR
3’b 111: by pass operand b (from Rm)

Pin name : boic_index Registered : Yes

Pin class : data signal

Source — Destination : binstr_ctrl — ucp

Bit size : 1-bit

Active : Active high

Pin Function: decide the address mode for memory read and load
1’b O : Post-index
1'b 1 : Pre-index

Pin name : boic_mem_wr Registered : Yes
Pin class : data signal
Source — Destination : binstr_ctrl — ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to update memory else active low to hold the previous
memory data.
1’b 0 : hold previous memory data
1’b 1: update memory data

Pin name : boic_word_or_byte Registered : Yes

Pin class : data signal

Source — Destination : binstr_ctrl — ucp

Bit size : 1-bit

Active : Active high

Pin Function: Active high for load or save a byte of data else active low for a word of
data
I’b 0 : word
1’b 1: byte

Table 8.12: Output pins description of binstr_ctrl

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 9
Memory Cache unit

Chapter 9 — Memory Cache unit (ucache)

9.1 Functionality
Data segment and Text segment in memory map.

9.2 Block diagram

ucache
32 . 32
2 uicm_addr uocm rd data >

uicm wr_data

——{uicm_wr
———uicm _slw
———{uicm sl
— Juicm sl
——{uicm_ck

Figure 9.1: block diagram of ucache
Input

Pin name : uicm_addr Registered : No
Pin class : data signal

Source — Destination : crisc_pipeline — ucache

Bit size : 32-bit

Active : -

Pin Function: Address for data write/read to ucache.

Pin name : uicm_wr_data Registered : No
Pin class : data signal

Source — Destination : crisc_pipeline — ucache

Bit size : 32-bit

Active : -

Pin Function: Data to write to ucache.

Pin name : uicm_wr Registered : No
Pin class : control signal
Source — Destination : udp — ucache
Bit size : 1-bit
Active : Active high
Pin Function: 1’b0: hold the content of ucache
1°’b1: write the uicm_wr_data to the ucache with uicm_addr as address.

Pin name : uicm_slw Registered : No
Pin class : control signal
Source — Destination : udp — ucache
Bit size : 1-bit
Active : Active high
Pin Function: 1’b0: data operate in other unit (non-word).
1’b1: data operate in word (unit).

Pin name : uicm_slh Registered : No
Pin class : control signal

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

95

Chapter 9
Memory Cache unit

Source — Destination : udp — ucache

Bit size : 1-bit

Active : Active high

Pin Function: 1’b0: data operate in other unit (non-half-word).
1’b1: data operate in half-word (unit).

Pin name : uicm_slb Registered : No
Pin class : control signal
Source — Destination : udp — ucache
Bit size : 1-bit
Active : Active high
Pin Function: 1’b0: data operate in other unit (non-byte).
1’b1: data operate in byte (unit).

Pin name : uicm_clk Registered : No
Pin class : clock signal

Source — Destination : external — ucache

Bit size : 1-bit

Active : Rising edge

Pin Function: Provide a periodic signal for synchronize purpose.

Table 9.1: input pin description of ucache

Output

Pin name : uocm_rd_data Registered : Yes
Pin class : data signal

Source — Destination : ucache — udp

Bit size : 32-bit

Active : -

Pin Function: data read from ucache with uicm_addr as the address.

Table 9.2: Output pin description of ucache

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

96

Chapter 10
UART unit

Chapter 10 — UART unit

A developed UART unit (uuart) is connected with core (data-path and control path).
However, due to the reason that exception handler hasn’t develop yet, the functionalities
of UART used in this project is very limited, the purpose of connect the UART is to show

the simple interconnection of I/O with the core.

10.1 UART address

In this project, the address of UART is set as 32°’h C000_0004 ~ 32’h C000_0010 which
in I/O segment of memory map.

Address UART’s register uiua_wb_sel [3:0]

32°h C000_0004 Configuration register 4’b 0001
(UARTCF)

32°h C000_0008 Transmitter fifo register 4’b 0100

32’h C000_000C Receiver fifo register 4’b 1000

32°h C000_0010 Status register (UARTSF) | 4’b 0010

Table 10.1: Address for UART registers and FIFO

10.2 Operating procedure

In this project, only focus on the transmission of data by UART. Refer to previous
developed UART, before start a transmission UART will send a Request-To-Send (RTS)
signal to external modern and waiting for a Clear-to-Send (CTS) Signal from the external
modern. After UART detect the CTS signal, the data will transmit to the external modern

bit-by-bit in a configurable baud rate.

txtiming jApEpEpEgE
laa 07 77 §TARY DO D]l D7 PARESTOR
RTS |
cTS

Figure 10.1: Transmission of data by UART
The 8-bit data (d [7:0]) will transmit in a format of {1°b0, d[0], d[1], ..., d[7], parity bit,

I’b1} as shown in the diagram below.

BIT (Hons) Computer Engineering 97
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 10
UART unit

Start bit Word data Parity Stop bit
logic 0 | bit logic1
T | (optignah |

_M Do D1 D2 D3 D4 D5 D6 D7 FB W

Figure 10.2: UART data transfer protocol

start bil 1st data bit 2nd data bit

rx_data [_
']] & L woa [] [a [
betoto [[TTTTTTTT{TTTTITITTTTTL T
Y A
5 ticks 10 ticks 10 ticks
* Read data at these points

g
\ =] %
—— -
—
= #
—
]
—— -

..;

Figure 10.3: UART data receiving protocol

The data receiving will be on the same baud rate. At the rising edge, the data might be not
ready (transition might occur) to read. Hence, to avoid read wrong data (at the rising
edge) each receiving data will be read approximate at the middle of the clock frame. The
1* clock frame, the receiving data will read after 5 periods of bclkx 10, and 10 periods for
following receiving data until stop bit. The alternative way will be read the data at falling
edge of the baud rate, since the falling edge is at the middle of a clock period (if duty
cycle equal to 50%) where the data should be ready.

