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ABSTRACT 

 

Most computer nowadays support 32 bits or 64 bits of data type on various type of 

programming languages and they are sufficient for most use cases. However, in 

cryptography, the required range and precision are more than 64 bits which are 

computationally expensive on CPUs. In this report, we present our design and 

implementation of a multiple-precision integer library including basic arithmetic, 

Montgomery multiplication and exponentiation with parallel techniques for GPUs 

which is implemented using CUDA, a parallel computing platform and application 

programming interface model created by NVIDIA. Experimental results will be shown 

that a significant speedup can be achieved comparing the performance of N. Emmart 

and C. Weems, "Pushing the Performance Envelope of Modular Exponentiation Across 

Multiple Generations of GPUs. 
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Chapter 1: Introduction 

1.1 Problem Statement and Motivation 

Cryptography plays an important role in our daily life. Nowadays cryptography uses 

public key-encryption which involved a set of multiple-precision integer operations. A 

server such as SSL server that relies on public-key encryption needs to compute a large 

number of multiple-precision integer operation requires large computing power 

(Kaiyong Zhao & Xiaowen Chu 2010). Modern PCs are very good at computing 

numbers whose length does not exceed 32 bits or 64 bits. However, when numbers 

exceeded the limit, computer arithmetic will fail. Different constraints imposed by the 

underlying hardware architecture and programing language cause the failure (Youssef 

Bassil & Aziz Barbar 2004). Therefore, different algorithms and technique were 

developed to solve the problem of arithmetic computation on big number on the CPU 

as well as GPU.   

 

Recent improvement in Graphics Processing Units (GPU) ushered a new era of GPU 

computing (Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E & Phillips, 

J. C 2008).  For example, commodity GPUs like NVIDIA’s GTX 1070 has 1920 

processing cores and can achieve 5783 GFLOPS of computational horsepower.  

 

We are inspired by the point that end users and application servers can employ GPUs 

to increase the computation speed of multiple-precision integer operations. However, 

there is difficulty to achieve high performance on GPUs due to the complicated memory 

architecture and the relatively slow integer operations. (Kaiyong Zhao & Xiaowen Chu 

2010) 

 

GPU is a type of processor that is responsible to compute computer graphic. GPUs were 

originally created for a high-performance workstation and therefore costly. In early 

1990, 3D games with rendering processor were appearing since the 3D accelerator 

hardware was made. API OpenGL was basically from a graphic application of 

professional workstation and adopted to make a graphic 3D game programming, the 

same as the emergence of the DirectX and Direct3D (Khoirudin, & Shun-Liang, J 2015). 
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In addition, GPU became more affordable and more powerful. Recently, due to the 

promotion of gaming on PC, the development of GPU overtook the CPU development. 

 

The rapid transformation on GPU allows improvement in parallel using the multiple 

cores. This is more effective when the programmer wants to process a lot of vertices or 

fragments in the similar way. With multi-core that control by very high memory 

bandwidth, GPU serves with incredible resources for both non-graphics processing and 

graphics processing at the same time.  

 

On a modern GPU, shader number or often called the Stream Processor (for stream 

input and output/Stream), has reached the hundreds or even thousands. GPU calculation 

abilities can reach Terra FLOPS, which hundreds of times faster than the CPU. 

Therefore, other non-graphic calculation can be performed in GPU. The comparison 

between GPU and the CPU is shown in Table 1 by (Khoirudin & Shun-Liang, J 2015). 

 

CPU  GPU  

Parallelism through time multiplexing  Parallelism through space 

multiplexing  

Emphasis on low memory latency  Emphasis on high memory 

throughput  

Allows wide range of control flows +  

control flow optimisation  

Very control flow restricted  

Optimised for low latency access to 

caches data set  

Optimised for data parallel, 

throughput computation  

Very high clock speed  Mid-tempo clock speed  

Peak computation capability low   Higher peak computation capability  

Off-chip bandwidth lower  Higher off-chip bandwidth  

Handle sequential code well  Requires massively parallel 

computing  

Great for task parallelism  Great for data parallelism  

Table 1. Comparison between CPU and GPU 

 

As mentioned above, modern field of cryptography can be divided into Symmetric-key 

cryptography and Public-key cryptography. One of the practical public-key encryption 

system is the RSA algorithm. 

RSA is one of the first practical public-key cryptosystems and is widely used for secure 

data transmission. Basically, RSA produces public key based on two large prime 
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numbers along with an auxiliary value. The RSA algorithm includes modular arithmetic 

as well as Montgomery modular exponentiation on the large numbers which have the 

key size of 1024 to 4096 bit typically. Therefore large integer arithmetic is needed in 

cryptography. 

 

 

RSA involves a public key and a private key. The public key is distributed to the public 

for message encryption, and only can be decrypted by the private key. In practical, three 

very large positive integers e, d and n such that with modular exponentiation for all 

message m: 

(𝑚𝑒)𝑑 ≡ 𝑚 (𝑚𝑜𝑑 𝑛) 

To encrypt the message m such that 0 ≤ 𝑚 < 𝑛, we computes the ciphertext c by using 

the public key e, corresponding to 

𝑐 ≡ 𝑚𝑒 (𝑚𝑜𝑑 𝑛) 

To recover the message, we can decrypt the encrypted message c using private key d 

by computing 

𝑐𝑑 ≡ (𝑚𝑒)𝑑 ≡ 𝑚 (𝑚𝑜𝑑 𝑛) 

As we can see, the RSA encryption scheme requires heavy load of computation of 

modular exponentiation that are computational expensive on CPU. Therefore, we 

implemented Montgomery Multiplication and exponentiation on GPU to compute 

multiple messages in parallel to save time. 

 

 

RSA

Key 
generation

Key 
distribution

Encryption

Decryption
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Besides, another public-key cryptosystem is Diffie-Hellman Key Exchange. It was one 

of the first public-key protocols as originally conceptualised by Ralph Merkle and 

named after Whitfield Diffie and Martin Hellman by ( Diffie, W. & Hellman, M. 1976).  

Diffie-Hellman Key Exchange involved arithmetic exponential to compute the key 

which should be at least 2048 bits. Elliptic curve cryptography (ECC) is another 

approach to public-key cryptography based on the algebraic structure of elliptic curves 

over finite fields also implement Montgomery modular exponentiation as well. 

Most algorithms in cryptography require expensive computation to perform encryption 

and decryption multiple times. Therefore, a GPU large integer arithmetic library is 

needed to support the operations. 

1.2 Project Scope  

The scope of project is to develop a library for multiple-precision integer arithmetic for 

GPU which provide the operation for non-negative addition, subtraction, multiplication, 

division, Montgomery exponentiation and multiplication in parallel technique to 

optimise the usage of GPU. The performance of the library will then be analysed against 

GMP library for CPU to compare the computational time between GPU and CPU. At 

last, an optimised implementation of public key cryptography algorithm will be 

designed based on the developed library. 

1.3 Project Objective 

Although there is existing libraries supporting the GPU, they are not open source. 

Besides, the libraries are designed to support only either host side function call or device 

side function call. Host side function call is when the CPU calls the function and it is 

passed to GPU to compute and then the result is returned to the CPU whereas device 

side function call is when the GPU calls the function in GPU, which is good for 

developing algorithms that use multiple large integer arithmetic operations. The 

diagram below illustrates the communication between host side and device side, from 

(Nigerianewsday.com 2016). 
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Figure 1: Host side and device side 

As the libraries implements such principle, there is overheads from the communication 

between CPU and GPU which will slow down the computation speed. Therefore, a 

further improvement will be added in this project to overcome this weakness. 

1.4 Impact, significance and contribution 

By developing the open source library, computation time can be reduced in large 

number arithmetic by using GPUs, which will be useful and convenient in the field of 

cryptography. The challenges we need to overcome which are to override the need of 

overheads from communication between CPU and GPU, algorithms and code 

optimisation to achieve the speed. Besides, a good manual memory management for 

dynamic memory allocation is needed in the C programming language via a group of 

functions in the C standard library, namely malloc and free. 

1.5 Background Information 

In this library, large integer is stored and represented in a system of radix 232. In short, 

the large integer is represented in an array of unsigned integer, d0, d1, d2 … dn as d0b
n + 

d1b
n-1 + … + dnb

0, where 0 ≤ di < 232. In such way, memory optimisation can be achieved 

as we can fully optimise 4 bytes of memory given in each array index. 

Therefore, different parallel algorithms can be applied to perform arithmetic operations 

on GPU. This project will support arithmetic operations such as (modular) addition, 

subtraction, multiplication, division and exponentiation, Montgomery multiplication 

and exponentiation. By having the library equips with arithmetic operations, it enables 

user to perform large integer calculation for the purpose of cryptography in a fast 

manner.  
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Chapter 2: Literature Review 

General Purpose Computing on Graphics Processing Units is a relatively new field. 

Therefore, the work on arbitrary-precision arithmetic mostly relies on CPUs. Several 

libraries such as Library for Efficient Data types and Algorithms (LEDA and GNU 

Multi-Precision library (GMP)) which explicitly target CPU hardware architectures is 

established. Another established library is ARPREC which itself is based on MPFUN, 

a multiple precision library for Fortran. Although most of them provide a huge set of 

different data-type and operations, our goal is to accelerate the computation speed. 

 

In 2010, Kaiyong Zhao and Xiaowen Chu created a multiple-precision library for 

CUDA, the GPU Multiple-Precision library (GPUMP) in the paper (K. Zhao & X. Chu 

2010). GPUMP performs its operation on integer types with arbitrary but fixed length. 

The functionality of CPUMP includes operations such as multiple-precision 

comparison, (modular) addition and subtraction, multiplication, division, Montgomery 

reduction, Montgomery multiplication and exponentiation. GPUMP applies sequential 

arithmetic algorithms in parallel. The weakness of the algorithms is when the number 

grows beyond the predefined length limit, it fails and become inefficient for small 

numbers in term of both computation time and memory usage. There is several 

optimisation techniques they used to improve the performance. Firstly, constant value 

with cache memory is used as most algorithms use the same data multiple times during 

calculations, since GPU can adopt cache mechanism, which achieve high reading and 

calculation efficiency. Besides, for temporary value, GPUMP uses shared memory on 

algorithms that required temporary variables as local or global memory will cause long 

reading latency. Their result comparing performance of GPU and CPU is as shown 

below. 

