Design and Implementation of a 32-bit Lite Version ARM ISA CPU

By

Tan Beng Liong

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology (Perak Campus)

JAN 2017

UNIVERSITI TUNKU ABDUL RAHMAN

		ic Session:
		APITAL LETTER)
	ation is a property of the	
		pies of this dissertation for academic purposes.
		Verified by,
Author's signa		
Author's signa Address:		Verified by,

Design and Implementation of a 32-bit Lite Version ARM ISA CPU

By

Tan Beng Liong

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology (Perak Campus)

JAN 2017

DECLARATION OF ORIGINALITY

I declare that this report entitled "Design and Implementation of a 32-bit Lite Version ARM ISA CPU" is my own work except as cited in the references. The report has not been accepted for any degree and is not being submitted concurrently in candidature for any degree or other award.

Signature	:	
-----------	---	--

Name : _____

Date : _____

ACKNOWLEDGEMENTS

I would like to thank to Mr. Mok Kai Ming for giving me the opportunities to contribute in this project which help me improve my understanding toward the processor design skill.

Beside thank to University Tunku Abdul Rahman for provide the facilities and comfortable environment to all students to complete their project.

ABSTRACT

This project is a processer design with Verilog HDL for academic purpose. The processor is built in pipelined stage and divided to 5 stages which are instruction fetch (IF), instruction decode (ID), instruction execution (EX), memory (MEM) and write back (WB). It contain the methodology, design hierarchy, connection between each blocks and pin description for each blocks. The processor is built based on ARM instruction structure architecture (ISA). To understand the how the instructions work, an ARM assembly stimulator, ARMSim which is free simulator developed by University of Victoria is downloaded, the ARMSim also used to verify the output of the designed Verilog module by comparing the register file and memory content.

The instruction format and addressing mode of each type of instructions in ARM is studied. The data path of the processor is designed according to the addressing modes of the instructions need to implement to the design. However the arithmetic logic unit (ALU) and barrel shifter block which can perform add, subtract, logical shift (LSL and LSR), arithmetic shift right (ASR) and rotate right (ROR) is designed. For memory cache the address of each segment is refer to the memory map stated in Digital Design and Computer Architecture ARM edition by Sarah L. Harris and David Money Harris. Hazard problem in the pipelined register is solved by implement extra blocks instead of using NOP to achieve a better performance. After designed the Verilog module verification is carry out to make sure the processor work.

The verification is done by using 2 converted ARM assembly program with ARMSim, as stated above the content of both register file and memory cache need to be same. First program used is to test the all instruction implemented worked individually however another is converted from c program to verify that the instructions can worked with each other.

TABLE OF CONTENTS

Contents	
DECLARATION OF ORIGINALITY	I
ACKNOWLEDGEMENTS	11
ABSTRACT	III
TABLE OF CONTENTS	IV
LIST OF FIGURES	VIII
LIST OF TABLES	XI
LIST OF ABBREVIATIONS	XIII
Chapter 1 – Introduction	1
1.1 Project Background	1
1.2 ARM's History	1
1.3 Problem Statement & Motivation	
Chapter2 – Literature Review	4
2.0 ISA (Instruction Set Architecture) of ARM	4
2.0.1 Instruction Format	6
2.0.2 Condition Encode Instruction	8
2.1 Single cycle, multi-cycle and pipelined processor	9
2.2 Benchmarking	11
2.2.1 Amber Core	11
2.2.2 Storm core	13
2.2.3 ARM7 core	14
2.2.4 ARM9 core	15
2.2.5 ARM10TDMI	16
2.2.6 ARM11 Core	17
Chapter 3 – Project Objective	19
3.1 Project Scope	19
3.2 Objective	19
3.3 Significance and Impacts	20
Chapter 4 - Methodology and Technologies Involved	21
4.1 Design Methodology	

4.2 Universal Design Methodology	
4.3 Development Tools	
Icarus Verilog	
4.4 Design Hierarchy	
4.5 Implementation Issues and Challenges	
4.6 Schedule and timeline	
Chapter 5 – System Specification	
5.1 Feature	
5.2 Naming Convention	
5.3 RISC32 processor	
5.3.1 Processor Interface	
5.3.2 I/O Pin Description	
5.4 System Register	
5.4.1 General Purpose Register	
5.4.2 Special Purpose Register	
5.5 Instruction Format	
5.6 Addressing Mode	
5.7 Instruction Set and Description	
5.8 Memory Map	
5.9 Operating Procedure	
Chapter 6 – Microarchitecture Specification	
6.1 Design hierarchy	
6.2 Unit level functional partitioning	
6.3 Unit block level partitioning	Error! Bookmark not defined.
Chapter 7 – Data path of CRISC (Unit & Block level)	
7.1 Feature	
7.2.1 Block diagram of udp (Data path)	
7.2.2 Data path block level hierarchy	
7.2.3 Block level partition of udp	Error! Bookmark not defined.
7.3 Register file (brf)	
7.3.1 Functionality	
7.3.2 Block Diagram	
7.3.3 Functional table	
7.3.4 Internal block diagram of Register File	58

7.4 Arithmetic Logic Block with shift (balb_shift)	
7.4.1 Functionality	
7.4.2 Block Diagram	
7.4.3 Functional table	Error! Bookmark not defined.
7.4.4 Internal block diagram of ALB	Error! Bookmark not defined.
7.4.5 Test plan	
7.4.6 Simulation result	
7.5 Data forwarding control (bfw_ctrl)	
7.5.1 Functionality	
7.5.2 Forwarding Block Function Tables	
7.5.3 Block diagram	
7.6 Interlock control (bitl_ctrl)	
7.6.1 Functionality	
7.6.2 Block diagram	
7.6.3 Functional table	77
Chapter 8 – Control Path of CRISC (Unit & Block level)	
8.1 Control Path unit (ucp)	
8.1.1 Functionality	
8.1.2 Control Path's Unit interface – (Block diagram)	
8.1.3 Block partitioning in ucp	
8.1.4 Block level partition diagram	
8.1.5 Functional table	Error! Bookmark not defined.
8.2 Main Control Block (bmain_ctrl)	
8.2.1 Functionality	
8.2.2 Block diagram	
8.2.3 Functional table	Error! Bookmark not defined.
8.3 Instruction Control Block (binstr_ctrl)	
8.3.1 Functionality	
8.3.2 Block diagram	
8.3.3 Functional table	Error! Bookmark not defined.
Chapter 9 – Memory Cache unit (ucache)	
9.1 Functionality	05
•	

Chapter 10 – UART unit	97
10.1 UART address	97
10.2 Operating procedure	97
10.3 uuart functionalities and pin description	99
10.4 bclkctr functionalities and pins description10	03
10.5 brx functionalities and pins description	05
10.6 btx functionalities and pins description10	08
10.7 UART address decoder	11
Chapter 11 – Verification Specification 12	12
11.1 Verification for crisc	12
11.2 Test Program for RISC 32	13
11.2.1 Test program 1 12	14
11.2.2 Verification for test program 1 for RISC3212	17
11.2.3 Test program 2 12	21
11.2.4 Verification on test program 2	23
11.3 Verification on UART and core interaction	24
Chapter 12 – Conclusion	25
References12	26
Appendix12	27

LIST OF FIGURES

	LIST OF FIGURES	_
Figure Number	Title	Page
Figure 2.1	Data-processing instruction format	5
Figure 2.2	Memory instruction format	6
Figure 2.3	Branch instruction format	6
Figure 2.4	Single cycle, multicycle vs pipeline processor	9
Figure 2.5	3-Stages and 5-Stages pipeline	10
Figure 2.6	Design of ALU in Amber 23	11
Figure 2.7	Data path of ARM7	14
Figure 2.8	Data path of ARM9	15
Figure 2.9	Pipelined stage of ARM10DTMI	16
Figure 2.10	Pipelined stage of ARM11	17
Figure 2.11	Grouped pipelined stage of ARM 11	17
Figure 4.1	UDM flow	21
Figure 4.2	Pipeline stage of instruction in different cycle(1)	25
Figure 4.3	Pipeline stage of instruction in different cycle(2)	25
Figure 4.4	Pipeline stage of instruction in different cycle(3)	25
Figure 4.5	MOV and MVN detector	26
Figure 4.6	ALU to be design and implement	27
Figure 5.1	Block diagram for RISC32 processor	31
Figure 5.2	Data-processing instruction format	33
Figure 5.3	Memory instruction format	33
Figure 5.4	Branch instruction format	34
Figure 5.5	Immediate addressing	36
Figure 5.6.1	Register addressing (1)	37
Figure 5.6.2	Register addressing (2)	37
Figure 5.7	Base addressing	37
Figure 5.8	Register indexed displacement addressing with register scaling	38
Figure 5.9	Register indexed displacement addressing with immediate scaling	38
Figure 5.10	Pseudodirect addressing	39
Figure 5.11	Memory map	44
Figure 6.1	crisc architecture and micro-architecture partitioning	46
Figure 6.2	Unit level functional partition	47
Figure 6.3	Unit block level functional partition	48
Figure 7.1	Solution for status flag problem	50
Figure 7.2	Block diagram of data path	51
Figure 7.3	Partition of data path unit	57

Figure 7.4	Connection between block in data path unit	58
Figure 7.5	Block diagram of brf (register file)	59
Figure 7.6	Design of register file	63
Figure 7.7	Single element of register file	63
Figure 7.8	Block diagram of balb_shift (ALU and shifter)	64
Figure 7.9	Design of ALU	68
Figure 7.10	Design of barrel shifter	69
Figure 7.11	Simulation result (1) – addition	72
Figure 7.12	Simulation result (2) - subtraction	72
Figure 7.13	Simulation result (3) – subtraction	73
Figure 7.14	Simulation result $(4) - \log i cal$	73
Figure 7.15	Simulation result $(5) - \text{shift/ rotate}$	74
Figure 7.16	Instruction format	75
Figure 7.17	Data processing instruction	75
Figure 7.18	Memory instruction	76
Figure 7.19	Block diagram of bfw_ctrl (forwarding control)	80
Figure 7.20	Block diagram of bitl_ctrl (interlock control)	83
1 15ule 7.20	block diagram of ont_out (merioek control)	05
Figure 8.1	Block diagram of control path	86
Figure 8.2	Partitioning in ucp	91
Figure 8.3	Internal connection between block in ucp	92
Figure 8.4	Block diagram of main control block	96
Figure 8.5	Block diagram of binstr_ctrl	103
Figure 9.1	Block diagram of ucache	110
-		
Figure 10.1	Transmission of data by UART	112
Figure 10.1 Figure 10.2	Transmission of data by UART UART data transfer protocol	112 113
Figure 10.1 Figure 10.2 Figure 10.3	Transmission of data by UART UART data transfer protocol UART data receiving protocol	112 113 113
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart	112 113 113 114
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart	112 113 113 114 118
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr	112 113 113 114 118 119
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr	112 113 113 114 118 119 121
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.8	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx	112 113 113 114 118 119 121 122
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.8 Figure 10.9	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx State diagram for brx controller	 112 113 113 114 118 119 121 122 124
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.8 Figure 10.9 Figure 10.10	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx State diagram for brx controller Block diagram of btx	112 113 113 114 118 119 121 122 124 125
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.8 Figure 10.9 Figure 10.10 Figure 10.11	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx State diagram for brx controller Block diagram of btx State diagram for btx controller	 112 113 113 114 118 119 121 122 124 125 127
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.8 Figure 10.9 Figure 10.10	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx State diagram for brx controller Block diagram of btx	112 113 113 114 118 119 121 122 124 125
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.8 Figure 10.9 Figure 10.10 Figure 10.11	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx State diagram for brx controller Block diagram of btx State diagram for btx controller	 112 113 113 114 118 119 121 122 124 125 127
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.8 Figure 10.9 Figure 10.10 Figure 10.11 Figure 10.12	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx State diagram for brx controller Block diagram of btx State diagram for btx controller Circuit for CPU-UART address decoder	 112 113 113 114 118 119 121 122 124 125 127 128
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.8 Figure 10.8 Figure 10.9 Figure 10.10 Figure 10.11 Figure 10.12	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx State diagram for brx controller Block diagram of btx State diagram for btx controller Circuit for CPU-UART address decoder Memory map & program code segment	 112 113 113 114 118 119 121 122 124 125 127 128 129
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.7 Figure 10.8 Figure 10.9 Figure 10.10 Figure 10.11 Figure 10.12 Figure 11.1 Figure 11.2	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx State diagram for brx controller Block diagram of btx State diagram for btx controller Circuit for CPU-UART address decoder Memory map & program code segment Test program 1 result (1)	 112 113 113 114 118 119 121 122 124 125 127 128 129 134
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.8 Figure 10.9 Figure 10.10 Figure 10.11 Figure 10.12 Figure 11.1 Figure 11.2 Figure 11.3	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx State diagram for brx controller Block diagram of btx State diagram for btx controller Circuit for CPU-UART address decoder Memory map & program code segment Test program 1 result (1) Test program 1 result (2)	 112 113 113 114 118 119 121 122 124 125 127 128 129 134 134
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.8 Figure 10.9 Figure 10.10 Figure 10.11 Figure 10.12 Figure 11.1 Figure 11.2 Figure 11.3 Figure 11.4	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx State diagram for brx controller Block diagram of btx State diagram for btx controller Circuit for CPU-UART address decoder Memory map & program code segment Test program 1 result (1) Test program 1 result (2) Test program 1 result (3) Test program 1 result (4)	 112 113 113 114 118 119 121 122 124 125 127 128 129 134 134 135
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 Figure 10.6 Figure 10.7 Figure 10.7 Figure 10.8 Figure 10.9 Figure 10.10 Figure 10.10 Figure 10.12 Figure 11.1 Figure 11.2 Figure 11.3 Figure 11.4 Figure 11.5	Transmission of data by UART UART data transfer protocol UART data receiving protocol Block diagram of uuart Internal connection of uuart Block diagram of bclkctr Internal connection of bclkctr Block diagram of brx State diagram for brx controller Block diagram of btx State diagram for btx controller Circuit for CPU-UART address decoder Memory map & program code segment Test program 1 result (1) Test program 1 result (2) Test program 1 result (3)	 112 113 113 114 118 119 121 122 124 125 127 128 129 134 135 135

Figure 11.8	Test program 1 result (7)	136
Figure 11.9	Test program 1 result (8)	136
Figure 11.10	Test program 1 result (9)	136
Figure 11.11	Test program 1 result (10)	137
Figure 11.12	Test program 2 result (1) – factorial (5)	140
Figure 11.13	Test program 2 result (2) – factorial (4)	140
Figure 11.14	Waveform result(1)	141
Figure 11.15	Waveform result(2)	141
Figure 11.16	Transmitter FIFO content	141

LIST OF TABLES

Table Number	Title	Page
Table 1.1	List of ARM microarchitectures	2
Table 2.1	Instruction set of ARM	4
Table 2.2	Condition encoding	8
Table 2.3	Pin description of Amber's ALU	12
Table 2.4	Comparison among Amber 23, Amber 25 and	13
	Strom core	
Table 2.5	Comparison among ARM 7, ARM 9, ARM 10 &	18
	ARM11	
Table 4.1	Comparison among Development Tools	23
Table 4.2	Pin description for ALU to be design	27
Table 4.3	Gantt Chart for project 1 & 2	28
Table 5.1	RISC32 features	29
Table 5.2	Naming convention	30
Table 5.3	RISC32 Input pins description	31
Table 5.4	RISC32 Output pins description	31
Table 5.5	Register file	32
Table 5.6	Status flag register	32
Table 5.7	Encoded immediate value	35
Table 5.8	Data-processing instruction set and description	40
Table 5.9	Operand 2 for data processing instruction	41
Table 5.10	Memory instruction set and description	41
Table 5.11	Source 2 for memory instruction	43
Table 5.12	Branch instruction set and description	43
Table 5.13	Condition encoding	44
Table 6.1	Formation of a design hierarchy for crisc	46
	microprocessor through top down design	10
	meroprocessor unough top down design	
Table 7.1	Status flag problem	50
Table 7.2	Input pins description for data path unit	51
Table 7.3	Output pins description for data path unit	55
Table 7.4	General register	59
Table 7.5	Input pins description of brf	60
Table 7.6	Output pins description of brf	61
Table 7.7	Functional table for write enable signal	62
Table 7.8	Functional table for address pin	62
Table 7.9	Input pins description of balb_shift	64
Table 7.10	Output pins description of balb_shift	66
Table 7.11	Functional table for ALU	67
Table 7.12	Functional table for barrel shifter	67

Table 7.13 Table 7.14	Test plan for balb_shift ARM assembly instruction	70 77
Table 7.15	Functional table for forwarding block	79
Table 7.16	Input pins description of bfw_ctrl	80
Table 7.17	Output pins description of bfw_ctrl	82
Table 7.18	Input pins description of bitl_ctrl	83
Table 7.19	Output pins description of butl_ctrl	84
Table 7.20	Functional table of bitl_ctrl	85
Table 8.1	Input pins description of ucp	86
Table 8.2	Output pins description of ucp	88
Table 8.3	Functional table for ucp (data-processing instruction)	93
Table 8.4	Functional table for ucp (memory instruction)	94
Table 8.5	Functional table for ucp (program flow instruction)	94
Table 8.6	Relationship between condition mask and status flag	95
Table 8.7	Input pin description of main control block	96
Table 8.8	Output pin description of main control block	98
Table 8.9	Status flag for each condition mask	101
Table 8.10	Functional table for bmain_ctrl	102
Table 8.11	Input pins description of binstr_ctrl	103
Table 8.12	Output pins description of binstr_ctrl	105
Table 8.13	Functional table of binstr_ctrl (Data-processing instruction)	108
Table 8.14	Functional table of binstr_ctrl (Memory instruction)	109
Table 8.15	Functional table of binstr_ctrl (Program flow	109
	instruction)	
Table 9.1	Input pins description of ucache	110
Table 9.2	Output pins description of ucache	111
Table 10.1	Address for UART register and FIFO	112
Table 10.2	Input pins description for uuart	114
Table 10.3	Output pins description for uuart	116
Table 10.4	Input pins description for bclkctr	119
Table 10.5	Output pins description for bclkctr	120
Table 10.6	Input pins description for brx	122
Table 10.7	Output pins description for brx	123
Table 10.8	Input pins description for btx	125
Table 10.9	Output pins description for btx	127
Table 11.1	Test program 1 (without data dependency, interlock and hazard.)	131
Table 11.2	Test program 2 with data dependency, interlock and hazard	138

LIST OF ABBREVIATIONS

RISC	Reduced instruction set computing
CISC	Complex instruction set computing
GUI	Graphic based user interface
ISA	Instruction set architecture
IP	Intellectual property
GPIO	General purpose input/output
IF	Instruction fetch (pipeline stage)
ID	Instruction decode (pipeline stage)
EX	Execute (pipeline stage)
MEM	Memory (pipeline stage)
WB	Write back (pipeline stage)
ALU	Arithmetic logic unit
RTL	Register transfer level
I/O	Input / output
PC	Program counter
UART	Universal asynchronous receiver/ transmitter

Chapter 1 – Introduction

1.1 Project Background

ARM is a computer processors developer company with reduced instruction set computing (RISC) architectures. A RISC-based processor requires lesser transistors than CISC (complex instruction set computing) processor such as x86 processors in most of personal computer. This means reduces in cost, heat produced and power use can be achieving which is importance factor for light, portable and battery-powered devices such as smartphone, laptops, tablet and embedded systems. Most of the cores introduced by ARM support a 32-bits address space except ARMv8-A architectures support 64-bits. ARM licenses their design to companies that incorporate those core designs into their own products.

1.2 ARM's History

ARM is a British company start at 1980 with the name of Acorn Computer at first. Its first product was a coprocessor module for BBC Micro series of computers. Then they start relatively simple MOS Technology 6502 processor in1981. But the 6502 processor is not strong enough for GUI (graphics based user interface), so ARM decides to design their own processor after studies all the lacking of existing processors. Sophie Wilson developed the instruction set and in 1983, the official Acorn RISC Machine with cooperation with VSLI Technology as silicon partner. Then the ARM2 was introduced which enable lower power consumption, but better performance than Intel 80286. And ARM continue introduce ARM3 and ARM6. ARM 3 had better performance than ARM2. But ARM 6, result of cooperation between Apple and ARM manage to remained essentially same size with ARM2 with further better performance; ARM2 had 30,000 transistors, while ARM6 had 35,000.

32 32 32 32 32 32	ARM1 ARM2, ARM250, ARM3 ARM6, ARM7 ARM8
32	ARM6, ARM7
-	,
32	ARM8
32	ARM7TDMI, ARM9TDMI, SecurCore SC100
32	ARM7EJ, ARM9E, ARM10E
32	ARM11
32	ARM Cortex-M0, ARM Cortex-M0+, ARM Cortex- M1, SecurCore SC000
32	ARM Cortex-M3
32	ARM Cortex-M4, ARM Cortex-M7
32	ARM Cortex-M23, ARM Cortex-M33
32	ARM Cortex-R4, ARM Cortex-R5, ARM Cortex-R7, ARM Cortex-R8
32	ARM Cortex-R52
32	ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8, ARM Cortex-A9, ARM Cortex-A12, ARM Cortex- A15, ARM Cortex-A17
32	ARM Cortex-A32
32/64	ARM Cortex-A35, ARM Cortex-A53, ARM Cortex- A57, ARM Cortex-A72, ARM Cortex-A73
	32 32

 Table 1.1: List of ARM microarchitectures (Source: https://en.wikipedia.org/wiki/ARM_architecture#Coprocessors)

1.3 Problem Statement & Motivation

The ARM cores project are available on some sources such as <u>www.opencore.org</u>, the ARM information center (infocenter.arm.com), and other website with ARM documentation. But the ARM's core microarchitecture include in the documentation is very limited, hence the functionalities and implementation of ISA to hardware of the cores are not presented well and the Verilog codes included in the project are hard to understand since the microarchitecture are not well presented in documentation and inconvenience naming conversion used. Since there is no proper or complete documentation that described microarchitecture of 32-bit microprocessor with ARM Instruction Set Architecture in open source website. Hence there is only a very limited details can be obtaining from the project which show how the inside parts of processor work together to achieve the specification that had been described in the documentation. This has affected the use of the ARM softcore, in particular for research purpose.

Microchip design companies design microprocessor as IP for commercial purpose. The IP is not available in the market at an affordable price for research purpose. ARM does offers several licensing models for ARM technology-based product but the license will expire within 3 years a payment needed for the license, which is not suitable for a long run project.

Besides, the verification plan for an ARM microprocessor that are made available on the internet is not well defined and yet not compatible to every design. Therefore, there is a necessary to develop a verification plan to verify the functionality of the module designed.

Chapter2 – Literature Review

ARM is a computer processors developer company with reduced instruction set computing (RISC) architectures. A RISC-based processor requires lesser transistors than CISC (complex instruction set computing) processor such as x86 processors in most of personal computer. This means reduces in cost, heat produced and power use can be achieving which is importance factor for light, portable and battery-powered devices such as smartphone, laptops, tablet and embedded systems. Most of the cores introduced by ARM support a 32-bits address space except ARMv8-A architectures support 64-bits. ARM licenses their design to companies that incorporate those core designs into their own products.

2.0 ISA (Instruction Set Architecture) of ARM

ARM instructions support data transfer, arithmetic and programs flow instructions. The table 2.1 below showed the instructions and its function.

Instruction	Operation	Instruction	Operation
add Rd, Rn, Opd2	$Rd \leftarrow Rn + Opd2$	small Rdh, Rn, Rm, Rdl	$\{\text{Rdh, Rdl}\} \leftarrow \text{Rn}^* \text{Rm} + \{\text{Rdh, Rdl}\}$
adc Rd, Rn, Opd2	$Rd \leftarrow Rn + Opd2 + carry$	str Rd, [Rn], +Opd2	$Mem[Rn] \leftarrow Rd, Rn \leftarrow Rn + Opd2$
sub Rd, Rn, Opd2	Rd ← Rn - Opd2	str Rd, [Rn], -Opd2	$Mem[Rn] \leftarrow Rd, Rn \leftarrow Rn - Opd2$
sbc Rd, Rn, Opd2	$Rd \leftarrow Rn - Opd2 - (\sim carry)$	str Rd, [Rn, + Opd2]	$Mem[Rn + Opd2] \leftarrow Rd$
rsb Rd, Rn, Opd2	$Rd \leftarrow Opd2 - Rn$	str Rd, [Rn, - Opd2]	$Mem[Rn - Opd2] \leftarrow Rd$
rsc Rd, Rn, Opd2	$Rd \leftarrow Opd2 - Rn - (\sim carry)$	str Rd, [Rn, + Opd2]!	$Rn \leftarrow Rn + Opd2, Mem[Rn] \leftarrow Rd$
tst Rn, Opd2	Set flags based on Rn & Opd2	str Rd, [Rn, - Opd2]!	$Rn \leftarrow Rn - Opd2, Mem[Rn] \leftarrow Rd$
teq Rn, Opd2	Set flags based on Rn ^ Opd2	ldr Rd, [Rn], +Opd2	$Rd \leftarrow Mem[Rn], Rn \leftarrow Rn + Opd2$
and Rd, Rn, Opd2	Rd ← Rn & Opd2	ldr Rd, [Rn], -Opd2	$Rd \leftarrow Mem[Rn], Rn \leftarrow Rn - Opd2$
eor Rd, Rn, Opd2	Rd ← Rn ^ Opd2	ldr Rd, [Rn, + Opd2]	$Rd \leftarrow Mem[Rn + Opd2]$
orr Rd, Rn, Opd2	$Rd \leftarrow Rn Opd2$	ldr Rd, [Rn, - Opd2]	$Rd \leftarrow Mem[Rn - Opd2]$
bic Rd, Rn, Opd2	$Rd \leftarrow Rn \& (\sim Opd2)$	ldr Rd, [Rn, + Opd2]!	$Rn \leftarrow Rn + Opd2, Rd \leftarrow Mem[Rn]$
cmp Rn, Opd2	Set flags based on Rn – Opd2	ldr Rd, [Rn, - Opd2]!	$Rn \leftarrow Rn - Opd2, Rd \leftarrow Mem[Rn]$
cmn Rn, Opd2	Set flags based on Rn + Opd2	strb Rd, [Rn], +Opd2	$Mem[Rn] \leftarrow Rd_{[7:0]}, Rn \leftarrow Rn + Opd2$
asr Rd, Rm, <rslsh></rslsh>	$Rd \leftarrow Rm >>> (Rslsh) (Arithmetic)$	strb Rd, [Rn], -Opd2	$Mem[Rn] \leftarrow Rd_{[7:0]}, Rn \leftarrow Rn - Opd2$
lsl Rd, Rm, <rslsh></rslsh>	$Rd \leftarrow Rm << (Rslsh) (Logical)$	strb Rd, [Rn, + Opd2]	$Mem[Rn + Opd2] \leftarrow Rd_{[7:0]}$
lsr Rd, Rm, <rslsh></rslsh>	$Rd \leftarrow Rm >> (Rslsh) (Logical)$	strb Rd, [Rn, - Opd2]	$Mem[Rn - Opd2] \leftarrow Rd_{[7:0]}$

ror Rd, Rm, <rslsh></rslsh>	$Rd \leftarrow Rn ror (Rslsh) (Rotate right)$	strb Rd, [Rn, + Opd2]!	$Rn \leftarrow Rn + Opd2, Mem[Rn] \leftarrow Rd_{[7:0]}$
rrx Rd, Rm, <rslsh></rslsh>	$\{Rd, C\} \leftarrow \{C, Rd\}$ (Rotate right extend)	strb Rd, [Rn, - Opd2]!	$Rn \leftarrow Rn - Opd2, Mem[Rn] \leftarrow Rd_{[7:0]}$
mov Rd, Opd2	$Rd \leftarrow Opd2$	ldrb Rd, [Rn], +Opd2	$Rd \leftarrow Mem[Rn]_{[7:0]}, Rn \leftarrow Rn + Opd2$
mvn Rd, Opd2	$Rd \leftarrow (\sim Opd2)$	ldrb Rd, [Rn], -Opd2	$Rd \leftarrow Mem[Rn]_{[7:0]}, Rn \leftarrow Rn - Opd2$
mul Rd, Rn, Rm	$Rd \leftarrow Rn * Rm$ [31:0]	ldrb Rd, [Rn, + Opd2]	$Rd \leftarrow Mem[Rn + Opd2]_{[7:0]}$
mula Rd, Rn, Rm, Ra	$Rd \leftarrow (Rn^*Rm) + Ra$ [31:0]	ldrb Rd, [Rn, - Opd2]	$Rd \leftarrow Mem[Rn - Opd2]_{[7:0]}$
umullRdh, Rn, Rm, Rdl	{Rdh, Rdl} ← Rn *Rm	ldrb Rd, [Rn, + Opd2]!	$Rn \leftarrow Rn + Opd2, Rd \leftarrow Mem[Rn]_{[7:0]}$
umlalRdh, Rn, Rm, Rdl	$\{Rdh, Rdl\} \leftarrow Rn^*Rm + \{Rdh, Rdl\}$	ldrb Rd, [Rn, - Opd2]!	$Rn \leftarrow Rn - Opd2, Rd \leftarrow Mem[Rn]_{[7:0]}$
smullRdh, Rn, Rm, Rdl	$\{Rdh, Rdl\} \leftarrow Rn^*Rm$	b <label></label>	PC ← label
		bl <label></label>	$LR \leftarrow PC+4, PC \leftarrow label$
	I	1	1

Table 2.1: Instruction set of ARM

2.0.1 Instruction Format

The ARM instruction had classified to 4 general formats:

- data-processing instruction format
- memory instruction format
- multiplication instruction format
- Branch instruction format.

