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ABSTRACT

A STUDY ON UNIVALENT FUNCTIONS AND FIRST ORDER

ORDINARY DIFFERENTIAL EQUATIONS

Teo Yee Rui

In this thesis, a study on univalent functions will be carried out. The class S

is defined to be the set of functions holomorphic and univalent in unit disk, D and

normalized by the conditions f (0) = 0 and f ′(0) = 1. Linear Fractional Trans-

formation in class S will be defined and its range will be studied analytically. We

will introduce an equivalence relation in class S and will provide two examples

to prove that starlikeness and convexity of such equivalence relation will not be

preserved. It is also shown that the equivalence class of such equivalence relation

is the complete solution for a particular first order ordinary differential equation.

Finally, we will show that Schwarzian Derivative is invariant to the equivalence

relation defined.
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INTRODUCTION

A study on univalent functions were carried out in this thesis. In Chapter 1

and 2, we will make a survey and discuss about ideas and theorems in complex

analysis and univalent functions. Important theorems such as Open Mapping

Theorem, Riemann Mapping Theorem and Bieberbach’s Theorem will be dis-

cussed in detail as they are important throughout the development of the thesis.

In Chapter 3, the definition for linear fractional transformations in class S

will be given. Certain subclasses of S such as S∗ and C are discussed and defined

geometrically as well as analytically. At the end of the chapter, convexity of

linear fractional transformations in S together with its range will also be studied

here.

In Chapter 4, an equivalence relation will be introduced and such equiva-

lence class will be shown to be the complete solution for a particular first order

non-linear differential equation. Then, the famous Schwarzian derivative will be

shown to be invariant with respect to the equivalence relation introduced. Fur-

thermore, example will be given to show that the starlikeness of the equivalence

classes of starlike function will not be preserved. Another example will also be

given to show that the convexity of the equivalence classes of convex function

will not be preserved.
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CHAPTER 1

HOLOMORPHIC FUNCTIONS

In this chapter, analytic functions and some of their properties will be intro-

duced. We will mainly focus on the analyticity of complex differentiable func-

tions and some of their results.

1.1 Real Differentiable Function

A real-valued function f (x) defined on an open interval I ⊂ R is said to be dif-

ferentiable at the point x0 ∈ I, if

lim
h→0

f (x0 +h)− f (x0)

h

exists. The limit is denoted by f ′(x0), and is called the derivative of f (x) at x0.

If the limit does not exist, then f (x) is not differentiable at x0.

Continuity is a necessary condition for differentiability, that is, if a function

is diffentiable at x0, then f is continuous at x = x0. However, the converse of this

statement may not be true. A simple example is f (x) = |x| which is continuous

in R but not differentiable at 0.

If the derivative of f , denoted by f ′ is itself differentiable, then the deriva-

tive of f ′ is denoted by f ′′ and is called the second derivative of f . Continuing

in this form, then we obtain functions

f , f ′, f ′′, f (3), . . . , f (n), . . .

where f (n) is called the n-th derivative of the function f . Each of the functions

above is the derivative of the previous one.
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We are also interested in the analyticity of a function. A real-valued func-

tion f (x) on a nonempty, open interval (a,b) is said to be analytic if it can be

represented by a Taylor series, that is,

f (x) =
∞

∑
n=0

an(x− x0)
n

that the power series will converge to f near x0 ∈ (a,b). It can be shown that the

coefficient of the Taylor series is given by an =
f (n)(x0)

n! ,n = 0,1,2, . . .. Further-

more, if f is analytic at x0, then f can be proved to be infinitely differentiable on

I = (x0−δ ,x0 +δ ) for some δ > 0.

As mentioned above, analytic functions are functions that can be repre-

sented by Taylor series and infinitely differentiable. However, a real-valued func-

tion f can be infinitely differentiable and yet not analytic.

Consider the function

g(x) =


e(−1/x), if x > 0

0, if x≤ 0

The function can be shown to be infinitely differentiable on R with gn(0) = 0 for

all non-negative integer n. If g is analytic, then the Taylor series representation

of g at x = 0 is the zero function and it is obviously convergent for every x ∈ R.

But that is impossible since g(x) = 0 only if x≤ 0 and the function g is not equal

to zero near x = 0. Therefore, g is not analytic at x = 0.

1.2 Complex Differentiable Function

In this section, we will look into the idea of differentiation when applied to a

complex function f . Let X be an open set in the complex plane C and f be a

complex-valued function in X . The function f is said to be holomorphic at the
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point z0 ∈ X if

lim
h→0

f (z0 +h)− f (z0)

h

exists. The limit is denoted by f ′(z0), and is called the derivative of f at z0. If f

is holomorphic at every point in X , then f is said to be holomorphic in X .

The term holomorphic may be replaced by regular, analytic, or complex

differentiable by other authors, but throughout this thesis, the term holomorphic

will be used to represent this idea.

The definition of holomorphic function seems to have no difference from

differentiable real-valued function. In fact, complex differentiability have much

more interesting properties that are not seen in real differentiability. In the pre-

vious section, it is shown that differentiable real-valued function may not be

analytic, whereas, complex holomorphic functions are always analytic.

One of the most important properties of complex analysis is that holomor-

phic functions are analytic, a property not shared by its real counterpart, as shown

in the previous section. Thus, a holomorphic function can be represented by a

Taylor series.

Theorem 1.2.1 (Taylor’s Theorem). Suppose that f is analytic in a domain

G ⊂ C and D(α,R) is any open disk contained in G centered at α with radius

R > 0. Then the Taylor series for f converges to f (z) for all z in D(α,R), that is,

f (z) =
∞

∑
k=0

f (k)(α)

k!
(z−α)k , for all z ∈ D(α,R)

Furthermore, for any r, 0 < r < R, the convergence is uniform on the closed

subdisk D(α,r) = {z : |z−α| ≤ r}.

For the proof, please refer to ( Matthews and Howell, 2012 ).
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Since holomorphic function can be represented by a Taylor series, therefore

term-by-term differentiation can be carried out within the disk of convergence

D(α,R).

d
dz

∞

∑
n=0

an(z−α)n =
∞

∑
n=0

an
d
dz

(z−α)n.

Thus, unlike differentiable real-valued function, holomorphic functions are

analytic and infinitely differentiable. Besides that, term-by-term integration also

holds for analytic funtions. We conclude this section by stating the following

theorem.

Theorem 1.2.2. A power series ∑
∞
n=0 an(z−α)n can be integrated term-by-term

within the disk of convergence D(α,R), for every countour Γ lying entirely within

the disk D(α,R), namely

∫
Γ

∞

∑
n=0

an(z−α)ndz =
∞

∑
n=0

an

∫
Γ

(z−α)ndz

For the proof, please refer to ( Matthews and Howell, 2000 ).

1.3 Singularities, Zeros and Poles

A point z0 is said to be a singular point, or singularity, of a complex function

f if f (z) is not analytic at z = z0. For example, the function f (z) = 1
z+1 is not

analytic at z = −1, but it is analytic at every other values of z. Thus, z = −1

is a singularity of f (z). Generally, there are two types of singularities, namely

isolated singularity and non-isolated singularity.

A point z0 is said to be an isolated singularity of a complex function f

if f is not analytic at z0 but f (z) is analytic everywhere in the punctured disk

D′(z0,R) for a real number R > 0. For example, z = −1 is an isolated singular-
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ity for the function f = 1
z+1 , since f is analytic everywhere except at z = −1.

On the other hand, the point z = 0 is not an isolated singularity for the function

g(z) = ln (z) since g(z) is not analytic at any negative real numbers. In the above

case, we would called z = 0 an non-isolated singularity, where every neighbor-

hood of z = 0 contains at least one singularity other than z = 0.

Next, we will be interested with the power series expansion of f about an

isolated singularity z0 and it will involve both non-negative and negative powers

of z− z0. It is known as Laurent series and the following theorem gives an exact

definiton to the Laurent series.

Theorem 1.3.1 (Laurent’s Theorem). Suppose that 0≤ r < R, where r,R ∈ R,

and that f is analytic within the annulus A = r < |z− z0| < R, then f has the

Laurent series expansion

f (z) =
∞

∑
n=−∞

an(z− z0)
n =

∞

∑
n=0

an(z− z0)
n +

∞

∑
n=1

a−n(z− z0)
−n.

The coefficient an are given by

an =
1

2πi

∫
C

f (ω)

(ω− z0)
n+1 dω,n = 0,±1,±2, . . .

where C is a simple closed curve that lies entirely within A and has z0 in its

interior.

For the proof, please refer to ( Matthews and Howell, 2012 ).

We now give an example of Laurent series.

Example 1.3.2. Consider the function

f (z) =
cos z−1

z4
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The Taylor series expression for cos z−1 is given by

f (z) =−z2

2!
+

z4

4!
− z6

6!
+ . . .

Divide each term by z4 to obtain the Laurent series

f (z) =
−1
2z2 +

1
24
− z2

720
+ . . . (valid for z 6= 0)

From the Laurent series, we can see that it consists of two part, which are

the non-negative powers of z− z0 and negative powers of z− z0.

Principal part refers to the part with negative powers of z− z0, that is

∞

∑
n=1

a−n

(z− z0)
n

We will now classify the isolated singularity z = z0 according to the number of

terms in the principal part. In fact, it is the principal part of the complex function

that defines the function itself.

Definition 1.3.3 (Classifications of isolated singular points). Let z0 be the iso-

lated singularity of a complex-valued function f (z) with Laurent series expan-

sion

f (z) =
∞

∑
n=−∞

an(z− z0)
n

We distinguish the following types of singularities at z0.

1. If an = 0 for n = −1,−2,−3, . . ., then f has a removable singularities at

z = z0.

2. If k is a positive integer such that a−k 6= 0 and an = 0 for n =−k−1,−k−

2,−k−3, . . ., then f has a pole of order k at z = z0.

3. If an 6= 0 for infinitely many negative integers n, then f has an essential

singularity at z0.
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If a function f has a removable singularity at the point z = z0, then we can

define a0 to be the value of f (z0) so that f would be holomorphic for z = z0. For

example, given the function f = (sin z)/z, it has an isolated singularity at z = 0.

The Laurent series of f is given by

f (z) =
1
z

(
z− z3

3!
+

z5

5!
− z7

7!
. . .
)
= 1− z2

3!
+

z4

5!
− z6

7!
. . .

We can define f (0) = 1 since the equation became 1 when we set z = 0. There-

fore, the function f (z) is defined and continuous for every value of z. Further-

more, f is analytic at z = 0 since it can be represented by a Taylor series centered

at origin.

If f has a pole of order k at α , then the Laurent series for f is

f (z) =
∞

∑
n=−k

cn(z−α)n

where c−k 6= 0. For example

f (z) =
sin z

z3 =
1
z2 −

1
3!

+
z2

5!
− z4

7!
+ . . .

has a pole or order 2 at z = 0.

If infinitely many negative powers of (z−α) occur in the Laurent series,

then f has an essential singularity at α . For example,

f (z) = z2sin
1
z
= z− 1

3!
z−1 +

1
5!

z−3− 1
7!

z−5 + . . .

has an essential singularity at the origin.

In the following section, we introduced the idea of zeros and poles. We

began first by defining these two terms and the close relationship between them.
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Definition 1.3.4. A function f (z) analytic in D(α,R) is said to have a zero of

order k at the point z = z0 if and only if

f (z0) = 0, f ′(z0) = 0, f ′(z0) = 0, . . . , f (k−1)(z0) = 0,and, f (k)(z0) 6= 0

Note that a simple zero refers to a zeroo f orderone.

