

Large Integer Arithmetic in GPU for Cryptography

BY

LEE WEN DICK

SUPERVISOR: MR LEE WAI KONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

APRIL 2017

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR iii

DECLARATION OF ORIGINALITY

I declare that this report entitled “Large Integer Arithmetic in GPU for

Cryptography” is my own work except as cited in the references. The report has not

been accepted for any degree and is not being submitted concurrently in candidature

for any degree or other award.

Signature : _________________________

Name : Lee Wen Dick

Date : 3-4-2017

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR iv

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Mr Lee

Wai Kong who has given me this oppurtunity to engage in a research and development

project. It brings me passion to develop my final year project with huge interest and

motivation.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR v

ABSTRACT

Most computer nowadays support 32 bits or 64 bits of data type on various type of

programming languages and they are sufficient for most use cases. However, in

cryptography, the required range and precision are more than 64 bits which are

computationally expensive on CPUs. In this report, we present our design and

implementation of a multiple-precision integer library including basic arithmetic,

Montgomery multiplication and exponentiation with parallel techniques for GPUs

which is implemented using CUDA, a parallel computing platform and application

programming interface model created by NVIDIA. Experimental results will be shown

that a significant speedup can be achieved comparing the performance of N. Emmart

and C. Weems, "Pushing the Performance Envelope of Modular Exponentiation Across

Multiple Generations of GPUs.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR vi

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ACKNOWLEDGEMENTS ... iv

ABSTRACT ... v

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

Chapter 1: Introduction ... 1

1.1 Problem Statement and Motivation ... 1

1.2 Project Scope .. 4

1.3 Project Objective .. 4

1.4 Impact, significance and contribution .. 5

1.5 Background Information ... 5

Chapter 2: Literature Review ... 6

Chapter 3: Proposed Method / Approach ... 9

3.1 Design Specification ... 9

3.2 System Design / Overview ... 10

3.3 Implementation issues and challenges.. 28

3.4 Timeline .. 28

Chapter 4: Implementation & Optimisation .. 31

4.1 Parallel library ... 31

4.2 Performance Metrics ... 31

4.3 Coalesced Access to Global Memory .. 31

4.4 Instruction Optimization ... 32

4.5 Thread and Block size ... 33

4.6 Shared Memory .. 35

4.7 Clean Code .. 35

4.8 Data usage ... 36

4.9 Flow chart for implementation ... 37

4.8 Code Snippet .. 38

Chapter 5: Conclusion .. 42

Bibliography ... 48

Appendices ... 50

POSTER ... 57

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR vii

LIST OF FIGURES

Figure Number

Title Page

Figure 1-3-F1

Figure 2- F1

Host side and device side

Multiple-precision Addition running on CPU & GPU

4

5

Figure 2-F2

Multiple-precision Subtraction running on CPU &

GPU

6

Figure 2-F3

Multiple-precision Multiplication running on CPU &

GPU

6

Figure 2-F4

Multiple-precision Division running on CPU & GPU 6

Figure 2-F5

Multiple-precision Montgomery Reduction running on

GPU

6

Figure 2-F6 Multiple-precision Montgomery Multiplication running

on GPU

7

Figure 2-F7

Integer length with σ = 8 7

Figure 2-F8

Integer length with σ = 8 7

Figure 2-F9

Integer length with σ = 8 7

Figure 3-2-2-1-F1

Grid of Thread Blocks 24

Figure 3-2-2-2-F2

Memory Hierarchy 26

Figure 5-F1 SOS method

32

Figure 5-F2 CIOS method

32

Figure 5-F3 SOS method vs CIOS method

33

Figure 5-F4 Montgomery exponentiation method

34

Figure 5-F5 CIOS with shared memory vs without shared memory

45

Figure 5-F6 SOS squaring with shared memory vs without shared

memory

45

Figure 5-F7 Montgomery exponentiation with shared memory vs

without shared memory

46

Figure 5-F8 Performance result by N. Emmart and C. Weems,

"Pushing the Performance Envelope of Modular

Exponentiation Across Multiple Generations of GPUs”

46

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR viii

LIST OF TABLES

Table Number

Title Page

Table 1-2 T1

Comparison between CPU and GPU 2

Table 3-2-1 T1 Result for carry propagation function

11

Table 3-2-1 T2

Result for borrow propagation function 14

Table 3-4 T2

Gantt chart for FYP2 28

Table 3-4 T1

Gantt Chart for FYP1

29

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 1

Chapter 1: Introduction

1.1 Problem Statement and Motivation

Cryptography plays an important role in our daily life. Nowadays cryptography uses

public key-encryption which involved a set of multiple-precision integer operations. A

server such as SSL server that relies on public-key encryption needs to compute a large

number of multiple-precision integer operation requires large computing power

(Kaiyong Zhao & Xiaowen Chu 2010). Modern PCs are very good at computing

numbers whose length does not exceed 32 bits or 64 bits. However, when numbers

exceeded the limit, computer arithmetic will fail. Different constraints imposed by the

underlying hardware architecture and programing language cause the failure (Youssef

Bassil & Aziz Barbar 2004). Therefore, different algorithms and technique were

developed to solve the problem of arithmetic computation on big number on the CPU

as well as GPU.

Recent improvement in Graphics Processing Units (GPU) ushered a new era of GPU

computing (Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E & Phillips,

J. C 2008). For example, commodity GPUs like NVIDIA’s GTX 1070 has 1920

processing cores and can achieve 5783 GFLOPS of computational horsepower.

We are inspired by the point that end users and application servers can employ GPUs

to increase the computation speed of multiple-precision integer operations. However,

there is difficulty to achieve high performance on GPUs due to the complicated memory

architecture and the relatively slow integer operations. (Kaiyong Zhao & Xiaowen Chu

2010)

GPU is a type of processor that is responsible to compute computer graphic. GPUs were

originally created for a high-performance workstation and therefore costly. In early

1990, 3D games with rendering processor were appearing since the 3D accelerator

hardware was made. API OpenGL was basically from a graphic application of

professional workstation and adopted to make a graphic 3D game programming, the

same as the emergence of the DirectX and Direct3D (Khoirudin, & Shun-Liang, J 2015).

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 2

In addition, GPU became more affordable and more powerful. Recently, due to the

promotion of gaming on PC, the development of GPU overtook the CPU development.

The rapid transformation on GPU allows improvement in parallel using the multiple

cores. This is more effective when the programmer wants to process a lot of vertices or

fragments in the similar way. With multi-core that control by very high memory

bandwidth, GPU serves with incredible resources for both non-graphics processing and

graphics processing at the same time.

On a modern GPU, shader number or often called the Stream Processor (for stream

input and output/Stream), has reached the hundreds or even thousands. GPU calculation

abilities can reach Terra FLOPS, which hundreds of times faster than the CPU.

Therefore, other non-graphic calculation can be performed in GPU. The comparison

between GPU and the CPU is shown in Table 1 by (Khoirudin & Shun-Liang, J 2015).

CPU GPU

Parallelism through time multiplexing Parallelism through space

multiplexing

Emphasis on low memory latency Emphasis on high memory

throughput

Allows wide range of control flows +

control flow optimisation

Very control flow restricted

Optimised for low latency access to

caches data set

Optimised for data parallel,

throughput computation

Very high clock speed Mid-tempo clock speed

Peak computation capability low Higher peak computation capability

Off-chip bandwidth lower Higher off-chip bandwidth

Handle sequential code well Requires massively parallel

computing

Great for task parallelism Great for data parallelism

Table 1. Comparison between CPU and GPU

As mentioned above, modern field of cryptography can be divided into Symmetric-key

cryptography and Public-key cryptography. One of the practical public-key encryption

system is the RSA algorithm.

RSA is one of the first practical public-key cryptosystems and is widely used for secure

data transmission. Basically, RSA produces public key based on two large prime

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 3

numbers along with an auxiliary value. The RSA algorithm includes modular arithmetic

as well as Montgomery modular exponentiation on the large numbers which have the

key size of 1024 to 4096 bit typically. Therefore large integer arithmetic is needed in

cryptography.

RSA involves a public key and a private key. The public key is distributed to the public

for message encryption, and only can be decrypted by the private key. In practical, three

very large positive integers e, d and n such that with modular exponentiation for all

message m:

(𝑚𝑒)𝑑 ≡ 𝑚 (𝑚𝑜𝑑 𝑛)

To encrypt the message m such that 0 ≤ 𝑚 < 𝑛, we computes the ciphertext c by using

the public key e, corresponding to

𝑐 ≡ 𝑚𝑒 (𝑚𝑜𝑑 𝑛)

To recover the message, we can decrypt the encrypted message c using private key d

by computing

𝑐𝑑 ≡ (𝑚𝑒)𝑑 ≡ 𝑚 (𝑚𝑜𝑑 𝑛)

As we can see, the RSA encryption scheme requires heavy load of computation of

modular exponentiation that are computational expensive on CPU. Therefore, we

implemented Montgomery Multiplication and exponentiation on GPU to compute

multiple messages in parallel to save time.

RSA

Key
generation

Key
distribution

Encryption

Decryption

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 4

Besides, another public-key cryptosystem is Diffie-Hellman Key Exchange. It was one

of the first public-key protocols as originally conceptualised by Ralph Merkle and

named after Whitfield Diffie and Martin Hellman by (Diffie, W. & Hellman, M. 1976).

Diffie-Hellman Key Exchange involved arithmetic exponential to compute the key

which should be at least 2048 bits. Elliptic curve cryptography (ECC) is another

approach to public-key cryptography based on the algebraic structure of elliptic curves

over finite fields also implement Montgomery modular exponentiation as well.

Most algorithms in cryptography require expensive computation to perform encryption

and decryption multiple times. Therefore, a GPU large integer arithmetic library is

needed to support the operations.

1.2 Project Scope

The scope of project is to develop a library for multiple-precision integer arithmetic for

GPU which provide the operation for non-negative addition, subtraction, multiplication,

division, Montgomery exponentiation and multiplication in parallel technique to

optimise the usage of GPU. The performance of the library will then be analysed against

GMP library for CPU to compare the computational time between GPU and CPU. At

last, an optimised implementation of public key cryptography algorithm will be

designed based on the developed library.

1.3 Project Objective

Although there is existing libraries supporting the GPU, they are not open source.

Besides, the libraries are designed to support only either host side function call or device

side function call. Host side function call is when the CPU calls the function and it is

passed to GPU to compute and then the result is returned to the CPU whereas device

side function call is when the GPU calls the function in GPU, which is good for

developing algorithms that use multiple large integer arithmetic operations. The

diagram below illustrates the communication between host side and device side, from

(Nigerianewsday.com 2016).