The figure 2.1, 2.2, 2.3 and 2.4 show the differences between instruction formats:

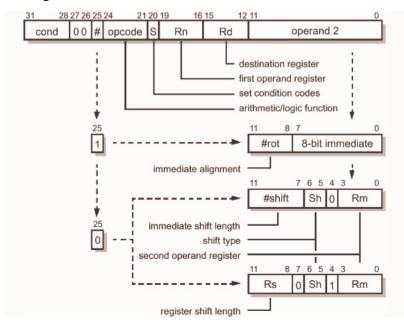


Figure 2.1: Data-processing instruction format

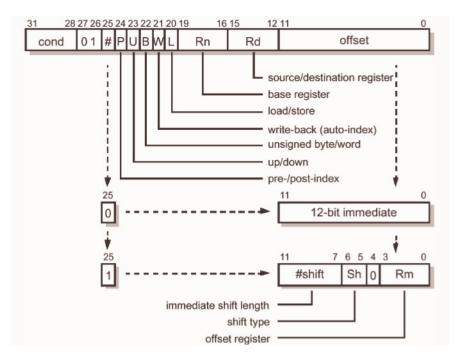


Figure 2.2: Memory instruction format

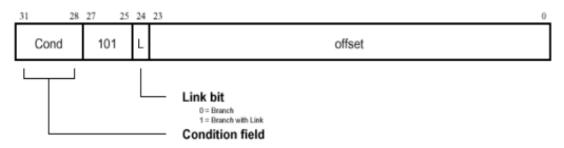


Figure 2.3: Branch instruction format

2.0.2 Condition Encode Instruction

The ARM processor support condition encoding instructions. The condition encoded instruction only will execute when the condition is met with the 4-bits status flag in CPSR updated by previous instructions

Condition	Mnemonic	Meaning	Condition flag
	extension		state
4'h0	Eq	Equal	Z set
4'h1	Ne	Not equal	Z clear
4'h2	cs / hs	Carry set / unsigned higher or same.	C set
4'h3	cc / lo	Carry clear / unsigned lower	C clear
4'h4	Mi	Minus / negative	N set
4'h5	Pl	Plus / positive or zero	N clear
4'h6	Vs	Overflow	V set
4'h7	Vc	No overflow	V clear
4'h8	Hi	Unsigned higher	C set and Z clear
4'h9	Ls	Unsigned lower or same	C clear or Z set
4'h10	Ge	Signed greater than or equal	N == V
4'h11	Lt	Signed lesser than	N != V
4'h12	Gt	Signed greater than	Z == 0, N == V
4'h13	Le	Signed lesser than or equal	Z == 1 or N != V
4'h14	Al	Always (unconditional)	-
4'h15	-	Invalid condition	- or same.

Table 2.2 condition encoding

2.1 Single cycle, multi-cycle and pipelined processor

Single cycle

- The instructions execute and complete in 1 clock cycle.
- No data dependency and hazard problem.
- Longer clock cycle needed to complete 1 instruction.

Multi-cycle

- The instruction subdivided into few steps (depend on instruction)
 - Arithmetic and logical instruction 4 steps (IF, ID, EX, WB)
 - Save instruction 4 steps (IF, ID, EX, MEM)
 - Load instruction 5 steps (IF, ID, EX, MEM, WB)
 - Branch instruction 2 steps (IF, ID)
 - Branch and link instruction 3 steps (IF, ID, WB)
- 1 instruction execute at the same time.
- No data dependency and hazard problem.
- In average, shorter clock cycle needed to complete 1 instruction compare to single cycle.

Pipeline

- The instruction subdivided into few steps (maximum step of the instruction)
- Few instructions execute in same time (number of pipeline stage)
- Data dependency and hazard problem (can be solved by implement of addition hardware)
- Execute in clock cycle with number of pipeline stage times shorter than single cycle processor.

Figure 2.4: Single cycle, multi-cycle vs pipeline processor

2.2 Benchmarking

Two project from www.opencore.org done by ConorSantifort (Amber), and Stephan Nolting (Strom Core) respectively will be used for benchmarking purpose. Beside the ARM7, ARM9, ARM10, and ARM11 introduced by ARM will be used for further benchmarking.

2.2.1 Amber Core

Amber processor is an ARM-compatible 32-bit RISC processor done by ConorSantifort. The Amber core are fully compatible to ARMv2 Instruction set architecture (ISA), the project will develop with Verilog 2001. The Amber project provides a complete embedded system incorporating the Amber core and a number of peripherals, including UARTs, timers, and an Ethernet MAC. There are 2 version of Amber project done which is Amber 23 and Amber 25.

Amber 23 is a 3 –stage pipelined processor which can be represent in fetch, decode and execute. It is capable of 0.8 DMIPS per MHz.

The Amber 25 is a 5-stage pipelined processor which the stages are separate based on fetch, decode, execute, memory, and write-back. Amber 25 have a 15% to 20% better performance compared to the Amber 23 which is 1.0 DMIPS per MHz, but a larger size and more hardware implement needed in Amber 25.

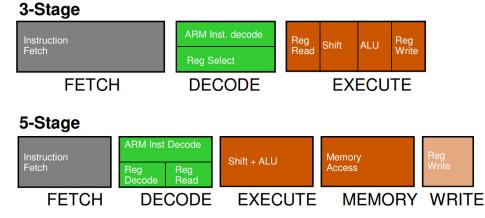


Figure 2.5: 3-Stages and 5-Stages pipeline

ALU in Amber Core

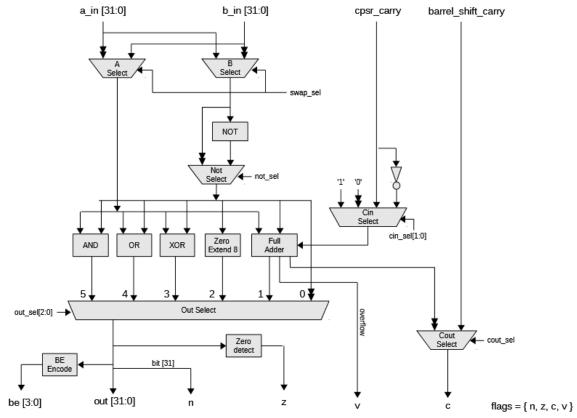


Figure 2.6: Design of ALU in Amber 23

The alu_function[6:0] is the control signals for the ALU. It make up from {swap_sel, not_sel, cin_sel[1:0], cout_sel, out_sel[2:0]}.

Pin	Description			
swap_sel	Swap between input a and b.			
not_sel	1'b0: use original b, 1'b1: use inverted b			
cin_sel[1:0]	Select carry in for the full adder. (1, 0, cpsr_carry, cpsr_carry')			
cout_sel	Select carry out for the ALU.			
	1'b0 : From full adder, 1'b1 from barrel_shift_carry			
Out_sel[2:0]	Select the output for ALU.			
	3'd0: b			
	3'd1: adder_out			
	3'd2: b_zero_extend_8			
	3'd3: xor_out			
	3'd4: or_out			
	3'd5: and_out			

Table 2.3: pin description of Amber's ALU

2.2.2 Storm core

The Storm core processor project is done by Stephen Nolting which obtains from <u>www.opencores.org</u>. Same with Amber 23 & 25, Storm also follow ARMv2 instruction architecture with 2 separate caches (Instruction & Data). It is an 8-stage pipelined processor which is instruction access (IA), instruction fetch (IF), instruction decode (ID), operand fetch (OF), multiplication/ shift (MS), execution (EX), memory access (MA), and data write back (WB).

PROESSOR	AMBER 23	AMBER 25	STORM	
Opcode and function	ARMv2	ARMv2	ARMv2	
compatible to				
Software compatible?	Yes	Yes	Yes	
Pipelined	Yes	Yes	Yes	
Number of pipelined stage	3	5	8	
Number of cache needed	1	2	2	
		(Instruction and	(Instruction and	
		memory)	memory)	
Little /big endian	Little	Little	Both	
Wishbone bus system	32-bits	32-bits	32-bits	
FPGA implement	Xilinx SP605	Xilinx SP605	80 MHz on	
	Spartan-6 FPGA	Spartan-6 FPGA	Xilinx Spartan-3	
	board	board	XC3S400A	

 Table 2.4: Comparison among Amber 23, Amber 25 & Storm core

2.2.3 ARM7 core

ARM7 core is a 3-stages pipelined processor (Fetch - IF, Decode - ID, Execute - EX) introduced by ARM from 1994 and update periodic. The ARM 7 operate on 32-bits address space. It is compatible to ARMv3 ISA.

Features:

- Register bank:
 - 1. 2 read ports, 1 write port, access any register.
 - 2. 1 additional read and write port for r15 (pc).
- Barrel shifter
 - 1. Shift or rotate the operand by any number of bits.
- ALU.
- Address register and increment.
- Data registers
 - 1. Hold data passing to and from memory
 - 2. Instruction decoder and control

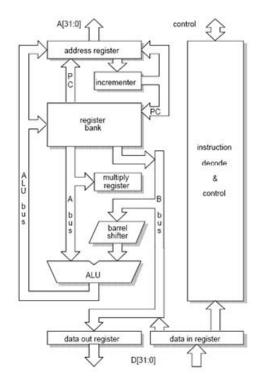
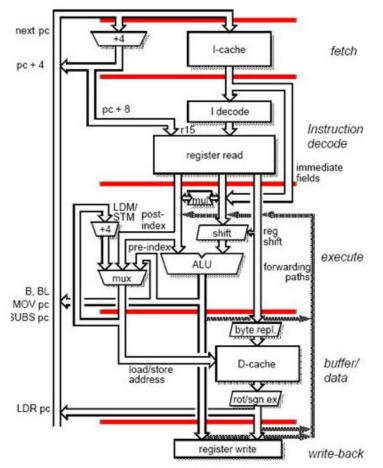


Figure 2.7: data path of ARM 7


BIT (Hons) Computer Engineering Faculty of Information and Communication Technology (Perak Campus), UTAR

2.2.4 ARM9 core

ARM 9 core is 5 stages pipelined processor (instruction fetch-IF, instruction decode-ID, execute-EX, memory access – MEM, data write back - WB). Same with ARM 7, it operate on 32 bits addresses. It is compatible to ARMv5 ISA.

Fetures :

- 1. Register bank:
 - 3 source operand read ports and 2 write port.
- 2. Inclusion of address incrementing hardware (for multiple load and store instructions)
- 3. Memory (Havard architecture)
 - Sepearte instruction and data memory (cache)

4. Higher clock frequency (more pipelined stage)

Figure 2.8: data path of ARM 9

In ARM 9 model, data forwarding is allowed to improve the performance. The result are passed between stages as soon as they are available. E.g

ADD r2, r3, r4 //r2 = r3 + r4 ADD r1, r2, r5 //r1 = r2 +r5

The r2 value is immediately forwarded to next operation as soon as it compete the ADD operation by ALU to prevent data Hazard. But for load Hazard problem the data is only ready at the last stage so either insert a NOP or stall the instruction until the data is ready.

2.2.5 ARM10TDMI

ARM10TDMI is a 6 stages pipelined processor. The additional state compared to ARM9 is the issue state (ISS). In issue state, the processor is interpret the instruction fetched from i-cache and determines whether it is an ARM or Thumb instructions. Besides that, ARM10TDMI had hardware to predict branch, which will operate at fetch state to determine the PC value after fetch a branch instruction.

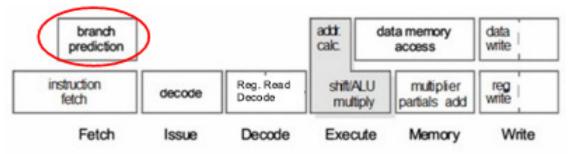


Figure 2.9: pipelined stages of ARM 10 DTMI

2.2.6 ARM11 Core

				Shift	ALU	Saturate	
Fetch 1	Fetch 2	Decode	Issue	MAC 1	MAC 2	MAC 3	Write back
				Address	Data Cache 1	Data Cache 2	

ARM 11 is an 8-stages pipelined processor. The stages are shown in the figure 2.11.

After the issue stage, there is 3 group of different hardware to handle different instructions. The block in orange color is the stage where shift or integer arithmetic instructions go through. While the blocks in blue handle multiplication instructions and block in red will be load/store operation. The ARM11 can maximum handle 4 instructions simultaneously, which is branch prediction, multiplication, ALU operation related instructions and data transfer instructions, which had a much higher performance compared to other ARM core. It also supports data forwarding.

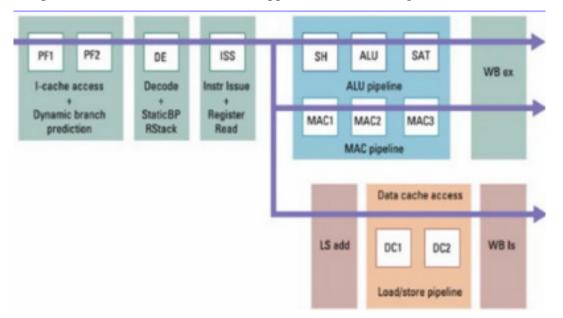


Figure 2.11: grouped pipelined stsges of ARM 11

Figure 2.10: pipelined stages of ARM 11

Features	ARM 7	ARM 9	ARM 10	ARM 11
Pipeline length	3	5	6	8
Java Decode		(ARM9 26 EJ)	(ARM10 26 EJ)	Yes
Branch	No	No	Static	Dynamic
Prediction				
Independent	No	No	Yes	Yes
Load/Store unit				
Concurrency	None	None	ALU, MAC, LSU	ALU, MAC,
				LSU
Architecture	ARMv3	ARMv5TE /	ARMv5TE	ARMv6
		ARMv4T		
Clock Speed	< 130 MHz	130 MHz ~ 200	300 MHz	1 GHz
		MHz		

 Table 2.5: Comparison among ARM7, ARM9, ARM10 & ARM11

Chapter 3 – Project Objective

3.1 Project Scope

The project scope is to modeling and complete verification of the pipelined 32-bit ARM processor, which will be, used as a platform for hardware IP-based research by using Verilog HDL (Hardware Description Language).

The microprocessor model operates on 32-bits data and address. The Instruction Set Architecture used in this project is ARMv2. It consists of three main blocks: control unit, data path unit and memory unit, which will model in Verilog.

After the modeling process, the model will be undergoing verification process to ensure the functionalities and features of the processor. A complete testbench is created to test the functionalities of the whole processor and instructions implemented.

3.2 Objective

The main objective is to design a 32-bits ARM pipelined processors. The sub-objective showed below need to be complete in order to achieve the main objective

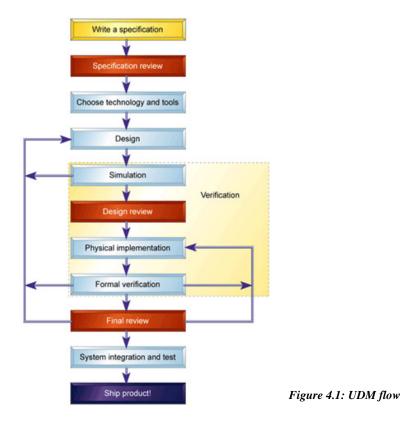
- Chip specification: To design an ARM microprocessor which compatible to ARMv2 instruction set architecture (ISA).
- Microarchitecture requirement: To develop an ARM microprocessor, which supports integer arithmetic, multiplication with Booth's algorithm, data-transfer operation, and program flow control instruction.
- RTL: To develop a complete set of Verilog modules that fulfilled and described the microarchitecture requirements above.
- Verification: To create a complete test bench that can verify the all functionalities and instructions implemented to the microprocessor might need remodel of RTL if expected output didn't achieve at the end of verification.

To ensure the processor can be further expand with other research related to ARM architecture, the verification and redesign might need to repeat several time to debug and achieve 100% functionalities.

3.3 Significance and Impacts

The ARM microprocessor will allow researcher to change the micro-architecture based in ARM architecture for experimentation of new design. The microprocessor IP is cheap and affordable with complete documentation. The development environment will allow rapid modeling and verification of experimental hierarchy such as memory, specialized data path, peripherals and etc.

Chapter 4 - Methodology and Technologies Involved


4.1 Design Methodology

Design Methodologies help us to carry out the design work successfully with a set of guidelines. Design methodologies ensure the following (Wolf.W, 2004)

4.2 Universal Design Methodology

Universal Design Methodology (UDM) is a structured method for planning and designing hardware. UDM can be used to design ASICs, FPGAs, CPLDs, and PCBs, in large or small organizations. While some differences occur in designing different hardware types, the basic technique remains the same. The UDM can help:

- Design a that's free from manufacturing defects, that work reliably over device's lifetime and that functions correctly in your system.
- Using least amount of time and resource during design.
- Creating a better schedule on the project.

BIT (Hons) Computer Engineering Faculty of Information and Communication Technology (Perak Campus), UTAR

Specification and design

The specification need to include:

- External block diagram showing how the device fit into the system.
- Internal block diagram showing each major functional section.
- Description of I/O pins, including output drive capability and input threshold levels
- Timing estimates, including setup and hold times for inputs pins, propagation times for output pins, and clock cycle time.
- Test procedure.

As shown in the diagram after write a specification, a review need to be done in order to know anything being left out or wrong. All functionality decisions must be refer to the specification returned and all subsequent change need to be entered to the specification.

Verification

Verification involved the following stages: simulation, design review, physical implementation, and formal verification. During the simulation, we might need to redesign and repeat the simulation to obtain correct functionality described in specification in earlier state.

After finished the design and simulation, another design review need to be done to make sure whole functionalities include and the accuracy.

Physical implementation stage involves synthesis and place and route but result in a pattern of bits used to program the device.

In formal verification, the physical implementation is checked to ensure the design fully simulated is functionally equivalent to physical implementation of the design.

Completion

The design should be formality with all the steps followed, the final should be a simple sign off. However, the system testing is necessary to ensure that all part of the system work correctly.

4.3 Development Tools

Since in this project will be design by using Verilog HDL therefore the stimulation tool that able to compile and simulate Verilog syntax is necessary. The available and price of the simulation tools are main factor to decide which to be choose. There is a few examples of Verilog development tools and comparison among them:

Simulator	ISE Simulator	ModelSim	Icarus Verilog		
Company /	Xilinx	Mentor Graphics	Stephen Williams		
Author					
Language Support	VHDL-93, Verilog	VHDL, Verilog	Verilog 2001,		
	2001	2001, System	limited Verilog		
		Verilog 2005	2005		
Availability for	No	Yes (For student	Yes		
free		version)			

 Table 4.1: Comparison among Development Tools

ModelSim is chosen from the 3 development since it is available for free and support more language compare to other.

Beside to verify the ARM assembly program, ARMSim (ARM assembly simulator) is used. It will execute the ARM assembly program based on ARM7TDMI processor. ARMSim was developed by Department of Computer Science at the University of Victoria, in Victoria, British Columbia, Canada. It was choosing to use since it was free.

4.4 Design Hierarchy

The module is break into smaller module (chip \rightarrow unit \rightarrow block) and each partitioned block and functional verification.

4.5 Implementation Issues and Challenges

1. Data Hazzard:

Happen when there is a data dependency within 5 clock cycle (number of pipelined stages). The result of single assembly instruction (not include multiplication instruction) need 5 clock cycles to write back into register file in a pipelined data path (IF, ID, EX, MEM, WB).

There are 3 situations:

• Read after write (RAW), e.g.

ADD R1, R2, R3 @EX MOV R0, R1 @ID

The R1 is read during ID stage after ADD R1, R2, R3 instruction where still at EX stage of data path.

• Write after read (WAR), e.g.

ADD R1, R2, R3 @EX SUB R2, R3, R4 @ID

The R2's value is going to change at SUB R2, R3, R4 but the data is read 1clock cycle earlier before it occurs.

• Write after write (WAW), e.g.

ADD R1, R2, R3 @EX ADD R1, R4, R5 @ID

The R1 is going to write by 2 instructions, only the result of latest instruction should store in R1.

For, WAR and WAW only will cause a Data Hazards problem when the assembly program executes in concurrent environment. However, this project is no doing a concurrent environment processor therefore only RAW will be the problem to solve.

To solve the problem an extra block (Data forwarding control block) need to implement in the data path to control the data flow.

E.g.						
	1st cycle	2nd cycle	3rd cycle	4th cycle	5th cycle	6th cycle
ADD R1, R2, R3	IF	, ID	EX	MEM	WB	
MOV R4, R1		IF	, ID	EX	MEM	, WB
ADD, R5, R1, R1			IF	, ID		MEM
CMP R6, R1				IF	, ID	

Figure 4.2: Pipeline stage of instruction in different cycle (1)

Note: When execute CMP R6, R1 the new value already wrote to the R1 (half cycle), therefore there is no need data forwarding.

2. Bypassing backwards in time:

There is a bypassing backwards problem when the data from memory is use as operand in next instruction, e.g.

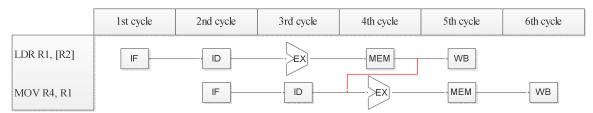


Figure 4.3: Pipeline stage of instruction in different cycle (2)

The data from the memory is not ready yet. Data only read from memory at the end of 4th clock cycle but the data is needed at early of 4th clock cycle. Therefor a stall added with the implementation of interlock block.

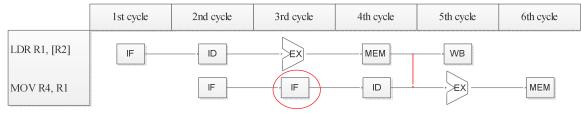


Figure 4.4: Pipeline stage of instruction in different cycle (2)

The instruction delayed 1 clock cycle to complete.

3. PC as destination register for Data-processing instruction:

PC is one of the 16 registers in the register file therefor it also can use as destination of Data-processing instruction such as MOV PC, LR. This make four NOP needed to insert after the instruction until the PC being updated e.g.

MOV PC, LR

NOP

NOP

NOP

NOP

To solve the problem, we can update the PC after ID stage as long as no need ALB (EX), and data from memory (MEM). The instruction which can be improve are only MOV and MVN (without LSL, LSR, ASR and ROR)

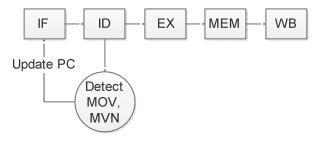


Figure 4.5: MOV and MVN detector

Note: MOVS PC is not supposed to use in User mode. It will affect CPSR and SPSR.

4.6 Schedule and timeline

	FY	P1 (I	May	2016)										FY	P2 (J	an 2	017)									
Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1	2	3	4	5	6	7	8	9	10	11	12	13
Background Study						_			_																		
Specification of			_																								
design																											
Design Verilog module																											
Develop verification code																											
Verify the design																											
Re-design of Verilog module (if needed)																											
UART implementation																											
Project proposal/ result report																											

Table 4.3: Gantt chart for project 1 & 2.

Chip level design: RISC32 processor

5.1 Feature

	RISC32
Dummy Instruction Cache (KB)	16
Dummy Data Cache (KB)	16
Data width (bits)	32
Instruction width (bits)	32
General Purpose Register	16
Special Purpose Register	Status flag registers
Pipelined Stage	5
Hazard Handling	Yes
Interlock Handling	Yes
Data Dependency Forwarding	Yes
Branch Prediction	No
Multiplication (size of multiplier and	No
multiplicand)	
Branch Delay Slot	Not supported
Instruction supported	27

Table 5.1 RISC32 features

5.2 Naming Convention

Instantiation	- [lvl][abbr. mod. name]
	- E.g. udp \rightarrow [unit][data path]
Pin	- [lvl][Type][abbr. mod. name]_[pin name]
	- E.g. uidp_imm \rightarrow [unit][input][data path]_[immediate]
Wire	- [lvl][abbr. mod. name]_[stage]_[pin name]
	- E.g. udp_ex_out \rightarrow [unit][data path]_[EX stage]_[ALU output]
Pipeline register	- [lvl][abbr. mod. name]_[pre-stage][post-stage]_[pin name]
	- E.g. udp_ifid_instr \rightarrow [unit][data path]_[IF stage][ID stage]
	_[instruction's contain]

Abbreviation:

	Description	Case	Available	Remark
lvl	Level	lower	c : Chip u : Unit b : Block	
abbr. mod. name	Abbreviated module name	lower all	any	e.g. dp – data path
type	Pin type	lower	o : output i : input r : register w : wire f- :function	
stage	Stage name	lower all	if, id, ex, mem, wb	Only for data path module
pin name	Pin name	lower all	any	Several word separate by "_"
pre-stage	Stage name before pipeline		if, id, ex, mem, wb	
Post-stage	Stage name after pipeline		if, id, ex, mem, wb	

Table 5.2 Naming Convention

5.3 RISC32 processor

5.3.1 Processor Interface

Figure 5.1 Block diagram for RISC32 processor

5.3.2 I/O Pin Description

Registered : No	
-	
ironize purpose.	
Registered : No	
	ironize purpose.