BIT (Hons) Computer Engineering 98
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 10
UART unit

10.3 uuart functionalities and pin description

e Serialize 8-bit data.
¢ Transmit the serialized data
e Receive serial data and parallelize to 8-bit.

e Check correctness of data.

UUART
—|uua_RxD woua TxD ——
—— uwa_CTS uoua RTS |——
—|uiva_ UARTIE uwoua [RQ —
32

— uiva_wb_din uoua_wb_dout F—<9
#» uiua_wb_sel uoua_wb_ack ———

juiua_wb_we

{uiua_wb_stb

1uiua_wb_clk

uiua wb_rst

Figure 10.4: Block diagram for uuart

Input

Pin name: uiva_ RxD Registered: No
Pin class: data

Source — Destination: external device — uuart

Bit size: 1-bit

Active: -
Pin Function: Received data from external device through UART port.
Pin name: uiva_CTS Registered: No

Pin class: status signal

Source — Destination: CPU — uuart

Bit size: 1-bit

Active: High

Pin Function: Allow UART to transmit data when 1°b1.

Pin name: uiva_ UARTIE Registered: No
Pin class: control signal

Source — Destination: CPU — uuart

Bit size: 1-bit

Active: High

Pin Function: Interrupt enable

Pin name: uiva_wb_din Registered: No

BIT (Hons) Computer Engineering 99
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 10
UART unit

Pin class: data

Source — Destination: CPU — uuart

Bit size: 8-bits

Active: -

Pin Function: Data to write in UART’s registers from CPU.

Pin name: uiva_wb_sel Registered: No
Pin class: control signal
Source — Destination: Address decoder — uuart
Bit size: 4-bits
Active: -
Pin Function: Select the register in UART to write.
4’b 0001: control register UARTCR
4’b 0010: status register UARTSR
4’b 0100: transmitter FIFO register push enable tx_fifo_push_en
4’b 1000: receiver FIFO register pop enable rx_fifo_pop_en

Pin name: uivua_wb_we Registered: No
Pin class: control signal

Source — Destination: CPU — uuart

Bit size: 1-bit

Active: High

Pin Function: Allow to data write the register depend on uiua_wb_sel.

Pin name: uiua_wb_stb Registered: No
Pin class: status signal

Source — Destination: CPU — uuart

Bit size: 1-bit

Active: High

Pin Function:

Pin name: uiua_wb_clk Registered: No
Pin class: clock signal

Source — Destination: System — uuart

Bit size: 1-bit

Active: Rising edge

Pin Function: Periodic signal for synchronize purpose

Pin name: uiua_wb_rst Registered: No
Pin class: control signal

Source — Destination: System — uuart

Bit size: 1-bit

Active: High

Pin Function: Reset the UART

Table 10.2: Input pins description for uuart

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

100

Chapter 10
UART unit

Output

Pin name: uoua_TxD Registered: Yes
Pin class: data

Source — Destination: uuart — external device

Bit size: 1-bit

Active: -

Pin function: Transmit content in FIFO of transmitter from UART to external device

Pin name: uoua_RTS Registered: Yes
Pin class: status signal

Source — Destination: uuart — external device

Bit size: 1-bit

Active: high

Pin function: active high indicate UART request to send data.

Pin name: uoua_IRQ Registered: Yes
Pin class: status signal

Source — Destination: uuart — CPU

Bit size: 1-bit

Active: high

Pin Function: error interrupt signal

Pin name: uoua_wb_dout Registered: Yes
Pin class: data

Source — Destination: uuart — CPU

Bit size: 8-bits

Active: -

Pin Function: data from UART to CPU register

Pin name: uoua_wb_ack Registered: Yes
Pin class: status signal

Source — Destination: uuart — CPU

Bit size: 1-bit

Active: high

Pin Function: acknowledgement to CPU

Table 10.3: Outputs pin description for uuart.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

101

Chapter 10
UART unit

Configure Register

The configure register is used to decide interrupt, parity and baud rate.

Bit 7 (UARTEN): UART enable

Bit 6 (RXCIE): Receive Error interrupt enable
Bit 5 (TXEIE): Transmit Error interrupt enable
Bit 4 (PRTEN): Parity Bit Enable

Bit 3 (PRT): Parity Bit

Bit [2:0] (BAUD): Baud rate select

Status Register

Status register will represent the status of received data.

Bit 7 (RXC): Receive status

Bit 6 (TXE): Transmission status
Bit 5 (FE): Framing Error

Bit 4 (PE): Parity Error

Bit [3:1]: Not used

Bit 0 (RxFIM):

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

102

Chapter 10
UART unit

10.4 belkctr functionalities and pins description
e QGenerate different baud rate. (8)

¢ Enable transmitter (at rising edge) and receive block (at falling edge).

belketr
%» bicc select baud bocc uva ck ——
——|bicc_clk_div rate boce rx en ——
bocc tx en >
——{bicc_sysclk
bicc_reset

Figure 10.6: block diagram for bclkctr
Input pins
Pin name: bicc_select_baud Register: No

Pin class: control signal

Source — Destination: UARTCR — bclkctr
Bit size: 3-bits

Active: -

Pin Function: Select baud rate

Pin name: bicc_clk_div_rate Register: No

Pin class: control signal

Source — Destination: fixed to 4’b 0001

Bit size: 4-bits

Active: -

Pin Function: the value used to divide the system clock (in this case fixed to 4’b 0001 to
divide by 2)

Pin name: bicc_sysclk Register: No
Pin class: clock signal

Source — Destination: System — bclkctr

Bit size: 1-bit

Active: -
Pin Function: Provide periodic signal for synchronize purpose.
Pin name: bicc_reset Register: No

Pin class: control signal

Source — Destination: System — bclkctr

Bit size: 1-bit

Active: High

Pin Function: Reset the system to initial condition.