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 5

Figure 1: Host side and device side

As the libraries implements such principle, there is overheads from the communication

between CPU and GPU which will slow down the computation speed. Therefore, a

further improvement will be added in this project to overcome this weakness.

1.4 Impact, significance and contribution

By developing the open source library, computation time can be reduced in large

number arithmetic by using GPUs, which will be useful and convenient in the field of

cryptography. The challenges we need to overcome which are to override the need of

overheads from communication between CPU and GPU, algorithms and code

optimisation to achieve the speed. Besides, a good manual memory management for

dynamic memory allocation is needed in the C programming language via a group of

functions in the C standard library, namely malloc and free.

1.5 Background Information

In this library, large integer is stored and represented in a system of radix 232. In short,

the large integer is represented in an array of unsigned integer, d0, d1, d2 … dn as d0b
n +

d1b
n-1 + … + dnb

0, where 0 ≤ di < 232. In such way, memory optimisation can be achieved

as we can fully optimise 4 bytes of memory given in each array index.

Therefore, different parallel algorithms can be applied to perform arithmetic operations

on GPU. This project will support arithmetic operations such as (modular) addition,

subtraction, multiplication, division and exponentiation, Montgomery multiplication

and exponentiation. By having the library equips with arithmetic operations, it enables

user to perform large integer calculation for the purpose of cryptography in a fast

manner.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 6

Chapter 2: Literature Review

General Purpose Computing on Graphics Processing Units is a relatively new field.

Therefore, the work on arbitrary-precision arithmetic mostly relies on CPUs. Several

libraries such as Library for Efficient Data types and Algorithms (LEDA and GNU

Multi-Precision library (GMP)) which explicitly target CPU hardware architectures is

established. Another established library is ARPREC which itself is based on MPFUN,

a multiple precision library for Fortran. Although most of them provide a huge set of

different data-type and operations, our goal is to accelerate the computation speed.

In 2010, Kaiyong Zhao and Xiaowen Chu created a multiple-precision library for

CUDA, the GPU Multiple-Precision library (GPUMP) in the paper (K. Zhao & X. Chu

2010). GPUMP performs its operation on integer types with arbitrary but fixed length.

The functionality of CPUMP includes operations such as multiple-precision

comparison, (modular) addition and subtraction, multiplication, division, Montgomery

reduction, Montgomery multiplication and exponentiation. GPUMP applies sequential

arithmetic algorithms in parallel. The weakness of the algorithms is when the number

grows beyond the predefined length limit, it fails and become inefficient for small

numbers in term of both computation time and memory usage. There is several

optimisation techniques they used to improve the performance. Firstly, constant value

with cache memory is used as most algorithms use the same data multiple times during

calculations, since GPU can adopt cache mechanism, which achieve high reading and

calculation efficiency. Besides, for temporary value, GPUMP uses shared memory on

algorithms that required temporary variables as local or global memory will cause long

reading latency. Their result comparing performance of GPU and CPU is as shown

below.

Figure 1: Multiple-precision Addition running on CPU & GPU(K. Zhao & X. Chu 2010)

0
5

10
15
20
25
30
35
40

30720 1920 3840 7680 15360

CPU Add(256) CPU Add(1024) CPU Add(512)
GPU Add(256) GPU Add(1024) GPU Add(2048)

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 7

Figure 2: Multiple-precision Subtraction running on CPU & GPU(K. Zhao & X. Chu 2010)

Figure 3: Multiple-precision Multiplication running on CPU & GPU(K. Zhao & X. Chu 2010)

Figure 4: Multiple-precision Division running on CPU & GPU (K. Zhao & X. Chu 2010)

Figure 5: Multiple-precision Montgomery Reduction running on GPU (K. Zhao & X. Chu 2010)

0

5

10

15

20

25

30

1920 3840 7680 15360 30720

CPU sub(512) CPU sub(1024) CPU sub(2048)
GPU sub(512) GPU sub(1024) GPU sub(2048)

0

1

2

3

4

5

3840 1920 30720 7680 15360

CPU Mul(512) CPU Mul(1024) CPU Mul(2048)
GPU Mul(512) GPU Mul(1024) GPU Mul(2048)

0

1

2

3

4

5

30720 1920 3840 7680 15360

CPU Div(512) CPU Div(1024) CPU Div(2048)
GPU Div(512) GPU Div(1024) GPU Div(2048)

0
2
4
6
8

10
12
14
16
18
20

35000 0 5000 10000 15000 20000 25000 30000

GPU Mont Reduction(512)
GPU Mont Reduction(1024)
GPU Mont Reduction(2048)

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 8

Figure 6: Multiple-precision Montgomery Multiplication running on GPU(K. Zhao & X. Chu 2010)

In 2011, Takatoshi Nakayama and Daisuke Takahashi created a multiple-precision

library for floating-point number types, the CUDA Multi-Precision library (CUMP) in

the paper (Takatoshi, N. & Daisuke, T. 2011). In this library, improvement is done by

supporting floating-point number types which was absent in GPU Multiple-Precision

library (GPUMP) by Kaiyong Zhao and Xiaowen Chu.

In 2015, Bernhard Langer implements Arbitrary-Precision Arithmetic on the GPU

using CUDA in the paper (Langer, B. 2016). He represented methods to perform

arbitrary-precision integer arithmetic in GPU by employing a two-level parallelisation

scheme. He minimises the code divergence within SIMD units while providing

effective load balancing across all units. Bernhard Langer implements school-method

multiplication which has a high complexity of O(n2) slows down the computation on

multiplication. To improve the complexity, Karatsuba Algorithm which has a

complexity of O(nlg 3) can be used. Results below show the comparison between timings

of code execution on the CPU against GPU with a test system of Intel Core i7 4700MQ

CPU and a NVIDIA K2100M GPU, focus on multiplication.

256 multiplications 1024 multiplications

8 16 24 32 8 16 24
 32

Figure 7:Integer length with σ=8 Figure 8: Integer length with σ=8 Figure 9: Integer length with σ=8

(Langer, B. 2016)

0
1
2
3
4
5
6
7
8

35000 0 5000 10000 15000 20000 25000 30000

GPU Mont Mul(512)
GPU Mont Mul(1024)
GPU Mont Mul(2048)

0

0 . 5

1

1 . 5

0

2

4

6

8 16 24 32
0

5

10

15

20

25

multiplications 4096

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 9

Chapter 3: Proposed Method / Approach

3.1 Design Specification

3.1.1 Methodologies and General Work Procedures

We followed the Assess, Parallelize, Optimize, Deploy(APOD) design cycle, which is

a cyclical process for our project with the goal to quickly tackle the sections of the code

that would be optimised by GPU acceleration.

Assess

After converting the code from CPU based to GPU based, we assessed and tracked the

sections of code that are responsible for the mass of the execution time. The bottlenecks

for parallelisation is evaluated and start to work on GPU acceleration.

Parallelise

We implemented the code with the aids of existing GPU-optimized library such as

Thrust, a C++ template library for CUDA based on the Standard Template Library

(STL). Thrust allows us to implement high performance parallel applications with

minimal programming effort through a high-level interface that is fully interoperable

with CUDA C. In most of the time, we make use of the host_vector, which is stored in

host memory and device_vector, which lives in GPU device memory. Like std::vector,

host_vector and device_vector are generic containers.

Optimise

After we completed code parallelization, we optimise the implementation on CUDA to

improve performance. We considered many way of possible optimisation such as

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 10

Coalesced Access to Global Memory, making use of parallel library, division modulo

operations with shift operations and so on.

Deploy

We took the partially parallelised implementation and carry it through to production

after each round of optimisation.

3.1.2 Tools to use

The core tool to be used is NVIDIA GTX 1070 graphic card which is supported by

CUDA. C/C++ compiler are needed which are readily provided by Microsoft Visual

Studio 2013 Professional running on the 64-bits Windows 10 operating system. Besides,

CUDA toolkit is needed to be installed on Microsoft Visual Studio to implement CUDA

programming.

3.1.3 Verification Plan

To prove the correctness of calculation, we compute the calculation with Wolfram

Language on Wolfram Development Platform which provided us free access in Open

Cloud.

3.2 System Design / Overview

3.2.1 Algorithms

There are different type of algorithms available to implement on arithmetic operation.

Unfortunately, not every algorithms can be parallelised and sometimes only some parts

of the algorithm can be parallelised. Parallel addition and subtraction have been

implemented. Before going into algorithms, the user-defined structure to represent the

large integer is introduced below.

class bigInt{

 vector<unsigned int> radixForm;

}

bigInt class consist of a vector of unsigned integer to store the radix form of the large

integer. Each index of the vector can store 32 bits of unsigned int from 0 up to

4,294,967,295 therefore the memory space of the vector can be fully optimised. When

the bigInt data type is declared with an integer value, the integer value will then push

into the vector in index zero, else if the value is in term of string (intended for value

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 11

that larger than 232) will be feed into an algorithm to convert the large number into radix

representation of 232, which will be discussed below.

Algorithm 1: Radix Representation of large integer in base 232

Input: An integer as a string S

Output: d0b
0 + d1b

1 + … + dnb
n

1: 𝑏𝑖𝑔𝐼𝑛𝑡 𝑣𝑎𝑙 = 0, 𝑝𝑜𝑤 = 0, 𝑏𝑎𝑠𝑒 = 10

2: for 𝑖 = 𝑆 − 1 𝑡𝑜 0 do

3: 𝑡 = 𝑠𝑖 − '0'

4: 𝑣𝑎𝑙 = 𝑣𝑎𝑙 + 𝑡

5: 𝑝𝑜𝑤 = 𝑝𝑜𝑤 ∗ 𝑏𝑎𝑠𝑒

6: end for

Parallel Addition

Given two array representing the large integer, parallel operation can be done by adding

the values in corresponding index from two array.

To illustrate the parallelism on addition on GPU architecture, we first assume that all

the values in the vector had been transfer into array of memory block of GPU. Each

thread in a block can be assigned some computation by using their thread ID. The

diagram below illustrates the parallel technique to perform addition.

Assume both arrays X and Y consisted of radix representation of X0b
0 + X1b

1 + … +

Xnb
n

X0 X1 X2 X3 X4 X5 X6 X7

+

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 1 2 3 4 5 6 7

threadIdx.x

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 12

Each thread performs a sub-addition in parallel and store the values into the memories

reserved along with their carries to transfer them back into CPU platform.