Corollary 1.3.5. If f (z) is analytic and has a zero of order k at z = α , then

g(z) = 1
f (z) has a pole of order k at z = α .

Theorem 1.3.6. A function f (z) analytic in D(α,R) has a zero of order k at the

point z = α if and only if the Taylor series representation given by

f (z) = ∑
∞
n=0 an(z−α)n has

a0 = 0,a1 = 0,a2 = 0, . . . ,ak−1 = 0,and,ak 6= 0

Proof By Taylor’s theorem, we have

an =
f (n)(α)

n!
.

The theorem follows immediately. Q.E.D.

Example 1.3.7. Let f (z) = z sin z2, then the Taylor series representation is given

by

f (z) = z3− z7

3!
+

z11

5!
− z15

7!
+ . . .

From Theorem 1.3.6, then f has an zero of order 3 at z = 0. Definition 1.3.4

confirms this fact because f (0) = f ′(0) = f ′′(0) = 0 but f ′′′(0) = 6 6= 0.

The next theorem provides a useful way of characterizing zeros of order k

for a holomorphic function f .
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Theorem 1.3.8. A function f (z) analytic in D(α,R) has a zero of order k at the

point z = α if and only if f can be expressed as

f (z) = (z−α)kg(z),

where g(α) 6= 0 and g(α) is analytic in D(α,R).

Proof Suppose that f has a zero of order k at the point α and f (z)=∑
∞
n=0 cn(z−α)n

for z ∈ D(α,R). By Theorem 1.3.6, we have cn = 0 for 0 ≤ n ≤ k− 1 and that

ck 6= 0.

Then,

f (z) =
∞

∑
n=k

cn(z−α)n

=
∞

∑
n=0

cn+k(z−α)n+k

= (z−α)k
∞

∑
n=0

cn+k(z−α)n

Let g(z) = ∑
∞
n=0 cn+k(z−α)n, then

g(z) =
∞

∑
n=0

cn+k(z−α)n = ck +
∞

∑
n=1

cn+k(z−α)n

for all z in D(α,R). Since g(z) can be represented by a Taylor series centered at

z = α , then g(z) is analytic in D(α,R), and g(α) = ck 6= 0.

Conversely, suppose that f (z) = (z−α)kg(z). Since g is analytic at α , then

it can be represented by a Taylor series

g(z) =
∞

∑
n=0

bn(z−α)n

where g(α) = b0 6= 0 by assumption.
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Then,

f (z) = g(z)(z−α)k

=
∞

∑
n=0

bn(z−α)n+k

=
∞

∑
n=k

bn−k(z−α)n

By Theorem 1.3.6, f has a zero of order k at the point α . This concludes the

theorem. Q.E.D.

Next, we provide a useful way of characterizing poles of order k for a holo-

morphic function f .

Theorem 1.3.9. A function f (z) analytic in punctured disk D′(α,R) has a pole

of order k at the point z = α if and only if f can be expressed as

f (z) =
g(z)

(z−α)k ,

where g(α) 6= 0 and g(α) is analytic in D(α,R).

Proof Suppose that f has a pole of order k at the point α , then the Laurent series

for f is defined as

f (z) =
1

(z−α)k

∞

∑
n=0

cn−k(z−α)n.

Then, let

h(z) =
∞

∑
n=0

cn−k(z−α)n,

for all z in the punctured disk D′(α,R). Then, h(z) = c−k+∑
∞
n=1 cn−kz−αn, and

h(α) = c−k. Therefore, h is analytic in D(α,R) with h(α) 6= 0.

Conversely, suppose that f (z) = g(z)(z−α)−k. Since g is analytic at the

point α with g(α) 6= 0, then it has a Taylor series representation

g(z) =
∞

∑
n=0

bn(z−α)n.
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where b0 6= 0. Then,

f (z) =
∞

∑
n=0

bn(z−α)n−k

=
∞

∑
n=−k

bn+k(z−α)n

Since c−k = b0 6= 0, then f has a pole of order k at α . This concludes the theorem.

Q.E.D.

The corollary given below provides an useful relationship between the zero

and pole of a function f .

Corollary 1.3.10. If f (z) has a pole of order k at z = α , then g(z) = 1
f (z) has a

removable singularity at z = α . Furthermore, if we define g(α) = 0, then g(z)

has a zero of order k.

1.4 Open Mapping Theorem

In this section, we will further discuss about properties of holomorphic functions.

We will first look into Open Mapping Theorem which will then lead to maximum

modulus principle and maximum modulus theorem.

Theorem 1.4.1 (The Identity Theorem for a disk). Suppose that f is holomor-

phic in the disk D(α,R) and that f (α) = 0. Then either f is identically zero in

the disk or its zero at α is isolated, that is, there exists a δ > 0 such that f (z) 6= 0

for 0 < |z−α|< δ .

Proof Since f is holomorphic in the disk D(α,R), by Taylor’s Theorem, we can

write,

f (z) =
∞

∑
n=0

an(z−α)n with an =
f (n)(α)

n!
for every z ∈ D(α,R).
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If the coefficients an = 0 for all n ≥ 0, then f is identically zero in the disk

D(α,R). In another case, there exists a smallest integer m≥ 1 with am 6= 0 and

f (z) = (z−α)m
∞

∑
n=m

an(z−α)n−m = (z−α)mg(z), for every z ∈ D(α,R).

The Taylor series for g has a radius of convergence at least R, and it follows that g

is holomorphic in the disk D(α,R). Thus, g is continuous at α , that is, for every

ε > 0, there exists δ such that |z−α|< δ implies that |g(z)−g(α)|< ε . Since

g(α) = am 6= 0, consider ε such that ε < |g(α)|, then there exists δ such that

|g(z)−g(α)|< ε < |g(α)| for every z ∈ D(α,δ ). This implies that g(z) 6= 0 for

every z∈D(α,δ ). Therefore, 0< |z−α|< δ implies that f (z) = (z−α)mg(z) 6=

0. Hence, either f is identically zero in the disk or its zero at α is isolated. Q.E.D.

The following theorem which is known as Rouche’s theorem plays an im-

portant role in the proof of Open Mapping Theorem.

Theorem 1.4.2 (Rouche’s Theorem). Let C be a simple closed countour lying

entirely within a simply connected domain D. Suppose that f and g are holo-

morphic in D. If the strict inequality | f (z)−g(z)| < | f (z)| holds for all z on C,

then f and g have the same number of zeros (counted according to their order of

multiplicities) inside C.

For the proof, please refer to ( Stein and Shakarchi, 2003 ).

Let U be an open set and let f be a function on U . We say that f is an

open mapping if for every open subset U ′ of U , the image f (U ′) is open. The

following theorem states a very nice property where every non-constant analytic

functions are open mapping.

Theorem 1.4.3 (Open Mapping Theorem). Suppose that f is analytic and non-

constant in an open set G, then f (G) is open.

13



Proof Choose an arbitrary α ∈ G, since f is analytic and non-constant, then by

Theorem 1.4.1, f (z)− f (α) has an isolated zero at α . Choose a radius r such that

the closed disk D(α,r) = {z : |z−α| ≤ r} is a subset of G and f (z)− f (α) 6= 0

for every z on the circle Γ= {z : |z−α|= r}. Let m= inf{| f (z)− f (α)| : z ∈ Γ}.

Since Γ is a compact set and | f (z)− f (α)| is a continuous, real-valued function,

thus, according to Bolzano-Weierstrass Theorem, there exists a z0 ∈ Γ such that

m = | f (z0)− f (α)|. Since z0 ∈ Γ, then f (z0)− f (α) 6= 0 and this implies that

m > 0. For every ω ∈ D( f (α),m) and z ∈ Γ, we have

| f (z)− f (α)| ≥ m > | f (α)−ω|= |( f (α)− f (z))+( f (z)−ω)|.

This implies that

|( f (z)− f (α))− ( f (z)−ω)|< | f (z)− f (α)|.

By Rouche’s Theorem, f (z)− f (α) and f (z)−ω has the same number of ze-

ros, counted according to their multiplicities, inside Γ. Since f (z)− f (α) has

a zero at α , then f (z)−ω has at least one zero inside Γ, that is, in D(α,r). If

this zero is at b ∈ D(α,r), then we have ω = f (b) ∈ f (D(α,r)). It follows that

D( f (α),m)⊆ f (D(α,r)) since ω is an arbitrary element of D( f (α),m). There-

fore, for every α ∈ G,

D( f (α),m)⊆ f (D(α,r))⊆ f (G)

Therefore, f (G) is open. Q.E.D.

It is noted that Open Mapping Theorem is unique for holomorphic function

but it is not true for real differentiable function. Using this result, the maximum

modulus principle follows easily.

Theorem 1.4.4 (Maximum Modulus Principle). If f is non-constant, holomor-

phic function in a domain D, then | f | can have no local maximum in D.
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Proof Suppose that there exists a z0 ∈D which is a local maximum of | f |, that is,

there exists a r > 0 such that D(z0,r)⊂D with | f (z)| ≤ | f (z0)| for all z∈D(z0,r).

By Open Mapping Theorem, ω0 = f (z0) is an inner point of f (D(z0,r)). Thus,

there exists ρ > 0 such that D(ω0,ρ) ⊂ f (D(z0,r)). But, there are point ω ∈

D(ω0,ρ) such that |ω|> |ω0|. Take ω = ω0 +
ρ

2 expi arg ω0 , then we have

|ω|= |ω0 +
ρ

2
expi arg ω0|= |ω0|+

ρ

2
> |ω0|.

But this implies that ω ∈ D(ω0,ρ) ⊂ f (D(z0,r)) which means that there exists

z∈D(z0,r) such that f (z)=ω and thus | f (z)|> | f (z0)|, which is a contradiction.

Therefore, | f | can not have a local maximum in D. Q.E.D.

Theorem 1.4.5 (Maximum Modulus Theorem). A non-constant function f is

defined and continous on a bounded, close region K. If f is analytic in the

interior of K, then the maximum value of | f (z)| in K must occur on the boundary

of K.

Proof Since K is compact, then there exists z0 ∈ K such that | f (z)| ≤ | f (z0)|

for all z ∈ K. Suppose that the maximum is attained in an interior point, that

is z0 ∈ int(K). It would then be the global maximum of the restriction of f

to int(K), contradicting the maximum modulus principle. Therefore, we have

z0 ∈ K \ int(K) = δK, the boundary of K. Q.E.D.

A simple but important consequence of the Maximum Modulus Theorem

is the Schwarz Lemma, which may be stated as follows.

Lemma 1.4.6 (Schwarz Lemma). Let f : D→D be holomorphic with f (0) = 0.

Then,

1. | f (z)| ≤ |z| for all z ∈ D.

2. If for some z0 6= 0, we have | f (z0)|= |z0|, then f is a rotation.
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3. | f ′(0)| ≤ 1 and if equality holds, then f is a rotation.

Proof We first expand f in a power series centered at the origin and convergent

for all z ∈ D, that is

f (z) = a0 +a1z+a2z2 + . . . .