Table 5.3: RISC32 Input Pins Description

Registered : Yes Pin name : cocd_TxD Pin class : data signal Source \rightarrow Destination : crisc \rightarrow external device Bit size : 1-bit Active : -Pin Function: Data transmission from UART to external device

Table 5.4: RISC32 Output Pins Description

5.4 System Register

5.4.1 General Purpose Register

Width	: 32-bit

Size : 16 units

Retrieving method : 4-bit address as index

Name	Address	Use	Preserved Across A Call?	
R0	0	Argument/ return value/ temporary variable	No	
R1-R3	1 - 3	Argument/ temporary variable	No	
R4-R11	4 – 11	Saved variable	Yes	
R12	12	Temporary variable	No	
R13 (SP)	13	Stack pointer	Yes	
R14 (LR)	14	Link register	Yes	
R15 (PC)	15	Program counter	No	

Table 5.5 Register file

5.4.2 Special Purpose Register

Width : 1-bit

Size : 4-units

Name	Use			
Carry Flag (C)	Carry out of the ALB			
Overflow Flag (V)	Set when there is an overflow			
Zero Flag (Z)	Set when the result of ALB is zero			
Negative Flag (N)	Set when the result of ALB is negative			
Table 5 COntras Eliza Destadas				

Table 5.6Status Flag Register

5.5 Instruction Format

The ARM instruction had classified to 3 general formats:

- data-processing instruction format
- memory instruction format
- Branch instruction format.

The figure 5.2, 5.3, and 5.4 show the differences between instruction formats:

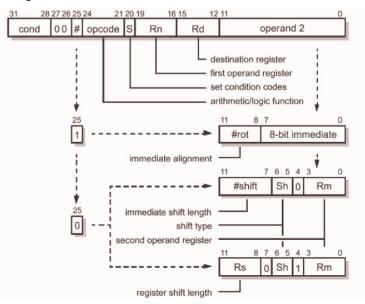


Figure 5.2: Data-processing instruction format

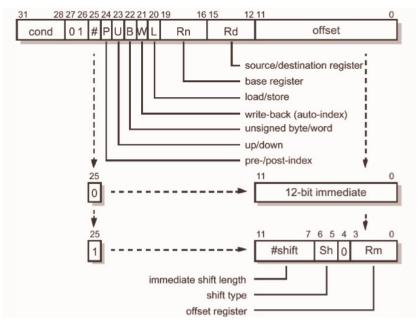


Figure 5.3: Memory instruction format

Figure 5.4: Branch instruction format

5.6 Addressing Mode

- Instruction field repetitive
 - ♦ I (instruction[25]) :
 - If 1'b1: indicate immediate addressing mode
 - If 1'b0: indicate register addressing mode
 - cond (instruction[31:28]): determine whether to execute the instruction or not depend on the status flag.

� op (instruction[27:26]): 2'b 00 → Data-processing instruction 2'b 01 → Memory instruction

2'b $10 \rightarrow$ Branch instruction

- funct/cmd (instruction[24:21]): Indicate which logical or arithmetic instruction to be perform.
- S (instruction [20]): Update the status flag if 1'b1 else hold the status flag.
- ♦ Rn (instruction [19:16]): 1st operand register address.
- ✤ Rd (instruction [15:12]): Destination register address.
- ✤ rot (instruction [11:8]): amount of rotate.

imm_8 [7:0] (instruction [7:0]): 8-bit immediate. (data-processing instruction)

Rotation value rot	32-bit immediate value
4'h0	{ 24'h0, imm_8[7:0]}
4'h1	{ imm_8[1:0], 24'h 0, imm_8[7:2] }
4'h2	{ imm_8[3:0], 24'h 0, imm_8[7:5] }
4'h3	{ imm_8[5:0], 24'h 0, imm_8[7:6] }
4'h4	{ imm_8[7:0], 24'h 0}
4'h5	{ 2'h0, imm_8[7:0], 22'h0}
4'h6	{ 4'h0, imm_8[7:0], 20'h0}
4'h7	{ 6'h0, imm_8[7:0], 18'h0}
4'h8	{ 8'h0, imm_8[7:0], 16'h0}
4'h9	{ 10'h0, imm_8[7:0], 14'h0}
4'h10	{ 12'h0, imm_8[7:0], 12'h0}
4'h11	{ 14'h0, imm_8[7:0], 10'h0}
4'h12	{ 16'h0, imm_8[7:0], 8'h0}
4'h13	{ 18'h0, imm_8[7:0], 6'h0}
4'h14	{ 20'h0, imm_8[7:0], 4'h0}
4'h15	{ 22'h0, imm_8[7:0], 2'h0}

Table 5.7: Encoded immediate value

imm_12 (instruction [11:0]): 12-bit immediate value.

- ✤ Rs (instruction [11:8]): 3rd operand register address
- ♦ sh (instruction [6:5]): $2'b 00 \rightarrow LSL$

$$2'b 01 \rightarrow LSR$$

 $2'b 10 \rightarrow ASR$
 $2'b 11 \rightarrow ROR$

- ✤ Rm (instruction [4:0]): 2nd operand register address
- shamt (instruction [11:7]): shift amount (1-31)
- ✤ P (instruction [24]): Post index or pre-index
- ♦ U (instruction [23]): minus or plus offset
- ✤ B (instruction [22]): Byte (if 1'b1)
- ♦ W (instruction [21]): Word (if 1'b1)
- ✤ L (instruction [20]): Load if 1'b1 else Store (memory instruction)
- ✤ Offset (instruction [23:0]): 24-bit value of offset
- ◆ L (instruction [24]) (program flow instruction):
 - If 1'b1: store PC+4 to Link Register
 - If 1'b0: hold Link Register's value.
- *Immediate Addressing*, where operand is constant within the instruction itself (show in figure 5.5). E.g. (Note: when sh = 2'b 11, shifter will perform rotation)
 - ADD Rd, Rn, #16
 - MOV Rd, #16

• *Register Addressing*, where operand is a register (show in figure 5.6), the 2nd can be shift according value stored in Rs register or a 5-bit immediate. E.g.

0	MOV Rd, Rm, LSR Rs	@ sh \rightarrow LSR \rightarrow 2'b01
0	MOV Rd, Rm, LSR #4	@ sh \rightarrow LSR \rightarrow 2'b01
0	MOV Rd, Rm	@ sh default to LSL \rightarrow 2'b00, shamt \rightarrow 0

- *Based Displacement Addressing*, where operand is at the memory location whose address is value stored in a register (show in figure 5.7). E.g.
 - LDR Rd, [Rn]
- *Register indexed displacement addressing with register scaling*, where the operand is at the memory location whose address is the sum of a register with base address (Rn) and register with offset address (Rm). The offset can be shift depend on the instruction, e.g.
 - LDR Rd, [Rn, Rm, LSL #2] @ sh \rightarrow LSL \rightarrow 2'b00
 - STR Rd, [Rn, Rm] @ sh default to LSL \rightarrow 2'b00, shamt \rightarrow 0
- *Register indexed displacement addressing with immediate scaling*, where the operand is at the memory location whose address is the sum of a register with base address (Rn) and signed extend immediate value of offset address which carry by instruction itself. E.g.
 - o LDR Rd, [Rn, #4]
- *Pseudodirect Addressing*, where the jump address is the 24-bit of the instruction concatenated with the upper bits of the PC (show in figure 5.10). E.g
 - \circ BL label @ label's target address $\rightarrow 0xff fff0$

5.7 Instruction Set and Description

Operation		Assembler	Mach	ine La	ngua	ige					S update	Register Transfer notation
			31:28 Cond	27:26 op	25 I	24:21 cmd	20 S	19:16 Rn	15:12 Rd	11:0 Src2	(condition flag)	
Add	Add	ADD{S} Rd, Rn, <operand2></operand2>	1110	00	А	0100	Α	Rn	Rd		NZCV	$Rd \leftarrow Rn + Operand2$
	With carry	ADC{S} Rd, Rn, <operand2></operand2>	1110	00	А	0101	А	Rn	Rd		NZCV	$Rd \leftarrow Rn + Operand2 + C$
Subtract	Subtract	SUB{S} Rd, Rn, <operand2></operand2>	1110	00	А	0010	А	Rn	Rd		NZCV	$Rd \leftarrow Rn - Operand2$
	With carry	SBC{S} Rd, Rn, <operand2></operand2>	1110	00	А	0110	А	Rn	Rd		NZCV	$Rd \leftarrow Rn - Operand2 - C'$
	Reverse subtract	RSB{S} Rd, Rn, <operand2></operand2>	1110	00	А	0011	А	Rn	Rd		NZCV	Rd ← Operand2 – Rn
	Reverse subtract with carry	RSC{S} Rd, Rn, <operand2></operand2>	1110	00	А	0111	А	Rn	Rd		NZCV	$Rd \leftarrow Operand2 - Rn - C'$
Logical	Test	TST Rn, <operand2></operand2>	1110	00	А	1000	1	Rn	XXXX		NZC	Set flags based on Rn & Src2
	Test equivalence	TEQ Rn, <operand2></operand2>	1110	00	А	1001	1	Rn	xxxx		NZC	Set flags based on Rn ^ Src2
	Bitwise AND	AND{S} Rd, Rn, <operand2></operand2>	1110	00	А	0000	А	Rn	Rd		NZC	Rd ← Rn & Operand2
	Bitwise XOR	EOR{S} Rd, Rn, <operand2></operand2>	1110	00	А	0001	А	Rn	Rd		NZC	$Rd \leftarrow Rn \wedge Operand2$
	Bitwise OR	ORR{S} Rd, Rn, <operand2></operand2>	1110	00	А	1100	А	Rn	Rd		NZC	$Rd \leftarrow Rn \mid Operand2$
	Bitwise Clear	BIC{S} Rd, Rn, <operand2></operand2>	1110	00	А	1110	А	Rn	Rd		NZC	$Rd \leftarrow Rn \& (\sim Operand2)$
Compare	Compare	CMP Rn, <operand2></operand2>	1110	00	А	1010	1	Rn	XXXX		NZCV	Set flags based on Rn - Src2
	Negative	CMN Rn, <operand2></operand2>	1110	00	А	1011	1	Rn	xxxx		NZCV	Set flags based on Rn + Src2
Move	Move	MOV{S} Rd, <operand2></operand2>	1110	00	1	1101	Α	Rn	Rd		NZC	Rd ← Operand2
data	Not	MVN{S} Rd, <operand2></operand2>	1110	00	Х	1111	А	Rn	Rd		NZC	$Rd \leftarrow \sim (Operand2)$

Table 5.8 Data-processing Instruction Set and Description

Note: A – available for both 1 and 0. Refer to table 5.8.

Operand 2	I (instruction[25])		Ins				RTL	Addressing mode
		11 10 9 8	7	6 5	4	3 2 1 0		
#4	1	0 (rot)		4 (8-t	oit in	nmediate)	Operand $2 = 4$	Immediate addressing
Rm	0	0 (shamt)		00 (sh)	0	Rm	Operand 2 = Rm	Register addressing(2)
Rm, LSL #shamt	0	shamt		00 (sh)	0	Rm	Operand 2 = Rm << shamt	Register addressing(2)
Rm, LSR #shamt		shamt		01 (sh)			Operand 2 = Rm >> shamt	
Rm, ASR #shamt		shamt		10 (sh)			Operand 2 = Rm >> shamt	
Rm, ROR #shamt		shamt		11 (sh)			Operand $2 = Rm$ ror shamt	
Rm, LSL Rs	0	Rs	0	00 (sh)	1	Rm	Operand 2 = Rm << Rs	Register addressing(1)
Rm, LSR Rs				01 (sh)			Operand 2 = Rm >> Rs	
Rm, ASR Rs				10 (sh)			Operand 2 = Rm >>> Rs	
Rm, ROR Rs				11 (sh)			Operand 2 = Rm ror Rs	

Table 5.9 Operand 2 for data processing instruction

Operation		Assembler	Mach	ine La	ngua	ıge						S update Register Transfer notation			
			31:28 cond	27:26 op	25 Ī	24 P	23 U	22 B	21 W	20 L	19:16 Rn	15:12 Rd	11:0 Src2	(condition	
<u>a</u>	Post-index	STR Rd, [Rn], + Src2	1110	01	А	0	1	0	0	0	Rn	Rd		flag)	Mem [Rn] ← Rd. Rn←Rn+Src2
Store	Post-index	, .		-		-	1	-	~	÷				-	
register	0.00	STR Rd, [Rn], – Src2	1110	01	A	0	0	0	0	0	Rn	Rd			$\operatorname{Mem}\left[\operatorname{Rn}\right] \leftarrow \operatorname{Rd}, \operatorname{Rn} \leftarrow \operatorname{Rn} - \operatorname{Src2}$
10810101	Offset	STR Rd, [Rn, + Src2]	1110	01	A	1	1	0	0	0	Rn	Rd			$\operatorname{Mem} [\operatorname{Rn} + \operatorname{Src2}] \leftarrow \operatorname{Rd}$
		STR Rd, [Rn, – Src2]	1110	01	A	1	0	0	0	0	Rn	Rd			Mem [Rn - Src2] ← Rd
	Pre-index	STR Rd, [Rn, + Src2]!	1110	01	А	1	1	0	1	0	Rn	Rd			Rn←Rn+Src2, Mem [Rn] ← Rd
		STR Rd, [Rn, – Src2]!	1110	01	А	1	0	0	1	0	Rn	Rd			$Rn \leftarrow Rn$ -Src2, Mem [Rn] $\leftarrow Rd$
Load	Post-index	LDR Rd, [Rn], +Src2	1110	01	А	0	1	0	0	1	Rn	Rd		-	$Rd \leftarrow Mem [Rn], Rn \leftarrow Rn+Src2$
• ,		LDR Rd, [Rn], – Src2	1110	01	А	0	0	0	0	1	Rn	Rd			$Rd \leftarrow Mem [Rn], Rn \leftarrow Rn-Src2$
register	Offset	LDR Rd, [Rn, + Src2]	1110	01	А	1	1	0	0	1	Rn	Rd			$Rd \leftarrow Mem [Rn + Src2]$
		LDR Rd, [Rn, - Src2]	1110	01	А	1	0	0	0	1	Rn	Rd			$Rd \leftarrow Mem [Rn - Src2]$
	Pre-index	LDR Rd, [Rn, + Src2]!	1110	01	А	1	1	0	1	1	Rn	Rd			$Rn \leftarrow Rn + Src2, Rd \leftarrow Mem[Rn]$
		LDR Rd, [Rn, - Src2]!	1110	01	А	1	0	0	1	1	Rn	Rd			$Rn \leftarrow Rn$ -Src2, $Rd \leftarrow Mem[Rn]$
Store	Post-index	STRB Rd, [Rn], + Src2	1110	01	А	0	1	1	0	0	Rn	Rd		-	Mem [Rn] \leftarrow Rd _{7:0} , Rn \leftarrow Rn+Src2
		STRB Rd, [Rn], - Src2	1110	01	А	0	0	1	0	0	Rn	Rd			Mem [Rn] ← Rd _{7:0} , Rn←Rn-Src2
register	Offset	STRB Rd, [Rn, + Src2]	1110	01	А	1	1	1	0	0	Rn	Rd			$Mem [Rn + Src2] \leftarrow Rd_{7:0}$
byte		STRB Rd, [Rn, - Src2]	1110	01	А	1	0	1	0	0	Rn	Rd			Mem [Rn - Src2] \leftarrow Rd _{7:0}
-)	Pre-index	STRB Rd, [Rn, + Src2]!	1110	01	А	1	1	1	1	0	Rn	Rd			Rn←Rn+Src2, Mem [Rn] ← Rd _{7:0}
		STRB Rd, [Rn, - Src2]!	1110	01	А	1	0	1	1	0	Rn	Rd			Rn←Rn-Src2, Mem [Rn] ← Rd _{7:0}
Load							1							-	
•	Post-index	LDRB Rd, [Rn], +Src2	1110	01	А	0	1	1	0	1	Rn	Rd			$Rd \leftarrow Mem [Rn]_{7:0}, Rn \leftarrow Rn + Src2$
register		LDRB Rd, [Rn], - Src2	1110	01	А	0	0	1	0	1	Rn	Rd			$Rd \leftarrow Mem [Rn]_{7:0}, Rn \leftarrow Rn-Src2$
byte	Offset	LDRB Rd, [Rn, + Src2]	1110	01	А	1	1	1	0	1	Rn	Rd			$Rd \leftarrow Mem [Rn + Src2]_{7:0}$
2		LDRB Rd, [Rn, - Src2]	1110	01	А	1	0	1	0	1	Rn	Rd			$Rd \leftarrow Mem [Rn - Src2]_{7:0}$
	Pre-index	LDRB Rd, [Rn, + Src2]!	1110	01	А	1	1	1	1	1	Rn	Rd			Rn←Rn+Src2, Rd ← Mem[Rn] 7:0
		LDRB Rd, [Rn, - Src2]!	1110	01	А	1	0	1	1	1	Rn	Rd			$Rn \leftarrow Rn$ -Src2, $Rd \leftarrow Mem[Rn]_{7:0}$

Table 5.10 Memory instruction set and description

Note: A – available for both 1 and 0. Refer to table 5.10

Source 2 (Src2)	Ī(instruction[25])		Instruction bits										RTL	Addressing mode		
		11	11 10 9 8 7 6 5 4 3 2 1 0						2	1	(
none	0		0 (12-bit immediate)								-		Src2 = 0(none)	Based Displacement Addressing		
#4	0		4 (12-bit immediate)								Src2 = 4	Register indexed displacement				
																addressing with immediate scaling
Rm	1		0 (s	shan	nt)		00	(sh)	0]	Rm			Src2 = Rm	Register indexed displacement
Rm, LSR #shamt	1		sł	nam	t		01	(sh)	0]	Rm			Src2 = Rm >> shamt	addressing with register scaling

Table 5.11 Source 2 for Memory instruction

Operation	n	Assembler	Mac	hine I	Langua	ge	S update (condition flag)	Register Transfer notation
			31:28 cond	27:26 op	25:24 1L (funct)	23:0 Imm24		
Branch	Without link	B <address> 0xff0000</address>	1110	10	10	0xff0000 (24- bits immediate word address)	-	PC←(PC+8)+0xff0000<<2
	With link	BL <address> 0xff0000</address>	1110	10	11	0xff0000 (24-bit immediate word address)		LR←(PC+8)-4; PC←(PC+8)+0xff0000<<2

Table 5.12 Branch Instructions Set and Description

Note: the addressing mode of branch is pseudodirect addressing.

Condition	Instruction	Meaning	Condition flag
(Instruction	extension		state to execute
[31:28])			instruction
4'h0	Eq	Equal	Z set
4'h1	Ne	Not equal	Z clear
4'h2	cs / hs	Carry set / unsigned higher or same.	C set
4'h3	cc / lo	Carry clear / unsigned lower	C clear
4'h4	Mi	Minus / negative	N set
4'h5	Pl	Plus / positive or zero	N clear
4'h6	Vs	Overflow	V set
4'h7	Vc	No overflow	V clear
4'h8	Hi	Unsigned higher	C set and Z clear
4'h9	Ls	Unsigned lower or same	C clear or Z set
4'h10	Ge	Signed greater than or equal	N == V
4'h11	Lt	Signed lesser than	N != V
4'h12	Gt	Signed greater than	Z == 0, N == V
4'h13	Le	Signed lesser than or equal	Z == 1 or N != V
4'h14	Al	Always (unconditional)	-
4'h15	-	Invalid condition	- or same.

Table 5.13 condition encoding

5.8 Memory Map

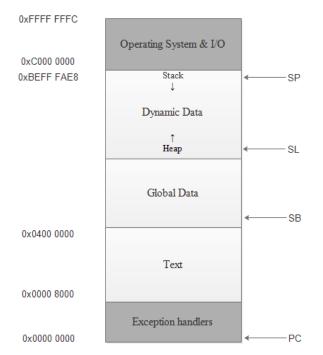


Figure 5.11: Memory Map

- Text Segment
 - Store machine language program.
 - Also known as read only (RO) segment.
- ✤ Global Data Segment
 - Store global data which can access by all functions in a program.
 - Also known as read/write (RW) segment.
 - Access using static base (SB) register that point to the start of global segment.
 - SB is conventionally store in R9.
- ✤ Dynamic Data Segment
 - ➢ Holds stack and heap.
 - Stack pointer (SP) point to top of stack, normally grow downward.
 - > SP store in R13
 - > Heap store data allocate by program during runtimes, grow upward.
- Exception Handler, OS, and I/O Segments
 - Reserved for exception vector table.

5.9 Operating Procedure

- Start the system
- Porting sequence of instruction into cache (instruction or data)
- Reset the system for at least 2 clocks
- While release the reset, the system will automatically run the program inside instruction cache
- Observe the waveform from the development tools.

Chapter 6 – Microarchitecture Specification

6.1 Design hierarchy

Chip partitioning at System	Unit partitioning at	Block partitioning at RTL
level	Architecture level	level (Microarchitecture
		level)
crisc (full chip)	udp (data path)	brf (register file)
		balb_shift (ALU & shifter)
		bitl_ctrl (interlock)
		bfw_ctrl (forwarding)
	ucp (control path)	bmain_ctrl
		binstr_ctrl
	ucache (memory cache)	-
	uuart (UART)	bclkctr
		btx (transmitter)
		brx (receiver)
Structural description	Structural description/	Behavioral description
	Behavioral description	

Table 6.1 Formation of a design hierarchy for crisc microprocessor through top down design methodology

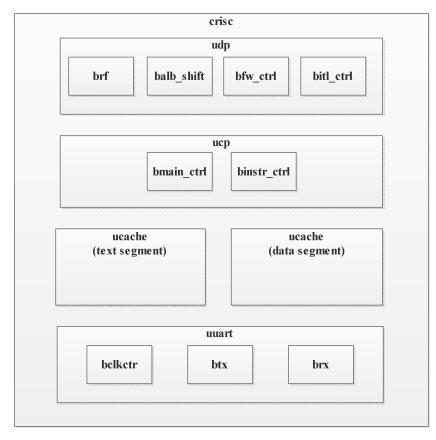


Figure 6.1 crisc architecture and micro-architecture partitioning

6.2 Unit level functional partitioning

Figure 6.2: unit level functional partitioning of crisc

Chapter 7 – Data path of CRISC (Unit & Block level)

7.1 Feature

Include the addressing mode:

- Register addressing
- Based displacement addressing
- Register indexed displacement addressing with register scaling
- Register indexed displacement addressing with immediate scaling
- Pseudo-direct addressing

Combination of ALB, register file, data forwarding control, and interlock control.

- ALB: perform algorithm and logical operation, generate 4 status flags.
- Register file: 16 Register with width of 32-bit.
- Data forwarding control: overcome data hazard and data dependency problem
- Interlock control: overcome data dependency.

Data dependency in status flags:

2 NOP needed for a branch instruction since the status flag registers generate by ALB in EX stage and store the flag generated at next rising edge of clock. To reduce the NOP the branch instruction should done in 2 stages. Both combination output and register value of status register is used based on the timing of branch instruction (conditional) in the ID stage and status flag register will be place on ID stage and here come the data hazard in status flag register.

1 st cycle:		-	
Instruction		Status flag (value in the register)	Status flag (end of EX stage) (combination output)
MOVS R0, #-10	ID	N: 0 C: 0 Z: 0 V: 0	N: 0 C: 0 Z: 0 V: 0
BMI Label	IF		
2 nd cycle: Instruction		Status flag (value in the register)	Status flag (end of EX stage) (combination output)
MOVS R0, #-10	EX	N: 0 C: 0 Z: 0 V: 0	N: 1 C: 0 Z: 0 V: 0
BMI Label	ID]	
MOV R0, #0	IF]	
3 rd cycle:			

Instruction			Status flag (value in the register)	Status flag (end of EX stage) (combination output)
MOVS	R0,	#-10	N: 1 C: 0 Z: 0 V: 0	N: 1 C: 0 Z: 0 V: 0
ME	Μ			
BMI Label		EX		
MOV R0, H	# 0	ID		

Table 7.1: Status flag problem

The status flag only update after the MOVS R0, #-10 pass EX stage. To solve this the status flag in EX stage is forward to ID so branch can be determined in ID stage.

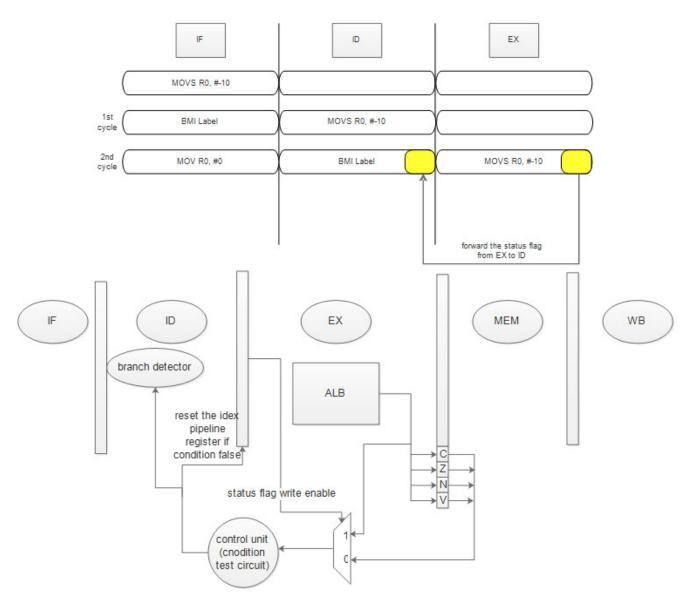


Figure 7.1: Solution for status flag problem.

7.2.1 Block diagram of udp (Data path)

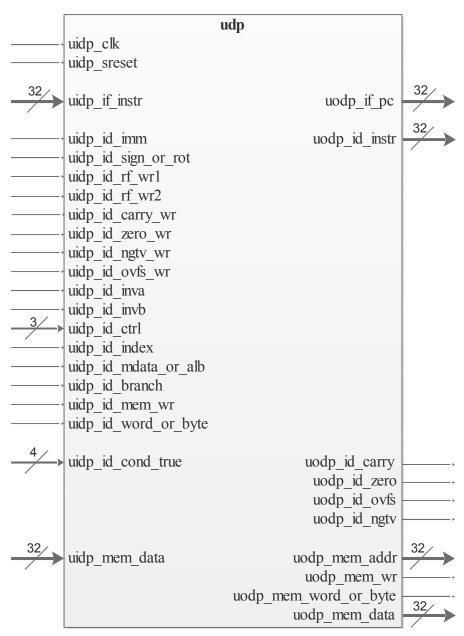


Figure 7.2: block diagram of data path

InputRegistered : NoPin name : uidp_clkRegistered : NoPin class : clock signalSource \rightarrow Destination : external \rightarrow udpBit size : 1-bitActive : Rising edgePin Function: Periodic signal for synchronize purpose.

