
Design and Implementation of

a 32-bit Lite Version ARM ISA CPU

By

Tan Beng Liong

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology
(Perak Campus)

JAN 2017

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

Design and Implementation of

a 32-bit Lite Version ARM ISA CPU

By

Tan Beng Liong

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology
(Perak Campus)

JAN 2017

BIT (Hons) Computer Engineering I
Faculty of Information and Communication Technology (Perak Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “Design and Implementation of a 32-bit Lite Version ARM ISA

CPU” is my own work except as cited in the references. The report has not been accepted for any

degree and is not being submitted concurrently in candidature for any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

BIT (Hons) Computer Engineering II
Faculty of Information and Communication Technology (Perak Campus), UTAR

ACKNOWLEDGEMENTS
I would like to thank to Mr. Mok Kai Ming for giving me the opportunities to contribute in this

project which help me improve my understanding toward the processor design skill.

Beside thank to University Tunku Abdul Rahman for provide the facilities and comfortable

environment to all students to complete their project.

BIT (Hons) Computer Engineering III
Faculty of Information and Communication Technology (Perak Campus), UTAR

ABSTRACT

This project is a processer design with Verilog HDL for academic purpose. The processor

is built in pipelined stage and divided to 5 stages which are instruction fetch (IF),

instruction decode (ID), instruction execution (EX), memory (MEM) and write back

(WB). It contain the methodology, design hierarchy, connection between each blocks and

pin description for each blocks. The processor is built based on ARM instruction

structure architecture (ISA). To understand the how the instructions work, an ARM

assembly stimulator, ARMSim which is free simulator developed by University of

Victoria is downloaded, the ARMSim also used to verify the output of the designed

Verilog module by comparing the register file and memory content.

The instruction format and addressing mode of each type of instructions in ARM is

studied. The data path of the processor is designed according to the addressing modes of

the instructions need to implement to the design. However the arithmetic logic unit

(ALU) and barrel shifter block which can perform add, subtract, logical shift (LSL and

LSR), arithmetic shift right (ASR) and rotate right (ROR) is designed. For memory cache

the address of each segment is refer to the memory map stated in Digital Design and

Computer Architecture ARM edition by Sarah L. Harris and David Money Harris.

Hazard problem in the pipelined register is solved by implement extra blocks instead of

using NOP to achieve a better performance. After designed the Verilog module

verification is carry out to make sure the processor work.

The verification is done by using 2 converted ARM assembly program with ARMSim, as

stated above the content of both register file and memory cache need to be same. First

program used is to test the all instruction implemented worked individually however

another is converted from c program to verify that the instructions can worked with each

other.

BIT (Hons) Computer Engineering IV

Faculty of Information and Communication Technology (Perak Campus), UTAR

TABLE OF CONTENTS

Contents
DECLARATION OF ORIGINALITY .. I

ACKNOWLEDGEMENTS .. II

ABSTRACT ... III

TABLE OF CONTENTS ... IV

LIST OF FIGURES ... VIII

LIST OF TABLES ... XI

LIST OF ABBREVIATIONS .. XIII

Chapter 1 – Introduction ... 1

1.1 Project Background .. 1

1.2 ARM’s History ... 1

1.3 Problem Statement & Motivation ... 3

Chapter2 – Literature Review ... 4

2.0 ISA (Instruction Set Architecture) of ARM.. 4

2.0.1 Instruction Format .. 6

2.0.2 Condition Encode Instruction .. 8

2.1 Single cycle, multi-cycle and pipelined processor .. 9

2.2 Benchmarking ... 11

2.2.1 Amber Core .. 11

2.2.2 Storm core .. 13

2.2.3 ARM7 core... 14

2.2.4 ARM9 core... 15

2.2.5 ARM10TDMI .. 16

2.2.6 ARM11 Core .. 17

Chapter 3 – Project Objective ... 19

3.1 Project Scope .. 19

3.2 Objective ... 19

3.3 Significance and Impacts .. 20

Chapter 4 - Methodology and Technologies Involved ... 21

4.1 Design Methodology ... 21

BIT (Hons) Computer Engineering V

Faculty of Information and Communication Technology (Perak Campus), UTAR

4.2 Universal Design Methodology .. 21

4.3 Development Tools ... 23

Icarus Verilog .. 23

4.4 Design Hierarchy .. 23

4.5 Implementation Issues and Challenges ... 24

4.6 Schedule and timeline ... 27

Chapter 5 – System Specification ... 28

5.1 Feature... 28

5.2 Naming Convention .. 28

5.3 RISC32 processor ... 30

5.3.1 Processor Interface ... 30

5.3.2 I/O Pin Description .. 30

5.4 System Register .. 31

5.4.1 General Purpose Register ... 31

5.4.2 Special Purpose Register.. 31

5.5 Instruction Format ... 32

5.6 Addressing Mode .. 34

5.7 Instruction Set and Description ... 37

5.8 Memory Map .. 41

5.9 Operating Procedure ... 42

Chapter 6 – Microarchitecture Specification .. 43

6.1 Design hierarchy ... 43

6.2 Unit level functional partitioning .. 44

6.3 Unit block level partitioning Error! Bookmark not defined.

Chapter 7 – Data path of CRISC (Unit & Block level) .. 45

7.1 Feature... 45

7.2.1 Block diagram of udp (Data path) ... 47

7.2.2 Data path block level hierarchy ... 53

7.2.3 Block level partition of udp Error! Bookmark not defined.

7.3 Register file (brf)... 54

7.3.1 Functionality .. 54

7.3.2 Block Diagram ... 54

7.3.3 Functional table .. 57

7.3.4 Internal block diagram of Register File ... 58

BIT (Hons) Computer Engineering VI
Faculty of Information and Communication Technology (Perak Campus), UTAR

7.4 Arithmetic Logic Block with shift (balb_shift) .. 59

7.4.1 Functionality .. 59

7.4.2 Block Diagram ... 59

7.4.3 Functional table ... Error! Bookmark not defined.

7.4.4 Internal block diagram of ALB Error! Bookmark not defined.

7.4.5 Test plan ... 62

7.4.6 Simulation result .. 64

7.5 Data forwarding control (bfw_ctrl) ... 67

7.5.1 Functionality .. 67

7.5.2 Forwarding Block Function Tables ... 71

7.5.3 Block diagram .. 72

7.6 Interlock control (bitl_ctrl) ... 75

7.6.1 Functionality .. 75

7.6.2 Block diagram .. 75

7.6.3 Functional table .. 77

Chapter 8 – Control Path of CRISC (Unit & Block level) ... 78

8.1 Control Path unit (ucp).. 78

8.1.1 Functionality .. 78

8.1.2 Control Path’s Unit interface – (Block diagram) ... 78

8.1.3 Block partitioning in ucp ... 83

8.1.4 Block level partition diagram... 84

8.1.5 Functional table ... Error! Bookmark not defined.

8.2 Main Control Block (bmain_ctrl) ... 85

8.2.1 Functionality .. 85

8.2.2 Block diagram .. 85

8.2.3 Functional table ... Error! Bookmark not defined.

8.3 Instruction Control Block (binstr_ctrl) ... 90

8.3.1 Functionality .. 90

8.3.2 Block diagram .. 90

8.3.3 Functional table ... Error! Bookmark not defined.

Chapter 9 – Memory Cache unit (ucache) .. 95

9.1 Functionality ... 95

9.2 Block diagram ... 95

BIT (Hons) Computer Engineering VII
Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 10 – UART unit ... 97

10.1 UART address ... 97

10.2 Operating procedure .. 97

10.3 uuart functionalities and pin description ... 99

10.4 bclkctr functionalities and pins description .. 103

10.5 brx functionalities and pins description .. 105

10.6 btx functionalities and pins description .. 108

10.7 UART address decoder ... 111

Chapter 11 – Verification Specification ... 112

11.1 Verification for crisc ... 112

11.2 Test Program for RISC 32 .. 113

11.2.1 Test program 1 ... 114

11.2.2 Verification for test program 1 for RISC32 ... 117

11.2.3 Test program 2 ... 121

11.2.4 Verification on test program 2 ... 123

11.3 Verification on UART and core interaction.. 124

Chapter 12 – Conclusion ... 125

References ... 126

Appendix ... 127

BIT (Hons) Computer Engineering VIII
Faculty of Information and Communication Technology (Perak Campus), UTAR

LIST OF FIGURES
Figure Number

Title Page

Figure 2.1 Data-processing instruction format 5
Figure 2.2 Memory instruction format 6
Figure 2.3 Branch instruction format 6
Figure 2.4 Single cycle, multicycle vs pipeline processor 9
Figure 2.5 3-Stages and 5-Stages pipeline 10
Figure 2.6 Design of ALU in Amber 23 11
Figure 2.7 Data path of ARM7 14
Figure 2.8 Data path of ARM9 15
Figure 2.9 Pipelined stage of ARM10DTMI 16
Figure 2.10 Pipelined stage of ARM11 17
Figure 2.11 Grouped pipelined stage of ARM 11 17

Figure 4.1 UDM flow 21
Figure 4.2 Pipeline stage of instruction in different cycle(1) 25
Figure 4.3 Pipeline stage of instruction in different cycle(2) 25
Figure 4.4 Pipeline stage of instruction in different cycle(3) 25
Figure 4.5 MOV and MVN detector 26
Figure 4.6 ALU to be design and implement 27

Figure 5.1 Block diagram for RISC32 processor 31
Figure 5.2 Data-processing instruction format 33
Figure 5.3 Memory instruction format 33
Figure 5.4 Branch instruction format 34
Figure 5.5 Immediate addressing 36
Figure 5.6.1 Register addressing (1) 37
Figure 5.6.2 Register addressing (2) 37
Figure 5.7 Base addressing 37
Figure 5.8 Register indexed displacement addressing with

register scaling
38

Figure 5.9 Register indexed displacement addressing with
immediate scaling

38

Figure 5.10 Pseudodirect addressing 39
Figure 5.11 Memory map 44

Figure 6.1 crisc architecture and micro-architecture

partitioning
46

Figure 6.2 Unit level functional partition 47
Figure 6.3 Unit block level functional partition 48

Figure 7.1 Solution for status flag problem 50
Figure 7.2 Block diagram of data path 51
Figure 7.3 Partition of data path unit 57

BIT (Hons) Computer Engineering IX

Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 7.4 Connection between block in data path unit 58
Figure 7.5 Block diagram of brf (register file) 59
Figure 7.6 Design of register file 63
Figure 7.7 Single element of register file 63
Figure 7.8 Block diagram of balb_shift (ALU and shifter) 64
Figure 7.9 Design of ALU 68
Figure 7.10 Design of barrel shifter 69
Figure 7.11 Simulation result (1) – addition 72
Figure 7.12 Simulation result (2) - subtraction 72
Figure 7.13 Simulation result (3) – subtraction 73
Figure 7.14 Simulation result (4) – logical 73
Figure 7.15 Simulation result (5) – shift/ rotate 74
Figure 7.16 Instruction format 75
Figure 7.17 Data processing instruction 75
Figure 7.18 Memory instruction 76
Figure 7.19 Block diagram of bfw_ctrl (forwarding control) 80
Figure 7.20 Block diagram of bitl_ctrl (interlock control) 83

Figure 8.1 Block diagram of control path 86
Figure 8.2 Partitioning in ucp 91
Figure 8.3 Internal connection between block in ucp 92
Figure 8.4 Block diagram of main control block 96
Figure 8.5 Block diagram of binstr_ctrl 103

Figure 9.1 Block diagram of ucache 110

Figure 10.1 Transmission of data by UART 112
Figure 10.2 UART data transfer protocol 113
Figure 10.3 UART data receiving protocol 113
Figure 10.4 Block diagram of uuart 114
Figure 10.5 Internal connection of uuart 118
Figure 10.6 Block diagram of bclkctr 119
Figure 10.7 Internal connection of bclkctr 121
Figure 10.8 Block diagram of brx 122
Figure 10.9 State diagram for brx controller 124
Figure 10.10 Block diagram of btx 125
Figure 10.11 State diagram for btx controller 127
Figure 10.12 Circuit for CPU-UART address decoder 128

Figure 11.1 Memory map & program code segment 129
Figure 11.2 Test program 1 result (1) 134
Figure 11.3 Test program 1 result (2) 134
Figure 11.4 Test program 1 result (3) 135
Figure 11.5 Test program 1 result (4) 135
Figure 11.6 Test program 1 result (5) 136
Figure 11.7 Test program 1 result (6) 136

BIT (Hons) Computer Engineering X

Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 11.8 Test program 1 result (7) 136
Figure 11.9 Test program 1 result (8) 136
Figure 11.10 Test program 1 result (9) 136
Figure 11.11 Test program 1 result (10) 137
Figure 11.12 Test program 2 result (1) – factorial (5) 140
Figure 11.13 Test program 2 result (2) – factorial (4) 140
Figure 11.14 Waveform result(1) 141
Figure 11.15 Waveform result(2) 141
Figure 11.16 Transmitter FIFO content 141

BIT (Hons) Computer Engineering XI
Faculty of Information and Communication Technology (Perak Campus), UTAR

LIST OF TABLES
Table Number Title Page

Table 1.1 List of ARM microarchitectures 2

Table 2.1 Instruction set of ARM 4
Table 2.2 Condition encoding 8
Table 2.3 Pin description of Amber’s ALU 12
Table 2.4 Comparison among Amber 23, Amber 25 and

Strom core
13

Table 2.5 Comparison among ARM 7, ARM 9, ARM 10 &
ARM11

18

Table 4.1 Comparison among Development Tools 23
Table 4.2 Pin description for ALU to be design 27
Table 4.3 Gantt Chart for project 1 & 2 28

Table 5.1 RISC32 features 29
Table 5.2 Naming convention 30
Table 5.3 RISC32 Input pins description 31
Table 5.4 RISC32 Output pins description 31
Table 5.5 Register file 32
Table 5.6 Status flag register 32
Table 5.7 Encoded immediate value 35
Table 5.8 Data-processing instruction set and description 40
Table 5.9 Operand 2 for data processing instruction 41
Table 5.10 Memory instruction set and description 41
Table 5.11 Source 2 for memory instruction 43
Table 5.12 Branch instruction set and description 43
Table 5.13 Condition encoding 44

Table 6.1 Formation of a design hierarchy for crisc

microprocessor through top down design
46

Table 7.1 Status flag problem 50
Table 7.2 Input pins description for data path unit 51
Table 7.3 Output pins description for data path unit 55
Table 7.4 General register 59
Table 7.5 Input pins description of brf 60
Table 7.6 Output pins description of brf 61
Table 7.7 Functional table for write enable signal 62
Table 7.8 Functional table for address pin 62
Table 7.9 Input pins description of balb_shift 64
Table 7.10 Output pins description of balb_shift 66
Table 7.11 Functional table for ALU 67
Table 7.12 Functional table for barrel shifter 67

BIT (Hons) Computer Engineering XII
Faculty of Information and Communication Technology (Perak Campus), UTAR

Table 7.13 Test plan for balb_shift 70
Table 7.14 ARM assembly instruction 77
Table 7.15 Functional table for forwarding block 79
Table 7.16 Input pins description of bfw_ctrl 80
Table 7.17 Output pins description of bfw_ctrl 82
Table 7.18 Input pins description of bitl_ctrl 83
Table 7.19 Output pins description of butl_ctrl 84
Table 7.20 Functional table of bitl_ctrl 85

Table 8.1 Input pins description of ucp 86
Table 8.2 Output pins description of ucp 88
Table 8.3 Functional table for ucp (data-processing

instruction)
93

Table 8.4 Functional table for ucp (memory instruction) 94
Table 8.5 Functional table for ucp (program flow instruction) 94
Table 8.6 Relationship between condition mask and status

flag
95

Table 8.7 Input pin description of main control block 96
Table 8.8 Output pin description of main control block 98
Table 8.9 Status flag for each condition mask 101
Table 8.10 Functional table for bmain_ctrl 102
Table 8.11 Input pins description of binstr_ctrl 103
Table 8.12 Output pins description of binstr_ctrl 105
Table 8.13 Functional table of binstr_ctrl (Data-processing

instruction)
108

Table 8.14 Functional table of binstr_ctrl (Memory instruction) 109
Table 8.15 Functional table of binstr_ctrl (Program flow

instruction)
109

Table 9.1 Input pins description of ucache 110
Table 9.2 Output pins description of ucache 111

Table 10.1 Address for UART register and FIFO 112
Table 10.2 Input pins description for uuart 114
Table 10.3 Output pins description for uuart 116
Table 10.4 Input pins description for bclkctr 119
Table 10.5 Output pins description for bclkctr 120
Table 10.6 Input pins description for brx 122
Table 10.7 Output pins description for brx 123
Table 10.8 Input pins description for btx 125
Table 10.9 Output pins description for btx 127

Table 11.1 Test program 1 (without data dependency, interlock

and hazard.)
131

Table 11.2 Test program 2 with data dependency, interlock and
hazard

138

BIT (Hons) Computer Engineering XIII
Faculty of Information and Communication Technology (Perak Campus), UTAR

LIST OF ABBREVIATIONS
RISC Reduced instruction set computing
CISC Complex instruction set computing
GUI Graphic based user interface
ISA Instruction set architecture
IP Intellectual property
GPIO General purpose input/output
IF Instruction fetch (pipeline stage)
ID Instruction decode (pipeline stage)
EX Execute (pipeline stage)
MEM Memory (pipeline stage)
WB Write back (pipeline stage)
ALU Arithmetic logic unit
RTL Register transfer level
I/O Input / output
PC Program counter
UART Universal asynchronous receiver/ transmitter

Chapter 1

Introduction

BIT (Hons) Computer Engineering 1

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 1 – Introduction

1.1 Project Background

ARM is a computer processors developer company with reduced instruction set

computing (RISC) architectures. A RISC-based processor requires lesser transistors than

CISC (complex instruction set computing) processor such as x86 processors in most of

personal computer. This means reduces in cost, heat produced and power use can be

achieving which is importance factor for light, portable and battery-powered devices such

as smartphone, laptops, tablet and embedded systems. Most of the cores introduced by

ARM support a 32-bits address space except ARMv8-A architectures support 64-bits.

ARM licenses their design to companies that incorporate those core designs into their

own products.

1.2 ARM’s History

ARM is a British company start at 1980 with the name of Acorn Computer at first. Its

first product was a coprocessor module for BBC Micro series of computers. Then they

start relatively simple MOS Technology 6502 processor in1981. But the 6502 processor

is not strong enough for GUI (graphics based user interface), so ARM decides to design

their own processor after studies all the lacking of existing processors. Sophie Wilson

developed the instruction set and in 1983, the official Acorn RISC Machine with

cooperation with VSLI Technology as silicon partner. Then the ARM2 was introduced

which enable lower power consumption, but better performance than Intel 80286. And

ARM continue introduce ARM3 and ARM6. ARM 3 had better performance than

ARM2. But ARM 6, result of cooperation between Apple and ARM manage to remained

essentially same size with ARM2 with further better performance; ARM2 had 30,000

transistors, while ARM6 had 35,000.