Since f (0) = 0, then a0 = 0 and therefore the function g(z) defined as

g(z) =


f (z)

z , if z ∈ E−{0}

f ′(0) , if z = 0

is holomorphic in D. If |z|= r < 1, then since | f (z)| ≤ 1, we have

|g(z)|=
∣∣∣∣ f (z)

z

∣∣∣∣≤ 1
r

,

and by Maximum Modulus Principle, we can conclude that this is true whenever

|z| ≤ r. Letting r→ 1 gives |g(z)| ≤ 1 for all z ∈ D and hence | f (z)| ≤ |z| for all

z∈D. For (2), if | f (z0)|= |z0|, then g(z) attains its maximum in the interior of D

and again by maximum modulus principle, we have g(z) is a constant function,

that is f (z) = cz. Evaluating this expression at z0 and taking absolute value, we

find that |c| = 1, therefore there exists θ ∈ R such that c = eiθ . This shows that

f (z) = eiθ z, hence f is a rotation. Finally, observed that

g(0) = lim
z→0

f (z)− f (0)
z−0

= f ′(0),

hence | f ′(0)| ≤ 1. If | f ′(0)| = 1, then |g(0)| = 1 and using similar technique in

part (2), we obtained f (z) = eiαz, therefore f is a rotation. Q.E.D.
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CHAPTER 2

UNIVALENT FUNCTIONS

In this chapter, the idea of univalent functions together with some of their

properties will be discussed. We will begin by discussing about the Riemann

Mapping Theorem. Next, some examples of univalent functions will be given.

We will conclude this chapter with the introduction of Bieberbach’s theorem and

some applications of the Bieberbach’s theroem.

2.1 Biholomorphic Mapping

A biholomorphic mapping is defined as a bijective holomorphic function. In

other words, given two open sets E and E ′ in C, biholomorphic mapping f :

E → E ′ is the holomorphic, one-to-one and onto mapping between the two do-

mains. We wish to determine the existence of a biholomorphic mapping between

them. The existence of such function would allow us to shift our approaches to

questions about holomorphic functions from one open set to another with pos-

sibly more useful properties. The unit disk D = {z : |z|< 1} would be a great

candidate as it is easier to work with.

A biholomorphic mapping f : E → E ′ is called a biholomorphism and we

say that E and E ′ are biholomorphically equivalent or biholomorphic. For bi-

holomorphic function f , its derivative f ′(z) 6= 0 for all z in E, and its inverse is

also holomorphic.

Theorem 2.1.1. If f : E → E ′ is holomorphic and injective, then f ′(z) 6= 0 for

all z ∈ E. Thus, the inverse of f defined on its range is holomorphic, and in

particular the inverse of a biholomorphism is also holomorphic.

Proof We prove this by contradiction. Suppose that f ′(z0) = 0 for some z0 ∈ E.

Then,

f (z)− f (z0) = a(z− z0)
k +G(z)
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for all z near z0 with a 6= 0, k ≥ 2 and G vanishing to order k + 1 at z0. For

sufficiently small w, we write,

f (z)− f (z0)−w = F(z)+G(z)

where F(z) = a(z− z0)
k−w. Since |G(z)|< |F(z)| on a small circle centered at

z0, and F has at least two zeros inside that circle, Rouche’s Theorem implies that

f (z)− f (z0)−w has at least two zeros there. Since f ′(z) 6= 0 for all z 6= z0 but

sufficiently close to z0, it follows that the roots of f (z)− f (z0)−w are distinct.

Hence, f is not injective, a contradiction.

Now, let g= f−1 denote the inverse of f on its range, which will be denoted

by V . Suppose that w0 ∈ V and w is close to w0, and write w = f (z) and w0 =

f (z0). If w 6= w0, then we have

g(w)−g(w0)

w−w0
=

1
w−w0

g(w)−g(w0)

=
1

f (z)− f (z0)
z−z0

.

Since f ′(z0) 6= 0, we may let z→ z0 and conclude that g is holomorphic at w0

with g′(w0) = 1/ f ′(g(w0)). Q.E.D.

There is a geometric consequence of holomorphic functions that satisfies this

condition, known as conformality.

Definition 2.1.2. Let ω = f (z) be a complex mapping defined in a domain E

and let z0 be a point in E. Then we say that ω = f (z) is conformal at z0 if for

every pair of smooth oriented curves γ1 and γ2 in E intersecting at z0, the angle

between γ1 and γ2 at z0 is equal to the angle between the image curves γ ′1 and γ ′2

at f (z0) in both magnitude and orientation.

Proposition 2.1.3. If f is a holomorphic function in a domain E containing z0,

and if f ′(z0) 6= 0, then ω = f (z) is conformal at z0.

For the proof, please refer to ( Matthews and Howell, 2012 ).
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From Theorem 2.1.1 and Proposition 2.1.3, we know that biholomorphisms

are conformal mapping. Due to this nature, if there exists a biholomorphism

f : E → E ′, then E and E ′ are said to be conformally equivalent. It is necessary

to point out that this terminology adopted here is not universal. Some authors

defined conformal mapping as holomorphic mapping f : E → E ′ with f ′(z) 6= 0

for all z ∈ E. This definition is less restrictive than ours. For example, consider

the function f (z) = z2 on the punctured plane C−{0}. It is clear that f ′(z) 6= 0,

but f (z) is not injective.

2.2 Riemann Mapping Theorem

The main problem is to determine conditions on an open set Ω that would ensure

the existence of a biholomorphism F : Ω→ D.

First of all, a necessary condition is that Ω can not be the whole complex

plane because Liouville’s theorem states that every bounded entire function is

constant. Since D is connected, then it is required that Ω be connected. Fur-

thermore, since D is simply connected, then the same must be true for Ω. It is

remarkable that these conditions on Ω are sufficient to guarantee the existence of

a biholomorphism from Ω to D.

We called a subset Ω of C a proper subset if it is non-empty and it is not

the whole C.

Theorem 2.2.1 (Riemann Mapping Theorem). Suppose Ω is open, proper and

simply connected. If z0 ∈C, then there exists a unique biholomorphism F : Ω→

D such that

F(z0) = 0 and F ′(z0)> 0

For the proof, please refer to ( Stein and Shakarchi, 2003 ).
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We now give another term for injectivity.

Definition 2.2.2. A holomorphic function f (z) is said to be univalent in a domain

E if it is injective in the domain E.

By Riemann Mapping Theorem, any proper and simply connected domain,

Ω can be mapped conformally onto the unit disk D by an univalent function

f : Ω→ D. Therefore, any univalent function g : Ω→ G can be associated to

an univalent function h : D→ G by the relation f = g◦h−1, and vice versa. For

this reason, we can always direct our attention to univalent functions in D as

it is much easier to work with. Furthermore, if f (z) = ∑
∞
n=0 anzn is univalent in

D, then f (z)−a0 and f (z)−a0
a1

are univalent in D as well. Note that a1 = f ′(0) 6= 0.

Definition 2.2.3. Class S is the set of functions holomorphic and univalent in D,

and normalized by the condition f (0) = 0 and f ′(0) = 1.

The conditions f (0) = 0 and f ′(0) = 1 are known as normalized condition.

Throughout this thesis, we will be studying the normalized functions in class S.

For each f ∈ S, it can be represented by the Taylor series expansion of the the

form

f (z) = z+a2z2 +a3z3 + . . .+anzn + . . .= z+
∞

∑
n=2

anzn

2.3 Examples of Univalent Functions in the Class S

In this section, several examples of univalent functions in the class S will be

discussed.

Example 2.3.1. The Koebe function k(z) = z
(1−z)2 = z+2z2+3z3+4z4+ . . . for

z ∈ D is in S.
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Solution. We begin by writing

k(z) =
1
4

(
1+ z
1− z

)2

− 1
4
.

Consider the function

u(z) =
1+ z
1− z

First, we prove the injectivity of the Koebe function. Suppose that u(z1) = u(z2),

then,

1+ z1

1− z1
=

1+ z2

1− z2

1+ z1− z2− z1z2 = 1+ z2− z1− z1z2

z1 = z2

Therefore, u(z) is injective and holomorphic in D. Next, we look at the geometry

of the range of the Koebe function. Let z = x+ iy, then we have

u(z) =
1− x2− y2

(1− x)2 + y2
+ i

2y

(1− x)2 + y2

Since we are only concerned with z ∈ D, so, we have x2 + y2 < 1, then

Re{u(z)}= 1− (x2 + y2)

(1− x)2 + y2
> 0

Thus, u(z) maps the unit disk into the positive real plane. Then, u2(z) takes

this half plane onto the entire complex plane, except for the negative real axis.

Finally, f (z) = 1
4u2(z)− 1

4 is just the normalization process. Hence, k(z) ∈ S,

and its range is the whole complex plane except the negative real axis less than

or equal to −1
4 .
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Figure 2.1 The Koebe function maps D conformally onto C (− inf,−1/4).

Remark 2.3.2. Note that Koebe function is an important function in class S,

since it provides solution to many extremal problems in class S. For example, the

Bieberbach conjecture which will be discussed in the next section.

Example 2.3.3. The function f (z) = z(1− z)−1 for z ∈ D is in S.

Solution. First, to prove the injectivity, suppose that f (z1) = f (z2), then,

z1

1− z1
=

z2

1− z2

z1− z1z2 = z2− z1z2

z1 = z2

Thus, f is injective. It is easy to show that f (z) satisfy the normalization condi-

tion. Thus, f (z) ∈ S.

Other simple examples of functions in class S are :

1. f (z) = z, the identity mapping.

2. f (z) = z(1− z2)
−1, which maps D conformally onto the entire plane minus

the two half lines 1
2 ≤ x < ∞ and −∞ < x≤−1

2 .

3. f (z) = 1
2 log

[1+z
1−z

]
, which maps D conformally onto the horizontal strip

−π

4 < Im{ω}< π

4 , where ω = f (z) for z ∈ D.
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Consider the functions f (z) = z/(1− z) and g(z) = z/(1+ iz) which are

univalent functions in S, we have

( f (z)+g(z))′ =
1

(1− z)2 +
1

(1+ iz)2

which vanishes at 1
2(1+ i). Therefore, f + g is not univalent in D since every

univalent functions satisfied f ′(z) 6= 0. This shows that, in general, the sum of

two univalent functions may not be univalent in D.

However, functions in class S are preserved under some elementary transforma-

tion.

1. Conjugation. If f ∈ S and g(z) = f (z) = z+a2z2 +a3z3 + . . .+anzn + . . .,

then g(z) ∈ S.

2. Rotation. If f ∈ S and g(z) = e−iθ f (eiθ z), then g ∈ S.

3. Dilation. If f ∈ S and g(z) = r−1 f (rz), where 0 < r < 1, then g ∈ S.

4. Square root transformation. If f ∈ S and g = [ f (z2)]
1
2 , then g ∈ S.

5. Range transformation If f ∈ S and Φ is a function holomorphic and univa-

lent on the range of f , with Φ(0) = 0 and Φ′(0) = 1, then g = Φ◦ f ∈ S.

6. Omitted-value transformation. If f ∈ S, and ω 6= f (z), then g = ω f
ω− f ∈ S.

Since we are using property 6 stated above quite often in the thesis, we

shall prove it in the following example.

Example 2.3.4. If f ∈ S, and ω 6= f (z), then g = ω f
ω− f ∈ S.

Solution. Suppose that f ∈ S, then ω 6= 0 since f (0) = 0. Suppose that g(z1) =
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g(z2), then,

ω f (z1)

ω− f (z1)
=

ω f (z2)

ω− f (z2)

ω
2 f (z1)−ω f (z1) f (z2) = ω

2 f (z2)−ω f (z1) f (z2)

f (z1) = f (z2)

z1 = z2

Therefore, g(z) is injective. It is easy to show that g(z) satisfied the normalization

condition. Thus, g(z) ∈ S.

2.4 Bierberbach’s Theorem

Perhaps one of the keystone to the study of univalent functions is the Bieber-

bach’s Conjecture. In 1916, Ludwig Bieberbach proved that |a2| ≤ 2 for every

function f in the class S, and equality happens only for Koebe function and its

rotational transformation. In the footnote of his 1916 paper, Bieberbach stated

that the condition |an| ≤ n for all f in class S is possibly true. Such footnote be-

came the famous Bieberbach’s Conjecture which remained unproven until 1985.