 

 

Figure 1: Multiple-precision Addition running on CPU & GPU(K. Zhao & X. Chu 2010) 
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Figure 2: Multiple-precision Subtraction running on CPU & GPU(K. Zhao & X. Chu 2010) 

 

Figure 3: Multiple-precision Multiplication running on CPU & GPU(K. Zhao & X. Chu 2010) 

 

Figure 4: Multiple-precision Division running on CPU & GPU (K. Zhao & X. Chu 2010) 
   

 

 

Figure 5: Multiple-precision Montgomery Reduction running on GPU (K. Zhao & X. Chu 2010)            
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Figure 6: Multiple-precision Montgomery Multiplication running on GPU(K. Zhao & X. Chu 2010) 

 

In 2011, Takatoshi Nakayama and Daisuke Takahashi created a multiple-precision 

library for floating-point number types, the CUDA Multi-Precision library (CUMP) in 

the paper (Takatoshi, N. & Daisuke, T. 2011). In this library, improvement is done by 

supporting floating-point number types which was absent in GPU Multiple-Precision 

library (GPUMP) by Kaiyong Zhao and Xiaowen Chu.  

 

In 2015, Bernhard Langer implements Arbitrary-Precision Arithmetic on the GPU 

using CUDA in the paper (Langer, B. 2016).  He represented methods to perform 

arbitrary-precision integer arithmetic in GPU by employing a two-level parallelisation 

scheme. He minimises the code divergence within SIMD units while providing 

effective load balancing across all units. Bernhard Langer implements school-method 

multiplication which has a high complexity of O(n2) slows down the computation on 

multiplication. To improve the complexity, Karatsuba Algorithm which has a 

complexity of O(nlg 3) can be used. Results below show the comparison between timings 

of code execution on the CPU against GPU with a test system of Intel Core i7 4700MQ 

CPU and a NVIDIA K2100M GPU, focus on multiplication. 

256 multiplications                1024 multiplications 
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Figure 7:Integer length with σ=8  Figure 8: Integer length with σ=8  Figure 9: Integer length with σ=8 

(Langer, B. 2016) 
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Chapter 3: Proposed Method / Approach 

3.1 Design Specification 

3.1.1 Methodologies and General Work Procedures 

 

We followed the Assess, Parallelize, Optimize, Deploy(APOD) design cycle, which is 

a cyclical process for our project with the goal to quickly tackle the sections of the code 

that would be optimised by GPU acceleration. 

Assess 

After converting the code from CPU based to GPU based, we assessed and tracked the 

sections of code that are responsible for the mass of the execution time. The bottlenecks 

for parallelisation is evaluated and start to work on GPU acceleration. 

Parallelise 

We implemented the code with the aids of existing GPU-optimized library such as 

Thrust, a C++ template library for CUDA based on the Standard Template Library 

(STL). Thrust allows us to implement high performance parallel applications with 

minimal programming effort through a high-level interface that is fully interoperable 

with CUDA C. In most of the time, we make use of the host_vector, which is stored in 

host memory and device_vector, which lives in GPU device memory. Like std::vector, 

host_vector and device_vector are generic containers. 

Optimise 

After we completed code parallelization, we optimise the implementation on CUDA to 

improve performance. We considered many way of possible optimisation such as 
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Coalesced Access to Global Memory, making use of parallel library, division modulo 

operations with shift operations and so on. 

Deploy 

We took the partially parallelised implementation and carry it through to production 

after each round of optimisation. 

3.1.2 Tools to use 

The core tool to be used is NVIDIA GTX 1070 graphic card which is supported by 

CUDA. C/C++ compiler are needed which are readily provided by Microsoft Visual 

Studio 2013 Professional running on the 64-bits Windows 10 operating system. Besides, 

CUDA toolkit is needed to be installed on Microsoft Visual Studio to implement CUDA 

programming.  

3.1.3 Verification Plan 

To prove the correctness of calculation, we compute the calculation with Wolfram 

Language on Wolfram Development Platform which provided us free access in Open 

Cloud.  

3.2 System Design / Overview 

3.2.1 Algorithms 

There are different type of algorithms available to implement on arithmetic operation. 

Unfortunately, not every algorithms can be parallelised and sometimes only some parts 

of the algorithm can be parallelised. Parallel addition and subtraction have been 

implemented. Before going into algorithms, the user-defined structure to represent the 

large integer is introduced below. 

class bigInt{ 

 vector<unsigned int> radixForm; 

} 

 

bigInt class consist of a vector of unsigned integer to store the radix form of  the large 

integer. Each index of the vector can store 32 bits of unsigned int from 0 up to 

4,294,967,295 therefore the memory space of the vector can be fully optimised. When 

the bigInt data type is declared with an integer value, the integer value will then push 

into the vector in index zero, else if the value is in term of string (intended for value 
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that larger than 232) will be feed into an algorithm to convert the large number into radix 

representation of 232, which will be discussed below. 

 

Algorithm 1: Radix Representation of large integer in base 232 

Input: An integer as a string S 

Output: d0b
0 + d1b

1 + … + dnb
n 

1: 𝑏𝑖𝑔𝐼𝑛𝑡 𝑣𝑎𝑙 = 0, 𝑝𝑜𝑤 = 0, 𝑏𝑎𝑠𝑒 = 10 

2: for 𝑖 = 𝑆 − 1 𝑡𝑜 0 do 

3: 𝑡 =  𝑠𝑖 −  '0' 

4: 𝑣𝑎𝑙 = 𝑣𝑎𝑙 + 𝑡 

5: 𝑝𝑜𝑤 = 𝑝𝑜𝑤 ∗ 𝑏𝑎𝑠𝑒 

6: end for 

 

Parallel Addition 

Given two array representing the large integer, parallel operation can be done by adding 

the values in corresponding index from two array.  

To illustrate the parallelism on addition on GPU architecture, we first assume that all 

the values in the vector had been transfer into array of memory block of GPU. Each 

thread in a block can be assigned some computation by using their thread ID. The 

diagram below illustrates the parallel technique to perform addition. 

Assume both arrays X and Y consisted of radix representation of X0b
0 + X1b

1 + … + 

Xnb
n 

X0 X1 X2 X3 X4 X5 X6 X7 

+ 

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 

 

 

0 1 2 3 4 5 6 7 

 

threadIdx.x 
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Each thread performs a sub-addition in parallel and store the values into the memories 

reserved along with their carries to transfer them back into CPU platform.  

Synchronisation issues arise from carry propagation due to its sequential nature as the 

addition of carry to the result may propagate a new carry in some condition. Therefore, 

a carry propagation function is used to determine the number of carry to be added in 

final output. We denote three distinctive values in the array with G for generation, P for 

propagation and N for no carry. In each parallel operation, when two values are added 

and they exceeded the radix, a generation G will be marked. If the value added is equal 

to radix b-1, then P will be marked as it stands the chance to generate carry. Else N will 

be marked. A generalized associative operation ⊕ are determined to perform the 

propagation and is shown as table below. 

 

Ci-1 Ci Ci =  Ci ⊕ Ci-1 

N N N 

P N N 

G N N 

N G G 

P G G 

G G G 

N P N 

P P P 

G P G 

Table 1. Result for carry propagation function 

It computes the resulting behaviour between pairs iteratively and give us the correct 

carry output to add from the addition result from parallel algorithm. We can see that Ci 

= P inherit the value from Ci-1, therefore P is the identity element.  

Although the GPU threads enable addition to be performed in parallel, the carry 

propagation function requires O(n) time to produce correct resulting behaviour. 

Therefore not much improvement can be done on addition using parallel technique.  
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Algorithm 2: Carry propagation ( GPU kernel ) 

1: function ADD(d_lhs, d_rhs, d_carry) 

2: 𝑖𝑑𝑥 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 

3: 𝑡𝑒𝑚𝑝𝐴𝑑𝑑 = 𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] +  𝑑_𝑟ℎ𝑠[𝑖𝑑𝑥] 

4: 𝑑_𝑐𝑎𝑟𝑟𝑦[0] =  −1 

5: if 𝑡𝑒𝑚𝑝𝐴𝑑𝑑 = 232 − 1 then 

6:  𝑑_𝑐𝑎𝑟𝑟𝑦[𝑖𝑑𝑥 + 1] =  0 //P 

7: else if 𝑡𝑒𝑚𝑝𝐴𝑑𝑑 < 232 − 1 then 

8:  𝑑_𝑐𝑎𝑟𝑟𝑦[𝑖𝑑𝑥 + 1] = −1 //N 

9: else 

10:  𝑑_𝑐𝑎𝑟𝑟𝑦[𝑖𝑑𝑥 + 1] = 1 //G 

11: 𝑑_𝑐𝑎𝑟𝑟𝑦[𝑖𝑑𝑥] = 𝑡𝑒𝑚𝑝𝐴𝑑𝑑 𝒎𝒐𝒅 232 

12: end if 

13: end function 
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Parallel Subtraction  

Given two array representing the large integer, parallel operation can be done by 

subtracting the values in corresponding index from two array. To illustrate the 

parallelism on subtraction on GPU architecture, we first assume that all the values in 

the vector had been transfer into array of memory block of GPU. Each thread in a block 

can be assigned some computation by using their thread ID. The diagram below 

illustrates the parallel technique to perform subtraction 

Assume both arrays X and Y consisted of radix representation of X0b
0 + X1b

1 + … + 

Xnb
n 

X0 X1 X2 X3 X4 X5 X6 X7 

- 

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 

 

 

0 1 2 3 4 5 6 7 

 

threadIdx.x 

In each thread, e.g., threadIdx.x = 0 it performs a sub-addition X0-Y0, while threadIdx.x 

= 1 performs X0 - Y0 and threadIdx.x = n performs Xn - Yn in parallel and store the 

values into the memories reserved along with their carries to transfer them back into 

CPU platform.  