Chapter 1

Introduction

BIT (Hons) Computer Engineering 2

Faculty of Information and Communication Technology (Perak Campus), UTAR

Architecture Core bit-width ARM holding cores

ARMv1 32 ARM1

ARMv2 32 ARM2, ARM250, ARM3

ARMv3 32 ARM6, ARM7

ARMv4 32 ARM8

ARMv4T 32 ARM7TDMI, ARM9TDMI, SecurCore SC100

ARMv5TE 32 ARM7EJ, ARM9E, ARM10E

ARMv6 32 ARM11

ARMv6-M 32 ARM Cortex-M0, ARM Cortex-M0+, ARM Cortex-
M1, SecurCore SC000

ARMv7-M 32 ARM Cortex-M3

ARMv7E-M 32 ARM Cortex-M4, ARM Cortex-M7

ARMv8-M 32 ARM Cortex-M23, ARM Cortex-M33

ARMv7-R 32 ARM Cortex-R4, ARM Cortex-R5, ARM Cortex-R7,
ARM Cortex-R8

ARMv8-R 32 ARM Cortex-R52

ARMv7-A 32 ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8,
ARM Cortex-A9, ARM Cortex-A12, ARM Cortex-
A15, ARM Cortex-A17

ARMv8-A 32 ARM Cortex-A32

ARMv8-A 32/64 ARM Cortex-A35, ARM Cortex-A53, ARM Cortex-
A57, ARM Cortex-A72, ARM Cortex-A73

Table 1.1: List of ARM microarchitectures (Source: https://en.wikipedia.org/wiki/ARM_architecture#Coprocessors)

Chapter 1

Introduction

BIT (Hons) Computer Engineering 3

Faculty of Information and Communication Technology (Perak Campus), UTAR

1.3 Problem Statement & Motivation

The ARM cores project are available on some sources such as www.opencore.org, the

ARM information center (infocenter.arm.com), and other website with ARM

documentation. But the ARM’s core microarchitecture include in the documentation is

very limited, hence the functionalities and implementation of ISA to hardware of the

cores are not presented well and the Verilog codes included in the project are hard to

understand since the microarchitecture are not well presented in documentation and

inconvenience naming conversion used. Since there is no proper or complete

documentation that described microarchitecture of 32-bit microprocessor with ARM

Instruction Set Architecture in open source website. Hence there is only a very limited

details can be obtaining from the project which show how the inside parts of processor

work together to achieve the specification that had been described in the documentation.

This has affected the use of the ARM softcore, in particular for research purpose.

Microchip design companies design microprocessor as IP for commercial purpose. The

IP is not available in the market at an affordable price for research purpose. ARM does

offers several licensing models for ARM technology-based product but the license will

expire within 3 years a payment needed for the license, which is not suitable for a long

run project.

Besides, the verification plan for an ARM microprocessor that are made available on the

internet is not well defined and yet not compatible to every design. Therefore, there is a

necessary to develop a verification plan to verify the functionality of the module

designed.

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 4

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter2 – Literature Review

ARM is a computer processors developer company with reduced instruction set

computing (RISC) architectures. A RISC-based processor requires lesser transistors than

CISC (complex instruction set computing) processor such as x86 processors in most of

personal computer. This means reduces in cost, heat produced and power use can be

achieving which is importance factor for light, portable and battery-powered devices such

as smartphone, laptops, tablet and embedded systems. Most of the cores introduced by

ARM support a 32-bits address space except ARMv8-A architectures support 64-bits.

ARM licenses their design to companies that incorporate those core designs into their

own products.

2.0 ISA (Instruction Set Architecture) of ARM

ARM instructions support data transfer, arithmetic and programs flow instructions. The

table 2.1 below showed the instructions and its function.

Instruction Operation Instruction Operation

add Rd, Rn, Opd2 Rd ← Rn + Opd2 small Rdh, Rn, Rm, Rdl {Rdh, Rdl} ← Rn* Rm + {Rdh, Rdl}

adc Rd, Rn, Opd2 Rd ← Rn + Opd2 + carry str Rd, [Rn], +Opd2 Mem[Rn] ← Rd, Rn ← Rn + Opd2

sub Rd, Rn, Opd2 Rd ← Rn - Opd2 str Rd, [Rn], -Opd2 Mem[Rn] ← Rd, Rn ← Rn – Opd2

sbc Rd, Rn, Opd2 Rd ← Rn – Opd2 – (~carry) str Rd, [Rn, + Opd2] Mem[Rn + Opd2] ← Rd

rsb Rd, Rn, Opd2 Rd ← Opd2 – Rn str Rd, [Rn, - Opd2] Mem[Rn – Opd2] ← Rd

rsc Rd, Rn, Opd2 Rd ← Opd2 – Rn – (~carry) str Rd, [Rn, + Opd2]! Rn ← Rn + Opd2, Mem[Rn] ← Rd

tst Rn, Opd2 Set flags based on Rn & Opd2 str Rd, [Rn, - Opd2]! Rn ← Rn - Opd2, Mem[Rn] ← Rd

teq Rn, Opd2 Set flags based on Rn ^ Opd2 ldr Rd, [Rn], +Opd2 Rd ← Mem[Rn], Rn ← Rn + Opd2

and Rd, Rn, Opd2 Rd ← Rn & Opd2 ldr Rd, [Rn], -Opd2 Rd ← Mem[Rn], Rn ← Rn – Opd2

eor Rd, Rn, Opd2 Rd ← Rn ^ Opd2 ldr Rd, [Rn, + Opd2] Rd ← Mem[Rn + Opd2]

orr Rd, Rn, Opd2 Rd ← Rn|Opd2 ldr Rd, [Rn, - Opd2] Rd ← Mem[Rn – Opd2]

bic Rd, Rn, Opd2 Rd ← Rn & (~Opd2) ldr Rd, [Rn, + Opd2]! Rn ← Rn + Opd2, Rd ← Mem[Rn]

cmp Rn, Opd2 Set flags based on Rn – Opd2 ldr Rd, [Rn, - Opd2]! Rn ← Rn - Opd2, Rd ← Mem[Rn]

cmn Rn, Opd2 Set flags based on Rn + Opd2 strb Rd, [Rn], +Opd2 Mem[Rn] ← Rd[7:0], Rn ← Rn + Opd2

asr Rd, Rm, <Rs|sh> Rd ← Rm >>> (Rs|sh) (Arithmetic) strb Rd, [Rn], -Opd2 Mem[Rn] ← Rd[7:0], Rn ← Rn – Opd2

lsl Rd, Rm, <Rs|sh> Rd ← Rm << (Rs|sh) (Logical) strb Rd, [Rn, + Opd2] Mem[Rn + Opd2] ← Rd[7:0]

lsr Rd, Rm, <Rs|sh> Rd ← Rm >> (Rs|sh) (Logical) strb Rd, [Rn, - Opd2] Mem[Rn – Opd2] ← Rd[7:0]

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 5

Faculty of Information and Communication Technology (Perak Campus), UTAR

ror Rd, Rm, <Rs|sh> Rd ← Rn ror (Rs|sh) (Rotate right) strb Rd, [Rn, + Opd2]! Rn ← Rn + Opd2, Mem[Rn] ← Rd[7:0]

rrx Rd, Rm, <Rs|sh> {Rd, C} ← {C, Rd} (Rotate right extend) strb Rd, [Rn, - Opd2]! Rn ← Rn - Opd2, Mem[Rn] ← Rd[7:0]

mov Rd, Opd2 Rd ← Opd2 ldrb Rd, [Rn], +Opd2 Rd ← Mem[Rn] [7:0], Rn ← Rn + Opd2

mvn Rd, Opd2 Rd ← (~Opd2) ldrb Rd, [Rn], -Opd2 Rd ← Mem[Rn] [7:0], Rn ← Rn – Opd2

mul Rd, Rn, Rm Rd ← Rn * Rm [31:0] ldrb Rd, [Rn, + Opd2] Rd ← Mem[Rn + Opd2] [7:0]

mula Rd, Rn, Rm, Ra Rd ← (Rn*Rm) + Ra [31:0] ldrb Rd, [Rn, - Opd2] Rd ← Mem[Rn – Opd2] [7:0]

umullRdh, Rn, Rm, Rdl {Rdh, Rdl} ← Rn *Rm ldrb Rd, [Rn, + Opd2]! Rn ← Rn + Opd2, Rd ← Mem[Rn] [7:0]

umlalRdh, Rn, Rm, Rdl {Rdh, Rdl} ← Rn*Rm + {Rdh, Rdl} ldrb Rd, [Rn, - Opd2]! Rn ← Rn - Opd2, Rd ← Mem[Rn] [7:0]

smullRdh, Rn, Rm, Rdl {Rdh, Rdl} ← Rn*Rm b <label> PC ← label

 bl<label> LR ← PC+4, PC ← label

Table 2.1: Instruction set of ARM

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 6

Faculty of Information and Communication Technology (Perak Campus), UTAR

2.0.1 Instruction Format

The ARM instruction had classified to 4 general formats:

• data-processing instruction format

• memory instruction format

• multiplication instruction format

• Branch instruction format.

The figure 2.1, 2.2, 2.3 and 2.4 show the differences between instruction formats:

Figure 2.1: Data-processing instruction format

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 7

Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 2.2: Memory instruction format

Figure 2.3: Branch instruction format

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 8

Faculty of Information and Communication Technology (Perak Campus), UTAR

2.0.2 Condition Encode Instruction

The ARM processor support condition encoding instructions. The condition encoded

instruction only will execute when the condition is met with the 4-bits status flag in

CPSR updated by previous instructions

Condition Mnemonic

extension

Meaning Condition flag

state

4'h0 Eq Equal Z set

4'h1 Ne Not equal Z clear

4'h2 cs / hs Carry set / unsigned higher or same. C set

4'h3 cc / lo Carry clear / unsigned lower C clear

4’h4 Mi Minus / negative N set

4’h5 Pl Plus / positive or zero N clear

4’h6 Vs Overflow V set

4’h7 Vc No overflow V clear

4’h8 Hi Unsigned higher C set and Z clear

4’h9 Ls Unsigned lower or same C clear or Z set

4’h10 Ge Signed greater than or equal N == V

4’h11 Lt Signed lesser than N != V

4’h12 Gt Signed greater than Z == 0, N == V

4’h13 Le Signed lesser than or equal Z == 1 or N != V

4’h14 Al Always (unconditional) -

4’h15 - Invalid condition - or same.

Table 2.2 condition encoding

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 9

Faculty of Information and Communication Technology (Perak Campus), UTAR

2.1 Single cycle, multi-cycle and pipelined processor

Single cycle

• The instructions execute and complete in 1 clock cycle.

• No data dependency and hazard problem.

• Longer clock cycle needed to complete 1 instruction.

Multi-cycle

• The instruction subdivided into few steps (depend on instruction)

o Arithmetic and logical instruction – 4 steps (IF, ID, EX, WB)

o Save instruction – 4 steps (IF, ID, EX, MEM)

o Load instruction – 5 steps (IF, ID, EX, MEM, WB)

o Branch instruction – 2 steps (IF, ID)

o Branch and link instruction – 3 steps (IF, ID, WB)

• 1 instruction execute at the same time.

• No data dependency and hazard problem.

• In average, shorter clock cycle needed to complete 1 instruction compare to single

cycle.

Pipeline

• The instruction subdivided into few steps (maximum step of the instruction)

• Few instructions execute in same time (number of pipeline stage)

• Data dependency and hazard problem (can be solved by implement of addition

hardware)

• Execute in clock cycle with number of pipeline stage times shorter than single

cycle processor.

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 10

Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 2.4: Single cycle, multi-cycle vs pipeline processor

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 11

Faculty of Information and Communication Technology (Perak Campus), UTAR

2.2 Benchmarking

Two project from www.opencore.org done by ConorSantifort (Amber), and Stephan

Nolting (Strom Core) respectively will be used for benchmarking purpose. Beside the

ARM7, ARM9, ARM10, and ARM11 introduced by ARM will be used for further

benchmarking.

2.2.1 Amber Core

Amber processor is an ARM-compatible 32-bit RISC processor done by ConorSantifort.

The Amber core are fully compatible to ARMv2 Instruction set architecture (ISA), the

project will develop with Verilog 2001. The Amber project provides a complete

embedded system incorporating the Amber core and a number of peripherals, including

UARTs, timers, and an Ethernet MAC. There are 2 version of Amber project done which

is Amber 23 and Amber 25.

Amber 23 is a 3 –stage pipelined processor which can be represent in fetch, decode and

execute. It is capable of 0.8 DMIPS per MHz.

The Amber 25 is a 5-stage pipelined processor which the stages are separate based on

fetch, decode, execute, memory, and write-back. Amber 25 have a 15% to 20% better

performance compared to the Amber 23 which is 1.0 DMIPS per MHz, but a larger size

and more hardware implement needed in Amber 25.

Figure 2.5: 3-Stages and 5-Stages pipeline

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 12

Faculty of Information and Communication Technology (Perak Campus), UTAR

ALU in Amber Core

Figure 2.6: Design of ALU in Amber 23

 The alu_function[6:0] is the control signals for the ALU. It make up from {swap_sel,

not_sel, cin_sel[1:0], cout_sel, out_sel[2:0]}.

Pin Description

swap_sel Swap between input a and b.

not_sel 1’b0: use original b, 1’b1: use inverted b

cin_sel[1:0] Select carry in for the full adder. (1, 0, cpsr_carry, cpsr_carry’)

cout_sel Select carry out for the ALU.
1’b0 : From full adder, 1’b1 from barrel_shift_carry

0ut_sel[2:0] Select the output for ALU.
3’d0: b
3’d1: adder_out
3’d2: b_zero_extend_8
3’d3: xor_out
3’d4: or_out
3’d5: and_out

Table 2.3: pin description of Amber’s ALU

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 13

Faculty of Information and Communication Technology (Perak Campus), UTAR

2.2.2 Storm core

The Storm core processor project is done by Stephen Nolting which obtains from

www.opencores.org. Same with Amber 23 & 25, Storm also follow ARMv2 instruction

architecture with 2 separate caches (Instruction & Data). It is an 8-stage pipelined

processor which is instruction access (IA), instruction fetch (IF), instruction decode (ID),

operand fetch (OF), multiplication/ shift (MS), execution (EX), memory access (MA),

and data write back (WB).

PROESSOR AMBER 23 AMBER 25 STORM

Opcode and function

compatible to

ARMv2 ARMv2 ARMv2

Software compatible? Yes Yes Yes

Pipelined Yes Yes Yes

Number of pipelined stage 3 5 8

Number of cache needed 1 2

(Instruction and

memory)

2

(Instruction and

memory)

Little /big endian Little Little Both

Wishbone bus system 32-bits 32-bits 32-bits

FPGA implement Xilinx SP605

Spartan-6 FPGA

board

Xilinx SP605

Spartan-6 FPGA

board

80 MHz on

Xilinx Spartan-3

XC3S400A
Table 2.4: Comparison among Amber 23, Amber 25 &Storm core

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 14

Faculty of Information and Communication Technology (Perak Campus), UTAR

2.2.3 ARM7 core

ARM7 core is a 3-stages pipelined processor (Fetch - IF, Decode - ID, Execute - EX)

introduced by ARM from 1994 and update periodic. The ARM 7 operate on 32-bits

address space. It is compatible to ARMv3 ISA.

Features:

• Register bank:

1. 2 read ports, 1 write port, access any register.

2. 1 additional read and write port for r15 (pc).

• Barrel shifter

1. Shift or rotate the operand by any number of bits.

• ALU.

• Address register and increment.

• Data registers

1. Hold data passing to and from memory

2. Instruction decoder and control

Figure 2.7: data path of ARM 7

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 15

Faculty of Information and Communication Technology (Perak Campus), UTAR

2.2.4 ARM9 core

ARM 9 core is 5 stages pipelined processor (instruction fetch-IF, instruction decode-ID,

execute-EX, memory access – MEM, data write back - WB). Same with ARM 7, it

operate on 32 bits addresses. It is compatible to ARMv5 ISA.

Fetures :

1. Register bank:

• 3 source operand read ports and 2 write port.

2. Inclusion of address incrementing hardware (for multiple load and store

instructions)

3. Memory (Havard architecture)

• Sepearte instruction and data memory (cache)

4. Higher clock frequency (more pipelined stage)

Figure 2.8: data path of ARM 9

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 16

Faculty of Information and Communication Technology (Perak Campus), UTAR

In ARM 9 model, data forwarding is allowed to improve the performance. The result are

passed between stages as soon as they are available. E.g

 ADD r2, r3, r4 //r2 = r3 + r4

 ADD r1, r2, r5 //r1 = r2 +r5

The r2 value is immediately forwarded to next operation as soon as it compete the ADD

operation by ALU to prevent data Hazard. But for load Hazard problem the data is only

ready at the last stage so either insert a NOP or stall the instruction until the data is ready.

2.2.5 ARM10TDMI

ARM10TDMI is a 6 stages pipelined processor. The additional state compared to ARM9

is the issue state (ISS). In issue state, the processor is interpret the instruction fetched

from i-cache and determines whether it is an ARM or Thumb instructions. Besides that,

ARM10TDMI had hardware to predict branch, which will operate at fetch state to

determine the PC value after fetch a branch instruction.

Figure 2.9: pipelined stages of ARM 10 DTMI

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 17

Faculty of Information and Communication Technology (Perak Campus), UTAR

2.2.6 ARM11 Core

ARM 11 is an 8-stages pipelined processor. The stages are shown in the figure 2.11.

Figure 2.10: pipelined stages of ARM 11

After the issue stage, there is 3 group of different hardware to handle different

instructions. The block in orange color is the stage where shift or integer arithmetic

instructions go through. While the blocks in blue handle multiplication instructions and

block in red will be load/store operation. The ARM11 can maximum handle 4

instructions simultaneously, which is branch prediction, multiplication, ALU operation

related instructions and data transfer instructions, which had a much higher performance

compared to other ARM core. It also supports data forwarding.

Figure 2.11: grouped pipelined stsges of ARM 11

Chapter 2

Literature Review

BIT (Hons) Computer Engineering 18

Faculty of Information and Communication Technology (Perak Campus), UTAR

Features ARM 7 ARM 9 ARM 10 ARM 11

Pipeline length 3 5 6 8

Java Decode (ARM9 26 EJ) (ARM10 26 EJ) Yes

Branch

Prediction

No No Static Dynamic

Independent

Load/Store unit

No No Yes Yes

Concurrency None None ALU, MAC, LSU ALU, MAC,

LSU

Architecture ARMv3 ARMv5TE /

ARMv4T

ARMv5TE ARMv6

Clock Speed < 130 MHz 130 MHz ~ 200

MHz

300 MHz 1 GHz

Table 2.5: Comparison among ARM7, ARM9, ARM10 & ARM11

Chapter 3

Project Objective

BIT (Hons) Computer Engineering 19

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 3 – Project Objective

3.1 Project Scope

The project scope is to modeling and complete verification of the pipelined 32-bit ARM

processor, which will be, used as a platform for hardware IP-based research by using

Verilog HDL (Hardware Description Language).

The microprocessor model operates on 32-bits data and address. The Instruction Set

Architecture used in this project is ARMv2. It consists of three main blocks: control unit,

data path unit and memory unit, which will model in Verilog.

After the modeling process, the model will be undergoing verification process to ensure

the functionalities and features of the processor. A complete testbench is created to test

the functionalities of the whole processor and instructions implemented.

3.2 Objective

The main objective is to design a 32-bits ARM pipelined processors. The sub-objective

showed below need to be complete in order to achieve the main objective

• Chip specification: To design an ARM microprocessor which compatible to

ARMv2 instruction set architecture (ISA).

• Microarchitecture requirement: To develop an ARM microprocessor, which

supports integer arithmetic, multiplication with Booth’s algorithm, data-transfer

operation, and program flow control instruction.

• RTL: To develop a complete set of Verilog modules that fulfilled and described

the microarchitecture requirements above.

• Verification: To create a complete test bench that can verify the all functionalities

and instructions implemented to the microprocessor might need remodel of RTL

if expected output didn’t achieve at the end of verification.

To ensure the processor can be further expand with other research related to ARM

architecture, the verification and redesign might need to repeat several time to debug and

achieve 100% functionalities.

Chapter 3

Project Objective

BIT (Hons) Computer Engineering 20

Faculty of Information and Communication Technology (Perak Campus), UTAR

3.3 Significance and Impacts

The ARM microprocessor will allow researcher to change the micro-architecture based in

ARM architecture for experimentation of new design. The microprocessor IP is cheap

and affordable with complete documentation. The development environment will allow

rapid modeling and verification of experimental hierarchy such as memory, specialized

data path, peripherals and etc.