First of all, we shall look at some preliminary result needed.

Let DE denotes the domain {ζ : 1 < |ζ |< ∞} (the exterior of D) and Σ be

the class of all functions in the form

φ(ζ ) = ζ + c0 +
c1

ζ
+

c2

ζ
+ . . .= ζ +

∞

∑
n=0

cn

ζ n

that are holomorphic and univalent in DE . The subclass of those functions such

that φ(ζ ) 6= 0 in DE is denoted by Σ0.
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Proposition 2.4.1. If f (z) = z+a2z2 +a3z3 + . . . is in S, then

Φ(ζ ) =
1

f ( 1
ζ
)
= ζ −a2 +

a2
2−a3

ζ
+ . . .

is in Σ0.

Proof First, we prove that Φ is univalent in DE . Suppose that Φ(ζ1) = Φ(ζ2)

where ζ1,ζ2 ∈DE . Then, we have 1/ζ1 = z1 and 1/ζ2 = z2 where z1,z2 ∈D. By

the definition of Φ(ζ ), we have f (z1) = 1/Φ(ζ1) = 1/Φ(ζ2) = f (z2). Since f is

univalent, so f (z1) = f (z2) implies that z1 = z2 and so ζ1 = ζ2. Therefore, Φ is

univalent in DE .

Next, we show that Φ(ζ ) 6= 0 for all ζ ∈ DE . Suppose that there exists ζ1 ∈ DE

such that Φ(ζ1) = 0, then Φ(ζ1) f (1/ζ1) = 0. But Φ(ζ ) f (1/ζ ) = 1 for all ζ ∈

DE , thus, Φ(ζ ) 6= 0 for all ζ ∈ DE . Therefore, Φ(ζ ) is in Σ0. Q.E.D.

Theorem 2.4.2. Let f (z) = ∑
∞
n=−∞ anzn be holomorphic and univalent on the

circle Cr = {z : |z|= r}, and suppose that Ψ, the image of Cr under f (z), is

described in a positive direction as θ runs from 0 to 2π . Then the area of the

domain enclosed by Ψ is given by

A = π

∞

∑
n=−∞

n|an|2r2n.

Proof For z∈Cr, we let θ as the parameter and write z = reiθ and w = f (reiθ ) =

u(θ)+ iv(θ), where

u(θ) =
1
2

∞

∑
n=−∞

[aneinθ + āne−inθ ]rn,

v(θ) =
1
2i

∞

∑
n=−∞

[aneinθ − āne−inθ ]rn.
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By Green’s theorem, the area of the domain enclosed by Ψ is given by

A =
∫ 2π

0
u

dv
dθ

dθ

=
1
4

∫ 2π

0
[

∞

∑
m=−∞

(ameinθ + āme−inθ )rm]

× [
∞

∑
n=−∞

(aneinθ + āne−inθ )nrn]dθ

=
π

2

∞

∑
n=−∞

[an(−na−n +nr2nān)+ ān(nr2nan−nā−n)]

= π

∞

∑
n=−∞

n|an|2r2n,

since ∑
∞
n=−∞ nana−n = ∑

∞
n=−∞ nānā−n = 0 and

∫ 2π

0 eikθ dθ = 0 for k 6= 0. Q.E.D.

Corollary 2.4.3. Let

f (z) = cz+ c0 +
∞

∑
n=1

cn

zn ,c 6= 0

be holomorphic and univalent in DE
r = {z : r ≤ |z| ≤ ∞}. Then the area of the

complement of f (DE
r ) is given by

Ar = π

(
|c|2r2−

∞

∑
n=1

n|cn|2

r2n

)
.

In 1914, T.H. Gronwall discovered a theorem called Exterior Area Theorem

which is the fundamental to the theory of univalent functions and it is important

to Bieberbach’s proof two years later.

Theorem 2.4.4 (Exterior Area Theorem). If

Φ(z) = z+
∞

∑
n=0

cn

zn
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is in Σ, i.e. Φ is holomorphic and univalent in DE , then,

∞

∑
n=1

n|cn|2 ≤ 1.

Proof Note that the condition in Corollary 2.4.3 are satisfied for each r > 1,

hence for r > 1, we have

Ar = π

(
r2−

∞

∑
n=1

n|cn|2

r2n

)

Since the area is always non-negative, then

r2−
∞

∑
n=1

n|cn|2

r2n ≥ 0

∞

∑
n=1

n|cn|2

r2n+2 ≤ 0

For a fixed but arbitrary positive integer N, we have

N

∑
n=1

n|cn|2

r2n+2 ≤ 1

Observed that the sum of the left hand side of the inequality above increases

monotonically when r→ 1+ and it is bounded. Hence it has a limit as r→ 1+,

that is ∑
N
n=1 n|cn|2≤ 1. Since the partial sum ∑

N
n=1 n|cn|2 increases monotonically

and bounded above, then the series converges and we have

∞

∑
n=1

n|cn|2 ≤ 1

This proved the theorem. Q.E.D.

Lemma 2.4.5. If

f (z) = z+
∞

∑
n=0

anzn
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is in S, then

F(z) = [ f (z2)]
1
2 = z+

1
2

a2z3 +
(1

2
a3−

1
8

a2
2

)
z5 + . . .

is in S as well.

Proof This is stated in property 4 above, we shall prove it since we will use it

later. Since f (z) = 0 only at the origin, a single-valued branch of the square root

may be chosen by writing

F(z) = [ f (z2)]
1
2

= z(1+a2z2 +a3z4 + . . .)
1
2

= z+
1
2

a2z3 +

(
1
2

a3−
1
8

a2
2

)
z5 + . . . .

Now, suppose that F(z1) = F(z2), for z1,z2 ∈ D, then f (z2
1) = f (z2

2), and by

the univalence of f , we have z2
1 = z2

2, and hence z1 = ±z2. Since F(z) is an

odd function, so that z1 = −z2 gives F(z1) = −F(z2), therefore we must have

z1 = z2. This shows that F is univalent in D and since F is in normalized form,

we conclude that F ∈ S. Q.E.D.

An inequality is said to be sharp if it is impossible to improve the inequality

under given conditons. In other words, we can not increase its lower bound or

decrease its upper bound as there exists a function such that the equality holds.

A function for which equality occurs is called an extremal function. We now

state the theorem introduced by Bieberbach in 1916 that leads to the famous

Bieberbach’s Conjecture in univalent function theory.

Theorem 2.4.6 (Bieberbach’s Theorem for the second coefficient). If

f (z) = z+
∞

∑
n=2

anzn

is in S, then |a2| ≤ 2. The inequality is sharp with equality occurs iff f is a
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rotation of the Koebe function.

Proof Suppose that f ∈ S, then by Lemma 2.4.5, F(z) = [ f (z2)]
1
2 is also in S.

Then, we have

F(z) = z+
1
2

a2z3 +
(1

2
a3−

1
8

a2
2
)
z5 + . . .

= z+0z2 +
1
2

a2z3 +0z4 + . . .

By Proposition 2.4.1, then we have

Φ(ζ ) =
1

F(1/ζ )
= ζ − 1

2
a2

1
ζ
+ c3

1
ζ 3 + c5

1
ζ 5 + . . .

is in Σ0. By the Exterior Area Theorem, then we have

∞

∑
n=1

n|cn|2 = |−
a2

2
|
2
+3|c3|2 +5|c5|2 + . . .≤ 1.

Hence, |−a2
2 |

2 ≤ 1, and this gives |a2| ≤ 2.

Next, we show that this inequality is sharp by showing that equality occurs if

f is a rotational transformation of the Koebe function. If a2 = 2eiθ , then we have

cn = 0 for all n > 2, by Exterior Area Theorem. Therefore, Φ(ζ ) = ζ − eiθ/ζ .

Thus,

F(z) =
1

Φ(1/z)
=

z
1− eiθ z2

Since f (z2) = [F(z)]2, then we have

f (z2) =
z2

(1− eiθ z2)
2

and hence

f (z) =
z

(1− eiθ z)2 = e−iθ k(eiθ z) = kθ (z),
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which is a rotational transformation of the Koebe function. Finally, observed that

kθ (z) = e−iθ k(eiθ z)

=
z

(1− eiθ z)2

= z+2eiθ z2 +3e2iθ z3 + . . .

Therefore, it is clear that |a2|= 2. This completed the proof. Q.E.D.

The proof of the Bieberbach’s conjecture is a difficult task. It was until

1923 when Lowner proved that |a3| ≤ 3 for every f in S, using the partial dif-

ferential equation that bears his name today. Over the years between 1955 and

1972, special cases of the Bieberbach’s conjecture were proved including when

n = 4 (Garabedian and Schiffer, 1975), n = 6 (Pederson and Ozawa,1969) and

n = 5 (Pederson and Schiffer, 1972). The first good estimate for all the coeffi-

cients came in 1925 by Littlewood who proved that |an| ≤ en. The best result

dated before 1985 is provided by FitzGerald and his student Horowitz in 1978 as

they proved that |an|< 1.0691n. Finally, Bieberbach’s conjecture was proved by

Louis de Branges of Purdue University in 1986.

Clearly, Bieberbach’s conjecture had been a vital part in the study of uni-

valent function. We state this theorem to conclude this section.

Theorem 2.4.7 (Bieberbach’s Theorem). If

f (z) = z+
∞

∑
n=2

anzn

is in S, then |an| ≤ n. The inequality is sharp with equality occurs iff f is a

rotation of the Koebe function.

For the proof, please refer to ( de Branges, 1985 ).
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2.5 Some Applications of Bieberbach’s Theorem

In this section, we will see some classical applications due to the Bieberbach’s

inequality |a2| ≤ 2. If f is holomorphic and non-constant in D, then by open

mapping theorem, we know that f (D) is an open set. Since f ∈ S are holo-

morphic and non-constant with the normalized condition f (0) = 0, so its range

contains some open disk centered at origin. In 1907, Koebe discovered that the

range of all functions in S contain an open disk |ω| < r, where r is an absolute

constant. This is known as the Koebe one-quarter theorem.

Theorem 2.5.1 (Koebe One-Quarter Theorem). The range of every function

of class S contains the disk
{

ω : |ω|< 1
4

}
.

Proof If a function f omits a value ω ∈ C, then by the omitted-value transfor-

mation, we have,

g(z) =
f (z)

ω− f (z)
= z+

(
a2 +

1
ω

)
z2 + ...

Since g(z) ∈ S, then by Bieberbach’s theorem, we have

∣∣∣a2 +
1
ω

∣∣∣≤ 2

Since f ∈ S, then |a2| ≤ 2, so

∣∣∣ 1
ω

∣∣∣≤ |a2|+2≤ 4

Hence, |ω| ≥ 1
4 . This implies that every omitted value of f ∈ S must lie outside

the disk
{

ω : |ω|< 1
4

}
. Q.E.D.

Another direct consequences of Theorem 2.4.6 are Growth Theorem and

Distortion Theorem. The Koebe Distortion Theorem and Growth Theorem pro-
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vides sharp lower and upper bound for | f ′(z)| and | f (z)| respectively for every

f ∈ S. First, we need the following lemmas.

Lemma 2.5.2. For each f ∈ S, and |z|= r < 1 we have

∣∣∣z f ′′(z)
f ′(z)

− 2r2

1− r2

∣∣∣≤ 4r
1− r2 .

For the proof, please refer to ( Duren, 1983 ).