Similar to parallel addition, the synchronisation issues arise from “borrowed” 

propagation due to its sequential nature as the subtraction of “borrowed” from result 

may propagate a new “borrowed” operation in some condition. Therefore, a “borrowed” 

propagation function is used to determine the number of borrows to be added in final 

output. We denote three distinctive values in the array with G for generation, P for 

propagation and N for no borrow. In each parallel operation, when two values are 

subtracted and they exceeded below 0, a generation G will be marked. If the value 

subtracted is equal to 0, then P will be marked as it stands the chance to generate borrow. 

Else N will be marked. A generalized associative operation ⊕ are determined to 

perform the propagation and is shown as table below. 
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Ci-1 Ci Ci =  Ci ⊕ Ci-1 

N N N 

P N N 

G N N 

N G G 

P G G 

G G G 

N P N 

P P P 

G P G 

Table 2.. Result for borrow propagation function 

It computes the resulting behaviour between pairs iteratively and give us the correct 

“borrowed” output to subtract from the subtraction result from parallel algorithm. We 

can see that Ci = P inherit the value from Ci-1, therefore P is the identity element.  

Although the GPU threads enable subtraction to be performed in parallel, the “borrowed” 

propagation function requires O(n) time to produce correct resulting behaviour. 

Therefore not much improvement can be done on subtraction using parallel technique.  
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Algorithm 3: Borrow propagation ( GPU kernel ) 

1: function SUB(d_lhs, d_rhs, d_carry, d_N) 

2: 𝑖𝑑𝑥 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 

3: 𝑡𝑒𝑚𝑝𝑆𝑢𝑏 = 𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] −  𝑑_𝑟ℎ𝑠[𝑖𝑑𝑥] 

4: if 𝑑_𝑁 −  1 ≠ 𝑖𝑑𝑥 then 

5:  if 𝑡𝑒𝑚𝑝𝑆𝑢𝑏 = 0 then 

6:   𝑑_𝑏𝑜𝑟𝑟𝑜𝑤[𝑖𝑑𝑥 + 1] =  0 //P 

7:   𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] = 0 

8:  else if 𝑡𝑒𝑚𝑝𝑆𝑢𝑏 < 0 then  

9:   𝑑_𝑏𝑜𝑟𝑟𝑜𝑤[𝑖𝑑𝑥 + 1] = 1 //G   

10:   𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] = 232 + 𝑡𝑒𝑚𝑝𝑆𝑢𝑏 

11:  else 

12:   𝑑_𝑏𝑜𝑟𝑟𝑜𝑤[𝑖𝑑𝑥 + 1] = −1 

13:   𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] = 𝑡𝑒𝑚𝑝𝑆𝑢𝑏 

14:  end if 

15: else 

16:  𝑑_𝑙ℎ𝑠[𝑖𝑑𝑥] = 𝑡𝑒𝑚𝑝𝑆𝑢𝑏 

17: end if 

18: end function 

 

In final year project II, after the further study of parallel arithmetic algorithms, we 

realised that parallel multiplication proposed by other researches did not well optimised 

on the GPU as well as our implementation on parallel addition and subtraction. The 

reason behind it is because of insufficient data elements to be run simultaneously in 

parallel. This is a requirement to achieve satisfactory performance on CUDA. Besides, 

for two large integer to perform arithmetic in GPU, we must transfer them between the 

host and the device, which the process is very slow. Therefore, the parallel process is 

unable to compensate the time taken for data transfer in such small amount of data 

elements. 

In the end, we moved our focus on bulk parallel computations on Montgomery 

multiplication and exponentiation, which on each thread of GPU will handle one 

sequential Montgomery multiplication. We launched as many threads as possible to 
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maximize the workload on GPU and determine the throughput of our result, the amount 

of Montgomery multiplication and exponentiation computed per second. 

Therefore, the implementation of bigInt class become the foundation to convert a large 

integer in the form of string to an array of base 232 for Montgomery multiplication and 

exponentiation. In order to perform the conversion, addition, subtraction and 

multiplication are needed. However, for the sake of completeness, we implemented 

division and some operator such as =, <, ≤, >, ≥, ≠ and so on to support daily operation. 

The algorithms of minor operations that are not being used in radix form conversion 

and Montgomery multiplication and exponentiation are not being mentioned here. 

Algorithm 4: Multiplication 

Input: Non-negative integers x and y with n + 1 radix b digits  

Output: 𝑥 ∙ 𝑦 = (𝑧𝑛+𝑠+1𝑧𝑛+𝑠 … 𝑧1𝑧0)𝑏 

1: for 𝑖 = 0 𝑡𝑜 𝑛 + 𝑠 + 1 do 

2: 𝑧𝑖 = 0 

3: end for 

4: for 𝑖 = 0 𝑡𝑜 𝑠 do 

5: 𝑐 = 0 

6: for 𝑗 = 0 𝑡𝑜 𝑛 do 

7:  (𝑢𝑣)𝑏 =  𝑧𝑖+𝑗 + 𝑥𝑗 ∙ 𝑦𝑖 + 𝑐 

8:  𝑧𝑖+𝑗 = 𝑣 

9:  𝑐 = 𝑢 

10: end for 

11: 𝑧𝑖+𝑗+1 = 𝑢 

12: end for 
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Montgomery Multiplication & Exponentiation 

RSA and Diffie-Hellman key exchange scheme required the computation of modular 

exponentiation which is computational expensive. The Montgomery multiplication 

algorithm is used to speed up the modular multiplications needed during exponentiation 

computation.  

𝑀𝑜𝑛𝑃𝑟𝑜(𝑎, 𝑏) = 𝑎 ∙ 𝑏 ∙ 𝑟−1 (𝑚𝑜𝑑 𝑛) 

Let the modulus n be a k-bit integer such that 2𝑘−1 ≤ 𝑛 ≤  2𝑘 and let r be 2𝑘 where 

gcd(𝑟, 𝑛) = 1 . Given two n-residues �̅�  and �̅�  where �̅� = 𝑎 ∙ 𝑟 𝑚𝑜𝑑 𝑛  and �̅� = 𝑏 ∙

𝑟 𝑚𝑜𝑑 𝑛, the Montgomery product is defined as the n-residue 

𝑐̅ =  �̅� ∙ �̅� ∙ 𝑟−1 (𝑚𝑜𝑑 𝑛) 

             = 𝑎 ∙ 𝑟 ∙ 𝑏 ∙ 𝑟 ∙ 𝑟−1 (𝑚𝑜𝑑 𝑛) 

= 𝑐 ∙ 𝑟 (𝑚𝑜𝑑 𝑛)        

Where 𝑟−1 is the inverse of r modulo n with the property 𝑟−1 ∙ 𝑟 = 1 (𝑚𝑜𝑑 𝑛) 

To describe the Montgomery reduction algorithm, an additional quantity 𝑛′  is 

introduced with the property 𝑟−1 ∙ 𝑟 − 𝑛 ∙ 𝑛′ = 1 

Algorithm 5: General Montgomery Multiplication 

1: function 𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, �̅�) 

2: 𝑡 =  �̅� ∙ �̅� 

3: 𝑢 = (𝑡 + (𝑡 ∙ 𝑛′𝑚𝑜𝑑 𝑟) ∙ 𝑛)/𝑟 

4: if 𝑢 ≥ 𝑛 then 

5: return 𝑢 − 𝑛 

6: else 

7: return 𝑢 

8: end if 

9: end function 

 

 

 

 



 

BCS (Hons) Computer Science 
Faculty of Information and Communication Technology (Perak Campus), UTAR 19 
 

Multiplication that involving modulo r and division by r  can be computed quickly since 

r is a power of 2. Thus, the Montgomery multiplication is faster than common 

computation of 𝑎 ∙ 𝑏 𝑚𝑜𝑑 𝑛  which requires division by n. However, Montgomery 

Multiplication is more effective when several modular multiplication with same 

modular are needed such as to compute modular exponentiation since the conversion 

to and from between ordinary residue and n-residue and computation of 𝑛′ are time 

consuming. 

We implemented Montgomery Exponentiation with binary method. Let j be the number 

of bits in the exponent e. We can compute 𝑥 =  𝑎𝑒 𝑚𝑜𝑑 𝑛 with the complexity of 𝑂(𝑗) 

to the Montgomery Multiplication.  

Algorithm 6: Montgomery Exponentiation 

1: function 𝑀𝑜𝑛𝐸𝑥𝑝(𝑎, 𝑒, 𝑛) 

2: 𝑎 = 𝑎 ∙ 𝑟 𝑚𝑜𝑑 𝑛 

3: 𝑥 = 1 ∙ 𝑟 𝑚𝑜𝑑 𝑛 

4: for 𝑖 = 𝑗 − 1 𝑡𝑜 0 do 

5: �̅� = 𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, �̅�) 

6: if 𝑒𝑖 = 1 then 

7:  �̅� = 𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, �̅�) 

8: end if 

9: end for 

10: return 𝑥 = 𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, 1) 

11: end function 

 

In line 10, we converted �̅� back to x with the property of Montgomery algorithm which 

�̅� ∙ 1 ∙ 𝑟−1 = 𝑥 ∙ 𝑟 ∙ 𝑟−1 = 𝑥 𝑚𝑜𝑑 𝑛. 