Table 10.4: Inputs pin description for bclkctr

BIT (Hons) Computer Engineering 103
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 10
UART unit

Output pins

Pin name: bocc_ua_clk

Pin class: clock signal

Source — Destination: bclketr — btx/brx
Bit size: 1-bit

Active: -

Pin Function: divided clock

Register: Yes

Pin name: bocc_rx_en

Pin class: control signal

Source — Destination: bclketr — brx

Bit size: 1-bit

Active: High

Pin Function: Allow receiver block to receive data

Register: Yes

Pin name: bocc_tx_en

Pin class: control signal

Source — Destination: bclketr — btx

Bit size: 1-bit

Active: High

Pin Function: Allow transmitter block to transmit data

Register: Yes

Table 10.5: Output pins description for bclkctr

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

104

Chapter 10
UART unit

10.5 brx functionalities and pins description

e Receive a data stream from external device.
e Parallelize the data to 8-bit data.

e (Check framing error and parity error.

brx
— birx_rx data borx data out ﬁsh}
birx rx_en borx rxc -
—— | birx_parity en borx parity err ———
——{ birx_parity bit
borx framing err
——{ birx_fifo_pop_en
borx fifo empty ———
—— | birx_sysck borx fifo full ————
birx ua clock
birx reset
Figure 10.8: block diagram for brx
Input pins
Pin name: birx_rx_data Register: No

Pin class: data signal

Source — Destination: external device — brx
Bit size: 1-bit

Active: -

Pin Function: Data from external device.

Pin name: birx_rx_en Register: No
Pin class: control signal

Source — Destination: bclketr — brx

Bit size: 1-bit

Active: High

Pin Function: Allow receiver block receive data.

Pin name: birx_parity_en Register: No

Pin class: control signal

Source — Destination: UARTCR — brx

Bit size: 1-bit

Active: High

Pin Function: Inform receiver block that parity bit is enable (need to check parity bit).

Pin name: birx_parity_bit Register: No
Pin class: data signal
Source — Destination: UARTCR — brx

BIT (Hons) Computer Engineering 105
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 10
UART unit

Bit size: 1-bit
Active: -
Pin Function: Expected parity bit.

Pin name: birx_fifo_pop_en Register: No
Pin class: control signal

Source — Destination: uuart — brx

Bit size: 1-bit

Active: High

Pin Function: request the data stored in FIFO to borx_data_out.

Pin name: birx_sysclk Register: No
Pin class: clock signal

Source — Destination: System — brx

Bit size: 1-bit

Active: -
Pin Function: Provide a periodic signal for synchronize purpose.
Pin name: birx_ua_clk Register: No

Pin class: clock signal

Source — Destination: bclketr — brx
Bit size: 1-bit

Active: -

Pin Function: divided clock

Pin name: birx_reset Register: No
Pin class: control signal

Source — Destination: System — brx

Bit size: 1-bit

Active: High

Pin Function: Reset the receiver block to initial condition.

Table 10.6: Input pins for brx

Output pins

Pin name: borx_data_out Register: Yes
Pin class: data signal

Source — Destination: brx — CPU

Bit size: 8-bit

Active: -

Pin Function: Data received.

Pin name: borx_rxc Register: Yes
Pin class: status signal

Source — Destination: brx — UARTSR

Bit size: 1 bit

Active: High

Pin Function: receive status

Pin name: borx_parity_err Register: Yes
Pin class: status signal

Source — Destination: brx — UARTSR

Bit size: 1 bit

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

106

Chapter 10
UART unit

Active: High
Pin Function: Indicate the received data have parity error while 1°b1.

Pin name: borx_framing_err Register: Yes
Pin class: status signal

Source — Destination: brx — UARTSR

Bit size: 1-bit

Active: High

Pin Function: framing error at received data.

Pin name: borx_fifo_empty Register: Yes
Pin class: status signal

Source — Destination: brx — btx

Bit size: 1-bit

Active: High

Pin Function: Indicate the FIFO in receiver block is empty while 1°b1.

Pin name: borx_fifo_full Register: Yes
Pin class: status signal

Source — Destination: brx — btx

Bit size: 1-bit

Active: High

Pin Function: Indicate the FIFO in receiver block is full while 1’b1.

Table 10.7: Output pins for brx

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

107

Chapter 10
UART unit

10.6 btx functionalities and pins description

e Serialize the 8-bit data to a stream of data.
® Append start bit (1’b 0), serialized data, parity bit and stop bit (1’b 1) together.

¢ Transmit ready data to receiver of the external device.

btx

bitx tx cts botx_rts
bitx tx en

botx tx data
— bitx_parity en
— | bitx_parity bit

——<P bitx _fifo data_in botx_fifo full ———
— | bitx_fifo_push en botx_fifo empty ——

—— bitx_rx_fifo_full
bitx vart en

— | bitx_sysclk
bitx uva clock
bitx reset

Figure 10.10: block diagram for btx
Input pins

Pin name: bitx_tx_cts Register: No

Pin class: status signal

Source — Destination: — btx

Bit size: 1-bit

Active: High

Pin Function: indicate the external device ready to receive data (allow to transmit) while
1'bl.

Pin name: bitx_tx_en Register: No
Pin class: control signal

Source — Destination: bclketr — btx

Bit size: 1-bit

Active: High

Pin Function: Allow the transmitter block to transmit data.

Pin name: bitx_parity_en Register: No
Pin class: control signal
Source — Destination: UARTCR — btx

BIT (Hons) Computer Engineering 108
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 10
UART unit

Bit size: 1-bit
Active: High
Pin Function: Parity bit need to be generated while 1°bl1.

Pin name: bitx_parity_bit Register: No
Pin class: data signal

Source — Destination: UARTCR — btx

Bit size: 1-bit

Active: High

Pin Function: Parity bit value to be transmit.