Lemma 2.5.3. If f (z) is holomorphic in D and f ′(z) 6= 0 for all z ∈ D, then for

ζ = ρeiθ ∈ D, we have

ρ
∂

∂ρ
ln| f ′(ζ )|= Re

{
ζ f ′′(ζ )

f ′(ζ )

}
.

Proof Taking the principal branch of the complex logarithmic function and dif-

ferentiate with respect to ρ , we have

ρ
∂

∂ρ
ln f ′(ζ ) = ρ

∂

∂ρ
( ln | f ′(ζ )|+ i arg f ′(ζ )) (1)

By calculation, it can be show that

ρ
∂

∂ρ
ln f ′(ζ ) = ρ

1
f ′(ζ )

f ′′(ζ )
∂ζ

∂ρ
=

f ′′(ζ )
f ′(ζ )

ρeiθ = ζ
f ′′(ζ )
f ′(ζ )

Taking the real part of (1), then we have

Re
{

ζ f ′′(ζ )
f ′(ζ )

}
= ρ

∂

∂ρ
ln | f ′(ζ )|

This concluded the proof. Q.E.D.
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Theorem 2.5.4 (Distortion Theorem). For each f (z)∈ S, then for z = reiθ ∈D,

1− r
(1+ r)3 ≤ | f

′(z)| ≤ 1+ r
(1− r)3 (2)

Equality occurs if and only if f is a suitable rotation of the Koebe function.

Proof [4] Since an inequality |α| ≤ c implies −c≤ Re{α} ≤ c, it follows from

Lemma 2.5.2 that

−4ρ

1−ρ2 ≤ Re
{

ζ f ′′(ζ )
f ′(ζ )

− 2ρ2

1−ρ2

}
≤ 4ρ

1−ρ2

and therefore,
2ρ2−4ρ

1−ρ2 ≤ Re
{

ζ f ′′(ζ )
f ′(ζ )

}
≤ 2ρ2 +4ρ

1−ρ2

for ζ = ρeiθ , |ζ |< 1. Because f ′(z) 6= 0 for z ∈D and f ′(0) = 1, we can choose

a single-valued branch of the complex logarithmic function ln f ′(z) which van-

ishes at the origin, that is ln f ′(z) = ln | f ′(z)|+ i Arg f ′(z) with ln f ′(0) = 0.

By Lemma 2.5.3, we have

ρ
∂

∂ρ
ln| f ′(ζ )|= Re

{
ζ f ′′(ζ )

f ′(ζ )

}
.

and hence,
2ρ−4
1−ρ2 ≤

∂

∂ρ
ln| f ′(ζ )| ≤ 2ρ +4

1−ρ2

Next, we hold θ fixed and intergrate the above equation with respect to ρ from

0 to r. It will then produces the inequality

ln
(

1− r

(1+ r)3

)
≤ ln| f ′(reiθ )|= ln| f ′(z)| ≤ ln

(
1+ r

(1− r)3

)

for z = reiθ . The Distortion Theorem follows by exponentiation.
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Observed that if f (z) = k(z) = z(1− z)−2, then

f ′(z) = k′(z) =
1+ z

(1− z)3

If we set z = r < 1, then we obtained the equality on the right side of (1). On the

other hand, setting z =−r >−1, we will obtained the equality on the left side of

the distortion theorem. This shows that the inequalities are sharp.

Conversely, if f ∈ S and satisfied the equality for the upper and lower estimate

of inequality (1), we wish to show that f is a rotation of the Koebe function. If

f ∈ S such that z = Reiα in D, we have | f ′(z)|= 1−R
(1+R)3 , then,

∂

∂ r
ln| f ′(z)|= 2r−4

1− r2 (3)

holds for all 0≤ r ≤ R. Note that

∂

∂ r
ln| f ′(reiθ |= Re

{
eiθ f ′′(reiθ )

f ′(reiθ )

}
. (4)

We can choose α ∈ R, such that Re
{

eiα f ′′(0)
}
= eiα f ′′(0) = eiα(2a2), since

f ′′(0) = 2a2. Then,

Re
{

eiθ f ′′(reiθ )

f ′(reiθ )

}
=

2r−4
1− r2

follows from equation (2) and (3). Taking r = 0, then it gives

Re
{

eiα f ′′(0)
f ′(0)

}
=−4

and from our choice of α ∈R, we have 2eiαa2 =−4 which implies that |a2|= 2.

From Bieberbach’s theorem, we concluded that f is a rotational transformation

of the Koebe function.

If equality holds for upper estimate of inequality (1), similar argument will

gives the same conclusion, that is f is a rotational transformation of the Koebe

function. This concluded the proof. Q.E.D.

34



Theorem 2.5.5 (Growth Theorem). For each f (z) ∈ S, then for z = reiθ ∈ D

for 0 < r < 1,
r

(1+ r)2 ≤ | f (z)| ≤
r

(1− r)2 (5)

Equality occurs if and only if f is a suitable rotation of the Koebe function.

Proof [4] Let f ∈ S and fix z = reiθ with 0 < r < 1. Observed that

f (z) =
∫ r

0
f ′(ρeiθ )eiθ dρ.

Since f (0) = 0, by the distoriton theorem, we obtained

| f (z)| ≤
∫ r

0
| f ′(ρeiθ )|dρ ≤

∫ r

0

1+ρ

(1−ρ)3 dρ =
r

(1− r)2 ,

and this is the right-hand inequality. For the left-hand inequality, observed that

r

(1+ r)2 <
1
4

for r > 0. Hence, if | f (z)| ≥ 1
4 , then r

(1+r)2 <
1
4 ≤ | f (z)|.

For the case where | f (z)| < 1
4 , we let f (reiθ ) = Reiα , where R < 1

4 . The Koebe

one-quarter theorem implies that the straight line segment Γ from 0 to Reiα lies

entirely in the image of D by f (z). Hence Γ corresponds to a path γ in D, which

joins z = 0 to reiθ . Thus if t = |z|, we deduced from Theorem 2.5.4 that

| f (z)|=
∫

Γ

|dw|=
∫

γ

|dw
dz
||dz| ≥

∫
γ

1− t

(1+ t)3 dt =
r

1+ r2

which is the left hand inequality of the (4).

Equality in either part of inequality (4) implies equality in the corresponding

parts of inequality (1), and hence distortion theorem implies that f is a rotational

transformation of the Koebe function. Q.E.D.

One further inequality, which is a combined growth and distortion theorem
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is sometimes useful. We conclude this section by stating the theorem.

Theorem 2.5.6. For each f (z) ∈ S, then for z = reiθ ∈ D, and z 6= 0,

1− r
1+ r

≤
∣∣∣z f ′(z)

f (z)

∣∣∣≤ 1+ r
1− r

Equality occurs if and only if f is a suitable rotation of the Koebe function.

For the proof, please refer to ( Duren, 1983 ).
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CHAPTER 3

SPECIAL CLASSES OF UNIVALENT FUNCTIONS

In this chapter, we will first give the definition for linear fractional transfor-

mations in class S. Certain subclasses of S such as S∗ and C are discussed and

defined geometrically as well as analytically. Finally, convexity of linear frac-

tional transformations in S together with its range will also be studied here.

3.1 Linear Fractional Transformation

Linear fractional transformation was first studied by Augustus Ferdinand Mo-

bius (1790-1868). These mappings are conveniently expressed as the quotient of

two linear expressions.

Definition 3.1.1. If a,b,c and d are complex constants with ad− bc 6= 0, then

the complex function defined by

f (z) =
az+b
cz+d

is called a linear fractional transformation.

Linear fractional transformation are also known as Mobius transformation

or bilinear transformation. If c = 0, then it is a linear transformation, which is a

special case of linear fractional transformations. If c 6= 0, then we can write

f (z) =
az+b
cz+d

=
bc−ad

c
.

1
cz+d

+
a
c

(1)

Setting k(z) = cz+d, h(z) = 1/z and g(z) = (a/c)+ [(bc−ad)/c]z, then f (z) =

g ◦ h ◦ k(z). Thus, equation (1) is a composition of linear transformation, inver-

sion and translation. The domain of a linear fractional transformation is the set
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of all complex value z such that z 6= −d/c. The condition ad− bc 6= 0 ensures

that f (z) would not be reduced to a constant. We now look at two examples of

linear fractional transformations.

Example 3.1.2. Let H be the upper half plane, that is,

H= {ω ∈ C : Im(ω)> 0}

and D be the unit disk centered at origin, D= {z : |z|< 1}. Consider

F(z) =
i− z
i+ z

and G(ω) = i
1−ω

1+ω

then the mapping F : H→ D is biholomorphism with inverse G : D→H.

Solution. First, we observe that both mappings are holomorphic and injective in

their respective domains. Then we note that any point in the upper half-plane is

closer to i than to −i, so |F(z)| < 1 and that F maps H into D. Next, we show

that F maps H onto D. Let ω ∈ D, then,

Im
(

i
1−ω

1+ω

)
= Re

(
1−u− iv
1+u+ iv

)
=

1−u2− v2

(1+u)2 + v2
> 0

since |ω|< 1. Therefore, i1−ω

1+ω
∈H and

F
(

i
1−ω

1+ω

)
=

i− i1−ω

1+ω

i+ i1−ω

1+ω

=
1+ω−1+ω

1+ω +1−ω
= ω.

This shows that F maps H onto D, and hence F(z) is a biholomorphism with

inverse G(ω).
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Example 3.1.3. Let P be the positive real plane, that is,

P= {ω = u+ iv : u > 0}

and D be the unit disk centered at origin, D= {z : |z|< 1}. Consider

F(z) =
1+ z
1− z

and G(ω) =
ω−1
ω +1

then D and P are conformally equivalent that is F : D→ P conformally with in-

verse G : P→ D.

Solution. First, observe that f is injective and holomorphic in its domain. Let

z = x+ iy, then we have

F(z) =
1− (x2 + y2)

(1− x)2 + y2
+ i

2y

(1− x)2 + y2
,

so F maps the unit disk D into P since |z|< 1. To show that F is onto P, take note

that for ω ∈P, we have |ω−1|< |ω+1|, therefore ω−1
ω+1 is in D and F

(
ω−1
ω+1

)
=ω .

This shows that F is onto P. Therefore f takes the unit disk D conformally to

the positive real-plane P, with inverse G(ω).

We conclude this section by stating an implicit formula to determine linear

fractional transformation.

Theorem 3.1.4. There exists a unique linear fractional transformation that maps

three distinct points, z1,z2 and z3, onto three distinct points, w1,w2 and w3, re-

spectively. An implicit formular for the mapping is given by

z− z1

z− z3
.
z2− z3

z2− z1
=

w−w1

w−w3
.
w2−w3

w2−w1

For the proof, please refer to ( Matthews and Howell, 2012 ).
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3.2 Starlike and Convex Functions

In this section, we will discuss about starlike and convex functions which are two

of the important subclasses of S.

Definition 3.2.1. A set Ω ∈ C is said to be starlike ( with respect to the origin )

if the linear segment joining each point ω ∈Ω to origin lies entirely in Ω. Also,

we say that Ω is convex if the linear segment joining any two points in Ω lies

entirely in Ω .

The function f : D→ f (D) is called a starlike function if the image F =

f (D) is starlike, that is, if ω ∈ F , then tω ∈ F , for 0 ≤ t ≤ 1. Let S∗ denote the

class of all starlike functions in S, hence, we have S∗⊂ S. The following theorem

is a well known characterization of functions in S∗.

Theorem 3.2.2. Let f be analytic in D, with f (0) = 0 and f ′(0) = 1. Then f ∈ S∗

if and only if

Re
{

z f ′(z)
f (z)

}
> 0.