 

There are different ways to perform Montgomery Multiplication. In this project, we 

implemented Separated Operand Scanning (SOS) method and Coarsely Integrated 

Operand Scanning (CIOS) method. In short, SOS method separated multiplication and 

reduction steps where CIOS integrated them. 
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Separated Operand Scanning (SOS) Method 

Algorithm 7: SOS Montgomery Multiplication 

1: function 𝑠𝑜𝑠𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, �̅�) 

2: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do 

3:  𝑐 = 0 

4:  for 𝑗 = 0 𝑡𝑜 𝑠 − 1 do 

5:   (𝐶, 𝑆) = 𝑡[𝑖 + 𝑗] + 𝑎[𝑗] ∙ 𝑏[𝑖] + 𝑐 

6:   𝑡[𝑖 + 𝑗] = 𝑆 

7:  𝑡[𝑖 + 𝑠] = 𝐶 

8: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do 

9:  𝐶 = 0 

10:  𝑚 = 𝑡[𝑖] ∙ 𝑛′[0]𝑚𝑜𝑑 232 

11:  for 𝑗 = 0 𝑡𝑜 𝑠 − 1 do 

12:   (𝐶, 𝑆) = 𝑡[𝑖 + 𝑗] + 𝑚 ∙ 𝑛[𝑗] + 𝑐  

13:   𝑡[𝑖 + 𝑗] = 𝑆 

14:  𝐴𝐷𝐷(𝑡[𝑖 + 𝑠], 𝐶) 

15: for 𝑗 = 0 𝑡𝑜 𝑠 do 

16:  𝑢[𝑗] = 𝑡[𝑗 + 𝑠] 

17: 𝐵 = 0 

18: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do 

19:  (𝐵, 𝐷) = 𝑢[𝑖] − 𝑛[𝑖] − 𝐵 

20:  𝑡[𝑖] = 𝐷 

21: (𝐵, 𝐷) = 𝑢[𝑠] − 𝐵 

22: 𝑡[𝑠] = 𝐷 

23: if 𝐵 = 0 then 

24:  return 𝑡[0], 𝑡[1], … , 𝑡[𝑠 − 1] 

25: else 

26:  return 𝑢[0], 𝑢[1], … , 𝑢[𝑠 − 1] 

27: end function 
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In algorithm 7 above, from line 2 to line 7 performed multiplication on 𝑡 =  �̅� ∙ �̅�. 

From line 8 to line 16, this section performed 𝑢 = (𝑡 + (𝑡 ∙ 𝑛′𝑚𝑜𝑑 𝑟) ∙ 𝑛)/𝑟. In the 

last step line 17 to line 26, the subtraction is then performed to reduce u if necessary. 

As SOS method separated the multiplication from reduction, it is obviously slower 

than CIOS method that integrated both multiplication and reduction together. 

However, there is one optimisation that we can perform in the part of multiplication 

𝑎 ∙ 𝑏 in SOS method. When a is equal to b, we can optimise the Montgomery 

multiplication algorithm for squaring, which is useful on line 5 in Algorithm 6. The 

optimisation of squaring is achieved because almost half of the single-precision 

multiplication can be skipped since 𝑎𝑖 ∙ 𝑎𝑗 = 𝑎𝑗 ∙ 𝑎𝑖. Diagram below illustration a 

simple example. 

  1 2 3 

𝑋  1 2 3 

  3 ∙ 1 3 ∙ 2 3 ∙ 3 

 2 ∙ 1 2 ∙ 2 2 ∙ 3  

1 ∙ 1 1 ∙ 2 1 ∙ 3   

 

The following pseudocode replaces the first part of the Algorithm 7 in order to 

perform the optimised Montgomery squaring. 

1: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do 

2: (𝐶, 𝑆) = 𝑡[𝑖 + 𝑖] + 𝑎[𝑖] ∙ 𝑎[𝑖] 

3: for 𝑖 = 𝑗 + 1 𝑡𝑜 𝑠 − 1 do 

4:  (𝐶, 𝑆) = 𝑡[𝑖 + 𝑗] + 2 ∙ 𝑎[𝑗] ∙ 𝑎[𝑖] + 𝐶 

5:  𝑡[𝑖 + 𝑗] = 𝑆 

6: 𝑡[𝑖 + 𝑠] = 𝐶 

 

However, the value 2 ∙ 𝑎[𝑗] ∙ 𝑎[𝑖] may cause overflow to occur which may exceed 

264,  the memory limit of variable in computer nowadays. Therefore, we rewrite the 

snippet above with 3 steps, 𝑎[𝑗] ∙ 𝑎[𝑖] terms are added first, the result is then doubled 

and then 𝑎[𝑖] ∙ 𝑎[𝑖] are added in. 
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1: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do 

2: 𝐶 = 0 

3: for 𝑗 = 0 𝑡𝑜 𝑠 − 1 do 

4:  (𝐶, 𝑆) = 𝑎[𝑗] ∙ 𝑎[𝑖] 

5:  𝑡[𝑖 + 𝑗] = 𝑆 

6: 𝑡[𝑠 + 𝑖] = 𝐶 

7: 𝐶 = 0 

8: for 𝑖 = 0 𝑡𝑜 2 ∙ 𝑠 do 

9: (𝐶, 𝑆) = 𝑡[𝑖] ∙ 2 + 𝐶 

10: 𝑡[𝑖] = 𝑆 

11: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do 

12: (𝐶, 𝑆) = 𝑡[𝑖 + 𝑖] + 𝑎[𝑖] ∙ 𝑎[𝑖] 

13: 𝑡[𝑖 + 𝑖] = 𝑆 

14: for 𝑗 = 𝑖 + 1 𝑡𝑜 𝑠 do 

15:  (𝐶, 𝑆) = 𝑡[𝑖 + 𝑗] + 𝐶 

16:  𝑡[𝑖 + 𝑗] = 𝑆 

17: 𝑡[𝑠 + 𝑖] = 𝑡[𝑠 + 𝑖] + 𝐶 

18: 𝐶 = 0 
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Coarsely Integrated Operand Scanning (CIOS) Method 

Algorithm 8: CIOS Montgomery Multiplication 

1: function 𝑐𝑖𝑜𝑠𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, �̅�) 

2: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do 

3: 𝐶 = 0 

4: for 𝑗 = 0 𝑡𝑜 𝑠 − 1 do 

5:  (𝐶, 𝑆) = 𝑡[𝑗] + 𝑎[𝑗] ∙ 𝑏[𝑖] + 𝐶 

6:  𝑡[𝑗] = 𝑆 

7: (𝐶, 𝑆) = 𝑡[𝑠] + 𝐶 

8: 𝑡[𝑠] = 𝑆 

9: 𝑡[𝑠 + 1] = 𝐶 

10: 𝑚 = 𝑡[0] ∙ 𝑛′[0] 𝑚𝑜𝑑 232 

11: (𝐶, 𝑆) = 𝑡[0] + 𝑚 ∙ 𝑛[0] 

12: for 𝑗 = 1 𝑡𝑜 𝑠 − 1 do 

13:  (𝐶, 𝑆) = 𝑡[𝑗] + 𝑚 ∙ 𝑛[𝑗] + 𝐶 

14:  𝑡[𝑗 − 1] = 𝑆 

15: (𝐶, 𝑆) = 𝑡[𝑠] + 𝐶 

16: 𝑡[𝑠 − 1] = 𝑆 

17: 𝑡[𝑠] = 𝑡[𝑠 + 1] + 𝐶 

18: for 𝑗 = 0 𝑡𝑜 𝑠 − 1 do 

19: 𝑢[𝑗] = 𝑡[𝑗] 

20: 𝐵 = 0 

21: for 𝑖 = 0 𝑡𝑜 𝑠 − 1 do 

22: (𝐵, 𝐷) = 𝑢[𝑖] − 𝑛[𝑖] − 𝐵 

23: 𝑡[𝑖] = 𝐷 

24: (𝐵, 𝐷) = 𝑢[𝑠] − 𝐵 

25: 𝑡[𝑠] = 𝐷 

26: if 𝐵 = 0 then return 𝑡[0], 𝑡[1], … , 𝑡[𝑠 − 1] 

27: else return 𝑢[0], 𝑢[1], … , 𝑢[𝑠 − 1] 

28: end function 
 

 

 



 

BCS (Hons) Computer Science 
Faculty of Information and Communication Technology (Perak Campus), UTAR 24 
 

Method Multiplications Additions Reads Writes Space 

SOS 2𝑠2 + 𝑠 4𝑠2 + 4𝑠

+ 2 

6𝑠2 + 7𝑠 + 3 2𝑠2 + 6𝑠

+ 2 

2𝑠 + 2 

CIOS 2𝑠2 + 𝑠 4𝑠2 + 4𝑠

+ 2 

6𝑠2 + 7𝑠 + 2 6𝑠2 + 5𝑠

+ 1 

𝑠 + 3 

 

From the table above, we can see that the memory reduction for CIOS method is a 

significant improvement over the SOS method. Besides, the integration in this method 

is “coarse” because of the alternation between iterations of the outer loop. 

Therefore, we can obtain the optimum computation speed on Montgomery 

Exponentiation by integrating squaring optimised’ SOS method and CIOS method. 

Algorithm 9: Montgomery Exponentiation 

1: function 𝑀𝑜𝑛𝐸𝑥𝑝(𝑎, 𝑒, 𝑛) 

2: 𝑎 = 𝑎 ∙ 𝑟 𝑚𝑜𝑑 𝑛 

3: 𝑥 = 1 ∙ 𝑟 𝑚𝑜𝑑 𝑛 

4: for 𝑖 = 𝑗 − 1 𝑡𝑜 0 do 

5: �̅� = 𝑀𝑜𝑛𝑃𝑟𝑜𝑆𝑂𝑆(�̅�, �̅�) 

6: if 𝑒𝑖 = 1 then 

7:  �̅� = 𝑀𝑜𝑛𝑃𝑟𝑜𝐶𝐼𝑂𝑆(�̅�, �̅�) 

8: end if 

9: end for 

10: return 𝑥 = 𝑀𝑜𝑛𝑃𝑟𝑜(�̅�, 1) 

11: end function 
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3.2.2 CUDA 

Compute Unified Device Architecture (CUDA) is NVIDIA’s GPU architecture 

featured in the GPU cards, for general purpose computing with GPUs. CUDE C/C++ 

is an extension of C/C++ programming language for general purpose computation. 

CUDA contains few remarkable parts to be explored which is the memory hierarchy 

and thread hierarchy (NVIDIA CUDA Programming Guide 2012). 

3.2.2.1 Thread Hierarchy 

 

Figure 1: Grid of Thread Blocks 

 

To effectively utilise the full computational capability of the graphics card on the 

system, CUDA architecture separates it into grids, blocks and threads in a hierarchical 

structure as shown in Figure 7 above from (NVIDIA CUDA Programming Guide 2012).  