Pin name : uidp_sreset Registe	red : No
Pin class : control signal	
Source \rightarrow Destination : external \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Reset the data path when active high else perform nor	rmal operation
	red : No
Pin class : data signal	100.110
Source \rightarrow Destination : u_cache \rightarrow udp	
Bit size : 32-bit	
Active : -	
Pin Function: Instruction in text segment with uodp_if_pc as the ad	drace
1 0	red : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high Dia Evention: Active high when the energy of 2 is an immediate class	antina larr
Pin Function: Active high when the operand 2 is an immediate else	active low
1'b 0 : non-immediate operand	
1'b 1: immediate operand	un d. V.
1 0	red : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high when operand 2 will undergoes sign e	xtension else active
low for rotation extension	
1'b 0 : rotation extension operand 2	
1'b 1: sign extension operand 2	
Pin name : uidp_id_rf_wr1 Registered : Ye	2S
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable 1 st write port else active low	
1'b 0 : hold the data	
1'b 1: write the data to 1^{st} write address	
Pin name : uidp_id_rf_wr2 Registered : Ye	2S
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable 2 nd write port else active low	
1'b 0 : hold the data	
1'b 1: write the data to 2 nd write address	
Pin name : uidp_id_carry_wrRegistered : Ye	2S

Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable update carry fl	lag also active low
č 1 i	lag else active low
1'b 0 : hold previous carry flag	
1'b 1: update carry flag	
Pin name : uidp_id_zero_wr	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable update zero fla	ag else active low
1'b 0 : hold previous zero flag	
1'b 1: update zero flag	
Pin name : uidp_id_ngtv_wr	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable update negative	ve flag else active low
1'b 0 : hold previous negative flag	
1'b 1: update negative flag	
Pin name : uidp_id_ovfs_wr	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable update overflo	ow flag else active low
1'b 0 : hold previous overflow flag	
1'b 1: update overflow flag	
Pin name : uidp_id_branch	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to change PC to brand	ch target address else active low for
normal increment of PC (+4)	
1'b 0 : branch to target address	
1'b 1: normal +4 increment of PC	
Pin name : uidp_id_cond_true	Registered : Yes
Pin class : control signal	č
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high if the condition meet els	se active low to skip the instruction

1'b 0 : skip the instruction
1'b 1: execute the instruction
Pin name : uidp_id_invaRegistered : Yes
Pin class : control signal
Source \rightarrow Destination : ucp \rightarrow udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 1 st operand (from Rn) else active low to use
original operand
1'b 0 : use original data from Rn for ALB
1'b 1: invert the data from Rn before going through ALB
Pin class : control signal
Source \rightarrow Destination : ucp \rightarrow udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 2^{nd} operand (from Rm or immediate) else active
low to use original operand
1'b 0 : use original data from Rm or immediate for ALB
1'b 1: invert the data from Rm or immediate before going through ALB
Pin name : uidp_id_ctrlRegistered : Yes
Pin class : control signal
Source \rightarrow Destination : ucp \rightarrow udp
Bit size : 3-bit
Active : -
Pin Function: opcode for the ALB.
3'b 000 : addition
3'b 001: addition with carry
3'b 010: subtraction
3'b 011: subtraction with carry
3'b 100: and AND
3'b 101: or OR
3'b 110: exclusive or XOR
3'b 111: by pass operand b (from Rm)
Pin name : uidp_id_indexRegistered : Yes
Pin class : control signal
Source \rightarrow Destination : ucp \rightarrow udp
Bit size : 1-bit
Active : Active high
Pin Function: decide the address mode for memory read and load
1'b 0 : Post-index
1'b 1 : Pre-index
Pin name : uidp_id_word_or_byteRegistered : Yes
Pin class : control signal
Source \rightarrow Destination : ucp \rightarrow udp
Bit size : 1-bit

Active : Active high		
Pin Function: Active high for load or save a byte of data else active low for a word of		
data		
1'b 0 : word		
1'b 1: byte		
Pin name : uidp_id_mem_wr Registered : Yes		
Pin class : control signal		
Source \rightarrow Destination : ucp \rightarrow udp		
Bit size : 1-bit		
Active : Active high		
Pin Function: Active high to update memory else active low to hold the previous		
memory data.		
1'b 0 : hold previous memory data		
1'b 1: update memory data		
Pin name : uidp_id_mdata_or_alb Registered : Yes		
Pin class : control signal		
Source \rightarrow Destination : ucp \rightarrow udp		
Bit size : 1-bit		
Active : Active high		
Pin Function: Active high for write data from memory to register file else active low		
for write data from ALB to register file.		
1'b 0 : use data from ALB		
1'b 1: use data from memory cache		
Pin name : uidp_if_instr Registered : No		
Pin class : data signal		
Source \rightarrow Destination : u_cache \rightarrow udp		
Bit size : 32-bit		
Active : -		
Pin Function: data in data segment with uodp_mem_addr as the address.		
Table 7.2: Input pins description for data path unit		

Output

Registered : Yes
Registered : Yes
Registered : Yes

Source Destination : udn \ uon	
Source \rightarrow Destination : udp \rightarrow ucp Bit size : 1-bit	
Active : Active high	
6	
Pin Function: Carry flag.	
1'b0 : not carry produce	
1'b1 : carry produce	
Pin name : uodp_id_zero	Registered : Yes
Pin class : address signal	
Source \rightarrow Destination : udp \rightarrow ucp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Zero flag.	
1'b0 : result is non-zero	
1'b1 : result is zero	
Pin name : uodp_id_ovfs	Registered : Yes
Pin class : address signal	
Source \rightarrow Destination : udp \rightarrow ucp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Overflow flag.	
1'b0 : no overflow	
1'b1 : overflow	
Pin name : uodp_id_ngtv	Registered : Yes
Pin class : address signal	C
Source \rightarrow Destination : udp \rightarrow ucp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Negative flag.	
1'b0 : positive	
1'b1 : negative	
Pin name : uodp_mem_addr	Registered : Yes
Pin class : address signal	
Source \rightarrow Destination : udp \rightarrow ucache	
Bit size : 32-bit	
Active : -	
Pin Function: memory address of data in main memory.	
Pin name : uodp_mem_wr	Registered : Yes
Pin class : control signal	Registered . Tes
Source \rightarrow Destination : udp \rightarrow ucache	
Bit size : 1-bit	
Active : Active high	
Pin Function: write the uodp_mem_data to mai	n memory with address
1	-
	lse hold the data in the main
memory. <u>Pin name : uodn mem word or bute</u>	Pagistarad · Vas
Pin name : uodp_mem_word_or_byte	Registered : Yes
Pin class : control signal	

Source \rightarrow Destination : udp \rightarrow ucache	
Bit size : 1-bit	
Active : Active high	
Pin Function: 1'b0 : write or read a word of data	
1;b1 : write or read a byte of data	
Pin name : uodp_mem_data	Registered : Yes
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow ucache	
Bit size : 32-bit	
Active : -	
Pin Function: data to write to main memory.	
Table 7.3: output pins description for data path unit	

7.2.2 Data path block level hierarchy

Figure 7.3: partition of data path unit

The data path unit builds up with

- Register file (brf)
- Arithmetic logic block with shift (balb_shift)
- Data forwarding control (bf_ctrl)
- Interlock control (bitl_ctrl)

7.3 Register file (brf)

7.3.1 Functionality

A set of 32-bits register bank with number of 16 registers. Function of the registers:

Use	
Argument/ return value/ temporary variable	
Argument/ temporary variable	
Saved variables	
Temporary variable	
Stack pointer	
Link register (return address)	
Program counter	
	Argument/ return value/ temporary variableArgument/ temporary variableSaved variablesTemporary variableStack pointerLink register (return address)

Table 7.4: General register

7.3.2 Block Diagram

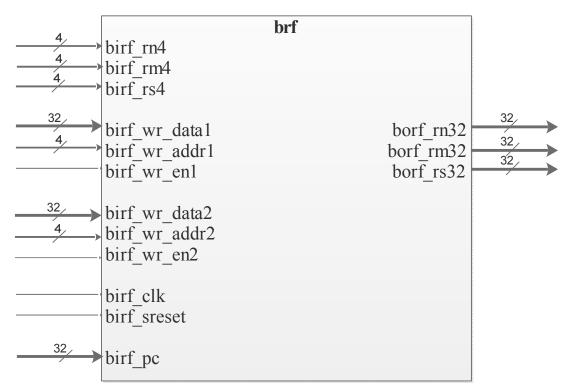


Figure 7.5: block diagram of brf (register file)

Input	
Pin name : birf_rn4	Registered : No
Pin class : address signal	e
Source \rightarrow Destination : udp \rightarrow brf	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rn register.	
Pin name : birf rm4	Registered : No
Pin class : address signal	6
Source \rightarrow Destination : udp \rightarrow brf	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rm register.	
Pin name : birf_rs4	Registered : No
Pin class : address signal	
Source \rightarrow Destination : udp \rightarrow brf	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rs register.	
Pin name : birf_wr_data1	Registered : No
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow brf	
Bit size : 32-bit	
Active : -	
Pin Function: Data to write in specific register with	th 1 st write port
Pin name : birf_wr_addr1	Registered : No
Pin class : address signal	
Source \rightarrow Destination : udp \rightarrow brf	
Bit size : 4-bit	
Active : -	
Pin Function: Address for register where the data	should write to (for 1^{st} write port)
Pin name : birf_wr_en1	Registered : No
Pin class : control signal	
Source \rightarrow Destination : udp \rightarrow brf	
Bit size : 1-bit	
Active : High	
Pin Function: Update the data of the register when	n active high (for 1 st write port)
Pin name : birf_wr_data2	Registered : No
Pin class : data signal	Registered . No
Source \rightarrow Destination : udp \rightarrow brf	
Bit size : 32 -bit	
Active : -	
Pin Function: Data to write in specific register with	th 2 nd write port
Pin name : birf_wr_addr2	Registered : No
	Registered . INO
Pin class : address signal Source \rightarrow Destination : udp \rightarrow brf	
Source \rightarrow Destination : udp \rightarrow brf	

Bit size : 4-bit		
Active : -		
Pin Function: Address for register where the data should write to (for 2 nd write port).		
Pin name : birf_wr_en2	Registered : No	
Pin class : control signal		
Source \rightarrow Destination : udp \rightarrow brf		
Bit size : 1-bit		
Active : High		
Pin Function: Update the data of the register when active high (for 2 nd write port).		
Pin name : birf_pc	Registered : No	
Pin class : data signal		
Source \rightarrow Destination : udp \rightarrow brf		
Bit size : 32-bit		
Active : -		
Pin Function: Current PC value.		
Table 7.5: input pins description of brf		

Output

Output	
Pin name : borf_rn32	Registered : No
Pin class : data signal	
Source \rightarrow Destination : brf \rightarrow udp	
Bit size : 32-bit	
Active : -	
Pin Function: Data from Rn register.	
Pin name : borf_rm32	Registered : No
Pin class : data signal	
Source \rightarrow Destination : brf \rightarrow udp	
Bit size : 32-bit	
Active : -	
Pin Function: Data from Rn register.	
Pin name : borf_rs32	Registered : No
Pin class : data signal	
Source \rightarrow Destination : brf \rightarrow udp	
Bit size : 32-bit	
Active : -	
Pin Function: Data from Rs register.	
Table 7.6: output pins description of brf	

7.3.3 Functional table

birf_wr_en1	birf_wr_en2	birf_clk	Operation
1'b0	1'b0	At negative edge	Hold the previous values
1'b0	1'b1	At negative edge	Write new data to register file (2 nd write port data)
1'b1	1'b0	At negative edge	Write new data to register file (1 st write port data)
1'b0	1'b1	At negative edge	Write new data to register file (both write port data will write. If the location if same, 2 nd write port has higher priority.)
1'bx	1'bx	At positive edge	Read data from register file

Table 7.7: functional table for write enable signal.

Address pin	Operation
birf_rn4	Read data from register file and output
	with borf_rn32
birf_rm4	Read data from register file and output
	with borf_rm32
birf_rs4	Read data from register file and output
	with borf_rs32
birf_wr_addr1	Address of register which the
	birf_wr_data1 will write to it
birf_wr_addr2	Address of register which the
	birf_wr_data2 will write to it

Table 7.8: functional table for address pin.

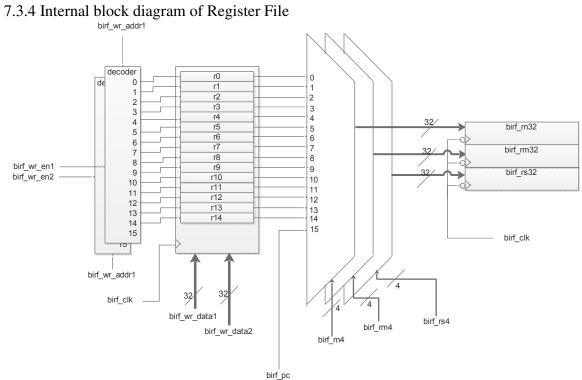


Figure 7.6: Design of register file.

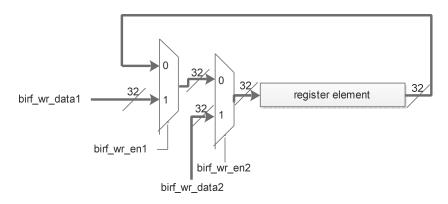


Figure 7.7: Single element of register file

7.4 Arithmetic Logic Block with shift (balb_shift)

7.4.1 Functionality

Combinations of arithmetic logic block and barrel shifter which operates on 32-bits integer operand.

Perform:

- Addition
- Subtraction
- AND (logic)
- OR (logic)
- XOR (logic)
- Logical shift left
- Logical shift right
- Arithmetic shift right
- Rotate right
- Rotate right with extend
- MOV/MVN instruction (copy value to register)

7.4.2 Block Diagram

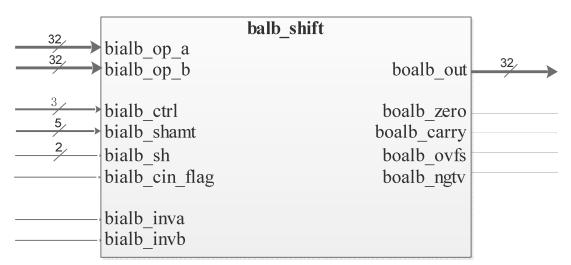


Figure 7.8: Block diagram of balb_shift (ALU and shifter)

InputRegistered : NoPin name : bialb_op_aRegistered : NoPin class : data signalSource \rightarrow Destination : udp \rightarrow balb_shiftBit size : 32-bitActive : -Pin Function: 1st 32-bits operand.

	D' IN
Pin name : bialb_op_b	Registered : No
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow balb_shif	
Bit size : 32-bit	
Active : -	
Pin Function: 2 nd 32-bits operand.	
Pin name : bialb_ctrl	Registered : No
Pin class : control signal	
Source \rightarrow Destination : udp \rightarrow balb_shif	
Bit size : 3-bit	
Active : -	
Pin Function: Opcode to select operation to perform.	
Pin name : bialb_shamt	Registered : No
Pin class : control signal	0
Source \rightarrow Destination : udp \rightarrow balb_shif	
Bit size : 5-bit	
Active : -	
Pin Function: Number of bit need to shift or rotate.	
Pin name : bialb_sh	Registered : No
Pin class : control signal	
Source \rightarrow Destination : udp \rightarrow balb_shif	
Bit size : 2-bit	
Active : -	
Pin Function: Represent shift type need to perform.	
00 = LSL	
00 = LSL 01 = LSR	
10 = ASR	
11 = ROR, RRX	
Pin name : bialb_cin_flag	Registered : No
Pin class : data signal	Registered . 110
Source \rightarrow Destination : udp \rightarrow balb_shif	
Bit size : 1-bit	
Active : -	
Pin Function: Current C bit in CPSR.	
Pin name : bialb_inva	Registered : No
Pin class : control signal	Registered . No
Source \rightarrow Destination : udp \rightarrow balb_shif	
Bit size : 1-bit	
Active : High	
Pin Function: invert value pass in to bi_alb_op_a while a	ctive high
Pin name : bialb_invb	Registered : No
—	Registered . NO
Pin class : control signal	
Source \rightarrow Destination : udp \rightarrow balb_shif	
Bit size : 1-bit	
Active : High Din Eurotion: invort volue page in to bi, all, on h while a	ativa high
Pin Function: invert value pass in to bi_alb_op_b while a	cuve mgn.

Table 7.9: Input pins description of balb_shift

Output

Registered : Yes
Registered : Yes
to 32'h 0000_0000.
Registered : Yes
when perform addition.
Registered : Yes
W.
Registered : Yes
a negative value.

7.4.5 Test plan

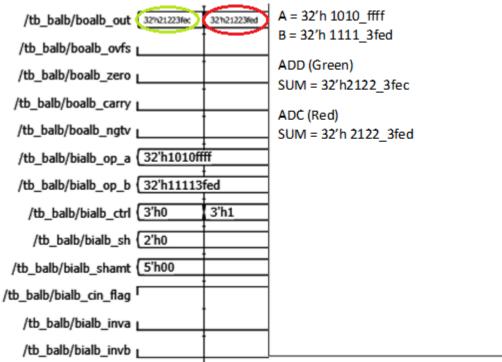
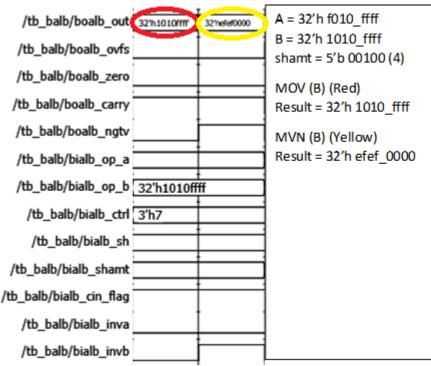
Te	st case	Input	Expected output
	Addition:	bi_alb_op_a = 32'h 1010_ffff	
		$bi_alb_op_b = 32$ 'h 1111_3fed	
		$bi_{alb_{ctrl}[2:1]} = 2'b 00$	
		$bi_alb_inva = 1'b0$	
		$bi_alb_invb = 1'b0$	
		$bi_alb_cin_flag = 1'b1$	
		C	
	A+B	$bi_alb_ctrl[0] = 1b0$	bo_alb_out = 32'h 2122_3fec
	A+B+Cin	$bi_alb_ctrl[0] = 1'b1$	bo_alb_out = 32'h 2122_3fed
2.	Subtraction:	$bi_alb_op_a = 32$ 'h f 010_ffff	
		bi_alb_op_b = 32'h 1111_3fed	
		$bi_alb_ctrl[2:1] = 2'b 01$	
		bi_alb_cin_flag = 1'b1	
	A-B	$bi_alb_ctrl[0] = 1b0$	bo_alb_out = 32'h deff_c012
		bi_alb_inva = 1'b0	$bo_alb_ngtv = 1'b1$
		bi_alb_invb = 1'b1	
	A-B-Cin	$bi_alb_ctrl[0] = 1'b1$	$bo_alb_out = 32$ 'h deff_c012
	A-D-CIII	$bi_alb_inva = 1'b0$	$bo_alb_ngtv = 1'b1$
		$bi_alb_invb = 1'b1$	$b0_al0_ligtv = 1 b1$
		$01_a10_11100 = 1.01$	
	B-A	$bi_alb_ctrl[0] = 1'b0$	bo_alb_out = 32'h 2100 3fee
	DII	$bi_alb_inva = 1'b1$	$bo_alb_ngtv = 1'b0$
		$bi_alb_invb = 1'b0$	
	B-A-Cin	$bi_alb_ctrl[0] = 1'b1$	bo_alb_out = 32'h 2100 3fee
		bi_alb_inva = 1'b1	$bo_alb_ngtv = 1b0$
		bi_alb_invb = 1'b0	
3.	Logical operation:	bi_alb_op_a = 32'h 1010_ffff	
		bi_alb_op_b = 32'h 1111_3fed	
		$bi_alb_ctrl[2] = 1'b 1$	
		bi_alb_inva = 1'b0	
		bi_alb_invb = 1'b0	
	AND	bi_alb_ctrl[1:0] = 2'b 00	bo_alb_out = 32'h 1010_3fed
	OR	bi_alb_ctrl[1:0] = 2'b 01	bo_alb_out = 32'h 1111_ffff
	XOR	bi_alb_ctrl[1:0] = 2'b 10	bo_alb_out = 32'h 0101_c012
4.	Move operation:	$bi_alb_op_b = 32'h 1010_ffff$	
	r r	bi_alb_ctrl[2:0] = 3'b 111	
L		1	1

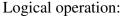
MOV	bi_alb_invb = 1'b 0	bo_alb_out = 32'h 1010_ffff
MVN	bi_alb_invb = 1'b 1	bo_alb_out = 32'h efef_0000
5. Shift/ rotate:	bi_alb_op_a = 32'h f010_ffff bi_alb_op_b = 32'h f010_ffff bi_alb_inva = 1'b0 bi_alb_cin_flag = 1'b1 bi_alb_shamt = 5'b 00100 bi_alb_ctrl[2:0] = 3'b 111 bi_alb_invb = 1'b 0	
LSL	bi_alb_sh[1:0] = 2'b 00	bo_alb_out = 32'h 010f_fff0
LSR	bi_alb_sh[1:0] = 2'b 01	bo_alb_out = 32'h 0f01_0fff
ASR	bi_alb_sh[1:0] = 2'b 10	bo_alb_out = 32'h ff01_0fff
ROR	bi_alb_sh[1:0] = 2'b 11	bo_alb_out = 32'h ff01_0fff

Table 7.13: test plan for balb_shift

7.4.6 Simulation result

Addition:


Figure 7.11: simulation result (1) - addition

Subtraction:		_			
/tb_balb/boalb_out	32'hdeffc0	12	32'h21003	fee	
/tb_balb/boalb_ovfs					A = 32'h f010_ffff B = 32'h 1111_3fed, Cin = 1
/tb_balb/boalb_zero					A-B (Green)
/tb_balb/boalb_carry			\bigcirc	\bigcirc	Result = 32'hdeff_c012
/tb_balb/boalb_ngtv					bo_alb_ngtv = 1'b1
/tb_balb/bialb_op_a	32'hf010ff	f			A-B-Cin' (Red)
/tb_balb/bialb_op_b					Result = 32'h deff_c012 bo_alb_ngtv = 1'b1
/tb_balb/bialb_ctrl	3'h2	3'h3	3'h2	3'h3	B-A (Yellow)
/tb_balb/bialb_sh					Result = $32'h 2100_3fee$
/tb_balb/bialb_shamt					bo_alb_ngtv = 1'b0
/tb_balb/bialb_cin_flag					B-A-Cin' (Blue)
/tb_balb/bialb_inva					Result = $32'h 2100_3fee$
/tb_balb/bialb_invb					bo_alb_ngtv = 1'b0

Figure 7.12: simulation result (2) - subtraction

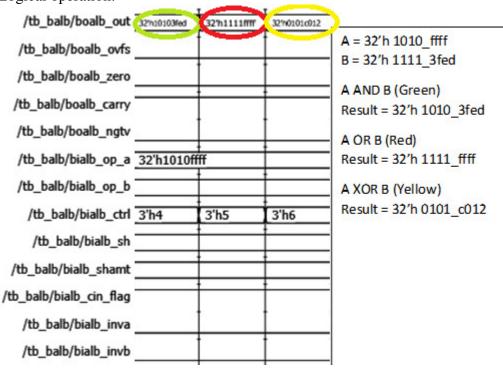


Figure 7.14: simulation result (4) - logical

/tb_balb/boalb_out	32'h010ffff0	3210010101	32'hff010ff	f	A = 32'h f010_ffff
/tb_balb/boalb_ovfs					B = 32'h 1111_3fed shamt = 5'b 00100 (4)
/tb_balb/boalb_zero					
/tb_balb/boalb_carry		[LSL (A) (Green) Result = 32'h 010f_fff0
/tb_balb/boalb_ngtv					LSR (A) (Red)
/tb_balb/bialb_op_a	32'hf010fff	t ff 1			Result = 32'h 0f01_0fff
/tb_balb/bialb_op_b	32'hf010ff	ff			ASR (A) (Yellow)
/tb_balb/bialb_ctrl					Result = 32'h ff01_0fff
/tb_balb/bialb_sh		2'h1	2'h2	2'h3	ROR (A) (Blue)
/tb_balb/bialb_shamt	5'h04				Result = 32'h ff01_0fff
/tb_balb/bialb_cin_flag					
/tb_balb/bialb_inva		[
/tb_balb/bialb_invb					

Shift/ rotate:

Figure 7.15: simulation result (5) – shift/ rotate

7.5 Data forwarding control (bfw_ctrl)

7.5.1 Functionality

The Forwarding Block is responsible for detecting data dependency problem. When an instruction write to the register destination and the following instruction read from the previous instruction's register destination, data dependency occur, when it occur and then forward the proper data from the corresponding stage to the EX Stage so that the data which goes into ALU is the correct value.

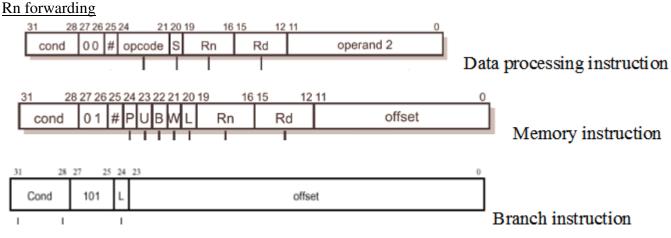


Figure 7.16: Instruction format

From the instruction format,

- The field of Rn's address (19:16 bits) is fixed and always used in both dataprocessing and memory instruction.
- The branch instruction used 24 bits (23:0) to store the offset mean that 19:16 bits of instruction is not represent as Rn's address, in this case, multiplexer in data path will pass PC and offset to ALU, so Rn value will no affect the result.

Rm and Rs forwarding

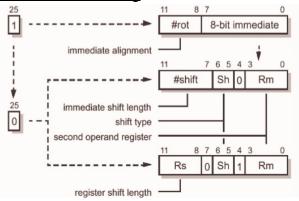


Figure 7.17: Data processing instruction

Chapter 7 Data path of CRISC (Unit & Block)

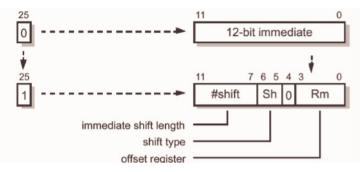


Figure 7.18: Memory instruction

- Rm only used when there is non-immediate instruction.
- Rm's address field located at 3:0 bits of both instructions.