Synchronisation issues arise from carry propagation due to its sequential nature as the

addition of carry to the result may propagate a new carry in some condition. Therefore,

a carry propagation function is used to determine the number of carry to be added in

final output. We denote three distinctive values in the array with G for generation, P for

propagation and N for no carry. In each parallel operation, when two values are added

and they exceeded the radix, a generation G will be marked. If the value added is equal

to radix b-1, then P will be marked as it stands the chance to generate carry. Else N will

be marked. A generalized associative operation ⊕ are determined to perform the

propagation and is shown as table below.

Ci-1 Ci Ci = Ci ⊕ Ci-1

N N N

P N N

G N N

N G G

P G G

G G G

N P N

P P P

G P G

Table 1. Result for carry propagation function

It computes the resulting behaviour between pairs iteratively and give us the correct

carry output to add from the addition result from parallel algorithm. We can see that Ci

= P inherit the value from Ci-1, therefore P is the identity element.

Although the GPU threads enable addition to be performed in parallel, the carry

propagation function requires O(n) time to produce correct resulting behaviour.

Therefore not much improvement can be done on addition using parallel technique.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 13

Algorithm 2: Carry propagation (GPU kernel)

1: function ADD(d_lhs, d_rhs, d_carry)

2: 𝑖𝑑𝑥 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥

3: 𝑡𝑒𝑚𝑝𝐴𝑑𝑑 = 𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] + 𝑑_𝑟ℎ𝑠[𝑖𝑑𝑥]

4: 𝑑_𝑐𝑎𝑟𝑟𝑦[0] = −1

5: if 𝑡𝑒𝑚𝑝𝐴𝑑𝑑 = 232 − 1 then

6: 𝑑_𝑐𝑎𝑟𝑟𝑦[𝑖𝑑𝑥 + 1] = 0 //P

7: else if 𝑡𝑒𝑚𝑝𝐴𝑑𝑑 < 232 − 1 then

8: 𝑑_𝑐𝑎𝑟𝑟𝑦[𝑖𝑑𝑥 + 1] = −1 //N

9: else

10: 𝑑_𝑐𝑎𝑟𝑟𝑦[𝑖𝑑𝑥 + 1] = 1 //G

11: 𝑑_𝑐𝑎𝑟𝑟𝑦[𝑖𝑑𝑥] = 𝑡𝑒𝑚𝑝𝐴𝑑𝑑 𝒎𝒐𝒅 232

12: end if

13: end function

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 14

Parallel Subtraction

Given two array representing the large integer, parallel operation can be done by

subtracting the values in corresponding index from two array. To illustrate the

parallelism on subtraction on GPU architecture, we first assume that all the values in

the vector had been transfer into array of memory block of GPU. Each thread in a block

can be assigned some computation by using their thread ID. The diagram below

illustrates the parallel technique to perform subtraction

Assume both arrays X and Y consisted of radix representation of X0b
0 + X1b

1 + … +

Xnb
n

X0 X1 X2 X3 X4 X5 X6 X7

-

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 1 2 3 4 5 6 7

threadIdx.x

In each thread, e.g., threadIdx.x = 0 it performs a sub-addition X0-Y0, while threadIdx.x

= 1 performs X0 - Y0 and threadIdx.x = n performs Xn - Yn in parallel and store the

values into the memories reserved along with their carries to transfer them back into

CPU platform.

Similar to parallel addition, the synchronisation issues arise from “borrowed”

propagation due to its sequential nature as the subtraction of “borrowed” from result

may propagate a new “borrowed” operation in some condition. Therefore, a “borrowed”

propagation function is used to determine the number of borrows to be added in final

output. We denote three distinctive values in the array with G for generation, P for

propagation and N for no borrow. In each parallel operation, when two values are

subtracted and they exceeded below 0, a generation G will be marked. If the value

subtracted is equal to 0, then P will be marked as it stands the chance to generate borrow.

Else N will be marked. A generalized associative operation ⊕ are determined to

perform the propagation and is shown as table below.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 15

Ci-1 Ci Ci = Ci ⊕ Ci-1

N N N

P N N

G N N

N G G

P G G

G G G

N P N

P P P

G P G

Table 2.. Result for borrow propagation function

It computes the resulting behaviour between pairs iteratively and give us the correct

“borrowed” output to subtract from the subtraction result from parallel algorithm. We

can see that Ci = P inherit the value from Ci-1, therefore P is the identity element.

Although the GPU threads enable subtraction to be performed in parallel, the “borrowed”

propagation function requires O(n) time to produce correct resulting behaviour.

Therefore not much improvement can be done on subtraction using parallel technique.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 16

Algorithm 3: Borrow propagation (GPU kernel)

1: function SUB(d_lhs, d_rhs, d_carry, d_N)

2: 𝑖𝑑𝑥 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥

3: 𝑡𝑒𝑚𝑝𝑆𝑢𝑏 = 𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] − 𝑑_𝑟ℎ𝑠[𝑖𝑑𝑥]

4: if 𝑑_𝑁 − 1 ≠ 𝑖𝑑𝑥 then

5: if 𝑡𝑒𝑚𝑝𝑆𝑢𝑏 = 0 then

6: 𝑑_𝑏𝑜𝑟𝑟𝑜𝑤[𝑖𝑑𝑥 + 1] = 0 //P

7: 𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] = 0

8: else if 𝑡𝑒𝑚𝑝𝑆𝑢𝑏 < 0 then

9: 𝑑_𝑏𝑜𝑟𝑟𝑜𝑤[𝑖𝑑𝑥 + 1] = 1 //G

10: 𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] = 232 + 𝑡𝑒𝑚𝑝𝑆𝑢𝑏

11: else

12: 𝑑_𝑏𝑜𝑟𝑟𝑜𝑤[𝑖𝑑𝑥 + 1] = −1

13: 𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] = 𝑡𝑒𝑚𝑝𝑆𝑢𝑏

14: end if

15: else

16: 𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] = 𝑡𝑒𝑚𝑝𝑆𝑢𝑏

17: end if

18: end function

In final year project II, after the further study of parallel arithmetic algorithms, we

realised that parallel multiplication proposed by other researches did not well optimised

on the GPU as well as our implementation on parallel addition and subtraction. The

reason behind it is because of insufficient data elements to be run simultaneously in

parallel. This is a requirement to achieve satisfactory performance on CUDA. Besides,

for two large integer to perform arithmetic in GPU, we must transfer them between the

host and the device, which the process is very slow. Therefore, the parallel process is

unable to compensate the time taken for data transfer in such small amount of data

elements.

In the end, we moved our focus on bulk parallel computations on Montgomery

multiplication and exponentiation, which on each thread of GPU will handle one

sequential Montgomery multiplication. We launched as many threads as possible to

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 17

maximize the workload on GPU and determine the throughput of our result, the amount

of Montgomery multiplication and exponentiation computed per second.

Therefore, the implementation of bigInt class become the foundation to convert a large

integer in the form of string to an array of base 232 for Montgomery multiplication and

exponentiation. In order to perform the conversion, addition, subtraction and

multiplication are needed. However, for the sake of completeness, we implemented

division and some operator such as =, <, ≤, >, ≥, ≠ and so on to support daily operation.

The algorithms of minor operations that are not being used in radix form conversion

and Montgomery multiplication and exponentiation are not being mentioned here.

Algorithm 4: Multiplication

Input: Non-negative integers x and y with n + 1 radix b digits

Output: 𝑥 ∙ 𝑦 = (𝑧𝑛+𝑠+1𝑧𝑛+𝑠 … 𝑧1𝑧0)𝑏

1: for 𝑖 = 0 𝑡𝑜 𝑛 + 𝑠 + 1 do

2: 𝑧𝑖 = 0

3: end for

4: for 𝑖 = 0 𝑡𝑜 𝑠 do

5: 𝑐 = 0

6: for 𝑗 = 0 𝑡𝑜 𝑛 do

7: (𝑢𝑣)𝑏 = 𝑧𝑖+𝑗 + 𝑥𝑗 ∙ 𝑦𝑖 + 𝑐

8: 𝑧𝑖+𝑗 = 𝑣

9: 𝑐 = 𝑢

10: end for

11: 𝑧𝑖+𝑗+1 = 𝑢

12: end for

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 18

Montgomery Multiplication & Exponentiation

RSA and Diffie-Hellman key exchange scheme required the computation of modular

exponentiation which is computational expensive. The Montgomery multiplication

algorithm is used to speed up the modular multiplications needed during exponentiation

computation.

𝑀𝑜𝑛𝑃𝑟𝑜(𝑎, 𝑏) = 𝑎 ∙ 𝑏 ∙ 𝑟−1 (𝑚𝑜𝑑 𝑛)

Let the modulus n be a k-bit integer such that 2𝑘−1 ≤ 𝑛 ≤ 2𝑘 and let r be 2𝑘 where

gcd(𝑟, 𝑛) = 1 . Given two n-residues �̅� and �̅� where �̅� = 𝑎 ∙ 𝑟 𝑚𝑜𝑑 𝑛 and �̅� = 𝑏 ∙

𝑟 𝑚𝑜𝑑 𝑛, the Montgomery product is defined as the n-residue

𝑐̅ = �̅� ∙ �̅� ∙ 𝑟−1 (𝑚𝑜𝑑 𝑛)

 = 𝑎 ∙ 𝑟 ∙ 𝑏 ∙ 𝑟 ∙ 𝑟−1 (𝑚𝑜𝑑 𝑛)

= 𝑐 ∙ 𝑟 (𝑚𝑜𝑑 𝑛)

Where 𝑟−1 is the inverse of r modulo n with the property 𝑟−1 ∙ 𝑟 = 1 (𝑚𝑜𝑑 𝑛)

To describe the Montgomery reduction algorithm, an additional quantity 𝑛′ is

introduced with the property 𝑟−1 ∙ 𝑟 − 𝑛 ∙ 𝑛′ = 1

Algorithm 5: General Montgomery Multiplication

1: function 𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, �̅�)

2: 𝑡 = �̅� ∙ �̅�

3: 𝑢 = (𝑡 + (𝑡 ∙ 𝑛′𝑚𝑜𝑑 𝑟) ∙ 𝑛)/𝑟

4: if 𝑢 ≥ 𝑛 then

5: return 𝑢 − 𝑛

6: else

7: return 𝑢

8: end if

9: end function

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 19

Multiplication that involving modulo r and division by r can be computed quickly since

r is a power of 2. Thus, the Montgomery multiplication is faster than common

computation of 𝑎 ∙ 𝑏 𝑚𝑜𝑑 𝑛 which requires division by n. However, Montgomery

Multiplication is more effective when several modular multiplication with same

modular are needed such as to compute modular exponentiation since the conversion

to and from between ordinary residue and n-residue and computation of 𝑛′ are time

consuming.