Chapter 4

Methodology and Technologies Involved

BIT (Hons) Computer Engineering 21

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 4 - Methodology and Technologies Involved

4.1 Design Methodology

Design Methodologies help us to carry out the design work successfully with a set of

guidelines. Design methodologies ensure the following (Wolf.W, 2004)

4.2 Universal Design Methodology

Universal Design Methodology (UDM) is a structured method for planning and designing

hardware. UDM can be used to design ASICs, FPGAs, CPLDs, and PCBs, in large or

small organizations. While some differences occur in designing different hardware types,

the basic technique remains the same. The UDM can help:

• Design a that’s free from manufacturing defects, that work reliably over device’s

lifetime and that functions correctly in your system.

• Using least amount of time and resource during design.

• Creating a better schedule on the project.

Figure 4.1: UDM flow

Chapter 4

Methodology and Technologies Involved

BIT (Hons) Computer Engineering 22

Faculty of Information and Communication Technology (Perak Campus), UTAR

Specification and design

The specification need to include:

• External block diagram showing how the device fit into the system.

• Internal block diagram showing each major functional section.

• Description of I/O pins, including output drive capability and input threshold

levels

• Timing estimates, including setup and hold times for inputs pins, propagation

times for output pins, and clock cycle time.

• Test procedure.

As shown in the diagram after write a specification, a review need to be done in order to

know anything being left out or wrong. All functionality decisions must be refer to the

specification returned and all subsequent change need to be entered to the specification.

Verification

Verification involved the following stages: simulation, design review, physical

implementation, and formal verification. During the simulation, we might need to

redesign and repeat the simulation to obtain correct functionality described in

specification in earlier state.

After finished the design and simulation, another design review need to be done to make

sure whole functionalities include and the accuracy.

Physical implementation stage involves synthesis and place and route but result in a

pattern of bits used to program the device.

In formal verification, the physical implementation is checked to ensure the design fully

simulated is functionally equivalent to physical implementation of the design.

Chapter 4

Methodology and Technologies Involved

BIT (Hons) Computer Engineering 23

Faculty of Information and Communication Technology (Perak Campus), UTAR

Completion

The design should be formality with all the steps followed, the final should be a simple

sign off. However, the system testing is necessary to ensure that all part of the system

work correctly.

4.3 Development Tools

Since in this project will be design by using Verilog HDL therefore the stimulation tool

that able to compile and simulate Verilog syntax is necessary. The available and price of

the simulation tools are main factor to decide which to be choose. There is a few

examples of Verilog development tools and comparison among them:

Simulator ISE Simulator ModelSim Icarus Verilog

Company /

Author

Xilinx Mentor Graphics Stephen Williams

Language Support VHDL-93, Verilog

2001

VHDL, Verilog

2001, System

Verilog 2005

Verilog 2001,

limited Verilog

2005

Availability for

free

No Yes (For student

version)

Yes

Table 4.1: Comparison among Development Tools

ModelSim is chosen from the 3 development since it is available for free and support

more language compare to other.

Beside to verify the ARM assembly program, ARMSim (ARM assembly simulator) is

used. It will execute the ARM assembly program based on ARM7TDMI processor.

ARMSim was developed by Department of Computer Science at the University of

Victoria, in Victoria, British Columbia, Canada. It was choosing to use since it was free.

4.4 Design Hierarchy

The module is break into smaller module (chip → unit → block) and each partitioned
block and functional verification.

Chapter 4

Methodology and Technologies Involved

BIT (Hons) Computer Engineering 24

Faculty of Information and Communication Technology (Perak Campus), UTAR

4.5 Implementation Issues and Challenges

1. Data Hazzard:

Happen when there is a data dependency within 5 clock cycle (number of pipelined

stages). The result of single assembly instruction (not include multiplication instruction)

need 5 clock cycles to write back into register file in a pipelined data path (IF, ID, EX,

MEM, WB).

There are 3 situations:

• Read after write (RAW), e.g.

ADD R1, R2, R3 @EX

MOV R0, R1 @ID

The R1 is read during ID stage after ADD R1, R2, R3 instruction where still at

EX stage of data path.

• Write after read (WAR), e.g.

ADD R1, R2, R3 @EX

SUB R2, R3, R4 @ID

The R2’s value is going to change at SUB R2, R3, R4 but the data is read 1clock

cycle earlier before it occurs.

• Write after write (WAW), e.g.

ADD R1, R2, R3 @EX

ADD R1, R4, R5 @ID

The R1 is going to write by 2 instructions, only the result of latest instruction

should store in R1.

For, WAR and WAW only will cause a Data Hazards problem when the assembly

program executes in concurrent environment. However, this project is no doing a

concurrent environment processor therefore only RAW will be the problem to solve.

To solve the problem an extra block (Data forwarding control block) need to implement

in the data path to control the data flow.

Chapter 4

Methodology and Technologies Involved

BIT (Hons) Computer Engineering 25

Faculty of Information and Communication Technology (Perak Campus), UTAR

E.g.

Figure 4.2: Pipeline stage of instruction in different cycle (1)

Note: When execute CMP R6, R1 the new value already wrote to the R1 (half cycle),

therefore there is no need data forwarding.

2. Bypassing backwards in time:

There is a bypassing backwards problem when the data from memory is use as operand in

next instruction, e.g.

Figure 4.3: Pipeline stage of instruction in different cycle (2)

The data from the memory is not ready yet. Data only read from memory at the end of 4th

clock cycle but the data is needed at early of 4th clock cycle. Therefor a stall added with

the implementation of interlock block.

Figure 4.4: Pipeline stage of instruction in different cycle (2)

The instruction delayed 1 clock cycle to complete.

Chapter 4

Methodology and Technologies Involved

BIT (Hons) Computer Engineering 26

Faculty of Information and Communication Technology (Perak Campus), UTAR

3. PC as destination register for Data-processing instruction:

PC is one of the 16 registers in the register file therefor it also can use as destination

of Data-processing instruction such as MOV PC, LR. This make four NOP needed to

insert after the instruction until the PC being updated e.g.

MOV PC, LR

NOP

NOP

NOP

NOP

To solve the problem, we can update the PC after ID stage as long as no need ALB

(EX), and data from memory (MEM). The instruction which can be improve are only

MOV and MVN (without LSL, LSR, ASR and ROR)

Figure 4.5: MOV and MVN detector

Note: MOVS PC is not supposed to use in User mode. It will affect CPSR and SPSR.

Chapter 4

Methodology and Technologies Involved

BIT (Hons) Computer Engineering 27

Faculty of Information and Communication Technology (Perak Campus), UTAR

4.6 Schedule and timeline

 FYP1 (May 2016) FYP2 (Jan 2017)

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13

Background Study

Specification of

design

Design Verilog

module

Develop verification

code

Verify the design

Re-design of Verilog

module (if needed)

UART

implementation

Project proposal/

result report

Table 4.3: Gantt chart for project 1 & 2.

Chapter 5

System Specification

BIT (Hons) Computer Engineering 28

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 5 – System Specification

Chip level design: RISC32 processor

5.1 Feature

 RISC32

Dummy Instruction Cache (KB) 16
Dummy Data Cache (KB) 16
Data width (bits) 32
Instruction width (bits) 32
General Purpose Register 16
Special Purpose Register Status flag registers
Pipelined Stage 5
Hazard Handling Yes
Interlock Handling Yes
Data Dependency Forwarding Yes
Branch Prediction No
Multiplication (size of multiplier and
multiplicand)

No

Branch Delay Slot Not supported
Instruction supported 27

Table 5.1 RISC32 features

5.2 Naming Convention

Instantiation - [lvl][abbr. mod. name]

- E.g. udp → [unit][data path]

Pin - [lvl][Type][abbr. mod. name]_[pin name]

- E.g. uidp_imm → [unit][input][data path]_[immediate]

Wire - [lvl][abbr. mod. name]_[stage]_[pin name]

- E.g. udp_ex_out → [unit][data path]_[EX stage]_[ALU output]

Pipeline register - [lvl][abbr. mod. name]_[pre-stage][post-stage]_[pin name]

- E.g. udp_ifid_instr → [unit][data path]_[IF stage][ID stage]

_[instruction’s contain]

Chapter 5

System Specification

BIT (Hons) Computer Engineering 29

Faculty of Information and Communication Technology (Perak Campus), UTAR

Abbreviation:

 Description Case Available Remark

lvl Level lower c : Chip
u : Unit
b : Block

abbr. mod.
name

Abbreviated
module name

lower all any e.g. dp – data path

type Pin type lower o : output
i : input
r : register
w : wire
f- :function

stage Stage name lower all if, id, ex,
mem, wb

Only for data path module

pin name Pin name lower all any Several word separate by “_”
pre-stage Stage name

before
pipeline

 if, id, ex,
mem, wb

Post-stage Stage name
after pipeline

 if, id, ex,
mem, wb

Table 5.2 Naming Convention

Chapter 5

System Specification

BIT (Hons) Computer Engineering 30

Faculty of Information and Communication Technology (Perak Campus), UTAR

5.3 RISC32 processor

5.3.1 Processor Interface

Figure 5.1 Block diagram for RISC32 processor

5.3.2 I/O Pin Description

Pin name : cicd_clk Registered : No
Pin class : clock signal
Source → Destination : external → crisc
Bit size : 1-bit
Active : Rising edge
Pin Function: Provide a periodic signal for synchronize purpose.

Pin name : cicd_rst Registered : No
Pin class : control signal
Source → Destination : external → crisc
Bit size : 1-bit
Active : Active high
Pin Function: 1’b 0: normal operation.
 1’b 1: reset the chip.

Table 5.3: RISC32 Input Pins Description

Pin name : cocd_TxD Registered : Yes
Pin class : data signal
Source → Destination : crisc → external device
Bit size : 1-bit
Active : -
Pin Function: Data transmission from UART to external device

Table 5.4: RISC32 Output Pins Description

Chapter 5

System Specification

BIT (Hons) Computer Engineering 31

Faculty of Information and Communication Technology (Perak Campus), UTAR

5.4 System Register

5.4.1 General Purpose Register

Width : 32-bit

Size : 16 units

Retrieving method : 4-bit address as index

Name Address Use Preserved Across A Call?

R0 0
Argument/ return value/ temporary
variable

No

R1-R3 1 - 3 Argument/ temporary variable No
R4-R11 4 – 11 Saved variable Yes
R12 12 Temporary variable No
R13 (SP) 13 Stack pointer Yes
R14 (LR) 14 Link register Yes
R15 (PC) 15 Program counter No

Table 5.5 Register file

5.4.2 Special Purpose Register

Width : 1-bit

 Size : 4-units

Name Use

Carry Flag (C) Carry out of the ALB

Overflow Flag (V) Set when there is an overflow

Zero Flag (Z) Set when the result of ALB is zero

Negative Flag (N) Set when the result of ALB is negative

 Table 5.6Status Flag Register

Chapter 5

System Specification

BIT (Hons) Computer Engineering 32

Faculty of Information and Communication Technology (Perak Campus), UTAR

5.5 Instruction Format

The ARM instruction had classified to 3 general formats:

• data-processing instruction format

• memory instruction format

• Branch instruction format.

The figure 5.2, 5.3, and 5.4 show the differences between instruction formats:

Figure 5.2: Data-processing instruction format

Figure 5.3: Memory instruction format

Chapter 5

System Specification

BIT (Hons) Computer Engineering 33

Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 5.4: Branch instruction format

Chapter 5

System Specification

BIT (Hons) Computer Engineering 34

Faculty of Information and Communication Technology (Perak Campus), UTAR

5.6 Addressing Mode

• Instruction field repetitive

� I (instruction[25]) :

• If 1’b1: indicate immediate addressing mode

• If 1’b0: indicate register addressing mode

� cond (instruction[31:28]): determine whether to execute the instruction or not

depend on the status flag.

� op (instruction[27:26]): 2’b 00 → Data-processing instruction

 2’b 01 → Memory instruction

 2’b 10 → Branch instruction

� funct/cmd (instruction[24:21]): Indicate which logical or arithmetic instruction

to be perform.

� S (instruction [20]): Update the status flag if 1’b1 else hold the status flag.

� Rn (instruction [19:16]): 1st operand register address.

� Rd (instruction [15:12]): Destination register address.

� rot (instruction [11:8]): amount of rotate.

� imm_8 [7:0] (instruction [7:0]): 8-bit immediate. (data-processing instruction)

Rotation value rot 32-bit immediate value

4’h0 { 24’h0, imm_8[7:0]}

4’h1 { imm_8[1:0], 24’h 0, imm_8[7:2]}

4’h2 { imm_8[3:0], 24’h 0, imm_8[7:5]}

4’h3 { imm_8[5:0], 24’h 0, imm_8[7:6]}

4’h4 { imm_8[7:0], 24’h 0}

4’h5 { 2’h0, imm_8[7:0], 22’h0}

4’h6 { 4’h0, imm_8[7:0], 20’h0}

4’h7 { 6’h0, imm_8[7:0], 18’h0}

4’h8 { 8’h0, imm_8[7:0], 16’h0}

4’h9 { 10’h0, imm_8[7:0], 14’h0}

4’h10 { 12’h0, imm_8[7:0], 12’h0}

4’h11 { 14’h0, imm_8[7:0], 10’h0}

4’h12 { 16’h0, imm_8[7:0], 8’h0}

4’h13 { 18’h0, imm_8[7:0], 6’h0}

4’h14 { 20’h0, imm_8[7:0], 4’h0}

4’h15 { 22’h0, imm_8[7:0], 2’h0}
 Table 5.7: Encoded immediate value

� imm_12 (instruction [11:0]): 12-bit immediate value.

Chapter 5

System Specification

BIT (Hons) Computer Engineering 35

Faculty of Information and Communication Technology (Perak Campus), UTAR

� Rs (instruction [11:8]): 3rd operand register address

� sh (instruction [6:5]): 2’b 00 → LSL

2’b 01 → LSR

2’b 10 → ASR

2’b 11 → ROR

� Rm (instruction [4:0]): 2nd operand register address

� shamt (instruction [11:7]): shift amount (1-31)

� P (instruction [24]): Post index or pre-index

� U (instruction [23]): minus or plus offset

� B (instruction [22]): Byte (if 1’b1)

� W (instruction [21]): Word (if 1’b1)

� L (instruction [20]): Load if 1’b1 else Store (memory instruction)

� Offset (instruction [23:0]): 24-bit value of offset

� L (instruction [24]) (program flow instruction):

• If 1’b1: store PC+4 to Link Register

• If 1’b0: hold Link Register’s value.

• Immediate Addressing, where operand is constant within the instruction itself

(show in figure 5.5). E.g. (Note: when sh = 2’b 11, shifter will perform rotation)

o ADD Rd, Rn, #16

o MOV Rd, #16

Chapter 5

System Specification

BIT (Hons) Computer Engineering 36

Faculty of Information and Communication Technology (Perak Campus), UTAR

• Register Addressing, where operand is a register (show in figure 5.6), the 2nd can

be shift according value stored in Rs register or a 5-bit immediate. E.g.

o MOV Rd, Rm, LSR Rs @ sh → LSR → 2’b01

o MOV Rd, Rm, LSR #4 @ sh → LSR → 2’b01

o MOV Rd, Rm @ sh default to LSL → 2’b00, shamt → 0

• Based Displacement Addressing, where operand is at the memory location whose

address is value stored in a register (show in figure 5.7). E.g.

o LDR Rd, [Rn]

• Register indexed displacement addressing with register scaling, where the

operand is at the memory location whose address is the sum of a register with base

address (Rn) and register with offset address (Rm). The offset can be shift depend

on the instruction, e.g.

o LDR Rd, [Rn, Rm, LSL #2] @ sh → LSL → 2’b00

o STR Rd, [Rn, Rm] @ sh default to LSL → 2’b00, shamt → 0

• Register indexed displacement addressing with immediate scaling, where the

operand is at the memory location whose address is the sum of a register with base

address (Rn) and signed extend immediate value of offset address which carry by

instruction itself. E.g.

o LDR Rd, [Rn, #4]
• Pseudodirect Addressing, where the jump address is the 24-bit of the instruction

concatenated with the upper bits of the PC (show in figure 5.10). E.g

o BL label @ label’s target address → 0xff fff0

Chapter 5

System Specification

BIT (Hons) Computer Engineering 37

Faculty of Information and Communication Technology (Perak Campus), UTAR

5.7 Instruction Set and Description
Operation Assembler Machine Language S update

(condition flag)
Register Transfer notation

31:28
Cond

27:26
op

25
I

24:21
cmd

20
S

19:16
Rn

15:12
Rd

11:0
Src2

Add Add

 With carry

ADD{S} Rd, Rn, <Operand2>

ADC{S} Rd, Rn, <Operand2>

1110

1110

00

00

A

A

0100

0101

A

A

Rn

Rn

Rd

Rd

 N Z C V

N Z C V

Rd ← Rn + Operand2

Rd ← Rn + Operand2 + C

Subtract Subtract

With carry

Reverse subtract

Reverse subtract with carry

SUB{S} Rd, Rn, <Operand2>

SBC{S} Rd, Rn, <Operand2>

RSB{S} Rd, Rn, <Operand2>

RSC{S} Rd, Rn, <Operand2>

1110

1110

1110

1110

00

00

00

00

A

A

A

A

0010

0110

0011

0111

A

A

A

A

Rn

Rn

Rn

Rn

Rd

Rd

Rd

Rd

 N Z C V

N Z C V

N Z C V

N Z C V

Rd ← Rn – Operand2

Rd ← Rn – Operand2 – C’

Rd ← Operand2 – Rn

Rd ← Operand2 – Rn – C’

Logical Test

Test equivalence

Bitwise AND

Bitwise XOR

Bitwise OR

Bitwise Clear

TST Rn, <Operand2>

TEQ Rn, <Operand2>

AND{S} Rd, Rn, <Operand2>

EOR{S} Rd, Rn, <Operand2>

ORR{S} Rd, Rn, <Operand2>

BIC{S} Rd, Rn, <Operand2>

1110

1110

1110

1110

1110

1110

00

00

00

00

00

00

A

A

A

A

A

A

1000

1001

0000

0001

1100

1110

1

1

A

A

A

A

Rn

Rn

Rn

Rn

Rn

Rn

xxxx

xxxx

Rd

Rd

Rd

Rd

 N Z C

N Z C

N Z C

N Z C

N Z C

N Z C

Set flags based on Rn & Src2

Set flags based on Rn ^ Src2

Rd ← Rn & Operand2

Rd ← Rn ^ Operand2

Rd ← Rn | Operand2

Rd ← Rn & (~Operand2)

Compare Compare

Negative

CMP Rn, <Operand2>

CMN Rn, <Operand2>

1110

1110

00

00

A

A

1010

1011

1

1

Rn

Rn

xxxx

xxxx

 N Z C V

N Z C V

Set flags based on Rn - Src2

Set flags based on Rn + Src2

Move
data

Move

Not

MOV{S} Rd, <Operand2>

MVN{S} Rd, <Operand2>

1110

1110

00

00

1

X

1101

1111

A

A

Rn

Rn

Rd

Rd

 N Z C

N Z C

Rd ← Operand2

Rd ← ~(Operand2)

Table 5.8 Data-processing Instruction Set and Description

Note: A – available for both 1 and 0. Refer to table 5.8.