Since there are a number of threads in one block and a number of blocks in one grid 

and a number of grids in one GPU, the parallelism that is achieved using such a 

hierarchical architecture is large.  
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 The Grid. A grid is a group of threads running the same kernel which are not 

synchronised.  

 The Block. Grids are composed of blocks. A built in variable "blockIdx" can 

be used to identify the current block. Block IDs can be organised into a one-

dimensional, two-dimensional, or three-dimensional index accessible within the 

kernel through the built-in blockDim variable. Each block is a logical unit 

containing a number of coordinating threads, a certain amount of shared 

memory. 

 The Thread. Blocks are composed of threads. Threads within a block execute 

same instruction of codes but possibly of different data at the same time. 

Threads within a block can cooperate by sharing data through some shared 

memory which is expected to be a low-latency memory near each processor 

core and by synchronising their execution to coordinate memory accesses. 

Thread ID can be determined by “threadIdx.x”. 
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3.2.2.2 Memory Hierarchy 

 

Figure 2: Memory Hierarchy 

CUDA threads which has private local memory may access data from various memory 

spaces during executions as illustrated by Figure 8 from (NVIDIA CUDA 

Programming Guide 2012). From Figure 8, each thread has per-thread local memory 

and each thread block has per-block shared memory which with the same lifetime as 

the block. The global memory is accessible by all threads in the grids. 

 Global memory. A read and write memory which is slow and uncached. 

 Texture memory. A read-only memory. Offers different addressing modes, as 

well as data filtering for some specific data formats 
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 Constant memory. Store constants and kernel arguments. Slow but with cache. 

 Local memory. It is generally used for whatever does not fit into registers. Slow 

and uncached but allows automatic fuse reads and writes. 

 Shared memory. An extremely fast on-chip memory with lower capacity(16-

64Kbytes) which shares memory across a unit block that accessible by threads 

in same block of memory. Besides, kernel function parameters are stored here. 

3.3 Implementation issues and challenges  

As Computer Science student, we often think on the algorithm analysis and design in 

order to speed up the computation. However in this library development, parallel 

techniques are required and we have to realise that not every algorithm can be done in 

parallel manner. Moreover, a low level C programming language must be used to 

achieve good manual memory management in order to optimise the code.  

3.4 Timeline 

At the starting of this semester, the prototype of library coded in C++ which computes 

using CPU sequentially had been done which included addition ,subtraction, 

multiplication and division. In this semester, GPU programming have been learnt and 

part of the arithmetic operation have been replaced by CUDA codes which computes 

in parallel using GPU such as addition and subtraction. At the end of semester, parallel 

multiplication and division are expected to be done. In the next semester, Montgomery 

exponentiation and multiplication, greatest common divisor and code optimization will 

be explored to ensure that the library achieve an acceptable improvement in term of 

memory and speed.  
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No Task Duration 

(Days) 

Week 

1

-

4 

5 6 7 8 9 10

+ 

1  Study GPU programming 

concepts and practices 

 28               

2  Explore implementation on 

GPU programming with C 

language on the library 

 3     

 

          

3 Study and implement parallel 

technique on addition 

 3               

4 Study and implement parallel 

technique on subtraction 

 1               

5 Study and implement 

sequential/parallel 

Montgomery 

Multiplication/Exponentiation/

Reduction 

14               

6 Study and identify possibility 

of implementing parallel 

technique on division 

 14               

Table 1: Gantt chart for FYP1 
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No Task Duration 

(Days) 

Week 

1

-

4 

5 6 7 8 9 10

+ 

1  Study Separated Operand 

Scanning (SOS) method& 

Coarsely Integrated Operand 

Scanning (CIOS) method for 

Montgomery Multiplication 

 28               

2 Implement SOS & CIOS 

method on CPU 

 7     

 

          

3 Implement SOS & CIOS 

method on GPU 

 7               

4 Implement Coalesced Access 

structure to improve 

performance 

7        

5 Implement Montgomery 

Exponentiation with binary 

exponentiation method 

 7               

6 Improve SOS multiplication on 

squaring to reduce 

computation on multiplication 

7               

7 Continue to find way to 

optimise the performance and 

calculate the throughput on 

Montgomery Multiplication 

and Exponentiation 

 -               

Table 2: Gantt chart for FYP2 
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Chapter 4: Implementation & Optimisation 

To obtain the best performance from NVIDIA CUDA GPU, we explored on CUDA C 

Best Practice Guide from CUDA Toolkit Documentation to determine any possible 

optimisation that can be considered. 

4.1 Parallel library 

The most straight forward approach to parallelising our system is to make use of 

existing libraries that take edge of parallel architecture for the sake of us. We used 

Thrust library from CUDA toolkit which is a parallel C++ template library similar to 

the C++ Standard Template Library. Thrust provides two vector containers, host_vector 

and device_vector that are like vector in C++ STL. We make use of " = " operator to 

copy a host_vector to a device_vector (or vice versa) so we can avoid low level 

declaration like cudaMemcpy to allow maintainable and clean code. By using 

host_vector and device_vector, we used syntax like H.begin() and H.end() as iterator. 

Besides, we also used insert and push_back function during data processing.  

4.2 Performance Metrics 

When we attempt to optimise and implement CUDA code, it is compulsory to know 

how to measure performance accurately. We timed CUDA calls and kernel executions 

with CPU timer. Since CUDA API functions are asynchronous which they return 

control back to the calling CPU thread prior to complete their work, by calling 

cudaDeviceSynchronize() immediately before starting and stopping the CPU timer, we 

are able to synchronize the CPU thread with the GPU. 

4.3 Coalesced Access to Global Memory 

Global memory loads and stores by threads of a warp are coalesced by the device into 

as few as one transaction when certain access requirements are met. 

For example, suppose the threads of a warp access adjacent 128-byte words (e.g., 

adjacent bigInt values) by a single 128B L1 cache line. Such a pattern is shown below. 

This way of organising data is called array of structure (AoS) 

A0A1A2A3A4…A31 B0B1B2B3B4…B31 C0C1C2C3C4…C31 D0D1D2D3D4…D31 

0        31 32                         63 64                           95 96             128  



 

BCS (Hons) Computer Science 
Faculty of Information and Communication Technology (Perak Campus), UTAR 32 
 

From the pattern above, 4 coalesced transactions will service that memory access. In 

our actual implementation, our algorithm accesses the word by using one index so that 

we can access the other neighbour data with index+i. However, the pattern above does 

not optimise the data access well as we will only need 4 starting word, A0, B0, C0 and 

D0 to reach other data. Therefore, we restructured our data to allign the access pattern 

properly below. This way of organising data is called structure of arrays (SoA). 

A0B0C0D0… A1B1C1D1… A2B2C2D2… A3B3C3D3… 

0          31 32                                 63 64                                95 96                               128  

With the structure above, one single coalesced transaction is sufficient to service that 

memory access hence speed up global memory read operation. 

To perform the conversion, suppose we have an array of multiple bigInt data which 

depends on thread size and block size (Concatenation of data depends on 𝑡ℎ𝑟𝑒𝑎𝑑 𝑠𝑖𝑧𝑒 ∗

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘) A0A1A2A3A4…A31 B0B1B2B3B4…B31 C0C1C2C3C4…C31, 

1: thrust::device_vector<unsigned int> deviceA 

2: for 𝑖 = 0 𝑡𝑜 32 do 

3: for 𝑗 = 0 𝑡𝑜 1024 ∗ 32 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 do 

4:  𝑑𝑒𝑣𝑖𝑐𝑒𝐴. 𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘(𝐴[𝑗 + 𝑖]) 

5:  𝑗 = 𝑗 + 32 

After the conversion, the structure in the array is reordered to become A0B0C0D0… 

A1B1C1D1… A2B2C2D2… A3B3C3D3… and ready to transfer into kernel function as 

parameter. Storing the data in SoA make full use of GPU memory bandwidth since 

there is no interleaving of elements of the same field, the SoA layout on the GPU 

provides coalesced memory access and can achieve more efficient global memory 

utilisation. 

4.4 Instruction Optimization 

Division and modulo operations are needed in Montgomery multiplication. In computer, 

integer division and modulo operations are costly and should be stay away from. 

Therefore, we replaced them with bitwise operations since our bigInt is represented in 

power of 232. The shift operations can be used to avoid expensive division and modulo 

calculations: 

𝑎 𝑚𝑜𝑑 232 = 𝑎 % 232 = 𝑎 & 4294967295 
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𝑎 ÷ 232 = 𝑎 ≫ 32 

In Montgomery exponentiation, to check if j-th item of the set is on, we used the bitwise 

AND operation 𝑇 = 𝑆 & (1 ≪ 𝑗), which make it a much more efficient choice. 

4.5 Thread and Block size 

To perform Montgomery Multiplication in GPU, we performed kernel call providing 

the number of blocks in each dimension and threads per block in each dimension. For 

instance, MontMul<<<B,T>>>(d_a1, d_b1, d_ans, d_n, d_n1, d_s). In our 

implementation, we uses a 1-D structure which each block will contains the maximum 

threads available by CUDA, which is 1024 threads. Each thread will handle one 

computation of Montgomery multiplication. In each block, 1024 Montgomery 

multiplication will be computed. Therefore, to compute more than 1024 Montgomery 

multiplication, user have to create more threads by declaring the block size to the kernel 

by passing it through MonPro() function in CPU. In short, a kernel call of block size of 

N can compute 𝑁 ∗ 1024 Montgomery multiplication in parallel.  

CUDA Built-In Variables 

 blockIdx.x, blockIdx.y, blockIdx.z are built-in variable that returns the block ID 

in the x-axis, y-axis and z-axis of the block that is executing the given block of 

code. In our implementation, since we are using a 1D dimensional block, we 

needed only the x-axis by using blockIdx.x. 

 threadIdx.x, threadIdx.y, threadIdx.z are built-in variable that returns the thread 

ID in the the x-axis, y-axis and z-axis of the thread that is being executed by this 

stream processor in this particular block. In our implementation, since we are 

using a 1D dimensional thread, we needed only the x-axis by using threadIdx.x. 

 blockDim.x, blockDim.y, blockDim.z are built-in variables that return the 

number of threads in a block in the x-axis, y-axis and z-axis. 