However,

- Rs only appear in Data processing instruction with condition that non-immediate and bit 4 is set (1'b1).
- Rs's address field located at bit11:8 of the data-processing instruction

Туре	Type description	Instruction	Assembly format
Data processing	Arithmetic (signed	Add	add \$rd, \$rn, Opd2
1 0	or unsigned) or	Adc	adc \$rd, \$rn, Opd2
	logical operations	Sub	sub \$rd, \$rn, Opd2
	between two	Sbc	Sbc \$rd, \$rn, Opd2
	registers, \$rn and	Srb	srb \$rd, \$rn, Opd2
	Opd2 which can	Src	src \$rd, \$rn, Opd2
	be immediate	Mov	mov \$rd, Opd2
	value or register	Mvn	mvn \$rd, Opd2
	value \$rm, then	Nop	nop (it is equivalent to
	store the results into		mov \$0, \$0)
	register \$rd.	Orr	orr \$rd, \$rn, Opd2
		And	and \$rd, \$rn, Opd2
		Eor	eor \$rd, \$rn, Opd2
		Bic	bic \$rd, \$rn, Opd2
		Tst	tst \$rn, Opd2
		Teq	teq \$rn, Opd2
		Cmp	cmp \$rn, Opd2
		Cmn	cmn \$rn, Opd2
		Lsl	mov \$rd, Opd2,LSL shamt
		Lsr	mov \$rd, Opd2,LSR shamt
		Asr	mov \$rd, Opd2,ASR shamt
		Ror	mov \$rd, Opd2,ROR shamt
		Rrx	mov \$rd, Opd2,RRX shamt
Load	Instructions that are	ldr	
	loading a data from	post idx	ldr \$rd, [\$rn], \$rm
	the Data Cache into	offset	ldr \$rd, [\$rn, \$rm]
	register \$rd	pre idx	ldr \$rd, [\$rn, \$rm]!
Store	Instructions that are	srt	
	storing a data	post idx	str \$rd, [\$rn], \$rm
	storing in register	offset	str \$rd, [\$rn, \$rm]
	\$rd into the Data	pre idx	str \$rd, [\$rn, \$rm]!
	Cache		
Branch	Instructions that	В	b label
	will jump to the		
	specified location	Bl	bl label
	of program if the		
	condition is		
	fulfilled		

Table 7.14: ARM assembly instruction

Among the instructions, instructions that will update the Register File (RF) are the

- 1. Data processing (except tst, teq, cmp, cmn),
- 2. Load

These instructions might cause data hazards to the later instructions. When data dependencies happen, forwarding or stalling is needed to solve them. These instructions can be further categorised based on the stages they get their results, since the principle of forwarding is to provide data to the data depending instructions once the data is ready, to ease the design of forwarding circuitry.

- 1. Results is ready in EX stage
 - Data processing
- 2. Results is ready in MEM stage
 - Load

7.5.2 Forwarding Block Function Tables

No.	Input									Output	Source
	ID		Ε	X			MF	EM			
		Reg Write DestReg		Reg Write DestReg		Reg					
	Reg Rn	Wr_1	Wr_2	Rd_1	Rd_2	Wr_1	Wr_2	Rd_1	Rd_2		
1.	А	0	0	Х	X	0	0	Х	Х	00	ID
2.	А	1	0	В	Х	1	0	С	Х	00	ID
3.	А	1	0	Α	Х	0	0	Х	Х	01	EX
4.	А	Х	1	Х	Α	0	0	Х	Х	01	EX
5.	А	0	0	Х	Х	1	0	Α	Х	10	MEM.Rd1
6.	А	0	0	Х	Х	0	1	Х	Α	11	MEM.Rd2
7.	А	0	0	Х	Х	1	1	Α	Α	11	MEM.Rd2
8.	А	0	1	Х	Α	0	1	Х	Α	01	EX

Forward Rn, Rm, Rs

Table 7.15: functional table for forwarding block

Explanations:

- 1. The value from register file itself is used as Rn, Rm, and Rs (value from ID stage) since there is not overwrite value in EX and MEM stages.
- 2. The value from register file itself is used as Rn, Rm, and Rs (value from ID stage) since there the Register destination to be update in EX and MEM stages are B and C respectively which is not related to register A will read in ID stage.
- 3. The value from ALU output (EX satge) is used as Rn, Rm, and Rs, since there is a write enable and address of register destination in EX stage same with address of register to be read in ID stage.
- 4. This case is similar to case no. 3.
- 5. The value from data memory (MEM stage) is used as Rn, Rm, and Rs, since there is a write enable (wr1) and address of register destination (rd1) in MEM stage same with address of register to be read in ID stage. (MEM.Rd1)
- 6. The value which ALUpassed to MEM stage is used as Rn, Rm, and Rs, since there is a write enable (wr2) and address of register destination (rd2) in MEM stage same with address of register to be read in ID stage. (MEM.Rd2)
- 7. When both write enable (wr2 and wr1) are asserted and register destinations (rd1 and rd2) are both same address with read register, the 2nd write port had higher priority (wr2 and rd2), therefore the MEM.Rd2 is used.
- 8. When same address of register destination in EX and MEM are both same with read address in ID stage, value from EX will forward to ID instead of MEM because EX had latest data of the register.

7.5.3 Block diagram

		bfw ctrl		
	bifw_ex_rf_wr1	_		
	bifw_ex_rf_wr2			
>	bifw_mem_rf_wr1			
>	bifw_mem_rf_wr2			
4	bifw ex rd4 1		bofw rn32 ctrl	
<u>4</u>	bifw ex rd4 2		bofw rm32 ctrl	
<u>4</u>	bifw_mem_rd4_1		bofw_rs32_ctrl	
<u>4</u>	bifw_mem_rd4_2			
<u>4</u>	bifw_id_rn4			
$\xrightarrow{4}$	bifw_id_rm4			
<u>~4</u>	bifw_id_rs4			
<u>4</u>	bifw ex rn4			
<u>4</u>	bifw ex rm4			
<u>'4</u>	bifw_ex_rs4			

Figure 7.19: block diagram for bfw_ctrl (forwarding control)

_mput	
Pin name : bifw_ex_rf_wr1	Registered : No
Pin class : control signal	
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: 1 st write port enable signal at EX stage.	
Pin name : bifw_ex_rf_wr2	Registered : No
Pin class : control signal	
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: 2 nd write port enable signal at EX stage.	
Pin name : bifw_mem_rf_wr1	Registered : No
Pin class : control signal	
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: 1 st write port enable signal at MEM stage.	
Pin name : bifw_mem_rf_wr2	Registered : No
Pin class : control signal	
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 1-bit	

Active : Active high	
Pin Function: 2 nd write port enable signal at MEM stage	
Pin name : bifw_ex_rd4_1	Registered : No
Pin class : data signal	Registered : No
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 4-bit	
Active : -	
Pin Function: Address for 1 st write port Rd (destination	register) at EX stage
Pin name : bifw_ex_rd4_2	Registered : No
Pin class : data signal	Registered . No
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 4-bit	
Active : -	
Pin Function: Address for 2 nd write port Rd (destination	ragistar) at EV staga
Pin name : bifw_mem_rd4_1	Registered : No
Pin flame : offw_mem_fld4_1 Pin class : data signal	Registereu . No
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Source \rightarrow Destination : udp \rightarrow biw_ctri Bit size : 4-bit	
Active : -	
Pin Function: Address for 1 st write port Rd (destination	ragistar) at MEM stage
Pin name : bifw_mem_rd4_2	Registered : No
	Registered : No
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 4-bit	
Active : - Pin Function: Address for 2 nd write port Rd (destination	ragistar) at MEM stage
Pin name : bifw_id_rn4	Registered : No
Pin class : data signal	Registered . No
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rn register at ID stage.	
Pin name : bifw_id_rm4	Registered : No
Pin class : data signal	Registered . No
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rm register at ID stage.	Pagistarad · No
Pin name : bifw_id_rs4	Registered : No
Pin class : data signal Source \rightarrow Destination : udp \rightarrow bfw strl	
Source \rightarrow Destination : udp \rightarrow bfw_ctrl Pit size : 4 bit	
Bit size : 4-bit	
Active : - Din Eurotion: Address for De register et ID stage	
Pin Function: Address for Rs register at ID stage.	Desistand N
Pin name : bifw_ex_rn4	Registered : No
Pin class : data signal	

Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rn register at EX stage.	
Pin name : bifw_ex_rm4	Registered : No
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rm register at EX stage.	
Pin name : bifw_ex_rs4	Registered : No
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow bfw_ctrl	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rs register at EX stage.	
Table 7.16: input pins description of bfw_ctrl	

Output

Output	
Pin name : bofw_rn32_ctrl	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bfw_ctrl \rightarrow udp	
Bit size : 2-bit	
Active : -	
Pin Function: Control signal that decide whether	er there is a forwarding for Rn register or
not.	
Pin name : bofw_rm32_ctrl	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bfw_ctrl \rightarrow udp	
Bit size : 2-bit	
Active : -	
Pin Function: Control signal that decide whether	er there is forwarding for Rm register or
not.	
Pin name : bofw_rs32_ctrl	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bfw_ctrl \rightarrow udp	
Bit size : 2-bit	
Active : -	
Pin Function: Control signal that decide whether	er there is forwarding for Rs register or
not.	
Table 7.17: output pins description of bfw_ctrl	

Table 7.17: output pins description of bfw_ctrl

7.6 Interlock control (bitl_ctrl)

7.6.1 Functionality

To overcome the problem that data from memory is not ready yet for next instruction.

E.g. LDR R0, [R1] @load value to R0, EX MOV R2, R0 @copy R0 to R2, ID R0 is not ready for R2 since it only reaches EX stage.

7.6.2 Block diagram

1		bitl_ctrl	
4	biitl_id_rn4	boitl_ld_use_pc_en	
$\xrightarrow{4}$	biitl_id_rm4		
>	biitl_id_rs4	boitl_ld_use_ifid_en	
4/	biitl_ex_rd4 biitl_ex_mem_re	boitl_ld_use_flush_ex	
	biitl id imm		
>	biitl_id_sign_or_rot		
»	biitl_id_instr_4th_bit		

Figure 7.20: block diagram of bitl_ctrl (interlock control)

Input	
Pin name : biitl_id_rn4	Registered : No
Pin class : data signal	-
Source \rightarrow Destination : udp \rightarrow bitl_ctrl	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rn register in ID stage.	
Pin name : biitl_id_rm4	Registered : No
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow bitl_ctrl	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rm register in ID stage.	
Pin name : biitl_id_rs4	Registered : No
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow bitl_ctrl	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rs register in ID stage.	

Din name + hiitl av rd4	Degistered : No
Pin name : biitl_ex_rd4	Registered : No
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow bitl_ctrl	
Bit size : 4-bit	
Active : -	
Pin Function: Address for Rd (destination regis	
Pin name : biitl_ex_mem_re	Registered : No
Pin class : control signal	
Source \rightarrow Destination : udp \rightarrow bitl_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high when there will be a	data read from data memory else active
low.	
Pin name : biitl_id_imm	Registered : No
Pin class : control signal	
Source \rightarrow Destination : udp \rightarrow bitl_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high if the 2 nd operand is a	an immediate value else active low.
Pin name : biitl_id_sign_or_rot	Registered : No
Pin class : control signal	
Source \rightarrow Destination : udp \rightarrow bitl_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high if the immediate wi	ll be sign extend to form a 32-bits data
else active low where the immediate	undergo rotation extension.
Pin name : biitl_id_instr_4th_bit	Registered : No
Pin class : control signal	C
Source \rightarrow Destination : udp \rightarrow bitl_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high when shift amount	stored in Rs register else active low for
immediate shift amount	6
Table 7.18: input pins description of bitl_ctrl	

Output

Output	
Pin name : boitl_ld_use_pc_en	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bitl_ctrl \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable pc else active	low to hold the pc value.
Pin name : boitl_ld_use_ifid_en	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bitl_ctrl \rightarrow udp	
Bit size : 1-bit	

Table 7.19: output pins description of bitl_ctrl

7.6.3 Functional table

ex_rd	ex_1	nem_re	id_imm	id_sign_or_rot	id_	instr_4th_bit	Lock
=id_rn	1'b1	_	Х	Х	Х		Enable
=id_rm	1'b1		1'b 0	Х	Х		Enable
=id_rs	1'b1		1'b 0	1'b 0	1'b	1	Enable
!=id_rn	Х		Х	Х	Х		Disable
!=id_rm							
!=id_rs							
Lock		boitl_ld_	use_pc_en	boitl_ld_use_ifid	_en	boitl_ld_use	_flush_ex
Enable	1'b 0			1'b 0		1'b 1	
Disable		1'b 1		1'b 1		1'b 0	

Table 7.20: functional table of bitl_ctrl

Chapter 8 – Control Path of CRISC (Unit & Block level)

8.1 Control Path unit (ucp)

8.1.1 Functionality

Generate several control signal based on the instruction passed in. The output is stated in internal operation section (8.1.4).

8.1.2 Control Path's Unit interface – (Block diagram)

]		ucp	
4	uicp_cond	uocp_imm	<u> </u>
»	uicp_op	uocp_sign_or_rot	
	uicp_funct	uocp_rf_wr1	
		uocp_rf_wr2	
,	uicp_zero	uocp_carry_wr	
»	uicp_carry	uocp_zero_wr	
>	uicp_ngtv	uocp_ngtv_wr	
	uicp_ovfs	uocp_ovfs_wr	
		uocp_branch	
		uocp_cond_true	
		uocp_inva	
		uocp_invb	
		uocp_ctrl	3
			ŕ
		uocp_index	
		uocp_word_or_byte	
		uocp_mem_wr	
		·	
		uocp_mdata_or_alb	

Figure 8.1: block diagram of control path

Input	
Pin name : uicp_cond	Registered : No
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow ucp	
Bit size : 4-bit	
Active : -	
Pin Function: mask that represent diffe	erent condition where the instruction should
execute.	
Pin name : uicp_op	Registered : No
Pin class : data signal	

Source Destination + udn _ + uon	1
Source \rightarrow Destination : udp \rightarrow ucp Bit size : 2-bit	
Active : -	
Pin Function: represent instruction type.	
2'b 00: Data-processing	
2'b 01: Memory	
2'b 10: Program flow	
Pin name : uicp_funct	Registered : No
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow ucp	
Bit size : 6-bit	
Active : -	
Pin Function: Carry the information of instructio	on for each instruction type. Such as
operand 2 is an immediate, operation to be carry of	ut and etc.
Pin name : uicp_zero	Registered : No
Pin class : data signal	
Source \rightarrow Destination : udp \rightarrow ucp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Latest zero flag that base on instruct	tion that executing or executed in EX
stage.	-
1'b 0: the result is non-zero.	
1'b 1: the result is zero.	
	Registered : No
Pin name : uicp_carry	Registered : No
Pin name : uicp_carry Pin class : data signal	Registered : No
Pin name : uicp_carry	Registered : No
Pin name : uicp_carry Pin class : data signal Source \rightarrow Destination : udp \rightarrow ucp Bit size : 1-bit	Registered : No
Pin name : uicp_carry Pin class : data signal Source \rightarrow Destination : udp \rightarrow ucp Bit size : 1-bit Active : Active high	
Pin name : uicp_carry Pin class : data signal Source → Destination : udp → ucp Bit size : 1-bit Active : Active high Pin Function: Latest carry out flag that base on in	
Pin name : uicp_carry Pin class : data signal Source → Destination : udp → ucp Bit size : 1-bit Active : Active high Pin Function: Latest carry out flag that base on in in EX stage.	
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on inin EX stage.1'b 0: no carry is produced.	
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on inin EX stage.1'b 0: no carry is produced.1'b 1: carry is produced.	nstruction that executing or executed
Pin name : uicp_carry Pin class : data signal Source → Destination : udp → ucp Bit size : 1-bit Active : Active high Pin Function: Latest carry out flag that base on in in EX stage. 1'b 0: no carry is produced. 1'b 1: carry is produced. Pin name : uicp_ngtv	
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on irin EX stage.1'b 0: no carry is produced.1'b 1: carry is produced.Pin name : uicp_ngtvPin class : data signal	nstruction that executing or executed
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on inin EX stage.1'b 0: no carry is produced.1'b 1: carry is produced.Pin name : uicp_ngtvPin class : data signalSource \rightarrow Destination : udp \rightarrow ucp	nstruction that executing or executed
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on inin EX stage.1'b 0: no carry is produced.1'b 1: carry is produced.Pin name : uicp_ngtvPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bit	nstruction that executing or executed
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on irin EX stage.1'b 0: no carry is produced.1'b 1: carry is produced.Pin name : uicp_ngtvPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active high	nstruction that executing or executed Registered : No
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on inin EX stage.1'b 0: no carry is produced.1'b 1: carry is produced.Pin name : uicp_ngtvPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest negative flag that base on inst	nstruction that executing or executed Registered : No
Pin name : uicp_carry Pin class : data signal Source → Destination : udp → ucp Bit size : 1-bit Active : Active high Pin Function: Latest carry out flag that base on in in EX stage. 1'b 0: no carry is produced. 1'b 1: carry is produced. Pin name : uicp_ngtv Pin class : data signal Source → Destination : udp → ucp Bit size : 1-bit Active : Active high Pin Function: Latest negative flag that base on inst EX stage.	nstruction that executing or executed Registered : No
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on irin EX stage.1'b 0: no carry is produced.1'b 1: carry is produced.Pin name : uicp_ngtvPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest negative flag that base on instEX stage.1'b 0: the result's MSB is 1'b0.	nstruction that executing or executed Registered : No
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on inin EX stage.1'b 0: no carry is produced.1'b 1: carry is produced.Pin name : uicp_ngtvPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest negative flag that base on instEX stage.1'b 0: the result's MSB is 1'b0.1'b 1: the result's MSB is 1'b1.	nstruction that executing or executed Registered : No truction that executing or executed in
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on inin EX stage.1'b 0: no carry is produced.1'b 1: carry is produced.Pin name : uicp_ngtvPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest negative flag that base on instEX stage.1'b 0: the result's MSB is 1'b0.1'b 1: the result's MSB is 1'b1.Pin name : uicp_ovfs	nstruction that executing or executed Registered : No
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on irin EX stage.1'b 0: no carry is produced.1'b 1: carry is produced.Pin name : uicp_ngtvPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest negative flag that base on instEX stage.1'b 0: the result's MSB is 1'b0.1'b 1: the result's MSB is 1'b1.Pin name : uicp_ovfsPin class : data signal	nstruction that executing or executed Registered : No truction that executing or executed in
Pin name : uicp_carry Pin class : data signal Source → Destination : udp → ucp Bit size : 1-bit Active : Active high Pin Function: Latest carry out flag that base on in in EX stage. 1'b 0: no carry is produced. 1'b 1: carry is produced. Pin name : uicp_ngtv Pin class : data signal Source → Destination : udp → ucp Bit size : 1-bit Active : Active high Pin Function: Latest negative flag that base on inst EX stage. 1'b 0: the result's MSB is 1'b0. 1'b 1: the result's MSB is 1'b1. Pin name : uicp_ovfs Pin class : data signal Source → Destination : udp → ucp	nstruction that executing or executed Registered : No truction that executing or executed in
Pin name : uicp_carryPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest carry out flag that base on irin EX stage.1'b 0: no carry is produced.1'b 1: carry is produced.Pin name : uicp_ngtvPin class : data signalSource \rightarrow Destination : udp \rightarrow ucpBit size : 1-bitActive : Active highPin Function: Latest negative flag that base on instEX stage.1'b 0: the result's MSB is 1'b0.1'b 1: the result's MSB is 1'b1.Pin name : uicp_ovfsPin class : data signal	nstruction that executing or executed Registered : No truction that executing or executed in

Pin Function: Latest overflow flag that base on instruction that executing or executed in EX stage.

1'b 0: no overflow occurs.

1'b 1: overflow occurs.

 Table 8.1: Input pins description of ucp

Output	
Pin name : uocp_imm	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high when the operand 2	2 is an immediate else active low
1'b 0 : non-immediate operand	1
1'b 1: immediate operand	
Pin name : uocp_sign_or_rot	Registered : Yes
Pin class : control signal	_
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high when operand 2	will undergoes sign extension else active
low for rotation extension	
1'b 0 : rotation extension operation	and 2
1'b 1: sign extension operand 2	2
Pin name : uocp_rf_wr1	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable 1 st write p	port else active low
1'b 0 : hold the data	
1'b 1: write the data to 1 st write	e address
Pin name : uocp_rf_wr2	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable 2 nd write	port else active low
1'b 0 : hold the data	
1'b 1: write the data to 2 nd write	
Pin name : uocp_carry_wr	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable update ca	
1'b 0 : hold previous carry flag	

1'b 1: update carry flag	
Pin name : uocp_zero_wr	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable update zero fla	g else active low
1'b 0 : hold previous zero flag	_
1'b 1: update zero flag	
Pin name : uocp_ngtv_wr	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable update negative	e flag else active low
1'b 0 : hold previous negative flag	C
1'b 1: update negative flag	
Pin name : uocp_ovfs_wr	Registered : Yes
Pin class : control signal	C
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable update overflow	w flag else active low
1'b 0 : hold previous overflow flag	C
1'b 1: update overflow flag	
Pin name : uocp_branch	Registered : Yes
Pin class : control signal	_
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to change PC to branc	h target address else active low for
normal increment of PC (+4)	_
1'b 0 : branch to target address	
1'b 1: normal +4 increment of PC	
Pin name : uocp_cond_true	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high if the condition meet else	e active low to skip the instruction
1'b 0 : skip the instruction	-
1'b 1: execute the instruction	
Pin name : uocp_inva	Registered : Yes
Pin class : control signal	-
Source \rightarrow Destination : ucp \rightarrow udp	
Bit size : 1-bit	

A A	1 * 1	
Active : Activ		
		d (from Rn) else active low to use
original	operand	
	1'b 0 : use original data from Rn fo	or ALB
	1'b 1: invert the data from Rn befo	re going through ALB
Pin name : uo	cp_invb	Registered : Yes
Pin class : cor	ntrol signal	-
	stination : ucp \rightarrow udp	
Bit size : 1-bit		
Active : Activ		
	6	(from Rm or immediate) else active
low	to use original operand	(nom ten of minediate) else active
10 **	1'b 0 : use original data from Rm o	or immediate for ALB
D'		mmediate before going through ALB
Pin name : uo	-	Registered : Yes
Pin class : cor		
	stination : ucp \rightarrow udp	
Bit size : 3-bit	t	
Active : -		
Pin Function:	opcode for the ALB.	
	3'b 000 : addition	
	3'b 001: addition with carry	
	3'b 010: subtraction	
	3'b 011: subtraction with carry	
	3'b 100: and AND	
	3'b 101: or OR	
	3'b 110: exclusive or XOR	
	3'b 111: by pass operand b (from I	? m)
Pin name : uo		Registered : Yes
Pin class : cor	-	Registered . Tes
	stination : ucp \rightarrow udp	
Bit size : 1-bit	1 1	
Active : Activ	e	
Pin Function:	decide the address mode for memor	ry read and load
	1'b 0 : Post-index	
	1'b 1 : Pre-index	
	cp_word_or_byte	Registered : Yes
Pin class : cor	6	
	stination : ucp \rightarrow udp	
Bit size : 1-bit	t	
Active : Activ	/e high	
Pin Function:	Active high for load or save a byte	of data else active low for a word of
	data	
	1'b 0 : word	
	1'b 1: byte	
Pin name : uo		Registered : Yes
		10510100.100

Pin class : control signal Source \rightarrow Destination : ucp \rightarrow udp Bit size : 1-bit Active : Active high Pin Function: Active high to update memory else active low to hold the previous memory data. 1'b 0 : hold previous memory data 1'b 1: update memory data Pin name : uocp_mdata_or_alb **Registered** : Yes Pin class : control signal Source \rightarrow Destination : ucp \rightarrow udp Bit size : 1-bit Active : Active high Pin Function: Active high for write data from memory to register file else active low write data from ALB to register file. for 1'b 0 : use data from ALB 1'b 1: use data from memory cache

 Table 8.2: Output pins description of ucp

8.1.3 Block partitioning in ucp

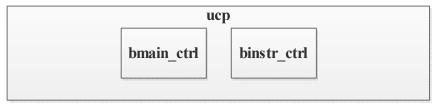


Figure 8.2: partitioning in ucp

8.1.4 Block level partition diagram

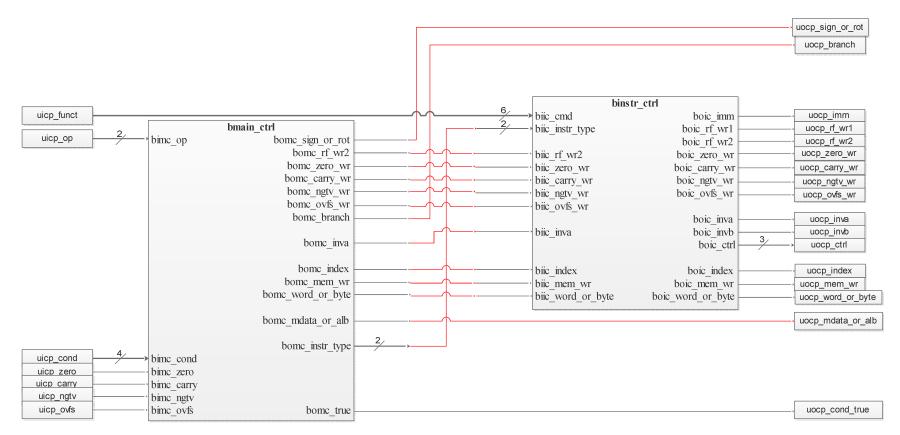


Figure 8.3: internal connection between block in ucp

8.2 Main Control Block (bmain_ctrl)

8.2.1 Functionality

Generate some control signals that are same within a single instruction type (e.g. Dataprocessing instruction, Memory instruction).

