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ABSTRACT 

 

 

A STUDY ON UNIVALENT FUNCTIONS AND THEIR GEOMETRICAL 

PROPERTIES 

 

 

Wei Dik Kai 

 

 

 

 

 

 

 A study of univalent functions was carried out in this dissertation. An 

introduction and some known results on univalent functions were given in the first 

two chapters.  

 In Chapter 3 of this dissertation, the mapping Rf  from unit disk D  to disk 

of specified radius RE  for which f S  was identified explicitly. Moreover, the 

mapping was studied as the radius R  approaches to infinity. It is then found that 

when R , the mapping Rf  tends to the function 1(1 )z z   analytically and 

geometrically. 

 In Chapter 4, functions from subclasses of S  consist of special 

geometrical properties such as starlike and convex functions were defined 

geometrically and analytically. It is known that 2( )f z z az   is starlike or 

convex under a certain conditions on the complex constant a , we are able to 

obtain similar results for the more general function ( ) mf z z az  .  

Furthermore, the Koebe function is generalized into (1 )z z   and we 

were able to show that it is starlike if and only if 0 2  . The range of the 
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generalized Koebe function was studied afterward and we found that the range 

contain the disk of radius 1 2 . At the end of the dissertation, some well-known 

inequalities involve function of class S  were improved to inequalities involving 

convex functions. 
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CHAPTER 1 

 

HOLOMORPHIC FUNCTIONS 

 

 

The main purpose of this chapter is to introduce the holomorphic functions and 

some of their properties that will be used throughout the dissertation. We are 

interested in studying the analyticity of complex differentiable function and some 

of its properties. 

 

1.1 Real Differentiable Functions 

First of all, we begin our study on real differentiable functions. A real function 

( )f x  is said to be differentiable at point 0x  if the quotient 

0 0( ) ( )f x h f x

h

 
 

converges to a limit as 0h . If the limit exists, it is denoted as 0( )f x , and 

called as the derivative of f  at 0x . If the limit doesn‟t exists, then ( )f x  is not 

differentiable at 0x . 

 If f  is differentiable at 0x , then ( )f x  is continuous at 0x . The converse is 

not true. At certain points in its domain, a function can be continuous but not 
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differentiable. For example, ( )f x x  is continuous on the real line but not 

differentiable at 0x  . 

 The term analytic function is often used interchangeably with holomorphic 

function in complex analysis. However, this is not true in general for real 

functions. Analytic is different from real differentiable. Analyticity is used in 

describing whether the function value near a fixed point can be obtained from its 

Taylor‟s series expansion at that point. More precisely, a real-valued function  f  

on a nonempty, open interval  ,a b  is said to be analytic at  0 ,x a b  if there 

exist coefficient  
0n n

a



 and 0   such that  

0

0

( ) ( )n

n

n

f x a x x




   

for all 0 0( , ) ( , )x x x a b     . The function f  is said to be analytic on 

( , ) ( , )r s a b , if it is analytic at every point in ( , )r s . If ( )f x  is analytic at 0x , 

then from Taylor‟s Theorem, ( )

0( ) !n

na f x n  and ( )f x  is infinitely 

differentiable at 0x . However, the converse is not true. For example,  

1 , 0
( )

0 , 0

xe x
h x

x

 
 


 

The derivative of h  of all orders at 0x   is equal to 0. Therefore, the Taylor‟s 

series of h  at the origin is 20 0 0x x   which converges everywhere to the 

zero function. Hence the Taylor‟s series does not converge to h  for 0x  . 

Consequently, h  is not analytic at the origin. 
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1.2 Complex Differentiable Functions 

Let   be an open set in the complex plane  , and f  be a complex-valued 

function on  . The function f  is said to be differentiable at the point 
0z   if 

the quotient  

0 0( ) ( )f z h f z

h

 
 

converges to a limit as 0h . If the limit exists, it is denoted as 0( )f z , and 

called as derivative of f  at 0z . If f  is differentiable at 0z  as well as at every 

point of some neighborhood of 0z , it is said to be holomorphic at 0z . The 

function f  is said to be holomorphic in   if f  is holomorphic at every point of 

 . 

 The definition of holomorphic function seems no different from the real 

differentiable function, but it has the essence of complex differentiability compare 

to the real differentiability. Hence, there exists some properties that cannot be 

shared by real differentiable function. One of the properties is that all 

holomorphic functions are analytic. However, this is not true for real 

differentiable function, as shown in the example from previous section. 

Theorem 1.2.1 (Taylor’s Theorem) Suppose that f  is holomorphic in a domain 

  and that ( )RN   is any disk contained in  . Then the Taylor series for f  

converges to ( )f z  for all z  in ( )RN  ; that is,  
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( )

0

( )
( )

!

n
n

n

f
f z z

n








  ,  for all ( )Rz N  . 

Furthemore, for any r , 0 r R  , the convergence is uniform on the closed 

subdisk  ( ) :RN z z r    . 

For the proof, please refer to (Mathews and Howell, 2010). 

 

1.3 Laurent Series 

If a complex function is not holomorphic at a particular point 0z z , then this 

point is said to be a singularity or singular point of the function. There are two 

types of singular points, one of them is known as isolated singularity and the other 

known as non-isolated singularity. The point 0z z  is said to be an isolated 

singularity of the function f  if f  analytic on a deleted neighborhood of 0z  but 

not analytic at 0z . For example, 0z   is isolated singularity of ( ) 1f z z . On 

the other hand, the point 0z z  is said to be a non-isolated singularity if every 

neighborhood of 0z  contains at least one singularity of f  other than 0z . 

 In this section, we will discuss the power series expansion of f  about an 

isolated singularity 0z  which is also known as the Laurent series and it will 

involve negative and non-negative integer powers of 0z z . 
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Theorem 1.3.1 (Laurent’s Theorem) Let f  be holomorphic in the annular 

domain E  defined by 0r z z R   . Then f  can be expressed as the sum of two 

series 

   0 0

0 1

( )
n n

n n

n n

f z a z z a z z
 





 

      

both series converging in the annular domain E , and converging uniformly in 

any closed subannulas 1 0 2r z z R      . The coefficients 
na  are given by 

 
1

0

1 ( )

2
n nC

f
a d

i z




 





 , 0, 1, 2,n      

where C  is any positively oriented simple closed contour that lies entirely within 

E  and has 0z  in its interior. 

For the proof, please refer to (Saff and Snider, 2003). 

From the power series, we see that Laurent series consists of two parts. 

The part of the power series with negative powers of 0z z  namely,  

 0

1

n

n

n

a z z








  

is known as the principal part of the series. Now we are going to assign different 

names to the isolated singularity 0z  according to the number of terms in the 

principal part. 

 An isolated singular point 0z  of the complex function f  is classified 

depending on whether the principal part vanishes, contains a finite number or an 

infinite number of terms. 
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i) If the principal part vanishes, which means that all the coefficients 
na
 

are zero for all 1, 2, 3,n   , then 
0z  is called as a removable 

singularity. 

 

ii) If the principal part contains a finite number of nonzero terms, then 
0z  

is called as pole. In this case, if the last nonzero coefficient is ma , and 

1m  , then we say that 
0z  is a pole of order m . 

 

iii) If the principal part contains infinitely many nonzero terms, then 0z  is 

called an essential singularity. 

 

Assume that ( )f z  is holomorphic in a domain   and not identically zero. Then, 

if ( ) 0f z  , from Theorem 1.2.1, there exists a first derivative ( )

0( )mf z  which is 

different from zero. In this case, we say that 0z  is a zero of order m , and ( )f z  

can be expressed as 
0( ) ( ) ( )mf z z z g z  , where ( )g z  is analytic and 0( ) 0g z  . 

There is close relationship between zeros and poles of a holomorphic function as 

in the following theorems. 

Proposition 1.3.1 If f  is holomorphic and has a zero of order m at the point 0z , 

then ( ) 1 ( )g z f z  has a pole of order m  at 0z . 

For the proof, please refer to (Saff and Snider, 2003). 
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Proposition1.3.2 If f  has a pole of order m  at the point 
0z , then ( ) 1 ( )g z f z  

has a removable singularity at 
0z . If we define 

0( ) 0g z  , then ( )g z  has a zero of 

order m  at 
0z . 

For the proof, please refer to (Saff and Snider, 2003). 

 

1.4 Harmonic Functions 

The sum and product of two holomorphic functions are still holomorphic. The 

quotient ( ) / ( )f z g z   is holomorphic in   provided that ( )g z  does not vanish in 

 . For a holomorphic function ( )f z , and if we write ( ) ( ) ( )f z u z iv z  , it 

follows that ( )u z  and ( )v z  are both continuous as well. From the definition, the 

limit  0 0
0

lim ( ) ( )
h

f z h f z h


   must be the same regardless the way h  approa-

ches zero. If the real values of h  are chosen, then we have a partial derivative 

with respect to the real part. Thus, we obtain 

'( )
f u v

f z i
x x x

  
  
    

for z x iy  . If approaches 0 through h ik , then we have a partial derivative 

with respect to imaginary part. Thus, we obtain 

'( )
f u v

f z i i
y y y

  
    

  
 

It follows that ( )f z  must satisfy the partial differential equation 
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f f
i

x y

 
 

 
 

which resolves into the real equation 

u v

x y

 


 
   ,   

u v

y x

 
 

 
 

The above equations are known as Cauchy-Riemann differential equations. The 

equations must be satisfied by real and imaginary parts of any holomorphic 

function. For the quantity 
2

( )f z , we can see that 

2 2
2

'( )
u v u v u v

f z
x x x y y x

        
      

        
 

is the Jacobian of u  and v  with respect to x  and y . 

 Since f  is holomorphic, it follows that, u  and v  have continuous partial 

derivatives of all orders. From Clairaut‟s Theorem (Stewart, 2003), 
xy yxu u , 

xy yxv v . By using the Cauchy-Riemann equations it follows that 

xx yxu v , xx yxv u   

yy xyu v  , yy xyv u  

Combining Clairaut‟s Theorem and Cauchy-Riemann equations, we can obtain 

2 2

2 2
0

u u
u

x y

 
   

 
, 

2 2

2 2
0

v v
v

x y
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If u  satisfied the Laplace‟s equation 0u  , then it is said to be harmonic. Thus 

the real part and imaginary part of a holomorphic function are harmonic. 