We implemented Montgomery Exponentiation with binary method. Let j be the number

of bits in the exponent e. We can compute 𝑥 = 𝑎𝑒 𝑚𝑜𝑑 𝑛 with the complexity of 𝑂(𝑗)

to the Montgomery Multiplication.

Algorithm 6: Montgomery Exponentiation

1: function 𝑀𝑜𝑛𝐸𝑥𝑝(𝑎, 𝑒, 𝑛)

2: 𝑎 = 𝑎 ∙ 𝑟 𝑚𝑜𝑑 𝑛

3: 𝑥 = 1 ∙ 𝑟 𝑚𝑜𝑑 𝑛

4: for 𝑖 = 𝑗 − 1 𝑡𝑜 0 do

5: �̅� = 𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, �̅�)

6: if 𝑒𝑖 = 1 then

7: �̅� = 𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, �̅�)

8: end if

9: end for

10: return 𝑥 = 𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, 1)

11: end function

In line 10, we converted �̅� back to x with the property of Montgomery algorithm which

�̅� ∙ 1 ∙ 𝑟−1 = 𝑥 ∙ 𝑟 ∙ 𝑟−1 = 𝑥 𝑚𝑜𝑑 𝑛.

There are different ways to perform Montgomery Multiplication. In this project, we

implemented Separated Operand Scanning (SOS) method and Coarsely Integrated

Operand Scanning (CIOS) method. In short, SOS method separated multiplication and

reduction steps where CIOS integrated them.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 20

Separated Operand Scanning (SOS) Method

Algorithm 7: SOS Montgomery Multiplication

1: function 𝑠𝑜𝑠𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, �̅�)

2: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do

3: 𝑐 = 0

4: for 𝑗 = 0 𝑡𝑜 𝑠 − 1 do

5: (𝐶, 𝑆) = 𝑡[𝑖 + 𝑗] + 𝑎[𝑗] ∙ 𝑏[𝑖] + 𝑐

6: 𝑡[𝑖 + 𝑗] = 𝑆

7: 𝑡[𝑖 + 𝑠] = 𝐶

8: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do

9: 𝐶 = 0

10: 𝑚 = 𝑡[𝑖] ∙ 𝑛′[0]𝑚𝑜𝑑 232

11: for 𝑗 = 0 𝑡𝑜 𝑠 − 1 do

12: (𝐶, 𝑆) = 𝑡[𝑖 + 𝑗] + 𝑚 ∙ 𝑛[𝑗] + 𝑐

13: 𝑡[𝑖 + 𝑗] = 𝑆

14: 𝐴𝐷𝐷(𝑡[𝑖 + 𝑠], 𝐶)

15: for 𝑗 = 0 𝑡𝑜 𝑠 do

16: 𝑢[𝑗] = 𝑡[𝑗 + 𝑠]

17: 𝐵 = 0

18: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do

19: (𝐵, 𝐷) = 𝑢[𝑖] − 𝑛[𝑖] − 𝐵

20: 𝑡[𝑖] = 𝐷

21: (𝐵, 𝐷) = 𝑢[𝑠] − 𝐵

22: 𝑡[𝑠] = 𝐷

23: if 𝐵 = 0 then

24: return 𝑡[0], 𝑡[1], … , 𝑡[𝑠 − 1]

25: else

26: return 𝑢[0], 𝑢[1], … , 𝑢[𝑠 − 1]

27: end function

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 21

In algorithm 7 above, from line 2 to line 7 performed multiplication on 𝑡 = �̅� ∙ �̅�.

From line 8 to line 16, this section performed 𝑢 = (𝑡 + (𝑡 ∙ 𝑛′𝑚𝑜𝑑 𝑟) ∙ 𝑛)/𝑟. In the

last step line 17 to line 26, the subtraction is then performed to reduce u if necessary.

As SOS method separated the multiplication from reduction, it is obviously slower

than CIOS method that integrated both multiplication and reduction together.

However, there is one optimisation that we can perform in the part of multiplication

𝑎 ∙ 𝑏 in SOS method. When a is equal to b, we can optimise the Montgomery

multiplication algorithm for squaring, which is useful on line 5 in Algorithm 6. The

optimisation of squaring is achieved because almost half of the single-precision

multiplication can be skipped since 𝑎𝑖 ∙ 𝑎𝑗 = 𝑎𝑗 ∙ 𝑎𝑖. Diagram below illustration a

simple example.

 1 2 3

𝑋 1 2 3

 3 ∙ 1 3 ∙ 2 3 ∙ 3

 2 ∙ 1 2 ∙ 2 2 ∙ 3

1 ∙ 1 1 ∙ 2 1 ∙ 3

The following pseudocode replaces the first part of the Algorithm 7 in order to

perform the optimised Montgomery squaring.

1: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do

2: (𝐶, 𝑆) = 𝑡[𝑖 + 𝑖] + 𝑎[𝑖] ∙ 𝑎[𝑖]

3: for 𝑖 = 𝑗 + 1 𝑡𝑜 𝑠 − 1 do

4: (𝐶, 𝑆) = 𝑡[𝑖 + 𝑗] + 2 ∙ 𝑎[𝑗] ∙ 𝑎[𝑖] + 𝐶

5: 𝑡[𝑖 + 𝑗] = 𝑆

6: 𝑡[𝑖 + 𝑠] = 𝐶

However, the value 2 ∙ 𝑎[𝑗] ∙ 𝑎[𝑖] may cause overflow to occur which may exceed

264, the memory limit of variable in computer nowadays. Therefore, we rewrite the

snippet above with 3 steps, 𝑎[𝑗] ∙ 𝑎[𝑖] terms are added first, the result is then doubled

and then 𝑎[𝑖] ∙ 𝑎[𝑖] are added in.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 22

1: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do

2: 𝐶 = 0

3: for 𝑗 = 0 𝑡𝑜 𝑠 − 1 do

4: (𝐶, 𝑆) = 𝑎[𝑗] ∙ 𝑎[𝑖]

5: 𝑡[𝑖 + 𝑗] = 𝑆

6: 𝑡[𝑠 + 𝑖] = 𝐶

7: 𝐶 = 0

8: for 𝑖 = 0 𝑡𝑜 2 ∙ 𝑠 do

9: (𝐶, 𝑆) = 𝑡[𝑖] ∙ 2 + 𝐶

10: 𝑡[𝑖] = 𝑆

11: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do

12: (𝐶, 𝑆) = 𝑡[𝑖 + 𝑖] + 𝑎[𝑖] ∙ 𝑎[𝑖]

13: 𝑡[𝑖 + 𝑖] = 𝑆

14: for 𝑗 = 𝑖 + 1 𝑡𝑜 𝑠 do

15: (𝐶, 𝑆) = 𝑡[𝑖 + 𝑗] + 𝐶

16: 𝑡[𝑖 + 𝑗] = 𝑆

17: 𝑡[𝑠 + 𝑖] = 𝑡[𝑠 + 𝑖] + 𝐶

18: 𝐶 = 0

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 23

Coarsely Integrated Operand Scanning (CIOS) Method

Algorithm 8: CIOS Montgomery Multiplication

1: function 𝑐𝑖𝑜𝑠𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, �̅�)

2: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do

3: 𝐶 = 0

4: for 𝑗 = 0 𝑡𝑜 𝑠 − 1 do

5: (𝐶, 𝑆) = 𝑡[𝑗] + 𝑎[𝑗] ∙ 𝑏[𝑖] + 𝐶

6: 𝑡[𝑗] = 𝑆

7: (𝐶, 𝑆) = 𝑡[𝑠] + 𝐶

8: 𝑡[𝑠] = 𝑆

9: 𝑡[𝑠 + 1] = 𝐶

10: 𝑚 = 𝑡[0] ∙ 𝑛′[0] 𝑚𝑜𝑑 232

11: (𝐶, 𝑆) = 𝑡[0] + 𝑚 ∙ 𝑛[0]

12: for 𝑗 = 1 𝑡𝑜 𝑠 − 1 do

13: (𝐶, 𝑆) = 𝑡[𝑗] + 𝑚 ∙ 𝑛[𝑗] + 𝐶

14: 𝑡[𝑗 − 1] = 𝑆

15: (𝐶, 𝑆) = 𝑡[𝑠] + 𝐶

16: 𝑡[𝑠 − 1] = 𝑆

17: 𝑡[𝑠] = 𝑡[𝑠 + 1] + 𝐶

18: for 𝑗 = 0 𝑡𝑜 𝑠 − 1 do

19: 𝑢[𝑗] = 𝑡[𝑗]

20: 𝐵 = 0

21: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do

22: (𝐵, 𝐷) = 𝑢[𝑖] − 𝑛[𝑖] − 𝐵

23: 𝑡[𝑖] = 𝐷

24: (𝐵, 𝐷) = 𝑢[𝑠] − 𝐵

25: 𝑡[𝑠] = 𝐷

26: if 𝐵 = 0 then return 𝑡[0], 𝑡[1], … , 𝑡[𝑠 − 1]

27: else return 𝑢[0], 𝑢[1], … , 𝑢[𝑠 − 1]

28: end function

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 24

Method Multiplications Additions Reads Writes Space

SOS 2𝑠2 + 𝑠 4𝑠2 + 4𝑠

+ 2

6𝑠2 + 7𝑠 + 3 2𝑠2 + 6𝑠

+ 2

2𝑠 + 2

CIOS 2𝑠2 + 𝑠 4𝑠2 + 4𝑠

+ 2

6𝑠2 + 7𝑠 + 2 6𝑠2 + 5𝑠

+ 1

𝑠 + 3

From the table above, we can see that the memory reduction for CIOS method is a

significant improvement over the SOS method. Besides, the integration in this method

is “coarse” because of the alternation between iterations of the outer loop.

Therefore, we can obtain the optimum computation speed on Montgomery

Exponentiation by integrating squaring optimised’ SOS method and CIOS method.

