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ABSTRACT 

 

DNA fingerprinting has long been used to identify a person by characteristics of their 

DNA. In forensic science, DNA analysis has been useful in criminal investigations to 

find out whether a suspect was in the crime scene and also used as evidence in court 

cases. However, forensic samples sometimes contain DNA from two or more individuals 

and are difficult to interpret. Traditionally, researchers were able to interpret mixture by 

the signal peak height and area produced by first generation sequencing. Various methods 

that can be categorised as Frequentist approaches and Bayesian approaches are designed 

to evaluate DNA mixtures. 

 

With the emergence of NGS technologies, the sequencing of billions of DNA molecules 

can be parallelised; greatly increasing the throughput and reducing the associated costs. 

Alleles that have similar lengths that were indiscernible using first generation sequencing 

techniques are now easily distinguished. In this project, we proposed a new mathematical 

model and design a likelihood ratio method that handles NGS data to interpret DNA 

mixtures. A software toolkit is also developed to test and verify the method. 

 

We have applied the method to 4480 simulated DNA mixtures of various mixture 

proportions using 8 unrelated individuals in an unpublished dataset from Beijing 

Genomics Institute. The results confirms the feasibility of utilizing NGS data in DNA 

mixture interpretations. Among the positively labelled results, the mean likelihood ratio 

for two-person mixtures is as high as log10 285978. Using our method, all 224 identity 

tests for two-person mixtures and three-person mixtures were correctly identified. This 

project serves as a basis to implementing likelihood ratio analysis of DNA mixture using 

NGS data. 
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1.1 Motivation and Problem Statement 

 

With regards to the analysis of DNA mixture for forensic purposes, the procedures 

currently in use are still highly variable despite improvements in protocols and 

interpretation guidelines. Other than that, there seems to be subjectivity and bias in 

complex mixture interpretation. In an experiment conducted by Dror and Hampikian 

(2011), 17 independent DNA expert analysts gave different conclusions when examining 

the same DNA profiles. 

 

There are grave consequences when a mixed DNA sample is misinterpreted. It is possible 

to have false inclusions and exclusions in cases where the DNA profile of an innocent 

person is misinterpreted as a match with the suspect or when the true contributor is said 

to have a mismatch with the sample given a low DNA template. Besides, results from 

DNA analysis of complex mixtures are often inconclusive when factors such as sample 

degradation, low template concentration, allele drop-in, drop-out and stutters that occurs 

prevalently are not considered (Haned, et al., 2015). 

 

Over the last decade, many new techniques have been developed for complex mixture 

interpretation. Mathematical models that take into account the challenges above were also 

formulated. Nevertheless, some of the methods often yield inconclusive results or are 

computationally expensive. 

 

Traditionally, DNA sequencing is known to have low throughput, high cost and operation 

difficulties. With the emergence of Next-generation Sequencing (NGS) technologies, the 

sequencing of billions of DNA molecules can be parallelised; greatly increasing the 

throughput and reducing the associated costs. Alleles that have similar lengths that were 

indiscernible using first generation sequencing techniques are now easily distinguished 

(Yang, et al., 2014). These advantages make STR analysis possible in low DNA 

templates and give fast and accurate allele determination. 
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1.2 Project Scope 

 

The scope of the project includes the development of a likelihood ratio method that uses 

NGS data in a probability model to do DNA testing on mixed samples. The probability 

model should take into account aspects such as mixture scenario, sequencing errors, drop-

in, drop-out, and stutters. 

 

 

1.3 Project Objectives 

 

The objectives of the project are: 

i. To formulate a likelihood ratio method that utilizes NGS data to interpret DNA 

mixtures. 

ii. To consider the aspects such as mixture scenario, sequencing errors, drop-in, 

drop-out, and stutters in the probability model. 

iii. To develop a software toolkit that uses the formulated likelihood ratio method to 

handle DNA mixture using NGS data. 

 

 

1.4 Proposed Approach 

 

The proposed approach to tackle the problems stated is to develop a likelihood ratio 

method that utilizes NGS data to analyse DNA mixtures. The mathematical model should 

consider sequencing errors and can handle various mixture scenarios. The devised 

method allows DNA mixture interpretation to be carried out in a standardised and reliable 

way. To prove that the proposed method works, a software toolkit that uses the 

formulated likelihood ratio method will be developed to test and verify its correctness. 

Experiments are carried out to find out cases where the devised method is applicable as 

well as its limitations. 
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1.5 Background information 

 

Deoxyribonucleic acid (DNA) is a molecule that contains the genetic code for an 

organism. DNA, usually present in the nucleus of a cell, is responsible for the way 

proteins are made. The part of the DNA that carries the codes for a protein is called a 

gene. Different individuals can have different variants of the same gene due to minor 

mutation, these variants are known as alleles. Generally, each person has two alleles at 

each gene locus inherited from their parents. 

 

DNA fingerprinting, also known as DNA profiling has been used to identify a person by 

the characteristics of their DNA. In forensic science, DNA analysis has been useful in 

criminal investigations to find out whether a suspect was at the crime scene; such 

findings have been used as evidence in court cases. Despite the fact that a high fraction of 

human DNA sequences are the same in every person, there are differences in certain 

regions (Norrgard, 2008). It was found out that there are recurrent patterns of DNA units 

that change in length among individuals; one of such repeating sequences is the so-called 

short tandem repeat (STR). By comparing the STR loci between DNA samples, a 

probability of match can be calculated for identity testing. Using the 13 core STR loci 

which were identified by the Federal Bureau of Investigation (FBI), a study shows that 

the likelihood of a complete match between profiles of two unrelated Caucasians is 

approximately 1 in 575 trillion (Reilly, 2001). 

 

Assuming that the DNA from a crime scene evidence is in good quality and a single 

person is the sole contributor to the sample, identity testing using DNA analysis is 

accurate and reliable. However, forensic evidentiary samples often contain DNA from 

multiple contributors. In such cases, the interpretation of DNA evidence is relatively 

complex and subjective. It is important to note that not the entire genome is compared 

during DNA testing; instead, only a small subset of the loci that have high variability is 

used. 
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1.6 Report Organisation 

 

This report consists of 6 chapters in total. The first chapter introduces the project, the 

motivations for working on the project and also the project objectives. In the second 

chapter, we study and review past researches on the topic of DNA mixture analysis. 

 

Chapter 3 explains our new likelihood ratio method in detail. The definitions and 

equations of the mathematical model are in this chapter. Chapter 4 describes the 

methodology and tools used in the project in addition to the timeline of the project. 

Chapter 5 details experimental design and results of the devised method in the project. 

 

The final chapter concludes the project and explains on possible future improvements on 

the finished system. 
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2.1 Introduction 

 

Over the course of the years, a number of methods have been developed for DNA 

mixture interpretation. They can be characterised into Frequentist approaches and 

Bayesian approaches. Frequentist approaches interpret the mixture data by taking account 

of observed genotype and population allele frequency to calculate a probability of 

exclusion (which will be explained in Section 2.2). Bayesian approaches are usually 

associated with calculating likelihood ratios and may or may not utilize quantitative 

information. 

 

By taking advantage of techniques such as automated fluorescent labelling in the Sanger 

method (first generation sequencing), researchers were able to interpret a mixture by its 

signal peak height and area. The progenitor of employing quantitative data in mixtures, 

now termed the binary model, is the paper by Evett, et al. in 1991. However, the model is 

not only contingent on the resolution of two-person mixtures, but also relies on the 

experience of experts upon the observed height and shape of the sequencing signal. 

 

Although further improvements have been made on the binary model, such as the use of 

linear mixture analysis through minimizing the sum of squared deviation across all loci 

(Perlin & Szabady, 2001), the reliability of the model is still questionable. Recent studies 

adopt the use of Markov chain Monte Carlo (MCMC) methods to formulate a continuous 

model, as demonstrated in the paper by Buckleton, et al. published in 2013. 
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2.2 Frequentist Approach – Probability of Exclusion 

 

The Frequentist approach of solving complex mixture interpretation problem depends on 

the calculation of an exclusion probability. The probability of exclusion is defined as “the 

probability that a random individual would be excluded as a contributor to a DNA 

mixture”. In the case where a suspect’s DNA profile matches the mixture, then the 

probability of exclusion would be important. Practically, a high probability of exclusion 

would mean that the suspect is more likely to be the only valid contributor to the mixture. 

Conversely, a low probability of exclusion means that the mixture contains DNA 

sequences that are commonly found in a population – the suspect might just be falsely 

included. 

 

Given a mixture of DNA that consists of alleles 𝐴1, … , 𝐴𝑛, we want the probability of 

exclusion at locus 𝑙, 𝑃𝐸𝑙 . First, we consider the possible genotypes that can be formed 

entirely within the locus; which is the sum of all heterozygotes and homozygotes: 

∑ 𝑝𝑖𝑝𝑗𝑖≠𝑗 + ∑ 𝑝𝑖
2𝑛

𝑖=1 , where 𝑝𝑖 is the allele frequency 𝐴𝑖. 