 

1.5 Argument Principle and Open Mapping Theorem 

A function f  is said to be meromorphic in a domain   provided the singularities 

of f  are isolated poles and removable singularities. In this section, we give an 

important result called the Argument Principle which provides a formula on 

finding the difference between number of zeros and poles of a meromorphic 

function. Further properties of holomorphic function will be explored in this 

section as well. 

Theorem 1.5.1 (Argument Principle) Suppose that f  is meromophic in a 

simple connected domain  . Let   be a piecewise smooth, positively oriented, 

simple closed curve in  , which does not pass through any pole or zero of f  and 

whose interior lies in  . Then 

0

1 ( )

2 ( )
p

f z
dz N N

i f z


   

where 0N  is the total number of zeros of f  inside   and pN  is the total number 

of poles of f   inside  . 

For the proof, please refer to (Mathews and Howell, 2010). 

Theorem 1.5.1 is known as Argument Principle because it is related to the 

winding number of f  about the origin. The winding number of a closed curve in 



10 
 

the plane around a given point is an integer representing the total number of times 

that curve winds around the point counterclockwise. 

Theorem 1.5.2 (Winding numbers) Suppose that f  is meromorphic in the 

simply connected domain  . If   is a simple closed positively oriented contour in 

  such that for z  , ( ) 0f z  , ( )f z    and ( )f  , then 

 
1 '( )

( ),
2 ( )

f z
W f dz

i f z
 

 


  

known as the winding number of  ( )f   about  , counts the number of times the 

curve ( )f   winds around the point  . If 0  , the integral is actually counting 

the number of times the curve ( )f   winds around the origin. 

For the proof, please refer to (Mathews and Howell, 2010). 

Any two points in the same region bounded by ( )f   can be joined by a 

polygon which does not meet ( )f  . In other words,    ( ), ( ),W f W f     if 

( )f   does not meet the line segment from   and  . If   is a circle, it follows 

that ( )f z  takes values of   and   equally many times inside   (Ahlfors, 1979). 

The following theorem is the consequence of this result. 

Theorem 1.5.3 Suppose that ( )f z  is analytic at 0z , 0 0( )f z w , and that 

0( )f z w  has a zero of order n  at 0z . If 0   is sufficiently small, there exists a 

corresponding 0   such that for all a  with 0a w    the equation ( )f z a  

has exactly n  roots in the disk 0z z   . 
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Proof. (Ahlfors, 1979) Choose   so that ( )f z  is defined and analytic for 

0z z    and so that 
0z  is the only zero of 

0( )f z w  in this disk. Let   be the 

circle 0z z    and   its image under the mapping ( )w f z . Since 
0w  belongs 

to the complement of the closed set  , there exists a neighborhood 0w w    

which does not intersect  . It follows immediately that all values a  in this 

neighborhood are taken the same number of times inside of  . The equation 

0( )f z w  has exactly n  coinciding roots inside of  , and hence every value of a  

is taken n  times. It is understood that multiple roots are counted according to their 

multiplicity, but if   is sufficiently small we can assert that all roots of the 

equation ( )f z a  are simple for 0a w . Indeed, it is sufficient to choose   so 

that ( )f z  does not vanish for 00 z z    .     Q.E.D 

Corollary 1.5.1 A nonconstant analytic function maps open sets onto open sets. 

For the proof, please refer to (Ahlfors, 1979). 

Theorem 1.5.4. (Maximum Modulus Principle) If f  is analytic and 

nonconstant in a region  , then its absolute value f  has no maximum in  . 

For the proof, please refer to (Ahlfors, 1979). 

Corollary 1.5.2 (Minimum Modulus Principle) If f  is a nonconstant, nowhere 

zero, holomorphic function in domain  , then f  can have no local minimum in 

 . 

For the proof, please refer to (González, 1991a). 
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Corollary 1.5.3 If f  is a non-constant holomorphic function in a domain D , 

then ( )Re f  has no local maxima and no local minima. 

For the proof, please refer to (Fisher, 1999). 

Theorem 1.5.5 (Maximum Modulus Theorem) If ( )f z  is defined and continu-

ous on a closed bounded set E  and holomorphic on the interior of E , then the 

maximum of ( )f z  on E  is assumed on the boundary of E . 

Proof. (Ahlfors, 1979) Since E  is compact, ( )f z  has a maximum on E . 

Suppose that ( )f z  achieved it‟s maximum at point 0z . The theorem is proved if 

0z  is on the boundary. If 0z  is an interior point, then 0( )f z  is also the maximum 

of ( )f z  in a disk 0z z    contained in E . But this is not possible unless 

( )f z  is a constant in the component of the interior of E  which contains 0z . It 

follows by continuity that ( )f z  is equal to its maximum on the whole boundary 

of that component. This boundary is not empty and it is contained in the boundary 

of E . Thus the maximum is assumed at a boundary point.   Q.E.D 
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CHAPTER 2 

 

UNIVALENT FUNCTIONS 

 

 

Some basic properties of univalent functions will be discussed in this chapter. 

Some examples and applications will also be given in this chapter. 

 Let ( )w f z  be a complex mapping defined in a domain  , and we write 

z x iy   and w u iv  , where x , y , u  and v  are real numbers. 

 

2.1 Biholomorphism 

A bijective functionis a mapping that is both injective and surjective. A 

biholomorphism is a function that is both bijective and holomorphic. Given two 

open set   and '  in  , we are interested to know how they are related. From 

Open Mapping Theorem, we may assume that for a biholomorphism mapping, it 

is also an onto mapping. 

Theorem 2.1.1 If : 'f   is holomorphic and injective, then ( ) 0f z   for all 

z . In particular, the inverse of f  defined on its range is holomorphic, and 

thus the inverse of a biholomorphism is also holomorphic. 

For the proof, please refer to (Stein and Shakarchi, 2003). 

Geometrically, the condition ( ) 0f z    can be interpreted as conformality. 
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Definition 2.1.1 Let ( )w f z  be a complex mapping defined in a domain   and 

let 
0z  . Then we say that ( )w f z  is conformal at 

0z  if for every pair of 

smooth oriented curves 
1  and 

2  in   intersecting at 
0z , the angle between 

1  

and 
2  at 

0z  is equal to the angle between the image curves 
1   and 

2   at 
0( )f z  

in both magnitude and orientation. 

Theorem 2.1.2 An analytic function f  is conformal at every point 0z  for which 

0( ) 0f z  . 

For the proof, please refer to (Saff and Snider, 2003). 

From Theorem 2.1.1 and Theorem 2.1.2, we know that a biholomorphism 

is also a conformal mapping. If there exists a biholomorphism : 'f  , then 

we can say that   and '  are conformal equivalent. 

 

2.2 Linear Fractional Transformation 

One of the important examples of biholomorphism is the linear fractional 

transformation. The transformation is defined as follow. 

Definition 2.2.1 For complex constants a , b , c , d , and 0ad bc  , then the 

complex function defined as  

( )
az b

f z
cz d





 

is a linear factional transformation.  
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Linear fractional transformation is known as Mӧbius transformation as 

well. It can be showed that if ( )f z  is a linear fractional transformation, then it‟s 

inverse    1( )f z dz b cz a      is again a linear fractional transformation. 

From the definition of the transformation, we can see that if 0c  , then 

 ( )f z az b d   is linear mapping, and thus it‟s a special case of linear 

fractional transformation. For 0c  , the transformation can be written in the form: 

1
( )

bc ad a
f z

c cz d c


  


 

From the above equation, let  A bc ad c   and B a c , then we can 

see that f  is actually a composite function, f k g h   , where ( )k z Az B  , 

( ) 1g z z  and ( )h z cz d  . The domain of the linear fractional transformation 

is all z  in the complex plane except at z d c  . Since 0ad bc  , we can 

easily see that f  is injective on its domain. 

 

2.3 Univalent Functions 

In this section, univalent function and the class S  of univalent functions will be 

introduced, which is the class that we concerned the most throughout the study. 

Definition 2.3.1 A holomorphic function f  in a domain   is said to be 

univalent if it is injective in  . 
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To express it more clearly, if 
1 2( ) ( )f z f z  for all distinct pairs of 

1z  and 

2z  in  , then we say that f  is univalent. The function is said to be locally 

univalent at a point 
0z   if it is univalent in some neighborhood of 

0z . For 

holomorphic function f , the condition 
0( ) 0f z   is equivalent to local 

univalence at 
0z . 

Definition 2.3.2 The class S  consists of all function f  such that f  is univalent 

in the unit disk D , normalized with the condition (0) 0f   and (0) 1f   . 

For each f S , f  has a Taylor series expansion written in the form 

2 3

2 3

2

( ) n

n

n

f z z a z a z z a z




      , 1z  , na 
 

Before we move to another discussion on the class S , we introduce a 

theorem which is related to biholomorphism between unit disk  : 1D z z   

and an open set and this theorem plays an important role in latter chapters. 

Theorem 2.3.1 (Riemann Mapping Theorem) Let   be a simply connected 

domain which is a proper subset of the complex plane. Let   be a given point in 

 . Then there is a unique function f  which maps   conformally onto the unit 

disk and has the properties ( ) 0f    and '( ) 0f   . 

For the proof, please refer (Duren, 1983). 
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2.4 Example of Functions in the Class S  

We give several examples of univalent functions in this section. 

Example 2.4.1 The function 2( )f z z az   is in S  for a , 1/ 2a   and not 

univalent in D  for 1/ 2a  . 

Proof.  Obviously, ( )f z  is a holomorphic function in D  and normalized with the 

conditions (0) 0f  , (0) 1f   . For 1 2a  , observe that when 0a  , ( )f z z  

is clearly a univalent function in S . For 0a  , let 

1 2( ) ( )f z f z ,   1 2, : 1z z D z z    

Then we have 

   1 2 1 21 0z z a z z       

We claim that 1 2z z . If not, then 1 2 1/z z a  . From triangle inequality, 

1 21/ 2 1 1z a z      which contradicts the fact that 1z  . Therefore 1 2z z , 

and hence f  is univalent. Since f  is in the normalized form, this implies that 

f S . 