Pin name: bitx_fifo_data_in Register: No
Pin class: data signal

Source — Destination: uuart — btx

Bit size: 8-bit

Active: -

Pin Function: Data to store in FIFO before transmission.

Pin name: bitx_fifo_push_en Register: No
Pin class: control signal

Source — Destination: uuart — btx

Bit size: 1-bit

Active: High

Pin Function: Store the data to FIFO while 1°b1.

Pin name: bitx_rx_fifo_full Register: No
Pin class: status signal

Source — Destination: brx — btx

Bit size: 1-bit

Active: High

Pin Function: Indicate the FIFO in receiver block is full.

Pin name: bitx_sysclk Register: No
Pin class: clock signal

Source — Destination: System — btx

Bit size: 1-bit

Active: -
Pin Function: Provide a periodic signal for synchronize purpose.
Pin name: bitx_ua_clk Register: No

Pin class: clock signal

Source — Destination: bclketr — btx
Bit size: 1-bit

Active: -

Pin Function:

Pin name: bitx_reset Register: No
Pin class: control signal

Source — Destination: System — btx

Bit size: 1-bit

Active: High

Pin Function: Reset the transmitter block to initial condition.

Table 10.8: Inputs pin description for btx

BIT (Hons) Computer Engineering 109
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 10
UART unit

Output pins

Pin name: botx_rts Register: Yes
Pin class: status signal

Source — Destination: btx — external device

Bit size: 1-bit

Active: High

Pin Function: Request to send data from transmitter block.

Pin name: botx_tx_data Register: Yes
Pin class: data signal

Source — Destination: btx — external device

But size: 1-bit

Active: -

Pin Function: Data stream transmit.

Pin name: botx_fifo_full Register: Yes
Pin class: status signal

Source — Destination: btx — none

Bit size: 1-bit

Active: High

Pin Function: Indicate the FIFO in transmitter block is full while 1°b1.

Pin name: botx_fifo_empty Register: Yes
Pin class: status signal

Source — Destination: btx — none

Bit size: 1-bit

Active: High

Pin Function: Indicate the FIFO in transmitter block is empty while 1°bl1.

Table 10.9: Output pins description for btx

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

110

Chapter 10
UART unit

10.7 UART address decoder
The UART address decoder will only work on 2 address which is 32°h C0O00_0008 for
transmitter FIFO and C000_0004 UART for configuration register since only UART is

used for transmission of data only. Figure below show the combinational logic of the

decoder.
-~~~ T T TSt TS TTTTTTTTTTTTT T T T T T T T T T e T e T e T T T T 1
Datapath i i
memory \ =32 C000_ |
address \ 0004 |
1 1
write data | i
1
! =32 C000_ i
1 1
! PN—lo \
1
1
! 4'b 0p01—11 1
Control path ' ! ; b
. | 4'b 0100—{0 1
write ! 1
I 1
1
| 4b 0000—— !
: K I
1 N > 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Figure 10.12: Circuit for CPU-UART address decoder

BIT (Hons) Computer Engineering 111
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 11
Verification Specification

Chapter 11 — Verification Specification

11.1 Verification for crisc

Verification is carrying out after the crisc_pipelineverilog module had designed. The
verification is done with load a text file (with .arm extension) to the Text segment
memory cache, since this project only include the user instruction (Arithmetic,
logical, memory, and program flow).

Verilog code:

$readmembh ("test_instr.arm",tb_crisc_pipeline. DUT.utext_seg.ucm_r_memory);

OxFFFF FFFC
Operating System & 1/0
0xC000 0000
OxBEFF FAES8 Stack — 5P
!
Dynamic Data
1
Heap «—SL
Global Data
SB
0x0400 0000
Text = =
0x0000 8000 Program
code
Exception handlers
0x0000 0000 «—PC

Figure 11.1: Memory map & program code segment
The correctness of the Verilog module is confirmed with the comparison of Register
file and data memory of Verilog module with ARMSim (ARM assembly instruction

simulator).

BIT (Hons) Computer Engineering 112
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 11
Verification Specification

11.2 Test Program for RISC 32

The following test program in Table 11.1 is a program which consists most of the
instruction to test crisc_pipeline. This program is a hazard and data dependency free
program. When verifying using this program, the outcome of crisc_pipelinemust be
the same with the expected output stated. The main purpose of this program is to
ensure the correctness of each instruction which involve data-path unit (udp) and
control unit (ucp).

The test program in Table 11.2 is a recursive program which is full of data
dependency. The NOP is not inserted in the program to test the Data forwarding
(bfw_ctrl) and Interlock control (bitl_ctrl). The main purpose is to make sure the

program is free from data hazard.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

113

Chapter 11
Verification Specification

11.2.1 Test program 1

Each instruction of the test program 1 is not related to each other, therefore the register file and data memory should be observe after each

instruction. The correctness is verified with ARMSim.