Chapter 5

System Specification

BIT (Hons) Computer Engineering 38

Faculty of Information and Communication Technology (Perak Campus), UTAR

Operand 2 I (instruction[25]) Instruction bits RTL Addressing mode

11 10 9 8 7 6 5 4 3 2 1 0

#4 1 0 (rot) 4 (8-bit immediate) Operand 2 = 4 Immediate addressing

Rm 0 0 (shamt) 00 (sh) 0 Rm Operand 2 = Rm Register addressing(2)

Rm, LSL #shamt 0 shamt 00 (sh) 0 Rm Operand 2 = Rm << shamt Register addressing(2)

Rm, LSR #shamt shamt 01 (sh) Operand 2 = Rm >> shamt

Rm, ASR #shamt shamt 10 (sh) Operand 2 = Rm >> shamt

Rm, ROR #shamt shamt 11 (sh) Operand 2 = Rm ror shamt

Rm, LSL Rs 0 Rs 0 00 (sh) 1 Rm Operand 2 = Rm << Rs Register addressing(1)

Rm, LSR Rs 01 (sh) Operand 2 = Rm >> Rs

Rm, ASR Rs 10 (sh) Operand 2 = Rm >>> Rs

Rm, ROR Rs 11 (sh) Operand 2 = Rm ror Rs

Table 5.9 Operand 2 for data processing instruction

Chapter 5

System Specification

BIT (Hons) Computer Engineering 39

Faculty of Information and Communication Technology (Perak Campus), UTAR

Operation Assembler Machine Language S update
(condition
flag)

Register Transfer notation
31:28
cond

27:26
op

25
Ī

24
 P

23
U

22
B

21
W

20
L

19:16
Rn

15:12
Rd

11:0
Src2

Store

register

Post-index

Offset

Pre-index

STR Rd, [Rn], + Src2

STR Rd, [Rn], – Src2

STR Rd, [Rn, + Src2]

STR Rd, [Rn, – Src2]

STR Rd, [Rn, + Src2]!

STR Rd, [Rn, – Src2]!

1110

1110

1110

1110

1110

1110

01

01

01

01

01

01

A

A

A

A

A

A

0

0

1

1

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

Rn

Rn

Rn

Rn

Rn

Rn

Rd

Rd

Rd

Rd

Rd

Rd

 - Mem [Rn] ← Rd, Rn←Rn+Src2

Mem [Rn] ← Rd, Rn←Rn-Src2

Mem [Rn + Src2] ← Rd

Mem [Rn - Src2] ← Rd

Rn←Rn+Src2, Mem [Rn] ← Rd

Rn←Rn-Src2, Mem [Rn] ← Rd

Load

register

Post-index

Offset

Pre-index

LDR Rd, [Rn], +Src2

LDR Rd, [Rn], – Src2

LDR Rd, [Rn, + Src2]

LDR Rd, [Rn, – Src2]

LDR Rd, [Rn, + Src2]!

LDR Rd, [Rn, – Src2]!

1110

1110

1110

1110

1110

1110

01

01

01

01

01

01

A

A

A

A

A

A

0

0

1

1

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

Rn

Rn

Rn

Rn

Rn

Rn

Rd

Rd

Rd

Rd

Rd

Rd

 - Rd ← Mem [Rn], Rn←Rn+Src2

Rd ← Mem [Rn], Rn←Rn-Src2

Rd ← Mem [Rn + Src2]

Rd ← Mem [Rn - Src2]

Rn←Rn+Src2, Rd ← Mem[Rn]

Rn←Rn-Src2, Rd ← Mem[Rn]

Store

register

byte

Post-index

Offset

Pre-index

STRB Rd, [Rn], + Src2

STRB Rd, [Rn], – Src2

STRB Rd, [Rn, + Src2]

STRB Rd, [Rn, – Src2]

STRB Rd, [Rn, + Src2]!

STRB Rd, [Rn, – Src2]!

1110

1110

1110

1110

1110

1110

01

01

01

01

01

01

A

A

A

A

A

A

0

0

1

1

1

1

1

0

1

0

1

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

0

0

0

0

Rn

Rn

Rn

Rn

Rn

Rn

Rd

Rd

Rd

Rd

Rd

Rd

 - Mem [Rn] ← Rd7:0, Rn←Rn+Src2

Mem [Rn] ← Rd7:0, Rn←Rn-Src2

Mem [Rn + Src2] ← Rd7:0

Mem [Rn - Src2] ← Rd7:0

Rn←Rn+Src2, Mem [Rn] ← Rd7:0

Rn←Rn-Src2, Mem [Rn] ← Rd7:0

Load

register

byte

Post-index

Offset

Pre-index

LDRB Rd, [Rn], +Src2

LDRB Rd, [Rn], – Src2

LDRB Rd, [Rn, + Src2]

LDRB Rd, [Rn, – Src2]

LDRB Rd, [Rn, + Src2]!

LDRB Rd, [Rn, – Src2]!

1110

1110

1110

1110

1110

1110

01

01

01

01

01

01

A

A

A

A

A

A

0

0

1

1

1

1

1

0

1

0

1

0

1

1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

Rn

Rn

Rn

Rn

Rn

Rn

Rd

Rd

Rd

Rd

Rd

Rd

 -

Rd ← Mem [Rn] 7:0, Rn←Rn+Src2

Rd ← Mem [Rn] 7:0, Rn←Rn-Src2

Rd ← Mem [Rn + Src2] 7:0

Rd ← Mem [Rn - Src2] 7:0

Rn←Rn+Src2, Rd ← Mem[Rn] 7:0

Rn←Rn-Src2, Rd ← Mem[Rn] 7:0

Table 5.10 Memory instruction set and description

Note: A – available for both 1 and 0. Refer to table 5.10

Chapter 5

System Specification

BIT (Hons) Computer Engineering 40

Faculty of Information and Communication Technology (Perak Campus), UTAR

Source 2 (Src2) Ī(instruction[25]) Instruction bits RTL Addressing mode

11 10 9 8 7 6 5 4 3 2 1 0

none 0 0 (12-bit immediate) Src2 = 0(none) Based Displacement Addressing

#4 0 4 (12-bit immediate) Src2 = 4 Register indexed displacement

addressing with immediate scaling

Rm 1 0 (shamt) 00 (sh) 0 Rm Src2 = Rm Register indexed displacement

addressing with register scaling Rm, LSR #shamt 1 shamt 01 (sh) 0 Rm Src2 = Rm >> shamt

Table 5.11 Source 2 for Memory instruction

Operation Assembler Machine Language S update
(condition
flag)

Register Transfer notation

 31:28
cond

27:26
op

25:24
1L
(funct)

23:0
Imm24

Branch Without link

 With link
B <Address> 0xff0000

BL <Address> 0xff0000
1110

1110

10

10

10

11

0xff0000 (24- bits immediate word address)

0xff0000 (24-bit immediate word address)

- PC←(PC+8)+0xff0000<<2

LR←(PC+8)-4; PC←(PC+8)+0xff0000<<2

Table 5.12 Branch Instructions Set and Description

Note: the addressing mode of branch is pseudodirect addressing.

Chapter 5

System Specification

BIT (Hons) Computer Engineering 41

Faculty of Information and Communication Technology (Perak Campus), UTAR

Condition

(Instruction

[31:28])

Instruction

extension

Meaning Condition flag

state to execute

instruction

4'h0 Eq Equal Z set

4'h1 Ne Not equal Z clear

4'h2 cs / hs Carry set / unsigned higher or same. C set

4'h3 cc / lo Carry clear / unsigned lower C clear

4’h4 Mi Minus / negative N set

4’h5 Pl Plus / positive or zero N clear

4’h6 Vs Overflow V set

4’h7 Vc No overflow V clear

4’h8 Hi Unsigned higher C set and Z clear

4’h9 Ls Unsigned lower or same C clear or Z set

4’h10 Ge Signed greater than or equal N == V

4’h11 Lt Signed lesser than N != V

4’h12 Gt Signed greater than Z == 0, N == V

4’h13 Le Signed lesser than or equal Z == 1 or N != V

4’h14 Al Always (unconditional) -

4’h15 - Invalid condition - or same.

Table 5.13 condition encoding

5.8 Memory Map

Figure 5.11: Memory Map

Chapter 5

System Specification

BIT (Hons) Computer Engineering 42

Faculty of Information and Communication Technology (Perak Campus), UTAR

� Text Segment

� Store machine language program.

� Also known as read only (RO) segment.

� Global Data Segment

� Store global data which can access by all functions in a program.

� Also known as read/write (RW) segment.

� Access using static base (SB) register that point to the start of global segment.

� SB is conventionally store in R9.

� Dynamic Data Segment

� Holds stack and heap.

� Stack pointer (SP) point to top of stack, normally grow downward.

� SP store in R13

� Heap store data allocate by program during runtimes, grow upward.

� Exception Handler, OS, and I/O Segments

� Reserved for exception vector table.

5.9 Operating Procedure

• Start the system

• Porting sequence of instruction into cache (instruction or data)

• Reset the system for at least 2 clocks

• While release the reset, the system will automatically run the program inside

instruction cache

• Observe the waveform from the development tools.

Chapter 6

Microarchitecture Specification

BIT (Hons) Computer Engineering 43

Faculty of Information and Communication Technology (Perak Campus), UTAR

udp

ucp

uuart

Chapter 6 – Microarchitecture Specification

6.1 Design hierarchy

Chip partitioning at System
level

Unit partitioning at
Architecture level

Block partitioning at RTL
level (Microarchitecture
level)

crisc (full chip) udp (data path) brf (register file)

balb_shift (ALU & shifter)

bitl_ctrl (interlock)

bfw_ctrl (forwarding)

ucp (control path) bmain_ctrl

binstr_ctrl

ucache (memory cache) -

uuart (UART) bclkctr

btx (transmitter)

brx (receiver)

Structural description Structural description/
Behavioral description

Behavioral description

Table 6.1 Formation of a design hierarchy for crisc microprocessor through top down design methodology

Figure 6.1 crisc architecture and micro-architecture partitioning

Chapter 6

Microarchitecture Specification

BIT (Hons) Computer Engineering 44

Faculty of Information and Communication Technology (Perak Campus), UTAR

6.2 Unit level functional partitioning

Figure 6.2: unit level functional partitioning of crisc

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 45

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 7 – Data path of CRISC (Unit & Block level)

7.1 Feature

Include the addressing mode:

• Register addressing

• Based displacement addressing

• Register indexed displacement addressing with register scaling

• Register indexed displacement addressing with immediate scaling

• Pseudo-direct addressing

Combination of ALB, register file, data forwarding control, and interlock control.

• ALB: perform algorithm and logical operation, generate 4 status flags.

• Register file: 16 Register with width of 32-bit.

• Data forwarding control: overcome data hazard and data dependency problem

• Interlock control: overcome data dependency.

Data dependency in status flags:

2 NOP needed for a branch instruction since the status flag registers generate by ALB in
EX stage and store the flag generated at next rising edge of clock. To reduce the NOP the
branch instruction should done in 2 stages. Both combination output and register value of
status register is used based on the timing of branch instruction (conditional) in the ID
stage and status flag register will be place on ID stage and here come the data hazard in
status flag register.

1st cycle:

Instruction Status flag
(value in the register)

Status flag
(end of EX stage)
(combination output)

MOVS R0, #-10 ID N: 0 C: 0 Z: 0 V: 0 N: 0 C: 0 Z: 0 V: 0

BMI Label IF

2nd cycle:

Instruction Status flag
(value in the register)

Status flag
(end of EX stage)
(combination output)

MOVS R0, #-10 EX N: 0 C: 0 Z: 0 V: 0 N: 1 C: 0 Z: 0 V: 0

BMI Label ID

MOV R0, #0 IF

3rd cycle:

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 46

Faculty of Information and Communication Technology (Perak Campus), UTAR

Instruction Status flag
(value in the register)

Status flag
(end of EX stage)
(combination output)

MOVS R0, #-10
 MEM

N: 1 C: 0 Z: 0 V: 0 N: 1 C: 0 Z: 0 V: 0

BMI Label EX

MOV R0, #0 ID

Table 7.1: Status flag problem

The status flag only update after the MOVS R0, #-10 pass EX stage. To solve this the
status flag in EX stage is forward to ID so branch can be determined in ID stage.

Figure 7.1: Solution for status flag problem.

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 47

Faculty of Information and Communication Technology (Perak Campus), UTAR

udp

uidp_clk
uidp_sreset

uidp_if_instr uodp_if_pc

uidp_id_imm uodp_id_instr
uidp_id_sign_or_rot
uidp_id_rf_wr1
uidp_id_rf_wr2
uidp_id_carry_wr
uidp_id_zero_wr
uidp_id_ngtv_wr
uidp_id_ovfs_wr
uidp_id_inva
uidp_id_invb
uidp_id_ctrl
uidp_id_index
uidp_id_mdata_or_alb
uidp_id_branch
uidp_id_mem_wr
uidp_id_word_or_byte

uidp_id_cond_true uodp_id_carry
 uodp_id_zero
 uodp_id_ovfs
 uodp_id_ngtv

uidp_mem_data uodp_mem_addr
uodp_mem_wr

 uodp_mem_word_or_byte
 uodp_mem_data

32 32

32

32

32

32

4

3

7.2.1 Block diagram of udp (Data path)

Figure 7.2: block diagram of data path

Input

Pin name : uidp_clk Registered : No
Pin class : clock signal
Source → Destination : external → udp
Bit size : 1-bit
Active : Rising edge
Pin Function: Periodic signal for synchronize purpose.

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 48

Faculty of Information and Communication Technology (Perak Campus), UTAR

Pin name : uidp_sreset Registered : No
Pin class : control signal
Source → Destination : external → udp
Bit size : 1-bit
Active : Active high
Pin Function: Reset the data path when active high else perform normal operation.

Pin name : uidp_if_instr Registered : No
Pin class : data signal
Source → Destination : u_cache → udp
Bit size : 32-bit
Active : -
Pin Function: Instruction in text segment with uodp_if_pc as the address.

Pin name : uidp_id_imm Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high when the operand 2 is an immediate else active low
 1’b 0 : non-immediate operand
 1’b 1: immediate operand

Pin name : uidp_id_sign_or_rot Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high when operand 2 will undergoes sign extension else active
low for rotation extension
 1’b 0 : rotation extension operand 2
 1’b 1: sign extension operand 2

Pin name : uidp_id_rf_wr1 Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 1st write port else active low
 1’b 0 : hold the data
 1’b 1: write the data to 1st write address

Pin name : uidp_id_rf_wr2 Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 2nd write port else active low
 1’b 0 : hold the data
 1’b 1: write the data to 2nd write address

Pin name : uidp_id_carry_wr Registered : Yes

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 49

Faculty of Information and Communication Technology (Perak Campus), UTAR

Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update carry flag else active low
 1’b 0 : hold previous carry flag
 1’b 1: update carry flag

Pin name : uidp_id_zero_wr Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update zero flag else active low
 1’b 0 : hold previous zero flag
 1’b 1: update zero flag

Pin name : uidp_id_ngtv_wr Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update negative flag else active low
 1’b 0 : hold previous negative flag
 1’b 1: update negative flag

Pin name : uidp_id_ovfs_wr Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update overflow flag else active low
 1’b 0 : hold previous overflow flag
 1’b 1: update overflow flag

Pin name : uidp_id_branch Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to change PC to branch target address else active low for
 normal increment of PC (+4)
 1’b 0 : branch to target address
 1’b 1: normal +4 increment of PC

Pin name : uidp_id_cond_true Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high if the condition meet else active low to skip the instruction

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 50

Faculty of Information and Communication Technology (Perak Campus), UTAR

 1’b 0 : skip the instruction
 1’b 1: execute the instruction

Pin name : uidp_id_inva Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 1st operand (from Rn) else active low to use
original operand
 1’b 0 : use original data from Rn for ALB
 1’b 1: invert the data from Rn before going through ALB

Pin name : uidp_id_invb Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 2nd operand (from Rm or immediate) else active
low to use original operand
 1’b 0 : use original data from Rm or immediate for ALB
 1’b 1: invert the data from Rm or immediate before going through ALB

Pin name : uidp_id_ctrl Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 3-bit
Active : -
Pin Function: opcode for the ALB.
 3’b 000 : addition
 3’b 001: addition with carry
 3’b 010: subtraction
 3’b 011: subtraction with carry
 3’b 100: and AND
 3’b 101: or OR
 3’b 110: exclusive or XOR
 3’b 111: by pass operand b (from Rm)

Pin name : uidp_id_index Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: decide the address mode for memory read and load
 1’b 0 : Post-index
 1’b 1 : Pre-index

Pin name : uidp_id_word_or_byte Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 51

Faculty of Information and Communication Technology (Perak Campus), UTAR

Active : Active high
Pin Function: Active high for load or save a byte of data else active low for a word of
 data
 1’b 0 : word
 1’b 1: byte

Pin name : uidp_id_mem_wr Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to update memory else active low to hold the previous
memory data.
 1’b 0 : hold previous memory data
 1’b 1: update memory data

Pin name : uidp_id_mdata_or_alb Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high for write data from memory to register file else active low
for write data from ALB to register file.
 1’b 0 : use data from ALB
 1’b 1: use data from memory cache

Pin name : uidp_if_instr Registered : No
Pin class : data signal
Source → Destination : u_cache → udp
Bit size : 32-bit
Active : -
Pin Function: data in data segment with uodp_mem_addr as the address.
Table 7.2: Input pins description for data path unit

Output

Pin name : uodp_if_pc Registered : Yes
Pin class : address signal
Source → Destination : udp → ucache
Bit size : 32-bit
Active : -
Pin Function: Address for instruction.

Pin name : uodp_id_instr Registered : Yes
Pin class : data signal
Source → Destination : udp → ucp
Bit size : 32-bit
Active : -
Pin Function: Instruction content.

Pin name : uodp_id_carry Registered : Yes
Pin class : address signal

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 52

Faculty of Information and Communication Technology (Perak Campus), UTAR

Source → Destination : udp → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Carry flag.
 1’b0 : not carry produce
 1’b1 : carry produce

Pin name : uodp_id_zero Registered : Yes
Pin class : address signal
Source → Destination : udp → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Zero flag.
 1’b0 : result is non-zero
 1’b1 : result is zero

Pin name : uodp_id_ovfs Registered : Yes
Pin class : address signal
Source → Destination : udp → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Overflow flag.
 1’b0 : no overflow
 1’b1 : overflow

Pin name : uodp_id_ngtv Registered : Yes
Pin class : address signal
Source → Destination : udp → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Negative flag.
 1’b0 : positive
 1’b1 : negative

Pin name : uodp_mem_addr Registered : Yes
Pin class : address signal
Source → Destination : udp → ucache
Bit size : 32-bit
Active : -
Pin Function: memory address of data in main memory.

Pin name : uodp_mem_wr Registered : Yes
Pin class : control signal
Source → Destination : udp → ucache
Bit size : 1-bit
Active : Active high
Pin Function: write the uodp_mem_data to main memory with address
uodp_mem_addr if the signal is active high else hold the data in the main
memory.

Pin name : uodp_mem_word_or_byte Registered : Yes
Pin class : control signal

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 53

Faculty of Information and Communication Technology (Perak Campus), UTAR

Source → Destination : udp → ucache
Bit size : 1-bit
Active : Active high
Pin Function: 1’b0 : write or read a word of data
 1;b1 : write or read a byte of data

Pin name : uodp_mem_data Registered : Yes
Pin class : data signal
Source → Destination : udp → ucache
Bit size : 32-bit
Active : -
Pin Function: data to write to main memory.
Table 7.3: output pins description for data path unit

7.2.2 Data path block level hierarchy

Figure 7.3: partition of data path unit

The data path unit builds up with

• Register file (brf)

• Arithmetic logic block with shift (balb_shift)

• Data forwarding control (bf_ctrl)

• Interlock control (bitl_ctrl)

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 54

Faculty of Information and Communication Technology (Perak Campus), UTAR

brf
birf_rn4
birf_rm4
birf_rs4

birf_wr_data1 borf_rn32
birf_wr_addr1 borf_rm32
birf_wr_en1 borf_rs32

birf_wr_data2
birf_wr_addr2
birf_wr_en2

birf_clk
birf_sreset

birf_pc

32

32

32

32

32

32

7.3 Register file (brf)

7.3.1 Functionality

A set of 32-bits register bank with number of 16 registers.
Function of the registers:

Name Use

R0 Argument/ return value/ temporary variable

R1-R3 Argument/ temporary variable

R4-R11 Saved variables

R12 Temporary variable

R13 (SP) Stack pointer

R14 (LR) Link register (return address)

R15 (PC) Program counter
Table 7.4: General register

7.3.2 Block Diagram

Figure 7.5: block diagram of brf (register file)

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 55

Faculty of Information and Communication Technology (Perak Campus), UTAR

Input

Pin name : birf_rn4 Registered : No
Pin class : address signal
Source → Destination : udp → brf
Bit size : 4-bit
Active : -
Pin Function: Address for Rn register.