For 1/ 2a  , let 0 1/ (2 )z a  , since  0 1/ 2 1z a   therefore 0z D  

and 0( )f z  1 2 1/ (2 ) 0a a     which implies that f  is not local univalent. 

Then we conclude that f  is not univalent in D  for 1/ 2a  .   Q.E.D 
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D  { } 0Re z 

 

g

\ ( ,0]
 

h  

f  

\ ( , 1 4]   

Example 2.4.2 The Koebe function 
 

2
( )

1

z
k z

z




22 nz z nz       for 

1z   is in S . 

Proof. (Duren, 1983) Instead of using the similar method as Example 2.4.1, we 

prove this geometrically. Firstly, consider the following functions 

1
( )

1

z
g z

z





,  

2
( ) ( )h z g z , and  

1
( ) ( ) 1

4
f z h z  , 

 

 

 

 

 

 

 

Observed that the function g  mapped D  onto the right half-plane   0Re g  . In 

fact, 

1 1 1
( )

1 1 1

z x iy x iy
g z

z x iy x iy

    
  

    
 

 
2 2

2 2

(1 ) 0
( ) 0

(1 ) 2 2

x y
Re g z

x y x
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Then h  mapped it onto the whole plane except for the negative real axis. By some 

simple calculations, we find that (0) 0f  , (0) 1f    and ( ) ( )f z k z . Therefore, 

( )k z  is univalent and normalized and hence ( )k z S .   Q.E.D 

According to the composition of functions described as above, we know 

that the Koebe function mapped unit disk onto whole plane except the part of the 

negative real axis from 1 4  to negative infinity. 

Other simple examples in S  are listed as follow: 

(i) ( ) / (1 )f z z z  , which maps D  conformally onto the half-plane 

  1 2Re w   ; 

For z x iy  , 

1
( )

1 1 1

z x iy x iy
f z

z x iy x iy

  
  

    
 

 
2 2

2 2

( ) 1 1
( )

(1 ) 2 2 2

x x y x
Re f z

x y x

  
   

  
 

(ii) 2( ) / (1 )f z z z  , which maps D  conformally onto the whole plane minus 

the two half-lines  1/ 2 Re w   and   1/ 2Re w    . 

(iii)    
1

( ) log 1 / 1
2

f z z z     , which maps D  onto the horizontal strip 

 4 4Im w    . 

Let ( ) / (1 )h z z z   and ( ) / (1 )g z z iz  , clearly h  and g  are in S . By 

some calculation, we find that ( ) ( ) ( )f z h z g z   has a derivative which vanishes 
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at 
0 ( 1) / 2z i  . From the examples, we conclude that the sum of two functions 

in S  may not be univalent, yet the class S  is preserved under certain elementary 

transformations as listed below. 

(i) Conjugation. If f S , and 2 3

2 3( ) ( )g z f z z a z a z    , then g S . 

(ii) Rotation. If f S  and ( ) ( )i ig z e f e z  , then g S . 

(iii) Dilation. If f S  and 1( ) ( )g z r f rz , where 0 1r  , then g S . 

(iv) Disk automorphism. If f S , and  

 2

( )
1

( )
1 '( )

z
f f

z
g z

f






 

 
 

 


,  1  , 

then g S . 

(v) Range transformation. If f S  and h  is a univalent function on the range of 

f , with (0) 0h   and (0) 1h  , then g h f S  . 

(vi) Omitted-value transformation. If f S  and ( )f z  , then 

 g f f S    . 

(vii) Square-root transformation. If f S  and 2( ) ( )g z f z , then g S . 

The square-root transformation needs some further explanations. Since ( ) 0f z   

only at the origin, a single-branch of the square-root may be chosen by writing  
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1 2

2 2 4

2 3

3 2 5

2 3 2

( ) ( ) 1

1 1 1

2 2 8

g z f z z a z a z

z a z a a z

    

 
     

 





 

which implies that g  is an odd analytic function. Suppose that 
1 2( ) ( )g z g z , for 

1 2,z z D , then 2 2

1 2( ) ( )f z f z . By the univalence of f , we have 2 2

1 2z z  which 

means that 1 2z z  . We claim that 1 2z z , if not 1 2z z   would gives 1( )g z

2 2 1( ) ( ) ( )g z g z g z       since ( )g z  is an odd function. But this would contra-

dicts the definition of g . Hence 1 2z z
 
and g S . 

In fact, there are a lot of other examples from some subclasses of S  such 

as the class of starlike which is also our concern in the study. Moreover, one of 

them is the class consist only the analytic functions with negative coefficients. We 

will discuss about the subclasses in more detail in the latter section. In the next 

section, we are going to discuss a very important result that took about 70 years to 

prove it. 

 

2.5 Bieberbach’s Theorem  

In 1916, Ludwig Bieberbach proved that for every 2 3

2 3( )f z z a z a z    in 

the class S , 2 2a   and equality holds if and only if f  is a suitable rotation of 

Koebe function (Bieberbach, 1916). He conjectured that generally na n  for all 

f S  and it has become the famous Bieberbach‟s conjecture which remained 
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unproven until 1986. Some preliminary results are needed to prove the inequality 

is true for the second coefficient. Firstly, consider another class of univalent 

functions which are defined in the exterior of the unit disk D .  

Let   denotes the domain  : 1z z   and   is the class of all functions 

of the form 

1 2
0 2

0

( ) n

n
n

bb b
g z z b z

z z z





        

that are analytic and univalent in  . Let 0  be the subclass of   such that 

( ) 0g z   in for all z . 

Theorem 2.5.1 Let ( ) 1h z z . If f S , then 0( )F z h f h   . Conversely, if 

0g , then ( )G z h g h S   . 

Proof. (González, 1991b) We first prove that F  is univalent in  . Let 

1 2( ) ( )F F   where 1 2,   , then 1 11 z D    and 2 21 z D   . By the 

definition of ( )F  , we obtained 1 1( ) 1 ( )f z F   and 2 2( ) 1 ( )f z F  . Since 

1 2( ) ( )F F  , it means that 1 2( ) ( )f z f z . By univalence of f , we have 

1 2z z  and 1 2  , hence F  is univalent in  . Observed that ( ) 0F    for all 

  , since 0( ) 0F    for some 0   would implies that 0 0( ) (1 ) 0F f    

which contradict the fact that 0 0( ) (1 ) 1F f    for all 0  . Thus, 0( )F   . 

In fact, we can see that 
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2 3

2 3( )f z z a z a z    

32

2 3

1
(1 )

aa
f z

z z z
     

2 1

2 2 3

1
( ) ( )

(1 )
F z z a a a z

f z

      

is in the form of power series of class 0 .  

The converse can be shown in a similar way. We first prove that G  is 

univalent in D . Let 1 2( ) ( )G z G z  where 1 2,z z D , then 1 11 z    and 

2 21 z   . By the definition of ( )G z , we obtained 1 1( ) 1 ( )g G z   and 2( )g 

21 ( )G z . Since 1 2( ) ( )G z G z , it means that 1 2( ) ( )g g  . By univalence of 

g , we have 1 2z z  and 1 2  , hence G  is univalent in D . Observed that 

( ) 0G z   for all z D , since 0( ) 0G z   for some 0z D  would implies that 

0 0( ) (1 )G z g z 0  which contradict the fact that 0 0( ) (1 ) 1G z g z   for all 0z D . 

Thus, ( )G z  is in S .        Q.E.D 

The transformation is called an inversion. In fact, it establishes a one-to-

one correspondence between the classes S  and 0 . The class 0  sharing the 

same property as S , for example, 0  is preserved under the square-root 

transformation. We continue the preliminary result with the following theorem.  
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Theorem 2.5.2 (Interior Area Theorem). Let f S , then the area of ( )f D  is 

given by  

2

1

n

n

A n a




   

assuming that the numbers 
2 2

1

n

r n

n

A n a r




   are bounded for 0 1r  . 

Proof. (González, 1991b) We have  

2

( ) n

n

n

w f z z a z




   , 1z   

Consider the circle  : ,0 1, 0 2i

rC z z re r        . Let ( )r rf C  , 

( )r rD Int C , ( )r rInt   , r rA area  . From calculus, we have 

2 22

0 0

( , )

( , )

( ) ( )

r r

r

r

D

r
i

D

u v
A du dv dx dy

x y

f z dx dy f re r dr d


 




 



  

 

  

 

Since  

1 ( 1)

2( ) 1 2i i n i n

nf re a re na r e           

We have 
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2

22 2 2

1 0

( ) ( ) ( )i i i

n ik

n k

n k

f re f re f re

n a r c e

  






 

  

  

 

where the terms in the last sum involve the factors ike   with k  running through 

the nonzero intergers, and the coefficients kc  depending on the na  and r . Thus 

we have 

2 22 2 1

1 0

( )i n ik

n k

n k

r f re n a r rc e 




 

     

By substitution in rA  and integration term by term we have 

2 2

1

n

r n

n

A n a r




   

since 
2

0
0ie d


    for 0k  . If rA  are bounded for 0 1r  , and M  is an upper 

bound, then we have 

2 2

1

N
n

n

n

n a r M


  

where N  is a fixed arbitrary positive integer. The sum on the left-hand side 

increases monotonically with r and it is bounded. Hence, it has a limit as 1r  , 

and we obtained 

2

1

N

n

n

n a M
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Since the partial sums 
2

1

N

nn a  are bounded, the series 
2

1 nn a


  converges, 

and letting N   we find that 

2

1
1

lim r n
r

n

A A n a







    

and this concluded the proof.        Q.E.D 

Theorem 2.5.3 (Exterior Area Theorem) If  

0

( ) n

n
n

b
f z z

z





   

is in  , then  

2

1

1n

n

n b




 . 

For the proof, please refer to (Conway, 1996). 

Theorem 2.5.4 (Bieberbach’s Theorem for the second coefficient). If f S , 

then 2 2a   with equality holds if and only if f  is a rotation of the Koebe 

function. 

Proof. (Duren, 1983) By some calculation, a square-root transformation and 

inversion applied to f S  will produce a function 

1 2
2 2

3 3

1 1
( ) (1 )

2

a
h z f z z b

z z



          

in 0 . By Exterior Area Theorem, we have 
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22
3

1

3 1
2

n

n

a
n b b





       

Thus, 2 2 1a   and this implies that 2 2a  .  