Proof First, suppose that f ∈ S∗. We claim that f maps each subdisk |z|< ρ < 1

onto a starlike domain, that is g(z) = f (ρz) is starlike in D. In other words, we

must show that for each fixed t (0 < t < 1) and for each z ∈ D, then the point

tg(z) is in the range of g. Since f ∈ S∗ , so t f (z) is in the range of f , therefore

t f (z) = f (ω(z)) for some functions ω analytic in D and by Schwarz Lemma,

satisfying |ω(z)| ≤ |z|. Thus,

tg(z) = t f (ρz) = f (ω(ρz)) = g(ω1(z))

where ω1(z) = ω(ρz)/ρ and |ω1(z)| ≤ |z|.

This proves that f maps each circle |z| = ρ < 1 onto a curve Cρ that bounds a
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starlike domain. It follows that arg f (z) increases as z moves around the circle

|z|= ρ in the positive direction, that is

δ

δθ

{
arg f (ρeiθ )

}
≥ 0.

Since log f (z)= log| f (z)|+i arg f (z), setting z= ρeiθ , then we have log f (ρeiθ )=

log| f (ρeiθ )|+ i arg f (ρeiθ ). So,

δ

δθ

{
arg f (ρeiθ )

}
= Im

{
δ

δθ
log f (ρeiθ )

}
= Im

{
iρeiθ f ′(ρeiθ )

f (ρeiθ )

}
= Im

{
iz f ′(z)

f (z)

}
= Re

{
z f ′(z)
f (z)

}

Thus, we have Re{z f ′(z)/ f (z)} > 0, by the maximum principle for harmonic

functions.

Conversely, suppose that f is a normalized analytic function such that

Re{z f ′(z)/ f (z)}> 0. Since f (0) = 0, then f has a simple zero at the origin and

no zeros elsewhere in the disk. Retracing the calculation above, we see that for

each ρ < 1,
δ

δθ

{
arg f (ρeiθ )

}
≥ 0, 0≤ θ ≤ 2π

Thus as z runs around the circle |z| = ρ in the counter-clockwise direction, the

point f (z) traverses a closed curve Cρ with an increasing argument. Since f has

exactly one zero inside the circle |z| < ρ , the argument principle states that Cρ

surrounds the origin exactly once. But if Cρ winds about the origin only once

with increasing argument, it can have no self-intersections. Thus, Cρ is a sim-

ple closed curve which bounds a starlike domain Dρ , and f assumes each value

w ∈ Dρ exactly once in the disk |z| < ρ . Since this is true for every ρ < 1, it

follows that f is univalent and starlike in D. This concludes the proof. Q.E.D.
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The function f : D→ f (D) is called convex if the image F = f (D) is con-

vex, that is, if f (z1) and f (z2) are any two points in F , then t f (z2)+(1− t) f (z1)

is also in F for 0≤ t ≤ 1. Let C denote the class of all convex functions in S, then

we have C⊂ S. Furthermore, from the geometrical point of view, it is easy to see

that every convex function is starlike, and thus C⊂ S∗. The following theorem is

a well known characterization of functions in C.

Theorem 3.2.3. Let f be analytic in D, with f (0) = 0 and f ′(0) = 1. Then f ∈C

if and only if

Re
{

1+
z f ′′(z)
f ′(z)

}
> 0.

Proof Suppose that f ∈C, we claim that f must map each subdisk |z|< r onto a

convex domain. First, choose points z1 and z2 with |z1|< |z2|< r. Let w1 = f (z1)

and w2 = f (z2), and let

w0 = tw1 +(1− t)w2 , 0 < t < 1

Since f is a convex mapping, then there is a unique point z0 ∈D such that f (z0)=

w0. We have to show that |z0|< r, but the function

g(z) = t f
(

z1z
z2

)
+(1− t) f (z)

is analytic in D, with g(0) = 0 and g(z2) = w0. Since f ∈ C, then the function

h(z) = f−1(g(z)) is well-defined. Since h(0) = 0 and |h(z)| ≤ 1, then by Schwarz

lemma, we have |h(z)| ≤ |z|. Thus,

|z0|= | f−1(ω0)|= |h(z2)| ≤ |z2|< r.

Hence, f maps each circle |z|= r < 1 onto a curve Cr which bounds a convex do-
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main. The convexity implies that the slope of the tangent to Cr is non-decreasing

as the curve is traversed in the positive direction.

Analytically, this condition is

δ

δθ

(
arg
{

δ

δθ
f (reiθ )

})
≥ 0

Since log[ δ

δθ
f (reiθ )] = log| δ

δθ
f (reiθ )|+ i arg

{
δ

δθ
f (reiθ )

}
, then we have

δ

δθ
Im
{

log[
δ

δθ
f (reiθ )]

}
≥ 0,

Im
{

δ

δθ
log [ireiθ f ′(reiθ )]

}
≥ 0,

Re
{

1+
z f ′′(z)
f ′(z)

}
≥ 0 , |z|= r.

Thus, we have Re{1+(z f ′′(z))/ f (z)} > 0, by the maximum principle for har-

monic function.

Conversely, suppose f is a normalized analytic function such that

Re
{

1+(z f ′′(z))/ f (z)
}
> 0.

The calculation above shows that the slope of the tangent to the curve Cr in-

creases monotonically. As a point makes a complete circuit of Cr, the argument

of the tangent vector has a net change

∫ 2π

0

δ

δθ

(
arg
{

δ

δθ
f (reiθ )

})
dθ =

∫ 2π

0
Re
{

1+
z f ′′(z)
f ′(z)

}
dθ

= Re
{∫
|z|=r

[
1+

z f ′′(z)
f ′(z)

]
dz
iz

}
= 2π , z = reiθ

This shows that Cr is a simple closed curve bounding a convex domain. This for

arbitrary r < 1 implies that f is a univalent function with convex range. Q.E.D.

43



The following theorem, which is known as Alexander Theorem established

a relationship between the class S∗ and C. It was first observed by J.W. Alexander

in 1915.

Theorem 3.2.4 (Alexander’s Theorem). Let f be analytic in D, with f (0) = 0

and f ′(0) = 1. Then f ∈C if and only if z f ′(z) ∈ S∗.

Proof Let g(z) = z f ′(z) then

zg′(z)
g(z)

= 1+
z f ′′(z)
f ′(z)

Then,

Re
{

zg′

g(z)

}
= Re

{
1+

z f ′′(z)
f ′(z)

}
.

Therefore, by Theorem 3.2.2 and 3.2.3, we have f ∈C if and only if z f ′(c) ∈ S∗.

Q.E.D.

Near the origin, each function f ∈ S is close to the identity mapping. It is

expected that each f ∈ S will maps small open disks |z| = ρ onto curves that

bound a convex domain. The following theorem gives a quantitative description

towards this statement.

Theorem 3.2.5. For every positive number ρ ≤ 2−
√

3, each function f ∈ S

maps the disk |z|< ρ onto a convex domain. This is false for ρ > 2−
√

3.

Proof From Theorem 2.5.2, we have

∣∣∣∣z f ′′

f ′
− 2r2

1− r2

∣∣∣∣≤ 4r
1− r2

for each f ∈ S and |z|= r < 1. Therefore,

Re
{

1+
z f ′′

f ′

}
≥ 1−4r+ r2

1− r2 .
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Since 1−4r+r2 > 0 for r < 2−
√

3, thus by Theorem 3.2.3, f must maps a disk

|z|< r onto a convex domain. Q.E.D.

The number 2−
√

3 = 0.267... is known as the radius of convexity for the

class S. The radius of starlikeness is known to be tanh π

4 = 0.655..., but this

result lies deeper and will not be covered in this thesis. The following theorem

provides a slight improvement upon the Koebe one-quarter theorem, though it is

restricted to convex functions.

Theorem 3.2.6. The range of every function f ∈C contains the disk |ω|< 1/2.

Proof If f ∈ C and f (z) 6= ω , then g(z) = [ f (z)−ω]2 is univalent. If g(z1) =

g(z2), then either f (z1) = f (z2) or 1
2 [ f (z1)+ f (z2)] = ω . The latter is impossible

for a convex function f which omits the value ω . Thus,

h(z) =
ω2−g(z)

2ω
∈ S

But h(z) 6= ω/2 because g(z) 6= 0, so it follows from the Koebe one quarter the-

orem that |ω/2| ≥ 1/4, or |ω| ≥ 1/2. This proves the theorem. Q.E.D.

We conclude this section by giving some examples of starlike and convex

functions.

Example 3.2.7. The Koebe function

k(z) =
z

(1− z)2 , z ∈ D

is in S∗ but not in C.

Solution. From Example 2.3.1, it follows that the Koebe function is starlike but

not convex from the geometry of the range of the Koebe function. However, we
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will give an analytic proof here. A simple calculation shows that

Re
{

zk′(z)
k(z)

}
= Re

{
1+ z
1− z

}

Since Re
{1+z

1−z

}
> 0, then, by Theorem 3.2.2, k(z) is starlike.Since Im{k(D)} =

C\ (−∞,−1/4), thus the closed line segment joining −1+ i and −1− i is not in

the range of k(D). Therefore, k(z) is not convex.

Example 3.2.8. Let f (z) = z+a2z2 + . . . ,z ∈ D satisfy

∞

∑
n=2

n|an| ≤ 1

then f ∈ S∗.

Solution. For |z|< 1, it follows that

|z f ′(z)− f (z)|=
∣∣∣∣z+ ∞

∑
n=2

nanzn− z−
∞

∑
n=2

(n−1)anzn
∣∣∣∣

≤
∞

∑
n=2

(n−1)|an||z|n

≤ |z|−
∞

∑
n=2
|an||z|n

≤ | f (z)|

Hence, we have |z f ′(z)/ f (z)−1| ≤ 1 and this gives Re{z f ′(z)/ f (z)}> 0. There-

fore, by Theorem 3.2.2, f (z) is starlike.

Example 3.2.9. Consider the function

f (z) = z+
1
4

z2 , z ∈ D

then f ∈C.
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Solution. We will prove this analytically. Let z = x+ iy, then

Re
{

z f ′′

f ′
+1
}
= Re

{
2z+2
z+2

}
=

2x2 +2y2 +6x+4

(x+2)2 + y2
>

6+6x

(x+2)2 + y2
> 0

Hence, by Theorem 3.2.3, f (z) is convex.

3.3 Close-to-Convex functions

Another interesting subclass of S is the class of close-to-convex function. It was

introduced by Kaplan in 1952.

Definition 3.3.1. A function f analytic in the unit disk D is said to be close-to-

convex if there exists a convex function g such that

Re
{

f ′(z)
g′(z)

}
> 0

for all z ∈ D.

We shall denote by K the class of close-to-convex functions with normal-

ized condition f (0) = 0 and f ′(0) = 1. It is noted that f is not required to be

univalent and the associated function g need not to be normalized.

Every close-to-convex function is univalent. We will first need the follow-

ing simple but important criterion for univalence. This criterion is due to Noshiro

and Warchawski.

Theorem 3.3.2 (Noshiro-Warchawski Theorem). Suppose that f is analytic in

a convex domain E and Re { f ′(z)}> 0 there, then f is univalent in E.