Pin name : birf_rm4 Registered : No
Pin class : address signal
Source → Destination : udp → brf
Bit size : 4-bit
Active : -
Pin Function: Address for Rm register.

Pin name : birf_rs4 Registered : No
Pin class : address signal
Source → Destination : udp → brf
Bit size : 4-bit
Active : -
Pin Function: Address for Rs register.

Pin name : birf_wr_data1 Registered : No
Pin class : data signal
Source → Destination : udp → brf
Bit size : 32-bit
Active : -
Pin Function: Data to write in specific register with 1st write port.

Pin name : birf_wr_addr1 Registered : No
Pin class : address signal
Source → Destination : udp → brf
Bit size : 4-bit
Active : -
Pin Function: Address for register where the data should write to (for 1st write port).

Pin name : birf_wr_en1 Registered : No
Pin class : control signal
Source → Destination : udp → brf
Bit size : 1-bit
Active : High
Pin Function: Update the data of the register when active high (for 1st write port).

Pin name : birf_wr_data2 Registered : No
Pin class : data signal
Source → Destination : udp → brf
Bit size : 32-bit
Active : -
Pin Function: Data to write in specific register with 2nd write port.

Pin name : birf_wr_addr2 Registered : No
Pin class : address signal
Source → Destination : udp → brf

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 56

Faculty of Information and Communication Technology (Perak Campus), UTAR

Bit size : 4-bit
Active : -
Pin Function: Address for register where the data should write to (for 2nd write port).

Pin name : birf_wr_en2 Registered : No
Pin class : control signal
Source → Destination : udp → brf
Bit size : 1-bit
Active : High
Pin Function: Update the data of the register when active high (for 2nd write port).

Pin name : birf_pc Registered : No
Pin class : data signal
Source → Destination : udp → brf
Bit size : 32-bit
Active : -
Pin Function: Current PC value.
Table 7.5: input pins description of brf

Output

Pin name : borf_rn32 Registered : No
Pin class : data signal
Source → Destination : brf → udp
Bit size : 32-bit
Active : -
Pin Function: Data from Rn register.

Pin name : borf_rm32 Registered : No
Pin class : data signal
Source → Destination : brf → udp
Bit size : 32-bit
Active : -
Pin Function: Data from Rn register.

Pin name : borf_rs32 Registered : No
Pin class : data signal
Source → Destination : brf → udp
Bit size : 32-bit
Active : -
Pin Function: Data from Rs register.
Table 7.6: output pins description of brf

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 57

Faculty of Information and Communication Technology (Perak Campus), UTAR

7.3.3 Functional table

birf_wr_en1 birf_wr_en2 birf_clk Operation

1’b0 1’b0 At negative edge Hold the previous values

1’b0 1’b1 At negative edge Write new data to register file (2nd
write port data)

1’b1 1’b0 At negative edge Write new data to register file (1st
write port data)

1’b0 1’b1 At negative edge Write new data to register file (both
write port data will write. If the
location if same, 2nd write port has
higher priority.)

1’bx 1’bx At positive edge Read data from register file
Table 7.7: functional table for write enable signal.

Address pin Operation

birf_rn4 Read data from register file and output
with borf_rn32

birf_rm4 Read data from register file and output
with borf_rm32

birf_rs4 Read data from register file and output
with borf_rs32

birf_wr_addr1 Address of register which the
birf_wr_data1 will write to it

birf_wr_addr2 Address of register which the
birf_wr_data2 will write to it

Table 7.8: functional table for address pin.

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 58

Faculty of Information and Communication Technology (Perak Campus), UTAR

decoder

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

r0

r1

r2

r3

r4

r5

r6

r11

r12

r13

r14

4

birf_rn4

4

birf_rm4

birf_clk

decoder

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

birf_wr_en1

birf_wr_data1

birf_rn32

birf_rs32

birf_clk

birf_wr_addr1

r7

r8

r9

r10

1

2

3
4

5
6

7

15

0

8

9

10

11

12

13
14

birf_pc

birf_rm32

4

birf_rs4

birf_wr_data2

birf_wr_en2

birf_wr_addr1

0

1

0

1

7.3.4 Internal block diagram of Register File

Figure 7.6: Design of register file.

Figure 7.7: Single element of register file

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 59

Faculty of Information and Communication Technology (Perak Campus), UTAR

32 32

7.4 Arithmetic Logic Block with shift (balb_shift)

7.4.1 Functionality

Combinations of arithmetic logic block and barrel shifter which operates on 32-bits
integer operand.
Perform:

• Addition

• Subtraction

• AND (logic)

• OR (logic)

• XOR (logic)

• Logical shift left

• Logical shift right

• Arithmetic shift right

• Rotate right

• Rotate right with extend

• MOV/MVN instruction (copy value to register)

7.4.2 Block Diagram

Figure 7.8: Block diagram of balb_shift (ALU and shifter)

Input

Pin name : bialb_op_a Registered : No
Pin class : data signal
Source → Destination : udp → balb_shift
Bit size : 32-bit
Active : -
Pin Function: 1st 32-bits operand.

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 60

Faculty of Information and Communication Technology (Perak Campus), UTAR

Pin name : bialb_op_b Registered : No
Pin class : data signal
Source → Destination : udp → balb_shif
Bit size : 32-bit
Active : -
Pin Function: 2nd 32-bits operand.

Pin name : bialb_ctrl Registered : No
Pin class : control signal
Source → Destination : udp → balb_shif
Bit size : 3-bit
Active : -
Pin Function: Opcode to select operation to perform.

Pin name : bialb_shamt Registered : No
Pin class : control signal
Source → Destination : udp → balb_shif
Bit size : 5-bit
Active : -
Pin Function: Number of bit need to shift or rotate.

Pin name : bialb_sh Registered : No
Pin class : control signal
Source → Destination : udp → balb_shif
Bit size : 2-bit
Active : -
Pin Function: Represent shift type need to perform.
 00 = LSL
 01 = LSR
 10 = ASR
 11 = ROR, RRX

Pin name : bialb_cin_flag Registered : No
Pin class : data signal
Source → Destination : udp → balb_shif
Bit size : 1-bit
Active : -
Pin Function: Current C bit in CPSR.

Pin name : bialb_inva Registered : No
Pin class : control signal
Source → Destination : udp → balb_shif
Bit size : 1-bit
Active : High
Pin Function: invert value pass in to bi_alb_op_a while active high.

Pin name : bialb_invb Registered : No
Pin class : control signal
Source → Destination : udp → balb_shif
Bit size : 1-bit
Active : High
Pin Function: invert value pass in to bi_alb_op_b while active high.

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 61

Faculty of Information and Communication Technology (Perak Campus), UTAR

Table 7.9: Input pins description of balb_shift

Output

Pin name : boalb_out Registered : Yes
Pin class : data signal
Source → Destination : balb_shif → udp
Bit size : 32-bit
Active : -
Pin Function: Result from balb_shif.

Pin name : boalb_zero Registered : Yes
Pin class : data signal
Source → Destination : balb_shif → udp
Bit size : 1-bit
Active : High
Pin Function: Active high while bo_alb_out equal to 32’h 0000_0000.

Pin name : boalb_carry Registered : Yes
Pin class : data signal
Source → Destination : balb_shif → udp
Bit size : 1-bit
Active : High
Pin Function: Active high while carry out is 1’b1 when perform addition.

Pin name : boalb_ovfs Registered : Yes
Pin class : data signal
Source → Destination : balb_shif → udp
Bit size : 1-bit
Active : High
Pin Function: Active high while there is an overflow.

Pin name : boalb_ngtv Registered : Yes
Pin class : data signal
Source → Destination : balb_shif → udp
Bit size : 1-bit
Active : High
Pin Function: Active high while the bo_alb_out is a negative value.
Table 7.10: Output pins description of balb_shift

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 62

Faculty of Information and Communication Technology (Perak Campus), UTAR

7.4.5 Test plan

Test case Input Expected output

1. Addition:

A+B

A+B+Cin

bi_alb_op_a = 32’h 1010_ffff
bi_alb_op_b = 32’h 1111_3fed
bi_alb_ctrl[2:1] = 2’b 00
bi_alb_inva = 1’b0
bi_alb_invb = 1’b0
bi_alb_cin_flag = 1’b1

bi_alb_ctrl[0] = 1’b0

bi_alb_ctrl[0] = 1’b1

bo_alb_out = 32’h 2122_3fec

bo_alb_out = 32’h 2122_3fed

2. Subtraction:

A-B

A-B-Cin

B-A

B-A-Cin

bi_alb_op_a = 32’h f010_ffff
bi_alb_op_b = 32’h 1111_3fed
bi_alb_ctrl[2:1] = 2’b 01
bi_alb_cin_flag = 1’b1

bi_alb_ctrl[0] = 1’b0
bi_alb_inva = 1’b0
bi_alb_invb = 1’b1

bi_alb_ctrl[0] = 1’b1
bi_alb_inva = 1’b0
bi_alb_invb = 1’b1

bi_alb_ctrl[0] = 1’b0
bi_alb_inva = 1’b1
bi_alb_invb = 1’b0

bi_alb_ctrl[0] = 1’b1
bi_alb_inva = 1’b1
bi_alb_invb = 1’b0

bo_alb_out = 32’h deff_c012
bo_alb_ngtv = 1’b1

bo_alb_out = 32’h deff_c012
bo_alb_ngtv = 1’b1

bo_alb_out = 32’h 2100 3fee
bo_alb_ngtv = 1’b0

bo_alb_out = 32’h 2100 3fee
bo_alb_ngtv = 1’b0

3. Logical operation:

AND

OR

XOR

bi_alb_op_a = 32’h 1010_ffff
bi_alb_op_b = 32’h 1111_3fed
bi_alb_ctrl[2] = 1’b 1
bi_alb_inva = 1’b0
bi_alb_invb = 1’b0
bi_alb_ctrl[1:0] = 2’b 00

bi_alb_ctrl[1:0] = 2’b 01

bi_alb_ctrl[1:0] = 2’b 10

bo_alb_out = 32’h 1010_3fed

bo_alb_out = 32’h 1111_ffff

bo_alb_out = 32’h 0101_c012

4. Move operation:

bi_alb_op_b = 32’h 1010_ffff
bi_alb_ctrl[2:0] = 3’b 111

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 63

Faculty of Information and Communication Technology (Perak Campus), UTAR

MOV

MVN

bi_alb_invb = 1’b 0

bi_alb_invb = 1’b 1

bo_alb_out = 32’h 1010_ffff

bo_alb_out = 32’h efef_0000

5. Shift/ rotate:

LSL

LSR

ASR

ROR

bi_alb_op_a = 32’h f010_ffff
bi_alb_op_b = 32’h f010_ffff
bi_alb_inva = 1’b0
bi_alb_cin_flag = 1’b1
bi_alb_shamt = 5’b 00100
bi_alb_ctrl[2:0] = 3’b 111
bi_alb_invb = 1’b 0

bi_alb_sh[1:0] = 2’b 00

bi_alb_sh[1:0] = 2’b 01

bi_alb_sh[1:0] = 2’b 10

bi_alb_sh[1:0] = 2’b 11

bo_alb_out = 32’h 010f_fff0

bo_alb_out = 32’h 0f01_0fff

bo_alb_out = 32’h ff01_0fff

bo_alb_out = 32’h ff01_0fff

Table 7.13: test plan for balb_shift

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 64

Faculty of Information and Communication Technology (Perak Campus), UTAR

7.4.6 Simulation result

Addition:

Figure 7.11: simulation result (1) - addition

Subtraction:

Figure 7.12: simulation result (2) - subtraction

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 65

Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 7.13: simulation result (3) - subtraction

Logical operation:

Figure 7.14: simulation result (4) - logical

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 66

Faculty of Information and Communication Technology (Perak Campus), UTAR

Shift/ rotate:

Figure 7.15: simulation result (5) – shift/ rotate

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 67

Faculty of Information and Communication Technology (Perak Campus), UTAR

7.5 Data forwarding control (bfw_ctrl)

7.5.1 Functionality

The Forwarding Block is responsible for detecting data dependency problem. When an
instruction write to the register destination and the following instruction read from the
previous instruction’s register destination, data dependency occur, when it occur and then
forward the proper data from the corresponding stage to the EX Stage so that the data
which goes into ALU is the correct value.

Rn forwarding

Figure 7.16: Instruction format

From the instruction format,

• The field of Rn’s address (19:16 bits) is fixed and always used in both data-

processing and memory instruction.

• The branch instruction used 24 bits (23:0) to store the offset mean that 19:16 bits of

instruction is not represent as Rn’s address, in this case, multiplexer in data path

will pass PC and offset to ALU, so Rn value will no affect the result.

Rm and Rs forwarding

Figure 7.17: Data processing instruction

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 68

Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 7.18: Memory instruction

• Rm only used when there is non-immediate instruction.

• Rm’s address field located at 3:0 bits of both instructions.

However,

• Rs only appear in Data processing instruction with condition that non-immediate

and bit 4 is set (1’b1).

• Rs’s address field located at bit11:8 of the data-processing instruction

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 69

Faculty of Information and Communication Technology (Perak Campus), UTAR

Type Type description Instruction Assembly format

Data processing Arithmetic (signed
or unsigned) or
logical operations
between two

registers, $rn and

Opd2 which can

be immediate
value or register

value $rm, then
store the results into

register $rd.

Add add $rd, $rn, Opd2

Adc adc $rd, $rn, Opd2

Sub sub $rd, $rn, Opd2

Sbc Sbc $rd, $rn, Opd2

Srb srb $rd, $rn, Opd2

Src src $rd, $rn, Opd2

Mov mov $rd, Opd2

Mvn mvn $rd, Opd2

Nop nop (it is equivalent to

mov $0, $0)
Orr orr $rd, $rn, Opd2

And and $rd, $rn, Opd2

Eor eor $rd, $rn, Opd2

Bic bic $rd, $rn, Opd2

Tst tst $rn, Opd2

Teq teq $rn, Opd2

Cmp cmp $rn, Opd2

Cmn cmn $rn, Opd2

Lsl mov $rd, Opd2,LSL shamt

Lsr mov $rd, Opd2,LSR shamt

Asr mov $rd, Opd2,ASR shamt

Ror mov $rd, Opd2,ROR shamt

Rrx mov $rd, Opd2,RRX shamt

Load Instructions that are
loading a data from
the Data Cache into

register $rd

ldr

post idx

offset

pre idx

ldr $rd, [$rn], $rm

ldr $rd, [$rn, $rm]

ldr $rd, [$rn, $rm]!

Store

Instructions that are
storing a data
storing in register

$rd into the Data
Cache

srt

post idx

offset

pre idx

str $rd, [$rn], $rm

str $rd, [$rn, $rm]

str $rd, [$rn, $rm]!

Branch Instructions that
will jump to the
specified location
of program if the
condition is
fulfilled

B b label

Bl

bl label

Table 7.14: ARM assembly instruction

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 70

Faculty of Information and Communication Technology (Perak Campus), UTAR

Among the instructions, instructions that will update the Register File (RF) are the
1. Data processing (except tst, teq, cmp, cmn),

2. Load

These instructions might cause data hazards to the later instructions. When data
dependencies happen, forwarding or stalling is needed to solve them. These instructions
can be further categorised based on the stages they get their results, since the principle of
forwarding is to provide data to the data depending instructions once the data is ready, to
ease the design of forwarding circuitry.

1. Results is ready in EX stage

- Data processing

2. Results is ready in MEM stage

- Load

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 71

Faculty of Information and Communication Technology (Perak Campus), UTAR

7.5.2 Forwarding Block Function Tables

Forward Rn, Rm, Rs

No. Input Output Source

ID EX MEM

 Reg Write DestReg Reg Write DestReg

Reg Rn Wr_1 Wr_2 Rd_1 Rd_2 Wr_1 Wr_2 Rd_1 Rd_2

1. A 0 0 X X 0 0 X X 00 ID

2. A 1 0 B X 1 0 C X 00 ID

3. A 1 0 A X 0 0 X X 01 EX

4. A X 1 X A 0 0 X X 01 EX

5. A 0 0 X X 1 0 A X 10 MEM.Rd1

6. A 0 0 X X 0 1 X A 11 MEM.Rd2

7. A 0 0 X X 1 1 A A 11 MEM.Rd2

8. A 0 1 X A 0 1 X A 01 EX
Table 7.15: functional table for forwarding block

Explanations:

1. The value from register file itself is used as Rn, Rm, and Rs (value from ID stage)

since there is not overwrite value in EX and MEM stages.

2. The value from register file itself is used as Rn, Rm, and Rs (value from ID stage)

since there the Register destination to be update in EX and MEM stages are B and

C respectively which is not related to register A will read in ID stage.

3. The value from ALU output (EX satge) is used as Rn, Rm, and Rs, since there is a

write enable and address of register destination in EX stage same with address of

register to be read in ID stage.

4. This case is similar to case no. 3.

5. The value from data memory (MEM stage) is used as Rn, Rm, and Rs, since there

is a write enable (wr1) and address of register destination (rd1) in MEM stage

same with address of register to be read in ID stage. (MEM.Rd1)

6. The value which ALUpassed to MEM stage is used as Rn, Rm, and Rs, since

there is a write enable (wr2) and address of register destination (rd2) in MEM

stage same with address of register to be read in ID stage. (MEM.Rd2)

7. When both write enable (wr2 and wr1) are asserted and register destinations (rd1

and rd2) are both same address with read register, the 2nd write port had higher

priority (wr2 and rd2), therefore the MEM.Rd2 is used.

8. When same address of register destination in EX and MEM are both same with

read address in ID stage, value from EX will forward to ID instead of MEM

because EX had latest data of the register.

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 72

Faculty of Information and Communication Technology (Perak Campus), UTAR

bfw_ctrl

bifw_ex_rf_wr1
bifw_ex_rf_wr2
bifw_mem_rf_wr1
bifw_mem_rf_wr2

bifw_ex_rd4_1 bofw_rn32_ctrl
bifw_ex_rd4_2 bofw_rm32_ctrl
bifw_mem_rd4_1 bofw_rs32_ctrl
bifw_mem_rd4_2

bifw_id_rn4
bifw_id_rm4
bifw_id_rs4

bifw_ex_rn4
bifw_ex_rm4
bifw_ex_rs4

4

4

4

4

4

4

4

4

4

4

7.5.3 Block diagram

Figure 7.19: block diagram for bfw_ctrl (forwarding control)

Input

Pin name : bifw_ex_rf_wr1 Registered : No
Pin class : control signal
Source → Destination : udp → bfw_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: 1st write port enable signal at EX stage.

Pin name : bifw_ex_rf_wr2 Registered : No
Pin class : control signal
Source → Destination : udp → bfw_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: 2nd write port enable signal at EX stage.

Pin name : bifw_mem_rf_wr1 Registered : No
Pin class : control signal
Source → Destination : udp → bfw_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: 1st write port enable signal at MEM stage.

Pin name : bifw_mem_rf_wr2 Registered : No
Pin class : control signal
Source → Destination : udp → bfw_ctrl
Bit size : 1-bit

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 73

Faculty of Information and Communication Technology (Perak Campus), UTAR

Active : Active high
Pin Function: 2nd write port enable signal at MEM stage.

Pin name : bifw_ex_rd4_1 Registered : No
Pin class : data signal
Source → Destination : udp → bfw_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for 1st write port Rd (destination register) at EX stage.

Pin name : bifw_ex_rd4_2 Registered : No
Pin class : data signal
Source → Destination : udp → bfw_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for 2nd write port Rd (destination register) at EX stage.

Pin name : bifw_mem_rd4_1 Registered : No
Pin class : data signal
Source → Destination : udp → bfw_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for 1st write port Rd (destination register) at MEM stage.