Next, equality holds if and only f  is a rotation of Koebe function. First, it is easy 

to show that the rotation of Koebe function 

 
2

2 3

( ) ( )
1

2 3

i i

i

i i

z
k z e k e z

e z

z e z e z

 




 

 


   

 

has a second coefficient such that 2 2a  . Next, if 
2 2 ia e  , then we have 0nb   

for all 2n  . Therefore we have equation ( ) ig z z e z  . Thus we have  

21

1 1
( )

(1 ) 1i i

z

z
G z

g z e z e z 
  

 
 

is in S  as well by Theorem 2.5.1. From square-root transformation, we know that

   
22 ( )f z G z , hence we are able to find 

 
 

2
2

2
21 i

z
f z

e z



 

and this shows that 

 
2

( ) ( )
1

i i

i

z
f z e k e z

e z
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which is a rotation of Koebe function. This concludes the proof.   Q.E.D 

The proof of the Bieberbach‟s conjecture is a challenging task. Lowner 

proved that 3 3a   for every f  in S  at 1923. The first good estimate for all the 

coefficients was given by Littlewood who proved that na en  in 1925. The best 

result dated before 1985 is provided by FitzGerald and his student Horowitz in 

1978 as they proved that 1.0691na n . Finally, Bieberbach‟s conjecture was 

proved by Louis de Branges in 1986. We ended the discussion of this section by 

stating the theorem. 

Theorem 2.5.5 (Bieberbach’s Theorem) If 

2

( ) n

n

n

f z z a z




   

is in S , then na n . The inequality is sharp with equality occurs if and only if 

f  is a rotation of the Koebe function. 

For the proof, please refer to (De Branges, 1985). 

 

2.6 Applications of Bieberbach’s Theorem 

In this section, a classical application of Bieberbach‟s theorem will be discussed. 

For holomorphic function and non-constant f  on D , we know that ( )f D  is an 

open set by the open mapping theorem. Since f S  with (0) 0f  , then its range 

must contain some disk centered at 0. As early as 1907, Koebe found out that the 
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ranges of all functions in S  must contain a common disk  : 1 4w w  . This is 

the famous covering theorem. 

Theorem 2.6.1 (Koebe One-Quarter Theorem) The range of every function of 

the class S contains the disk  : 1 4w w  . 

Proof. (Duren, 1983) If a function f S  omits the value w , from the 

omitted-value transformation, 

2

2

( ) 1
( )

( )

wf z
g z z a z

w f z w

 
     

  
 

is holomorphic and univalent with (0) 0g   and (0) 1g  , hence g S . 

Bieberbach‟s Theorem gives 

2

1
2a

w
   

From triangle inequality and the inequality 2 2a  , this shows 21 2 4w a   , 

thus 1 4w  . Hence, every omitted value must lie outside the disk  : 1 4w w  . 

Thus, the range of function f  contains the disk  : 1 4w w .   Q.E.D 
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CHAPTER 3 

 

AN EXPLICIT EXAMPLE OF A CLASS OF 

UNIVALENT FUNCTIONS 

 

 

This chapter discusses about the disk automorphism. A brief introduction on disk 

automorphism will be given at the beginning of the chapter and later it will be 

used to construct an example. 

 

3.1 Disk Automorphism 

From Chapter 2, we know that functions in the class S  are invariant under disk 

automorphism which is defined as follow 

( )
1

z
f z

z









,  1   

and f  mapped D  one to one and onto D , and mapped the origin to  . 

 

3.2 Constuction of An Explicit Example 

Let  ( , ) :RE E R r z z r R      for fixed R  and r  such that 

0 r R  . From Riemann Mapping Theorem, we know that there exists a unique 

conformal mapping g  between D  and RE  such that (0) 0g   and (0) 0g  . We 

wish to determine when will there be a function f S  such that : Rf D E  is a 
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biholomorphism. As it turns out, we are able to obtain a relation between R  and 

r , an explicit expression for f , and some of its geometrical properties. 

We first note that ( )h z Rz r   is a conformal mapping from D  to 
RE . 

Next, consider the following mapping :g D D . 

( )
1

r
R

r
R

z
g z

z





 

Clearly, the composite function f h g   is a conformal mapping from D  to RE . 

But it may not lie in S . We see that 

 

 

 

and 

2 2

( ) ( )

1

( )

r
R

r
R

f z h g z

z
R r

z

R r z

R rz



 
  

 








 

Clearly, (0) 0f  . Differentiating the function f , we have  

2 2

2

( )
( )

( )

R R r
f z

R rz


 


 

f  

g  

h  

D  D  

RE  
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In order that f  in S , we must have (0) 1f   , that is 

2 2

'(0) 1
R r

f
R


   

which implies that 2 2R R r   or ( 1)r R R  , with 1R   

Thus we notice that in order that : Rf D E  is in S , then R  and r  must satisfy 

( 1)r R R   and 1R  . For ( 1)r R R  ,  

 

2 2( )
( )

( 1)

R r z Rz
f z

R rz R R R z


 

  
 

For 1R  , the function 

 
( )

( 1)
R

Rz
f z

R R R z


 
 

is the only conformal function from D  to RE  such that (0) 0f   and (0) 1f    

and thus Rf S . 

Summarizing, in order that : Rf D E  is a biholomorphism and f S , 

the center of the disk RE  must be located at ( 1)r R R  , and  

 
( )

( 1)
R

Rz
f z

R R R z


 
 

For different radius of R , for example, when R = 1, 10, 100, 1000, or 10000, RE  

can be illustrated as following: 
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In the diagram above, r R  is the left x-intercept of RE  on the real axis. As 

R , r R  will tends to 
1

2
 . In fact,  

2 2

lim ( ) lim

lim

1
lim

1

1

2

R R

R

rR
R

r R
r R

r R

R

r R

 






 



 


 


 

 

Thus, the limiting position of RE
 
as R  will be the right open half plane 

bounded by 1 2x   . On the other hand, analytically as R , ( )Rf z  will 

tends to the function 1( ) (1 )f z z z   .  

𝐸1 𝐸10 𝐸100  
𝐸1000  

𝑥 = −
1

2
 𝐸10000  

0 1 
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In fact 

lim ( ) lim

lim
1

1

R
R R

rR
R

Rz
f z

R rz

z

z

z

z

 












 

Therefore, 

lim ( ) ( )R
R

f z f z


  

As in Chapter 2, the range of ( )f z  is the half plane satisfying   1
2

( )Re f z   . 

This shows that when R , the limiting function of Rf  mapped unit disk D  

conformally onto the right half-plane   1
2

( )Re f z   . Thus, lim ( ) ( )R
R

f z f z


  

analytically as well as geometrically. For better understanding on the geometrical 

display of function ( )
1

z
f z

z



, please refer to Appendix A and B. 
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CHAPTER 4 

 

SUBCLASSES OF UNIVALENT FUNCTIONS 

 

In this section, we study the starlike and convex functions which are two of the 

important subclasses in S . Some interesting geometrical and analytical properties 

of these functions will be discussed and studied in this chapter. We are able to 

generalize some results here.    

 

4.1 Starlike and Convex Functions 

Lemma 4.1.1. (Schwarz Lemma). Let f  be analytic in the unit disk D , with 

(0) 0f   and ( ) 1f z   in D . Then (0) 1f    and ( )f z z  in D . The equality 

occurs if and only if f  is a rotation. 

Proof. (González, 1991a) Since (0) 0f  , from Cauchy-Taylor expansion we 

have  

2(0)
( ) (0)

2!

f
f z f z z


   

valid for 1z  . Let 

(0)
( ) (0)

2!

f
h z f z


    

then ( )h z  is analytic in 1z  , and  
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( )
( )

f z
h z

z
  for 0z   and (0) (0)h f   

For 1z  , choose r  such that 1z r  . ( )h   attains its maximum in r   at 

some points on its boundary r   by Maximum Modulus Theorem. Since 

(0) 0f   and ( ) 1f z  , for 1z r  , we have 

( ) 1
( ) max ( ) max

r r

f
h z h

r 




 
    

The inequalities remain true when r  approaches to 1. Hence we obtain 

( ) 1h z   for 1z   

Thus, it follows that 

( )f z z  for 0 1z   and (0) 1f    

For 0z  , the inequality holds since (0) 0f   by assumption. 

If ( )f z z , we have ( ) 1h z   at some point 0z  in D , then ( )h z  attains its 

maximum value at 0z . For (0) 1f   , (0) 1h  , then ( )h z  atttanis it maximum 

value at 0. By Maximum Modulus Principle, this is impossible unless ( )h z  is a 

constant. In this case we have ( )h z a , where a  is a constant such that 1a  . 

Thus, ( )f z az . On the other hand, if ( )f z az , then ( )f z z  for all z  and 

( )f z a  , therefore (0) 1f   .      Q.E.D 
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Definition 4.1.1 Let ( )f z  and ( )g z  be holomorphic in D . ( )f z  is said to be 

subordinate to ( )g z  if there exists a holomorphic function ( )z  (not necessarily 

univalent) in D  satisfying (0) 0   and ( ) 1z   such that  

 ( ) ( )f z g z  , for z D  

If ( )f z  is subordinated to ( )g z , it is denoted by ( ) ( )f z g z . 

We first go through some basic properties of subordination. Let 

( ) ( )f z g z , since ( )D D   and (0) 0   it follows that ( ) ( )f D g D  and 

(0) (0)f g . Moreover, ( )z z   by Schwarz‟s Lemma and therefore  

   ( ) : ( ) :f z z r g z z r    , 0 1r   

Notice that f  and g  are not assumed to be univalent in Definition 4.1.1. When 

the subordinating function is univalent, the above properties will lead to a 

principle known as Principle of Subordination. 

Lemma 4.1.2. Let ( )g z  be univalent in D . Then ( ) ( )f z g z  if and only if 

(0) (0)f g  and ( ) ( )f D g D . 

For the proof, please refer to (Jensen and Pommerenke, 1975). 

Theorem 4.1.1 (Principle of Subordination) If ( )g z  is univalent in D , then 

(0) (0)f g  and ( ) ( )f D g D   implies  

( ) ( )r rf D g D  

where  , 0 1rD z r r    . 
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For the proof, please refer to (Jensen and Pommerenke, 1975). 