The probability of exclusion is then: 

𝑃𝐸𝑙 = 1 − ∑ 𝑝𝑖𝑝𝑗

𝑖≠𝑗

+ ∑ 𝑝𝑖
2

𝑛

𝑖=1

 

= 1 − (∑ 𝑝(𝐴𝑖)

𝑛

𝑖=1

)

2

 

Considering all loci, the total probability of exclusion is: 

𝑃𝐸 = 1 − ∏(1 − 𝑃𝐸𝑙)

𝑙

 

Using this approach has its benefits, such as its simplicity, and that it does not require us 

to know the number of contributors to the DNA sample beforehand. Still, it is commented 

that there is a substantial waste of information as the genotype of suspect is not taken into 

account (Buckleton, et al., 2005). 
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2.3 Bayesian Approaches 

2.3.1 Qualitative Method 

 

The Bayesian approach for DNA mixture analysis typically involves the calculation of a 

likelihood ratio. To form the likelihood ratio, the primary step is usually the formulation 

of the null hypothesis and the alternative hypothesis. This step is non-trivial as it is 

dependent on the scenario of the casework and requires understanding of the related 

problems. 

 

To demonstrate, consider a case where a woman who has been assaulted claims to have 

scratched her attacker. Suppose the fingernails of the woman contain the mixed DNA 

profiles of two individuals. In such case, it is obvious to see that the profile of the donor 

herself is present in the DNA sample. Hence, the most reasonable hypotheses would most 

likely be as follow: 

 

𝐻𝑝: The sample is composed of the DNA of the donor and the suspect. 

𝐻𝑑: The sample is composed of the DNA of the donor and an unknown person. 

 

Note that the inclusion of the DNA of the donor in both hypotheses makes the deduction 

of the other contributor’s DNA profile rather straightforward – the alleles that does not 

belong to the donor belongs to the other contributor. This property applies to mixture that 

is made up of more than 2 contributors as well, though there will be an increase in 

complexity. 

 

Denoting the DNA mixture as 𝑀 and the genotypes of the donor and suspect as 𝐺𝑑 and 

𝐺𝑠 respectively, the likelihood ratio is calculated as: 

𝐿𝑅 =
Pr(𝑀 | 𝐺𝑑 , 𝐺𝑠, 𝐻𝑝)

Pr(𝑀 | 𝐺𝑑 , 𝐻𝑑)
 

The likelihood ratio essentially tells us how much more probable that the mixture data 

would be if the suspect is included as a contributor than if the suspect is excluded. 
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2.3.2 Binary Model 

 

Originally, the qualitative method require analysts to consider the possible genotype 

combinations under each hypothesis to calculate the likelihood ratio. Effectively, the 

probability of 1 or 0 is assigned to each genotype; however, this is undesirable since all 

possible genotypes should be weighted between 0 and 1. Thus, the binary model extends 

from the initial qualitative method by incorporating quantitative information such as 

allele peak height and peak area. 

 

The binary model makes several assumptions: 

(1) Across all loci, the mixture proportion is approximately constant. 

(2) The peak area depends on the amount of DNA. 

(3) The area of common peaks is the sum of the areas of the contributors. 

 

Heterozygous Balance 

Heterozygous balance is defined as the ratio of two chosen allele peaks: 

𝐻𝑏 =
𝜙1

𝜙2
 

where 𝜙1and 𝜙2 are the peak area of allele 1 and allele 2 respectively. The order of the 

alleles can be selected arbitrarily and 2 alleles are said to be consistent with the 

proposition that they came from the same person if Hb falls within the range: 

0.6 ≤ 𝐻𝑏 ≤ 1.66 

 

Mixture Proportion 

It was demonstrated that the mixture proportion in a complex DNA sample is 

approximately the same throughout all the loci compared. Consider that two contributors 

to a mixed sample have the allele pairs (a, b) and (c, d). From the peak areas (𝜙), the 

mixture proportions for the contributors would be estimated as: �̂�𝑥 =
𝜙𝑎+𝜙𝑏

𝜙𝑎+𝜙𝑏+𝜙𝑐+𝜙𝑑
 

and 1 − �̂�𝑥. Typically, the mixture proportions are allowed to be within ±0.35 of the 

average �̂�𝑥 calculated across all loci. 
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Accounting for Stutters 

When doing STR analysis, STR loci are usually amplified through the polymerase chain 

reaction (PCR) process; this allows small amounts of DNA to be analysed. However, 

there is a possibility that artefacts such as drop-in, drop-out and stutters can happen 

during PCR. In the case of allele drop-in, contamination on DNA are magnified alongside 

the samples during PCR-amplification; causing spurious allele peak to be observed. On 

the other hand, true alleles that fail to PCR-amplify can cause drop-out where alleles 

cannot be visualized as it falls below the detection threshold. Stutters are artificial peaks 

caused by stochastic effects such as miscopying or slippage in the PCR process. 

 

Looking at Figure 2.1, the 𝑏  band can be considered as a stutter. Assuming that the 

mixture is composed of DNA from 2 persons, the genotype combinations of the minor 

contributor could be 𝑎𝑎, 𝑎𝑐 or 𝑎𝑑 if peak 𝑏 is a stutter. If peak 𝑏 is taken as allelic (that is, 

the peak is an effect of a true allele and not an artefact), the genotype combination would 

then most likely be 𝑎𝑏 (Buckleton, et al., 2013). 

 

Figure 2.1 Madonna Plot showing a DNA profile comprising two minor bands 𝑎, 𝑏 and 

two major bands 𝑐, 𝑑. The 𝑏 band can be considered as a stutter when it is <15% the area 

of the major band and the distance between 𝑏 and 𝑐 is one repeat unit. 

 

We can treat such a case by assuming that the peak at 𝑏 has a probability 𝑝(𝑆) of being a 

stutter and 𝑝(𝑆̅) as being allelic. The likelihood ratio would then take a bound as: 

𝐿𝑅 =
1

𝑝(𝑆̅)2𝑝𝑎𝑝𝑏 + 𝑝(𝑆){𝑝𝑎
2 + 2𝑝𝑎𝑝𝑐 + 2𝑝𝑎𝑝𝑑}

 

≥
1

{𝑝𝑎
2 + 2𝑝𝑎𝑝𝑏 + 2𝑝𝑎𝑝𝑐 + 2𝑝𝑎𝑝𝑑}
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2.3.3 Continuous Model 

 

While the binary model improves on earlier model by utilizing quantitative information 

of a DNA profile in some properties, it has not made full use of the data. In fact, the 

binary model selects genotype combinations in a discrete manner – the genotype 

combinations are either selected, or not selected. 

 

In order to ensure that every genotype combination is accounted for in the probability 

model, it is best to give a weight to each allele peak observed in the DNA profile.  

 

Denote 𝑑 as the vector of peak areas: 

𝑑 = {𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐, 𝜙𝑑} 

Furthermore, we suppose there are p combinations of possible genotypes under  𝐻𝑝 

denoted as 𝑆1, … , 𝑆𝑝. Similarly, there are q combinations under 𝐻𝑑: 𝑆1, … , 𝑆𝑞. Then, our 

objective is to calculate the likelihood ratio: 

𝐿𝑅 =
∑ Pr(𝑑 | 𝑆𝑗 , 𝐻𝑝)Pr (𝑆𝑗 | 𝐻𝑝)𝑝

𝑗=1

∑ Pr(𝑑 | 𝑆𝑘, 𝐻𝑝) Pr(𝑆𝑘 | 𝐻𝑝)
𝑞
𝑘=1

 

 

Multilocus Combination 

Recall that it was demonstrated that the mixture proportion through all loci are almost the 

same. We refer to Figure 2.2 and see that the most probable loci combination for locus 1 

would be 𝑎𝑑: 𝑏𝑐 or 𝑏𝑐: 𝑎𝑑 and at locus 2 – 𝑒ℎ: 𝑓𝑔 or 𝑓𝑔: 𝑒ℎ. In a locus-by-locus approach, 

the whole genotype is not considered when comparing the probabilities of the genotype 

combinations. To illustrate, a locus-by-locus approach might not see a difference between 

the genotype combinations 𝑎𝑑𝑒ℎ: 𝑏𝑐𝑓𝑔  and  𝑎𝑑𝑓𝑔: 𝑏𝑐𝑒ℎ ; in which case the former is 

more supported than the latter. 