8.2.2 Block diagram

		bmain_ctrl	
,	bime op	bomc sign or rot	>
	_ 1	bome rf wr2	>
		bomc_zero_wr	
		bomc_carry_wr	· · · ·
		bomc_ngtv_wr	
		bomc_ovfs_wr	*
		bomc_branch	
		bomc_inva	· · · · ·
		bomc_index	· · ·
		bomc_mem_wr	
		bomc_word_or_byte	>
		home indate or all	
		bomc_mdata_or_alb	
		bomc instr type	2/
4	bime cond	oone_nsu_type	
	bimc_zero		
· ,	bime carry		
>	bimc_ngtv		
>	bime ovfs	bomc true	>

Figure 8.4: Block diagram of main control block

Input	
D	

Pin name : bimc_op	Registered : No
Pin class : data signal	
Source \rightarrow Destination : ucp \rightarrow bmain_ctrl	
Bit size : 2-bit	
Active : -	
Pin Function: 27 th and 26 th bit of the instruc	tion, differentiate among the instruction
type	
Pin name : bimc_cond	Registered : No
Pin class : data signal	
Source \rightarrow Destination : ucp \rightarrow bmain_ctrl	

Bit size : 4-bit	
Active : -	
Pin Function: mask that represent different	nt condition where the instruction should
execute.	it condition where the instruction should
Pin name : bimc_zero	Registered : No
Pin class : data signal	Registered . 110
Source \rightarrow Destination : ucp \rightarrow bmain_ctrl	
Bit size : 1-bit	
Active : -	
Pin Function: Latest zero flag that base on i	nstruction that executing or executed in FX
stage.	instruction that exceeding of exceeded in EX
1'b 0: the result is non-zero.	
1'b 1: the result is zero.	
	Registered : No
Pin name : uicp_carry	Registered . No
Pin class : data signal	
Source \rightarrow Destination : ucp \rightarrow bmain_ctrl	
Bit size : 1-bit	
Active : Active high	• , ,• ,1 , ,• ,• , 1
Pin Function: Latest carry out flag that bas	e on instruction that executing or executed
in EX stage.	
1'b 0: no carry is produced.	
1'b 1: carry is produced.	
Pin name : uicp_ngtv	Registered : No
Pin class : data signal	
Source \rightarrow Destination : ucp \rightarrow bmain_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Latest negative flag that base	on instruction that executing or executed in
EX stage.	
1'b 0: the result's MSB is 1'l	
1'b 1: the result's MSB is 1'l	
Pin name : uicp_ovfs	Registered : No
Pin class : data signal	
Source \rightarrow Destination : ucp \rightarrow bmain_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Latest overflow flag that bas	e on instruction that executing or executed
in EX stage.	
1'b 0: no overflow occur.	
1'b 1: overflow occur.	
Table 8.7: Input pin description of main control block	

 Table 8.7: Input pin description of main control block

Output	
Pin name : bomc_sign_or_rot	Registered : Yes
Pin class : control signal	_
Source \rightarrow Destination : bmain_ctrl \rightarrow u_cp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high when operand 2 will	undergoes sign extension else active
low for rotation extension	0 0
1'b 0 : rotation extension operand 2	2
1'b 1: sign extension operand 2	
Pin name : bomc_rf_wr2	Registered : Yes
Pin class : control signal	C
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable 2 nd write port	else active low
1'b 0 : hold the data	
1'b 1: write the data to 2^{nd} write add	dress
Pin name : bomc_carry_wr	Registered : Yes
Pin class : control signal	5
Source \rightarrow Destination : bmain ctrl \rightarrow binstr ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable update carry f	lag else active low
1'b 0 : hold previous carry flag	6
1'b 1: update carry flag	
Pin name : bomc_zero_wr	Registered : Yes
Pin class : control signal	6
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable update zero fl	ag else active low
1'b 0 : hold previous zero flag	
1'b 1: update zero flag	
Pin name : bomc_ngtv_wr	Registered : Yes
Pin class : control signal	6
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to enable update negative	ve flag else active low
1'b 0 : hold previous negative flag	-
1'b 1: update negative flag	
Pin name : bomc_ovfs_wr	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl	
Bit size : 1-bit	

Active : Active high	
Pin Function: Active high to enable update overflu	ow flag also active low
1'b 0 : hold previous overflow flag	•
1'b 1: update overflow flag	
	Desistand Vas
Pin name : bomc_branch	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bmain_ctrl \rightarrow ucp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to change PC to bran	ich target address else active low for
normal increment of PC (+4)	
1'b 0 : branch to target address	
1'b 1: normal +4 increment of PC	
Pin name : uocp_inva	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to invert 1 st operand	d (from Rn) else active low to use
original operand	
1'b 0 : use original data from Rn fo	or ALB
1'b 1: invert the data from Rn befo	ore going through ALB
Pin name : uocp_index	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl	
Bit size : 1-bit	
Active : -	
Pin Function: decide the address mode for memor	ry read and load
1'b 0 : Post-index	-
1'b 1 : Pre-index	
Pin name : uocp_mem_wr	Registered : Yes
Pin class : control signal	e
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high to update memory e	else active low to hold the previous
memory data.	1
1'b 0 : hold previous memory data	
1'b 1: update memory data	
Pin name : uocp_word_or_byte	Registered : Yes
Pin class : control signal	6
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high for load or save a byte	of data else active low for a word of
data	
uutu	

1'b 0 : word	
1'b 1: byte	
Pin name : uocp_mdata_or_alb	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bmain_ctrl \rightarrow ucp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high for write data from me	mory to register file else active low
for write data from ALB to register file.	
1'b 0 : use data from ALB	
1'b 1: use data from memory cache	
Pin name : bomc_instr_type	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl	
Bit size : 2-bit	
Active : -	
Pin Function: Represent the instruction type based	on the bimc_op
2'b 00 : data-processing instruction	
2'b 01 : memory instruction	
2'b 10 : program flow instruction	
Pin name : uocp_cond_true	Registered : Yes
Pin class : control signal	
Source \rightarrow Destination : bmain_ctrl \rightarrow ucp	
Bit size : 1-bit	
Active : Active high	
Pin Function: Active high if the condition meet else	e active low to skip the instruction
1'b 0 : skip the instruction	
1'b 1: execute the instruction	
Table 8.8. Output nin description of main control blo	

 Table 8.8: Output pin description of main control blo

8.3 Instruction Control Block (binstr_ctrl)

8.3.1 Functionality

Generate the control signals that might be different within a sing type of instruction type.

8.3.2 Block diagram

0	ŀ	oinstr ctrl	
<u> </u>	biic_cmd	boic_imm	>
<u> </u>	biic_instr_type	boic_rf_wr1	
		boic_rf_wr2	
>	biic_rf_wr2	boic_zero_wr	→
	biic_zero_wr	boic_carry_wr	>
>	biic_carry_wr	boic_ngtv_wr	
	biic_ngtv_wr	boic_ovfs_wr	
	biic_ovfs_wr		
		boic_inva	
	biic_inva	boic_invb	3.
		boic_ctrl	→ →
	biic_index	boic_index	►
	biic_mem_wr	boic_mem_wr	
	biic_word_or_byte	boic_word_or_byte	

Figure 8.5: block diagram of binstr_ctrl

Input		
Pin name : biic_cmd	Registered : No	
Pin class : data signal		
Source \rightarrow Destination : ucp \rightarrow binstr_ctrl		
Bit size : 6-bit		
Active : -		
Pin Function: Carry the information of instruction for each instruction type. Such as		
operand 2 is an immediate, opera	tion to be carry out and etc.	
Pin name : biic_instr_type	Registered : No	
Pin class : data signal		
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctr	1	
Bit size : 2-bit		
Active : -		
Pin Function: Intruction type of the current instruction generated by bmain_ctrl		
2'b 00 : data processing instruction	on	
2'b 01 : memory instruction		
2'b 10 : program flow instruction	1	
Pin name : biic_rf_wr2	Registered : No	
Pin class : data signal		

Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl		
Bit size : 1-bit		
Active : Active high		
Pin Function: Generated by bmain_ctrl, the value r	might change based on	
instruction type		
Pin name : biic_zero_wr	Registered : No	
Pin class : data signal		
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl		
Bit size : 1-bit		
Active : Active high		
Pin Function: Generated by bmain_ctrl, the value r	might change based on	
instruction type		
Pin name : biic_carry_wr	Registered : No	
Pin class : data signal		
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl		
Bit size : 1-bit		
Active : Active high		
Pin Function: Generated by bmain_ctrl, the value might change based on		
instruction type		
Pin name : biic_ngtv_wr	Registered : No	
Pin class : data signal		
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl		
Bit size : 1-bit		
Active : Active high		
Pin Function: Generated by bmain_ctrl, the value r	might change based on	
instruction type		
Pin name : biic_ovfs_wr	Registered : No	
Pin class : data signal		
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl		
Bit size : 1-bit		
Active : Active high		
Pin Function: Generated by bmain_ctrl, the value r	might change based on	
instruction type		
Pin name : biic_inva	Registered : No	
Pin class : data signal		
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl		
Bit size : 1-bit		
Active : Active high		
Pin Function: Generated by bmain_ctrl, the value might change based on		
instruction type		
Pin name : biic_index	Registered : No	
Pin class : data signal	-	
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl		
Bit size : 1-bit		
Active : Active high		
Pin Function: Generated by bmain_ctrl, the value might change based on		
,		

instruction type		
Pin name : biic_mem_wr	Registered : No	
Pin class : data signal		
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl		
Bit size : 1-bit		
Active : Active high		
Pin Function: Generated by bmain_ctrl, the value might change based on		
instruction type		
Pin name : biic_word_or_byte	Registered : No	
Pin class : data signal		
Source \rightarrow Destination : bmain_ctrl \rightarrow binstr_ctrl		
Bit size : 1-bit		
Active : Active high		
Pin Function: Generated by bmain_ctrl, the value might change based on		
instruction type		
Table 8.11: input pins description of binstr_ctrl		

Output

Output		
Pin name : boic_imm	Registered : Yes	
Pin class : data signal		
Source \rightarrow Destination : binstr_ctrl \rightarrow ucp		
Bit size : 1-bit		
Active : Active high		
Pin Function: Active high when the operand 2 is an immediate else active low		
1'b 0 : non-immediate operand		
1'b 1: immediate operand		
Pin name : boic_rf_wr1	Registered : Yes	
Pin class : data signal		
Source \rightarrow Destination : binstr_ctrl \rightarrow ucp		
Bit size : 1-bit		
Active : Active high		
Pin Function: Active high to enable 1 st write port else active low		
1'b 0 : hold the data		
1'b 1: write the data to 1 st write address		
Pin name : boic_rf_wr2	Registered : Yes	
Pin class : data signal		
Source \rightarrow Destination : binstr_ctrl \rightarrow ucp		
Bit size : 1-bit		
Active : Active high		
Pin Function: Active high to enable 2 nd write port else active low		
1'b 0 : hold the data		
1'b 1: write the data to 2^{nd} write address		
Pin name : boic_carry_wr	Registered : Yes	
Pin class : data signal		
Source \rightarrow Destination : binstr_ctrl \rightarrow ucp		
Bit size : 1-bit		

Active : Active high
Pin Function: Active high to enable update carry flag else active low
1'b 0 : hold previous carry flag
1'b 1: update carry flag
Pin name : boic_zero_wr Registered : Yes
Pin class : data signal
Source \rightarrow Destination : binstr_ctrl \rightarrow ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update zero flag else active low
1'b 0 : hold previous zero flag
1'b 1: update zero flag
Pin name : boic_ngtv_wr Registered : Yes
Pin class : data signal
Source \rightarrow Destination : binstr_ctrl \rightarrow ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update negative flag else active low
1'b 0 : hold previous negative flag
1'b 1: update negative flag
Pin name : boic_ovfs_wr Registered : Yes
Pin class : data signal
Source \rightarrow Destination : binstr_ctrl \rightarrow ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update overflow flag else active low
1'b 0 : hold previous overflow flag
1'b 1: update overflow flag
Pin name : boic_invaRegistered : Yes
Pin class : data signal
Source \rightarrow Destination : binstr_ctrl \rightarrow ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 1 st operand (from Rn) else active low to use
original operand
1'b 0 : use original data from Rn for ALB
1'b 1: invert the data from Rn before going through ALB
Pin name : boic_invb Registered : Yes
Pin class : data signal
Source \rightarrow Destination : binstr_ctrl \rightarrow ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 2^{nd} operand (from Rm or immediate) else active
low to use original operand
1'b 0 : use original data from Rm or immediate for ALB
1'b 1: invert the data from Rm or immediate before going through ALB
1 6 1. myert the data from Kin of minedate before going through ALD

Pin name : boic_ct	trl Registered : Yes
Pin class : data sig	
	tion : binstr_ctrl \rightarrow ucp
Bit size : 3-bit	ton tonsu_our v uop
Active : -	
Pin Function: opco	ode for the ALB
-	000 : addition
	001: addition with carry
	010: subtraction
	011: subtraction with carry
	100: and AND
	101: or OR
	110: exclusive or XOR
	111: by pass operand b (from Rm)
Pin name : boic_in	
Pin class : data sig	e
-	tion : binstr_ctrl \rightarrow ucp
Bit size : 1-bit	tion : onsu_our / uep
Active : Active hig	zh
-	de the address mode for memory read and load
	0 : Post-index
	1 : Pre-index
Pin name : boic_m	
Pin class : data sig	e
-	tion : binstr_ctrl \rightarrow ucp
Bit size : 1-bit	ton tonsu_our v uop
Active : Active hig	oh
-	tive high to update memory else active low to hold the previous
memory	data.
•	0 : hold previous memory data
	1: update memory data
Pin name : boic_w	1 · · · ·
Pin class : data sig	?
e	tion : binstr_ctrl \rightarrow ucp
Bit size : 1-bit	
Active : Active hig	zh
-	ive high for load or save a byte of data else active low for a word of
data	
	0 : word
	1: byte
Table 8.12: Output pins	

Table 8.12: Output pins description of binstr_ctrl

Chapter 9 – Memory Cache unit (ucache)

9.1 Functionality

Data segment and Text segment in memory map.

9.2 Block diagram

Figure 9.1: block diagram of ucache

InputPin name : uicm_addrRegistered : NoPin class : data signalSource \rightarrow Destination : crisc_pipeline \rightarrow ucacheBit size : 32-bitActive : -Pin Function: Address for data write/read to ucache.Pin runction: Address for data write/read to ucache.Pin name : uicm_wr_dataRegistered : NoPin class : data signalSource \rightarrow Destination : crisc_pipeline \rightarrow ucacheBit size : 32-bitActive : -Pin Function: Data to write to ucache.Pin name : uicm_wrPin name : uicm_wrRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucachePin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin name : uicm_slwRegistered : NoPin function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : NoPin class : control signalRegistered : No	Tigure 9.1. block augram	i oj ucuche
Pin class : data signal Source \rightarrow Destination : crisc_pipeline \rightarrow ucache Bit size : 32-bit Active : - Pin Function: Address for data write/read to ucache.Pin name : uicm_wr_dataRegistered : NoPin class : data signal Source \rightarrow Destination : crisc_pipeline \rightarrow ucache Bit size : 32-bit Active : - Pin Function: Data to write to ucache.Pin name : uicm_wrRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bit Active : Active high Pin Function: 1'b0: hold the content of ucache 1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bit Active : Active high Pin Function: 1'b0: hold the content of ucache 1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bit Active : Active high Pin runction: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Input	
Source \rightarrow Destination : crisc_pipeline \rightarrow ucacheBit size : 32-bitActive : -Pin Function: Address for data write/read to ucache.Pin name : uicm_wr_dataRegistered : NoPin class : data signalSource \rightarrow Destination : crisc_pipeline \rightarrow ucacheBit size : 32-bitActive : -Pin Function: Data to write to ucache.Pin name : uicm_wrRegistered : NoPin name : uicm_wrRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucachePin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin rame: uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin runction: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Pin name : uicm_addr	Registered : No
Bit size : 32-bit Active : - Pin Function: Address for data write/read to ucache. Pin name : uicm_wr_data Registered : No Pin class : data signal Source → Destination : crisc_pipeline → ucache Bit size : 32-bit Active : - Pin Function: Data to write to ucache. Pin name : uicm_wr Registered : No Pin class : control signal Source → Destination : udp → ucache Bit size : 1-bit Active : Active high Pin Function: 1'b0: hold the content of ucache 1'b1: write the uicm_wr_data to the ucache with uicm_addr as address. Pin name : uicm_slw Registered : No Pin class : control signal Source → Destination : udp → ucache Bit size : 1-bit Active : Active high Pin class : control signal Source → Destination : udp → ucache Bit size : 1-bit Active : Active high Pin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit). Pin name : uicm_slh Registered : No	Pin class : data signal	
Active : -Pin Function: Address for data write/read to ucache.Pin name : uicm_wr_dataRegistered : NoPin class : data signalSource \rightarrow Destination : crisc_pipeline \rightarrow ucacheBit size : 32-bitActive : -Pin Function: Data to write to ucache.Pin name : uicm_wrPin name : uicm_wrRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucache1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin runction: 1'b0: hold the content of ucacheI'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin runction: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Source \rightarrow Destination : crisc_pipeline \rightarrow ucache	
Pin Function: Address for data write/read to ucache.Pin name : uicm_wr_dataRegistered : NoPin class : data signalSource \rightarrow Destination : crisc_pipeline \rightarrow ucacheBit size : 32-bitActive : -Pin Function: Data to write to ucache.Pin name : uicm_wrPin name : uicm_wrRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucacheI'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin runction: 1'b0: hold the content of ucacheI'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Bit size : 32-bit	
Pin name : uicm_wr_dataRegistered : NoPin class : data signalSource \rightarrow Destination : crisc_pipeline \rightarrow ucacheBit size : 32-bitActive : -Pin Function: Data to write to ucache.Pin name : uicm_wrRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucache1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin name : uicm_slwRegistered : NoPin flass : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Active : -	
Pin class : data signal Source \rightarrow Destination : crisc_pipeline \rightarrow ucache Bit size : 32-bit Active : - Pin Function: Data to write to ucache.Pin name : uicm_wrRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bit Active : Active high Pin Function: 1'b0: hold the content of ucache $1'b1:$ write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bitActive : Active high Pin rame : uicm_slwRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bit Active : Active high Pin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Pin Function: Address for data write/read to ucache	2.
Source \rightarrow Destination : crisc_pipeline \rightarrow ucacheBit size : 32-bitActive : -Pin Function: Data to write to ucache.Pin name : uicm_wrRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucache1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Pin name : uicm_wr_data	Registered : No
Bit size : 32-bitActive : -Pin Function: Data to write to ucache.Pin name : uicm_wrRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucache1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Pin class : data signal	
Active : - Pin Function: Data to write to ucache.Registered : NoPin name : uicm_wrRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bit Active : Active high Pin Function: 1'b0: hold the content of ucache 1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bitSource \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bitActive : Active high Pin Function: 1'db: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Source \rightarrow Destination : crisc_pipeline \rightarrow ucache	
Pin Function: Data to write to ucache.Pin name : uicm_wrRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucache 1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin name : uicm_slwRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bit Active : Active highPin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Bit size : 32-bit	
Pin name : uicm_wrRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucache 1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Active : -	
Pin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucache1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: data operate in other unit (non-word).1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Pin Function: Data to write to ucache.	
Source \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucache1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: data operate in other unit (non-word).1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Pin name : uicm_wr	Registered : No
Bit size : 1-bitActive : Active highPin Function: 1'b0: hold the content of ucache 1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bit Active : Active high Pin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Pin class : control signal	
Active : Active high Pin Function: 1'b0: hold the content of ucache 1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bit Active : Active high Pin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Source \rightarrow Destination : udp \rightarrow ucache	
Pin Function:1'b0: hold the content of ucache 1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bit Active : Active high Pin Function:1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Bit size : 1-bit	
1'b1: write the uicm_wr_data to the ucache with uicm_addr as address.Pin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Active : Active high	
Pin name : uicm_slwRegistered : NoPin class : control signalSource \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Pin Function: 1'b0: hold the content of ucache	
Pin class : control signal Source \rightarrow Destination : udp \rightarrow ucache Bit size : 1-bit Active : Active high Pin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	1'b1: write the uicm_wr_data to the	ucache with uicm_addr as address.
Source \rightarrow Destination : udp \rightarrow ucacheBit size : 1-bitActive : Active highPin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Pin name : uicm_slw	Registered : No
Bit size : 1-bit Active : Active high Pin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit). Pin name : uicm_slh Registered : No	Pin class : control signal	
Active : Active high Pin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit). Pin name : uicm_slh Registered : No	Source \rightarrow Destination : udp \rightarrow ucache	
Pin Function: 1'b0: data operate in other unit (non-word). 1'b1: data operate in word (unit). Pin name : uicm_slh Registered : No	Bit size : 1-bit	
1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Active : Active high	
1'b1: data operate in word (unit).Pin name : uicm_slhRegistered : No	Pin Function: 1'b0: data operate in other unit (non	-word).
= 6		
Pin class : control signal	Pin name : uicm_slh	Registered : No
	Pin class : control signal	

Source \rightarrow Destination : udp \rightarrow ucache		
Bit size : 1-bit		
Active : Active high		
Pin Function: 1'b0: data operate in other unit (nor	n-half-word).	
1'b1: data operate in half-word (uni	it).	
Pin name : uicm_slb	Registered : No	
Pin class : control signal	-	
Source \rightarrow Destination : udp \rightarrow ucache		
Bit size : 1-bit		
Active : Active high		
Pin Function: 1'b0: data operate in other unit (nor	n-byte).	
1'b1: data operate in byte (unit).		
Pin name : uicm_clk	Registered : No	
Pin class : clock signal		
Source \rightarrow Destination : external \rightarrow ucache		
Bit size : 1-bit		
Active : Rising edge		
Pin Function: Provide a periodic signal for synchronize purpose.		
Table 9.1: input pin description of ucache		
Output		

Output

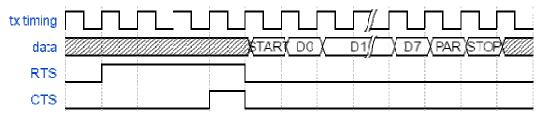
Pin name : uocm_rd_data Registered : Yes Pin class : data signal Source \rightarrow Destination : ucache \rightarrow udp Bit size : 32-bit Active : -Pin Function: data read from ucache with uicm_addr as the address.

Table 9.2: Output pin description of ucache

A developed UART unit (uuart) is connected with core (data-path and control path).

However, due to the reason that exception handler hasn't develop yet, the functionalities of UART used in this project is very limited, the purpose of connect the UART is to show the simple interconnection of I/O with the core.

10.1 UART address


In this project, the address of UART is set as 32'h C000_0004 ~ 32'h C000_0010 which in I/O segment of memory map.

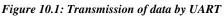
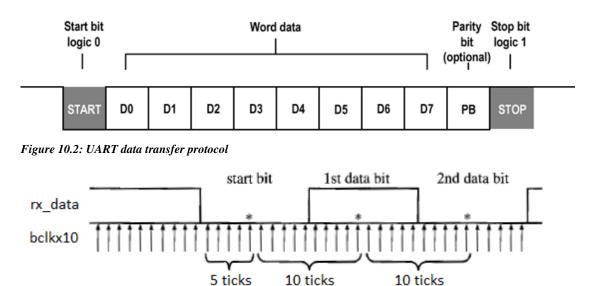

Address	UART's register	uiua_wb_sel [3:0]
32'h C000_0004	Configuration register	4'b 0001
	(UARTCF)	
32'h C000_0008	Transmitter fifo register	4'b 0100
32'h C000_000C	Receiver fifo register	4'b 1000
32'h C000_0010	Status register (UARTSF)	4'b 0010

Table 10.1: Address for UART registers and FIFO


10.2 Operating procedure

In this project, only focus on the transmission of data by UART. Refer to previous developed UART, before start a transmission UART will send a Request-To-Send (RTS) signal to external modern and waiting for a Clear-to-Send (CTS) Signal from the external modern. After UART detect the CTS signal, the data will transmit to the external modern bit-by-bit in a configurable baud rate.

The 8-bit data (d [7:0]) will transmit in a format of {1'b0, d[0], d[1], ..., d[7], parity bit, 1'b1} as shown in the diagram below.

* Read data at these points.

Figure 10.3: UART data receiving protocol

The data receiving will be on the same baud rate. At the rising edge, the data might be not ready (transition might occur) to read. Hence, to avoid read wrong data (at the rising edge) each receiving data will be read approximate at the middle of the clock frame. The 1st clock frame, the receiving data will read after 5 periods of bclkx10, and 10 periods for following receiving data until stop bit. The alternative way will be read the data at falling edge of the baud rate, since the falling edge is at the middle of a clock period (if duty cycle equal to 50%) where the data should be ready.

10.3 uuart functionalities and pin description

- Serialize 8-bit data.
- Transmit the serialized data
- Receive serial data and parallelize to 8-bit.
- Check correctness of data.

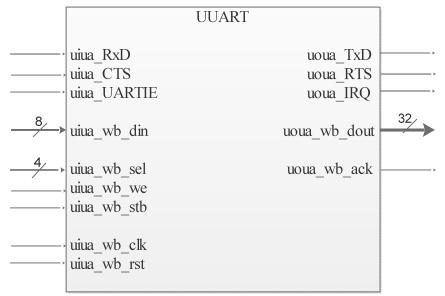


Figure 10.4: Block diagram for uuart

Input

Pin name: uiua_RxDRegisteredPin class: dataSource \rightarrow Destination: external device \rightarrow uuart	: No
Source \rightarrow Destination: external device \rightarrow uuart	
Bit size: 1-bit	
Active: -	
Pin Function: Received data from external device through UART port.	
Pin name: uiua_CTS Registered	: No
Pin class: status signal	
Source \rightarrow Destination: CPU \rightarrow uuart	
Bit size: 1-bit	
Active: High	
Pin Function: Allow UART to transmit data when 1'b1.	
Pin name: uiua_UARTIE Registered	: No
Pin class: control signal	
Source \rightarrow Destination: CPU \rightarrow uuart	
Bit size: 1-bit	
Active: High	
Pin Function: Interrupt enable	
Pin name: uiua_wb_din Reg	gistered: No

Pin class: data	
Source \rightarrow Destination: CPU \rightarrow uuart	
Bit size: 8-bits	
Active: -	
Pin Function: Data to write in UART's registers from CPU.	Degistarade No
Pin name: uiua_wb_sel	Registered: No
Pin class: control signal	
Source \rightarrow Destination: Address decoder \rightarrow uuart	
Bit size: 4-bits	
Active: -	
Pin Function: Select the register in UART to write.	
4'b 0001: control register UARTCR	
4'b 0010: status register UARTSR	C' C 1
4'b 0100: transmitter FIFO register push enable tx_	-
4'b 1000: receiver FIFO register pop enable rx_fifo	
Pin name: uiua_wb_we	Registered: No
Pin class: control signal	
Source \rightarrow Destination: CPU \rightarrow uuart	
Bit size: 1-bit	
Active: High	
Pin Function: Allow to data write the register depend on uiua_wb_	
Pin name: uiua_wb_stb	Registered: No
Pin class: status signal	
Source \rightarrow Destination: CPU \rightarrow uuart	
Bit size: 1-bit	
Active: High	
Pin Function:	
Pin name: uiua_wb_clk	Registered: No
Pin class: clock signal	
Source \rightarrow Destination: System \rightarrow uuart	
Bit size: 1-bit	
Active: Rising edge	
Pin Function: Periodic signal for synchronize purpose	
Pin name: uiua_wb_rst	Registered: No
Pin class: control signal	
-	
Source \rightarrow Destination: System \rightarrow uuart	
Source \rightarrow Destination: System \rightarrow uuart Bit size: 1-bit	
Bit size: 1-bit	

Output

Output	
Pin name: uoua_TxD	Registered: Yes
Pin class: data	
Source \rightarrow Destination: uuart \rightarrow external device	
Bit size: 1-bit	
Active: -	
Pin function: Transmit content in FIFO of transmitter	from UART to external device
Pin name: uoua_RTS	Registered: Yes
Pin class: status signal	
Source \rightarrow Destination: uuart \rightarrow external device	
Bit size: 1-bit	
Active: high	
Pin function: active high indicate UART request to se	nd data.
Pin name: uoua_IRQ	Registered: Yes
Pin class: status signal	
Source \rightarrow Destination: uuart \rightarrow CPU	
Bit size: 1-bit	
Active: high	
Pin Function: error interrupt signal	
Pin name: uoua_wb_dout	Registered: Yes
Pin class: data	
Source \rightarrow Destination: uuart \rightarrow CPU	
Bit size: 8-bits	
Active: -	
Pin Function: data from UART to CPU register	
Pin name: uoua_wb_ack	Registered: Yes
Pin class: status signal	
Source \rightarrow Destination: uuart \rightarrow CPU	
Bit size: 1-bit	
Active: high	
Pin Function: acknowledgement to CPU	
Table 10.3: Outputs pin description for uuart.	