data_processing

ADD
ADD
ADD
ADD
CMP
ADC
ADC
ADC

ADC
SUB
SUB
SUB

SUB
RSB
RSB
RSB

RSB
SBCS
SBC
SBCS

RO, RO, #16
R1,R1,R0O

R2,R1, RO, LSL #2
R3,R1, RO, LSL RO
RO, R4

R4, R4, #16

RS, RS, R4

R6, RS, R4, LSL #1

R7,RS5, R4, LSL R4
R1,R1,#16

RO, R4, RO

R2,R2, RO, LSL #6

R3,R3,R7,LSR RO
R4, R4, RS
R5, R5, R4
R6, R6, R2, LSL #2

R7,R7,R6, LSL R6
RO, RO, #0
R1, R4, R1
R2,R2, R4, LSL #4

RO=16

R1=16

R2=16+16*4 =80

R3 =16 + 16*2716 = 1048592
Carry = 1

R4=16+1=17
R5=17+1=18
R6=18+17%*2+1=53
R7=18+17%¥2M"7+ 1=
2228243

R1=16-16=0
RO=17-16=1
R2=80-1%¥2"6=16

R3 =1048592 - 1114121 =-
65529

R4=18-17=1
R5=1-18=-17
R6=16*2"2-53=11
R7 =22528 - 2228243 = -
2205715

RO=1-0-11=1;C=1
R1=1-0-11=1
R2=16-1*27M-10=-1;C=1

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

114

Chapter 11
Verification Specification

SBC
TST
TST
TEQ
TEQ
AND
EOR
ORR
BIC
CMP
CMN
MOV
MOV
MVN
MVN
MOV
MOV
MOV
MOV
MOV
ORR

memory: STR
STR
STR
STR

R3,R2, R3, ASR R6
R3, #0X{f
R3,R1

R1, #0xFF

R1, R3, LSL #26
R4, R7, #OxFF
RS, R4, #0xFO
R6, R4, #0xF0
R7, R4, #0xFO
R7,R7

R7,R6

R8, R7

RS, #0xFO

R9, R7

RO, #0xFO

R8, R9, LSL R7
R8, R9, LSR #8
R8, R9, ASR #3
R8, R9, ROR #9
R2, RO, LSL #28
R2,R2, RO, LSL #15

RS, [R2]
R, [R2, #4]
RO, [R2], #8
RS, [R2, #4]!

R3 = OxFFFF FFFF - OxFFFF

FFFF =0
N=0,Z=0,C=1
N=0,Z=1,C=1
N=0,Z=0,C=1
N=0,Z=0,C=0
R4 = 0xED

R5 =0x1D

R6 = 0xFD

R7 =0x0D

N=0,2=1,C=1,V=0
N=0,2=0,C=0,V=0

R8 = 0x0D

R8 = 0xF0

R9 = OxFFFF FFF2
R9 = OXFFFF FFOF
R8 = 0XFFE1 E000
R8 = 0x00FF FFFF
R8 = OXFFFF FFE1
R8 = 0x87FF FFFF
R2 = 0x1000 0000
R2 = 0X1000 8000

#(-8+16=8) -> mem[2]

#(-84+20=8) -> mem|[3]

Dmem[0x1000 8000] = 0x87FF FFFF

Dmem[0x1000 8004] = OxFFFF FFOF

Dmem[0x1000 8000] = 0X0000 0001; R2 = 0x1000 8008
R2 = 0x1000 800C; Dmem[0x1000 800C] = 0x87FF FFFF

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

115

Chapter 11
Verification Specification

LDR
LDR
LDR

ADD

LDR

BL
here: B

branch: MOV
Nop
Nop
Nop
Nop

end: MOV

RO, [R2], #-4
RO, [R2, #-4]
RO, [R2, #-8]!

RO, RO, #-1
RO, [RO, R2]!

branch
end

PC,LR

RO, #0

RO = 0x87FF FFFF; R2 = 0x1000 8008

RO = Dmem[0x1000 8000] = OxFFFF FFOF

R2 = 0x1000 8000; RO = 0x0000 0001

below is for test forwarding

RO = 0x0000 0000

RO = 0X1000 8000; 2nd write port higher priority
LR = here

PC = LR, similar to jump in
MIPS

RO = 0; indicate end of program

BIT (Hons) Computer Engineering

Table 10.1 Test program 1 (without data dependency, interlock and hazard.)

116

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 11
Verification Specification

11.2.2 Verification for test program 1 for RISC32

For the verification, we need to track the value of register file and memory segment
from time to time in order to make sure the correctness.

For Data Processing Instruction (Note-the result is arranged in time increasing order):

a0aaooan

aoaoooaoal
Qoaooooz
Q0000003
Qoaoooog
Q0000005
Q0000004
aagaooa?
Qooaoooos
a0gaooo9
Q000000a
Q0000000
Q000000
Qoaooood
a0a0aaoe

00000010
0a0oaao1o
Qo0ooos0
00100010
Qoooooll
oaoooolz
00000035
00220013
Qooaoaooo
0000000
Qaoaaaan
Qooooooo
aaaaaoaan
Qooooooo
0aaaaoan

Figure 11.2: Test program 1 result (1)

Register address
Value stored in register (in hexadecimal)

Run from instruction
ADD RO, RO, #16

to
ADCR7, R5, R4, LSL R4

aogaoaoa
0a0aoaol
aaoaoaoz
00oa0aos
ao0ooa04
0a0a0a0s
00000004
aaaaaaa’y
ao0ooaosg
aaoaoaog
0000000a
0000000k
00000a0c
aaoaoaod
0a0aoade

00000001
aaoaoaoa
0aoaoala
££££0007
00000001
ffffffef
0000000k
ffdes7ed
gooaoaoa
aaoaoaoa
aaoaoaoa
aaoaoaoa
gooaoaoa
aaoaoana
aaoaoaoa

Register address
Value stored in register (in hexadecimal)

Run from instruction
SUBR1, R1, #16

to
RSB R7. R7.R6. LSL R6

Figure 11.3: Test program 1 result (2)

BIT (Hons) Computer Engineering 117
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 11

Verification Specification

aaooaaoa
a0000001
aaoooood
Qaooooos
00000004
aaoooaas
aaooooos
aaooaaaT
aaooooos
aaooooos
0a0aa0da
0000000k
aao0aaodc
aaoaaood
0000000e

00000008
00000009

00000008
00000009

| 0000000e
00000008
00000008
00000008

0000000l
0aooo0ol
0oo0oaoaao
0oo0o0aoza
000000ed
0ooooold
oooooofd
oooooood
oooooood
0oo0oaoaao
0oo0oaoaao
0aoaoaoao
0oo0oaoaao
0oo0oaoaao
Qooaoaooo

Figure 11.4: Test program 1 result (3)

000000£0
fIrrefee

ffele000
[fffffof

OOfEffff
8TLLLfLfff
ffffffel
BILLffff

Figure 11.5: Test pro

BIT (Hons) Computer En,

gram 1 result (4)

gineering

Register address
Value stored in register (in hexadecimal)

Run from instruction
SBCS RO, RO, #0

to
MOV R8, R7

Note: The TEQ, TST, CMP, CMN only affect the
value of status flag which didn’t show here.