In our implementation, the full global thread ID in x-dimension can be computed by: 

𝑖𝑑𝑥 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 +  𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 
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For instance, with a block dimension of 8, the Global Thread ID represents: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

 

threadIdx.x threadIdx.x threadIdx.x 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 

 

Since we rearrange the structure in the array given to kernel call, during first step which 

is responsible for the multiplication in Montgomery multiplication algorithm, code 

below will do the access the correct index for it. *(𝑑_𝑠 = 32 in our implementation) 

1: for 𝑖 = 0 𝑡𝑜 𝑑_𝑠 do 

2: 𝐶 = 0 

3: for 𝑗 = 0 𝑡𝑜 𝑑_𝑠 do 

4:  (𝐶, 𝑆) = 𝑡[𝑖 + 𝑗] + 𝐶 + 𝑎[𝑗 ∗ 1024 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 + 𝑖𝑑𝑥] + 𝑏[𝑖 ∗

1024 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 + 𝑖𝑑𝑥] 

5:  𝑡[𝑖 + 𝑗] = 𝑆 

6: 𝑡[𝑖 + 𝑑_𝑠]  = 𝑐𝑎𝑟𝑟𝑦 

 

As shown above, 𝑗 ∗ 1024 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 will access the correct index as it will “jump” 

from group 0 to group 1 to so on, and then perform shifting with idx which is our global 

thread ID which tell GPU which thread it is dealing with. Suppose we have a block size 

of one below: 

0 Group 0 1024 Group 1 2048 Group 2 

 

 

 

 

 

 

𝑖 ∗ 1024 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 + 𝑖𝑑𝑥 



 

BCS (Hons) Computer Science 
Faculty of Information and Communication Technology (Perak Campus), UTAR 35 
 

After the computation in Montgomery Multiplication, the GPU will have to store the 

result in an array, say, d_ans. Montgomery exponentiation will perform multiple 

Montgomery multiplication, hence we decided to keep the answer in similar structure 

for Coalesced Access. To do so, the code below perform the restructuring during the 

data copying process. 

1: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0 

2: for 𝑖 = 0 𝑡𝑜 𝑑_𝑠 do 

3:  𝑑_𝑎𝑛𝑠[𝑖 ∗ 1024 ∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 + 𝑖𝑑𝑥] = 𝑡[𝑐𝑜𝑢𝑛𝑡𝑒𝑟] 

4: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 

4.6 Shared Memory 

Shared memory are physically closer to the Streaming multiprocessors than both the 

L2 cache and global memory. Therefore, shared memory is roughly 20 to 30 times 

lower than global memory, and a bandwidth with about 10 times higher. Shared 

memory is useful as an intra-block thread communication channel. In our 

implementation, we realised the fact that the constant variable n and n’ are constantly 

used by all multiplication in the kernel. Hence, we replaced global memory accesses by 

shared memory in both variables. 

__shared__ unsigned int shared_n[32], shared_n1[32]; 
for (int i = 0; i < d_s; i++){ 
 shared_n[i] = d_n._array[i]; 
 shared_n1[i] = d_n1._array[i]; 
} 
__syncthreads(); 

4.7 Clean Code 

Although the usage of Thrust library can avoid low level declaration like cudaMemcpy 

to allow maintainable and clean code, it is purely a host side abstraction. It is forbidden 

to be used inside kernel. Therefore, we created a template outside the bigInt class to 

pass these device vector into kernel. 

template <typename T> 
struct KernelArray 
{ 
 T*  _array; 
 int _size; 
 
 // constructor allows for implicit conversion 
 KernelArray(thrust::device_vector<T>& dVec) { 
  _array = thrust::raw_pointer_cast(&dVec[0]); 
  _size = (int)dVec.size(); 
 } 
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}; 

With this template, we can declare device vector as KernelArray in our parameter in 

kernel function as below. For instance: 

__global__void SOS(KernelArray<unsigned int>d_a1, KernelArray<unsigned 

int>d_b1, KernelArray<unsigned int>d_ans, KernelArray<unsigned int>d_n, 

KernelArray<unsigned int>d_n1, int d_s, int blkSize) 

To access the element inside array of KernelArray, for example d_a1 using _array: 

d_a1._array[i] 

To determine the size of the array of KernelArray, using _size: 

d_a1._size 

4.8 Data usage 

In our implementation, a bigInt array stores 32 words of large integer representation, 

which each word take memory size of 32 bits therefore 32 𝑏𝑖𝑡𝑠 ∗ 32 = 1024 𝑏𝑖𝑡𝑠. In 

Montgomery Multiplication, each thread will have a multiplicand and multiplier which 

occupied memory of 1024 𝑏𝑖𝑡𝑠 ∗ 2 = 2048 𝑏𝑖𝑡𝑠.  Since we launched at least 1024 

threads, there is 1024 ∗ 2048 𝑏𝑖𝑡𝑠 = 2097152 𝑏𝑖𝑡𝑠.  At optimum block size of 

approximately 10, we will have 2097152 𝑏𝑖𝑡𝑠 ∗ 10 =  20971520 𝑏𝑖𝑡𝑠 =

262144 𝑏𝑦𝑡𝑒𝑠 =  2.62144 𝑀𝑒𝑔𝑎𝑏𝑦𝑡𝑒𝑠 of memory space.  
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4.9 Flow chart for implementation 

The flow chart below shows the process of how user can compute the Montgomery 

Multiplication. For Montgomery multiplication, our library needed few parameters 

such as multiplicand, multiplier, n, n’, R, 𝑅−1 and block size. 

 

The flow chart below shows the process of how user can compute the Montgomery 

Exponentiation. For Montgomery exponentiation, our library needed few parameters 

such as base, exponent, n, n’, R, 𝑅−1 and block size. 

 

 

Initialise data required
CPU function takes in 
data as parameters

CPU function 
reconstruct the data of 

multiplicand and 
multiplier

Kernel takes data and 
perform Montgomery 
Multiplication using 

CIOS method

Result is stored in 
device memory

Initialise data required
CPU function takes in data 

as parameters

CPU function reconstruct 
the data of base and 

exponent

CPU function performs 
binary exponentiation

If the bit of the exponent 
is on, call kernel of SOS 

Montgomery 
Multiplication method, 
else call CIOS method
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4.8 Code Snippet 

SOS Method for squaring (Algorithm 7) 

__global__ void sosV3(KernelArray<unsigned int>d_a1, KernelArray<unsigned 
int>d_ans, KernelArray<unsigned int>d_n, KernelArray<unsigned int>d_n1, int 
d_s, int blkSize){ 
 int idx = threadIdx.x + blockIdx.x * blockDim.x; 
 unsigned int t[65] = { 0 }; 
 
 unsigned long long tempProduct; 
 unsigned long long carry = 0; 
 __shared__ unsigned int shared_n[32], shared_n1[32], shared_s; 
 shared_s = d_s; 
 for (int i = 0; i < shared_s; i++){ 
  shared_n[i] = d_n._array[i]; 
  shared_n1[i] = d_n1._array[i]; 
 } 
 __syncthreads(); 
 
 ////////////Optimization for squaring multiplication//////////// 
 for (int i = 0; i < shared_s; i++){ 
  for (int j = i + 1; j < shared_s; j++){ 
   tempProduct = ((unsigned long long)d_a1._array[j * 1024 * 
blkSize + idx] * (unsigned long long)d_a1._array[i * 1024 * blkSize + idx]) + 
(unsigned long long)t[i + j] + carry; 
   t[i + j] = tempProduct & 4294967295; 
   carry = tempProduct >> 32; 
  } 
  t[shared_s + i] = carry; 
  carry = 0; 
 } 
 
 for (int i = 0; i < 65; i++){ 
  tempProduct = (unsigned long long)t[i] * 2 + carry; 
  t[i] = tempProduct & 4294967295; 
  carry = tempProduct >> 32; 
 } 
 
 for (int i = 0; i < shared_s; i++){ 
  tempProduct = (unsigned long long)t[i + i] + ((unsigned long 
long)d_a1._array[i * 1024 * blkSize + idx] * (unsigned long long)d_a1._array[i 
* 1024 * blkSize + idx]); 
  t[i + i] = tempProduct & 4294967295; 
  carry = tempProduct >> 32; 
  for (int j = i + 1; j < shared_s; j++){ 
   tempProduct = (unsigned long long)t[i + j] + carry; 
   t[i + j] = tempProduct & 4294967295; 
   carry = tempProduct >> 32; 
  } 
  t[shared_s + i] += carry; 
  carry = 0; 
 } 
 ////////////////////////////////////////////////////////////////// 
 
 
 
 
 for (int i = 0; i < shared_s; i++){ 
  unsigned long long c = 0; 
  unsigned long long m = ((unsigned long long)t[i] * (unsigned long 
long)shared_n1[0]) & 4294967295; 
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  for (int j = 0; j < shared_s; j++){ 
   unsigned long long tempProduct = (unsigned long long)t[i + 
j] + m*(unsigned long long)shared_n[j] + c; 
   c = tempProduct >> 32; 
   t[i + j] = tempProduct & 4294967295; 
  } 
  //ADD(t[i+s], C) 
  int counter = i; 
  while (c != 0){ 
   unsigned long long temp = (unsigned long long)t[counter + 
shared_s] + c; 
   c = temp >> 32; 
   t[counter + shared_s] = temp & 4294967295; 
   counter++; 
  } 
 } 
 unsigned int u[33]; 
 for (int j = 0; j < shared_s + 1; j++){ 
  u[j] = t[j + shared_s]; 
 } 
 
 
 int b = 0; 
 long long sub; 
 for (int i = 0; i < shared_s; i++){ 
  sub = (long long)u[i] - shared_n[i] - b; 
  if (sub < 0){ 
   t[i] = sub + 4294967296; 
   b = 1; 
  } 
  else{ 
   t[i] = sub; 
   b = 0; 
  } 
 } 
 sub = (long long)u[shared_s] - b; 
 u[shared_s] = sub; 
 
 if (sub >= 0){ 
  int counter = 0; 
  for (int i = 0; i < 32; i++){ 
   d_ans._array[i * 1024 * blkSize + idx] = t[counter++]; 
  } 
 } 
 else{ 
  int counter = 0; 
  for (int i = 0; i < 32; i++){ 
   d_ans._array[i * 1024 * blkSize + idx] = u[counter++]; 
  } 
 } 
} 
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CIOS Method for squaring (Algorithm 8) 