Proof Let z1 and z2 be two distinct points in E. Since E is convex, then the

linear segment, L joining z1 and z2 lies inside of E. The line segment is given by
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γ = z1 + t(z2− z1) where t ∈ [0,1].

f (z2)− f (z1) =
∫

γ

f ′(z) dz

= (z2− z1)
∫ 1

0
f ′(z1 + t(z2− z1)) dt

Therefore,

| f (z2)− f (z1)|= |z2− z1|
∣∣∣∣∫ 1

0
f ′(z1 + t(z2− z1)) dt

∣∣∣∣
≥ |z2− z1|

∣∣∣∣Re
{∫ 1

0
f ′(z1 + t(z2− z1))

}
dt
∣∣∣∣

> 0

since Re { f ′(z)} > 0. Hence, for z1 6= z2, then f (z1) 6= f (z2) and we conclude

that f is univalent in E. Q.E.D.

We are now ready to prove that close-to-convex function is univalent.

Theorem 3.3.3. Every close-to-convex function is univalent.

Proof Suppose that f is close-to-convex, then Re { f ′(z)/g′(z)} > 0 for some

convex function g. Let E be the range of g and consider the function

h(ω) = f (g−1(ω)) , for ω ∈ E.

Note that the inverse of g exists because g ∈C ⊂ K. Since every function in C is

univalent, thus g is univalent and so the inverse exists. Then,

h′(ω) =
f ′(g−1(ω))

g′(g−1(ω))
=

f ′(z)
g′(z)

for z = g−1(ω) in D. Thus, Re{h′(ω)} > 0 in E. Thus, h(ω) is univalent, by
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Noshiro-Warchawski Theorem. Let z1 and z2 in D, then there exist ω1,ω2 in E

such that g(z1) = ω1 and g(z2) = ω2. If f (z1) = f (z2), then,

h(ω1) = f (z1) = f (z2) = h(ω2).

By the univalence of h, then ω1 = ω2, that is g(z1) = g(z2). Since g ∈C, there-

fore we have z1 = z2 since g is univalent. Thus, f is also univalent in D. Q.E.D.

From Definition 3.3.1, it is obvious that every convex function is close-to-

convex. More generally, every starlike function is close-to-convex. Let f ∈ S∗,

and write

f (z) = z+a2z2 +a3z3 + . . .= z[1+a2z+a3z2 + . . .] = zg′(z)

From the Alexander Theorem, we know that if zg′(z) ∈ S∗, then g(z) ∈C. Con-

sider the analytical condition for close-to-convex function, then we have

Re
{

f ′(z)
g′(z)

}
= Re

{
f ′(z)
f (z)

z

}
= Re

{
z f ′(z)
f (z)

}
> 0

from Theorem 3.2.2 since f ∈ S∗.

The following chain of proper inclusions summarized the relationship be-

tween the special subclasses of S.

C ⊂ S∗ ⊂ K ⊂ S.

3.4 Linear fractional transformation in Class S

From definition, class S is the set of functions holomorphic and univalent in D,

normalized by the condition f (0) = 0 and f ′(0) = 1.
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Theorem 3.4.1. If f is a linear fractional transformation and f ∈ S, then

f (z) =
z

αz+1

where α = c/a and |α| ≤ 1.

Proof A linear fractional transformation is clearly 1-1, and thus, for a linear

fractional transformation f (z) = (az+b)/(cz+d) to be in class S, it must satisfy

both the normalized condition. If f (0) = 0, then it follows that b = 0. If f ′(0) =

1, then ad/d2 = 1 and this gives a = d. Thus,

f (z) =
z

αz+1
, α =

c
a

Since f ∈ S, then f is analytic in D. For α 6= 0, f is not analytic at z = −1/α .

Therefore, −1/α does not belongs to D. Thus, |α| ≤ 1. Q.E.D.

Theorem 3.4.2. Every linear fractional transformation in class S is convex.

Proof Consider the function

g(z) =
z

z+1
, z ∈ D

Then,

Re
{

1+
zg′′(z)
g′(z)

}
= Re

{
1− z
1+ z

}
> 0.

Thus, by Theorem 3.2.3, g(z) is a convex function. From Theorem 3.4.1, we

shall show that f (z) = z
αz+1 is convex for all α such that |α| ≤ 1.

First, consider |α|= 1. Let g1 be the rotation of g, then

g1(z) = e−iθ g(eiθ z) =
z

1+ eiθ z

Since g1(z) is the rotational transformation of the convex function g(z), thus,
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g1(z) is convex.

Next, consider |α| < 1. Let g1 be the rotation of g and g2 be the dilation of g1,

for 0 < r < 1, then

g2(z) = r−1g1(rz) =
z

1+ reiθ z
=

z
1+β z

where β = reiθ with |β | < 1. We can see that g2(z) is a transformation of the

convex function g(z), and so g2(z) is convex. Therefore, every linear fractional

transformation in S is convex. Q.E.D.

In the following section, we will provide a detail explanation on the image

of the function

f (z) =
z

αz+1
, |α| ≤ 1.

Let g(z) be the rotation of f (z), then

g(z) = e−iθ f (eiθ z) =
z

αeiθ z+1
= fθ (z).

D eiθ
−→ D

↓g ↓ f

C eiθ
−→ C

The diagram above illustrate the relationship between f and g. It shows

that the image of the rotation of f (z) ( the image of g(z) ) is the rotation of the

image of f (z). If we let α = reiθ , then it is sufficient to consider the image of

f (z) when θ = 0.

First, consider the function f (z) with |α|= 1. Define

f0(z) =
z

z+1
, z ∈ D
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Let z = x+ iy, where x,y ∈ R, then,

Re( f0(z)) =
x2 + y2 + x

(1+ x)2 + y2
<

x2 + y2 + x
2(x2 + y2)+2x

=
1
2

Thus, the image of f0 is the complex half plane satisfying Re{ f0} < 1/2. Let

fθ be the rotations of f0, then the images of fθ are rotations of the image of f0.

Thus, the boundary of fθ is a straight line rotating clockwise along the boundary

of a circle with radius 1/2 as θ changes from 0 to 2π .

The following diagram shows the rotation of the boundary of fθ as θ

changes from 0 to 2π .

Figure 3.1 The boundary of fθ as θ variates from 0 to 2π .

Next, consider the function f (z) with |α|< 1. Let α = reiθ where |r|< 1,

then,

f (z) =
z

reiθ z+1
, z ∈ D.

Define

fr,0(z) =
z

rz+1
, r ∈ R and |r|< 1

Since fr,0 is a linear fractional transformation, then fr,0 maps circle to either

straight line or circle, and it maps boundary points of D to boundary points of
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fr,0 as well. Consider the boundary points of fr,0 ,

fr,0(1) =
1

r+1
, fr,0(−1) =

1
r−1

, fr,0(i) =
r

r2 +1
+

i
r2 +1

The coordinates of fr,0 corresponding to these boundary points are

(
1

r+1
,0
)

,

(
1

r−1
,0
)

,

(
r

r2 +1
,

1
r2 +1

)

respectively.

For r 6= 0, then fr,0 maps D onto an open disk with centre (x,y) and radius k,

then, (
1

r+1
− x
)2

+ y2 = k2

(
1

r−1
− x
)2

+ y2 = k2

(
r

r2 +1
− x
)2

+

(
1

r2 +1
− y
)2

= k2

Solving these equations give x = r/(r2− 1) , y = 0 and k = 1/(1− r2). There-

fore, the image of fr,0 is an open disk centered at (r/(r2− 1),0) with radius

k = 1/(1− r2).

Let fr,θ be the rotations of fr,0, then the images of fr,θ are rotations of fr,0.

Thus, the images of fr,θ are open disks with radius 1/(1− r2) with the centre

of these open disks rotating clockwise along the boundary of a circle of radius

r/(r2−1) as θ changes from 0 to 2π .

The following diagram shows part of the image of fr,θ .
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Figure 3.2 The boundary of fr,θ for |r|< 1 as θ variates from 0 to 2π .

Finally, consider

f (z) =
z

rz+1
, |r| ≤ 1 and z ∈ D

When r = 0, then f (z) = z , which is the identity mapping that maps D onto D.

As the value of r gradually increases from 0 to 1, the image of f (z) which is an

open disk will have its centre shifted from the origin to (r/(r2−1),0) while the

radius increases from 1 to 1/(1− r2). This gives an explanation as r gradually

increases from 0 to 1, the image of f (z) will slowly ”open up”. As r→ 1, then

we have

lim
r→1

f (z) =
z

z+1

Furthermore, concerning the centre and radius of the image of f (z), we have

lim
r→1

r
r2−1

=−∞ and lim
r→1

1
1− r2 = ∞

This shows that the boundary of the image of f (z) is a complex half plane. For

example, when r = 1, such straight line is Re( f (z)) = 1/2.
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Example 3.4.3. Consider the function

f (z) =
z

(z/5)+1

for z ∈ D. From f (z), we have r = 1/5 < 1. Thus, the image of f (z) is an open

disk. The radius and the centre of such open disk is given by

Radius =
1

1− (1/5)2 =
25
24

Centre =

(
(1/5)

(1/5)2−1
,0
)
=

(
−5
24

,0
)

Figure 3.3 The real part, u and imaginary part, v for f (z) = z
(z/5)+1 , for z ∈ D.

Figure 3.4 The image of f (z) = z
(z/5)+1 , for z ∈ D.
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CHAPTER 4

SOLUTIONS FOR A PARTICULAR FIRST ORDER DIFFERENTIAL

EQUATIONS IN UNIVALENT FUNCTIONS

In this chapter, we first introduce an equivalence relation and show that such

equivalence class is the complete solution for a particular first order non-linear

differential equation. Furthermore, the Schwarzian derivative is invariant with

respect to the equivalence relation introduced. Furthermore, we give examples

to show that the properties such as starlikeness and convexity of the equivalence

class are not preserved.

4.1 Starlikeness and convexity of equivalence class

Definition 4.1.1. Given a set A, an equivalence relation for the set A is a binary

relation ∼ satisfying three properties.

1. For every element a ∈ A, then a∼ a. (Reflexivity)

2. For every element a,b ∈ A, if a∼ b, then b∼ a. (Symmetry)

3. For every element a,b,c ∈ A, if a∼ b and b∼ c, then a∼ c. (Transitivity)

Definition 4.1.2. For f ∈ S, g is related to f , or g∼ f if

g = fω =
ω f

(ω− f )
for some ω /∈ f (U)

where U is an open set.

The next theorem show that the definition stated above is an equivalence

relation.

Theorem 4.1.3. The relation ”∼” is an equivalence relation in S.
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Proof We need to prove that ∼ is reflexive, symmetric and transitive. First, for

the reflexivity, consider

f =
ω f

ω− f
=

f
1− 1

ω
f

, ω /∈ f (D)

Since f (D) 6= C. therefore f ∼ f when ω tends to ∞. Thus, it is reflexive.

For the symmetry, if f ∼ g, then

f =
ωg

ω−g
, ω /∈ g(D)

g =
−ω f
−ω− f

Since g is well-defined, then −ω /∈ f (D). Thus, it is symmetric.

For the transitivity, if f ∼ g and g∼ h, then

f =
ω1g

ω1−g
and g =

ω2h
ω2−h

, ω1 /∈ g(D),ω2 /∈ h(D).

Then,

f =
ω1
(

ω2h
ω2−h

)
ω1−

(
ω2h

ω2−h

)
=

γh
γ−h

, where γ =
ω1ω2

ω1 +ω2

Since h is well defined, thus, γ /∈ h(D). Thus, it is transitive.

Therefore ”∼” is an equivalence relation in S. Q.E.D.

Let f = {g ∈ S : g∼ f} be the set of equivalence class containing f in S.

We give a simple example on the equivalence relation.