Register address
Value stored in register (in hexadecimal)

Run from instruction
MOV RS, #0xFO

to
MOV RS, R9, ROR #9

Faculty of Information and Communication Technology (Perak Campus), UTAR

118

Chapter 11
Verification Specification

For Store Memory Instruction:

From STR R9, [R2] to R8, [R2, #4]!

10008000 |E'TI' ff ff ff

1} Address Data
1| 0x10008000 87
1| 0x10008001 ff
1| 0x10008002 ff
1{ 0x10008003 ff
1
1
1
:

x
x
x
i

Explanation:
0x10008000~0x10008003
= R8 = Ox87ff ffff

0x10008004~0x10008007
0x10008004 ff = R9 = Oxffff ffOf
0x10008005 ff

0x10008006 ff

0x10008000~0x10008003

AAET A T wrr e e e e e -ad QL€ is reolace bv RO value
Figure 11.6: Test program 1 result (5)

EEBREEREER
EEEEEEEER
HEEEEEEH

10008000 |00 00 00 01 ££ ££f ££f Of xx xx xx xx 87 £f £f £f£ 2

TAAARAIE lww wvw vy wvy ¥w vy Wy ¥w vy TV WY WY TV WYV O WW ww 3
Figure 11.7: Test program 1 result (6)

The value at 0x1000 8000 ~ 0x1000 8003 is replaced by value stored in RO (0x0000
0001) and 0x1000 800c~0x1000 8010 stored the value of 0x87ff ffff.

For load from memory:

The figures below show the result for the load instruction.
e LDRRO,R2, #4
e LDR RO, [R2, #-4]

e LDRRO, [R2, #-8]

aaaooaaa

Figure 11.8: Test program 1 result (7) - Value from 0x1000 800c~0x1000 8010

BTELLffr

00000000 |££ffffOf

Figure 11.9: Test program 1 result (8) - Value from 0x1000 8004~0x1000 8007

aaaaoadoo (00000001

Figure 11.10: Test program 1 result (9) - Value form 0x1000 8000~0x1000 8003

BIT (Hons) Computer Engineering 119
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 11

Verification Specification

For Program Flow Instruction:

The correctness of B and BL instruction is determined by the PC of the program from
time to time. Figure below show the value of PC from time to time.

(32'h004000c8 32h004000cc | 3200400030 | 3200400004 | 32'h004000d8
BL bFar‘u:h B end brjr'u:h mACH PC, LR
B end end
37’hD04000dc | 32'h004000e0 [32'hD04000e4 | 32'h004000d0 | 32°h004000d4 | 32'h004000=8

Figure 11.11: Test program 1 result (10) — program flow instruction (B & BL)

Explanation:

When BL branch execute, B end instruction is actually being fetch by CPU to IF
stage, but the content of B end instruction is being flush after the BL branch done
execute in ID stage.

At branch label, MOV PC, LR instruction is execute, which force the program jump
back to 32x0040 00d0 which is content of LR register.

At 32x0040 00d0 B end instruction is fetch and executed and PC jump to 0x0040
00e8 which is the end of program.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

120

Chapter 11
Verification Specification

11.2.3 Test program 2

The program 2 is a recursive program which converts from C program. The program
use is factorial program, RO as the output of the program R1 as the input (RO = R1!).
The multiplication is not supported by the current crisc_pipeline therefore another
multiplication function is implement to the function in assembly code. Different from
program 1, program 2 is full with data dependency and hazard, which mainly test the

functionality and correctness of bitl_ctrl and bfw_ctrl in udp.

C program:
int main(){
factorial (5);
return O;
}
int factorial(n){
if(n==1) return 1;
else n*factocrial(n-1);

}

Above is the content of C program.

_start:
MOV R1, #5
MOV FP, SP
ADD FP, FP, #1024
BL FACT
B EXIT
FACT:
CMP R1, #1
BNE RECUR
MOV RO, #1
B DONE
RECUR:

STR R1, [SP], #4
SUB RI1,R1, #1
STR LR, [FP], #4
BL FACT

LDR LR, [FP, #-4]!
LDR R1, [SP, #4]!
MOV R2,R0O

STR LR, [FP], #4

n!, input of factorial
set FP

@R3: A

if n !=1 branch to recur
else return 1
exit the program

store rl

n-1

save return address
call fact(n-1)

load return address
recall n

R2 =R0

save return address

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

121

Chapter 11
Verification Specification

BL
LDR
DONE:
MOV
NOP
NOP
NOP
NOP
mult:
MOV
MOV
MVN
ADD
MOV
MOV
loop:
CMP
BEQ
AND
CMP
ADDEQ
CMP
ADDEQ
MOV
ADD

done:
MOV
MOV
NOP
NOP
NOP
NOP

EXIT:

mult
LR, [FP, #-4]!