Algorithm 9: Montgomery Exponentiation

1: function 𝑀𝑜𝑛𝐸𝑥𝑝(𝑎, 𝑒, 𝑛)

2: 𝑎 = 𝑎 ∙ 𝑟 𝑚𝑜𝑑 𝑛

3: 𝑥 = 1 ∙ 𝑟 𝑚𝑜𝑑 𝑛

4: for 𝑖 = 𝑗 − 1 𝑡𝑜 0 do

5: �̅� = 𝑀𝑜𝑛𝑃𝑟𝑜𝑆𝑂𝑆(�̅�, �̅�)

6: if 𝑒𝑖 = 1 then

7: �̅� = 𝑀𝑜𝑛𝑃𝑟𝑜𝐶𝐼𝑂𝑆(�̅�, �̅�)

8: end if

9: end for

10: return 𝑥 = 𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, 1)

11: end function

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 25

3.2.2 CUDA

Compute Unified Device Architecture (CUDA) is NVIDIA’s GPU architecture

featured in the GPU cards, for general purpose computing with GPUs. CUDE C/C++

is an extension of C/C++ programming language for general purpose computation.

CUDA contains few remarkable parts to be explored which is the memory hierarchy

and thread hierarchy (NVIDIA CUDA Programming Guide 2012).

3.2.2.1 Thread Hierarchy

Figure 1: Grid of Thread Blocks

To effectively utilise the full computational capability of the graphics card on the

system, CUDA architecture separates it into grids, blocks and threads in a hierarchical

structure as shown in Figure 7 above from (NVIDIA CUDA Programming Guide 2012).

Since there are a number of threads in one block and a number of blocks in one grid

and a number of grids in one GPU, the parallelism that is achieved using such a

hierarchical architecture is large.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 26

 The Grid. A grid is a group of threads running the same kernel which are not

synchronised.

 The Block. Grids are composed of blocks. A built in variable "blockIdx" can

be used to identify the current block. Block IDs can be organised into a one-

dimensional, two-dimensional, or three-dimensional index accessible within the

kernel through the built-in blockDim variable. Each block is a logical unit

containing a number of coordinating threads, a certain amount of shared

memory.

 The Thread. Blocks are composed of threads. Threads within a block execute

same instruction of codes but possibly of different data at the same time.

Threads within a block can cooperate by sharing data through some shared

memory which is expected to be a low-latency memory near each processor

core and by synchronising their execution to coordinate memory accesses.

Thread ID can be determined by “threadIdx.x”.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 27

3.2.2.2 Memory Hierarchy

Figure 2: Memory Hierarchy

CUDA threads which has private local memory may access data from various memory

spaces during executions as illustrated by Figure 8 from (NVIDIA CUDA

Programming Guide 2012). From Figure 8, each thread has per-thread local memory

and each thread block has per-block shared memory which with the same lifetime as

the block. The global memory is accessible by all threads in the grids.

 Global memory. A read and write memory which is slow and uncached.

 Texture memory. A read-only memory. Offers different addressing modes, as

well as data filtering for some specific data formats

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 28

 Constant memory. Store constants and kernel arguments. Slow but with cache.

 Local memory. It is generally used for whatever does not fit into registers. Slow

and uncached but allows automatic fuse reads and writes.

 Shared memory. An extremely fast on-chip memory with lower capacity(16-

64Kbytes) which shares memory across a unit block that accessible by threads

in same block of memory. Besides, kernel function parameters are stored here.

3.3 Implementation issues and challenges

As Computer Science student, we often think on the algorithm analysis and design in

order to speed up the computation. However in this library development, parallel

techniques are required and we have to realise that not every algorithm can be done in

parallel manner. Moreover, a low level C programming language must be used to

achieve good manual memory management in order to optimise the code.

3.4 Timeline

At the starting of this semester, the prototype of library coded in C++ which computes

using CPU sequentially had been done which included addition ,subtraction,

multiplication and division. In this semester, GPU programming have been learnt and

part of the arithmetic operation have been replaced by CUDA codes which computes

in parallel using GPU such as addition and subtraction. At the end of semester, parallel

multiplication and division are expected to be done. In the next semester, Montgomery

exponentiation and multiplication, greatest common divisor and code optimization will

be explored to ensure that the library achieve an acceptable improvement in term of

memory and speed.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 29

No Task Duration

(Days)

Week

1

-

4

5 6 7 8 9 10

+

1 Study GPU programming

concepts and practices

 28

2 Explore implementation on

GPU programming with C

language on the library

 3

3 Study and implement parallel

technique on addition

 3

4 Study and implement parallel

technique on subtraction

 1

5 Study and implement

sequential/parallel

Montgomery

Multiplication/Exponentiation/

Reduction

14

6 Study and identify possibility

of implementing parallel

technique on division

 14

Table 1: Gantt chart for FYP1

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 30

No Task Duration

(Days)

Week

1

-

4

5 6 7 8 9 10

+

1 Study Separated Operand

Scanning (SOS) method&

Coarsely Integrated Operand

Scanning (CIOS) method for

Montgomery Multiplication

 28

2 Implement SOS & CIOS

method on CPU

 7

3 Implement SOS & CIOS

method on GPU

 7

4 Implement Coalesced Access

structure to improve

performance

7

5 Implement Montgomery

Exponentiation with binary

exponentiation method

 7

6 Improve SOS multiplication on

squaring to reduce

computation on multiplication

7

7 Continue to find way to

optimise the performance and

calculate the throughput on

Montgomery Multiplication

and Exponentiation

 -

Table 2: Gantt chart for FYP2

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 31

Chapter 4: Implementation & Optimisation

To obtain the best performance from NVIDIA CUDA GPU, we explored on CUDA C

Best Practice Guide from CUDA Toolkit Documentation to determine any possible

optimisation that can be considered.

4.1 Parallel library

The most straight forward approach to parallelising our system is to make use of

existing libraries that take edge of parallel architecture for the sake of us. We used

Thrust library from CUDA toolkit which is a parallel C++ template library similar to

the C++ Standard Template Library. Thrust provides two vector containers, host_vector

and device_vector that are like vector in C++ STL. We make use of " = " operator to

copy a host_vector to a device_vector (or vice versa) so we can avoid low level

declaration like cudaMemcpy to allow maintainable and clean code. By using

host_vector and device_vector, we used syntax like H.begin() and H.end() as iterator.

Besides, we also used insert and push_back function during data processing.

4.2 Performance Metrics

When we attempt to optimise and implement CUDA code, it is compulsory to know

how to measure performance accurately. We timed CUDA calls and kernel executions

with CPU timer. Since CUDA API functions are asynchronous which they return

control back to the calling CPU thread prior to complete their work, by calling

cudaDeviceSynchronize() immediately before starting and stopping the CPU timer, we

are able to synchronize the CPU thread with the GPU.

4.3 Coalesced Access to Global Memory

Global memory loads and stores by threads of a warp are coalesced by the device into

as few as one transaction when certain access requirements are met.

For example, suppose the threads of a warp access adjacent 128-byte words (e.g.,

adjacent bigInt values) by a single 128B L1 cache line. Such a pattern is shown below.

This way of organising data is called array of structure (AoS)

A0A1A2A3A4…A31 B0B1B2B3B4…B31 C0C1C2C3C4…C31 D0D1D2D3D4…D31

0 31 32 63 64 95 96 128

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 32

From the pattern above, 4 coalesced transactions will service that memory access. In

our actual implementation, our algorithm accesses the word by using one index so that

we can access the other neighbour data with index+i. However, the pattern above does

not optimise the data access well as we will only need 4 starting word, A0, B0, C0 and

D0 to reach other data. Therefore, we restructured our data to allign the access pattern

properly below. This way of organising data is called structure of arrays (SoA).

A0B0C0D0… A1B1C1D1… A2B2C2D2… A3B3C3D3…

0 31 32 63 64 95 96 128

With the structure above, one single coalesced transaction is sufficient to service that

memory access hence speed up global memory read operation.

To perform the conversion, suppose we have an array of multiple bigInt data which

depends on thread size and block size (Concatenation of data depends on 𝑡ℎ𝑟𝑒𝑎𝑑 𝑠𝑖𝑧𝑒 ∗

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘) A0A1A2A3A4…A31 B0B1B2B3B4…B31 C0C1C2C3C4…C31,

1: thrust::device_vector<unsigned int> deviceA

2: for 𝑖 = 0 𝑡𝑜 32 do

3: for 𝑗 = 0 𝑡𝑜 1024 ∗ 32 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 do

4: 𝑑𝑒𝑣𝑖𝑐𝑒𝐴. 𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘(𝐴[𝑗 + 𝑖])

5: 𝑗 = 𝑗 + 32

After the conversion, the structure in the array is reordered to become A0B0C0D0…

A1B1C1D1… A2B2C2D2… A3B3C3D3… and ready to transfer into kernel function as

parameter. Storing the data in SoA make full use of GPU memory bandwidth since

there is no interleaving of elements of the same field, the SoA layout on the GPU

provides coalesced memory access and can achieve more efficient global memory

utilisation.

4.4 Instruction Optimization

Division and modulo operations are needed in Montgomery multiplication. In computer,

integer division and modulo operations are costly and should be stay away from.

Therefore, we replaced them with bitwise operations since our bigInt is represented in

power of 232. The shift operations can be used to avoid expensive division and modulo

calculations:

𝑎 𝑚𝑜𝑑 232 = 𝑎 % 232 = 𝑎 & 4294967295

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 33

𝑎 ÷ 232 = 𝑎 ≫ 32

In Montgomery exponentiation, to check if j-th item of the set is on, we used the bitwise

AND operation 𝑇 = 𝑆 & (1 ≪ 𝑗), which make it a much more efficient choice.

4.5 Thread and Block size

To perform Montgomery Multiplication in GPU, we performed kernel call providing

the number of blocks in each dimension and threads per block in each dimension. For

instance, MontMul<<<B,T>>>(d_a1, d_b1, d_ans, d_n, d_n1, d_s). In our

implementation, we uses a 1-D structure which each block will contains the maximum

threads available by CUDA, which is 1024 threads. Each thread will handle one

computation of Montgomery multiplication. In each block, 1024 Montgomery

multiplication will be computed. Therefore, to compute more than 1024 Montgomery

multiplication, user have to create more threads by declaring the block size to the kernel

by passing it through MonPro() function in CPU. In short, a kernel call of block size of

N can compute 𝑁 ∗ 1024 Montgomery multiplication in parallel.