 

Using the multilocus approach and introducing the mixing proportion 𝑤, we obtain: 

𝐿𝑅 =
∑ ∫ 𝑃𝑟(𝑑 | 𝑆𝑗 , 𝑤, 𝐻𝑝)Pr(𝑆𝑗 | 𝑤, 𝐻𝑝)Pr(𝑤 | 𝐻𝑝)𝑑𝑤𝑝

𝑗=1

∑ ∫ 𝑃𝑟(𝑑 | 𝑆𝑘, 𝑤, 𝐻𝑑)Pr(𝑆𝑘 | 𝑤, 𝐻𝑑)Pr(𝑤 | 𝐻𝑑)𝑑𝑤𝑞
𝑘=1

 

 



Chapter 2: Literature Review 

BCS (Hons) Computer Science 

Faculty of Information and Communication Technology (Perak Campus), UTAR  11 

 

  

Figure 2.2 Madonna plot for two loci. 

 

Markov chain Monte Carlo 

There are researchers who try to employ MCMC methods to interpret DNA mixtures. 

The mass of an allele which encapsulates the concepts of template DNA amount, 

degradation level, locus amplification efficiency and replicate amplification efficiency is 

introduced and denoted 𝑀. 

 

Including the mass parameter into the likelihood ratio gives the exact form: 

𝐿𝑅 =
∑ 𝑃𝑟(𝑑 | 𝑆𝑗, 𝑀, 𝐻𝑝)Pr(𝑆𝑗 | 𝐻𝑝)Pr(𝑀)𝑝

𝑗=1

∑ 𝑃𝑟(𝑑 | 𝑆𝑘, 𝑀, 𝐻𝑑)Pr(𝑆𝑘 | 𝐻𝑑)Pr(𝑀)𝑞
𝑘=1

 

We do not know the mass parameter point values. However, we can integrate across all 

possible values to give: 

𝐿𝑅 =
∫ ∑ 𝑃𝑟(𝑑 | 𝑆𝑗, 𝑀, 𝐻𝑝)Pr(𝑆𝑗 | 𝐻𝑝)Pr(𝑀)𝑝

𝑗=1 𝑑𝑀

∫ ∑ 𝑃𝑟(𝑑 | 𝑆𝑘, 𝑀, 𝐻𝑑)Pr(𝑆𝑘 | 𝐻𝑑)Pr(𝑀)𝑞
𝑘=1 𝑑𝑀

 

This integral is subsequently assessed using MCMC and a probability of 

acceptance/rejection would be calculated for each hypothesis. 
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3.1 Mixing DNA samples 

 

We test our method on simulated DNA mixtures, a program is developed to mix two 

DNA samples 𝑀1, 𝑀2 with their mixture proportions 𝑝1, 𝑝2 ∈ [0, 1]. A 𝑝1 value of 0.15 

and 𝑝2 value of 0.50 will generate a mixture with 15% of 𝑀1 and 50% of 𝑀2. To generate 

mixture samples with more than 2 contributors, we simply mix the two-person mixture at 

100% proportion with another sample. That is, to generate a three-person mixture 

consisting of 10%, 20% and 30% of DNA from person 1, 2 and 3 respectively; we first 

mix the DNA of person 1 and 2 at mixture proportions 𝑝1 = 0.10 and 𝑝2 = 0.20 and then 

mix the subsequent mixture with person 3 at mixture proportions 𝑝1 = 1.00, 𝑝2 = 0.30. 

 

Let 𝑀 be the mixture sample consisting of 𝑁 loci: 𝑀 = {ℓ1, ℓ2, … , ℓ𝑁}. We denote ℓ as 

the set of alleles at the specific locus. Each locus has 𝐿 alleles ℓ = {𝛼1, 𝛼2, … , 𝛼𝐿}. Let 𝑟𝑎 

be the number of reads supporting allele 𝑎. Let 𝑟𝑎𝑛𝑑 be the function that returns a single 

uniformly distributed random number in the interval  [0,1] . The pseudo code of the 

algorithm is as follows: 
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Algorithm 1 Mix DNA 

Input: NGS data from 2 individuals 𝑀1, 𝑀2 and their mixture proportions 𝑝1, 𝑝2. 

Output: Output mixture 𝑀𝑜𝑢𝑡𝑝𝑢𝑡 composed of 𝑀1, 𝑀2 of specified proportions 𝑝1, 𝑝2. 

I. 𝑀𝑜𝑢𝑡𝑝𝑢𝑡 ← ∅ 

II. for all locus ℓ ∈ 𝑀1 do 

 ℓ𝑛𝑒𝑤 ← ∅ 

for all allele 𝛼 ∈ ℓ do 

 𝑟𝛼 ← 0 

for each read of allele 𝛼 do 

if 𝑟𝑎𝑛𝑑 < 𝑝1 then 

     𝑟𝛼 ← 𝑟𝛼 + 1 

end if 

end for 

 ℓ𝑛𝑒𝑤 ← ℓ𝑛𝑒𝑤 ∪ {𝛼} 

end for 

 𝑀𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑀𝑜𝑢𝑡𝑝𝑢𝑡 ∪ { ℓ𝑛𝑒𝑤} 

end for 

III. for all locus ℓ ∈ 𝑀2 do 

 ℓ𝑛𝑒𝑤 ← ∅ 

for all allele 𝛼 ∈ ℓ do 

 𝑟𝛼 ← 0 

for each read of allele 𝛼 do 

if 𝑟𝑎𝑛𝑑 < 𝑝2 then 

     𝑟𝛼 ← 𝑟𝛼 + 1 

end if 

end for 

 ℓ𝑛𝑒𝑤 ← ℓ𝑛𝑒𝑤 ∪ {𝛼} 

end for 

 𝑀𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑀𝑜𝑢𝑡𝑝𝑢𝑡 ∪ { ℓ𝑛𝑒𝑤} 

end for 

IV. return 𝑀𝑜𝑢𝑡𝑝𝑢𝑡 
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3.2 Determining number of contributors in DNA sample 

 

Let 𝑛𝑖 be the allele count for 𝑖-th allele and represent each genotype in locus ℓ as a vector 

of allele counts: 𝑔ℓ = {𝑛1, 𝑛2, … , 𝑛𝐿}. We say that a genotype is consistent with a locus 

if ∀𝑛 ∈ 𝑔ℓ, 𝑛 > 0. Denote 𝔾𝑐
ℓ as the set of size (𝐿+(2𝑐−𝐿)−1

2𝑐−𝐿
) which contains the genotypes 

that are consistent with ℓ, assuming that the mixture is made up of 𝑐 contributors. 

Consider a locus ℓ in a DNA mixture that is made up of 2 contributors of 3 alleles 𝑎1, 𝑎2, 

and 𝑎3. In this case, there are (3+(4−3)−1
4−3

) = 3 valid genotypes: 

𝔾2
ℓ = {{2,1,1}, {1,2,1}, {1,1,2}} 

Consider the 1st genotype in the set  𝔾2
ℓ , in which  𝑔 = {2,1,1} , the probability of 

observing 2  𝑎1, 1 𝑎2, and  1 𝑎3  is  𝑝1
2𝑝2𝑝3 , where  𝑝𝑖  is the allele frequency for allele  𝑖 . 

There are 
(2+1+1)!

2!×1!×1!
= 12 unique permutations of the genotype in the form of: 

Person 1 Person 2 Joint Probability 

 𝑎1𝑎1  𝑎2𝑎3  𝑝1
2𝑝2𝑝3 

 𝑎1𝑎1  𝑎3𝑎2  𝑝1
2𝑝2𝑝3 

 𝑎1𝑎2  𝑎1𝑎3  𝑝1
2𝑝2𝑝3 

 𝑎1𝑎2  𝑎3𝑎1  𝑝1
2𝑝2𝑝3 

 𝑎1𝑎3  𝑎1𝑎2  𝑝1
2𝑝2𝑝3 

 𝑎1𝑎3  𝑎2𝑎1  𝑝1
2𝑝2𝑝3 

 𝑎2𝑎1  𝑎1𝑎3  𝑝1
2𝑝2𝑝3 

 𝑎2𝑎1  𝑎3𝑎1  𝑝1
2𝑝2𝑝3 

 𝑎3𝑎1  𝑎1𝑎2  𝑝1
2𝑝2𝑝3 

 𝑎3𝑎1  𝑎2𝑎1  𝑝1
2𝑝2𝑝3 

 𝑎2𝑎3  𝑎1𝑎1  𝑝1
2𝑝2𝑝3 

 𝑎3𝑎2  𝑎1𝑎1  𝑝1
2𝑝2𝑝3 

   𝑆𝑢𝑚 = 12𝑝1
2𝑝2𝑝3 

 

The probability of observing a certain genotype combination 𝑔 = {𝑛1, 𝑛2, … , 𝑛𝐿} is: 

𝑃(𝑔) =
(𝑛1 + 𝑛2 + ⋯ + 𝑛𝐿)!