__global__ void ciosV2(KernelArray<unsigned int>d_a1, KernelArray<unsigned 
int>d_b1, KernelArray<unsigned int>d_ans, KernelArray<unsigned int>d_n, 
KernelArray<unsigned int>d_n1, int d_s, int blkSize){ 
 int idx = threadIdx.x + blockIdx.x * blockDim.x; 
 unsigned int t[33] = { 0 }; 
 unsigned long long temp; 
 __shared__ unsigned int shared_n[32], shared_n1[32], shared_s; 
 shared_s = d_s; 
 for (int i = 0; i < shared_s; i++){ 
  shared_n[i] = d_n._array[i]; 
  shared_n1[i] = d_n1._array[i]; 
 } 
 __syncthreads(); 
 
 for (int i = 0; i < shared_s; i++){ 
  unsigned long long c = 0; 
  for (int j = 0; j < shared_s; j++){ 
   temp = t[j] + (unsigned long long)d_a1._array[j * (1024 * 
blkSize) + idx] * (unsigned long long)d_b1._array[i * (1024 * blkSize) + idx] + 
c; 
   t[j] = temp & 4294967295; 
   c = temp >> 32; 
  } 
  temp = (unsigned long long)t[shared_s] + c; 
  t[shared_s] = temp & 4294967295; 
  t[shared_s + 1] = temp >> 32; 
 
  unsigned long long m = ((unsigned long long)t[0] * (unsigned long 
long)shared_n1[0]) & 4294967295; 
  temp = (unsigned long long)t[0] + m*(unsigned long 
long)shared_n[0]; 
  c = temp >> 32; 
  for (int j = 1; j < shared_s; j++){ 
   temp = (unsigned long long)t[j] + m*(unsigned long 
long)shared_n[j] + c; 
   t[j - 1] = temp & 4294967295; 
   c = temp >> 32; 
  } 
  temp = (unsigned long long)t[shared_s] + c; 
  t[shared_s - 1] = temp & 4294967295; 
  c = temp >> 32; 
  t[shared_s] = t[shared_s + 1] + c; 
 } 
 
 unsigned int u[33]; 
 for (int j = 0; j < shared_s + 1; j++){ 
  u[j] = t[j]; 
 } 
 
 int b = 0; 
 long long sub; 
 for (int i = 0; i < shared_s; i++){ 
  sub = (long long)u[i] - shared_n[i] - b; 
  if (sub < 0){ 
   t[i] = sub + 4294967296; 
   b = 1; 
  } 
  else{ 
   t[i] = sub; 
   b = 0; 
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  } 
 } 
 sub = (long long)u[shared_s] - b; 
 u[shared_s] = sub; 
 
 if (sub >= 0){ 
  int counter = 0; 
  for (int i = 0; i < 32; i++){ 
   d_ans._array[i * 1024 * blkSize + idx] = t[counter++]; 
  } 
 } 
 else{ 
  int counter = 0; 
  for (int i = 0; i < 32; i++){ 
   d_ans._array[i * 1024 * blkSize + idx] = u[counter++]; 
  } 
 } 
} 

Binary Exponentiation Method (Algorithm 9) 

From Chapter 3 Algorithm 9, the binary exponentiation is for exponent that smaller 

than 64 bits. However, our exponent can grow as large as 22048 which supported by our 

bigInt data type. Therefore, the code snippet below shows how to implement binary 

exponentiation on bigInt data type. 

for (int i = exp.radixForm.size() - 1; i >= 0; i--){ 
    if (exp.radixForm.size() - 1 == i){ 
       for (int j = floor(log2(exp.radixForm[i])); j >= 0; j--){ 
     sosV3 <<<blockSize, 1024 >>>(d_x1, d_ans, d_n, d_n1, d_s, d_blkSize); 
     d_x1 = d_ans; 
     if (exp.radixForm[i] & (1 << j)){ 
         ciosV2 <<<blockSize, 1024 >>>(d_x1, d_a1, d_ans, d_n, d_n1, d_s, 
d_blkSize); 
         d_x1 = d_ans; 
     } 
        } 
    } 
    else{ 
        for (int j = 31; j >= 0; j--){ 
            sosV3 <<<blockSize, 1024 >>>(d_x1, d_ans, d_n, d_n1, d_s, d_blkSize); 
      d_x1 = d_ans; 
      if (exp.radixForm[i] & (1 << j)){ 
          ciosV2 <<<blockSize, 1024 >>>(d_x1, d_a1, d_ans, d_n, d_n1, d_s, 
d_blkSize); 
    d_x1 = d_ans; 
      } 
        } 

} 
} 
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Chapter 5: Conclusion 

As mentioned in Chapter 2, we followed the (APOD) design cycle which we repeatedly 

optimise and deploy our library. Therefore, in this first phrase, we identified which 

method of Montgomery Multiplication is suitable to perform efficient Montgomery 

Exponentiation. In this phrase, we tested the performance between SOS method and 

CIOS method with and without the use of coalesced access to global memory with 

Structure of Array model. The results are benchmarked with integer of size 21024 for 

multiplicand and multiplier in Montgomery Multiplication. In Montgomery 

exponentiation, we are using an exponent of size 22048 with base of size 21024. 

 

Figure 1: SOS method 

From the graph above, we can justify that Coalesced Access to Global Memory is 

extremely important optimisation to be done. At the optimum block size of 6, the 

performance is almost doubled with proper structured data, from 5862266 

multiplications per second to 10617868 multiplications per second. 
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Figure 2: CIOS method 

From the graph above, we can justify that Coalesced Access to Global Memory is 

extremely important optimisation to be done. At the optimum block size of 6, the 

performance is almost doubled with proper structured data, from 6024097 

multiplications per second to 11342885 multiplications per second. 

 

Figure 3: SOS method vs CIOS method 

From the figure above, CIOS method performs better than SOS method on optimum 

block size since CIOS method performs lesser read, write and space than SOS method. 
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On block size of 6, CIOS method computes 11342885 multiplications per second while 

SOS method computes 10617868 multiplications per second. 

 

 

Figure 4: Montgomery Exponentiation 

 

From the analytics of CIOS and SOS method on Montgomery multiplication, we took 

advantage of both multiplication method on Montgomery exponentiation. As CIOS 

method is more efficient than SOS method when multiplicand is not equal to multiplier, 

we compared four exponentiation method. Comparing between purely CIOS 

multiplication method and purely SOS multiplication method, CIOS method only 

perform well on the peak of the block size and slow down along with increasing block 

size. Hence, we introduced SOS method with squaring optimisation. By comparing the 

result of CIOS method integrate with SOS method without squaring and CIOUS 

method integrate with SOS squaring optimised method, we can see that the SOS 

squaring optimised method works nicely with CIOS method, which increase the 

performance of Montgomery exponentiation overall. From the result, we can see a huge 

leap of improvement on performance when the block size become gradually large. Our 

Montgomery exponentiation is able to compute 1.7120393 ∗ 107 exponentiations per 

second with optimum block size of 8. 
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Since we identified that CIOS method with SOS squaring method make the most 

efficient Montgomery exponentiation, we will focus to optimise both of them to 

increase our efficiency further. In this phrase, we contrast the performance by 

introducing shared memory to the kernel of CIOS method and SOS squaring method. 

 

Figure 5: CIOS with shared memory vs without shared memory 

 

Figure 6: SOS squaring with shared memory vs without shared memory 

From the two figures above, we can see an overall small improvement after make use 

of the Shared memory. Hence, we benchmarked our Montgomery exponentiation again 

to compare the efficiency.  
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Figure 7: Montgomery exponentiation with shared memory vs without shared memory 

As we expected, the efficiency of Montgomery exponentiation increased after the 

implementation of shared memory. With the small improvement, we are able to 

compute 1.7768342 ∗ 107 exponentiation per second with optimum block size of 9. 

After getting our best performing result, we compared it to the prior work to the paper 

of Niall Emmart and Charles Weems. 

 

Figure 8: Best performance model table(N. Emmart and C, 2015) 

With the comparison of 2048 bits, the optimum performance by 780Ti is able to 

compute 10778000 modular exponentiation per second while our implementation is 
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capable to compute 17768342 modular exponentiation per second, which improved 

the performance about 39%.  