Definition 4.1.2 Let   be a set in  . We say that   is starlike (with respect to 

origin) if the closed line segment joining the origin to each point w  lies 

entirely in  . We say that   is convex if for all 
1 2,w w  , the closed line 

segment between 
1w  and 2w  lies entirely in  . 

Let ST  denote the subclass of S  which consists all the starlike functions 

with respect to origin and let CV  denote the subclass of S  which consists all the 

convex functions. Closely related to the classes ST  and CV  is the class P  

containing all the function g  holomorphic and having positive real part in D , 

with (0) 1g  . The following theorem gives an analytic description of starlike and 

convex function. 

Theorem 4.1.2 Let f  be holomorphic in D , with (0) 0f   and (0) 1f   . Then 

f ST  if and only if zf f P  . 

Proof. (Duren, 1983) First suppose that f ST . Then we claim that f  maps 

each subdisk 1z r   onto a starlike domain. The same assertion is that 

( ) ( )g z f rz  is starlike in D . In other words, we must show that for each fixed t , 

where 0 1t   and for each z D , the point ( )tg z  is in the range of g . But 

since f ST , we have    ( ) : 1 ( ) : 1tf z z f z z   , 0 1t  . From Lemma 

4.1.2, for arbitrary fixed 0t , we have 0t f f . In fact, the function ( )z  in 

Definition 4.1.1 can be defined as 

1

0( ) ( ( ))z f t f z   
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and then  

  0( ) ( )f z t f z   

We have 

1

0

1

(0) ( (0))

(0)

0

f t f

f

 









 

Moreover, 1

0( ) ( ( )) 1z f t f z    since  0 ( ) ( ) : 1t f z f z z  . By Schwarz 

Lemma, ( )z z   and ( )rz r  . Next, we wish to show that 0t g g . Observe 

that 

0 0( ) ( ) ( ( )) ( ( ))t g z t f rz f rz g z     

where ( ) ( )z rz r   and ( )z z  . Therefore, 0 (0) (0)t g g  and 

0 ( ) ( )t g D g D . 

From the above arguments and Lemma 4.1.2, we have 0t g g . Hence, we 

obtain    0 ( ) : 1 ( ) : 1t g z z g z z    which implies that 0 ( )t g z  is in the range 

of ( )g z . This proves that f  maps each circle 1z r   onto a curve rC  that 

bounds a starlike domain containing the origin. It follows that arg ( )f z  increases 

as z  moves around the circle z r  in the counter-clockwise direction. In other 

words, 
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 arg ( ) 0if re 







 

Observed that for iz re  , we have 

 arg ( ) log ( )

( ) ( )

( ) ( )

i if re Im f re

izf z zf z
Im Re

f z f z

 

 

  
  

  

    
    

   

 

By applying the maximum principle for harmonic functions, we have zf f P  . 

Conversely, suppose f  is a normalized holomorphic function with 

zf f P  . Then f  has a simple zero at the origin and no zeros elsewhere in the 

disk because otherwise zf f  would have a pole. Retracing the calculation from 

first part, for each 1r  , we have 

 arg ( ) 0if re 







,  0 2    

Thus as z  runs around the circle z r  in the counter-clockwise direction, the 

point ( )f z  traverses a closed curve rC  with increasing argument. Because f  has 

exactly one zero inside the circle z r , from the Argument Principle, we know 

that rC  surrounds the origin exactly once. But if rC  winds about the origin only 

once with increasing argument, self-intersection does not exists. Thus rC  is a 

simple closed curve which bounds a starlike domain rD , and f  assumes each 
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value 
rw D  exactly once in the disk z r . Since this is true for every 1r  , it 

follows that f  is univalent and starlike in D . This concludes the proof.  Q.E.D 

Theorem 4.1.3 Let f  be holomorphic in D , with (0) 0f   and (0) 1f   . Then 

f CV  if and only if  1 zf f P   . 

Proof. (Duren, 1983) Suppose first that f CV . We claim that f  must map 

each sub-disk z r  onto a convex domain. To show this, choose points 1z  and 

2z  such that 1 2z z r  . Let 
1 1( )f z   and 2 2( )f z  . Let  

0 1 2(1 )t t     ,  0 1t   

Since f CV , there is a unique point 0z D  for which 0 0( )f z  . We have to 

show that 0z r . Let 

1 2( ) ( ) (1 ) ( )z tf z z z t f z     

then ( )z  is analytic in D , with (0) 0   and 2 0( )z  . Since f CV , the 

function 

1( ) ( ( ))h z f z  

is well-defined. Since (0) 0h   and ( ) 1h z  , we have ( )h z z  from Schwarz 

Lemma. Therefore 

0 2 2( )z h z z r    
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And this is what we wanted to show. Hence f  maps each circle 1z r   onto a 

curve 
rC  which bounds a convex domain. The geometry of convexity implies that 

the slope of the tangent to rC  is nondecreasing as the curve is traversed in the 

counter-clockwise direction, that is 

arg ( ) 0if re 

 

    
  

   
 

or 

log[ ( )] 0i iIm ire f re 



 
  

 
 

2 2( ) ( ) ( )
0

( )

i i i i

i i

i re f re ire f re
Im

ire f re

   

 

  
 

 
 

( )
0

( )

i i

i

ire f re
Im i

f re

 



 
  

 
 

which reduces to the condition 

( )
1 0

( )

zf z
Re

f z

 
  

 
,  z r  

Thus, we have  1 ( ) ( )zf z f z P    by the maximum principle for the harmonic 

functions. 

Conversely, suppose f  satisfied the conditions stated in the theorem and 

with  1 ( ) ( )zf z f z P   . The calculation as in the first part shows that the 
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slope of the tangent to the curve 
rC  increases monotonically. But as a point 

makes a complete circuit of 
rC , the argument of the tangent vector has a net 

change 

2 2

0 0

( )
arg ( ) 1

( )

( )
1 2

( )

i

z r

zf z
f re d Re d

f z

zf z dz
Re

f z iz

 
  

 




     
           

  
      

 



 

for iz re  . 

This shows that rC  is a simple closed curve bounding a convex domain. For 

arbitrary 1r  , this implies that f  is a univalent function with convex range. 

                      Q.E.D 

We give several examples of starlike and convex functions. The first one 

is the famous Koebe function. We have defined Koebe function before in Chapter 

2, we wish to point out that it is starlike but not convex. 

 

 

Example 4.1.1 Koebe function 
 

2
( )

1

z
k z

z



  is in ST  but not in CV . 

Proof. From previous section, we know that the image of Koebe function is the 

whole plane minus the part of the negative real axis from 1 4  to negative infinity. 

Thus, it is clear that Koebe function is starlike with respect to origin and not 

convex. 
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Recalled that in Example 2.4.1, we showed that 2( )f z z az   is in S  for 

1 2a   and not univalent in D  for 1 2a  . In fact, the condition 1 2a   also 

ensures that f  belongs to class ST  and it can be found that when 1 4a  , f  is  

a convex function.        Q.E.D 

Example 4.1.2 2( )f z z az   is in ST  if and only 1 2a  . 

Example 4.1.3 2( )f z z az   is in CV  if and only 1 4a  . 

For the proof of Examples 4.1.2 and 4.1.3, please refer to (Goodman, 1983). 

The above two examples can be generalized. First, we have the following theorem. 

Theorem 4.1.4 The function 3( )f z z az   is in S  if and only if 1 3a  . 

Proof. It is clear that ( )f z  is a holomorphic function in D  and normalized with 

the conditions (0) 0f  , '(0) 1f  . For 1 3a  , observe that when 0a  , 

( )f z z  is clearly a univalent function is S . For 0a  , let 1 2( ) ( )f z f z , where 

1 2,z z D . Then we have 

   2 2

1 2 1 1 2 21 0z z a z z z z     
 

 

We claim that 1 2z z . If not, then 2 2

1 1 2 2 1z z z z a   . From triangle inequality, 

2 2

1 1 2 21 3 1 1 1z a z z z        which contradicts the fact that 1z  . 

Therefore 1 2z z , and hence f  is univalent. Since f  is in normalized form, this 

implies that f S . 
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For 1/ 3a  , let 
0 1/ (3 )z a  , since  0 1/ 3 1z a   therefore 

0z D  

and  0( ) 1 3 1/ 3 0f z a a      which implies that f  is not local univalent. Then 

we conclude that f  is not univalent in D  for 1/ 3a  . By contrapositive, the 

theorem is proved.         Q.E.D 

Theorem 4.1.5 3( )f z z az   is in ST  if and only if 1 3a  . 

Proof. If f ST , then f S . From Theorem 4.1.4, we have 1 3a  . 

Conversely, we prove that if 1 3a  , then f  is starlike. We first show that 

1 1
zf

f


  . 

1
zf

f




2

2
2

1 az
 



2

2

2

1

az

az




2

1

a

a



1  

Hence, 
zf

f


 lies in a circle centered at 1 with radius 1r   and thus 

zf
P

f


  and 

hence f  is starlike.         Q.E.D 

 

 

Theorem 4.1.6 
3( )f z z az   is in CV  if and only if 1 9a  . 

Proof. To prove this theorem it is sufficient to prove it for the constant where it is 

real. Since for a , consider the function 3( )F z z cz   where c , for 

2ia ce  , observed that  
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( )f z 3z az  2 3iz ce z   3 3i i ie e z ce z     i ie F e z   

We see that f  is a rotation of F . Therefore, f  is convex if and only if F  is 

convex since rotation of convex function remain convex. Thus, without loss of 

generality, we prove the theorem in terms of real constant. 

We first prove that if F CV , then 1 9 1 9c   . Some simple 

calculations show that 

2

2
1 3

1 3

zF

F cz


  

 
 

Let iz re   and h   be the real part of the holomophic function 1 zF F  , then 

2

2 4 2

2 6 cos 2
( ) 1 3

1 9 6 cos 2
r

zF cr
h Re

F c r cr






  
    

   
 

 

2 2 4

2
2 4 2

12 (9 1)sin 2
( )

1 9 6 cos 2
r

cr c r
h

c r cr






 
 

 

According to Maximum Modulus Principle for harmonic function, it must attain 

its maximum and minimum values on the boundary of the unit disk, and hence 

1r   and 1 ( ) 0h   . Therefore, 0c  , sin 2 0   or 2 1 9c  .  

When 0c  , the function ( )F z z  is obviously a convex function. When 

sin 2 0  , cos2 1   . Then, the extremal of 1h  (minimum or maximum) occurs 

at 

2

2 6 2 1 9
3 3 (1)

1 9 6 1 3 1 3

c c

c c c c
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for cos 2 1  , or 

2

2 6 2 1 9
3 3 (2)

1 9 6 1 3 1 3

c c

c c c c

 
   

   
  

for cos 2 1   . 

Since F is convex, ( ) 0rh   . At the boundary, 1 0h  . By taking the value of c  

from three different interval, we analyze and determine the nature of the two 

quotients. For (1) and (2), we have 

Table 1 

 1 3c    1 3 1 9c     1 9c    
1 9c      0 /   
1 3c        
1 9

1 3

c

c




     0 /   

 

From the above table, in order to obtain 1 0h  , we concluded that 1 3c    or 

1 9c    for (1) and 1 9c   or 1 3c   for (2). Since F CV  implies F S , 

from Theorem 4.1.4, we have 1 3 1 3c   . By combining the inequalities, we 

have 1 9 1 3c    for (1) and 1 3 1 9c    for (2). One of them will obtain the 

1min h  while the other one will obtain 1max h . To ensure that the extremal of 1h  to 

 1 9c   1 9 1 3c   1 3c   
1 9c  0 /       
1 3c        
1 9

1 3

c

c




 0 /       
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be existed, we have 1 9 1 9c   . Thus F CV  implies 1 9 1 9c   .Thus 

f CV  since F CV  and 2 1 9ia ce   . 

Conversely, we prove that if 1 9a  , then f  is convex. We first show 

that 1 1 1zf f    . 

2

2 2

62 6
1 1 2 1

1 3 1 3 1 3

azf az

f az az a


      

   
 

Hence, 1
zf

f





 lies in a circle centered at 1 with radius 1r   which means that 

1
zf

P
f


 


 and thus f CV .      Q.E.D 

From the Examples 4.1.2 and 4.1.3 and Theorems 4.1.5 and 4.1.6, we are 

able to generalize the above two theorems to higher order. 

Theorem 4.1.7 The function 1( ) mf z z az    is in S  if and only if  1 1a m  . 

Proof. It is clear that ( )f z  is a holomorphic function in D  and normalized with 

the conditions (0) 0f  , (0) 1f   . For  1 1a m  , observe that when 0a  , 

( )f z z  is clearly a univalent function is S . For 0a  , let 1 2( ) ( )f z f z , where 

1 2,z z D . Then calculations show that 

   1 1

1 2 1 1 2 1 2 21 0m m m mz z a z z z z z z        
 

  

We claim that 1 2z z . If not, then we have 1 1

1 1 2 1 2 2 1m m m mz z z z z z a      . 

From triangle inequality, 1 1

1 1 2 1 2 21 ( 1) 1m m m mz a z z z z z m m           
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which contradicts the fact that 1z  . Therefore 
1 2z z , and hence f  is univalent. 

Since f  is in normalized form, this implies that f S . 

For 1 ( 1)a m  , let 
0 1 ( 1)z m a   , since 0 1 ( 1) 1z m a   , there-

fore 
0z D  and  0( ) 1 ( 1) 1 ( 1) 0f z m a m a        which implies that f  is 

not local univalent. Then we conclude that f  is not univalent in D  for 

1 ( 1)a m  . By contrapositive, the theorem is proved.    Q.E.D 

Theorem 4.1.8 1( ) mf z z az    is in ST  if and only if 
1

1
a

m



. 

Proof. If f ST , then f S . By Theorem 4.1.7, we have 
1

1
a

m



. 

Conversely, we prove that if 
1

1
a

m



, then f  is starlike. We first show that 

1 1zf f  

 

1 1
1 1 1

m

m m

m azf m maz
m

f az az a


     

  
 

Hence, 
zf

f


 lies in a circle centered at 1 with radius 1r   and thus 

zf
P

f


  and 

therefore f  is starlike.        Q.E.D 
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Theorem 4.1.9 1( ) mf z z az    is in CV  if and only if 
 

2

1

1
a

m



. 

Proof. To prove this theorem it is sufficient to prove it for the constant where it is 

real. Since for a , consider the function 1( ) mF z z cz    where c , for 

ima ce  , observed that  

    11 1 1( )
i mm im m i i m i if z z az z ce z e e z ce z e F e z

                

We can see that f  is a rotation of F . Therefore, f  is convex if and only if F  is 

convex since rotation of convex function remain convex. Thus, without loss of 

generality, we prove the theorem in terms of real constant. 

We first prove that if F CV , then 2 21 ( 1) 1 ( 1)m c m     . Calculations 

show that 

1 1
1 ( 1) m

zF m
m

F m cz


   

  
 

Let iz re   and h  be the real part of the holomophic function 1 zF F  , then 

2 2 2

( 1) cos
( ) 1 1

1 ( 1) 2( 1) cos

m

r m m

zF m m m cr m
h Re m

F m c r m cr m






   
     

     
 

 

 

2 2 2 2

2
2 2 2

( 1) ( 1) 1 sin
( )

1 ( 1) 2( 1) cos

m m

r
m m

m m cr m c r m
h

m c r m cr m






  
 

   
 

According to Maximum Modulus Principle for harmonic function, it must attain 

its maximum and minimum values on the boundary of the unit disk, and hence 

1r   and 1 ( ) 0h   . Therefore, 0c  , sin 0m   or 2 1c  .  
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When 0c  , the function ( )F z z  is obviously a starlike and convex 

function. When sin 0m  , cos 1m   . Then, the extremal of of 
1h  (minimum 

or maximum) occurs at
 

2

2 2

( 1) 1 ( 1)
1 (1)

1 ( 1) 2( 1) 1 ( 1)

m m m c m c
m

m c m c m c

   
  

     


 

for cos 1m   

2

2 2

( 1) 1 ( 1)
1 (2)

1 ( 1) 2( 1) 1 ( 1)

m m m c m c
m

m c m c m c

   
  

     
  

for cos 1m    

Since F  is convex, ( ) 0rh   . At the boundary, 1 0h  . By taking the value of c  

from three different interval, we analyze and determine the nature of the two 

quotients. From (1) and (2), we have 

Table 2 

 1 ( 1)c m    
21 ( 1) 1 ( 1)m c m       

21 ( 1)c m    
21 ( 1)m c       0 /   

1 ( 1)m c     + + 
21 ( 1)

1 ( 1)

m c

m c

 

 
 +   0 /   

 

 21 ( 1)c m   
21 ( 1) 1 ( 1)m c m     1 ( 1)c m   

21 ( 1)m c   0 /       
1 ( 1)m c   + +   

21 ( 1)

1 ( 1)

m c

m c

 

 

 

0 /     + 
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From the above table, in order to obtain 
1 0h  , we concluded that 1

1m
c


   or 

 
2

1

1m
c


   for (1) and 

 
2

1

1m
c


  or 1

1m
c


  for (2). Since F CV  implies that 

F S , from Theorem 4.1.7, we have 1 1
1 1m m

c
 

   . By combining all the 

inequalities, we have 
   2

1 1

11 mm
c


    for (1) and 

   
2

1 1

1 1m m
c

 
    for (2). One 

of them will obtain the 1min h  while the other one will obtain 1max h . To ensure 

that the extremal of 
1h  to be existed, we have 

2 2

1 1

( 1) ( 1)m m
c

 
   . Therefore, 

F CV  implies 
2 2

1 1

( 1) ( 1)m m
c

 
   . Therefore f CV  since F CV  and 

2

1

( 1)

im

m
a ce 


  . 

Conversely, we prove that if 
21 ( 1)a m  , then f  is convex. It is suffi-

cient to show that 1 1 1zf f    . 

( 1)( 1)
1 1 1

1 ( 1) 1 ( 1) 1 ( 1)

m

m m

m m azf m m m az
m

f m az m az m a

 
      

      
 

Hence, 1
zf

f





 lies in a circle centered at 1 with radius 1r   which means that 

1
zf

P
f


 


 and therefore f  is convex.      Q.E.D 

Recalled from Theorems 4.1.2 and 4.1.3, these two theorems tell us that 

starlike and convex mappings have a closely analytic connection and this was first 

discovered by Alexander in 1915. 

Theorem 4.1.10 (Alexander’s Theorem). Let f  be analytic in D , with 

(0) 0f   and (0) 1f   . Then f CV  if and only if 'zf ST . 
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Proof.(Duren, 1983) If ( ) ( )g z zf z , then  

( ) ( )
1

( ) ( )

zg z zf z

g z f z

 
 


 

Thus, the left-hand function is analytic and has a positive real part in D  if and 

only if the same is true for the right-hand function.     Q.E.D 

In fact, we are able to relate Theorems 4.1.8 and 4.1.9 using Alexander‟s 

theorem. From Theorem 4.1.9, we have 1( ) mf z z az CV    if and only if 

2

1

( 1)m
a


 . Let 1( ) ( ) ( 1) mh z zf z z a m z     . If we let ( 1)A a m  , then ( )h z  

is starlike if and only if 1
1

( 1)
m

A a m


    which is exactly same with Theorem 

4.1.8. 

There are other interesting properties about ST  and CV . From previous 

section, we know that from Bieberbach‟s Theorem, for all 2

2( )f z z a z    in 

S , we have na n  for 2, 3,n  . In fact, a weaker result was proved for all 

f ST  by Nevanlinna (Nevanlinna, 1920-1921) and for f CV  by Loewner 

(Loewner, 1917). The theorems are stated as following. 

Theorem 4.1.11. The coefficients of each function f ST  satisfy na n  for 

2, 3,n  . Strict inequality holds for all n  unless f  is a rotation of the Koebe 

function. 

For the proof, please refer to (Nevanlinna, 1920-1921). 

Corollary 4.1.1. If f CV , then 1na   for 2, 3,n  . Strict inequality holds 

for all n  unless f  is a rotation of the function h  defined by 1( ) (1 )h z z z   . 
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Proof. (Duren, 1983) From Theorem 4.1.10, if f CV , then zf ST . In fact,  

2

( ) n

n

n

zf z z na z




    

From Theorem 4.1.11, we have nn a n  and therefore 1na  .  

When the equality occurs, the function 

1

( )
1

n

n

z
h z z

z





 


  

satisfies ( ) ( )zh z k z   and maps D  onto the half-plane   1 2Re w   .  Q.E.D 

Theorem 4.1.12 The range of every convex function f CV  contains the disk 

1 2w  . 

For the proof, please refer to (Duren, 1983). 

 

4.2 A Subclass of S  Consisting of only Negative Coefficient 

For 0 1  , the function 2 3

2 3( )f z z a z a z S      is said to be starlike of 

order   if  Re zf f    and convex of order   if  1Re zf f    . Let 

( )ST   denote the subclass of S  consisting all the functions starlike of order   

and let ( )CV   denote the subclass of S  consisting all the functions convex of 

order  .  
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In 1975, Herb Silverman introduced a subclass of univalent functions 

consisting of functions where all coefficients are negative except the coefficient 

for z . The subclass is denoted as T  and all functions in T  can be expressed as  

2

( ) n

n

n

f z z a z




   

Moreover, he introduced subclasses of T , *( )T   as the class consisting all 

starlike functions of order   in T  and *( )C   as the class consisting all convex 

function of order   in T . He proved some coefficient inequalities that involve 

the above subclasses. 

Theorem 4.2.1. Let 
2

( ) n

nn
f z z a z




  . If 

2
( ) 1nn
n a 




   , then 

( )f ST  . 

Corollary 4.2.1. Let 
2

( ) n

nn
f z z a z




  . If 

2
( ) 1nn

n n a 



   , then 

( )f CV  . 

Theorem 4.2.2. A function 
2

( ) n

nn
f z z a z




   is in *( )T   if and only if 

2
( ) 1nn
n a 




   . 

Corollary 4.2.2 A function 
2

( ) n

nn
f z z a z




   is in *( )C   if and only if 

2
( ) 1nn

n n a 



   . 

For the proof of Theorems 4.2.1 and 4.2.2; Corollaries 4.2.1 and 4.2.2, please 

refer to (Silverman, 1975). 
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4.3 Generalized Koebe Function 

From previous sections, we have defined Koebe function and we know that 

Koebe function is a starlike function. In this section, we generalize the Koebe 

function as follow. 

( ) (1 )f z z z 



  , where 0 2  . 

We wish to know whether the generalized Koebe functions remain starlike. 

Expanding  ( 1) 2

2!
( ) 1f z z z z

 

  
    , then it is clear that ( )f z  is a well-

defined single-valued function. Note that 2 ( )f z  is the Koebe function, and 

0( )f z z  is the identity mapping. 

Theorem 4.3.1.  ( ) 1f z z z ST





    if and only if 0 2  . 

Proof. Suppose first that 0 2  . It is easy to show that f  is a normalized 

analytic function. We wish to prove that f  is starlike. Using Theorem 4.1.2, it is 

sufficient to show that ( ) ( )zf z f z P 
  . 

( ) 1 ( 1)

( ) 1

1
1

zf z z

f z z

z

z









 




 


 

Now, we just have to prove that 1
1

z
Re

z

 
  

 
. 

From Chapter 2, we have 
1

1 2

z
Re

z

 
  

 
. Thus, 
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1 1

2

z z
Re Re

z z






   
   

    

 

 

Since 0 2  , then 1 0
2


    . Thus, we have 1

1

z
Re

z

 
  

 
. Therefore, 

f ST  . Conversely, suppose that f ST   which implies that f  is univalent. 

Thus, ( ) 0f z
  , z D  . 

1

1

1
( )

(1 ) (1 )

1 ( 1)

(1 )

z
f z

z z

z

z

  











  
 

 




 

Since ( ) 0f z
  , this gives 1 ( 1) 0z    and thus 1( 1)z     . Therefore, the 

point 1

0 ( 1)z      must lie outside of the unit disk. 

0

1
1

1
z


  

  

1 1    

Thus, 0 2  . The theorem is proved.                                                        Q.E.D  
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Theorem 4.3.2. If  ( ) 1f z z z





   where 0 2  , then range of f  contains 

an open disk of radius 1 (2 ) . 

Proof. By Theorem 4.3.1, we have f S   since f ST  . Let   be a complex 

number such that ( )f z   for all z D . By omitted-value transformation, we 

have ( ) ( )f f S    . 

2

( )

( ) (1 )

1

f z z

f z z z

z z







 

 





  

 
    

 


 

By Bieberbach‟s Theorem, we have 
2 2a  . Therefore, 

1
2


   

1
2


    

1

2






 

Since ( )f z  , therefore every omitted value must lie outside the disk 

1 (2 )   , this proves the theorem.                                                           Q.E.D 

In fact, we are able to improve the above result by using an alternative 

method to prove it. The theorem is stated as following. 
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Theorem 4.3.3. If  ( ) 1f z z z





   where 0 2  , then range of f  contains 

an open disk of radius 1 2 . 

Proof. For iz re  , define 

, ( )
(1 )

i

r i

re
f

re



  
 


 

2

,
0 2 0 2

2

20 2

min min
(1 ) (1 )

1
min

(1 2 cos )

i i

r i i

re re
f

re re

r
r r

 

       

  



   

 

 
 


 

 

Let 

2( ) (1 2 cos )h r r      

then 

2 1( ) (1 2 cos ) (2 sin )h r r r        

Since 2 2 21 2 cos 1 2 (1 ) 0r r r r r        , when '( ) 0h   , then sin 0   

which implies that 0   or   . Since 2( 1)(0) 2 (1 ) 0h r r       and ( )h 

2( 1)2 (1 ) 0r r      , thus ( )h   is minimum when 0   and ( )h   achieves its 

maximum when   . This gives 
2

2

, 2
min

(1 )
r

r
f

r
 




. As 1r  , 
,1

1

2
f 

 . 

Hence, the range of f  contains an open disk of radius 
1

2
.                         Q.E.D 
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From Theorems 4.3.2 and 4.3.3, we can see that the the result could be 

different according to the method we used, but we can actually find that the 

method from Theorem 4.2.3 able to obtain a better scale since f  contains a 

larger disk for 0 2  . 

 

4.4 Inequalities for Convex Function 

Inequalities that involve function of the class S  will be studied in this section. 

Furthermore, we will improve the results to convex functions. In fact, we found 

that the inequalities can be improved to a better scale if f CV . We first begin 

with the following lemma which is an application of Bieberbach‟s Theorem and it 

gives a basic estimate which leads to certain Distortion and Growth Theorem. 

Lemma 4.4.1 For each f S ,  

2

2 2

( ) 2 4

( ) 1 1

zf z r r

f z r r


 

  
, 1z r   

Proof. (Duren, 1983) Given f S  and a fix D   and perform a disk 

automorphism to construct 

 
2

22

( )
1

( ) ( )
1 ( )

z
f f

z
F z z A z

f







 

 
 

    


  

then F S . By using Theorem 1.2.1 (Taylor‟s Theorem), calculation shows that 
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 2

2

(0) 1 ( )
( ) 1 2

2! 2 ( )

F f
A

f


  



  
    

 
 

From Theorem 2.5.5 (Bieberbach‟s Theorem), 
2 ( ) 2A   . 

 2 ( )
1 2 4

( )

f

f


 




  


 

2 2

( ) 2 4

( ) 1 1

f

f

 

  


 

  
 

2

2 2

2 4( )

( ) 1 1

f

f

  

  


 

  
 

Replacing   by z , the lemma is proved.      Q.E.D 

Lemma 4.4.2 If f  is holomorphic in D  and ( ) 0f z   for all z D , then for 

iz re D  , we have 

 
( )

log ( )
( )

zf z
Re r Re f z

f z r

  
 

  
 

Proof. (Duren, 1983) Taking the principal branch of complex logarithm function 

and differentiate with respect to r , we have 

 log ( ) log ( ) ( )r f z r f z iArg f z
r r

 
   

 
 

Calculation shows that 
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( ) ( ) ( )
log ( ) .

( ) ( ) ( )

if z z f z zf z
r f z r r e

r f z r f z f z

   
   

   
 

Taking the real part of both side, we obtained 

( )
log ( )

( )

zf z
Re r f z

f z r

  
 

  
. 

The lemma is proved.         Q.E.D 

Theorem 4.4.1 (Distortion Theorem) For each f S ,   

   
3 3

1 1
( )

1 1

r r
f z

r r

 
 

 
, 1z r   

For each z D , 0z  , equality occurs if and only if f  is a suitable rotation of 

the Koebe function. 

Proof. (Duren, 1983) An inequality c   implies that  c Re c   . For 

f S , from Lemma 4.4.1, it follows that, 

2

2 2 2

4 ( ) 2 4

1 ( ) 1 1

r zf z r r
Re

r f z r r

 
    

   
 

and thus 

2 2

2 2

2 4 ( ) 2 4

1 ( ) 1

r r zf z r r
Re

r f z r

  
  

  
 

for iz re  , 1z  .  
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By Lemma 4.4.2, we have 

( )
log ( )

( )

zf z
Re r f z

f z r

  
 

  
 

and hence, 

2 2

2 4 2 4
log ( )

1 1

ir r
f re

r r r

  
 

  
 

Holding   fixed and integrate with respect to r  from 0 to R . A calculation 

shows the inequality 

   
3 3

1 1
log log ( ) log

1 1

iR R
f Re

R R

 
 

 
 

for iz Re  . The Distortion Theorem follows by exponentiation.  

It left only to prove the equality part of the Distortion Theorem. If 

2( ) ( ) (1 )f z k z z z   , then 

 
3

1
( )

1

z
f z

z


 


 

Let 1z r   then we obtained the equality on the right side. On the other hand, 

let 1z r     then we obtained the equality on the left side. This shows that 

both sides of the inequalities are sharp. 

Furthermore, whenever equality occurs at upper estimate for iz re  , we 

have 
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3

1
( )

(1 )

i r
f re

r

 
 


 

and thus 

2

2 4
log ( ) (1)

1

i r
f re

r r

 
 

 
  

From Lemma 4.4.2, we have 

( )
log ( ) (2)

( )

i i
i

i

e f re
Re f re

f re r

 




  
 

  
  

For 0r  , choosing    such that  (0) (0)i iRe e f e f   . Since 2(0) 2f a  , 

we have    2(0) 2i iRe e f e a   . From (1) and (2), then we obtained  

(0)
log (0) 4

(0)

ie f
Re f

f r

   
  

  
 

From the choice of   , we have 
22 4ia e    implies that 

2 2a  . For the lower 

estimate, repeat the steps as above and eventually yield the same conclusion. By 

Bieberbach‟s Theorem, f  is a rotation of Koebe function. This concluded the 

proof.           Q.E.D 

Next, we are going to discuss the Growth Theorem, Growth Theorem is 

the direct consequence of Distortion Theorem. The theorem is stated as follow. 
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Theorem 4.4.2 (Growth Theorem) Suppose that f S . Then for z r , 

0 1r  , we have  

   
2 2

( )
1 1

r r
f z

r r
 

 
 

For each z D , 0z  , equality occurs if and only if f  is a suitable rotation of 

the Koebe function. 

Proof. (Conway, 1996) Let f S  and fix iz re   with 0 1r  . Observed that 

0
( ) ( )

r
i if z f e e d     

since (0) 0f  . From Distortion Theorem, we obtained 

   
3 20 0

1
( ) ( )

1 1

r r
i r

f z f e d d
r

 
  




  

 
   

The lower estimate is not as straightforward. If ( ) 1 4f z  , the proof is trivial 

since  
2

1 1 4r r


   for 0 1r  . Then we obtained  

 
2

1
( )

41

r
f z

r
 


 

and we are done. 

For the case where ( ) 1 4f z  , we fix z D  and let   be the path in D  from 0 

to z  such that f   is the straight line segment  0, ( )f z . In fact, from Theorem 

2.6.1 (Koebe One-Quarter Theorem), 1( ) ( ( ))t f tf z  , 0 1t  . That means, 
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 ( ) ( )f t tf z   for 0 1t  . Thus, ( ) ( )f z f w dw


   
1

0
( ) ( )f t t dt    . 

Observed that    ( ) ( ) ( ) ( )f t t tf z f z       for all t . Thus we deduced that  

 

1

0

1

0

1

0

( ) ( )

( )

( ) ( )

( )

f z f z dt

f z dt

f t t dt

f w dw


 

















 

If we take 0 1s t   , then ( ) ( ) ( ) ( )t s t s       and so dw d w . By 

combining all the inequalities and applying the Distortion Theorem, we obtained  

 
20

1
( ) ( )

1 1

r w r
f z f w dw d w

w r


  

 
   

and this is the lower estimate of the Growth Theorem. 

Equality in either part of inequality of Growth Theorem implies equality 

in the corresponding part of inequality of Distortion Theorem, and Distortion 

Theorem implies that f  is a rotational transformation of the Koebe function.  

          Q.E.D 

The inequalities for function in the class S  were discussed above. Next, 

we are interested to study if the inequalities can be improved for convex functions. 
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By similar arguments, we first consider the following lemma and it leads to 

improvement of inequalities.  

Lemma 4.4.3 For each f CV ,  

2

2 2

( ) 2 2

( ) 1 1

zf z r r

f z r r


 

  
, 1z r   

Proof. Given f CV , fix D   and perform a disk automorphism to construct 

 
2

22

( )
1

( ) ( )
1 ( )

z
f f

z
F z z A z

f







 

 
 

    


  

then we can see that 

 2
1 ( ) ( ) ( )

1

z
f f F z f

z


  



 
   

 
 

A dilation and translation of a convex function remain convex. Thus F CV  

since f CV . From Taylor‟s Theorem, a calculation gives 

 2

2

(0) 1 ( )
( ) 1 2

2! 2 ( )

F f
A

f


  



  
    

 
 

From Corollary 4.1.1, 
2 ( ) 1A   .  

 2 ( )
1 2 2

( )

f

f
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2 2

( ) 2 2

( ) 1 1

f

f

 

  


 

  
 

2

2 2

2 2( )

( ) 1 1

f

f

  

  


 

  
 

Replacing   by z , the lemma is proved.      Q.E.D 

From Theorems 4.4.1 and 4.4.2, we know that the value of ( )f z  lies 

between 3(1 ) (1 )r r   and 3(1 ) (1 )r r   while ( )f z  lies between  
2

1r r  

and  
2

1r r . By using the above lemma, we improved the inequalities as follow. 

Theorem 4.4.3. For each f CV ,   

   
2 2

1 1
( )

1 1
f z

r r
 

 
, 1z r   

For each z D , 0z  , equality occurs if and only if f  is a suitable rotation of 

the function h  defined by  
1

( ) 1h z z z


  . 

Proof. Note that c   implies that  c Re c   . For f CV , it follows 

from Lemma 4.4.3 that 

2

2 2 2

2 ( ) 2 2

1 ( ) 1 1

r zf z r r
Re

r f z r r

 
    

   
 

and thus 
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2 ( ) 2

1 ( ) 1

r zf z r
Re

r f z r

 
   

  
 

for iz re  , 1z  .  

By Lemma 4.4.2, we have 

( )
log ( )

( )

zf z
Re r f z

f z r

  
 

  
 

and hence, 

2 2
log ( )

1 1

if re
r r r


  

  
 

Holding   fixed and integrate with respect to r  from 0 to R . A calculation 

shows the inequality 

   
2 2

1 1
log log ( ) log

1 1

if Re
R R

 
 

 

for iz re  . The theorem follows by exponentiation. 

It lefts only to prove the equality of the theorem. If 1( ) (1 )h z z z   , then 

 
2

1
( )

1
h z

z
 


 

Let 1z r   then we obtained the equality on the right side. On the other hand, 

let 1z r     then we obtained the equality on the left side. This shows that 

both sides of the inequalities are sharp. 

Furthermore, whenever equality occurs at the upper estimate for iz re  , we have 
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2

1
( )

(1 )

if re
r

 


 

and thus 

 2 2
log ( ) log (1 ) (1)

1

if re r
r r r

  
   

  
  

From Lemma 4.4.2, we have 

( )
log ( ) (2)

( )

i i
i

i

e f re
Re f re

f re r

 




  
 

  
  

For 0r  , choosing    such that  (0) (0)i iRe e f e f   . Since 2(0) 2f a  , 

we have    2(0) 2i iRe e f e a   . From (1) and (2), then we obtained  

(0)
log (0) 2

(0)

ie f
Re f

f r

   
  

  
 

From the choice of   , we have 
22 2ia e    implies that 

2 1a  . By Corollary 

4.1.1, f  is a rotation of function h . For the lower estimate, repeat the steps as 

above and eventually yield the same conclusion. This concluded the proof.  Q.E.D 

Theorem 4.4.4 Suppose that f CV . Then for z r , 0 1r  , we have  

( )
1 1

r r
f z

r r
 

 
 

For each z D , 0z  , equality occurs if and only if f  is a suitable rotation of 

the function h  defined by  
1

( ) 1h z z z


  . 
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Proof. Let f S  and fix iz re   with 0 1r  . Observed that 

0
( ) ( )

r
i if z f e e d     

From Theorem 4.4.3, we obtained 

 
20 0

1
( ) ( )

11

r r
i r

f z f e d d
r

  


  


   

The lower estimate is not as straightforward. If ( ) 1 2f z  , the proof is trivial 

since  
1

1 1 2r r


   for 0 1r  . Then we obtained  

1
( )

1 2

r
f z

r
 


 

and we are done. 

For the case where ( ) 1 2f z  , we fix z D  and let   be the path in D  

from 0 to z  such that f   is a straight line segment  0, ( )f z . In fact, from 

Theorem 4.1.12, 1( ) ( ( ))t f tf z  , 0 1t  . That means,  ( ) ( )f t tf z   for 

0 1t  . Thus,  
1

0
( ) ( ) ( ) ( )f z f w dw f t t dt


      . Observed that 

 ( ) ( )f t t    ( ) ( )tf z f z   for all t. Thus we deduced that 
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1

0

1

0

( ) ( )

( )

f z f z dt

f z dt









 

             

 
1

0
( ) ( )

( )

f t t dt

f w dw


  







 

If we take 0 1s t   , then ( ) ( ) ( ) ( )t s t s       and so dw d w . By 

combining the inequalities and applying the Theorem 4.4.3, we obtained  

 
20

1
( ) ( )

11

r r
f z f w dw d w

rw
  


   

and this is the lower estimate of the theorem. 

Equality in either part of inequality of Theorem 4.4.4 implies equality in 

the corresponding part of inequality of Theorem 4.4.3, and Theorem 4.4.3 implies 

that f  is a rotational transformation of the function h  defined by 

 
1

( ) 1h z z z


  .         Q.E.D 
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APPENDIX B 
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APPENDIX C 

 

Matlab code for plot the complex function 

Function cplxplot_polar 

%cplxplot_polar – to plot the graph of complex functions w=f(z) for the given 

domain in the polar coordinate without and with patched grids. 

f = inside(„z./(1-z)‟); %change this line for other function, e.g., f=sin(z) 

dt=pi/36; 

theta=-pi:dt:pi; 

rho=0:0.1:1; 

[THETA,RHO]=meshgrid(theta,rho); 

[X,Y]=pol2cart(THETA,RHO); 

Z=X+sqrt(-1)*Y 

W=f(Z); 

U=real(W); 

V=imag(W); 

figure(1) 

surf(X,Y,U); 

xlabel(„x‟) 

ylabel(„i y‟) 

title([„u, real part of ‟ char(f)]) 

figure(2) 

surf(X,Y,V); 

xlabel(„x‟) 
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ylabel(„i y‟) 

title([„v, image part of ‟ char(f)]) 

figure(3) 

plot(X,Y) 

hold on 

plot(X‟,Y‟) 

xlabel(„x‟) 

ylabel(„i y‟) 

title(„z-plane‟) 

figure(4) 

plot(U,V) 

hold on 

plot(U‟,V‟) 

xlabel(„u‟) 

ylabel(„i v‟) 

title(„w-plane‟) 