Pin name : bifw_mem_rd4_2 Registered : No
Pin class : data signal
Source → Destination : udp → bfw_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for 2nd write port Rd (destination register) at MEM stage.

Pin name : bifw_id_rn4 Registered : No
Pin class : data signal
Source → Destination : udp → bfw_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for Rn register at ID stage.

Pin name : bifw_id_rm4 Registered : No
Pin class : data signal
Source → Destination : udp → bfw_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for Rm register at ID stage.

Pin name : bifw_id_rs4 Registered : No
Pin class : data signal
Source → Destination : udp → bfw_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for Rs register at ID stage.

Pin name : bifw_ex_rn4 Registered : No
Pin class : data signal

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 74

Faculty of Information and Communication Technology (Perak Campus), UTAR

Source → Destination : udp → bfw_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for Rn register at EX stage.

Pin name : bifw_ex_rm4 Registered : No
Pin class : data signal
Source → Destination : udp → bfw_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for Rm register at EX stage.

Pin name : bifw_ex_rs4 Registered : No
Pin class : data signal
Source → Destination : udp → bfw_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for Rs register at EX stage.
Table 7.16: input pins description of bfw_ctrl

Output

Pin name : bofw_rn32_ctrl Registered : Yes
Pin class : control signal
Source → Destination : bfw_ctrl → udp
Bit size : 2-bit
Active : -
Pin Function: Control signal that decide whether there is a forwarding for Rn register or
 not.

Pin name : bofw_rm32_ctrl Registered : Yes
Pin class : control signal
Source → Destination : bfw_ctrl → udp
Bit size : 2-bit
Active : -
Pin Function: Control signal that decide whether there is forwarding for Rm register or
 not.

Pin name : bofw_rs32_ctrl Registered : Yes
Pin class : control signal
Source → Destination : bfw_ctrl → udp
Bit size : 2-bit
Active : -
Pin Function: Control signal that decide whether there is forwarding for Rs register or
 not.
Table 7.17: output pins description of bfw_ctrl

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 75

Faculty of Information and Communication Technology (Perak Campus), UTAR

bitl_ctrl

biitl_id_rn4 boitl_ld_use_pc_en
biitl_id_rm4
biitl_id_rs4 boitl_ld_use_ifid_en

biitl_ex_rd4 boitl_ld_use_flush_ex
biitl_ex_mem_re

biitl_id_imm
biitl_id_sign_or_rot
biitl_id_instr_4th_bit

4

4

4

4

7.6 Interlock control (bitl_ctrl)

7.6.1 Functionality

To overcome the problem that data from memory is not ready yet for next instruction.

E.g. LDR R0, [R1] @load value to R0, EX
 MOV R2, R0 @copy R0 to R2, ID
R0 is not ready for R2 since it only reaches EX stage.

7.6.2 Block diagram

Figure 7.20: block diagram of bitl_ctrl (interlock control)

Input

Pin name : biitl_id_rn4 Registered : No
Pin class : data signal
Source → Destination : udp → bitl_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for Rn register in ID stage.

Pin name : biitl_id_rm4 Registered : No
Pin class : data signal
Source → Destination : udp → bitl_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for Rm register in ID stage.

Pin name : biitl_id_rs4 Registered : No
Pin class : data signal
Source → Destination : udp → bitl_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for Rs register in ID stage.

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 76

Faculty of Information and Communication Technology (Perak Campus), UTAR

Pin name : biitl_ex_rd4 Registered : No
Pin class : data signal
Source → Destination : udp → bitl_ctrl
Bit size : 4-bit
Active : -
Pin Function: Address for Rd (destination register) register in EX stage.

Pin name : biitl_ex_mem_re Registered : No
Pin class : control signal
Source → Destination : udp → bitl_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high when there will be a data read from data memory else active
 low.

Pin name : biitl_id_imm Registered : No
Pin class : control signal
Source → Destination : udp → bitl_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high if the 2nd operand is an immediate value else active low.

Pin name : biitl_id_sign_or_rot Registered : No
Pin class : control signal
Source → Destination : udp → bitl_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high if the immediate will be sign extend to form a 32-bits data
else active low where the immediate undergo rotation extension.

Pin name : biitl_id_instr_4th_bit Registered : No
Pin class : control signal
Source → Destination : udp → bitl_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high when shift amount stored in Rs register else active low for
 immediate shift amount
Table 7.18: input pins description of bitl_ctrl

Output

Pin name : boitl_ld_use_pc_en Registered : Yes
Pin class : control signal
Source → Destination : bitl_ctrl → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable pc else active low to hold the pc value.

Pin name : boitl_ld_use_ifid_en Registered : Yes
Pin class : control signal
Source → Destination : bitl_ctrl → udp
Bit size : 1-bit

Chapter 7

Data path of CRISC (Unit & Block)

BIT (Hons) Computer Engineering 77

Faculty of Information and Communication Technology (Perak Campus), UTAR

Active : Active high
Pin Function: Active high to enable ifid pipeline register else active low to hold the ifid
 pipeline register value.

Pin name : boitl_ld_use_flush_ex Registered : Yes
Pin class : control signal
Source → Destination : bitl_ctrl → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to flush idex pipeline register else active low for normal
 operation.
Table 7.19: output pins description of bitl_ctrl

7.6.3 Functional table

ex_rd ex_mem_re id_imm id_sign_or_rot id_instr_4th_bit Lock

=id_rn 1’b1 X X X Enable

=id_rm 1’b1 1’b 0 X X Enable

=id_rs 1’b1 1’b 0 1’b 0 1’b1 Enable

!=id_rn
!=id_rm
!=id_rs

X X X X Disable

Lock boitl_ld_use_pc_en boitl_ld_use_ifid_en boitl_ld_use_flush_ex

Enable 1’b 0 1’b 0 1’b 1

Disable 1’b 1 1’b 1 1’b 0

Table 7.20: functional table of bitl_ctrl

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 78

Faculty of Information and Communication Technology (Perak Campus), UTAR

ucp
uicp_cond uocp_imm
uicp_op uocp_sign_or_rot
uicp_funct uocp_rf_wr1

 uocp_rf_wr2
uicp_zero uocp_carry_wr
uicp_carry uocp_zero_wr
uicp_ngtv uocp_ngtv_wr
uicp_ovfs uocp_ovfs_wr

 uocp_branch
 uocp_cond_true

 uocp_inva
 uocp_invb

uocp_ctrl

 uocp_index
 uocp_word_or_byte

 uocp_mem_wr

 uocp_mdata_or_alb

4

2

6

3

Chapter 8 – Control Path of CRISC (Unit & Block level)

8.1 Control Path unit (ucp)

8.1.1 Functionality

Generate several control signal based on the instruction passed in. The output is stated in
internal operation section (8.1.4).

8.1.2 Control Path’s Unit interface – (Block diagram)

Figure 8.1: block diagram of control path

Input

Pin name : uicp_cond Registered : No
Pin class : data signal
Source → Destination : udp → ucp
Bit size : 4-bit
Active : -
Pin Function: mask that represent different condition where the instruction should
execute.

Pin name : uicp_op Registered : No
Pin class : data signal

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 79

Faculty of Information and Communication Technology (Perak Campus), UTAR

Source → Destination : udp → ucp
Bit size : 2-bit
Active : -
Pin Function: represent instruction type.
 2’b 00: Data-processing
 2’b 01: Memory
 2’b 10: Program flow

Pin name : uicp_funct Registered : No
Pin class : data signal
Source → Destination : udp → ucp
Bit size : 6-bit
Active : -
Pin Function: Carry the information of instruction for each instruction type. Such as
operand 2 is an immediate, operation to be carry out and etc.

Pin name : uicp_zero Registered : No
Pin class : data signal
Source → Destination : udp → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Latest zero flag that base on instruction that executing or executed in EX
stage.
 1’b 0: the result is non-zero.
 1’b 1: the result is zero.

Pin name : uicp_carry Registered : No
Pin class : data signal
Source → Destination : udp → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Latest carry out flag that base on instruction that executing or executed
in EX stage.
 1’b 0: no carry is produced.
 1’b 1: carry is produced.

Pin name : uicp_ngtv Registered : No
Pin class : data signal
Source → Destination : udp → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Latest negative flag that base on instruction that executing or executed in
EX stage.
 1’b 0: the result’s MSB is 1’b0.
 1’b 1: the result’s MSB is 1’b1.

Pin name : uicp_ovfs Registered : No
Pin class : data signal
Source → Destination : udp → ucp
Bit size : 1-bit
Active : Active high

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 80

Faculty of Information and Communication Technology (Perak Campus), UTAR

Pin Function: Latest overflow flag that base on instruction that executing or executed
in EX stage.
 1’b 0: no overflow occurs.
 1’b 1: overflow occurs.
Table 8.1: Input pins description of ucp

Output

Pin name : uocp_imm Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high when the operand 2 is an immediate else active low
 1’b 0 : non-immediate operand
 1’b 1: immediate operand

Pin name : uocp_sign_or_rot Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high when operand 2 will undergoes sign extension else active
low for rotation extension
 1’b 0 : rotation extension operand 2
 1’b 1: sign extension operand 2

Pin name : uocp_rf_wr1 Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 1st write port else active low
 1’b 0 : hold the data
 1’b 1: write the data to 1st write address

Pin name : uocp_rf_wr2 Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 2nd write port else active low
 1’b 0 : hold the data
 1’b 1: write the data to 2nd write address

Pin name : uocp_carry_wr Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update carry flag else active low
 1’b 0 : hold previous carry flag

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 81

Faculty of Information and Communication Technology (Perak Campus), UTAR

 1’b 1: update carry flag

Pin name : uocp_zero_wr Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update zero flag else active low
 1’b 0 : hold previous zero flag
 1’b 1: update zero flag

Pin name : uocp_ngtv_wr Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update negative flag else active low
 1’b 0 : hold previous negative flag
 1’b 1: update negative flag

Pin name : uocp_ovfs_wr Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update overflow flag else active low
 1’b 0 : hold previous overflow flag
 1’b 1: update overflow flag

Pin name : uocp_branch Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to change PC to branch target address else active low for
 normal increment of PC (+4)
 1’b 0 : branch to target address
 1’b 1: normal +4 increment of PC

Pin name : uocp_cond_true Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high if the condition meet else active low to skip the instruction
 1’b 0 : skip the instruction
 1’b 1: execute the instruction

Pin name : uocp_inva Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 82

Faculty of Information and Communication Technology (Perak Campus), UTAR

Active : Active high
Pin Function: Active high to invert 1st operand (from Rn) else active low to use
original operand
 1’b 0 : use original data from Rn for ALB
 1’b 1: invert the data from Rn before going through ALB

Pin name : uocp_invb Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 2nd operand (from Rm or immediate) else active
low to use original operand
 1’b 0 : use original data from Rm or immediate for ALB
 1’b 1: invert the data from Rm or immediate before going through ALB

Pin name : uocp_ctrl Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 3-bit
Active : -
Pin Function: opcode for the ALB.
 3’b 000 : addition
 3’b 001: addition with carry
 3’b 010: subtraction
 3’b 011: subtraction with carry
 3’b 100: and AND
 3’b 101: or OR
 3’b 110: exclusive or XOR
 3’b 111: by pass operand b (from Rm)

Pin name : uocp_index Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: decide the address mode for memory read and load
 1’b 0 : Post-index
 1’b 1 : Pre-index

Pin name : uocp_word_or_byte Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high for load or save a byte of data else active low for a word of
 data
 1’b 0 : word
 1’b 1: byte

Pin name : uocp_mem_wr Registered : Yes

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 83

Faculty of Information and Communication Technology (Perak Campus), UTAR

bmain_ctrl binstr_ctrl

Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to update memory else active low to hold the previous
memory data.
 1’b 0 : hold previous memory data
 1’b 1: update memory data

Pin name : uocp_mdata_or_alb Registered : Yes
Pin class : control signal
Source → Destination : ucp → udp
Bit size : 1-bit
Active : Active high
Pin Function: Active high for write data from memory to register file else active low
for write data from ALB to register file.
 1’b 0 : use data from ALB
 1’b 1: use data from memory cache
Table 8.2: Output pins description of ucp

8.1.3 Block partitioning in ucp

Figure 8.2: partitioning in ucp

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 84

Faculty of Information and Communication Technology (Perak Campus), UTAR

8.1.4 Block level partition diagram

Figure 8.3: internal connection between block in ucp

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 85

Faculty of Information and Communication Technology (Perak Campus), UTAR

bmain_ctrl

bimc_op bomc_sign_or_rot
 bomc_rf_wr2
 bomc_zero_wr
 bomc_carry_wr
 bomc_ngtv_wr
 bomc_ovfs_wr
 bomc_branch

 bomc_inva

 bomc_index
 bomc_mem_wr

 bomc_word_or_byte

 bomc_mdata_or_alb

 bomc_instr_type
bimc_cond
bimc_zero
bimc_carry
bimc_ngtv
bimc_ovfs bomc_true

4

2

2

8.2 Main Control Block (bmain_ctrl)

8.2.1 Functionality

Generate some control signals that are same within a single instruction type (e.g. Data-
processing instruction, Memory instruction).

8.2.2 Block diagram

Figure 8.4: Block diagram of main control block

Input

Pin name : bimc_op Registered : No
Pin class : data signal
Source → Destination : ucp → bmain_ctrl
Bit size : 2-bit
Active : -
Pin Function: 27th and 26th bit of the instruction, differentiate among the instruction
 type

Pin name : bimc_cond Registered : No
Pin class : data signal
Source → Destination : ucp → bmain_ctrl

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 86

Faculty of Information and Communication Technology (Perak Campus), UTAR

Bit size : 4-bit
Active : -
Pin Function: mask that represent different condition where the instruction should
 execute.

Pin name : bimc_zero Registered : No
Pin class : data signal
Source → Destination : ucp → bmain_ctrl
Bit size : 1-bit
Active : -
Pin Function: Latest zero flag that base on instruction that executing or executed in EX
 stage.
 1’b 0: the result is non-zero.
 1’b 1: the result is zero.

Pin name : uicp_carry Registered : No
Pin class : data signal
Source → Destination : ucp → bmain_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Latest carry out flag that base on instruction that executing or executed
in EX stage.
 1’b 0: no carry is produced.
 1’b 1: carry is produced.

Pin name : uicp_ngtv Registered : No
Pin class : data signal
Source → Destination : ucp → bmain_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Latest negative flag that base on instruction that executing or executed in
EX stage.
 1’b 0: the result’s MSB is 1’b0.
 1’b 1: the result’s MSB is 1’b1.

Pin name : uicp_ovfs Registered : No
Pin class : data signal
Source → Destination : ucp → bmain_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Latest overflow flag that base on instruction that executing or executed
in EX stage.
 1’b 0: no overflow occur.
 1’b 1: overflow occur.
Table 8.7: Input pin description of main control block

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 87

Faculty of Information and Communication Technology (Perak Campus), UTAR

Output

Pin name : bomc_sign_or_rot Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → u_cp
Bit size : 1-bit
Active : Active high
Pin Function: Active high when operand 2 will undergoes sign extension else active
low for rotation extension
 1’b 0 : rotation extension operand 2
 1’b 1: sign extension operand 2

Pin name : bomc_rf_wr2 Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 2nd write port else active low
 1’b 0 : hold the data
 1’b 1: write the data to 2nd write address

Pin name : bomc_carry_wr Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update carry flag else active low
 1’b 0 : hold previous carry flag
 1’b 1: update carry flag

Pin name : bomc_zero_wr Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update zero flag else active low
 1’b 0 : hold previous zero flag
 1’b 1: update zero flag

Pin name : bomc_ngtv_wr Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update negative flag else active low
 1’b 0 : hold previous negative flag
 1’b 1: update negative flag

Pin name : bomc_ovfs_wr Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 88

Faculty of Information and Communication Technology (Perak Campus), UTAR

Active : Active high
Pin Function: Active high to enable update overflow flag else active low
 1’b 0 : hold previous overflow flag
 1’b 1: update overflow flag

Pin name : bomc_branch Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to change PC to branch target address else active low for
 normal increment of PC (+4)
 1’b 0 : branch to target address
 1’b 1: normal +4 increment of PC

Pin name : uocp_inva Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 1st operand (from Rn) else active low to use
original operand
 1’b 0 : use original data from Rn for ALB
 1’b 1: invert the data from Rn before going through ALB

Pin name : uocp_index Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : -
Pin Function: decide the address mode for memory read and load
 1’b 0 : Post-index
 1’b 1 : Pre-index

Pin name : uocp_mem_wr Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high to update memory else active low to hold the previous
memory data.
 1’b 0 : hold previous memory data
 1’b 1: update memory data

Pin name : uocp_word_or_byte Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Active high for load or save a byte of data else active low for a word of
 data

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 89

Faculty of Information and Communication Technology (Perak Campus), UTAR

 1’b 0 : word
 1’b 1: byte

Pin name : uocp_mdata_or_alb Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high for write data from memory to register file else active low
for write data from ALB to register file.
 1’b 0 : use data from ALB
 1’b 1: use data from memory cache

Pin name : bomc_instr_type Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 2-bit
Active : -
Pin Function: Represent the instruction type based on the bimc_op
 2’b 00 : data-processing instruction
 2’b 01 : memory instruction
 2’b 10 : program flow instruction

Pin name : uocp_cond_true Registered : Yes
Pin class : control signal
Source → Destination : bmain_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high if the condition meet else active low to skip the instruction
 1’b 0 : skip the instruction
 1’b 1: execute the instruction
Table 8.8: Output pin description of main control blo

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 90

Faculty of Information and Communication Technology (Perak Campus), UTAR

8.3 Instruction Control Block (binstr_ctrl)

8.3.1 Functionality

Generate the control signals that might be different within a sing type of instruction type.

8.3.2 Block diagram

Figure 8.5: block diagram of binstr_ctrl

Input

Pin name : biic_cmd Registered : No
Pin class : data signal
Source → Destination : ucp → binstr_ctrl
Bit size : 6-bit
Active : -
Pin Function: Carry the information of instruction for each instruction type. Such as
 operand 2 is an immediate, operation to be carry out and etc.