With the increasing reliance on technology in daily life such as online banking 

transaction, email, communication service, social network and infrastructure control 

system as the internet evolves and computer network become bigger and bigger, it is 

becoming more and more crucial to secure every aspect of online data and information 

through protected computer system and network. Therefore, a fast computation of 

cryptosystem is needed. With the library developed, it can be used to process encryption 

and decryption in a faster manner with GPU technologies.   
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Appendices 

Data used for Figure 1 in Chapter 5: 

Number of block(1024 threads per block) Throughput(Multiplication per second) 

 Unstructured Data Structured Data 

1 1400147.464838 2364254.496644 

2 3018878.145831 4596557.777053 

3 4878346.764303 6726090.988515 

4 6331284.344676 9032730.413246 

5 6054258.660490 10250882.882406 

6 5862266.507188 10617868.199592 

7 6073356.797868 10112906.948522 

8 6607136.207250 9935453.410894 

9 7104087.118730 9833672.093613 

10 7471651.195581 9842303.014909 

11 7675175.832056 9715354.041118 

12 7638904.057538 9590602.775594 

13 7503367.464168 9481425.749395 

14 7381718.054022 9271217.867328 

15 7160496.588766 9182132.901544 

16 5835368.795942 8667993.879299 

17 6034943.974495 8933808.405549 

18 5857927.773255 9278597.926789 

19 5939193.494941 9396294.047811 

20 6047853.962380 9494846.753692 

21 6083109.422340 9489924.884948 

22 6017204.639584 9352990.672001 

23 5909404.201299 9276312.360612 

24 5787734.160624 8969764.749908 

25 5590873.013669 8723744.421044 

26 5518140.166858 8555247.809025 

27 5458831.024447 8535993.664009 

28 5384000.695204 8475846.252575 

29 5367606.953028 8406918.186094 

30 5312784.251133 8433192.104745 
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Data used for Figure 2 in Chapter 5: 

Number of block(1024 threads per block) Throughput(Multiplication per second) 

 Unstructured Data Structured Data 

1 1406254.406892 2328471.473317 

2 3041342.989728 4615068.140506 

3 4956461.358652 6779585.125786 

4 6604690.371033 9037997.349835 

5 6603114.734055 11175638.977613 

6 6024097.271352 11342885.093304 

7 5655228.585650 10132125.017860 

8 5689508.505672 9472622.673104 

9 5974330.692859 9268179.843272 

10 6303166.000431 9186305.031707 

11 6618233.162088 8729339.044333 

12 6768698.867975 8298635.180740 

13 6888647.265362 8179613.235097 

14 6865525.834855 8000557.999056 

15 6814717.606386 7973797.579403 

16 5798710.368375 7722238.248303 

17 6007344.259215 7769507.136570 

18 5805903.369285 7791788.059614 

19 5626489.252057 7844835.202280 

20 5687119.581833 7849926.365408 

21 5744447.971537 7861813.743998 

22 5768707.819068 7841369.281482 

23 5894574.398123 7582703.986064 

24 5952632.082898 7856207.798527 

25 5946680.508957 7956962.976120 

26 5838088.684033 8028003.583306 

27 5765159.296736 8075545.497103 

28 5628573.987322 8109797.114492 

29 5500454.253018 8111652.081142 

30 5400302.757368 8174306.823765 
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Data used for Figure 3 in Chapter 5: 

Number of block(1024 threads per block) Throughput(Multiplication per second) 

 SOS CIOS 

1 2364254.496644 2328471.473317 

2 4596557.777053 4615068.140506 

3 6726090.988515 6779585.125786 

4 9032730.413246 9037997.349835 

5 10250882.882406 11175638.977613 

6 10617868.199592 11342885.093304 

7 10112906.948522 10132125.017860 

8 9935453.410894 9472622.673104 

9 9833672.093613 9268179.843272 

10 9842303.014909 9186305.031707 

11 9715354.041118 8729339.044333 

12 9590602.775594 8298635.180740 

13 9481425.749395 8179613.235097 

14 9271217.867328 8000557.999056 

15 9182132.901544 7973797.579403 

16 8667993.879299 7722238.248303 

17 8933808.405549 7769507.136570 

18 9278597.926789 7791788.059614 

19 9396294.047811 7844835.202280 

20 9494846.753692 7849926.365408 

21 9489924.884948 7861813.743998 

22 9352990.672001 7841369.281482 

23 9276312.360612 7582703.986064 

24 8969764.749908 7856207.798527 

25 8723744.421044 7956962.976120 

26 8555247.809025 8028003.583306 

27 8535993.664009 8075545.497103 

28 8475846.252575 8109797.114492 

29 8406918.186094 8111652.081142 

30 8433192.104745 8174306.823765 
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Data used for Figure 4 in Chapter 5: 

Number of 

block(1024 

threads per 

block) 

Throughput(Multiplication per second) 

 All CIOS All SOS CIOS with normal 

SOS 

CIOS with 

squaring SOS 

1 2843506.512122 2694962.839663 2833087.242743 3122018.288235 

2 5702663.347258 5411452.516474 5671978.598818 6273119.666435 

3 8533818.245819 8004211.359837 8456577.032458 9321445.804593 

4 11307032.517706 10598046.341906 11078826.045543 12201392.599069 

5 13886821.144992 12916660.518587 13398090.163634 14520735.143830 

6 14904082.450371 13520512.104346 14144555.570443 15868218.367919 

7 12313617.721053 13130552.736575 13507147.261474 16485963.655920 

8 10861152.098662 11168724.438097 11552507.225155 17120393.314583 

9 10347098.648845 10678931.002801 11056594.017876 16832035.789563 

10 10078415.862989 10268301.018321 10629432.229169 16748888.408109 

11 9430649.666129 10064677.146364 10413048.071073 16496206.837404 

12 8863396.164550 9908019.718581 10210939.706359 15684163.842564 

13 8551716.090488 9823912.505058 10163337.901528 14929894.109594 

14 8357155.143395 9641203.687927 9989057.571279 13879082.082894 

15 8197039.457959 9463169.607767 9801226.630490 13495494.106131 

16 8014260.943547 8988915.105872 9319487.708615 11959837.274403 

17 8016040.796483 9196339.736010 9570517.348923 12051677.743322 

18 8031646.116380 9479285.312735 9809089.499316 12081828.748415 

19 8048859.308229 9900848.828084 10231030.608586 12141799.286305 

20 8061988.114551 9901105.841186 10221610.959840 11993807.737497 

21 8085725.072440 9825679.746020 10171099.008071 11744521.864432 

22 8151951.664530 9598185.148646 9655095.639168 11233133.152920 

23 8217565.639183 8890253.315337 9274535.838157 10800914.041494 

24 8266046.857780 8747096.427929 9055728.367258 10476426.262910 

25 8239698.328123 8603232.287460 8880617.279262 10082182.369464 

26 8239913.648351 8432262.268016 8690660.946633 9857151.749929 

27 8234722.173077 8321634.785455 8532032.406308 9618447.454008 

28 8258815.573285 8291207.355358 8480263.786038 9494465.318541 

29 8286529.769429 8310755.574713 8489234.001692 9409513.192009 

30 8334669.528281 8302128.554653 8483125.232379 9402245.453967 
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Data used for Figure 5 in Chapter 5: 

Number of block(1024 threads per block) Throughput(Multiplication per second) 

CIOS Without shared memory With shared memory 

1 2328471.473317 2508565.082499 

2 4615068.140506 5155940.909771 

3 6779585.125786 7533376.332310 

4 9037997.349835 9573027.219739 

5 11175638.977613 11893014.877733 

6 11342885.093304 12527315.412592 

7 10132125.017860 11645539.988623 

8 9472622.673104 10999279.627445 

9 9268179.843272 11051989.846461 

10 9186305.031707 10618252.624584 

11 8729339.044333 10136260.709774 

12 8298635.180740 9914953.854027 

13 8179613.235097 9459367.828859 

14 8000557.999056 9150759.913047 

15 7973797.579403 8987636.158406 

16 7722238.248303 8659032.696827 

17 7769507.136570 8589649.263688 

18 7791788.059614 8450243.738207 

19 7844835.202280 8580203.530546 

20 7849926.365408 8551573.338483 

21 7861813.743998 8425399.708542 

22 7841369.281482 8395287.375718 

23 7582703.986064 8333485.414809 

24 7856207.798527 8346521.769098 

25 7956962.976120 8317207.315686 

26 8028003.583306 8324708.741640 

27 8075545.497103 8322454.424907 

28 8109797.114492 8287402.538916 

29 8111652.081142 8319623.858646 

30 8174306.823765 8185729.602412 
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Data used for Figure 6 in Chapter 5: 

Number of block(1024 threads per block) Throughput(Multiplication per second) 

SOS with squaring optimisation Without shared memory With shared memory 

1 2602972.833452 2662941.850137 

2 5036818.197475 5155985.490108 

3 7864587.058147 8192921.945504 

4 9730331.052991 10691811.293619 

5 11390146.072617 12180787.803536 

6 13247908.102564 14685496.917635 

7 13439906.770717 14962162.729861 

8 14271047.691608 15538023.524989 

9 14274579.803840 16068243.420969 

10 14276026.009910 15654483.964308 

11 14296303.707803 14979843.373748 

12 13867139.074260 14069160.260052 

13 13501290.306240 13997817.476025 

14 12632663.458253 12972654.974578 

15 12732513.373201 13153286.879287 

16 11019516.906015 11379813.274415 

17 11316190.564863 11486650.558964 

18 11418460.380941 11824679.363250 

19 11264896.182380 11776247.932966 

20 11290892.454613 11630040.277319 

21 11169254.015771 11414943.252669 

22 10705749.990503 10998830.920480 

23 10475439.571463 10679844.132921 

24 10078344.218179 10289039.707261 

25 9849282.644225 9951854.043393 

26 9654033.766965 9745089.736255 

27 9571467.676337 9623686.766958 

28 9292000.544672 9528054.855065 

29 9279016.116327 9428769.962285 

30 9204734.867913 9215150.734584 
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Data used for Figure 7 in Chapter 5: 

Number of block(1024 threads per block) Throughput(Multiplication per second) 

Montgomery Exponentiation Without shared memory With shared memory 

1 3122018.288235 3323180.304031 

2 6273119.666435 6681806.072885 

3 9321445.804593 9924198.060072 

4 12201392.599069 12941967.254239 

5 14520735.143830 15324437.599108 

6 15868218.367919 16831728.490093 

7 16485963.655920 17604226.643155 

8 17120393.314583 17648710.675979 

9 16832035.789563 17768342.281259 

10 16748888.408109 17011541.510669 

11 16496206.837404 16338366.709305 

12 15684163.842564 15069433.190728 

13 14929894.109594 14421983.661440 

14 13879082.082894 13584407.532982 

15 13495494.106131 13124976.378879 

16 11959837.274403 12165866.856457 

17 12051677.743322 12505796.262106 

18 12081828.748415 12282810.027172 

19 12141799.286305 12044294.836269 

20 11993807.737497 11807159.773226 

21 11744521.864432 11503425.368358 

22 11233133.152920 11157682.921541 

23 10800914.041494 10699926.517346 

24 10476426.262910 10302270.505581 

25 10082182.369464 10047853.428199 

26 9857151.749929 9800888.467021 

27 9618447.454008 9697965.845483 

28 9494465.318541 9592178.895553 

29 9409513.192009 9368167.323048 

30 9402245.453967 9206738.751390 
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