PC, LR

R6, #0

R3,R1, LSL #16
R4,R1

R4, R4, #1
R4,R4, LSL #16
R5,R2, LSL #1

R6, $15

done

R7,R5, #3

R7, #2

R5,R5, R4

R7, #1
R5,R5,R3

R5, R5, ASR #1
R6, RO, #1

loop

RO, R5, ASR #1
PC,LR

load return address

continue another loop

Multiplication (Booth algorithm)
reset counter
R3: A

R4: -R1; -M
R4: S
R5:P

check last 2 bit
if ==2'b10
P=P+S

if ==2'b01
P=P+A
P>>>1

R6 ++

Result

Table 11.2 Test program 2, with data dependency, interlock and hazard.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

122

Chapter 11
Verification Specification

11.2.4 Verification on test program 2

For the factorial (5) we can know the result will be 5*4*3*2*1 = 120 = 0x78,
therefore we just need to compare the value of RO which is the final result. The
operand can be change to other value for double check purpose. (Factorial (4) is run
for this case, output should be 24 = 0x18)

Register value for factorial (5) (Note: R1: 0x5, RO: 0x78)

aaoaoaoa
aa0aoool
aaoaoang
aaoaoans
aaoaoan4d
aaoaoans
0a0aoa0s
aaaoaoaaT
aaoaoaos
aaoaoans
0a0aoaoa
aaoaoaik
aa0aoddc
aaoaoood
aaoaoaoe

Register value for factorial (4) (Note: R1: 0x4, R0O: 0x18)

aaoaoaTs
aaoaooas
aaoaools
aaos000a0
fEfR000a0
aaoaootfa
0aoaooos
aaoaooaoa
aaoaooaoa
aaoaooaoa
aaoaooaoa
1a00g400
aaoaooaoa
1a00g000
004000l1lc

Figure 11.12: Test program 2 result (1) — factorial (5)

aaoaoaan
aaooooal
aaooooaz
aaoooaas
aaooooo4d
aaoaoaas
aaooooas
20000007
aaooooas
aaooooas
d000000a
0a0a00ok
aaoooodc
aooooood
aaoaoaae

aaooo0ls
aaooooo4d
aaooo0os
aao40000
f£fc0000
aaooo03o
aaooo0of
00000000
aaooooao
aaooooao
00000000
10008400
aaooooao
10008000
0040001c

Figure 11.13: Test program 2 result (2) - factorial (4)

BIT (Hons) Computer Engineering 123
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 11
Verification Specification

11.3 Verification on UART and core interaction.

A simple assembly code had developed to test the functionalities of UART after
connect it to the core (data path and control path). Below shows the code which test
the transmission of R1’s content via UART.

Test code:

MOV R2, #0x0C

MOV R2, R2, LSL #28 @set R2 to value of 0xC000 0000

MOV RO, #0x98 @set the content of UARTCR

STR RO, [R2, #4] @configure UARTCR (0xC000 0004)

MOV R1, #0xA9 @value to transmit by UART

STR R1, [R2, #8] @store the value to transmitter FIFO (0xC000 0008)

In this test code, R2 is used as the pointer to UARTCR and transmitter FIFO, RO for
UARTCR’s content and R1 for value to transmit.
The result is shown below.

i s o ?EE%]
ito_crisejeled rst | L

[t eriscfoocd_uaTxD T] | | | | [|
M ertscfoocd_uaRTS |

th_coise/DUTUART/ beksctr/boct._bx_en | 1]] | I | | 1

Figure 11.14: Waveform result (1)

The transmit value is 0xA9, which will send in bit stream of {start bit, d[0], d[1], ...,
d[7], (odd) parity bit, stop bit} (01001010111). The system clock is set to 20 MHz,
while baud rate used is 38400Hz.

Jtb_crisc/icd_dk
Jtb_crisc/dcd_rst
Jib_criscfeocd_uaTxD
Jih_criscfoocd_waRTS

Jtb_crisc/DUT JUART /bokctr fbocc_ty_en | 5tl

Figure 11.15: Waveform result (2)

The bocc_tx_en is enable after every 520 of system clock period, which is every
2.6x10”° second of 38461Hz approximate to selected baud rate.
The content in transmitter FIFO:
4 ip_dkw 5t
=4 r_fifomem 10101001 XXHHKXKK KXKHHHHH XX
4 [0] 10101001

B4 [
B4 0

Figure 11.16: transmitter FIFO content

BIT (Hons) Computer Engineering 124
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 12
Conclusion

Chapter 12 — Conclusion

A limitation of documentation on ARM core processor especially micro-
architecture of the cores on the open source project website (e.g. www.opencore.org). To
present the work better the inter-connection between the blocks and functional table for
each blocks are included in this report. Documentation is importance for the long term
project for modification and adding feature in future. In order to achieve that, the
processor is designed with the ARM ISA and a proper documentation is done.

The processor is divided to main two part which is data path and control path.
Data path is designed according to the addressing mode to be implemented and Control
path main designed to generate control signals for data path developed.

During the design process, several redesigns is done to improve the performance
of the processor. For example, branch instructions (B or BL) done execution after 2 clock
cycles (IF and ID) instead of 5 clock cycles (IF, ID, EX, MEM and WB). To solve data
hazard and data dependency problem in pipelined processor, external blocks, forwarding

control and interlock control are implemented to the processor.

BIT (Hons) Computer Engineering 125
Faculty of Information and Communication Technology (Perak Campus), UTAR

References

References

Electrical Engineering (2014), Why ARM cores consumes relatively lower power than
x86. Available at http://electronics.stackexchange.com/questions/74010/why-arm-cores-
consumes-relatively-lower-power-than-x86. Access on 30 March 2016.

Advanced RISC Machine Ltd(ARM) (1996), ARM Architecture Reference Manual.
Available at http://www.home.marutan.net/arcemdocs/ARM-ARM-RevB.pdf. Access on
30 March 2016.

ConorSantifort (2015), Amber Open Source Project-Amber 2 Core Specification March
2015[Online]. Available at www.opencore.org. Access on 16 March 2016

Stephan Nolting (2012), Storm Core Processor System [Online]. Available at
www.opencore.org. Access on 16 March 2016.

Quentin Jones (2016), ARM architecture Computer architecture M 1. History 2 Design
software can be bought (Verilog) — soft core Acorn computer: An English Company
Cambridge [Online]. Available at http://slideplayer.com/slide/9462345/#. Access on 20
March 2016.