CUDA Built-In Variables

 blockIdx.x, blockIdx.y, blockIdx.z are built-in variable that returns the block ID

in the x-axis, y-axis and z-axis of the block that is executing the given block of

code. In our implementation, since we are using a 1D dimensional block, we

needed only the x-axis by using blockIdx.x.

 threadIdx.x, threadIdx.y, threadIdx.z are built-in variable that returns the thread

ID in the the x-axis, y-axis and z-axis of the thread that is being executed by this

stream processor in this particular block. In our implementation, since we are

using a 1D dimensional thread, we needed only the x-axis by using threadIdx.x.

 blockDim.x, blockDim.y, blockDim.z are built-in variables that return the

number of threads in a block in the x-axis, y-axis and z-axis.

In our implementation, the full global thread ID in x-dimension can be computed by:

𝑖𝑑𝑥 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 34

For instance, with a block dimension of 8, the Global Thread ID represents:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

threadIdx.x threadIdx.x threadIdx.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2

Since we rearrange the structure in the array given to kernel call, during first step which

is responsible for the multiplication in Montgomery multiplication algorithm, code

below will do the access the correct index for it. *(𝑑_𝑠 = 32 in our implementation)

1: for 𝑖 = 0 𝑡𝑜 𝑑_𝑠 do

2: 𝐶 = 0

3: for 𝑗 = 0 𝑡𝑜 𝑑_𝑠 do

4: (𝐶, 𝑆) = 𝑡[𝑖 + 𝑗] + 𝐶 + 𝑎[𝑗 ∗ 1024 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 + 𝑖𝑑𝑥] + 𝑏[𝑖 ∗

1024 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 + 𝑖𝑑𝑥]

5: 𝑡[𝑖 + 𝑗] = 𝑆

6: 𝑡[𝑖 + 𝑑_𝑠] = 𝑐𝑎𝑟𝑟𝑦

As shown above, 𝑗 ∗ 1024 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 will access the correct index as it will “jump”

from group 0 to group 1 to so on, and then perform shifting with idx which is our global

thread ID which tell GPU which thread it is dealing with. Suppose we have a block size

of one below:

0 Group 0 1024 Group 1 2048 Group 2

𝑖 ∗ 1024 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 + 𝑖𝑑𝑥

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 35

After the computation in Montgomery Multiplication, the GPU will have to store the

result in an array, say, d_ans. Montgomery exponentiation will perform multiple

Montgomery multiplication, hence we decided to keep the answer in similar structure

for Coalesced Access. To do so, the code below perform the restructuring during the

data copying process.

1: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0

2: for 𝑖 = 0 𝑡𝑜 𝑑_𝑠 do

3: 𝑑_𝑎𝑛𝑠[𝑖 ∗ 1024 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 + 𝑖𝑑𝑥] = 𝑡[𝑐𝑜𝑢𝑛𝑡𝑒𝑟]

4: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

4.6 Shared Memory

Shared memory are physically closer to the Streaming multiprocessors than both the

L2 cache and global memory. Therefore, shared memory is roughly 20 to 30 times

lower than global memory, and a bandwidth with about 10 times higher. Shared

memory is useful as an intra-block thread communication channel. In our

implementation, we realised the fact that the constant variable n and n’ are constantly

used by all multiplication in the kernel. Hence, we replaced global memory accesses by

shared memory in both variables.

__shared__ unsigned int shared_n[32], shared_n1[32];
for (int i = 0; i < d_s; i++){
 shared_n[i] = d_n._array[i];
 shared_n1[i] = d_n1._array[i];
}
__syncthreads();

4.7 Clean Code

Although the usage of Thrust library can avoid low level declaration like cudaMemcpy

to allow maintainable and clean code, it is purely a host side abstraction. It is forbidden

to be used inside kernel. Therefore, we created a template outside the bigInt class to

pass these device vector into kernel.

template <typename T>
struct KernelArray
{
 T* _array;
 int _size;

 // constructor allows for implicit conversion
 KernelArray(thrust::device_vector<T>& dVec) {
 _array = thrust::raw_pointer_cast(&dVec[0]);
 _size = (int)dVec.size();
 }

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 36

};

With this template, we can declare device vector as KernelArray in our parameter in

kernel function as below. For instance:

__global__void SOS(KernelArray<unsigned int>d_a1, KernelArray<unsigned

int>d_b1, KernelArray<unsigned int>d_ans, KernelArray<unsigned int>d_n,

KernelArray<unsigned int>d_n1, int d_s, int blkSize)

To access the element inside array of KernelArray, for example d_a1 using _array:

d_a1._array[i]

To determine the size of the array of KernelArray, using _size:

d_a1._size

4.8 Data usage

In our implementation, a bigInt array stores 32 words of large integer representation,

which each word take memory size of 32 bits therefore 32 𝑏𝑖𝑡𝑠 ∗ 32 = 1024 𝑏𝑖𝑡𝑠. In

Montgomery Multiplication, each thread will have a multiplicand and multiplier which

occupied memory of 1024 𝑏𝑖𝑡𝑠 ∗ 2 = 2048 𝑏𝑖𝑡𝑠. Since we launched at least 1024

threads, there is 1024 ∗ 2048 𝑏𝑖𝑡𝑠 = 2097152 𝑏𝑖𝑡𝑠. At optimum block size of

approximately 10, we will have 2097152 𝑏𝑖𝑡𝑠 ∗ 10 = 20971520 𝑏𝑖𝑡𝑠 =

262144 𝑏𝑦𝑡𝑒𝑠 = 2.62144 𝑀𝑒𝑔𝑎𝑏𝑦𝑡𝑒𝑠 of memory space.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 37

4.9 Flow chart for implementation

The flow chart below shows the process of how user can compute the Montgomery

Multiplication. For Montgomery multiplication, our library needed few parameters

such as multiplicand, multiplier, n, n’, R, 𝑅−1 and block size.

The flow chart below shows the process of how user can compute the Montgomery

Exponentiation. For Montgomery exponentiation, our library needed few parameters

such as base, exponent, n, n’, R, 𝑅−1 and block size.

Initialise data required
CPU function takes in
data as parameters

CPU function
reconstruct the data of

multiplicand and
multiplier

Kernel takes data and
perform Montgomery
Multiplication using

CIOS method

Result is stored in
device memory

Initialise data required
CPU function takes in data

as parameters

CPU function reconstruct
the data of base and

exponent

CPU function performs
binary exponentiation

If the bit of the exponent
is on, call kernel of SOS

Montgomery
Multiplication method,
else call CIOS method

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 38

4.8 Code Snippet

SOS Method for squaring (Algorithm 7)

__global__ void sosV3(KernelArray<unsigned int>d_a1, KernelArray<unsigned
int>d_ans, KernelArray<unsigned int>d_n, KernelArray<unsigned int>d_n1, int
d_s, int blkSize){
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 unsigned int t[65] = { 0 };

 unsigned long long tempProduct;
 unsigned long long carry = 0;
 __shared__ unsigned int shared_n[32], shared_n1[32], shared_s;
 shared_s = d_s;
 for (int i = 0; i < shared_s; i++){
 shared_n[i] = d_n._array[i];
 shared_n1[i] = d_n1._array[i];
 }
 __syncthreads();

 ////////////Optimization for squaring multiplication////////////
 for (int i = 0; i < shared_s; i++){
 for (int j = i + 1; j < shared_s; j++){
 tempProduct = ((unsigned long long)d_a1._array[j * 1024 *
blkSize + idx] * (unsigned long long)d_a1._array[i * 1024 * blkSize + idx]) +
(unsigned long long)t[i + j] + carry;
 t[i + j] = tempProduct & 4294967295;
 carry = tempProduct >> 32;
 }
 t[shared_s + i] = carry;
 carry = 0;
 }

 for (int i = 0; i < 65; i++){
 tempProduct = (unsigned long long)t[i] * 2 + carry;
 t[i] = tempProduct & 4294967295;
 carry = tempProduct >> 32;
 }

 for (int i = 0; i < shared_s; i++){
 tempProduct = (unsigned long long)t[i + i] + ((unsigned long
long)d_a1._array[i * 1024 * blkSize + idx] * (unsigned long long)d_a1._array[i
* 1024 * blkSize + idx]);
 t[i + i] = tempProduct & 4294967295;
 carry = tempProduct >> 32;
 for (int j = i + 1; j < shared_s; j++){
 tempProduct = (unsigned long long)t[i + j] + carry;
 t[i + j] = tempProduct & 4294967295;
 carry = tempProduct >> 32;
 }
 t[shared_s + i] += carry;
 carry = 0;
 }
 //

 for (int i = 0; i < shared_s; i++){
 unsigned long long c = 0;
 unsigned long long m = ((unsigned long long)t[i] * (unsigned long
long)shared_n1[0]) & 4294967295;

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 39

 for (int j = 0; j < shared_s; j++){
 unsigned long long tempProduct = (unsigned long long)t[i +
j] + m*(unsigned long long)shared_n[j] + c;
 c = tempProduct >> 32;
 t[i + j] = tempProduct & 4294967295;
 }
 //ADD(t[i+s], C)
 int counter = i;
 while (c != 0){
 unsigned long long temp = (unsigned long long)t[counter +
shared_s] + c;
 c = temp >> 32;
 t[counter + shared_s] = temp & 4294967295;
 counter++;
 }
 }
 unsigned int u[33];
 for (int j = 0; j < shared_s + 1; j++){
 u[j] = t[j + shared_s];
 }

 int b = 0;
 long long sub;
 for (int i = 0; i < shared_s; i++){
 sub = (long long)u[i] - shared_n[i] - b;
 if (sub < 0){
 t[i] = sub + 4294967296;
 b = 1;
 }
 else{
 t[i] = sub;
 b = 0;
 }
 }
 sub = (long long)u[shared_s] - b;
 u[shared_s] = sub;

 if (sub >= 0){
 int counter = 0;
 for (int i = 0; i < 32; i++){
 d_ans._array[i * 1024 * blkSize + idx] = t[counter++];
 }
 }
 else{
 int counter = 0;
 for (int i = 0; i < 32; i++){
 d_ans._array[i * 1024 * blkSize + idx] = u[counter++];
 }
 }
}

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 40

CIOS Method for squaring (Algorithm 8)