Example 4.1.4. The Koebe function k(z) = z(1− z)−2 is not equivalent to the

identity mapping f (z) = z on the unit disk D.
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Solution. Suppose that k(z)∼ f (z), then,

z

(1− z)2 =
ωz

ω− z

for some ω such that |ω| ≥ 1. Then,

ωz− z2 = ωz−2ωz2 +ωz3

z2[ωz− (2ω−1)] = 0

For z 6= 0, then we have

ωz− (2ω−1) = 0

z =
2ω−1

ω

Since

|2ω−1|− |ω| ≥ 2|ω|−1−|ω|

= |ω|−1≥ 0

and this gives |2ω−1| ≥ |ω|. Thus,

|z|= |2ω−1|
|ω|

≥ 1.

This is a contradiction since z ∈ D implies that |z| < 1. Therefore, k(z) is not

equivalent to f (z) and k(z) /∈ f .

Next, we give a example to prove that the starlikeness in the equivalence

class of a starlike function may not be preserved. Consider again the well-known

Koebe function

k(z) =
z

(1− z)2 , z ∈ D.
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From Example 3.2.7, we know that k(z) ∈ S∗. The equivalence class of k is

defined by

k =
{

g ∈ S : g =
ωk

ω− k
,ω ∈ R,ω ≤−1

4

}
Consider an element in k,

g(z) =
ωz

ω(1− z)2− z
for ω ≤−1

4

Therefore,

zg′(z)
g(z)

=
zω2(1− z2)

ω(1− z)2− z
2 .

ω(1− z)2− z
ωz

=
ω(1− z2)

ω(1− z)2− z

Let (zg′)/g = ωh, then h(z) = 1−z2

ω(1−z)2−z
. Since ω ≤ −1/4, then g ∈ S∗ if and

only if Re{h(z)}< 0. Let z = x+ iy, then,

h(z) =
1− (x+ iy)2

ω(1− x− iy)2− x− iy

=
(1− x2 + y2)− i(2xy)

ω[(1− x)2− y2]− x− i[2ωy(1− x)+ y]

and,

Re{h(z)}= Re

{
(1− x2 + y2)− i(2xy)

ω[(1− x)2− y2]− x− i[2ωy(1− x)+ y]

}

=
(1− x2 + y2)

{
ω[(1− x)2− y2]− x

}
+(2xy)[2ωy(1− x)+ y]{

ω[(1− x)2− y2]− x
}2

+[2ωy(1− x)+ y]2

Since the denominator must be greater than 0, then the problem relies on the

positivity of the numerator. Let ω =−1,x =−0.9 and y =−0.9, then the value

of the numerator of Re{h(z)} is 2.1824 which is greater than 0. This shows that

g /∈ S∗ since Re{zg′(z)/g(z)}< 0.
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Therefore, the functions in equivalence class of Koebe function are not all

starlike. Thus, starlikeness is not preserved under this equivalence relation.

Next, we consider the convexity of the equivalence class of a convex func-

tion. But first of all, we will look at an example where the convexity of the

equivalence class of a convex function is preserved.

Example 4.1.5. If f is a linear fractional transformation in S, then the equiva-

lence classes of f is convex.

Solution. From Theorem 3.4.1, if f is a linear fractional transformation in S,

then it is of the form

f (z) =
z

αz+1
, |α| ≤ 1

From Theorem 3.4.2, f (z) is a convex function. For g ∈ f , then,

g(z) =
ωz

(ωα−1)z+ω

Note that ω 6= 0 since ω /∈ f (D) and f (0) = 0. Thus, ω(ω)−0(ωα−1) = ω2 6=

0. Therefore, g(z) is a linear fractional transformation, and thus, g(z) is convex.

Therefore, convexity of equivalence classes of linear fractional transformation in

class S are preserved.

To conclude this section, we give an example to prove that the convexity of

the equivalence class of convex function may not be preserved.

Assume that f is the designated convex function, then the equivalence class

of f is

f =
{

g ∈ S : g =
ω f

ω− f
,ω /∈ f (D)

}
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From Theorem 3.2.3, g ∈ f is a convex function if

Re
{

zg′′(z)
g′(z)

+1
}
> 0.

Then, we have

Re
{

zg′′(z)
g′(z)

}
= Re

{
z.
[

ω2 f ′′

(ω− f )2 +
2ω2( f ′)2

(ω− f )3

]
.
(ω− f )2

ω2 f ′

}

= Re
{

z f ′′

f ′
+

2z f ′

ω− f

}

Therefore, g ∈C if

Re
{

zg′′(z)
g′(z)

+1
}
= Re

{
z f ′′

f ′
+

2z f ′

ω− f
+1
}
> 0

Next, consider the function p(z) = z+ z2/4 for z ∈ D. From Example

3.2.9, then p(z) ∈C. The equivalence class of p(z) is defined as

p =

{
q ∈ S : q =

ω p
ω− p

,ω /∈ p(D)
}
.

We wish to show that not all functions in p are convex.

Letting z = x+ iy, then

Re
{

zq′′

q′
+1
}
= Re

{
zp′′

p′
+1
}
+Re

{
2zp′

ω− p

}
= Re

{
z+1
1
2z+1

}
+Re

{
2z+ z2

ω− z− 1
4z2

}

=
(1+ x)(1+ 1

2x)+ 1
2y2

(1+ 1
2x)

2
+(1

2y)
2 +

(2x+ x2− y2)(ω− x− 1
4x2 + 1

4y2)− (2y+2xy)(y+ 1
2xy)

(ω− x− 1
4x2 + 1

4y2)
2
+(y+ 1

2xy)
2

Let ω = −3/4, we show that ω /∈ p(D). If ω ∈ p(D), then there exists z0 ∈ D

such that

−3
4
= z0 +

z2
0
4
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This gives z0 = −1 or z0 = −3, but since both values of z0 is not in D, thus

ω =−3/4 /∈ p(D).

Taking ω = −3/4,x = 0.9 and y = 0, then Re{zq′′/q′+1} = −0.0986.

Therefore, q(z) /∈ C because Re{zq′′/q′+1} < 0. Therefore, the equivalence

class of the convex function p(z) is not convex. Thus, convexity is not preserved

under this equivalence relation.

4.2 Complete solution for a particular first order ordinary differential

equation

In this section, we will only be interested in a particular first order ordinary

differential equation.

Recall that g ∼ f if and only if g = ω f/(ω − f ) where ω /∈ f (D) and the

equivalence class of f in S is defined by f = {g ∈ S : g∼ f}.

Theorem 4.2.1. For f ∈ S, consider the first-order ordinary differential equation

g′

g2 =
f ′

f 2

on the unit disk D, then f provides the complete solution in S.

Proof First, we show that if g ∈ f , then g is a solution to the ordinary differential

equation. Since g ∈ f , then

g = fω =
ω f

ω− f
, ω /∈ f (D)

(ω− f )g = ω f

Differentiating both sides, then

(ω− f )g′ = (ω +g) f ′
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Therefore,

(ω− f )g′ =
(

ω2

ω− f

)
f ′

g′ =

[
ω2

(ω− f )2

]
f ′.

f 2

f 2

g′

g2 =
f ′

f 2

Thus, g ∈ f is a solution to the ordinary differential equation.

Next, we show that if g is a solution to the ordinary differential equation in

S, then g ∈ f . We begin by considering

h =
f g

f −g

h′ =
f 2g′− f ′g2

( f −g)2

h′ = 0

since f 2g′ = f ′g2. Therefore, h(z) = ω , where ω is a constant. So,

f g
g− f

= ω

f g = ωg−ω f

g =
ω f

ω− f

Since g ∈ S, so g is well-defined. Therefore, ω − f (z) 6= 0 for all z ∈ D, thus,

ω /∈ f (D). This concludes the theorem. Q.E.D.

Next, some examples are given to demonstrate the application of the Theo-

rem 4.2.1.

Example 4.2.2. Consider the identity function f (z) = z in S.
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Then, consider the differential equation arises from f ,

g′

g2 =
1
z2

z2g′−g2 = 0

From Theorem 4.2.1, the complete solution set in S for the above differential

equation is

f =
{

ωz
ω− z

: |ω| ≥ 1
}

Example 4.2.3. Consider the Koebe function f (z) = z/(1− z)2 ∈ S. We have

f ′(z)

f (z)2 =
1− z2

z2

Thus, the differential equation becomes

z2g′+g2(z2−1) = 0

From Theorem 4.2.1,

f =

{
ωz

ω(1− z)2− z
: Re(ω)≤−1

4

}

will provide the complete solution set for the differential equation above.

Example 4.2.4. Consider the function f (z) = sin z in S. Then, consider the

differential equation arises from f below

(sin2z)g′− (cos z)g2 = 0

From Theorem 4.2.1, the complete solution for the differential equation above is

given by

f =
{

ω sin z
ω− sin2z

: ω /∈ sin z,z ∈ D
}
.
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4.3 The Schwarzian Derivative

Some of the analytic criterion for univalence have limited application as they

involve special properties such as starlikess and convexity. These conditions are

sufficient for univalence but far from necessary. However, Z. Nehari developed a

general criterion for univalence which involves the Schwarzian Derivative. This

is a very useful sufficient condition which is almost necessary in a certain sense.

Definition 4.3.1. The Schwarzian Derivative of a locally univalent analytic com-

plex function f is defined by

S( f ) =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

Schwarzian derivative is important primarily because it is invariance under

linear fractional transformation. The following theorem due to Z. Nehari pro-

vides a interesting criterion for univalence.

Theorem 4.3.2. Let f be analytic in D and suppose its Schwarzian derivative

satisfies

|S( f )| ≤ 2

(1−|z|2)2

Then f is univalent in D.

For the proof, please refer to ( Nehari, 1949 ).

We prove that Schwarzian Derivative are invariant with respect to the equiv-

alence relation defined in Section 4.1 to conclude this thesis.
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Theorem 4.3.3. The Schwarzian Derivative is invariant under the equivalence

relation ”∼”.

Proof For a given equivalence class arises from f ∈ S, and g ∈ f , to show that

g′′′

g′
− 3

2

(
g′′

g′

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

Since g ∈ f , then

g = fω =
ω f

ω− f
, ω /∈ f (D)

Then, by simple calculation,

g′ =
ω2 f ′

(ω− f )2 , and

g′′ =
ω2 f ′′

(ω− f )2 +
2(ω f ′)2

(ω− f )3 , and

g′′′ =
ω2 f ′′′

(ω− f )2 +
6ω2 f ′ f ′′

(ω− f )3 +
6ω2( f ′)3

(ω− f )4 .

Therefore,

g′′′

g′
− 3

2

(
g′′

g′

)2

=

[
ω2 f ′′′

(ω− f )2 +
6ω2 f ′ f ′′

(ω− f )3 +
6ω2( f ′)3

(ω− f )4

]
.
(ω− f )2

ω2 f ′

− 3
2

{[
ω2 f ′′

(ω− f )2 +
2(ω f ′)2

(ω− f )3

]
.
(ω− f )2

ω2 f ′

}2

=
f ′′′

f ′
+

6 f ′′

ω− f
+

6( f ′)2

(ω− f )2 −
3
2

(
f ′′

f ′
+

2 f ′

ω− f

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

The theorem is proved. Q.E.D.
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CONCLUSION

This thesis has developed an equivalence relation that is proven to be the

complete solution for a particular first order ordinary linear differential equation.

Furthermore, Schwarzian Derivative is invariant with respect to such equivalence

relation. However, many opportunities for extending the scope of this thesis

remain. Further research along this area may be as follows.

1. Extending first order ordinary differential equation to n-th order ordinary

differential equation, where n = 2,3,4 . . . .

2. Obtaining geometrical properties of each equivalence class in S.

3. As in Chapter 3, more explicit characterization on univalent functions

should be investigated.
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