Pin name : biic_instr_type Registered : No
Pin class : data signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 2-bit
Active : -
Pin Function: Intruction type of the current instruction generated by bmain_ctrl
 2’b 00 : data processing instruction
 2’b 01 : memory instruction
 2’b 10 : program flow instruction

Pin name : biic_rf_wr2 Registered : No
Pin class : data signal

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 91

Faculty of Information and Communication Technology (Perak Campus), UTAR

Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Generated by bmain_ctrl, the value might change based on
 instruction type

Pin name : biic_zero_wr Registered : No
Pin class : data signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Generated by bmain_ctrl, the value might change based on
 instruction type

Pin name : biic_carry_wr Registered : No
Pin class : data signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Generated by bmain_ctrl, the value might change based on
 instruction type

Pin name : biic_ngtv_wr Registered : No
Pin class : data signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Generated by bmain_ctrl, the value might change based on
 instruction type

Pin name : biic_ovfs_wr Registered : No
Pin class : data signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Generated by bmain_ctrl, the value might change based on
 instruction type

Pin name : biic_inva Registered : No
Pin class : data signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Generated by bmain_ctrl, the value might change based on
 instruction type

Pin name : biic_index Registered : No
Pin class : data signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Generated by bmain_ctrl, the value might change based on

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 92

Faculty of Information and Communication Technology (Perak Campus), UTAR

 instruction type

Pin name : biic_mem_wr Registered : No
Pin class : data signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Generated by bmain_ctrl, the value might change based on
 instruction type

Pin name : biic_word_or_byte Registered : No
Pin class : data signal
Source → Destination : bmain_ctrl → binstr_ctrl
Bit size : 1-bit
Active : Active high
Pin Function: Generated by bmain_ctrl, the value might change based on
 instruction type
Table 8.11: input pins description of binstr_ctrl

Output

Pin name : boic_imm Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high when the operand 2 is an immediate else active low
 1’b 0 : non-immediate operand
 1’b 1: immediate operand

Pin name : boic_rf_wr1 Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 1st write port else active low
 1’b 0 : hold the data
 1’b 1: write the data to 1st write address

Pin name : boic_rf_wr2 Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable 2nd write port else active low
 1’b 0 : hold the data
 1’b 1: write the data to 2nd write address

Pin name : boic_carry_wr Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 93

Faculty of Information and Communication Technology (Perak Campus), UTAR

Active : Active high
Pin Function: Active high to enable update carry flag else active low
 1’b 0 : hold previous carry flag
 1’b 1: update carry flag

Pin name : boic_zero_wr Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update zero flag else active low
 1’b 0 : hold previous zero flag
 1’b 1: update zero flag

Pin name : boic_ngtv_wr Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update negative flag else active low
 1’b 0 : hold previous negative flag
 1’b 1: update negative flag

Pin name : boic_ovfs_wr Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to enable update overflow flag else active low
 1’b 0 : hold previous overflow flag
 1’b 1: update overflow flag

Pin name : boic_inva Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 1st operand (from Rn) else active low to use
original operand
 1’b 0 : use original data from Rn for ALB
 1’b 1: invert the data from Rn before going through ALB

Pin name : boic_invb Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to invert 2nd operand (from Rm or immediate) else active
low to use original operand
 1’b 0 : use original data from Rm or immediate for ALB
 1’b 1: invert the data from Rm or immediate before going through ALB

Chapter 8

Control path of CRISC (Unit & Block Level)

BIT (Hons) Computer Engineering 94

Faculty of Information and Communication Technology (Perak Campus), UTAR

Pin name : boic_ctrl Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 3-bit
Active : -
Pin Function: opcode for the ALB.
 3’b 000 : addition
 3’b 001: addition with carry
 3’b 010: subtraction
 3’b 011: subtraction with carry
 3’b 100: and AND
 3’b 101: or OR
 3’b 110: exclusive or XOR
 3’b 111: by pass operand b (from Rm)

Pin name : boic_index Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: decide the address mode for memory read and load
 1’b 0 : Post-index
 1’b 1 : Pre-index

Pin name : boic_mem_wr Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high to update memory else active low to hold the previous
memory data.
 1’b 0 : hold previous memory data
 1’b 1: update memory data

Pin name : boic_word_or_byte Registered : Yes
Pin class : data signal
Source → Destination : binstr_ctrl → ucp
Bit size : 1-bit
Active : Active high
Pin Function: Active high for load or save a byte of data else active low for a word of
 data
 1’b 0 : word
 1’b 1: byte
Table 8.12: Output pins description of binstr_ctrl

Chapter 9

Memory Cache unit

BIT (Hons) Computer Engineering 95

Faculty of Information and Communication Technology (Perak Campus), UTAR

ucache

uicm_addr uocm_rd_data
uicm_wr_data

uicm_wr
uicm_slw
uicm_slh
uicm_slb
uicm_clk

32

32

32

Chapter 9 – Memory Cache unit (ucache)
9.1 Functionality
Data segment and Text segment in memory map.

9.2 Block diagram

Figure 9.1: block diagram of ucache

Input

Pin name : uicm_addr Registered : No
Pin class : data signal
Source → Destination : crisc_pipeline → ucache
Bit size : 32-bit
Active : -
Pin Function: Address for data write/read to ucache.

Pin name : uicm_wr_data Registered : No
Pin class : data signal
Source → Destination : crisc_pipeline → ucache
Bit size : 32-bit
Active : -
Pin Function: Data to write to ucache.

Pin name : uicm_wr Registered : No
Pin class : control signal
Source → Destination : udp → ucache
Bit size : 1-bit
Active : Active high
Pin Function: 1’b0: hold the content of ucache
 1’b1: write the uicm_wr_data to the ucache with uicm_addr as address.

Pin name : uicm_slw Registered : No
Pin class : control signal
Source → Destination : udp → ucache
Bit size : 1-bit
Active : Active high
Pin Function: 1’b0: data operate in other unit (non-word).
 1’b1: data operate in word (unit).

Pin name : uicm_slh Registered : No
Pin class : control signal

Chapter 9

Memory Cache unit

BIT (Hons) Computer Engineering 96

Faculty of Information and Communication Technology (Perak Campus), UTAR

Source → Destination : udp → ucache
Bit size : 1-bit
Active : Active high
Pin Function: 1’b0: data operate in other unit (non-half-word).
 1’b1: data operate in half-word (unit).

Pin name : uicm_slb Registered : No
Pin class : control signal
Source → Destination : udp → ucache
Bit size : 1-bit
Active : Active high
Pin Function: 1’b0: data operate in other unit (non-byte).
 1’b1: data operate in byte (unit).

Pin name : uicm_clk Registered : No
Pin class : clock signal
Source → Destination : external → ucache
Bit size : 1-bit
Active : Rising edge
Pin Function: Provide a periodic signal for synchronize purpose.
Table 9.1: input pin description of ucache

Output

Pin name : uocm_rd_data Registered : Yes
Pin class : data signal
Source → Destination : ucache → udp
Bit size : 32-bit
Active : -
Pin Function: data read from ucache with uicm_addr as the address.
Table 9.2: Output pin description of ucache

Chapter 10

UART unit

BIT (Hons) Computer Engineering 97

Faculty of Information and Communication Technology (Perak Campus), UTAR

Chapter 10 – UART unit

A developed UART unit (uuart) is connected with core (data-path and control path).

However, due to the reason that exception handler hasn’t develop yet, the functionalities

of UART used in this project is very limited, the purpose of connect the UART is to show

the simple interconnection of I/O with the core.

10.1 UART address
In this project, the address of UART is set as 32’h C000_0004 ~ 32’h C000_0010 which
in I/O segment of memory map.

Address UART’s register uiua_wb_sel [3:0]

32’h C000_0004 Configuration register
(UARTCF)

4’b 0001

32’h C000_0008 Transmitter fifo register 4’b 0100

32’h C000_000C Receiver fifo register 4’b 1000

32’h C000_0010 Status register (UARTSF) 4’b 0010
Table 10.1: Address for UART registers and FIFO

10.2 Operating procedure

In this project, only focus on the transmission of data by UART. Refer to previous

developed UART, before start a transmission UART will send a Request-To-Send (RTS)

signal to external modern and waiting for a Clear-to-Send (CTS) Signal from the external

modern. After UART detect the CTS signal, the data will transmit to the external modern

bit-by-bit in a configurable baud rate.

Figure 10.1: Transmission of data by UART

The 8-bit data (d [7:0]) will transmit in a format of {1’b0, d[0], d[1], …, d[7], parity bit,

1’b1} as shown in the diagram below.

Chapter 10

UART unit

BIT (Hons) Computer Engineering 98

Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 10.2: UART data transfer protocol

Figure 10.3: UART data receiving protocol

The data receiving will be on the same baud rate. At the rising edge, the data might be not

ready (transition might occur) to read. Hence, to avoid read wrong data (at the rising

edge) each receiving data will be read approximate at the middle of the clock frame. The

1st clock frame, the receiving data will read after 5 periods of bclkx10, and 10 periods for

following receiving data until stop bit. The alternative way will be read the data at falling

edge of the baud rate, since the falling edge is at the middle of a clock period (if duty

cycle equal to 50%) where the data should be ready.

Chapter 10

UART unit

BIT (Hons) Computer Engineering 99

Faculty of Information and Communication Technology (Perak Campus), UTAR

10.3 uuart functionalities and pin description

• Serialize 8-bit data.

• Transmit the serialized data

• Receive serial data and parallelize to 8-bit.

• Check correctness of data.

Figure 10.4: Block diagram for uuart

Input

Pin name: uiua_RxD Registered: No
Pin class: data
Source → Destination: external device → uuart
Bit size: 1-bit
Active: -
Pin Function: Received data from external device through UART port.

Pin name: uiua_CTS Registered: No
Pin class: status signal
Source → Destination: CPU → uuart
Bit size: 1-bit
Active: High
Pin Function: Allow UART to transmit data when 1’b1.

Pin name: uiua_UARTIE Registered: No
Pin class: control signal
Source → Destination: CPU → uuart
Bit size: 1-bit
Active: High
Pin Function: Interrupt enable

Pin name: uiua_wb_din Registered: No

Chapter 10

UART unit

BIT (Hons) Computer Engineering 100

Faculty of Information and Communication Technology (Perak Campus), UTAR

Pin class: data
Source → Destination: CPU → uuart
Bit size: 8-bits
Active: -
Pin Function: Data to write in UART’s registers from CPU.

Pin name: uiua_wb_sel Registered: No
Pin class: control signal
Source → Destination: Address decoder → uuart
Bit size: 4-bits
Active: -
Pin Function: Select the register in UART to write.
 4’b 0001: control register UARTCR
 4’b 0010: status register UARTSR
 4’b 0100: transmitter FIFO register push enable tx_fifo_push_en
 4’b 1000: receiver FIFO register pop enable rx_fifo_pop_en

Pin name: uiua_wb_we Registered: No
Pin class: control signal
Source → Destination: CPU → uuart
Bit size: 1-bit
Active: High
Pin Function: Allow to data write the register depend on uiua_wb_sel.

Pin name: uiua_wb_stb Registered: No
Pin class: status signal
Source → Destination: CPU → uuart
Bit size: 1-bit
Active: High
Pin Function:

Pin name: uiua_wb_clk Registered: No
Pin class: clock signal
Source → Destination: System → uuart
Bit size: 1-bit
Active: Rising edge
Pin Function: Periodic signal for synchronize purpose

Pin name: uiua_wb_rst Registered: No
Pin class: control signal
Source → Destination: System → uuart
Bit size: 1-bit
Active: High
Pin Function: Reset the UART
Table 10.2: Input pins description for uuart

Chapter 10

UART unit

BIT (Hons) Computer Engineering 101

Faculty of Information and Communication Technology (Perak Campus), UTAR

Output

Pin name: uoua_TxD Registered: Yes
Pin class: data
Source → Destination: uuart → external device
Bit size: 1-bit
Active: -
Pin function: Transmit content in FIFO of transmitter from UART to external device

Pin name: uoua_RTS Registered: Yes
Pin class: status signal
Source → Destination: uuart → external device
Bit size: 1-bit
Active: high
Pin function: active high indicate UART request to send data.

Pin name: uoua_IRQ Registered: Yes
Pin class: status signal
Source → Destination: uuart → CPU
Bit size: 1-bit
Active: high
Pin Function: error interrupt signal

Pin name: uoua_wb_dout Registered: Yes
Pin class: data
Source → Destination: uuart → CPU
Bit size: 8-bits
Active: -
Pin Function: data from UART to CPU register

Pin name: uoua_wb_ack Registered: Yes
Pin class: status signal
Source → Destination: uuart → CPU
Bit size: 1-bit
Active: high
Pin Function: acknowledgement to CPU
Table 10.3: Outputs pin description for uuart.

Chapter 10

UART unit

BIT (Hons) Computer Engineering 102

Faculty of Information and Communication Technology (Perak Campus), UTAR

Configure Register

The configure register is used to decide interrupt, parity and baud rate.
Bit 7 (UARTEN): UART enable
Bit 6 (RXCIE): Receive Error interrupt enable
Bit 5 (TXEIE): Transmit Error interrupt enable
Bit 4 (PRTEN): Parity Bit Enable
Bit 3 (PRT): Parity Bit
Bit [2:0] (BAUD): Baud rate select

Status Register

Status register will represent the status of received data.
Bit 7 (RXC): Receive status
Bit 6 (TXE): Transmission status
Bit 5 (FE): Framing Error
Bit 4 (PE): Parity Error
Bit [3:1]: Not used
Bit 0 (RxFIM):

Chapter 10

UART unit

BIT (Hons) Computer Engineering 103

Faculty of Information and Communication Technology (Perak Campus), UTAR

10.4 bclkctr functionalities and pins description

• Generate different baud rate. (8)

• Enable transmitter (at rising edge) and receive block (at falling edge).

Figure 10.6: block diagram for bclkctr

Input pins

Pin name: bicc_select_baud Register: No
Pin class: control signal
Source → Destination: UARTCR → bclkctr
Bit size: 3-bits
Active: -
Pin Function: Select baud rate

Pin name: bicc_clk_div_rate Register: No
Pin class: control signal
Source → Destination: fixed to 4’b 0001
Bit size: 4-bits
Active: -
Pin Function: the value used to divide the system clock (in this case fixed to 4’b 0001 to
divide by 2)

Pin name: bicc_sysclk Register: No
Pin class: clock signal
Source → Destination: System → bclkctr
Bit size: 1-bit
Active: -
Pin Function: Provide periodic signal for synchronize purpose.

Pin name: bicc_reset Register: No
Pin class: control signal
Source → Destination: System → bclkctr
Bit size: 1-bit
Active: High
Pin Function: Reset the system to initial condition.
Table 10.4: Inputs pin description for bclkctr

Chapter 10

UART unit

BIT (Hons) Computer Engineering 104

Faculty of Information and Communication Technology (Perak Campus), UTAR

Output pins
Pin name: bocc_ua_clk Register: Yes
Pin class: clock signal
Source → Destination: bclkctr → btx/brx
Bit size: 1-bit
Active: -
Pin Function: divided clock

Pin name: bocc_rx_en Register: Yes
Pin class: control signal
Source → Destination: bclkctr → brx
Bit size: 1-bit
Active: High
Pin Function: Allow receiver block to receive data

Pin name: bocc_tx_en Register: Yes
Pin class: control signal
Source → Destination: bclkctr → btx
Bit size: 1-bit
Active: High
Pin Function: Allow transmitter block to transmit data
Table 10.5: Output pins description for bclkctr

Chapter 10

UART unit

BIT (Hons) Computer Engineering 105

Faculty of Information and Communication Technology (Perak Campus), UTAR

10.5 brx functionalities and pins description

• Receive a data stream from external device.

• Parallelize the data to 8-bit data.

• Check framing error and parity error.

Figure 10.8: block diagram for brx

Input pins
Pin name: birx_rx_data Register: No
Pin class: data signal
Source → Destination: external device → brx
Bit size: 1-bit
Active: -
Pin Function: Data from external device.

Pin name: birx_rx_en Register: No
Pin class: control signal
Source → Destination: bclkctr → brx
Bit size: 1-bit
Active: High
Pin Function: Allow receiver block receive data.

Pin name: birx_parity_en Register: No
Pin class: control signal
Source → Destination: UARTCR → brx
Bit size: 1-bit
Active: High
Pin Function: Inform receiver block that parity bit is enable (need to check parity bit).

Pin name: birx_parity_bit Register: No
Pin class: data signal
Source → Destination: UARTCR → brx

Chapter 10

UART unit

BIT (Hons) Computer Engineering 106

Faculty of Information and Communication Technology (Perak Campus), UTAR

Bit size: 1-bit
Active: -
Pin Function: Expected parity bit.

Pin name: birx_fifo_pop_en Register: No
Pin class: control signal
Source → Destination: uuart → brx
Bit size: 1-bit
Active: High
Pin Function: request the data stored in FIFO to borx_data_out.

Pin name: birx_sysclk Register: No
Pin class: clock signal
Source → Destination: System → brx
Bit size: 1-bit
Active: -
Pin Function: Provide a periodic signal for synchronize purpose.

Pin name: birx_ua_clk Register: No
Pin class: clock signal
Source → Destination: bclkctr → brx
Bit size: 1-bit
Active: -
Pin Function: divided clock

Pin name: birx_reset Register: No
Pin class: control signal
Source → Destination: System → brx
Bit size: 1-bit
Active: High
Pin Function: Reset the receiver block to initial condition.
Table 10.6: Input pins for brx

Output pins
Pin name: borx_data_out Register: Yes
Pin class: data signal
Source → Destination: brx → CPU
Bit size: 8-bit
Active: -
Pin Function: Data received.

Pin name: borx_rxc Register: Yes
Pin class: status signal
Source → Destination: brx → UARTSR
Bit size: 1 bit
Active: High
Pin Function: receive status

Pin name: borx_parity_err Register: Yes
Pin class: status signal
Source → Destination: brx → UARTSR
Bit size: 1 bit

Chapter 10

UART unit

BIT (Hons) Computer Engineering 107

Faculty of Information and Communication Technology (Perak Campus), UTAR

Active: High
Pin Function: Indicate the received data have parity error while 1’b1.

Pin name: borx_framing_err Register: Yes
Pin class: status signal
Source → Destination: brx → UARTSR
Bit size: 1-bit
Active: High
Pin Function: framing error at received data.

Pin name: borx_fifo_empty Register: Yes
Pin class: status signal
Source → Destination: brx → btx
Bit size: 1-bit
Active: High
Pin Function: Indicate the FIFO in receiver block is empty while 1’b1.

Pin name: borx_fifo_full Register: Yes
Pin class: status signal
Source → Destination: brx → btx
Bit size: 1-bit
Active: High
Pin Function: Indicate the FIFO in receiver block is full while 1’b1.
Table 10.7: Output pins for brx

Chapter 10

UART unit

BIT (Hons) Computer Engineering 108

Faculty of Information and Communication Technology (Perak Campus), UTAR

10.6 btx functionalities and pins description

• Serialize the 8-bit data to a stream of data.

• Append start bit (1’b 0), serialized data, parity bit and stop bit (1’b 1) together.

• Transmit ready data to receiver of the external device.

Figure 10.10: block diagram for btx

Input pins

Pin name: bitx_tx_cts Register: No
Pin class: status signal
Source → Destination: → btx
Bit size: 1-bit
Active: High
Pin Function: indicate the external device ready to receive data (allow to transmit) while
1’b1.

Pin name: bitx_tx_en Register: No
Pin class: control signal
Source → Destination: bclkctr → btx
Bit size: 1-bit
Active: High
Pin Function: Allow the transmitter block to transmit data.

Pin name: bitx_parity_en Register: No
Pin class: control signal
Source → Destination: UARTCR → btx

Chapter 10

UART unit

BIT (Hons) Computer Engineering 109

Faculty of Information and Communication Technology (Perak Campus), UTAR

Bit size: 1-bit
Active: High
Pin Function: Parity bit need to be generated while 1’b1.

Pin name: bitx_parity_bit Register: No
Pin class: data signal
Source → Destination: UARTCR → btx
Bit size: 1-bit
Active: High
Pin Function: Parity bit value to be transmit.

Pin name: bitx_fifo_data_in Register: No
Pin class: data signal
Source → Destination: uuart → btx
Bit size: 8-bit
Active: -
Pin Function: Data to store in FIFO before transmission.

Pin name: bitx_fifo_push_en Register: No
Pin class: control signal
Source → Destination: uuart → btx
Bit size: 1-bit
Active: High
Pin Function: Store the data to FIFO while 1’b1.

Pin name: bitx_rx_fifo_full Register: No
Pin class: status signal
Source → Destination: brx → btx
Bit size: 1-bit
Active: High
Pin Function: Indicate the FIFO in receiver block is full.

Pin name: bitx_sysclk Register: No
Pin class: clock signal
Source → Destination: System → btx
Bit size: 1-bit
Active: -
Pin Function: Provide a periodic signal for synchronize purpose.

Pin name: bitx_ua_clk Register: No
Pin class: clock signal
Source → Destination: bclkctr → btx
Bit size: 1-bit
Active: -
Pin Function:

Pin name: bitx_reset Register: No
Pin class: control signal
Source → Destination: System → btx
Bit size: 1-bit
Active: High
Pin Function: Reset the transmitter block to initial condition.
Table 10.8: Inputs pin description for btx

Chapter 10

UART unit

BIT (Hons) Computer Engineering 110

Faculty of Information and Communication Technology (Perak Campus), UTAR

Output pins

Pin name: botx_rts Register: Yes
Pin class: status signal
Source → Destination: btx → external device
Bit size: 1-bit
Active: High
Pin Function: Request to send data from transmitter block.

Pin name: botx_tx_data Register: Yes
Pin class: data signal
Source → Destination: btx → external device
But size: 1-bit
Active: -
Pin Function: Data stream transmit.

Pin name: botx_fifo_full Register: Yes
Pin class: status signal
Source → Destination: btx → none
Bit size: 1-bit
Active: High
Pin Function: Indicate the FIFO in transmitter block is full while 1’b1.

Pin name: botx_fifo_empty Register: Yes
Pin class: status signal
Source → Destination: btx → none
Bit size: 1-bit
Active: High
Pin Function: Indicate the FIFO in transmitter block is empty while 1’b1.
Table 10.9: Output pins description for btx

Chapter 10

UART unit

BIT (Hons) Computer Engineering 111

Faculty of Information and Communication Technology (Perak Campus), UTAR

Datapath
memory
address

write data

Control path
memory

write

== 32'b C000_
0004

== 32'b C000_
0008

4'b 0100

4'b 0000

4'b 0001

uiua_wb_sel

uiua_wb_we

uiua_uadin

10.7 UART address decoder
The UART address decoder will only work on 2 address which is 32’h C000_0008 for

transmitter FIFO and C000_0004 UART for configuration register since only UART is

used for transmission of data only. Figure below show the combinational logic of the

decoder.

Figure 10.12: Circuit for CPU-UART address decoder

Chapter 11

Verification Specification

BIT (Hons) Computer Engineering 112

Faculty of Information and Communication Technology (Perak Campus), UTAR

Operating System & I/O

Stack
↓

Dynamic Data

↑
Heap

Global Data

Text

Exception handlers

SP

SB

PC

0xFFFF FFFC

0xC000 0000

0xBEFF FAE8

0x0000 8000

0x0000 0000

0x0400 0000

SL

~~~~~~

~~~~~~

~~~~~~

Program 

code

Chapter 11 – Verification Specification 
 

11.1 Verification for crisc 

 

Verification is carrying out after the crisc_pipelineverilog module had designed. The 

verification is done with load a text file (with .arm extension) to the Text segment 

memory cache, since this project only include the user instruction (Arithmetic, 

logical, memory, and program flow). 

Verilog code: 

$readmemh ("test_instr.arm",tb_crisc_pipeline.DUT.utext_seg.ucm_r_memory); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.1: Memory map & program code segment 

 

The correctness of the Verilog module is confirmed with the comparison of Register 

file and data memory of Verilog module with ARMSim (ARM assembly instruction 

simulator). 

 



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  113 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

11.2 Test Program for RISC 32 

 

The following test program in Table 11.1 is a program which consists most of the 

instruction to test crisc_pipeline. This program is a hazard and data dependency free 

program. When verifying using this program, the outcome of crisc_pipelinemust be 

the same with the expected output stated. The main purpose of this program is to 

ensure the correctness of each instruction which involve data-path unit (udp) and 

control unit (ucp). 

The test program in Table 11.2 is a recursive program which is full of data 

dependency. The NOP is not inserted in the program to test the Data forwarding 

(bfw_ctrl) and Interlock control (bitl_ctrl). The main purpose is to make sure the 

program is free from data hazard. 

 



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  114 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

11.2.1 Test program 1 

 

Each instruction of the test program 1 is not related to each other, therefore the register file and data memory should be observe after each 

instruction. The correctness is verified with ARMSim. 

data_processing ADD R0, R0, #16 R0 = 16 

ADD R1, R1, R0 R1 = 16 

ADD R2, R1, R0, LSL #2 R2 = 16 +16 * 4 = 80 

ADD R3, R1, R0, LSL R0 R3 = 16 + 16*2^16 = 1048592 

CMP R0, R4 Carry = 1 

ADC R4, R4, #16 R4 = 16 + 1 =17 

ADC R5, R5, R4 R5 = 17 + 1 = 18 

ADC R6, R5, R4, LSL #1 R6 = 18 + 17*2 + 1 =53 

ADC R7, R5, R4, LSL R4 
R7 = 18 + 17*2^17 + 1 = 
2228243 

SUB R1, R1, #16 R1 = 16-16 =0 

SUB R0, R4, R0 R0 = 17 -16 = 1 

SUB R2, R2, R0, LSL #6 R2 = 80 - 1*2^6 = 16 

SUB R3, R3, R7, LSR R0 
R3 = 1048592 - 1114121 = -
65529 

RSB R4, R4, R5 R4 = 18 - 17 = 1 

RSB R5, R5, R4 R5 = 1 -18 = -17 

RSB R6, R6, R2, LSL #2 R6 = 16 * 2^2 -53 = 11 

RSB R7, R7, R6, LSL R6 
R7 = 22528 - 2228243 = -
2205715 

SBCS R0, R0, #0 R0 = 1 - 0 - !1 = 1; C = 1 

SBC R1, R4, R1 R1 = 1 - 0 - !1 = 1 

SBCS R2, R2, R4, LSL #4 R2 = 16 - 1*2^4 - !0 = -1; C = 1 



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  115 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

SBC R3, R2, R3, ASR R6 
R3 = 0xFFFF FFFF - 0xFFFF 
FFFF =0 

TST R3, #0Xff N = 0, Z = 0, C = 1 

TST R3, R1 N = 0, Z= 1, C = 1 

TEQ R1, #0xFF N = 0, Z= 0, C= 1 

TEQ R1, R3, LSL #26 N=0, Z = 0, C = 0 

AND R4, R7, #0xFF R4 = 0xED 

EOR R5, R4, #0xF0 R5 = 0x1D 

ORR R6, R4, #0xF0 R6 = 0xFD 

BIC R7, R4, #0xF0 R7 = 0x0D 

CMP R7, R7 N = 0, Z = 1, C = 1, V =0 

CMN R7, R6 N = 0, Z = 0, C =0, V = 0 

MOV R8, R7 R8 = 0x0D 

MOV R8, #0xF0 R8 = 0xF0 

MVN R9, R7 R9 = 0xFFFF FFF2 

MVN R9, #0xF0 R9 = 0XFFFF FF0F 

MOV R8, R9, LSL R7 R8 = 0XFFE1 E000 #(-8+16=8) -> mem[2] 

MOV R8, R9, LSR #8 R8 = 0x00FF FFFF 

MOV R8, R9, ASR #3 R8 = 0XFFFF FFE1 #(-8+20=8) -> mem[3] 

MOV R8, R9, ROR #9 R8 = 0x87FF FFFF 

MOV R2, R0, LSL #28 R2 = 0x1000 0000 

ORR R2, R2, R0, LSL #15 R2 = 0X1000 8000 

memory: STR R8, [R2] Dmem[0x1000 8000] = 0x87FF FFFF 

STR R9, [R2, #4] Dmem[0x1000 8004] = 0xFFFF FF0F 

STR R0, [R2], #8 Dmem[0x1000 8000] = 0X0000 0001; R2 = 0x1000 8008 

STR R8, [R2, #4]! R2 = 0x1000 800C; Dmem[0x1000 800C] = 0x87FF FFFF 



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  116 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

LDR R0, [R2], #-4 R0 = 0x87FF FFFF; R2 = 0x1000 8008 

LDR R0, [R2, #-4] R0 = Dmem[0x1000 8000] = 0xFFFF FF0F 

LDR R0, [R2, #-8]! R2 = 0x1000 8000; R0 = 0x0000 0001 

below is for test forwarding 

ADD R0, R0, #-1 R0 = 0x0000 0000 

LDR R0, [R0, R2]! R0 = 0X1000 8000; 2nd write port higher priority 

BL branch LR = here 

here: B end 

branch: MOV PC, LR 
PC =  LR, similar to jump in 
MIPS 

Nop 

Nop 

Nop 

Nop 

end: MOV R0, #0 R0 = 0; indicate end of program 
Table 10.1 Test program 1 (without data dependency, interlock and hazard.) 

 



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  117 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

11.2.2 Verification for test program 1 for RISC32 

 

For the verification, we need to track the value of register file and memory segment 

from time to time in order to make sure the correctness. 

For Data Processing Instruction (Note-the result is arranged in time increasing order): 

 

 

 

 

 

 

 

 

 

Figure 11.2: Test program 1 result (1) 

 

 

 

 

 

 

 

 

 

 Figure 11.3: Test program 1 result (2)

Register address 

Value stored in register (in hexadecimal) 

 

Run from instruction 

ADD R0, R0, #16 

 

to 

ADC R7, R5, R4, LSL R4 

Register address 

Value stored in register (in hexadecimal) 

 

Run from instruction 

SUB R1, R1, #16 

 

to 

RSB R7, R7, R6, LSL R6 



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  118 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

 

 

 

 

 

 

 

 

 

 

 Figure 11.4: Test program 1 result (3) 

 

 

 

 

 

 

Figure 11.5: Test program 1 result (4)

Register address 

Value stored in register (in hexadecimal) 

 

Run from instruction 

SBCS R0, R0, #0 

 

to 

MOV R8, R7 

 

Note: The TEQ, TST, CMP, CMN only affect the 

value of status flag which didn’t show here. 

Register address 

Value stored in register (in hexadecimal) 

 

Run from instruction 

MOV R8, #0xF0 

 

to 

MOV R8, R9, ROR #9 



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  119 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

For Store Memory Instruction: 

From STR R9, [R2] to R8, [R2, #4]! 

 

 

 

 

 

 

Figure 11.6: Test program 1 result (5) 

 

 

Figure 11.7: Test program 1 result (6) 

 

The value at 0x1000 8000 ~ 0x1000 8003 is replaced by value stored in R0 (0x0000 

0001) and 0x1000 800c~0x1000 8010 stored the value of 0x87ff ffff. 

For load from memory: 

The figures below show the result for the load instruction. 

• LDR R0, R2, #-4 

• LDR R0, [R2, #-4] 

• LDR R0, [R2, #-8] 

 

 
Figure 11.8: Test program 1 result (7) - Value from 0x1000 800c~0x1000 8010 

 

 
Figure 11.9: Test program 1 result (8) - Value from 0x1000 8004~0x1000 8007 

 
Figure 11.10: Test program 1 result (9) - Value form 0x1000 8000~0x1000 8003 

Address Data 

0x10008000 87 

0x10008001 ff 

0x10008002 ff 

0x10008003 ff 

0x10008004 ff 

0x10008005 ff 

0x10008006 ff 

0x10008007 0f 

Explanation: 

0x10008000~0x10008003 

= R8 = 0x87ff ffff 

 

0x10008004~0x10008007 

= R9 = 0xffff ff0f 

 

0x10008000~0x10008003 

later is replace by R0 value 



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  120 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

For Program Flow Instruction: 

The correctness of B and BL instruction is determined by the PC of the program from 

time to time. Figure below show the value of PC from time to time. 

Figure 11.11: Test program 1 result (10) – program flow instruction (B & BL) 

Explanation: 

When BL branch execute, B end instruction is actually being fetch by CPU to IF 

stage, but the content of B end instruction is being flush after the BL branch done 

execute in ID stage. 

At branch label, MOV PC, LR instruction is execute, which force the program jump 

back to 32x0040 00d0 which is content of LR register. 

At 32x0040 00d0 B end instruction is fetch and executed and PC jump to 0x0040 

00e8 which is the end of program.



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  121 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

11.2.3 Test program 2 

 

The program 2 is a recursive program which converts from C program. The program 

use is factorial program, R0 as the output of the program R1 as the input (R0 = R1!). 

The multiplication is not supported by the current crisc_pipeline therefore another 

multiplication function is implement to the function in assembly code. Different from 

program 1, program 2 is full with data dependency and hazard, which mainly test the 

functionality and correctness of bitl_ctrl and bfw_ctrl in udp. 

C program: 

int main(){ 

 factorial (5); 

 return 0; 

} 

int factorial(n){ 

 if(n==1) return 1; 

 else n*factocrial(n-1); 

} 

Above is the content of C program. 

_start: 
  MOV R1, #5 n!, input of factorial 

  MOV FP, SP   

ADD FP, FP, #1024 set FP 

BL FACT 

B EXIT @R3: A 

FACT: 

 
CMP R1, #1 

BNE RECUR if n != 1 branch to recur 

MOV R0, #1 else return 1 

B DONE exit the program 

RECUR: 
  STR R1, [SP], #4 store r1 

  SUB R1, R1, #1 n-1 

STR LR, [FP], #4 save return address 

BL FACT call fact(n-1) 

LDR LR, [FP, #-4]! load return address 

LDR R1, [SP, #-4]! recall n 

MOV R2, R0 R2 = R0 

STR LR, [FP], #4 save return address 



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  122 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

BL mult 

LDR LR, [FP, #-4]! load return address 

DONE:       

  MOV PC, LR continue another loop 

NOP 

NOP 

 
NOP 

 NOP 

mult: Multiplication (Booth algorithm) 

MOV R6, #0 reset counter 

MOV R3, R1, LSL #16 R3: A 

  MVN R4, R1   

ADD R4, R4, #1 R4: -R1; -M 

MOV R4, R4, LSL #16 R4: S 

MOV R5, R2, LSL #1 R5: P 

loop: 

CMP R6, $15 

 
BEQ done 

AND R7, R5, #3 check last 2 bit 

CMP R7, #2 if == 2'b10 

  ADDEQ R5, R5, R4 P = P+S 

CMP R7, #1 if == 2'b01 

ADDEQ R5, R5, R3 P = P+A 

MOV R5, R5, ASR #1 P >>> 1 

ADD R6, R6, #1 R6 ++ 

B loop 

done: 

 
MOV R0, R5, ASR #1 Result 

MOV PC, LR   

NOP 

 
NOP 

 NOP 

NOP     

EXIT: 
Table 11.2 Test program 2, with data dependency, interlock and hazard. 



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  123 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

11.2.4 Verification on test program 2 

 

For the factorial (5) we can know the result will be 5*4*3*2*1 = 120 = 0x78, 

therefore we just need to compare the value of R0 which is the final result. The 

operand can be change to other value for double check purpose. (Factorial (4) is run 

for this case, output should be 24 = 0x18) 

Register value for factorial (5) (Note: R1: 0x5, R0: 0x78) 

 

 

 

 

 

 

 

 

 

Figure 11.12: Test program 2 result (1) – factorial (5) 

 

Register value for factorial (4) (Note: R1: 0x4, R0: 0x18) 

 

 

 

 

 

 

 

 

 

Figure 11.13: Test program 2 result (2) – factorial (4) 



Chapter 11 

Verification Specification 

BIT (Hons) Computer Engineering  124 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

11.3 Verification on UART and core interaction. 
A simple assembly code had developed to test the functionalities of UART after 
connect it to the core (data path and control path). Below shows the code which test 
the transmission of R1’s content via UART. 
 
Test code: 
MOV R2, #0x0C 
MOV R2, R2, LSL #28 @set R2 to value of 0xC000 0000 
MOV R0, #0x98  @set the content of UARTCR 
STR R0, [R2, #4]  @configure UARTCR (0xC000 0004) 
MOV R1, #0xA9  @value to transmit by UART 
STR R1, [R2, #8]  @store the value to transmitter FIFO (0xC000 0008) 
 
In this test code, R2 is used as the pointer to UARTCR and transmitter FIFO, R0 for 
UARTCR’s content and R1 for value to transmit. 
The result is shown below. 
 
 
 
 
 
 
Figure 11.14: Waveform result (1) 

 
The transmit value is 0xA9, which will send in bit stream of {start bit, d[0], d[1], …, 
d[7], (odd) parity bit, stop bit} (01001010111). The system clock is set to 20 MHz, 
while baud rate used is 38400Hz.  
 
 
 
 
 
 
 
 
 
Figure 11.15: Waveform result (2) 

 
The bocc_tx_en is enable after every 520 of system clock period, which is every 
2.6x10-5 second of 38461Hz approximate to selected baud rate.  
The content in transmitter FIFO: 
 
 
 
 
 
 
Figure 11.16: transmitter FIFO content



Chapter 12 

Conclusion 

BIT (Hons) Computer Engineering  125 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

Chapter 12 – Conclusion 

 

 A limitation of documentation on ARM core processor especially micro-

architecture of the cores on the open source project website (e.g. www.opencore.org). To 

present the work better the inter-connection between the blocks and functional table for 

each blocks are included in this report. Documentation is importance for the long term 

project for modification and adding feature in future. In order to achieve that, the 

processor is designed with the ARM ISA and a proper documentation is done. 

 

 The processor is divided to main two part which is data path and control path. 

Data path is designed according to the addressing mode to be implemented and Control 

path main designed to generate control signals for data path developed.  

 

During the design process, several redesigns is done to improve the performance 

of the processor. For example, branch instructions (B or BL) done execution after 2 clock 

cycles (IF and ID) instead of 5 clock cycles (IF, ID, EX, MEM and WB). To solve data 

hazard and data dependency problem in pipelined processor, external blocks, forwarding 

control and interlock control are implemented to the processor. 



References 

BIT (Hons) Computer Engineering  126 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

References 
 

Electrical Engineering (2014), Why ARM cores consumes relatively lower power than 
x86. Available at http://electronics.stackexchange.com/questions/74010/why-arm-cores-
consumes-relatively-lower-power-than-x86. Access on 30 March 2016. 
 
Advanced RISC Machine Ltd(ARM) (1996), ARM Architecture Reference Manual. 
Available at http://www.home.marutan.net/arcemdocs/ARM-ARM-RevB.pdf. Access on 
30 March 2016. 
 
ConorSantifort (2015), Amber Open Source Project-Amber 2 Core Specification March 
2015[Online]. Available at www.opencore.org. Access on 16 March 2016 
 
Stephan Nolting (2012), Storm Core Processor System [Online]. Available at 
www.opencore.org. Access on 16 March 2016. 
 
Quentin Jones (2016), ARM architecture Computer architecture M 1. History 2 Design 
software can be bought (Verilog) – soft core Acorn computer: An English Company 
Cambridge [Online]. Available at http://slideplayer.com/slide/9462345/#. Access on 20 
March 2016. 
 
Sarah L. Harris & David Money Harris (2016) Digital Design and Computer Architecture 
ARM Edition, Morgan Kaumann. 
 
Mok, K. M. Digital System Design Lecture Notes. University Tunku Abdul 
Rahman. Kampar : s.n., 2009. Lecture Notes. 
 
Alvin R. Lebeck (1997). A Pipelined Processor. Duke University Durham. Available at 
https://www.cs.duke.edu/courses/fall98/cps104/lectures/week14-l2/sld001.htm. Access 
on 11 August 2016. 



Appendix 

BIT (Hons) Computer Engineering  127 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

Appendix 
 



Appendix 

BIT (Hons) Computer Engineering  128 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

BIT (Hons) Computer Engineering  129 

Faculty of Information and Communication Technology (Perak Campus), UTAR 

 

 

 

FACULTY OF INFORMATION AND COMMUNICATION 
TECHNOLOGY 

 

 
Full Name(s) of 
Candidate(s) 

 

ID Number(s) 
 

 

 
Programme / Course  

Title of Final Year Project  

 

Similarity Supervisor’s Comments 
(Compulsory if  parameters of  originality exceeds  
the limits approved by UTAR) 

Overall similarity index:    ___         %  

Similarity by source 

Internet Sources: _______________% 

Publications:         _________      % 

Student Papers:   _________          % 

 

 
Number of individual sources listed of 
more than 3% similarity:    

 

Parameters of originality required and limits approved by UTAR are as Follows:  

 (i)   Overall similarity index is 20% and below, and 
(ii)  Matching of individual sources listed must be less than 3% each, and 
(iii) Matching texts in continuous block must not exceed 8 words 

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words. 

Note  Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality 
report to Faculty/Institute 
 
Based on the above results, I hereby declare that I am satisfied with the originality of the 

Final Year Project Report submitted by my student(s) as named above. 
 
 
 
  ______________________________                       ______________________________ 

Signature of Supervisor 
 

 Signature of Co-Supervisor 
 

Name: __________________________ 
 

 Name: __________________________ 
 

Date: ___________________________  Date: ___________________________ 

 

Universiti Tunku Abdul Rahman 

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin 
for Submission of Final Year Project Report (for Undergraduate Programmes) 

Form Number: FM-IAD-005 Rev No.: 0 Effective  Date: 01/10/2013 Page No.: 1of 1 