Configure Register

The configure register is used to decide interrupt, parity and baud rate. Bit 7 (UARTEN): UART enable Bit 6 (RXCIE): Receive Error interrupt enable Bit 5 (TXEIE): Transmit Error interrupt enable Bit 4 (PRTEN): Parity Bit Enable Bit 3 (PRT): Parity Bit Bit [2:0] (BAUD): Baud rate select

Status Register

Status register will represent the status of received data. Bit 7 (RXC): Receive status Bit 6 (TXE): Transmission status Bit 5 (FE): Framing Error Bit 4 (PE): Parity Error Bit [3:1]: Not used Bit 0 (RxFIM): 10.4 bclkctr functionalities and pins description

- Generate different baud rate. (8)
- Enable transmitter (at rising edge) and receive block (at falling edge).

	bo	elketr	
3,	bicc_select_baud	bocc_ua_clk	
4>	bicc_clk_div_rate	bocc_rx_en bocc_tx_en	
>	bicc_sysclk bicc_reset		

Figure 10.6: block diagram for bclkctr

Input pins

Pin name: bicc_select_baud	Register: No
Pin class: control signal	
Source \rightarrow Destination: UARTCR \rightarrow bclkctr	
Bit size: 3-bits	
Active: -	
Pin Function: Select baud rate	
Pin name: bicc_clk_div_rate	Register: No
Pin class: control signal	
Source \rightarrow Destination: fixed to 4'b 0001	
Bit size: 4-bits	
Active: -	
Pin Function: the value used to divide the system	n clock (in this case fixed to 4'b 0001 to
divide by 2)	
Pin name: bicc_sysclk	Register: No
Pin class: clock signal	
Source \rightarrow Destination: System \rightarrow bclkctr	
Bit size: 1-bit	
Active: -	
Pin Function: Provide periodic signal for synchr	onize purpose.
Pin name: bicc_reset	Register: No
Pin class: control signal	
Source \rightarrow Destination: System \rightarrow bclkctr	
Bit size: 1-bit	
Active: High	
Pin Function: Reset the system to initial condition	on.
Table 10.4: Inputs pin description for bclkctr	

Output pins

Pin name: bocc_ua_clk	Register: Yes
Pin class: clock signal	-
Source \rightarrow Destination: bclkctr \rightarrow btx/brx	
Bit size: 1-bit	
Active: -	
Pin Function: divided clock	
Pin name: bocc_rx_en	Register: Yes
Pin class: control signal	
Source \rightarrow Destination: bclkctr \rightarrow brx	
Bit size: 1-bit	
Active: High	
Pin Function: Allow receiver block to receive data	
Pin name: bocc_tx_en	Register: Yes
Pin class: control signal	
Source \rightarrow Destination: bclkctr \rightarrow btx	
Bit size: 1-bit	
Active: High	
Pin Function: Allow transmitter block to transmit data	
Table 10.5: Output pins description for bclkctr	

10.5 brx functionalities and pins description

- Receive a data stream from external device.
- Parallelize the data to 8-bit data.
- Check framing error and parity error.

		brx		
))	birx_rx_data birx_rx_en		borx_data_out borx_rxc	8,
>	birx_parity_en birx_parity_bit		borx_parity_err	
	birx_fifo_pop_en		borx_framing_err	
	1. 11		borx_fifo_empty	
>	birx_sysclk birx_ua_clock birx_reset		borx_fifo_full	· · · · · · · · · · · · · · · · · · ·

Figure 10.8: block diagram for brx

Input pins

Pin name: birx_rx_data	Register: No
Pin class: data signal	
Source \rightarrow Destination: external device \rightarrow brx	
Bit size: 1-bit	
Active: -	
Pin Function: Data from external device.	
Pin name: birx_rx_en	Register: No
Pin class: control signal	
Source \rightarrow Destination: bclkctr \rightarrow brx	
Bit size: 1-bit	
Active: High	
Pin Function: Allow receiver block receive data.	
Pin name: birx_parity_en	Register: No
Pin class: control signal	
Source \rightarrow Destination: UARTCR \rightarrow brx	
Bit size: 1-bit	
Active: High	
Pin Function: Inform receiver block that parity bit is en	hable (need to check parity bit).
Pin name: birx_parity_bit	Register: No
Pin class: data signal	
Source \rightarrow Destination: UARTCR \rightarrow brx	

Bit size: 1-bit	
Active: -	
Pin Function: Expected parity bit.	
Pin name: birx_fifo_pop_en	Register: No
Pin class: control signal	
Source \rightarrow Destination: uuart \rightarrow brx	
Bit size: 1-bit	
Active: High	
Pin Function: request the data stored in FIFO to borx_data	_out.
Pin name: birx_sysclk	Register: No
Pin class: clock signal	
Source \rightarrow Destination: System \rightarrow brx	
Bit size: 1-bit	
Active: -	
Pin Function: Provide a periodic signal for synchronize put	rpose.
Pin name: birx_ua_clk	Register: No
Pin class: clock signal	
Source \rightarrow Destination: bclkctr \rightarrow brx	
Bit size: 1-bit	
Active: -	
Pin Function: divided clock	
Pin name: birx_reset	Register: No
Pin class: control signal	-
Source \rightarrow Destination: System \rightarrow brx	
Bit size: 1-bit	
Active: High	
Pin Function: Reset the receiver block to initial condition.	
Table 10.6: Input pins for brx	

Output pins

Pin name: borx_data_out	Register: Yes	
Pin class: data signal		
Source \rightarrow Destination: brx \rightarrow CPU		
Bit size: 8-bit		
Active: -		
Pin Function: Data received.		
Pin name: borx_rxc	Register: Yes	
Pin class: status signal		
Source \rightarrow Destination: brx \rightarrow UARTSR		
Bit size: 1 bit		
Active: High		
Pin Function: receive status		
Pin name: borx_parity_err	Register: Yes	
Pin class: status signal		
Source \rightarrow Destination: brx \rightarrow UARTSR		
Bit size: 1 bit		

Active: High		
Pin Function: Indicate the received data have part	rity error while 1'b1.	
Pin name: borx_framing_err	Register: Yes	
Pin class: status signal		
Source \rightarrow Destination: brx \rightarrow UARTSR		
Bit size: 1-bit		
Active: High		
Pin Function: framing error at received data.		
Pin name: borx_fifo_empty	Register: Yes	
Pin class: status signal		
Source \rightarrow Destination: brx \rightarrow btx		
Bit size: 1-bit		
Active: High		
Pin Function: Indicate the FIFO in receiver bloc	k is empty while 1'b1.	
Pin name: borx_fifo_full	Register: Yes	
Pin class: status signal		
Source \rightarrow Destination: brx \rightarrow btx		
Bit size: 1-bit		
Active: High		
Pin Function: Indicate the FIFO in receiver bloc	k is full while 1'b1.	
Table 10.7: Output pins for brx		

10.6 btx functionalities and pins description

- Serialize the 8-bit data to a stream of data.
- Append start bit (1'b 0), serialized data, parity bit and stop bit (1'b 1) together.
- Transmit ready data to receiver of the external device.

		btx		
	bitx_tx_cts bitx_tx_en		botx_rts	
P			botx_tx_data	>
>	bitx_parity_en bitx_parity_bit			
8	bitx_fifo_data_in bitx_fifo_push_en		botx_fifo_full botx_fifo_empty	
······································	bitx_rx_fifo_full bitx_uart_en			
> >	bitx_sysclk bitx_ua_clock bitx_reset			

Figure 10.10: block diagram for btx

Input pins

Pin name: bitx_tx_cts	Register: No
Pin class: status signal	
Source \rightarrow Destination: \rightarrow btx	
Bit size: 1-bit	
Active: High	
Pin Function: indicate the external device read	dy to receive data (allow to transmit) while
1'b1.	
Pin name: bitx_tx_en	Register: No
Pin class: control signal	
Source \rightarrow Destination: bclkctr \rightarrow btx	
Bit size: 1-bit	
Active: High	
Pin Function: Allow the transmitter block to t	ransmit data.
Pin name: bitx_parity_en	Register: No
Pin class: control signal	
Source \rightarrow Destination: UARTCR \rightarrow btx	

Active: High Pin Function: Parity bit need to be generated while 1'b1. Pin name: bitx_parity_bit Register: No Pin class: data signal Source → Destination: UARTCR → btx Bit size: 1-bit Active: High Pin Function: Parity bit value to be transmit. Pin name: bitx_fifo_data_in Register: No Pin class: data signal Source → Destination: uuart → btx Bit size: 8-bit Active: - Pin Function: Data to store in FIFO before transmission. Pin name: bitx_fifo_push_en Register: No Pin class: data to signal Source → Destination: uuart → btx Bit size: 1-bit Active: High Pin runction: Store the data to FIFO while 1'b1. Pin name: bitx_rfifo_full Register: No Pin class: status signal Source → Destination: uuart → btx Bit size: 1-bit Active: High Pin name: bitx_rfifo_full Register: No Pin class: status signal Source → Destination: btx → btx Bit size: 1-bit Active: High Pin Function: Indicate the FIFO in receiver block is full. Pin class: clock signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin function: Provide a periodic signal for synchronize purpose. Pin function: Provide a periodic signal for synchronize purpose. Pin name: bitx_ua_clk Pin class: clock signal Source → Destination: bckctr → btx Bit size: 1-bit Active: - Pin function: Provide a periodic signal for synchronize purpose. Pin function: Pin name: bitx_tracetk Pin Function: Pin name: bitx_reset Pin Function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin class: clork signal Source → Destination: System → btx Bit size: 1-bit Active: High Pin function: Reset the transmitter block to initial condition.	Bit size: 1-bit	
Pin Function: Parity bit need to be generated while 1'b1. Register: No Pin name: bitx_parity_bit Register: No Source → Destination: UARTCR → btx Bit size: 1-bit Active: High Pin name: bitx_fifo_data_in Register: No Pin name: bitx_fifo_data_in Register: No Pin function: Parity bit value to be transmit. Pin name: bitx_fifo_data_in Register: No Pin lass: data signal Source → Destination: uart → btx Bit size: 8-bit Register: No Pin name: bitx_fifo_push_en Register: No Pin class: control signal Source → Destination: uart → btx Bit size: 1-bit Active: High Pin function: Store the data to FIFO while 1'b1. Pin name: bitx_rc_fifo_full Register: No Pin class: status signal Source → Destination: brx → btx Bit size: 1-bit Active: High Pin function: Indicate the FIFO in receiver block is full. Pin name: bitx_rc_fifo_full Register: No Pin name: bitx_sysclk Register: No Pin lass: clock signal Source → Destination: brx → btx Bit size: 1-bit Active: High Pin name: bitx_u_a_clk Register: No Pin name: bitx_u_a_clk Register: No Pin name: bitx_u_a_clk Register: No <td></td> <td></td>		
Pin name: bitx_parity_bit Register: No Pin class: data signal Source → Destination: UARTCR → btx Bit size: 1-bit Active: High Pin name: bitx_fifo_data_in Register: No Pin class: data signal Source → Destination: uart → btx Bit size: 8-bit Register: No Pin name: bitx_fifo_data_in Register: No Pin class: data signal Register: No Source → Destination: uart → btx Bit size: 8-bit Active: - Pin function: Data to store in FIFO before transmission. Pin name: bitx_fifo_push_en Register: No Pin class: control signal Source → Destination: uart → btx Bit size: 1-bit Active: High Pin Function: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Pin class: status signal Source → Destination: brx → btx Bit size: 1-bit Active: High Pin Function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Pin suction: Provide a periodic signal for synchronize purpose. Pin name: bitx_u_a_clk Pin function: Provide a periodic signal for synchronize purpose. Pin function: Pin class: clock signal Source → Destination: bclkctr → btx	e	
Pin class: data signal Source → Destination: UARTCR → btx Bit size: 1-bit Active: High Pin Function: Parity bit value to be transmit. Pin name: bitx_fio_data_in Pin function: uart → btx Bit size: 8-bit Active: - Pin name: bitx_fifo_push_en Pin name: bitx_fifo_push_en Pin name: bitx_fifo_push_en Pin name: bitx_fifo_push_en Pin name: bitx_fifo_full Active: High Pin Function: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Pin class: status signal Source → Destination: trx → btx Bit size: 1-bit Active: High Pin Function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Register: No Pin class: clock signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin function: System → btx Bit size: 1-bit Active: - Pin function: System → btx Bit size: 1-bit Active: - Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin name: bitx_rsest Pin name: bitx_rsest Pin name: bitx_reset Pin name: bitx_reset Pin function: Pin class: control signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin class: control signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin function: Pin name: bitx_reset Pin function: Pin class: control signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin function: Pin function: Pin function: Reset the transmitter block to initial condition.		Desister No
Source → Destination: UARTCR → btx Bit size: 1-bit Active: High Pin Function: Parity bit value to be transmit. Pin name: bitx_fifo_data_in Source → Destination: uuart → btx Bit size: 8-bit Active: - Pin Function: Data to store in FIFO before transmission. Pin name: bitx_fifo_push_en Pin name: bitx_fifo_push_en Pin class: control signal Source → Destination: uuart → btx Bit size: 1-bit Active: High Pin Function: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Register: No Pin class: status signal Source → Destination: brx → btx Bit size: 1-bit Active: High Pin Function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Pin class: clock signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin function: Pin name: bitx_ua_clk Pin function: Pin name: bitx_ua_clk Pin function: Pin name: bitx_ua_clk Pin function: Pin name: bitx_ua_clk Pin function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin function: Pin function: Pin function: Pin function: Pin function: Pin function: Pin function: Pin function: Pin functi	-1 2-	Register: No
Bit size: 1-bit Active: High Pin Function: Parity bit value to be transmit. Pin name: bitx_fifo_data_in Register: No Pin class: data signal Source → Destination: uuart → btx Bit size: 8-bit Active: - Pin Function: Data to store in FIFO before transmission. Pin name: bitx_fifo_push_en Pin class: control signal Source → Destination: uuart → btx Bit size: 1-bit Active: High Pin name: bitx_rs_fifo_full Pin rame: bitx_rs_fifo_full Pin class: status signal Source → Destination: brx → btx Bit size: 1-bit Active: High Pin function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Register: No Pin class: clock signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin function: brack status Source → Destination: bckctr → btx Bit size: 1-bit Active: - Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin function: Pin name: bitx_ua_clk Pin function: Pin name: bitx_ua_clk Pin function: Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin function: Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin function: Pin name: bitx_ua_clk Pin function: Pin name: bitx_ua_clk Pin function: Pin name: bitx_ua_clk Pin function: Pin fu		
Active: High Pin Function: Parity bit value to be transmit. Pin name: bitx_fifo_data_in Register: No Pin class: data signal Source \rightarrow Destination: uuart \rightarrow btx Bit size: 8-bit Active: - Pin name: bitx_fifo_push_en Register: No Pin class: control signal Source \rightarrow Destination: uuart \rightarrow btx Bit size: 1-bit Active: High Pin Function: Store the data to FIFO while 1'b1. Pin name: bitx_rfifo_full Register: No Pin class: status signal Source \rightarrow Destination: brx \rightarrow btx Bit size: 1-bit Active: High Pin function: Indicate the FIFO in receiver block is full. Pin class: clock signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: High Pin function: Stypet \rightarrow btx Bit size: 1-bit Active: - Pin class: clock signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: - Pin Function: Provide a periodic signal for synchronize purpose. Pin name: bitx_us_clk Register: No Pin class: clock signal Source \rightarrow Destination: bclkctr \rightarrow btx Bit size: 1-bit Active: - Pin Function: bclkctr \rightarrow btx Bit size: 1-bit Active: - Pin function: bclkctr \rightarrow btx Bit size: 1-bit Active: - Pin function: bclkctr \rightarrow btx Bit size: 1-bit Active: - Pin name: bitx_reset Register: No Pin class: control signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: - Pin function: Pin class: control signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: - Pin function: Pin class: control signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: High Pin class: control signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: High Pin class: control signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: High Pin Function: Reset the transmitter block to initial condition.		
Pin Function: Parity bit value to be transmit. Pin name: bitx_fifo_data_in Register: No Pin class: data signal Source → Destination: uuart → btx Bit size: 8-bit Active: - Pin function: Data to store in FIFO before transmission. Pin function: Data to store in FIFO before transmission. Pin name: bitx_fifo_push_en Register: No Pin class: control signal Source → Destination: uuart → btx Bit size: 1-bit Active: High Pin runction: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Pin class: status signal Source → Destination: brx → btx Bit size: 1-bit Active: High Pin name: bitx_rs_fifo_full Register: No Pin name: bitx_sysclk Register: No Pin name: bitx_sysclk Register: No Pin name: bitx_sysclk Register: No Pin name: bitx_auctick Register: No Pin function: Provide a periodic signal for synchronize purpose. Pin function: Provide a periodic signal for synchronize purpose. Pin name: bitx_uc_lk Register: No Pin in also: clock signal Source → Destination: belkctr → btx Bit size: 1-bit Active: Pin Function: Pin name: bitx_reset Registe		
Pin name: bitx_fifo_data_in Register: No Pin class: data signal Source → Destination: uuart → btx Bit size: 8-bit Active: - Pin Function: Data to store in FIFO before transmission. Pin name: bitx_fifo_push_en Pin name: bitx_fifo_push_en Register: No Pin name: bitx_fifo_push_en Register: No Pin states: control signal Source → Destination: uuart → btx Bit size: 1-bit Active: High Pin runction: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Pin class: status signal Register: No Source → Destination: brx → btx Bit size: 1-bit Active: High Pin function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Register: No Pin function: Indicate the FIFO in receiver block is full. Pin name: bits_sysclk Pin function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Pin function: Provide a periodic signal for synchronize purpose. Pin Function: Provide a periodic signal for synchronize purpose. Pin function: Provide a periodic signal for synchronize purpose. Pin function: Pin sume: bitx_reset Pin function: Pin function: Pin function: Pin name: bitx_reset	e	
Pin class: data signal Source → Destination: uuart → btx Bit size: 8-bit Active: - Pin Function: Data to store in FIFO before transmission. Pin name: bitx_fifo_push_en Pin lass: control signal Source → Destination: uuart → btx Bit size: 1-bit Active: High Pin Function: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Pin class: status signal Source → Destination: brx → btx Bit size: 1-bit Active: High Pin Function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Pin name: bitx_sysclk Pin size: 1-bit Active: - Pin function: Provide a periodic signal for synchronize purpose. Pin class: clock signal Source → Destination: bclkctr → btx Bit size: 1-bit Active: - Pin function: bclkctr → btx Bit size: 1-bit Active: - Pin function: Pin class: clock signal Source → Destination: bclkctr → btx Bit size: 1-bit Active: - Pin function: Pin name: bitx_ua_clk Register: No Pin class: clock signal Source → Destination: bclkctr → btx Bit size: 1-bit Active: - Pin Function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin class: control signal Source → Destination: System → btx Bit size: 1-bit Active: High Pin function: Pin class: control signal Source → Destination: System → btx Bit size: 1-bit Active: High Pin function: Reset the transmitter block to initial condition.		
Source \rightarrow Destination: uuart \rightarrow btx Bit size: 8-bit Active: - Pin Function: Data to store in FIFO before transmission. Pin name: bitx_fifo_push_en Pin class: control signal Source \rightarrow Destination: uuart \rightarrow btx Bit size: 1-bit Active: High Pin Function: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Pin function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Pin class: clock signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: - Pin Function: Provide a periodic signal for synchronize purpose. Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin name: bitx_ua_clk Pin suction: Provide a periodic signal for synchronize purpose. Pin function: Destination: bclkctr \rightarrow btx Bit size: 1-bit Active: - Pin Function: Pin name: bitx_reset Pin Function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin class: control signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: High Pin Function: Reset the transmitter block to initial condition.		Register: No
Bit size: 8-bit Active: - Pin Function: Data to store in FIFO before transmission. Pin name: bitx_fifo_push_en Register: No Pin class: control signal Source → Destination: uuart → btx Bit size: 1-bit Active: High Pin Function: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Register: No Pin class: status signal Source → Destination: brx → btx Bit size: 1-bit Active: High Pin Function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Register: No Pin class: clock signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin name: bitx_ua_clk Register: No Pin class: clock signal Source → Destination: bclkctr → btx Bit size: 1-bit Active: - Pin name: bitx_reset Pin name: bitx_reset Pin name: bitx_reset Pin name: bitx_reset Pin name: bitx_reset Pin class: control signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin function: Pin name: bitx_reset Pin function: Pin class: control signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin name: bitx_reset he transmitter block to initial condition.		
Active: - Pin Function: Data to store in FIFO before transmission. Pin name: bitx_fifo_push_en Pin class: control signal Source \rightarrow Destination: uuart \rightarrow btx Bit size: 1-bit Active: High Pin Function: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Pin name: bitx_rx_fifo_full Pin name: bitx_rx_fifo_full Pin name: bitx_rx_fifo_full Pin rance: bitx_sysclk Pin function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Pin name: bitx_sysclk Pin name: bitx_sysclk Pin name: bitx_sysclk Pin name: bitx_sysclk Pin rance: clock signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: - Pin function: Provide a periodic signal for synchronize purpose. Pin name: bitx_ua_clk Pin rance: bitx_ua_clk Pin rance: bitx_ua_clk Pin function: Pin name: bitx_reset Pin function: Pin f		
Pin Function: Data to store in FIFO before transmission.Pin name: bitx_fifo_push_enRegister: NoPin class: control signalSource \rightarrow Destination: uuart \rightarrow btxBit size: 1-bitActive: HighPin Function: Store the data to FIFO while 1'b1.Register: NoPin name: bitx_rx_fifo_fullRegister: NoPin class: status signalSource \rightarrow Destination: brx \rightarrow btxBit size: 1-bitActive: HighPin Function: Indicate the FIFO in receiver block is full.Pin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: I Pin name: bitx_ua_clkPin function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin function:Pin name: bitx_resetRegister: NoPin function:Pin name: bitx_resetPin name: bitx_resetRegister: NoPin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.	Bit size: 8-bit	
Pin name: bitx_fifo_push_enRegister: NoPin class: control signalSource → Destination: uuart → btxBit size: 1-bitActive: HighPin Function: Store the data to FIFO while 1'b1.Pin name: bitx_rx_fifo_fullRegister: NoPin class: status signalSource → Destination: brx → btxBit size: 1-bitActive: HighPin name: bitx_sysclkRegister: NoPin name: bitx_sysclkRegister: NoPin rame: bitx_sysclkRegister: NoPin rame: bitx_sysclkRegister: NoPin rame: bitx_ua_clkRegister: NoPin rame: bitx_ua_clkRegister: NoPin class: clock signalSource → Destination: bclkctr → btxBit size: 1-bitActive: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_resetRegister: NoPin name: bitx_resetRegister: NoPin function:Pin function:Pin name: bitx_resetRegister: NoPin function:Pin function:PitPin function:PitPin function:PitPin function:PitPin function:PitPit size:1-bitActive: <t< td=""><td>Active: -</td><td></td></t<>	Active: -	
Pin class: control signal Source → Destination: uuart → btx Bit size: 1-bit Active: High Pin Function: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Register: No Pin class: status signal Source → Destination: brx → btx Bit size: 1-bit Active: High Pin Function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Register: No Pin class: clock signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin Function: Provide a periodic signal for synchronize purpose. Pin name: bitx_ua_clk Register: No Pin class: clock signal Source → Destination: bclkctr → btx Bit size: 1-bit Active: - Pin Function: Pin name: bitx_reset Pin Function: Pin name: bitx_reset Pin name: bitx_reset Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: System → btx Bit size: 1-bit Active: - Pin function: Pin name: bitx_reset Pin function: Pin functi	Pin Function: Data to store in FIFO before transmission.	
Pin class: control signal Source → Destination: uuart → btx Bit size: 1-bit Active: High Pin Function: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Register: No Pin class: status signal Source → Destination: brx → btx Bit size: 1-bit Active: High Pin Function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Register: No Pin class: clock signal Source → Destination: System → btx Bit size: 1-bit Active: - Pin Function: Provide a periodic signal for synchronize purpose. Pin name: bitx_ua_clk Register: No Pin class: clock signal Source → Destination: bclkctr → btx Bit size: 1-bit Active: - Pin Function: Pin name: bitx_reset Pin Function: Pin name: bitx_reset Pin name: bitx_reset Pin name: bitx_reset Pin function: Pin fun	Pin name: bitx_fifo_push_en	Register: No
Bit size: 1-bit Active: High Pin Function: Store the data to FIFO while 1'b1. Pin name: bitx_rx_fifo_full Register: No Pin class: status signal Source \rightarrow Destination: brx \rightarrow btx Bit size: 1-bit Active: High Pin Function: Indicate the FIFO in receiver block is full. Pin name: bitx_sysclk Register: No Pin class: clock signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: - Pin Function: Provide a periodic signal for synchronize purpose. Pin name: bitx_ua_clk Register: No Pin class: clock signal Source \rightarrow Destination: bclkctr \rightarrow btx Bit size: 1-bit Active: - Pin Function: Pin name: bitx_reset Pin Function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin name: bitx_reset Pin function: Pin Function: P	Pin class: control signal	
Active: High Pin Function: Store the data to FIFO while 1'b1.Register: NoPin name: bitx_rx_fifo_fullRegister: NoPin class: status signalSource \rightarrow Destination: brx \rightarrow btxBit size: 1-bitActive: HighPin Function: Indicate the FIFO in receiver block is full.Pin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin name: bitx_resetRegister: NoPin function:Pin name: bitx_resetPin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.	Source \rightarrow Destination: uuart \rightarrow btx	
Pin Function: Store the data to FIFO while 1'b1.Pin name: bitx_rx_fifo_fullRegister: NoPin class: status signalSource \rightarrow Destination: brx \rightarrow btxBit size: 1-bitActive: HighPin Function: Indicate the FIFO in receiver block is full.Pin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitRegister: NoPin class: clock signalRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitRegister: NoPin function:Pin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitRegister: NoPin function:Pin Function: System \rightarrow btxBit size: 1-bitFunction: System \rightarrow btxBit size: 1-bitFunction: System \rightarrow btxBit size: 1-bitFunction: Reset the transmitter block to initial condition.	Bit size: 1-bit	
Pin name: bitx_rx_fifo_fullRegister: NoPin class: status signalSource \rightarrow Destination: brx \rightarrow btxBit size: 1-bitActive: HighPin Function: Indicate the FIFO in receiver block is full.Pin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin name: bitx_resetPin runction:Register: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.	Active: High	
Pin name: bitx_rx_fifo_fullRegister: NoPin class: status signalSource \rightarrow Destination: brx \rightarrow btxBit size: 1-bitActive: HighPin Function: Indicate the FIFO in receiver block is full.Pin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin name: bitx_resetPin runction:Register: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.	6	
Pin class: status signalSource \rightarrow Destination: brx \rightarrow btxBit size: 1-bitActive: HighPin Function: Indicate the FIFO in receiver block is full.Pin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.		Register: No
Source \rightarrow Destination: brx \rightarrow btxBit size: 1-bitActive: HighPin Function: Indicate the FIFO in receiver block is full.Pin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin Function:Pin name: bitx_resetPin Function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.		2
Active: High Pin Function: Indicate the FIFO in receiver block is full.Register: NoPin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin Function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function:Fin function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.	•	
Active: High Pin Function: Indicate the FIFO in receiver block is full.Register: NoPin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin Function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function:Fin function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.		
Pin Function: Indicate the FIFO in receiver block is full.Pin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin name: bitx_resetPin name: bitx_resetPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: +Pin function:Pin relass: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.	Active: High	
Pin name: bitx_sysclkRegister: NoPin class: clock signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin size: 1-bitActive: -Pin function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function:Pin size: 1-bitPin class: control signalPin size: 1-bitSource \rightarrow Destination: System \rightarrow btxPin size: 1-bitPin Function: Reset the transmitter block to initial condition.	6	
Pin class: clock signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: - Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signal Source \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bit Active: - Pin Function:Pin name: bitx_resetRegister: NoPin class: control signal Source \rightarrow Destination: System \rightarrow btxBit size: 1-bit Active: - Pin function:Pin name: bitx_resetRegister: NoPin class: control signal Source \rightarrow Destination: System \rightarrow btxBit size: 1-bit Active: High Pin Function: Reset the transmitter block to initial condition.		Register: No
Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: - Pin Function: Provide a periodic signal for synchronize purpose. Pin name: bitx_ua_clk Register: No Pin class: clock signal Source \rightarrow Destination: bclkctr \rightarrow btx Bit size: 1-bit Active: - Pin Function: Pin name: bitx_reset Register: No Pin class: control signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: High Pin Function: Reset the transmitter block to initial condition.	-	0
Bit size: 1-bit Active: - Pin Function: Provide a periodic signal for synchronize purpose. Pin name: bitx_ua_clk Pin class: clock signal Source \rightarrow Destination: bclkctr \rightarrow btx Bit size: 1-bit Active: - Pin Function: Pin name: bitx_reset Pin class: control signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: High Pin Function: Reset the transmitter block to initial condition.	•	
Active: -Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: +Pin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.		
Pin Function: Provide a periodic signal for synchronize purpose.Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin name: bitx_resetPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function:Pin class: control signal		
Pin name: bitx_ua_clkRegister: NoPin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Active: -Pin Function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.		irpose.
Pin class: clock signalSource \rightarrow Destination: bclkctr \rightarrow btxBit size: 1-bitActive: -Pin Function:Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.		
Source \rightarrow Destination: bclkctr \rightarrow btx Bit size: 1-bit Active: - Pin Function: Pin name: bitx_reset Register: No Pin class: control signal Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: High Pin Function: Reset the transmitter block to initial condition.		
Bit size: 1-bit Active: - Pin Function:Register: NoPin name: bitx_resetRegister: NoPin class: control signal Source \rightarrow Destination: System \rightarrow btxBit size: 1-bit Active: High Pin Function: Reset the transmitter block to initial condition.	-	
Active: - Pin Function:Register: NoPin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.		
Pin Function: Register: No Pin name: bitx_reset Register: No Pin class: control signal Source → Destination: System → btx Bit size: 1-bit Active: High Pin Function: Reset the transmitter block to initial condition.		
Pin name: bitx_resetRegister: NoPin class: control signalSource \rightarrow Destination: System \rightarrow btxBit size: 1-bitActive: HighPin Function: Reset the transmitter block to initial condition.		
Pin class: control signal Source → Destination: System → btx Bit size: 1-bit Active: High Pin Function: Reset the transmitter block to initial condition.		Register: No
Source \rightarrow Destination: System \rightarrow btx Bit size: 1-bit Active: High Pin Function: Reset the transmitter block to initial condition.	_	Negiowi, 190
Bit size: 1-bit Active: High Pin Function: Reset the transmitter block to initial condition.	•	
Active: High Pin Function: Reset the transmitter block to initial condition.	•	
Pin Function: Reset the transmitter block to initial condition.		
	-	
Table 10.9. Junute nin description for http	Pin Function: Reset the transmitter block to initial condition Table 10.8: Inputs pin description for btx	on.