∏ 𝑛𝑖!𝐿
𝑖=1

∏ 𝑝𝑖
𝑛𝑖

𝐿

𝑖=1
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The probability of observing alleles of locus ℓ for a mixture with 𝑐 contributors is then 

the summation over 𝔾𝑐
ℓ: 

𝑃𝑐(ℓ) = ∑ 𝑃(𝑔)

𝑔∈𝔾𝑐
ℓ

 

We can then calculate the probability of observing a 𝑐-contributors DNA mixture 𝑀 as: 

𝑃𝑐(𝑀) = ∏ 𝑃𝑐(ℓ)ℓ∈𝑀    (1) 

Note that these equations only work if  2𝑐 ≥ 𝐿 . To illustrate, if there are 3 alleles 

observed at locus ℓ = {𝑎1, 𝑎2, 𝑎3} and we want to say that the DNA sample is from 1 

contributor 𝑐 = 1; it is not possible as 1 person can only carry 2 alleles. In fact, there 

are (3+(2−3)−1
2−3

) = undefined genotypes that is consistent with locus ℓ. This essentially 

limits the minimum number of contributor for a DNA mixture to  ⌈
𝐴

2
⌉, where 𝐴 is the 

maximum number of observed alleles across all loci. To overcome this limitation, we 

take into account sequencing error in our mathematical model.  

 

In NGS, an allele is said to be present if there are supporting reads reported in the 

sequencing process. A high number of reads means that there is a high chance the DNA 

contains the allele at the specific locus. We assume a binomial distribution for sequencing 

errors with probability of success equals to 𝑝 and error 𝑞 = 1 − 𝑝, an allele is included 

and said to be truly observed if there is at least 1 supporting read. 

Let 𝑟𝑎  be the number of reads supporting allele  𝑎 , the probability of an allele being 

included is then  𝑃(𝑋 ≥ 1) = 1 − 𝑃(𝑋 = 0) = 1 − 𝑞𝑟𝑎 . Consider a scenario where a 

DNA mixture has ≤ 4 alleles in every locus except for one that contains 5 alleles (𝐿 = 5), 

we can now say that 1 of the 5 alleles is due to sequencing error and allow the possibility 

that the mixture is made up of 2 contributors despite 2𝑐 < 𝐿.  
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Denote ℘(ℓ) as the power set of ℓ. Note that there is a possibility for all 𝑙 ∈ ℘(ℓ) to be 

the correct set of alleles in locus  ℓ  considering the existence of sequencing errors. 

However, some of these subsets cannot be explained by 𝑐 contributors, that is, when 2𝑐 <

|𝑙|. To illustrate, consider a locus of the DNA sample of a single person with 3 alleles 

ℓ = {𝑎1, 𝑎2, 𝑎3} and the allele read counts are 𝑟𝑎1
= 1, 𝑟𝑎2

= 2, ra3
= 2. 

𝒌 𝒍 𝓵 − 𝒍 
Probability of Observing 𝒍 

(Equation) 

Probability of Observing 𝒍 

(Value) 

0 { } {𝑎1, 𝑎2, 𝑎3} 𝑞𝑞2𝑞2 0.0000003125 

1 {𝑎1} {𝑎2, 𝑎3} (1 − 𝑞)𝑞2𝑞2 0.0000059375 

1 {𝑎2} {𝑎1, 𝑎3} 𝑞(1 − 𝑞2)𝑞2 0.0001246875 

1 {𝑎3} {𝑎1, 𝑎2} 𝑞𝑞2(1 − 𝑞2) 0.0001246875 

2 {𝑎1, 𝑎2} {𝑎3} (1 − 𝑞)(1 − 𝑞2)𝑞2 0.0023690625 

2 {𝑎1, 𝑎3} {𝑎2} (1 − 𝑞)𝑞2(1 − 𝑞2) 0.0023690625 

2 {𝑎2, 𝑎3} {𝑎1} 𝑞(1 − 𝑞2)(1 − 𝑞2) 0.0497503125 

3 {𝑎1, 𝑎2, 𝑎3} {} (1 − 𝑞)(1 − 𝑞2)(1 − 𝑞2) 0.9452559375 

 

Since the DNA sample is contributed by only 1 person, we ought to attribute at least 1 of 

the 3 alleles to sequencing error. The case in which 𝑙 = {𝑎1, 𝑎2, 𝑎3} cannot possibly be 

explained by 1 contributor despite having the highest probability, hence we know 

that 𝑃𝑐(𝑙) = 0, if 2𝑐 < |𝑙|. 

We calculate the probability of observing 𝑙 as the set of observed alleles at locus ℓ as: 

𝑃(𝑙 | ℓ) =  ∏ 1 − 𝑞𝑟𝑎

𝑎∈𝑙

∗ ∏ 𝑞𝑟𝑎

𝑎∈ℓ−𝑙

 

Equation (1) then becomes: 

𝑃𝑐(𝑀) = ∏ ∑ (𝑃(𝑙 | ℓ)𝑃𝑐(𝑙))𝑙∈℘(ℓ)ℓ∈𝑀   (2) 
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Algorithm 2 Calculate probability of observing alleles in locus ℓ given 𝑐 contributors 

    Input: locus ℓ, number of contributor 𝑐 

    Output: 𝑃𝑐(ℓ) 

  1:    𝑃𝑐(ℓ) ← 0 

  2:    if 2𝑐 < |ℓ|  ∨  |ℓ| = 0 then 

  3:          return 𝑃𝑐(ℓ) 

  4:    𝔾 ← 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠_𝑤𝑖𝑡ℎ_𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(ℓ, 2𝑐 − 𝐿) 

  5:    for 𝑔 ∈ 𝔾 do 

  6:          𝑔 ← 𝑔 ∪ 𝑔ℓ 

  7:          𝑃𝑐(ℓ) ←  𝑃𝑐(ℓ) +
(𝑛1+𝑛2+⋯,+𝑛𝐿)!

∏ 𝑛𝑖!𝐿
𝑖=1

∏ 𝑝𝑖
𝑛𝑖𝐿

𝑖=1   

  8:    end for 

  9:    return 𝑃𝑐(ℓ) 

 

 

Algorithm 3 Calculate probability of observed mixture made up of 𝑐 contributors 

    Input: mixture 𝑀, number of contributor 𝑐 

    Output: 𝑃𝑐(𝑀) 

  1:    𝑃 ← {} 

  2:    for ℓ ∈ 𝑀 do 

  3:         𝑃𝑐(ℓ) ← 0 

  4:          for 𝑙 ∈ ℘(ℓ) do 

  5:                𝑃𝑐(ℓ) ←  𝑃𝑐(ℓ) + 𝑃(𝑙 | ℓ)𝑃𝑐(𝑙)  

  6:          end for 

  7:          𝑃 ← 𝑃 ∪ {𝑃𝑐(ℓ)} 

  8:    end for 

  9:    𝑃𝑐(𝑀) = ∏ 𝑝𝑝∈𝑃  

10:    return 𝑃𝑐(𝑀) 
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3.3 Identify person through DNA fingerprinting 

 

To interpret DNA mixtures using likelihood ratios, we need to calculate the likelihoods of 

the mixture explained under different hypotheses. The weight of evidence can then be 

measured by comparing the posterior probabilities of the mixture under alternative 

hypotheses. The key to calculating the probability is to specify the known contributors to 

the mixture and the number of unknown contributors.  

 

For explaining the calculation of likelihood ratio, we follow the same definitions earlier 

with some additional nomenclature provided in Table 3.1. 

The likelihood ratio is: 

𝐿𝑅 =  
P(𝑀 | 𝐻𝑝)

P(𝑀 | 𝐻𝑑)
=

∏ 𝑃𝑥(𝕌ℓ𝑂,ℓ𝐾
 | ℓ𝑂, ℓ𝐾)ℓ∈𝑀

∏ 𝑃𝑥(𝕌ℓ𝑂,ℓ𝐾
 | ℓ𝑂, ℓ𝐾)ℓ∈𝑀

 

where 

𝑃𝑥(𝕌ℓ𝑂,ℓ𝐾
 | ℓ𝑂 , ℓ𝐾) = ∑ 𝑃(𝑔)

𝑔∈ℂ𝑥

𝕌ℓ𝑂,ℓ𝐾

 

 

Table 3.1 Nomenclature for Calculations of Likelihood Ratio 

 𝑀 The mixture that contains a set of loci. 

 𝑐 The number of contributors in the mixture. 

 𝑥 The number of unknown contributors in the mixture. 

 ℓ𝑂 The set of observed alleles. 

 ℓ𝐾 The set of alleles from all known contributors. 

 𝕄ℓ𝑂,ℓ𝐾
 The set of alleles that are in both ℓ𝑂 and ℓ𝐾 (ℓ𝑂 ∩ ℓ𝐾). 

 𝕌ℓ𝑂,ℓ𝐾
 The set of unexplained alleles (ℓ𝑂 − ℓ𝐾). 

 ∅ The empty set. 

 ℂ𝑥

𝕌ℓ𝑂,ℓ𝐾  The set of all valid genotypes for 𝑥 contributors to carry at least 1 of each 

alleles in 𝕌ℓ𝑂,ℓ𝐾
 and any in ℓ𝑂 for the remaining (2𝑥 − |𝕌ℓ𝑂,ℓ𝐾

|) alleles. 

𝑃𝑥(𝕌ℓ𝑂,ℓ𝐾
 | ℓ𝑂, ℓ𝐾) The probability that 𝑥 unknown contributors carry the alleles in 𝕌ℓ𝑂,ℓ𝐾

 and 

none of the alleles outside of ℓ𝑂. 
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To illustrate, suppose a locus ℓ of a 2-contributor DNA mixture composed of a victim 

and an attacker in an assault case contains alleles 𝑎𝑏𝑐𝑑. Furthermore, assume that the 

victim has alleles 𝑎𝑏 and a suspect has alleles 𝑐𝑑. Consider a hypothesis that states that 

the known contributors of the mixture is the victim and suspect. Since there are no 

unknown contributors and the alleles in ℓ can be fully explained from the victim and 

suspect. The probability of observing locus ℓ under such hypothesis can be calculated as: 

𝑃0(𝕌ℓ𝑂,ℓ𝐾
= ∅ | ℓ𝑂 = 𝑎𝑏𝑐𝑑, ℓ𝐾 = 𝑎𝑏𝑐𝑑) = 1 

On the other hand, consider a hypothesis that states that only the victim is the known 

contributor, and the attacker is unknown. It is observable that the unknown contributor’s 

genotype combination can only be 𝑐𝑑 or 𝑑𝑐. Hence, the probability is calculated as: 

𝑃1(𝕌ℓ𝑂,ℓ𝐾
= 𝑐𝑑 | ℓ𝑂 = 𝑎𝑏𝑐𝑑, ℓ𝐾 = 𝑎𝑏) = 2𝑝𝑐𝑝𝑑 

 

Taking into account sequencing errors in a DNA mixture, the probability of observing 

mixture 𝑀 under hypothesis 𝐻 is calculated as: 

P(𝑀 | 𝐻) = ∏ ∑ (𝑃𝑥(𝕌𝑙𝑂,𝑙𝐾
 | 𝑙𝑂, 𝑙𝐾)𝑃(𝑙 | ℓ))

𝑙∈℘(ℓ)ℓ∈𝑀

 

However, this method of calculation assumes that there is no sequencing error in the 

DNA samples of the specified contributors under 𝐻 and causes the probability model to 

be inflexible. Notably, the model would not tolerate a single difference in alleles across 

all loci between the mixture and a known contributor: 

if ∃ℓ ∈ 𝑀, ℓ𝐾 − ℓ𝑂 ≠ ∅, P(𝑀 | 𝐻) = 0 

 

Once again, we assume a binomial distribution in allele reads and take into account 

sequencing error to amend on this issue. Let 𝑃(𝑙𝐾 | 𝕄𝑙𝑂,ℓ𝐾
)  be the probability of 

observing 𝑙𝐾 as the set of truly observed alleles given alleles in 𝕄𝑙𝑂,ℓ𝐾
. The probability of 

observing mixture 𝑀 under hypothesis 𝐻 is then: 

P(𝑀 | 𝐻) = ∏ ∑ (𝑃(𝑙 | ℓ) ∏ 𝑞𝑟𝑎

𝑎∈ℓ𝐾−𝑙

∑ (𝑃𝑥(𝕌𝑙𝑂,𝑙𝐾
 | 𝑙𝑂, 𝑙𝐾) 𝑃(𝑙𝐾 | 𝕄𝑙𝑂,ℓ𝐾

))

𝑙𝐾∈℘(𝕄𝑙𝑂,ℓ𝐾
) 

)

𝑙∈℘(ℓ)ℓ∈𝑀
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4.1 Design Specifications 

4.1.1 Methodology and General Work Procedure 

 

For this research project, we want to design a likelihood ratio method that utilizes NGS 

data for mixture sample interpretation in forensic applications. Past researches about the 

problem are studied and used as a basis for the new method. A new mathematical model 

will be formulated to allow the calculation of likelihood ratio with NGS data. Whenever 

an idea is thought out, a software prototype will be programmed and empirical analysis 

will be done to verify the correctness of the idea. 

 

We separate the project to a few phases: First, we develop a program to mix multiple 

NGS DNA samples. Second, we devise a mathematical model and algorithm to determine 

the number of contributors of a DNA sample. Lastly, we’ll tackle the main problem 

which is to identify whether a person is a contributor to a DNA mixture using a 

likelihood ratio method. 

 

4.1.2 Tools Used 

 

BWA (Li and Durbin, 2009) 

A software package used to map DNA sequences of the NGS data from BGI against the 

reference human genome. 

 

lobSTR (Gymrek et al., 2012) 

A software tool to do STR profiling on the downloaded NGS data of 4 family trios from 

Beijing Genomics Institute (BGI). 

 

Python 

The Python programming language is used to develop the software toolkit in order to 

verify our method. 
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R 

The R programming language is used to analyse and visualize the results obtained from 

experiments. 

 

SAMTOOLS (Li et al., 2009) 

A software tool used to subsample the sequence alignment data generated from BWA. 

 

4.1.3 System Performance Definition 

 

The essential improvements of utilizing NGS compared to the most commonly used 

Sanger sequencing currently can be concluded as: 

i. The high-throughput of NGS can generate genome-wide data with multiple 

sequencing depth with low cost. This will relieve the loci number limitation in 

Sanger sequencing technique.  

ii. The high sequencing coverage gives intuitive view on candidate ratio on mixture 

interpretation. 

iii. Since more loci are included in the calculation of the probability, we expect more 

accurate result of the analysis. 

 

4.1.4 Verification Plan 

 

To test our method, we use the NGS data of 8 unrelated individuals in an unpublished 

dataset from BGI. The DNA sequences are aligned to the human genome reference using 

BWA with default settings and subsampled to half-fold using SAMTOOLS. The data is 

then further processed using the tool lobSTR for STR profiling. After that, the data is 

transformed to add information such as possible alleles and allele frequencies counted 

from the population. We randomly mix the sequencing data of multiple person from the 

data set with different mixture ratios to test the accuracy. To evaluate the robustness of 

the system, each test is run multiple times. 
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4.2 Implementation issues and challenges 

 

Several difficulties and challenges are faced throughout the project. First of all, the 

research topic is considered to be of an interdisciplinary field that encapsulates computer 

science, statistic, mathematics and biology – bioinformatics. There is a substantial 

amount of knowledge to cover for a better understanding of the problem. Also, empirical 

analysis of the method is time-consuming since the processing of the large amount of 

NGS data is computationally intensive. 

 

4.3 Timeline 

 

The project spans the duration of two trimesters, it is approximately 24 weeks. The figure 

below shows the Gantt chart for the research project. There will be two report 

submissions during each trimester and a viva presentation to demonstrate the work done. 

The first report and presentation will show a system prototype and preliminary results. 

The full work and results will be demonstrated during the second session. 

 

 

Figure 4.1 Gantt chart 
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5.1 Experimental Design 

 

In testing our method, DNA mixtures were generated using NGS data of 8 unrelated 

individuals in an unpublished dataset from BGI. The data was sequenced using Illumina’s 

HiSeq X Ten platform with read length of 150bp (base pair) and aligned to the HG19 

reference human genome using BWA. The data is then processed using lobSTR for STR 

profiling, after which is transformed to incorporate information such as STR loci count, 

allele frequencies and possible alleles from population. In our experiments, we randomly 

mixed the sequencing data of multiple persons from the data set with different mixture 

proportions. 

 

In this study, we simulated two-person and three-person mixtures to test our method. 

Also, the dataset we used has an average sequencing depth of 16-folds after sub-sampling. 

In our calculations of the likelihood ratio using the proposed method, it is assumed that 

the sequencing errors follow a binomial distribution with probability of observing an 

error equals to 𝑞 = 0.05. In the experiment, we calculate the likelihood ratio as: 

𝐿𝑅 =
𝑃(𝑀|𝐻𝑝)

𝑃(𝑀|𝐻𝑑)
 

 

  



Chapter 5: Implementation and Testing 

BCS (Hons) Computer Science 

Faculty of Information and Communication Technology (Perak Campus), UTAR  24 

 

5.2 Results 

 

To find out how our LR method performs in general, we experiment on DNA mixtures of 

random mixture proportions. For simplicity, we assume 𝐻𝑝 to always be the better or 

more probable hypothesis. In practice, for a mixture containing DNA of individuals A 

and B, we set 𝐻𝑝 as the hypothesis that states that the mixture is made up of individuals A 

and B and 𝐻𝑑  as the hypothesis that states that the mixture is made up of 2 random 

persons. Following that, we say that a test result is correct whenever the 

calculated log10 𝐿𝑅 is greater than 0. 

 

We simulated DNA mixtures at random mixture proportions for all (8
2
) = 28 two person 

combinations and (8
3
) = 56 three person combinations. The experiment was conducted 

100 times for two-person mixtures and 30 times for three-person mixtures. In total, we 

tested our method on a total of 4480 mixtures: 2800 two-person mixtures and 1680 three-

person mixtures.  

 

Figure 5.1 Scatterplot showing mixture proportions of two-person mixtures. Green 

represent mixtures that are correctly labelled, red represents otherwise. 



Chapter 5: Implementation and Testing 

BCS (Hons) Computer Science 

Faculty of Information and Communication Technology (Perak Campus), UTAR  25 

 

As shown in Figure 5.1, the mixture proportion plays a huge factor on whether or not the 

LR method gives correct results. In all cases where the LR method fails to give the 

correct answer, the DNA mixture is composed of low-template components. That is, at 

least 1 of the 2 contributors has less than 40% DNA information in the mixture. 

 

The frequency distribution of the common logarithm of likelihood ratios for the cases that 

yielded positive results is constructed and shown in Figure 5.2. It is observed that most 

cases have a large value of likelihood ratio with a mean log10 𝐿𝑅 as high as 285978. 

 

Figure 5.2 Frequency distribution of common logarithm of LR of positive results for 

two-person mixtures. The mean of the frequency distribution is as high as 285978. 

 

Similar results are observed for cases of three-person mixtures, Figure 5.3 depicts the 3D 

scatterplot of the mixture proportions for failed cases. Again, only mixtures with at least 

1 low-template contributor are interpreted wrongly. 
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Figure 5.3 3D Scatterplot showing mixture proportions of falsely interpreted three-

person mixtures. 

 

 

Identifying Person in Low-Template Mixtures 

When analysing a low-template DNA mixture, the sequencing data is subject to high 

allele dropouts where alleles at a locus is not observed. As opposed to traditional DNA 

interpretation, our method processes millions of markers including STR and Single 

Nucleotide Polymorphism; this means that high allelic dropouts will greatly affect the 

hypothesis that has a fixed set of observed alleles.  

 

To illustrate, consider a locus ℓ in a DNA sample of a person A with alleles 𝑎1 and 𝑎2. 

Due to allele dropout, the only observed allele in the locus is 𝑎1. Now, since person A has 

a conflicting allele 𝑎2, there exist a bias towards the probability that the sample is from a 

random person than that the sample is of person A. 
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In such cases, it might not be appropriate to make a judgement merely based on whether 

the calculated log10 𝐿𝑅 is greater than 0. To handle such cases, we adopted a similar way 

used for prenatal paternity testing in a past research by Ryan et al. in 2012. In that study, 

hypothesis tests with P value < 0.0001 were used to confirm paternity in 100% (20/20) of 

the cases using low fraction of fetal cfDNA (approximately 2.6% ~ 11.7%). For our use 

case, we assume that only 1% of DNA from every contributor is observed in a DNA 

mixture. Again, we simulate DNA mixtures from the dataset in all combinations. 

 

Let 𝐻𝑝 be the hypothesis that states that person A is a contributor to the DNA mixture 

and 𝐻𝑑 be the hypothesis that states otherwise. We calculate the LR for every person in 

the dataset and construct a test statistic using the calculated LR. As shown in Figure 5.4, 

the LR calculated from the tests form a multinomial distribution with 2 separated clusters. 

It is observed that the test statistic when testing a correct individual always falls under the 

distribution with higher mean log10 𝐿𝑅 (marked blue). Following this, we say that person 

A is a contributor to the DNA mixture if the calculatedlog10 𝐿𝑅 is in the blue cluster. 

Using this method, we were able to identify correctly the contributors of low-template 

DNA mixtures with only 1% DNA from 2 persons in 100% (56/56) of the cases. 

 

Figure 5.4 Frequency distributions of calculated common logarithm of LR from identity 

tests for two-person mixtures with 1% DNA from 2 individuals.  
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As shown in Figure 5.5, we observe similar results when using the method on low 

template three-person mixtures. In all 56 three-person mixtures, 100% (168/168) of the 

contributors to the DNA mixtures were identified correctly. 

 

Figure 5.5 Frequency distributions of calculated common logarithm of LR from identity 

tests for three-person mixtures with 1% DNA from 3 individuals.
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6.1 Project Review 

 

DNA fingerprinting has been useful in various court cases. However, there are cases 

where mixture samples are too difficult to be analysed using existing methods. It is 

crucial to ensure that a DNA mixture is interpreted correctly to prevent false inclusion or 

exclusion of a suspect. 

 

In this project, we proposed a likelihood ratio method that uses NGS data to analyse 

DNA mixtures. By applying the method to 8 unrelated individuals of an unpublished 

dataset from BGI, we observed good results and high values of likelihood ratio in the 

interpretation of the DNA sample. By taking into account sequencing errors, the 

probability model proves to be advantageous and more robust. 

 

The final result successfully meets the project objective to formulate a likelihood ratio 

method that utilizes NGS data as well as developing a software toolkit that uses the 

method. 

 

6.2 Discussions 

 

This study confirmed that NGS data can be incorporated into the analysis of multiple 

contributor DNA samples. From the experiments, the most obvious improvement of 

utilizing NGS data is the high power of discrimination it gives in interpreting DNA 

mixtures. Traditional mixture interpretation methods typically yields LR in the range 

of (−log10 10 , log10 10). Our method, however, is multiple orders of magnitude greater 

than traditional methods. This is attributed to the fact that genome-wide data is 

considered as opposed to only a number of selected loci in the calculations of the LR. 

Since more loci are included in the calculation of the probability, we expect more 

accurate results. 
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6.3 Future Work 

 

In this study, the method is tested on simulated DNA mixtures from a sample of only 8 

individuals. Considering a rather small sample size, a more large-scale experiment will be 

needed to confirm the effectiveness of the method. 

 

The experiments were carried out under the assumption that sequencing errors follow a 

binomial distribution with 5% chance of observing an error. Further studies can be 

conducted to test the method using different control variables such as probability of 

sequencing error, sequencing depth or against higher order mixtures (four-person 

mixtures, five-person mixtures).  

 

Other than that, mixtures with different proportions should be tested out to find out how it 

affects the results of the method. Before the method is used for real life applications, it 

should be tested against real DNA mixtures prepared in laboratories to verify its accuracy. 
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Source Codes 

A-1 mix_dna.py – used to simulate mixtures 

import argparse 

import time 

import random 

import os 

import numpy as np 

import pandas as pd 
from collections import defaultdict 

 

def basename(path): 

    return os.path.splitext(os.path.basename(path))[0] 

 

def restricted_float(x): 

    x = float(x) 

    if x < 0.0 or x > 1.0: 

        raise argparse.ArgumentTypeError("%r should be in range [0.0, 1.0]"%(x,)) 

    return x 

 

def process(df, part, mixture_loci): 

    for row in df[['ID', 'GB:ALLREADS']].itertuples(): 

        ID = row[1] 

        allele_info = row[2].split(',') 

        try: 

            for allele in allele_info: 

                allele_no, read_cnt = allele.split(':')[0], int(allele.split(':')[-1]) 

                add = len([1 for i in xrange(read_cnt) if random.random() < part]) 

                if add > 0: mixture_loci[ID][allele_no] += add 

        except ValueError: 

            pass 
 

def run(input1, input2, part1, part2, output_dir=None): 

    start_time = time.time() 

    print(time.ctime()) 

    print 
    print "Reading input.." 

    df1 = pd.read_table(input1, usecols=['ID', 'GB:ALLREADS', 

'ALLELE:ALLELE_FREQ']).dropna(0) 

    df2 = pd.read_table(input2, usecols=['ID', 'GB:ALLREADS', 

'ALLELE:ALLELE_FREQ']).dropna(0) 

 

    output_df = pd.concat([df1, df2]).drop_duplicates('ID').set_index('ID', drop=False) 

    output_df['GB:ALLREADS'] = '' 

    mixture_loci = defaultdict(lambda: defaultdict(int)) 
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    print "Generating mixture with",'%.1f' % (part1*100)+"% of 

data",basename(input1),"and",'%.1f' % (part2*100)+"% of data",basename(input2)+"." 

    print 'Working on data',basename(input1)+'..' 

    process(df1, part1, mixture_loci) 

    print 'Working on data',basename(input2)+'..' 

    process(df2, part2, mixture_loci) 

 

    print 'Finalizing..' 

    for locus in mixture_loci: 

        output_df.set_value(locus, 'GB:ALLREADS', 

','.join([str(allele)+':'+str(mixture_loci[locus][allele]) for allele in mixture_loci[locus]])) 

 

    output_df = output_df[output_df['GB:ALLREADS']!=''] 

 

    filename = '_'.join(['mix', basename(input1), basename(input2), 'part', '%.3f' % part1, 

'%.3f' % part2]) +'.cts' 

    if output_dir is None: 

        output_df.to_csv(filename, sep = '\t', index=False) 

        filepath = filename 

    else: 

        if not os.path.exists(output_dir): 

            os.makedirs(output_dir) 

        output_df.to_csv(output_dir + os.sep + filename, sep = '\t', index=False) 

        filepath = output_dir + os.sep + filename 

 

    print 
    print("--- %s seconds ---" % (time.time() - start_time)) 

 

    return filepath 

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser(description='Mix DNA samples at specified 

proportions.') 

    parser.add_argument('input1', help='STR data for DNA sample 1') 

    parser.add_argument('input2', help='STR data for DNA sample 2') 

    parser.add_argument('part1', type=restricted_float, nargs='?', default=random.random(), 

help='the percentage of DNA sample 1 to be mixed [0.0 - 1.0]') 

    parser.add_argument('part2', type=restricted_float, nargs='?', default=random.random(), 

help='the percentage of DNA sample 2 to be mixed [0.0 - 1.0]') 

    parser.add_argument('output_dir', nargs='?', default=None, help='the output directory') 

    args = parser.parse_args() 

    args.part1, args.part2 = round(args.part1, 3), round(args.part2, 3) 

 

    run(args.input1, args.input2, args.part1, args.part2, args.output_dir) 
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A-2 MixtureAnalysis.py – python class embodying functions for calculations of LR 

 

import sys 

import numpy as np 

import pandas as pd 

import timeit 
from collections import Counter, defaultdict 

from operator import mul 

from itertools import combinations, combinations_with_replacement 

from math import factorial, log10 

 

# product of list 

def prod(list): 

    return 1 if not list else reduce(mul, list) 

 

def calculate_genotype_prob(obs_alleles, mandatory_alleles, allele_freq, nc): 

    gt_list = list(combinations_with_replacement(obs_alleles, nc*2 - 

len(mandatory_alleles))) 

    prob = 0 

    for i in gt_list: 

        i = list(i) 

        i.extend(mandatory_alleles) 

        prob += prod([allele_freq[j] for j in i]) * factorial(len(i))/prod([factorial(c) for c in 

Counter(i).values()]) 

    return prob 

 

def mixture_prob(obs_alleles_s, allele_freq_s, nc): 

    try: 

        allele_freq = {} 

        allele_freq.update({allele.split(':')[0] : float(allele.split(':')[-1]) for allele in 

allele_freq_s.split(',')}) 

        obs_alleles = {} 

        obs_alleles.update({str(round(float(allele.split(':')[0]), 5)) : int(allele.split(':')[-1]) for 

allele in obs_alleles_s.split(',')}) 

 

        # if allele frequency for any allele is not found 

        if not all(allele in allele_freq.keys() for allele in obs_alleles): 

            return np.nan 

 

        cprob = 0 

        p = 0.95 

        q = 0.05 

        for i in xrange(1, min(len(obs_alleles), nc*2)+1): 

            for alleles in combinations(obs_alleles, i): 

                error_correction = prod([1 - q**obs_alleles[a] if a in alleles else 

q**obs_alleles[a] for a in obs_alleles]) 
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                cprob += error_correction * calculate_genotype_prob(alleles, alleles, 

allele_freq, nc) 

    except (AttributeError, ValueError): 

        return np.nan 

 

    return cprob 

 

def calc_posterior_prob(obs_alleles_s, hypothesis_alleles_list, allele_freq_s, nc_total): 

    try: 

        allele_freq = {} 

        allele_freq.update({allele.split(':')[0] : float(allele.split(':')[-1]) for allele in 

allele_freq_s.split(',')}) 

        obs_alleles = {} 

        obs_alleles.update({str(round(float(allele.split(':')[0]), 5)) : int(allele.split(':')[-1]) for 

allele in obs_alleles_s.split(',')}) 

 

        # if allele frequency for any allele is not found 

        if not all(allele in allele_freq.keys() for allele in obs_alleles): 

            return np.nan 

 

        h_alleles_all = defaultdict(int) 

        for h_alleles_s in hypothesis_alleles_list: 

            for allele in h_alleles_s.split(','): 

                allele_no, read_cnt = str(round(float(allele.split(':')[0]), 5)), int(allele.split(':')[-

1]) 

                h_alleles_all[allele_no] += read_cnt 

 

        nc_known = len(hypothesis_alleles_list) 

        nc_unknown = nc_total-nc_known 

        cprob = 0 

        p = 0.95 

        q = 0.05 

        for i in xrange(1, min(len(obs_alleles), nc_total*2)+1): 

            for alleles in combinations(obs_alleles, i): 

                alleles = set(alleles) 

                alleles_mutual = alleles & set(h_alleles_all) 

                if len(alleles_mutual) < max(0, i-nc_unknown*2): 

                    continue 
 

                error_initial = prod([1 - q**obs_alleles[a] if a in alleles else q**obs_alleles[a] 

for a in obs_alleles]) 

                error_initial *= prod([q**h_alleles_all[a] for a in h_alleles_all if a not in 

alleles]) 
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                for j in xrange(max(0, i-nc_unknown*2), len(alleles_mutual)+1): 

                    for known_alleles in combinations(alleles_mutual, j): 

                        error_new = error_initial * prod([1 - q**h_alleles_all[a] if a in 

known_alleles else q**h_alleles_all[a] for a in alleles_mutual]) 

                        if nc_unknown > 0: 

                            cprob += error_new * calculate_genotype_prob(alleles, alleles-

set(known_alleles), allele_freq, nc_unknown) 

                        elif i-j == 0: 

                            cprob += error_new 

    except (AttributeError, ValueError): 

        return np.nan 

 

    return cprob if cprob != 0 else 0.05**(sum(obs_alleles.values()) + 

sum(h_alleles_all.values())) 
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A-3 find_nc.py – used to find out number of contributors 

 

import argparse 

import time 

import numpy as np 

import pandas as pd 

import MixtureAnalysis as ma 
from math import log10 

 

def run(input, N): 

    start_time = time.time() 

    print(time.ctime()) 

 

    df = pd.read_table(input, usecols=['ID', 'GB:ALLREADS', 

'ALLELE:ALLELE_FREQ']) 

    df.rename(columns={'ID': 'Id'}, inplace=True) 

 

    prob_lists = [[ma.mixture_prob(row[2], row[3], nc+1) for row in df.itertuples()] for nc 

in xrange(N)] 

    for i in xrange(N): 

        df['P('+str(i+1)+')']=prob_lists[i] 

 

    df.dropna(0, inplace=True) 

    print df.tail() 

    print 
    for i in xrange(N): 

        print "The probability of having",i+1,"contributor(s) 

is:",np.log10(df['P('+str(i+1)+')']).sum(),"(Log 10)" 

 

    print 
    df.ix[:, df.columns != 'ALLELE:ALLELE_FREQ'].to_csv(input + '_nc' + 

time.strftime("%Y%m%d%H%M%S") + '.tsv', sep = '\t', index=False) 

    print("--- %s seconds ---" % (time.time() - start_time)) 

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser(description='Calculate the probability of the number 

of contributors in a DNA mixture.') 

    parser.add_argument('input', help='STR data for DNA mixture') 

    parser.add_argument('N', type=int, nargs='?', default=2, help='the number of 

contributors to calculate up to') 

    args = parser.parse_args() 

 

    run(args.input, args.N) 
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A-4 calc_lr.py – used to calculate likelihood ratios 

import argparse 

import time 

import os 

import numpy as np 

import pandas as pd 

import MixtureAnalysis as ma 
from math import log10 

 

def basename(path): 

    return os.path.splitext(os.path.basename(path))[0] 

 

def run(M, Hp, Hd, N, do_output): 

    start_time = time.time() 

    print(time.ctime()) 

    print 
    print "DNA Mixture:",basename(M) 

    print "Hp contains:",[basename(p) for p in Hp] 

    print "Hd contains:",[basename(p) for p in Hd] 

    Hp_n, Hd_n = len(Hp), len(Hd) 

 

    if N == -1: 

        N = max(Hp_n, Hd_n) 

    print "Number of contributors:",N 

 

    main_df = pd.read_table(M, usecols=['ID', 'GB:ALLREADS', 

'ALLELE:ALLELE_FREQ']) 

    main_df.rename(columns={'GB:ALLREADS': M}, inplace=True) 

 

    for strfile in Hp: 

        df = pd.read_table(strfile, usecols=['ID', 'GB:ALLREADS']) 

        df.rename(columns={'GB:ALLREADS': strfile+'_Hp'}, inplace=True) 

        main_df = pd.merge(main_df, df, on='ID', how='inner') 

 

    for strfile in Hd: 

        df = pd.read_table(strfile, usecols=['ID', 'GB:ALLREADS']) 

        df.rename(columns={'GB:ALLREADS': strfile+'_Hd'}, inplace=True) 

        main_df = pd.merge(main_df, df, on='ID', how='inner') 

 

    main_df.rename(columns={'ID': 'Id'}, inplace=True) 

    cols = main_df.columns.tolist() 

    cols.append(cols.pop(cols.index('ALLELE:ALLELE_FREQ'))) 

    main_df = main_df.reindex(columns=cols) 

 

Lh_Hp_L, Lh_Hd_L, Log10_LR = [], [], [] 
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    for row in main_df.itertuples(): 

        Lh_Hp = ma.calc_posterior_prob(row[2], [row[3+i] for i in xrange(Hp_n)], 

row[3+Hp_n+Hd_n], N) 

        Lh_Hd = ma.calc_posterior_prob(row[2], [row[3+Hp_n+i] for i in xrange(Hd_n)], 

row[3+Hp_n+Hd_n], N) 

        Lh_Hp_L.append(Lh_Hp) 

        Lh_Hd_L.append(Lh_Hd) 

        Log10_LR.append(log10(Lh_Hp/Lh_Hd)) 

 

    row_cnt = len(main_df.index) 

    main_df['Lh Hp'] = Lh_Hp_L 

    main_df['Lh Hd'] = Lh_Hd_L 

    main_df['Log(10, LR)'] = Log10_LR 

    main_df.dropna(0, inplace=True) 

    main_df['Log(10, cumulative-LR)'] = main_df['Log(10, LR)'].cumsum() 

    cumu_LR = main_df['Log(10, cumulative-LR)'].iloc[-1] 

 

    print "Dropped",(row_cnt - len(main_df.index)),"out of",row_cnt,"rows due to data 

errors.\n" 

    print "Log(10, cumulative-LR):",cumu_LR 

    if cumu_LR > 0: 

        print "It is more probable that Hp is True.\n" 

    else: 

        print "It is more probable that Hd is True.\n" 

 

    filename = '_'.join([basename(M), 'Hp', '_'.join(basename(f) for f in Hp), 'Hd', 

'_'.join(basename(f) for f in Hd), 'N', str(N)]) + '.tsv' 

    if do_output: 

        main_df.ix[:, main_df.columns != 'ALLELE:ALLELE_FREQ'].to_csv(filename, sep 

= '\t', index=False) 

    print("--- %s seconds ---" % (time.time() - start_time)) 

    return {'filename': filename, 'cumu_LR': cumu_LR} 

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser(description='Calculate the likelihood ratio for the 

specified DNA mixture.') 

    parser.add_argument('M', help='STR data for evidence mixture') 

    parser.add_argument('-Hp', nargs='+', default=[], help='STR data for individuals in Hp') 

    parser.add_argument('-Hd', nargs='+', default=[], help='STR data for individuals in Hd') 

    parser.add_argument('-N', type=int, default=-1, help='the number of contributors') 

    parser.add_argument('--do_output', action='store_true', help='set this flag to output 

generated data files') 

    args = parser.parse_args() 

 

    run(args.M, args.Hp, args.Hd, args.N, args.do_output) 
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A-5 test.py – use to simulate experiments for empirical analysis 

import argparse 

import mix_dna 

import calc_lr 

import glob 

import os 

import gc 

import random 

import time 

import numpy as np 

import pandas as pd 
from threading import Thread 

from itertools import combinations 

 

def basename(path): 

    return os.path.splitext(os.path.basename(path))[0] 

 

def restricted_float(x): 

    x = float(x) 

    if x < 0.0 or x > 1.0: 

        raise argparse.ArgumentTypeError('%r should be in range [0.0, 1.0]'%(x,)) 

    return x 

 

def run(data_in_dir, data_out_dir, format, do_output, result_output_name, parts): 

    # Open result output file to append data 

    if os.path.isfile(result_output_name): 

        df = pd.read_table(result_output_name) 

    else: 

        df = pd.DataFrame(columns=['M', 'part1', 'part2', 'part3', 'Hp', 'Hd', 'N', 'cumuLR', 

'result']) 

    df['N']=df['N'].astype(np.int16) 

 

    if do_output and not os.path.exists(data_out_dir): 

        os.makedirs(data_out_dir) 

 

    # Get data input files 

    cts_files = glob.glob(data_in_dir + os.sep + '*.' + format) 

 

    comb = list(combinations(cts_files, 2)) + list(combinations(cts_files, 3)) 

    i=1 

 

    for combination_list in comb: 

        print 'Working on ' + str(i) + '/' + str(len(comb)) + ' test runs.' 

        print 
        i+=1 
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        timestr = time.strftime('_%Y%m%d-%H%M%S') 

        if len(combination_list) == 2: 

            pairs = combination_list 

            row = {} 

            fn = mix_dna.run(pairs[0], pairs[1], parts[0], parts[1], data_out_dir) 

            filename = 'mix2_' + '_'.join(basename(f) for f in pairs) + '_part_' + '_'.join('%.3f' % 

(p) for p in parts[:2]) + timestr + '.cts' 

            N = 2 

        else: 

            triplets = combination_list 

            row = {} 

            ft = mix_dna.run(triplets[0], triplets[1], parts[0], parts[1], data_out_dir) 

            fn = mix_dna.run(ft, triplets[2], 1, parts[2], data_out_dir) 

            filename = 'mix3_' + '_'.join(basename(f) for f in triplets) + '_part_' + 

'_'.join('%.3f' % (p) for p in parts) + timestr + '.cts' 

            os.remove(ft) 

            N = 3 

 

        os.rename(fn, data_out_dir + os.sep + filename) 

        gc.collect() 

        for p in cts_files: 

            Hp = [p] 

            Hd = [] 

            calc_lr_res = calc_lr.run(data_out_dir + os.sep + filename, Hp, Hd, N, do_output) 

            if do_output: 

                os.rename(calc_lr_res['filename'], data_out_dir + os.sep + 

calc_lr_res['filename']) 

            cumu_LR = calc_lr_res['cumu_LR'] 

            row['M'] = filename 

            row['part1'] = '%.3f' % parts[0] 

            row['part2'] = '%.3f' % parts[1] 

            row['part3'] = '%.3f' % parts[2] if N == 3 else '' 

            row['Hp'] = ','.join(basename(f) for f in Hp) 

            row['Hd'] = ','.join(basename(f) for f in Hd) 

            row['N'] = N 

            row['cumuLR'] = cumu_LR 

            row['result'] = 'T' if cumu_LR > 0 else 'F' 

            df = df.append(pd.DataFrame.from_records([row], columns=df.columns)) 

            # do this in a thread to prevent KeyboardInterrupt from ruining everything 

            a = Thread(target=df.to_csv(result_output_name, sep='\t', index=False)) 

            a.start() 

            a.join() 

            gc.collect() 

 

        if not do_output: 

            os.remove(data_out_dir + os.sep + filename) 
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if __name__ == '__main__': 

    parser = argparse.ArgumentParser(description='Script to do experiments on the LR 

method.') 

    parser.add_argument('--data_in_dir', default='data', help='directory path to input data 

files, defaults to data') 

    parser.add_argument('--data_out_dir', default='output_data', help='directory path to 

output data files, defaults to output_data') 

    parser.add_argument('--format', default='cts', help='format of data files, defaults to cts') 

    parser.add_argument('--do_output', action='store_true', help='set this flag to output 

generated data files') 

    parser.add_argument('--result_output_filename', default='results.tsv', help='output file 

name for test results, defaults to results.tsv') 

    parser.add_argument('-p1', type=restricted_float, default=random.random(), help='the 

percentage of DNA from person 1 to be added into the mixture [0.0 - 1.0]') 

    parser.add_argument('-p2', type=restricted_float, default=random.random(), help='the 

percentage of DNA from person 2 to be added into the mixture [0.0 - 1.0]') 

    parser.add_argument('-p3', type=restricted_float, default=random.random(), help='the 

percentage of DNA from person 3 to be added into the mixture [0.0 - 1.0]') 

    args = parser.parse_args() 

 

    parts = [args.p1, args.p2, args.p3] 

    run(args.data_in_dir, args.data_out_dir, args.format, args.do_output, 

args.result_output_filename, parts) 
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