Sarah L. Harris & David Money Harris (2016) Digital Design and Computer Architecture
ARM Edition, Morgan Kaumann.

Mok, K. M. Digital System Design Lecture Notes. University Tunku Abdul
Rahman. Kampar : s.n., 2009. Lecture Notes.

Alvin R. Lebeck (1997). A Pipelined Processor. Duke University Durham. Available at
https://www.cs.duke.edu/courses/fall98/cps104/lectures/week14-12/s1d001.htm. Access
on 11 August 2016.

BIT (Hons) Computer Engineering 126
Faculty of Information and Communication Technology (Perak Campus), UTAR

Appendix

Appendix

BIT (Hons) Computer Engineering 127
Faculty of Information and Communication Technology (Perak Campus), UTAR

Appendix

@ Turitin Document Viewer - Mozilla Firefox

Chapter 1 — Introduction

1.1 Project Ba

kground

ARM is a computer proc

ssors developer company with reduced ms‘lnlclmn set

er [transistors than

computing (RISC) architectures. A RISC-based processor require:

sor such as ors in most of

CISC (complex instruction set r.:ompuling) proc <86 |proc
personal computer. This means redyges in cost, heat produced and power use can be
achieving which is importance f(lclm‘E\r light, portable and battery-powered devices such
as smartphone, laptops, tablet and embedded systems. Most of the cores introduced by
ARM support a 32-bits address space except ARMv8-A architectures support 64-bits.
ARM licenses their design to companies that incorporate those core designs into their

own products

1.2 ARM’s History

ARM is a British company start at 1980 with the name of Acorn Computer at first. Its

first product was a coprocessor module for BBC Micro series of computers. Then they

9%

turnitin Q

oo 1%

Internet source

www.marsohod.org o
e 1%

ource

embedded.com 1%

Interet source

infocenter.arm.com
iiemet souce 1%

www.dotleb.com
<1%

Intemet source

www.temcocontrols.com
ntemetsource <1%

filip.squad.nu <1%

2
3
4
B e 1%
6
7
8

Inter

Ot e <1%
J 4 repaseonuvica <1% -

hitpsy//www.tumnitin.com/newreport asp?r=43.07695267600026svr=312&lang=en_us&0id=7963470348:sv=2 i

Text-Only Report

@ Tumitin - Mozilla Firefox

® @ htps:

963470348

v.turnitin.com/newreport.aspZlang=en_us&

preferences

- Processed on: 08-Apr-2017 1839 MYT

turnmn@ 101 796347034 FYF2

Origiality Report Word Count; 22071 By Beng Liong Tan
Submitted: 1

Document Viewer

include quoted include bibliography excluding matches < 8 words v

Chapter 1 - Introduction 1.1 Project Background ARM is a computer processors developer company with reduced instruction set computing (RISC) architectures. A
RISC-based processor requires lesser

transistors than CISC (complex instruction set computing) 21

processor such as x86

processors in most of personal computer. This means reduces in cost, heat produced and power use 21

can be achieving which is importance factor

for light, portable and battery-powered devices such as smartphone, laptops, tablet and 6

embedded systems. Most of the cores introduced by ARM support a 32-bits address space except ARMV8-A architectures support 64-bits. ARM licenses their
design to companies that incorporate those core designs into their own products. 1.2 ARM’s History ARM is a British company start at 1980 with the name of
Acom Computer at first. Its first product was a coprocessor module for BBC Micro series of computers. Then they start relatively simple MOS Technology 6502
processor in1981. But the 6502 processor is not strong enough for GUI (graphics based user interface), so ARM decides to design their own processor after
studies all the lacking of existing processors. Sophie Wilson developed the instruction set and in 1983, the official Acom RISC Machine with cooperation with VSLI
Technology as silicon partner. Then the ARM2 was introduced which enable lower power consumption, but better performance than Intel 80286. And ARM continue
introduce ARM3 and ARM6. ARM 3 had better performance than ARM2. But ARM 6, result of cooperation between Apple and ARM manage to remained essentially
same size with ARM2 with further better performance;

ARM2 had 30,000 transistors, whie ARMG had 35,000. 6

Architecture Core bit-width ARM holding cores

javascriptopenDSC(3434371511, 1393, '85413);

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR

N oty by source

Similarity Index Intemet Sources: 9%

Publications: %
9% Student papers wi

mode: [show Hghest maches together [V] @ [

1% match (Internet from 19-Apr-2016)
http://opencores.org
1% match (Internet from 07-Mar-2015)
http://www.marsohod.ort
1% match (Internet from 07-Dec-2003)

5 <
1% match (Internet from 06-Apr-2014)
http://infocenter.arm.com
19% match (Internet from 12-Jun-2009)
http://grain.jouy.inra.fr
< 1% match (Internet from 03-Oct-2013)
http://www.dotleb.com
< 1% match (Internet from 21-Oct-2015)
http://www.temcocontrols.com
< 1% match ()
< 1% match (Internet from 03-Feb-2007)
http://repa.econ.uvic.ca
< 1% match (Internet from 15-Jun-2013) v

g

4/9/2017

128

Appendix

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 | Effective Date: 01/10/2013 | Page No.: lof 1

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

ID Number(s)

Programme / Course

Title of Final Year Project

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds

the limits approved by UTAR)

Overall similarity index: %0
Similarity by source

Internet Sources: %
Publications: %
Student Papers: %

Number of individual sources listed of
more than 3% similarity:

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) — (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality
report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the
Final Year Project Report submitted by my student(s) as named above.

Signature of Supervisor Signature of Co-Supervisor
Name: Name:
Date: Date:
BIT (Hons) Computer Engineering 129

Faculty of Information and Communication Technology (Perak Campus), UTAR