__global__ void ciosV2(KernelArray<unsigned int>d_a1, KernelArray<unsigned
int>d_b1, KernelArray<unsigned int>d_ans, KernelArray<unsigned int>d_n,
KernelArray<unsigned int>d_n1, int d_s, int blkSize){
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 unsigned int t[33] = { 0 };
 unsigned long long temp;
 __shared__ unsigned int shared_n[32], shared_n1[32], shared_s;
 shared_s = d_s;
 for (int i = 0; i < shared_s; i++){
 shared_n[i] = d_n._array[i];
 shared_n1[i] = d_n1._array[i];
 }
 __syncthreads();

 for (int i = 0; i < shared_s; i++){
 unsigned long long c = 0;
 for (int j = 0; j < shared_s; j++){
 temp = t[j] + (unsigned long long)d_a1._array[j * (1024 *
blkSize) + idx] * (unsigned long long)d_b1._array[i * (1024 * blkSize) + idx] +
c;
 t[j] = temp & 4294967295;
 c = temp >> 32;
 }
 temp = (unsigned long long)t[shared_s] + c;
 t[shared_s] = temp & 4294967295;
 t[shared_s + 1] = temp >> 32;

 unsigned long long m = ((unsigned long long)t[0] * (unsigned long
long)shared_n1[0]) & 4294967295;
 temp = (unsigned long long)t[0] + m*(unsigned long
long)shared_n[0];
 c = temp >> 32;
 for (int j = 1; j < shared_s; j++){
 temp = (unsigned long long)t[j] + m*(unsigned long
long)shared_n[j] + c;
 t[j - 1] = temp & 4294967295;
 c = temp >> 32;
 }
 temp = (unsigned long long)t[shared_s] + c;
 t[shared_s - 1] = temp & 4294967295;
 c = temp >> 32;
 t[shared_s] = t[shared_s + 1] + c;
 }

 unsigned int u[33];
 for (int j = 0; j < shared_s + 1; j++){
 u[j] = t[j];
 }

 int b = 0;
 long long sub;
 for (int i = 0; i < shared_s; i++){
 sub = (long long)u[i] - shared_n[i] - b;
 if (sub < 0){
 t[i] = sub + 4294967296;
 b = 1;
 }
 else{
 t[i] = sub;
 b = 0;

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 41

 }
 }
 sub = (long long)u[shared_s] - b;
 u[shared_s] = sub;

 if (sub >= 0){
 int counter = 0;
 for (int i = 0; i < 32; i++){
 d_ans._array[i * 1024 * blkSize + idx] = t[counter++];
 }
 }
 else{
 int counter = 0;
 for (int i = 0; i < 32; i++){
 d_ans._array[i * 1024 * blkSize + idx] = u[counter++];
 }
 }
}

Binary Exponentiation Method (Algorithm 9)

From Chapter 3 Algorithm 9, the binary exponentiation is for exponent that smaller

than 64 bits. However, our exponent can grow as large as 22048 which supported by our

bigInt data type. Therefore, the code snippet below shows how to implement binary

exponentiation on bigInt data type.

for (int i = exp.radixForm.size() - 1; i >= 0; i--){
 if (exp.radixForm.size() - 1 == i){
 for (int j = floor(log2(exp.radixForm[i])); j >= 0; j--){
 sosV3 <<<blockSize, 1024 >>>(d_x1, d_ans, d_n, d_n1, d_s, d_blkSize);
 d_x1 = d_ans;
 if (exp.radixForm[i] & (1 << j)){
 ciosV2 <<<blockSize, 1024 >>>(d_x1, d_a1, d_ans, d_n, d_n1, d_s,
d_blkSize);
 d_x1 = d_ans;
 }
 }
 }
 else{
 for (int j = 31; j >= 0; j--){
 sosV3 <<<blockSize, 1024 >>>(d_x1, d_ans, d_n, d_n1, d_s, d_blkSize);
 d_x1 = d_ans;
 if (exp.radixForm[i] & (1 << j)){
 ciosV2 <<<blockSize, 1024 >>>(d_x1, d_a1, d_ans, d_n, d_n1, d_s,
d_blkSize);
 d_x1 = d_ans;
 }
 }

}
}

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 42

Chapter 5: Conclusion

As mentioned in Chapter 2, we followed the (APOD) design cycle which we repeatedly

optimise and deploy our library. Therefore, in this first phrase, we identified which

method of Montgomery Multiplication is suitable to perform efficient Montgomery

Exponentiation. In this phrase, we tested the performance between SOS method and

CIOS method with and without the use of coalesced access to global memory with

Structure of Array model. The results are benchmarked with integer of size 21024 for

multiplicand and multiplier in Montgomery Multiplication. In Montgomery

exponentiation, we are using an exponent of size 22048 with base of size 21024.

Figure 1: SOS method

From the graph above, we can justify that Coalesced Access to Global Memory is

extremely important optimisation to be done. At the optimum block size of 6, the

performance is almost doubled with proper structured data, from 5862266

multiplications per second to 10617868 multiplications per second.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 43

Figure 2: CIOS method

From the graph above, we can justify that Coalesced Access to Global Memory is

extremely important optimisation to be done. At the optimum block size of 6, the

performance is almost doubled with proper structured data, from 6024097

multiplications per second to 11342885 multiplications per second.

Figure 3: SOS method vs CIOS method

From the figure above, CIOS method performs better than SOS method on optimum

block size since CIOS method performs lesser read, write and space than SOS method.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 44

On block size of 6, CIOS method computes 11342885 multiplications per second while

SOS method computes 10617868 multiplications per second.

Figure 4: Montgomery Exponentiation

From the analytics of CIOS and SOS method on Montgomery multiplication, we took

advantage of both multiplication method on Montgomery exponentiation. As CIOS

method is more efficient than SOS method when multiplicand is not equal to multiplier,

we compared four exponentiation method. Comparing between purely CIOS

multiplication method and purely SOS multiplication method, CIOS method only

perform well on the peak of the block size and slow down along with increasing block

size. Hence, we introduced SOS method with squaring optimisation. By comparing the

result of CIOS method integrate with SOS method without squaring and CIOUS

method integrate with SOS squaring optimised method, we can see that the SOS

squaring optimised method works nicely with CIOS method, which increase the

performance of Montgomery exponentiation overall. From the result, we can see a huge

leap of improvement on performance when the block size become gradually large. Our

Montgomery exponentiation is able to compute 1.7120393 ∗ 107 exponentiations per

second with optimum block size of 8.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 45

Since we identified that CIOS method with SOS squaring method make the most

efficient Montgomery exponentiation, we will focus to optimise both of them to

increase our efficiency further. In this phrase, we contrast the performance by

introducing shared memory to the kernel of CIOS method and SOS squaring method.

Figure 5: CIOS with shared memory vs without shared memory

Figure 6: SOS squaring with shared memory vs without shared memory

From the two figures above, we can see an overall small improvement after make use

of the Shared memory. Hence, we benchmarked our Montgomery exponentiation again

to compare the efficiency.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 46

Figure 7: Montgomery exponentiation with shared memory vs without shared memory

As we expected, the efficiency of Montgomery exponentiation increased after the

implementation of shared memory. With the small improvement, we are able to

compute 1.7768342 ∗ 107 exponentiation per second with optimum block size of 9.

After getting our best performing result, we compared it to the prior work to the paper

of Niall Emmart and Charles Weems.

Figure 8: Best performance model table(N. Emmart and C, 2015)

With the comparison of 2048 bits, the optimum performance by 780Ti is able to

compute 10778000 modular exponentiation per second while our implementation is

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 47

capable to compute 17768342 modular exponentiation per second, which improved

the performance about 39%.

With the increasing reliance on technology in daily life such as online banking

transaction, email, communication service, social network and infrastructure control

system as the internet evolves and computer network become bigger and bigger, it is

becoming more and more crucial to secure every aspect of online data and information

through protected computer system and network. Therefore, a fast computation of

cryptosystem is needed. With the library developed, it can be used to process encryption

and decryption in a faster manner with GPU technologies.

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 48

Bibliography

Bassil, Y. and Barbar, A. (2016). Sequential & Parallel Algorithms For the Addition

of Big-Integer Numbers. [online] Available at:

https://arxiv.org/ftp/arxiv/papers/1204/1204.0232.pdf [Accessed 7 Apr. 2016].

Diffie, W.; Hellman, M. (1976). "New directions in cryptography" (PDF). IEEE

Transactions on Information Theory 22 (6).

Docs.nvidia.com. (2017). Best Practices Guide :: CUDA Toolkit Documentation.

[online] Available at: http://docs.nvidia.com/cuda/cuda-c-best-practices-

guide/#axzz4dAQyuGa1 [Accessed 3 Apr. 2017].

K. Zhao and X. Chu (2010) , GPUMP: A Multiple-Precision Integer Library for

GPUs. Computer and Information Technology (CIT), 2010 IEEE 10th International

Conference on, Bradford, 2010

Khoirudin, and Shun-Liang, J. (2015). GPU Application in Cuda Memory. ACIJ,

6(2), pp.01-10.

Kaya Koc, C., Acar, T. and Kaliski, B. (1996). Analyzing and comparing

Montgomery multiplication algorithms. IEEE Micro, 16(3), pp.26-33.

Langer, B. (2016). Arbitrary-Precision Arithmetic on the GPU. [online] Available at:

http://www.cescg.org/CESCG-2015/papers/Langer-Arbitrary-

Precision_Arithmetics_on_the_GPU.pdf [Accessed 7 Apr. 2016].

Menezes, A., Van Oorschot, P. and Vanstone, S. (1997). Handbook of applied

cryptography. Boca Raton: CRC Press.

N. Emmart and C. Weems, "Pushing the Performance Envelope of Modular

Exponentiation Across Multiple Generations of GPUs," 2015 IEEE International

Parallel and Distributed Processing Symposium, Hyderabad, 2015, pp. 166-176.

Nigerianewsday.com. (2016). An Introduction to OpenCL™ Programming with

AMD GPUs - AMD & Acceleware Webinar. [online] Available at:

http://nigerianewsday.com/opencl-programming-guide.htm [Accessed 7 Apr. 2016].

NVIDIA CUDA Programming Guide. (2012). 4th ed. [ebook] NVIDIA Corporation,

pp.8-11. Available at:

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 49

https://www.cs.unc.edu/~prins/Classes/633/Readings/CUDA_C_Programming_Guide

_4.2.pdf [Accessed 7 Apr. 2016].

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and Phillips, J. C.

GPU computing. IEEE Proceedings, May 2008, 879-899.

Takatoshi Nakayama and Daisuke Takahashi: Implementation of Multiple-Precision

Floating-Point Arithmetic Library for GPU Computing, Proc. 23rd IASTED

International Conference on Parallel and Distributed Computing and Systems (PDCS

2011), pp. 343--349 (2011).

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 50

Appendices

Data used for Figure 1 in Chapter 5:

Number of block(1024 threads per block) Throughput(Multiplication per second)

 Unstructured Data Structured Data

1 1400147.464838 2364254.496644

2 3018878.145831 4596557.777053

3 4878346.764303 6726090.988515

4 6331284.344676 9032730.413246

5 6054258.660490 10250882.882406

6 5862266.507188 10617868.199592

7 6073356.797868 10112906.948522

8 6607136.207250 9935453.410894

9 7104087.118730 9833672.093613

10 7471651.195581 9842303.014909

11 7675175.832056 9715354.041118

12 7638904.057538 9590602.775594

13 7503367.464168 9481425.749395

14 7381718.054022 9271217.867328

15 7160496.588766 9182132.901544

16 5835368.795942 8667993.879299

17 6034943.974495 8933808.405549

18 5857927.773255 9278597.926789

19 5939193.494941 9396294.047811

20 6047853.962380 9494846.753692

21 6083109.422340 9489924.884948

22 6017204.639584 9352990.672001

23 5909404.201299 9276312.360612

24 5787734.160624 8969764.749908

25 5590873.013669 8723744.421044

26 5518140.166858 8555247.809025

27 5458831.024447 8535993.664009

28 5384000.695204 8475846.252575

29 5367606.953028 8406918.186094

30 5312784.251133 8433192.104745

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 51

Data used for Figure 2 in Chapter 5:

Number of block(1024 threads per block) Throughput(Multiplication per second)

 Unstructured Data Structured Data

1 1406254.406892 2328471.473317

2 3041342.989728 4615068.140506

3 4956461.358652 6779585.125786

4 6604690.371033 9037997.349835

5 6603114.734055 11175638.977613

6 6024097.271352 11342885.093304

7 5655228.585650 10132125.017860

8 5689508.505672 9472622.673104

9 5974330.692859 9268179.843272

10 6303166.000431 9186305.031707

11 6618233.162088 8729339.044333

12 6768698.867975 8298635.180740

13 6888647.265362 8179613.235097

14 6865525.834855 8000557.999056

15 6814717.606386 7973797.579403

16 5798710.368375 7722238.248303

17 6007344.259215 7769507.136570

18 5805903.369285 7791788.059614

19 5626489.252057 7844835.202280

20 5687119.581833 7849926.365408

21 5744447.971537 7861813.743998

22 5768707.819068 7841369.281482

23 5894574.398123 7582703.986064

24 5952632.082898 7856207.798527

25 5946680.508957 7956962.976120

26 5838088.684033 8028003.583306

27 5765159.296736 8075545.497103

28 5628573.987322 8109797.114492

29 5500454.253018 8111652.081142

30 5400302.757368 8174306.823765

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 52

Data used for Figure 3 in Chapter 5:

Number of block(1024 threads per block) Throughput(Multiplication per second)

 SOS CIOS

1 2364254.496644 2328471.473317

2 4596557.777053 4615068.140506

3 6726090.988515 6779585.125786

4 9032730.413246 9037997.349835

5 10250882.882406 11175638.977613

6 10617868.199592 11342885.093304

7 10112906.948522 10132125.017860

8 9935453.410894 9472622.673104

9 9833672.093613 9268179.843272

10 9842303.014909 9186305.031707

11 9715354.041118 8729339.044333

12 9590602.775594 8298635.180740

13 9481425.749395 8179613.235097

14 9271217.867328 8000557.999056

15 9182132.901544 7973797.579403

16 8667993.879299 7722238.248303

17 8933808.405549 7769507.136570

18 9278597.926789 7791788.059614

19 9396294.047811 7844835.202280

20 9494846.753692 7849926.365408

21 9489924.884948 7861813.743998

22 9352990.672001 7841369.281482

23 9276312.360612 7582703.986064

24 8969764.749908 7856207.798527

25 8723744.421044 7956962.976120

26 8555247.809025 8028003.583306

27 8535993.664009 8075545.497103

28 8475846.252575 8109797.114492

29 8406918.186094 8111652.081142

30 8433192.104745 8174306.823765

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 53

Data used for Figure 4 in Chapter 5:

Number of

block(1024

threads per

block)

Throughput(Multiplication per second)

 All CIOS All SOS CIOS with normal

SOS

CIOS with

squaring SOS

1 2843506.512122 2694962.839663 2833087.242743 3122018.288235

2 5702663.347258 5411452.516474 5671978.598818 6273119.666435

3 8533818.245819 8004211.359837 8456577.032458 9321445.804593

4 11307032.517706 10598046.341906 11078826.045543 12201392.599069

5 13886821.144992 12916660.518587 13398090.163634 14520735.143830

6 14904082.450371 13520512.104346 14144555.570443 15868218.367919

7 12313617.721053 13130552.736575 13507147.261474 16485963.655920

8 10861152.098662 11168724.438097 11552507.225155 17120393.314583

9 10347098.648845 10678931.002801 11056594.017876 16832035.789563

10 10078415.862989 10268301.018321 10629432.229169 16748888.408109

11 9430649.666129 10064677.146364 10413048.071073 16496206.837404

12 8863396.164550 9908019.718581 10210939.706359 15684163.842564

13 8551716.090488 9823912.505058 10163337.901528 14929894.109594

14 8357155.143395 9641203.687927 9989057.571279 13879082.082894

15 8197039.457959 9463169.607767 9801226.630490 13495494.106131

16 8014260.943547 8988915.105872 9319487.708615 11959837.274403

17 8016040.796483 9196339.736010 9570517.348923 12051677.743322

18 8031646.116380 9479285.312735 9809089.499316 12081828.748415

19 8048859.308229 9900848.828084 10231030.608586 12141799.286305

20 8061988.114551 9901105.841186 10221610.959840 11993807.737497

21 8085725.072440 9825679.746020 10171099.008071 11744521.864432

22 8151951.664530 9598185.148646 9655095.639168 11233133.152920

23 8217565.639183 8890253.315337 9274535.838157 10800914.041494

24 8266046.857780 8747096.427929 9055728.367258 10476426.262910

25 8239698.328123 8603232.287460 8880617.279262 10082182.369464

26 8239913.648351 8432262.268016 8690660.946633 9857151.749929

27 8234722.173077 8321634.785455 8532032.406308 9618447.454008

28 8258815.573285 8291207.355358 8480263.786038 9494465.318541

29 8286529.769429 8310755.574713 8489234.001692 9409513.192009

30 8334669.528281 8302128.554653 8483125.232379 9402245.453967

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 54

Data used for Figure 5 in Chapter 5:

Number of block(1024 threads per block) Throughput(Multiplication per second)

CIOS Without shared memory With shared memory

1 2328471.473317 2508565.082499

2 4615068.140506 5155940.909771

3 6779585.125786 7533376.332310

4 9037997.349835 9573027.219739

5 11175638.977613 11893014.877733

6 11342885.093304 12527315.412592

7 10132125.017860 11645539.988623

8 9472622.673104 10999279.627445

9 9268179.843272 11051989.846461

10 9186305.031707 10618252.624584

11 8729339.044333 10136260.709774

12 8298635.180740 9914953.854027

13 8179613.235097 9459367.828859

14 8000557.999056 9150759.913047

15 7973797.579403 8987636.158406

16 7722238.248303 8659032.696827

17 7769507.136570 8589649.263688

18 7791788.059614 8450243.738207

19 7844835.202280 8580203.530546

20 7849926.365408 8551573.338483

21 7861813.743998 8425399.708542

22 7841369.281482 8395287.375718

23 7582703.986064 8333485.414809

24 7856207.798527 8346521.769098

25 7956962.976120 8317207.315686

26 8028003.583306 8324708.741640

27 8075545.497103 8322454.424907

28 8109797.114492 8287402.538916

29 8111652.081142 8319623.858646

30 8174306.823765 8185729.602412

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 55

Data used for Figure 6 in Chapter 5:

Number of block(1024 threads per block) Throughput(Multiplication per second)

SOS with squaring optimisation Without shared memory With shared memory

1 2602972.833452 2662941.850137

2 5036818.197475 5155985.490108

3 7864587.058147 8192921.945504

4 9730331.052991 10691811.293619

5 11390146.072617 12180787.803536

6 13247908.102564 14685496.917635

7 13439906.770717 14962162.729861

8 14271047.691608 15538023.524989

9 14274579.803840 16068243.420969

10 14276026.009910 15654483.964308

11 14296303.707803 14979843.373748

12 13867139.074260 14069160.260052

13 13501290.306240 13997817.476025

14 12632663.458253 12972654.974578

15 12732513.373201 13153286.879287

16 11019516.906015 11379813.274415

17 11316190.564863 11486650.558964

18 11418460.380941 11824679.363250

19 11264896.182380 11776247.932966

20 11290892.454613 11630040.277319

21 11169254.015771 11414943.252669

22 10705749.990503 10998830.920480

23 10475439.571463 10679844.132921

24 10078344.218179 10289039.707261

25 9849282.644225 9951854.043393

26 9654033.766965 9745089.736255

27 9571467.676337 9623686.766958

28 9292000.544672 9528054.855065

29 9279016.116327 9428769.962285

30 9204734.867913 9215150.734584

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 56

Data used for Figure 7 in Chapter 5:

Number of block(1024 threads per block) Throughput(Multiplication per second)

Montgomery Exponentiation Without shared memory With shared memory

1 3122018.288235 3323180.304031

2 6273119.666435 6681806.072885

3 9321445.804593 9924198.060072

4 12201392.599069 12941967.254239

5 14520735.143830 15324437.599108

6 15868218.367919 16831728.490093

7 16485963.655920 17604226.643155

8 17120393.314583 17648710.675979

9 16832035.789563 17768342.281259

10 16748888.408109 17011541.510669

11 16496206.837404 16338366.709305

12 15684163.842564 15069433.190728

13 14929894.109594 14421983.661440

14 13879082.082894 13584407.532982

15 13495494.106131 13124976.378879

16 11959837.274403 12165866.856457

17 12051677.743322 12505796.262106

18 12081828.748415 12282810.027172

19 12141799.286305 12044294.836269

20 11993807.737497 11807159.773226

21 11744521.864432 11503425.368358

22 11233133.152920 11157682.921541

23 10800914.041494 10699926.517346

24 10476426.262910 10302270.505581

25 10082182.369464 10047853.428199

26 9857151.749929 9800888.467021

27 9618447.454008 9697965.845483

28 9494465.318541 9592178.895553

29 9409513.192009 9368167.323048

30 9402245.453967 9206738.751390

BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR 57

POSTER