Output pins

Pin name: botx_rts	Register: Yes			
Pin class: status signal				
Source \rightarrow Destination: btx \rightarrow external device				
Bit size: 1-bit				
Active: High				
Pin Function: Request to send data from transmitter	block.			
Pin name: botx_tx_data	Register: Yes			
Pin class: data signal	-			
Source \rightarrow Destination: btx \rightarrow external device				
But size: 1-bit				
Active: -				
Pin Function: Data stream transmit.				
Pin name: botx_fifo_full	Register: Yes			
Pin class: status signal				
Source \rightarrow Destination: btx \rightarrow none				
Bit size: 1-bit				
Active: High				
Pin Function: Indicate the FIFO in transmitter block	t is full while 1'b1.			
Pin name: botx_fifo_empty	Register: Yes			
Pin class: status signal				
Source \rightarrow Destination: btx \rightarrow none				
Bit size: 1-bit				
Active: High				
Pin Function: Indicate the FIFO in transmitter block	t is empty while 1'b1.			
Table 10.9: Output pins description for btx				

10.7 UART address decoder

The UART address decoder will only work on 2 address which is 32'h C000_0008 for transmitter FIFO and C000_0004 UART for configuration register since only UART is used for transmission of data only. Figure below show the combinational logic of the decoder.

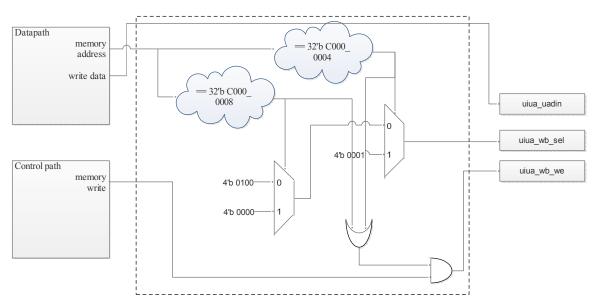


Figure 10.12: Circuit for CPU-UART address decoder

11.1 Verification for crisc

Verification is carrying out after the crisc_pipelineverilog module had designed. The verification is done with load a text file (with .arm extension) to the Text segment memory cache, since this project only include the user instruction (Arithmetic, logical, memory, and program flow).

Verilog code:

\$readmemh ("test_instr.arm",tb_crisc_pipeline.DUT.utext_seg.ucm_r_memory);

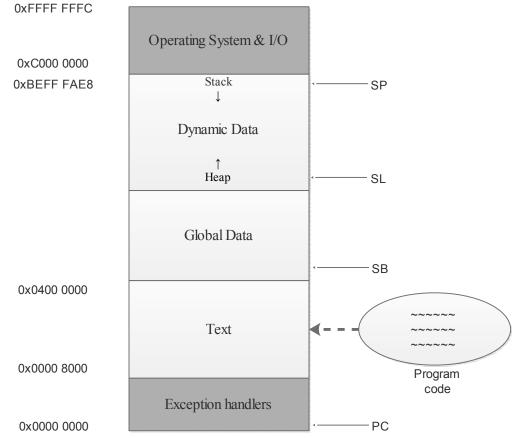


Figure 11.1: Memory map & program code segment

The correctness of the Verilog module is confirmed with the comparison of Register file and data memory of Verilog module with ARMSim (ARM assembly instruction simulator).

11.2 Test Program for RISC 32

The following test program in **Table 11.1** is a program which consists most of the instruction to test crisc_pipeline. This program is a hazard and data dependency free program. When verifying using this program, the outcome of crisc_pipelinemust be the same with the expected output stated. The main purpose of this program is to ensure the correctness of each instruction which involve data-path unit (udp) and control unit (ucp).

The test program in Table 11.2 is a recursive program which is full of data dependency. The NOP is not inserted in the program to test the Data forwarding (bfw_ctrl) and Interlock control (bitl_ctrl). The main purpose is to make sure the program is free from data hazard.

11.2.1 Test program 1

Each instruction of the test program 1 is not related to each other, therefore the register file and data memory should be observe after each instruction. The correctness is verified with ARMSim.

data_processing	ADD	R0, R0, #16	R0 = 16
	ADD	R1, R1, R0	R1 = 16
	ADD	R2, R1, R0, LSL #2	R2 = 16 + 16 * 4 = 80
	ADD	R3, R1, R0, LSL R0	$R3 = 16 + 16*2^{16} = 1048592$
	CMP	R0, R4	Carry = 1
	ADC	R4, R4, #16	R4 = 16 + 1 = 17
	ADC	R5, R5, R4	R5 = 17 + 1 = 18
	ADC	R6, R5, R4, LSL #1	R6 = 18 + 17*2 + 1 = 53
			$R7 = 18 + 17*2^{17} + 1 =$
	ADC	R7, R5, R4, LSL R4	2228243
	SUB	R1, R1, #16	R1 = 16-16 = 0
	SUB	R0, R4, R0	R0 = 17 - 16 = 1
	SUB	R2, R2, R0, LSL #6	$R2 = 80 - 1 * 2^{6} = 16$
			R3 = 1048592 - 1114121 = -
	SUB	R3, R3, R7, LSR R0	65529
	RSB	R4, R4, R5	R4 = 18 - 17 = 1
	RSB	R5, R5, R4	R5 = 1 - 18 = -17
	RSB	R6, R6, R2, LSL #2	$R6 = 16 * 2^2 - 53 = 11$
			R7 = 22528 - 2228243 = -
	RSB	R7, R7, R6, LSL R6	2205715
	SBCS	R0, R0, #0	R0 = 1 - 0 - !1 = 1; C = 1
	SBC	R1, R4, R1	R1 = 1 - 0 - !1 = 1
	SBCS	R2, R2, R4, LSL #4	$R2 = 16 - 1*2^{4} - !0 = -1; C = 1$

Г				
	~~~~		R3 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
	SBC	R3, R2, R3, ASR R6	FFFF = 0	
	TST	R3, #0Xff	N = 0, Z = 0, C = 1	
	TST	R3, R1	N = 0, Z = 1, C = 1	
	TEQ	R1, #0xFF	N = 0, Z = 0, C = 1	
	TEQ	R1, R3, LSL #26	N=0, Z = 0, C = 0	
	AND	R4, R7, #0xFF	R4 = 0xED	
	EOR	R5, R4, #0xF0	R5 = 0x1D	
	ORR	R6, R4, #0xF0	R6 = 0xFD	
	BIC	R7, R4, #0xF0	R7 = 0x0D	
	CMP	R7, R7	N = 0, Z = 1, C = 1, V =0	
	CMN	R7, R6	N = 0, Z = 0, C = 0, V = 0	
	MOV	R8, R7	R8 = 0x0D	
	MOV	R8, #0xF0	R8 = 0xF0	
	MVN	R9, R7	R9 = 0xFFFFFFFF2	
	MVN	R9, #0xF0	R9 = 0XFFFFFFF0F	
	MOV	R8, R9, LSL R7	R8 = 0XFFE1 E000	#(-8+16=8) -> mem[2]
	MOV	R8, R9, LSR #8	R8 = 0x00FF FFFF	
	MOV	R8, R9, ASR #3	R8 = 0XFFFFFFFE1	#(-8+20=8) -> mem[3]
	MOV	R8, R9, ROR #9	R8 = 0x87FF FFFF	
	MOV	R2, R0, LSL #28	$R2 = 0x1000\ 0000$	
	ORR	R2, R2, R0, LSL #15	$R2 = 0X1000\ 8000$	
		. , ,		
memory:	STR	R8, [R2]	Dmem[0x1000 8000] = 0x87FF	FFFF
	STR	R9, [R2, #4]	Dmem[0x1000 8004] = 0xFFFF	FF0F
	STR	R0, [R2], #8	$Dmem[0x1000\ 8000] = 0X0000$	$00001; R2 = 0x1000\ 8008$
	STR	R8, [R2, #4]!	$R2 = 0x1000 \ 800C; Dmem[0x10]$	000 800C] = 0x87FF FFFF

	LDR	R0, [R2], #-4	R0 = 0x87FF FFFF; R2 = 0x1000 8008
	LDR	R0, [R2, #-4]	$R0 = Dmem[0x1000\ 8000] = 0xFFFF\ FF0F$
	LDR	R0, [R2, #-8]!	$R2 = 0x1000\ 8000;\ R0 = 0x0000\ 0001$
			below is for test forwarding
	ADD	R0, R0, #-1	$R0 = 0x0000\ 0000$
	LDR	R0, [R0, R2]!	$R0 = 0X1000\ 8000$ ; 2nd write port higher priority
	BL	branch	LR = here
here:	В	end	
			PC = LR, similar to jump in
branch:	MOV	PC, LR	MIPS
	Nop		
end:	MOV	R0, #0	R0 = 0; indicate end of program
		Tab	le 10.1 Test program 1 (without data dependency interlock and hazard)

 Table 10.1 Test program 1 (without data dependency, interlock and hazard.)

#### 11.2.2 Verification for test program 1 for RISC32

For the verification, we need to track the value of register file and memory segment from time to time in order to make sure the correctness.

For Data Processing Instruction (Note-the result is arranged in time increasing order):

00000000	00000010
00000001	00000010
00000002	00000050
0000003	00100010
00000004	00000011
00000005	00000012
00000006	00000035
00000007	00220013
80000008	00000000
00000009	00000000
0000000a	00000000
000000ъ	00000000
000000c	00000000
0000000d	00000000
0000000e	00000000
	•

Register address Value stored in register (in hexadecimal) Run from instruction ADD R0, R0, #16 to ADC R7, R5, R4, LSL R4

Figure 11.2: Test program 1 result (1)

00000000	00000001
00000001	00000000
00000002	00000010
00000003	ffff0007
00000004	00000001
00000005	ffffffef
00000006	0000000b
00000007	ffde57ed
80000000	00000000
00000009	00000000
0000000a	00000000
000000b	00000000
000000c	00000000
b0000000	00000000
0000000e	00000000
I	l

Figure 11.3: Test program 1 result (2)

Register address Value stored in register (in hexadecimal)

Run from instruction SUB R1, R1, #16

to RSB R7. R7. R6. LSL R6

Chapter 11 Verification Specification

00000000	00000001
00000001	00000001
00000002	00000000
00000003	00000020
00000004	000000ed
00000005	0000001d
00000006	000000fd
00000007	b0000000d
80000008	p0000000
00000009	00000000
0000000a	00000000
0000000b	00000000
000000c	00000000
0000000d	00000000
0000000e	00000000

#### **Register address**

Value stored in register (in hexadecimal)

Run from instruction SBCS R0, R0, #0

to MOV R8, R7

Note: The TEQ, TST, CMP, CMN only affect the value of status flag which didn't show here.

Figure 11.4: Test program 1 result (3)

80000000	000000f0
90000000	fffffff2
80000000	ffele000
80000000	ffffff0f
80000008	00ffffff
80000000	87ffffff
80000008	ffffffe1
<b>00000008</b>	87ffffff
Figure 11.5: Test pro	gram 1 result (4)

## Register address Value stored in register (in hexadecimal)

Run from instruction MOV R8, #0xF0

to MOV R8, R9, ROR #9 For Store Memory Instruction:

From STR R9, [R2] to R8, [R2, #4]!

10008000	87	ff	ff	ff	ff	ff	ff	0f	XX XX XX XX
1 Address		Data			хх	хх	хх	xx	Explanation:
1 0x1000800	00	87			хх	хх	хх	хх	0x10008000~0x10008003
1 0x1000800	01	ff			хх	хх	хх	хx	= R8 = 0x87ff ffff
1 0x1000800	)2	ff			хх	хх	хх	хх	
1 0x1000800	)3	ff			хх	хх	хх	xx	0x10008004~0x10008007
1 0x1000800	)4	ff			xx	xx	xx	xx	= R9 = 0xffff ff0f
1 0x1000800	)5	ff				xx			
1 0x1000800	06	ff			xx	xx	xx	xx	0x10008000~0x10008003
10000144	1			****					later is replace by R0 value
Figure 11.6: Test pr	ogra	m 1 res	sult (5	)					

 10008000
 00
 00
 01
 1ff
 1ff
 01
 xx
 xx
 xx
 87
 ff
 ff
 ff
 yx
 yx

The value at  $0x1000\ 8000 \sim 0x1000\ 8003$  is replaced by value stored in R0 (0x0000 0001) and 0x1000 800c~0x1000\ 8010 stored the value of 0x87ff ffff.

For load from memory:

The figures below show the result for the load instruction.

- LDR R0, R2, #-4
- LDR R0, [R2, #-4]
- LDR R0, [R2, #-8]

00000000 87ffffff

Figure 11.8: Test program 1 result (7) - Value from 0x1000 800c~0x1000 8010

00000000 ffffff0f

Figure 11.9: Test program 1 result (8) - Value from 0x1000 8004~0x1000 8007

# 00000000 00000001

Figure 11.10: Test program 1 result (9) - Value form 0x1000 8000~0x1000 8003

For Program Flow Instruction:

The correctness of B and BL instruction is determined by the PC of the program from time to time. Figure below show the value of PC from time to time.

32'h004000c8		32"h004000cc	32'h004000d0	32'h004000d4	32'h004000d8
		L BL branch B end		branch	MO∨ PC, LR
•	•	+	B end	+	end
32'h004000dc	32'h004000e0	32'h004000e4	32'h004000d0	32'h004000d	4 32'h004000e8

Figure 11.11: Test program 1 result (10) – program flow instruction (B & BL)

#### Explanation:

When BL branch execute, B end instruction is actually being fetch by CPU to IF stage, but the content of B end instruction is being flush after the BL branch done execute in ID stage.

At branch label, MOV PC, LR instruction is execute, which force the program jump back to 32x0040 00d0 which is content of LR register.

At 32x0040 00d0 B end instruction is fetch and executed and PC jump to 0x0040 00e8 which is the end of program.

11.2.3 Test program 2

The program 2 is a recursive program which converts from C program. The program use is factorial program, R0 as the output of the program R1 as the input (R0 = R1!). The multiplication is not supported by the current crisc_pipeline therefore another multiplication function is implement to the function in assembly code. Different from program 1, program 2 is full with data dependency and hazard, which mainly test the functionality and correctness of bitl_ctrl and bfw_ctrl in udp.

```
C program:
```

```
int main(){
```

```
factorial (5);
```

return 0;

```
}
```

```
int factorial(n){
```

```
if(n==1) return 1;
```

else n*factocrial(n-1);

}

Above is the content of C program.

_start:			
	MOV	R1, #5	n!, input of factorial
	MOV	FP, SP	
	ADD	FP, FP, #1024	set FP
	BL	FACT	
	В	EXIT	@R3: A
FACT:			
	CMP	R1, #1	
	BNE	RECUR	if $n != 1$ branch to recur
	MOV	R0, #1	else return 1
	В	DONE	exit the program
RECUR:			
	STR	R1, [SP], #4	store r1
	SUB	R1, R1, #1	n-1
	STR	LR, [FP], #4	save return address
	BL	FACT	call fact(n-1)
	LDR	LR, [FP, #-4]!	load return address
	LDR	R1, [SP, #-4]!	recall n
	MOV	R2, R0	R2 = R0
	STR	LR, [FP], #4	save return address

Chapter 11 Verification Specification

	BL	mult	
	LDR	LR, [FP, #-4]!	load return address
DONE:			
	MOV	PC, LR	continue another loop
	NOP		
mult:			Multiplication (Booth algorithm)
	MOV	R6, #0	reset counter
	MOV	R3, R1, LSL #16	R3: A
	MVN	R4, R1	
	ADD	R4, R4, #1	R4: -R1; -M
	MOV	R4, R4, LSL #16	R4: S
	MOV	R5, R2, LSL #1	R5: P
loop:			
	CMP	R6, \$15	
	BEQ	done	
	AND	R7, R5, #3	check last 2 bit
	CMP	R7, #2	if == 2'b10
	ADDEQ	R5, R5, R4	P = P + S
	CMP	R7, #1	if == 2'b01
	ADDEQ	R5, R5, R3	P = P + A
	MOV	R5, R5, ASR #1	P >>> 1
	ADD	R6, R6, #1	R6 ++
	В	loop	
done:			
	MOV	R0, R5, ASR #1	Result
	MOV	PC, LR	
	NOP		
EXIT:			
	T 11		dependency interlock and hazard

Table 11.2 Test program 2, with data dependency, interlock and hazard.

11.2.4 Verification on test program 2

For the factorial (5) we can know the result will be 5*4*3*2*1 = 120 = 0x78, therefore we just need to compare the value of R0 which is the final result. The operand can be change to other value for double check purpose. (Factorial (4) is run for this case, output should be 24 = 0x18)

Register value for factorial (5) (Note: R1: 0x5, R0: 0x78)

00000000	00000078
00000001	00000005
00000002	00000018
00000003	00050000
00000004	fffb0000
00000005	000000f0
00000006	1000000f
00000007	00000000
80000008	00000000
00000009	00000000
0000000a	00000000
0000000Ъ	10008400
000000c	00000000
b0000000	10008000
0000000e	0040001c
•	1

Figure 11.12: Test program 2 result (1) – factorial (5)

Register value for factorial (4) (Note: R1: 0x4, R0: 0x18)

00000000	00000018
00000001	00000004
00000002	00000006
0000003	00040000
00000004	fffc0000
00000005	00000030
0000006	0000000f
00000007	00000000
80000008	00000000
00000009	00000000
0000000a	00000000
d000000b	10008400
000000c	00000000
000000d	10008000
0000000e	0040001c

Figure 11.13: Test program 2 result (2) – factorial (4)

11.3 Verification on UART and core interaction.

A simple assembly code had developed to test the functionalities of UART after connect it to the core (data path and control path). Below shows the code which test the transmission of R1's content via UART.

Test code:	
MOV R2, #0x0C	
MOV R2, R2, LSL #28	@set R2 to value of 0xC000 0000
MOV R0, #0x98	@set the content of UARTCR
STR R0, [R2, #4]	@configure UARTCR (0xC000 0004)
MOV R1, #0xA9	@value to transmit by UART
STR R1, [R2, #8]	@store the value to transmitter FIFO (0xC000 0008)

In this test code, R2 is used as the pointer to UARTCR and transmitter FIFO, R0 for UARTCR's content and R1 for value to transmit. The result is shown below.

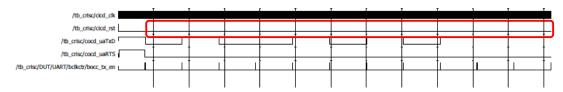



Figure 11.14: Waveform result (1)

The transmit value is 0xA9, which will send in bit stream of {start bit, d[0], d[1], ..., d[7], (odd) parity bit, stop bit} (01001010111). The system clock is set to 20 MHz, while baud rate used is 38400Hz.

🔶 /tb_crisc/cicd_dk	1				
🔶 /tb_crisc/cicd_rst	0				
/tb_crisc/cocd_uaTxD	St1				
/tb_crisc/cocd_uaRTS	St0				
/tb_crisc/DUT/UART/bclkctr/bocc_tx_en	St1				

Figure 11.15: Waveform result (2)

The bocc_tx_en is enable after every 520 of system clock period, which is every  $2.6 \times 10^{-5}$  second of 38461Hz approximate to selected baud rate. The content in transmitter FIFO:

🔶 ip_clk_w	St0
🖃 🔶 r_fifomem	10101001 xxxxxxxx xxxxxxx xxx
😐 🔷 [0]	10101001
😐 🔶 [1]	XXXXXXXXXX
😐 🔶 [2]	XXXXXXXXX sin
主 🔶 [3]	XXXXXXXXXX
. 1	

Figure 11.16: transmitter FIFO content

# Chapter 12 – Conclusion

A limitation of documentation on ARM core processor especially microarchitecture of the cores on the open source project website (e.g. <u>www.opencore.org</u>). To present the work better the inter-connection between the blocks and functional table for each blocks are included in this report. Documentation is importance for the long term project for modification and adding feature in future. In order to achieve that, the processor is designed with the ARM ISA and a proper documentation is done.

The processor is divided to main two part which is data path and control path. Data path is designed according to the addressing mode to be implemented and Control path main designed to generate control signals for data path developed.

During the design process, several redesigns is done to improve the performance of the processor. For example, branch instructions (B or BL) done execution after 2 clock cycles (IF and ID) instead of 5 clock cycles (IF, ID, EX, MEM and WB). To solve data hazard and data dependency problem in pipelined processor, external blocks, forwarding control and interlock control are implemented to the processor.

## References

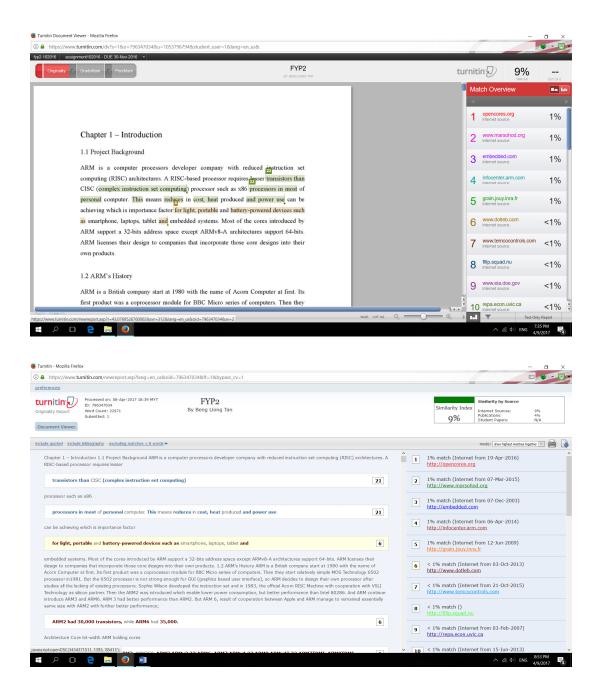
Electrical Engineering (2014), Why ARM cores consumes relatively lower power than x86. Available at <u>http://electronics.stackexchange.com/questions/74010/why-arm-cores-consumes-relatively-lower-power-than-x86</u>. Access on 30 March 2016.

Advanced RISC Machine Ltd(ARM) (1996), ARM Architecture Reference Manual. Available at <u>http://www.home.marutan.net/arcemdocs/ARM-ARM-RevB.pdf</u>. Access on 30 March 2016.

ConorSantifort (2015), Amber Open Source Project-Amber 2 Core Specification March 2015[Online]. Available at <u>www.opencore.org</u>. Access on 16 March 2016

Stephan Nolting (2012), Storm Core Processor System [Online]. Available at <u>www.opencore.org</u>. Access on 16 March 2016.

Quentin Jones (2016), ARM architecture Computer architecture M 1. History 2 Design software can be bought (Verilog) – soft core Acorn computer: An English Company Cambridge [Online]. Available at <u>http://slideplayer.com/slide/9462345/#</u>. Access on 20 March 2016.


Sarah L. Harris & David Money Harris (2016) Digital Design and Computer Architecture ARM Edition, Morgan Kaumann.

Mok, K. M. Digital System Design Lecture Notes. University Tunku Abdul Rahman. Kampar : s.n., 2009. Lecture Notes.

Alvin R. Lebeck (1997). A Pipelined Processor. Duke University Durham. Available at <u>https://www.cs.duke.edu/courses/fall98/cps104/lectures/week14-l2/sld001.htm</u>. Access on 11 August 2016.

Appendix

# Appendix



#### Universiti Tunku Abdul Rahman

Form Title : Supervisor's Comments on Originality Report Generated by Turnitinfor Submission of Final Year Project Report (for Undergraduate Programmes)Form Number: FM-IAD-005Rev No.: 0Effective Date: 01/10/2013Page No.: 1of 1



### FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

Full Name(s) of Candidate(s)	
ID Number(s)	
Programme / Course	
Title of Final Year Project	

Similarity	Supervisor's Comments (Compulsory if parameters of originality exceeds the limits approved by UTAR)		
Overall similarity index: %			
Similarity by source			
Internet Sources:%			
Publications:%			
Student Papers:%			
Number of individual sources listed of more than 3% similarity:			
Parameters of originality required and limits approved by UTAR are as Follows:			
(i) Overall similarity index is 20% and below, and			
(ii) Matching of individual sources listed must be less than 3% each, and			
(iii) Matching texts in continuous block must not exceed 8 words Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.			

<u>Note</u> Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final Year Project Report submitted by my student(s) as named above.

Signature of Supervisor	Signature of Co-Supervisor
Name:	Name:
Date:	Date: