

ONLINE TOOLS FOR ANALYZING METAGENOMICS DATA

BY

TAN KOK HOONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

JAN 2017

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: Online Tools For Analyzing Metagenomics Data

Academic Session: Jan 2017

 I TAN KOK HOONG

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

ONLINE TOOLS FOR ANALYZING METAGENOMICS DATA

BY

TAN KOK HOONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

JAN 2017

ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “ONLINE TOOLS FOR ANALYZING

METAGENOMICS DATA” is my own work except as cited in the references. The report has

not been accepted for any degree and is not being submitted concurrently in candidature for

any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

iii

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere thanks to my supervisor, Dr. Ng

Yen Kaow. He is such a good lecturer and always showing us his patient. It is my

honour to engage in bioinformatics, which is quite unfamiliar to me. He always guides

us, educates us and provide us the materials needed to make my life easier.

Besides, I would like to thank to Chen Jia Xing, a PhD student from City

University of Hong Kong. She taught me from scratch and showed her patient and

enthusiasm. She explained everything to me step by step to make sure I am understood.

Finally, I must say thanks to my parents and my family for their love, support

and continuous encouragement throughout the course.

iv

ABSTRACT

This project developed four tools for studying metagenomics data. These four

modules will become part of an online platform created by researchers from the City

University of Hong Kong for metagenomics use.

The first tool constructed regulatory network module using the CDBN

algorithm proposed by (Zhang, Ng & Li 2015). The algorithm constructed a directed

biological network from gene expression data. The second tool implemented TIGRESS,

another popular method for the inference of biological network. The third tool in this

project was a tool for inferring biomarker that was based on the DNB method

introduced by (Liu et al. 2012). The fourth and final tool was meant for imputation. The

tool aimed to allow users to recover missing values in an abundance matrix.

As these four modules meant for the analysis of very massive data sets, their

performance was important. In order to speed-up these tools, the Intel Threading

Building Blocks (TBB) was used, a library that facilitated the distribution of processes

to CPUs.

v

TABLE OF CONTENTS

TITLE i

DECLARATION OF ORIGINALITY ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS x

CHAPTER 1: INTRODUCTION 1

1.1 Motivation and Problem Statement 1

1.2 Project Scope 3

1.3 Objectives 4

1.4 Impact, significance and contribution 5

1.5 Background information 6

CHAPTER 2: LITERATURE REVIEW 7

2.1 Reviewed Papers 7

2.1.1 Reconstructing Directed Gene Regulatory Network Only 7

 Gene Expression Data

2.1.2 ARACNE: An Algorithm for the Reconstruction of Gene 8

 Regulatory Networks in a Mammalian Cellular Context

2.1.3 TIGRESS: Trustful Inference of Gene REgulation using 9

 Stability Selection

2.1.4 Identifying critical transitions and their leading

 biomolecular networks in complex diseases 10

 2.2 Critical Remarks 11

vi

CHAPTER 3: PROPOSED METHOD / APPROACH 13

3.1 Design Specification 13

3.1.1 Methodologies and General Work Procedures 13

3.1.2 Technologies Used 14

3.1.3 System Performance Definition 14

3.1.4 Verification Plan 14

 3.2 System Design 15

 3.2.1 Constructing Directed Network Module by Using CBDN 15

 3.2.2 Biological Network Inference by Using TIGRESS 20

 3.2.3 Inferring Biomarker Module 24

 3.2.4 Imputation 27

 3.3 Implementation Issues and Challenges 30

 3.4 Timelines 31

CHAPTER 4: EXPERIMENTAL RESULT 33

 4. 1 Constructing Directed Network Module by Using CBDN 33

 4.2 Biological Network Inference by Using TIGRESS 35

 4.3 Inferring Biomarker Module 37

 4.4 Imputation 39

CHAPTER 5: CONCLUSION 42

REFERENCE 43

APPENDIX A Online Platform Introduction A-1

APPENDIX B Source Code B-1

 B-1 Constructing Directed Network Module by Using

 CBDN (Source Code) B-1

 B-2 Constructing Directed Network Module by Using

 CBDN (Source Code) B-4

 B-3 Inferring Biomarker Module (Source Code) B-15

B-4 Imputation (Source Code) B-32

vii

LIST OF TABLES

Table Number Title Page

Table 2.2.1 Comparison of 3 algorithms 12

Table 4.1.1 Top 10 of important regulators 34

Table 4.3.1 Composite index of all potential dominant groups 38

Table 4.4.1 Imputation values before and after 41

viii

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1.1 Algorithm flow of CBDN 7

Figure 2.1.2.1 Algorithm flow of ARACNE 8

Figure 2..1.3.1 Algorithm flow of TRIGRESS 9

Figure 2.1.4.1 Disease Progression 10

Figure 2.1.4.2 Algorithm flow of DNB 10

Figure 3.1.1.1 Project Methodology 13

Figure 3.2.1.1 Directed Network 16

Figure 3.2.1.2 Influence values matrix 17

Figure 3.2.1.3 Two-gene cyclic interaction 17

Figure 3.2.1.4 Influence values matrix – after removing two-gene

cyclic interactions

18

Figure 3.2.1.5 Influence values matrix – Final output 18

Figure 3.2.1.6 Regulatory Network 19

Figure 3.2.2.1 Gene expression data (left) and transcription factors

(right)

21

Figure 3.2.2.2 Target gene expression values (left) and transcription

factors expression values (right)

21

Figure 3.2.2.3 Separation of data 22

Figure 3.2.2.4 Frequency matrix for a gene 22

Figure 3.2.2.4 Frequency cube 23

Figure 3.2.3.1 Algorithm flow of DNB

Figure 3.2.3.2 Correlation matrix before and after process 25

Figure 3.2.3.3 Composite index graph of a candidate group 16

ix

Figure 3.2.4.1 Imputation process 28

Figure 3.2.4.2 Network constructed on control group 28

Figure 3.4.1 Project timeline (Text) 31

Figure 3.4.2 Project timeline (Diagram) 32

Figure 4.1.1 Human gut microbiome network 33

Figure 4.2.1 Biological network constructed by TIGRESS 35

Figure 4.2.2 In silico data network constructed by TIGRESS 36

Figure 4.3.1 Composite index of the first potential group 38

Figure 4.4.1 Biological network of the first 50 bacteria 39

Figure 4.4.2 First degree neighbours of gene 15 40

Figure 4.4.3 First degree neighbours of gene 33 40

Figure A.1 Main page of the online platform A-1

Figure A.2 Visualizations that provided by the online platform A-2

Figure A.3 Modules that provided by the online platform A-3

Figure A.4 Gene DB of the online platform A-4

Figure A.5 Delta team of the online platform A-5

x

LIST OF ABBREVIATIONS

NGS Next-generation Sequencing

ARACNE Algorithm for Reconstruction of Accurate Cellular Networks

CBDN Context Based Dependency Network

DPI Data Processing Inequality

DDPI Directed Data Processing Inequality

DNB Dynamic Network Biomarker

GCC GNU Compiler Collection

GRN Gene Regulatory Network

LARS Least Angle Regression

MI Mutual Information

PCCs Pearson’s Correlation Coefficients

PPL Parallel Pattern Library

TBB Thread Building Block

TF Transcription Factor

TG Target Gene

TIGRESS Trustful Inference of Gene REgulation using Stability Selection

PEP Proteomics Expansion Pipeline

CPM Clique Percolation Method

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 1

1.1 Motivation and Problem Statement

The general availability of Next-generation Sequencing (NGS) technology in

the past decade has brought forth many advances in genomics. In particular, NGS

techniques have been successfully applied to large-scale mixtures of unbiased genetic

material, thus encouraging the analysis of whole-community of organisms in one single

study, or metagenomics.

In this final year project, we were collaborating with City University of Hong

Kong to come up a comprehensive platform for researchers to analyse metagenomics

data. The platform would be made available to researchers as an online website. At

present, this project had been involved with four modules of the website. Two of these

were for constructing biological networks, one of these for inferring biomarkers, and

the remaining one was for performing imputation on incomplete data.

A biological network was a network which models biological units such as

genes as vertices, and the interactions or relationship of these units as edges. The

properties of such networks, such as their topology, helped biologists to make important

discoveries concerning the modelled biological units. Early studies of biological

networks were largely concerned with the interactions of the proteins produced by the

genes of a single species. However, scientists had realized the importance of the human

microbiota in shaping our health, which had led to an urgency to study the

metagenomics of microbial communities. One way to do so was to construct biological

networks out of the collective genes of the microbial species within a community, with

the hope of understanding how the community interacts.

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 2

While software for the construction of such biological networks as well as for

the biomarker discovery existed, they worked relatively slowly and inefficiently, due

to the enormous volume of data involved in metagenomics. The current system also

suffered from the inflexibility of being written in R and other language, and hence

confined to the environment of that framework. My involvement in this project was to

consider methods to speed-up the software, as well as to re-implement the software so

that it was not constrained by the R framework and other platform.

Our target online platform was expected to be able to efficiently construct a

network from metagenomics data automatically. The platform would incorporate recent

advances which would also allow the automatic inference of the direction of the edges

in the network. Users of the platform were expected to be researchers in fields such as

ecology as well as the life sciences. The study of these biological networks was

expected to assist the study of microbial community, including the human microbiota.

In particular, we hoped that through a better understanding of the human microbiota,

we could derive more hints on healthy living, or even bring forth better medicines. For

more information about the online platform, please see Appendix A.

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 3

1.2 Project Scope

 At the end of the project, we delivered four software modules for the online

platform, namely, two modules for network construction, one for biomarker discovery,

and one for imputation. Together with the other modules, the platform provided

researchers a complete software suite for analysing metagenomics data.

 Our first and second module constructed biological networks from

metagenomics data to model the interspecies interactions in its microbial community.

This project rewrited the existing modules for the same purpose, which suffered from

efficiency issues as well as being confined to the R framework and Matlab. We were

expected to identify the bottleneck in its computation and rewrited the relevant codes

to speed-up its process of network construction.

 Besides, we delivered a module for inferring biomarkers. This project involved

an enhanced algorithm for biomarker inference, as the current software was only

applicable on gene expression data instead of our input of metagenomics data. This

implied that a significant amount of rewrite was needed to develop the module.

 The last module for this project was meant for the task of imputation that was

the rescue or recovery of missing values. This module combined a few algorithms to

recover the missing values in abundance matrix. The module made use of a case and

control abundance matrix as input in order to evaluate the missing values.

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 4

1.3 Project Objectives

Metagenomics study was currently difficult due to the lack of a good collection

of software for its analysis. Many current softwares had different requirement for input,

and typically lacked of documentation on how the software should work. This

predicament was further exacerbated by the fact that many studies in metagenomics

required a series of analyses which involved different tools from multiple parties.

The ultimate aim of this project was to provide a convenient online platform for

the analysis of metagenomics data. The full platform was to facilitate an entire research

workflow, from input processing to result interpretation. This final year project would

be concerned with only four aspects of the platform. For more information about the

platform, please refer to Appendix A.

 An important task in metagenomics was the construction of biological

regulatory network from metagenomics data (the first and second module in this

project). Such networks allowed researchers in the field to infer the interaction and

relationship of genes in microbial species.

The detection of biomarkers (the third module in this project) was another

important task in metagenomics, since they would allow effective identification of the

species within a sample.

The last module of this project was for recovering the missing values in an

abundance matrix. This was achieved through imputation, the forth module of this

project.

Codes for performing some of these modules may already exist in some form.

However, these codes were unusable in the online platform due to programming

language incompatibility, or they may suffer from performance issues. Their uses in the

online platform may also be restricted due to the software licenses that they were

released in. In order to make our modules available and open for all, this project re-

developed them in an open source platform and on open source programming

languages.

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 5

1.4 Impact, significance and contribution

This project was a collaboration with the City University of Hong Kong, which

would lead to the creation of a platform for researchers to carry out a series of analysis

on metagenomics data. The platform strived to provide researchers to a convenient, all-

in-one environment for metagenomics analyse. The platform provided researchers with

the computing power required for their analyses, which would help them save cost.

First, constructing regulatory network on metagenomics data would help

scientists interpret the interactions, or the relationships between the genes of the

microbial species, in order to answer important scientific questions, such as: Does a

specific gene influence another gene? Or, which genes have the highest influences on

a specific gene? A typical research setup to answer such questions, would require the

construction of a regulatory network for bacteria to study the interaction between

bacteria. Through the network, scientists could figure out what was the bacteria that

causes people to fall ill to certain diseases. The discoveries gleamed could then help

medical practitioners devise medical procedures or cures for the disease.

If a specific interaction of microbial species is sufficiently significant, for

example, if they precedes or describes a specific medical condition, researchers may

want to find biomarkers. This would allow medical practitioners to identify early

warning signs for the diseases and be able to treat the disease in its early stage.

Missing values recovery in the metagenomics data would help research to

obtain more accurate and precise analysis outcome. Throughout the sampling data

process, samples may be affected by various external factors and this may influence the

data collected. Researchers were often at a lost in these situations since they may not

have prior knowledge about what was going on. In the end, their analysis may ended

up with inaccurate and imprecise output, causing them to miss important discoveries.

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 6

1.5 Background information

Microbe (microscopic organism) is a very tiny organism that can only be seen

under microscope. Microbe is a general term used to group several tiny organisms such

as bacteria, viruses and so on (Genetic Science Learning Center 2014). When different

types of microbes live and interact with each other in an environment, we call that

microbial community.

Such communities are ubiquitous in nature, for example, in water, in soil, and

most significantly, in the human body. The microbiota, a microbial community in the

human body, has been found to contribute immensely to human health. This realization

has spurred scientists to study the interaction and relationship among microbes in

microbial communities. One way to study this is to construct a network structure based

on metagenomics data collected from an environment sample.

Metagenomics is an emerging discipline which performs direct genetic analysis

on the genomes in the microbial communities collected from the environment. Before

emergence of metagenomics, microbes can only be studied through process of

cultivation in laboratory (The Common Fund, n.d.). Due to presence of metagenomics,

study of microbes can be easier than traditional approach. Metagenomics is a robust

biological technique that does not need to go through the process of cultivation. By

analysing metagenomics data, we may infer a biological network to examine the

microbes’ behaviour and interaction.

There has been many studies on various kind of networks for genes, diseases,

symptoms, and so on. For instance, (Zyga 2014) constructed a diseases-symptoms

network to study the relationship between symptoms and diseases. Based on the

network, scientists were able to have a clearer picture of the interactions among them.

In order to retrieve more information from metagenomics data, biomarker can

be inferred from the data. Biomarker is a biological sign or medical indicator for

biological processes and state (Strimbu & Tavel 2010). For instance, biomarker can be

used to predict risk of getting diseases, used to monitor and diagnose diseases and so

on (Mayeux 2004).

CHAPTER 2: LITERATURE REVIEWS

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 7

2.1 Reviewed Papers

2.1.1 Reconstructing Directed Gene Regulatory Network by Only Gene

Expression Data

In this paper, the authors proposed a novel method, called as Context Based

Dependency Network (CBDN) to infer the Gene Regulatory Network (GRN). This

algorithm was proposed to construct the directed network with only gene expression

data only, which mean it did not need any other additional information to infer GRN.

There are many methods were trying to compute the network by using

correlation to infer the dependency of genes but those methods did not eliminate

transitive interactions. However, there were few other methods were trying to fix the

problem above but they did not consider of the edge direction.

In order to solve the problems, CBDN was introduced. Basically, this method

could get rid of transitive interaction at the same time it could infer the edges’ direction

in the network. Besides, this method used only gene expression data, whereas other old

methods were using gene expression data and other additional information. In this case,

CBDN can be used to construct a directed network with minimal information. This

approach also can be used to identify the important regulators.

In the other hand, this method may difficult to differentiate the interaction

whether it is directed or transitive when the covariance is too large or too small, but it

worked very well on medium covariance.

This methods had 3 steps to infer directed network. First of all, the influence

value of each gene to another gene will be computed through Partial Correlation

Network (PCN) then followed by removal of transitive interactions. Lastly, the total

influence value of each gene will be calculated and ranked in order to get important

regulators.

Figure 2.1.1.1: Algorithm flow of CBDN

Compute
influence of
each gene to

another by PCN

Remove
transitive

interaction

Calculate total
influence value
of each gen to
all other gene

Rank the total
influence value

to find
important
regulator

CHAPTER 2: LITERATURE REVIEWS

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 8

2.1.2 ARACNE: An Algorithm for the Reconstruction of Gene Regulatory

Networks in a Mammalian Cellular Context

In this paper, authors proposed a new algorithm that reconstruct Gene

Regulatory Network (GRN) through Mutual Information (MI). The interaction between

genes was identified by dependency value which could be calculated by using Mutual

information approach. The method was known as Algorithm for the Reconstruction of

Accurate Cellular Networks (ARACNE), it inferred transcriptional network by using

information theoretic algorithm.

After that, transitive interactions would be included in the result and caused

noises. In order to get rid of them, authors suggested to use Data Process Inequality

(DPI) to filter the result. Basically those weak interaction gene pairs would be

eliminated from the result.

The proposed method was estimating MI ranking by using Gaussian Kernel

estimator instead of absolute MI because absolute MI was high sensitive to selection of

Gaussian Kernel Width. DPI filtered the interactions by using appropriate MI threshold

which calculated for a specific p-value in null hypothesis.

Figure 2.1.2.1: Algorithm flow of ARACNE

Identify interactions
by estimating MI of

the gene pairs

Filter weak interaction
by using DPI

CHAPTER 2: LITERATURE REVIEWS

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 9

2.1.3 TIGRESS: Trustful Inference of Gene REgulation using Stability Selection

This paper, the proposed method was a feature selection method that using least

angle regression (LARS) combined with stability selection to select target genes (TG)

for transcription factor (TF). The method known as TIGRESS, treated gene regulatory

network (GRN) inference as feature selection problems.

First, they considered GRN inference as a problem and divided the problem into

sub-problems as many as TGs. Each sub-problem was taking a TG to find its TF. In

order to find TF, each TG was calculated its score to all elements in the subset of TF

with stability selection on top of LARS. Stability selection is a procedure that run a

feature selection method multiple times on random data and evaluate the score of each

feature. Using stability selection on top of LARS instead of using LARS directly is

because using LARS is very sensitive and unstable when different variables had a very

high correlations.

Once all the scores are computed, the scores would be ranked and applied

threshold on them to get rid of unimportant interactions.

Figure 2.1.3.1: Algorithm flow of TIGRESS

Score interactions
with stability

selection
Rank the scores

Apply threshold to
get rid of

unimportant
interactions

CHAPTER 2: LITERATURE REVIEWS

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 10

2.1.4 Identifying critical transitions and their leading biomolecular networks in

complex diseases

In disease progression, there are 3 states to categorize the disease state which

are normal state, pre-disease state and disease state. Figure 2.1.4.1 below explained

each stage in disease progression.

Figure 2.1.4.1: Disease progression

 This paper’s aim was to detect pre-disease state to prevent deterioration of the

disease. However, it was very difficult to detect the state because it had a very little

change compare to normal state. Therefore, it was easy not to notice the changes of the

disease.

This paper proposed a method to detect pre-disease state dynamically, called as

Dynamical Network Biomarker (DNB). It acted like an early warning indicator to give

out a sign when the disease is in pre-disease state. Figure 2.1.4.2 is the algorithm flow

of the paper.

Figure 2.1.4.2: Algorithm flow of DNB

Normal
State

•Disease in stable state and under control.

Pre-disease
State

•The end of the normal state.

•It is not stable.

•Possible to return to normal state

Disease
State

•Deteriorated stage and very difficult to recover to normal state.

Choose differential
expression genes

Cluster genes at each
sampling time

Determine dominant
group of DNB

CHAPTER 2: LITERATURE REVIEWS

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 11

2.2 Critical Remarks

ARANCE is a method that compute dependency between transcription factor

and target gene through Mutual Information (MI) from information theory. MI actually

is a measurement of mutual dependency of triplet that use to determine how much the

information held by one gene to another gene in the triplet. ARANCE uses this

approach to evaluate the dependency of genes in gene expression data. Due to the used

of MI, this method is suitable to use when the gene-gene relationships are nonlinear and

irregular (Taylor, RC et al. 2008). MI does not make any assumption to the interaction

between genes. In fact, MI can infer some interactions that may not find by Pearson’s

correlation. ARANCE method can get rid of transitive or indirect interactions by

applying MI threshold. Although this method can get rid of unnecessary interactions

but it cannot infer directionality of the directed interaction. In fact, it requires additional

information which is not always available to us.

 CBDN is a robust method that can infer a regulatory network from gene

expression data only without any additional information. In order to infer a regulatory

network, CBDN infer directionality of the edges by considering the influence value of

the nodes and removing redundant interactions. CBDN uses Partial Correlation

Network (PCN) to calculate dependency of each gene to another with the influence of

third variables. However, the result will include transitive interactions. Therefore, a

post-processing step is required to eliminate those interactions. Therefore, Directed

Data Processing Inequality (DDPI) is introduced to remove transitive interactions.

DDPI actually is modified from DPI from ARACNE method. With regulatory network,

we can determine important regulators from the network without any additional

information such as single nucleotide polymorphism data.

CHAPTER 2: LITERATURE REVIEWS

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 12

A new scoring function is introduced by TIGRESS to evaluate the dependency

between genes. It uses linear regression based approach which is Least Angle

Regression (LARS) with Stability Selection. Because of using LARS, this method can

apply on high dimensional data. This method will not include any redundant

interactions. It is easier to separate indirect interactions from the network compared to

CBDN and ARANCE. Due to sensitivity of LARS, Stability Selection is used on top

of LARS to reduce its sensitivity toward the value of parameters. However, the value

of the parameters will affect the performance of this method.

By comparing among this 3 algorithms, only CBDN can infer a causal and

directed regulatory network with the minimal information needed. Normally these

additional information is not that easy to collect and always not available to us.

Inference of regulatory network could let researchers to retrieve more information from

the network such as regulators compare to directed network only. CBDN and TIGRESS

do assume the interactions between genes are linear and regular whereas ARANCE is

not. ARANCE is a MI based approach, in fact any assumptions about the distribution

of genes are not require (Taylor et al. 2008).

CBDN ARANCE TIGRESS

Scoring Feature Partial Correlation

Network

Mutual Information Least Angle

Regression with

Stability Selection

Transitive Inclusion Yes Yes No

Removal Transitive

Interaction

Yes Yes -

Edge Directionality Yes No No

Required Additional

Information

No Yes Yes

Table 2.2.1: Comparison of 3 algorithms

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 13

3.1 Design Specifications

3.1.1 Methodologies and General Work Procedures

Figure 3.1.1.1: Project methodology

In this project, we used a simple waterfall approach to carry out the task. First,

we would like to review the algorithm for constructing directed network and inferring

biomarker. After reviewing the modules, we would like to implement the proposed

solution on this four modules. After that, we would verify correctness of the outcome

by testing on the dataset. However, our testing will be carried out on a server provided

by City University of Hong Kong as their server has high processing power. As the data

is huge and massive, basically it would take a few days or weeks to analyse the data.

Once we successfully test out the correctness of the modules, we would proceed to

documentation.

Reviewing the
algorithm

Design and
implement

proposed solution

Testing

Documentation

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 14

3.1.2 Technologies Used

1. Microsoft Visual Studio 2013 – Used to program modules.

2. C++ Language – Modules are written in C++ Language.

3. puTTY – Used to access the server provided by City University of Hong

Kong.

3.1.3 System Performance Definition

1. Having a high processing speed.

2. Can produce accurate result.

3. Can be used in terminal, without any help of IDEs.

3.1.4 Verification Plan

 All the metagenomics data would be retrieved from EBI Metagenomics. The

modules would use small data set as input to verify the correctness. So that time taken

to complete the process would not be too lengthy. Once the output was accurate and

correct, we would like to use a complete dataset to carry out modules verification.

https://www.ebi.ac.uk/metagenomics/projects/SRP008047

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 15

3.2 System Design

3.2.1 Constructing Directed Network Module by Using CBDN

In this module, Context Based Dependency Network (CBDN) which was

introduced by (Zhang, Ng & Li 2015) was used to construct the metagenomics network.

The proposed solution had 3 stages. The first stage determined edge direction by

computing the influence value of each gene. When comparing influence value between

two genes, the largest influence value would be selected as the parent of another gene.

In order to calculate the influence value of a node Xj which lied between Xi to Xk, the

differences between correlation and partial correlation was computed based on the

equation below:

𝑑(𝑋𝑖, 𝑋𝑘|𝑋𝑗) = 𝐶𝑜𝑟𝑟(𝑋𝑖 , 𝑋𝑘) − 𝑃𝐶(𝑋𝑖, 𝑋𝑘|𝑋𝑗)

 Before that, we should calculate the partial correlation by using the equation

provided.

𝑃𝐶(𝑋𝑖, 𝑋𝑘|𝑋𝑗) =
𝐶𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑘) − 𝐶𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑗)𝐶𝑜𝑟𝑟(𝑋𝑘, 𝑋𝑗)

√[1 − 𝐶𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑗)
2

] [1 − 𝐶𝑜𝑟𝑟(𝑋𝑘, 𝑋𝑗)
2

]

Then the influence of Xj to Xi was the average of difference between

correlations between partial correlations.

𝐷(𝑋𝑗 → 𝑋𝑖) =
1

𝑛 − 1
∑|𝑑(𝑋𝑖, 𝑋𝑘|𝑋𝑗)|

𝑛−1

𝑘≠𝑗

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 16

After Step 1, we had successfully identified which nodes were the parents of

another nodes, but there was no stated how many intermediaries were there, there may

be one node in between the nodes. For example, suppose X is parent of Z, but there is

an intermediary Y in between. In this case, we would like to know whether X directly

influences Z or not. The figure below shown an example of this kind relationship. A

properly constructed network should have this kind of transitive relationships removed.

This was performed in the second step.

Figure 3.2.1.1: Directed network

 In the second step, directed data processing inequality (DDPI) was used to

remove the transitive relationships from the network. In order to remove transitive

interaction, we found out the differences between directed interaction and transitive

interaction, and determined whether the difference was larger than the threshold.

 For the last step, each of the gene calculated their total influence value and ranked

among themselves. The genes which had higher ranking were important regulators of the

network.

X

Y A

Z

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 17

For a better understanding on how the module was developed, the figure below

was an example of an output that had gone through step 1, that was, the calculation of

influence values. Assuming that there were five genes, a 5 x 5 matrix was created to

keep the influence values. Each row and column represented gene whereas the cell

indicated the influence value. The influence value of diagonal cells all would be set to

zero because CBDN assumed that a gene cannot influence itself.

Figure 3.2.1.2: Influence values matrix

CBDN also assumed that there was no two-gene cyclic interaction. Therefore,

we should remove the interaction that has the smallest value. For instance, in the case

where 𝐴 → 𝐵 and 𝐵 → 𝐴 , with influence values 1 and 2 respectively, we would

remove 𝐴 → 𝐵 as it had the smallest value, 1.

Figure 3.2.1.3: Two-gene cyclic interaction

 A B C D E

A 0 1 4 7 4

B 2 0 5 6 3

C 7 2 0 9 3

D 6 8 4 0 1

E 8 7 2 5 0

A B

1

2

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 18

Figure 3.2.1.4: Influence values matrix – after removing two-gene cyclic

interaction

The matrix obtained provides information of parent-children relationship but it

did not show any directed interaction, for example, gene B was the parent of gene A

and gene C. In order to obtain directionality of genes, each gene could have only one

incoming edge but multiple outgoing edges. Therefore, only the largest value in each

column was retained whereas the rest were removed.

Figure 3.2.1.5: Influence values matrix – Final output

 A B C D E

A 0 0 0 7 0

B 2 0 5 0 0

C 7 0 0 9 3

D 0 8 0 0 0

E 8 7 0 5 0

 A B C D E

A 0 0 0 0 0

B 0 0 5 0 0

C 0 0 0 9 3

D 0 8 0 0 0

E 8 0 0 0 0

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 19

The final matrix was then used as input to construct a network graph as shown

in the Figure 3.2.1.6. Important regulators could be found by summing up the influence

values of each gene and ranking them. Based on the final output, gene C was the most

important regulator as it had the highest total influence value compared to other genes.

Figure 3.2.1.6: Regulatory Network

A

E D

C

B

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 20

3.2.2 Biological Network Inference by Using TIGRESS

As an alternative to the CBDN, our online platform also provided the TIGRESS

algorithm, proposed by Haury et al. (2012), to infer biological network. Instead of

calculating mutual information or correlation between genes, TIGRESS used a feature

selection method to score the interactions. The feature selection method used in this

algorithm was the combination of least angle regression (LARS) and stability selection.

The method ran the least angle regression for multiple times on random data and

calculated the number of times each gene was selected.

In order to reduce the sensitivity of score when choosing number of times to run

LARS, area under each curve was calculated instead of basic score. Belo was the

formula to calculate the area score:

𝑠𝑎𝑟𝑒𝑎(𝑡, 𝑔) =
1

𝐿
∑ 𝐹(𝑔, 𝑡, 𝑙)

𝐿

𝑙=1

The variable t was the element of the transcription factors (TFs) whereas g was

the element of G, target genes. TIGRESS ran L LARS steps and 𝐹(𝑔, 𝑡, 𝑙) was the

frequency matrix from stability selection.

 After scoring all the interactions, the interactions would be ranked in descending

order (from highest score to lower score) and the interactions that were not significant

(falling below a predefined cut-off value) would be removed.

 Unlike the first module, this module required 2 input matrices which were gene

expression data and transcription factors list, examples were shown in the figures

below.

.

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 21

Figure 3.2.2.1 Gene expression data (left) and transcription factors (right)

Each row of the gene expression data represented an experiment or sample

whereas each column represented a single gene. The transcription factors list kept the

indices. There were five genes in the example above. The transcription factors were

subset of this five genes.

In order to score each gene, we looped through every single gene (column). If

the target gene (TG) was a transcription factor, the particular transcription factor (TF)

would be removed from the transcription factor list. The target gene and transcription

factors expression values would be abstracted from the expression data to perform

stability selection.

Figure 3.2.2.2 Target gene expression values (left) and transcription factors

expression values (right)

1 2 46 5 12

12 6 38 32 3

23 25 2 58 21

44 3 8 4 99

55 11 4 67 3

12 41 1 3 8

1 2 3

2

6

25

3

11

41

5 12

32 3

58 21

4 99

67 3

3 8

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 22

 The module would perform stability selection once the expression values of TG

and TFs were ready. First, the module performed R times LARS on the data and each

time the expression values would be randomly reweighted based on the alpha value.

After that, the module would randomly separate the data into two equal or

approximately equal size to run L LARS steps.

Figure 3.2.2.3 Separation of data

After running R times LARS, we would have a frequency matrix that kept the

number of times each TF is selected for in each L steps of LARS. For the situation

above, assuming that L=3 and R=500, then we will have a 3 x 3 matrix. Each row

represented L steps of LARS and each column represented the TFs. The column for the

removed TF would be filled with zero to indicate that they were selected zero time in

each L steps LARS.

0 0 100

0 250 100

0 500 500

Figure 3.2.2.4 Frequency matrix for a gene

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 23

 The frequency matrix above was only for a gene. The same frequency matrix

was repeated for every genes. There were five genes in the given initial example, which

would give rise to a 3 x 3 x 5 cube. At the end of the computation, a cube was obtained

which stored the score for each gene-gene interaction.

Figure 3.2.2.4 Frequency cube

Number of genes

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 24

3.2.3 Inferring Biomarker Module

In this module, we would like to use the algorithm proposed by (Liu et al. 2012)

which was Dynamic Network Biomarker (DNB) to infer biomarker. In order to infer

biomarker, our dataset must in the time series format which meant at each of the

sampling point data would be collected.

At each sampling point, we would analysed the data collected. At very first step,

we would like to cluster the variables which is genes based on their correlation. Then,

the following process was carried out on cluster-by-cluster bias. Each cluster we would

like to compute their average Pearson’s correlation coefficients (PCCs), average PCCs

value between candidate group and others and average standard deviation value of the

elements in the group. These values would be compared with previous sampling point.

However, if they fulfiled all 3 criteria below then the particular cluster would be

considered as biomarker.

Criteria for DNB:

1. PCCs value drastically increase in absolute value.

2. Average PCCs value of the cluster and any other cluster drastically decrease

in absolute value.

3. Average standard deviation of the elements in the group drastically increase.

When all this criteria were put in together then the equation below was formed and we

called it as composite index, I.

𝐼 =:
𝑆𝐷𝑑× × 𝑃𝐶𝐶𝑑

𝑃𝐶𝐶𝑜

Figure 3.2.3.1: Algorithm flow of DNB

Choose differential
expression genes

Cluster genes at each
sampling time

Determine dominant
group of DNB

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 25

In this module, two types of abundance matrices, namely, case abundance

matrix and control abundance matrix, were needed. The case abundance matrix refered

to the dataset that was collected from unhealthy patients whereas the control abundance

matrix refered to the dataset collected from normal, healthy patients. Both matrices

would be classified into time series format.

For the first step, at each sampling point we would choose the genes that show

significant changes between case and control group by using student-t test with a critical

value of 0.05. False Discovery Rate (FDR) and 2-fold change would be applied to

increase the accuracy. For each sampling point, we would have a list of differential

expression genes.

After that, the genes in each sampling point were clustered. In this module, a

hierarchical clustering method with correlation as distance was used for the clustering.

An N  N correlation matrix was computed, where N was the number of differential

expression genes in a sampling point. The matrix was pre-processed prior to the

clustering. The upper triangle of the matrix and diagonal cells would be set to null as

shown in the figure below. A user-controlled cut-off value was defined in order to stop

the clustering when a certain number of clusters was obtained.

0 0.01 0.67 0.46 0.36

0.01 0 0.54 0.42 0.11

0.67 0.54 0 0.32 0.43

0.46 0.42 0.32 0 0.85

0.36 0.11 0.43 0.85 0

 Figure 3.2.3.1: Correlation matrix before and after process

Null Null Null Null Null

0.01 Null Null Null Null

0.67 0.54 Null Null Null

0.46 0.42 0.32 Null Null

0.36 0.11 0.43 0.85 Null

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 26

 All the clusters found throughout the entire timeline were used as candidates for

the biomarkers. To find the biomarkers, an index was computed for each candidate

group. If the candidate group fulfilled the criteria mentioned in previous part, the

particular group would be the dominant group and the sampling point or time period

was in pre-disease state.

 For each candidate group, we would calculate its indices throughout the entire

timeline and compare each of them. If the indices at particular period was higher than

previous period and coming period, the particular period was what we are looking for

and the candidate group would be our dominant group. The figure below showing the

composite index found for a candidate group. The particular candidate group was

potential dominant group because it had significant change at period 3 as the composite

index of period 3 was higher than period 2 and period 4.

 Figure 3.2.3.2: Composite index graph of a candidate group

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Period 1 Period 2 Period 3 Period 4 Period 5

Composite Index

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 27

3.2.4 Imputation

In this module, we integrated several algorithms to recover the missing values.

Two abundance matrices were required as input for the module which were case

abundance matrix and control abundance matrix, the input format which was exactly

same as module 3 (Inferring Biomarker). We adopted the steps in PEP which was

introduced by Goh et al. (2011). First, a network would be constructed on control

abundance matrix. In order to construct the biological network, we integrated module

1 (CBDN) into this module to infer a network.

Next, differentially expressed bacteria would be detected and considered as

seeds. Each of the seed indicated that there were missing values in the samples. In order

to find differentially expressed bacteria, we implemented the first step in module 3

(DBN). Therefore, we would like to find the bacteria that had significant changes

between case and control group by using student-t test with critical value of 0.05.

Once we found the seeds, each of the seed and their neighbour bacteria in the

network would be clustered together. After expanding to their first degree neighbours,

the clusters identified may overlapped with other clusters. Therefore, overlapping

clusters were identified by using CPM which was introduced by Palla et al. (2005).

After obtaining overlapping clusters or communities, we calculated the seeds’

missing value based on their community. Before calculating imputation value, we

turned the network constructed into 𝑁 × 𝑁 adjacency matrix, 𝑊 where 𝑤𝑖𝑗 = 1 if

there was a link between bacterium i and bacterium j, else 𝑤𝑖𝑗 = 0.

𝑋𝑖𝑗 = ∑ 𝑋𝑘𝑗𝑤𝑘𝑗 + 𝑐𝑖𝑗

𝑋𝑖𝑗 was the expression value of seed i in sample j whereas 𝑤𝑘𝑗was the interaction

between bacterium k and bacterium j. In the equation above, 𝑐𝑖𝑗 was the constant value

of bacterium i in the sample j. However, we had no prior information about this constant

value. Therefore, we had to compute the constant value for each of the sample except

the sample that had missing value, then average c would be calculated.

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 28

𝑋𝑖𝑗 = ∑ 𝑋𝑘𝑗𝑤𝑘𝑗 + 𝑐̅

At the end, imputation value could be calculated for the samples which had

missing value for bacterium i.

 Figure 3.2.4.1: Imputation process

Now, we used the biological network matrix which I had illustrated in 3.2.1

Constructing Directed Network Module by Using CBDN for explaining this module.

The figure below was the network constructed on control abundance matrix.

Figure 3.2.4.1: Network contructed on control group

Construct
network

Choose
differential
expression

bacteria

Expand the
seed to first

degree
neighbours

Identify
overlapping

clusters

Calculate
impute

value and
impute into

missing
value's

location

 A B C D E

A 0 0 0 0 0

B 0 0 5 0 0

C 0 0 0 9 3

D 0 8 0 0 0

E 8 0 0 0 0

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 29

Let say we found that bacterium C actually had missing values in its case

abundance matrix. Then, we clustered it with its first degree neighbours which were

bacterium B, D and E. As there was only cluster we had, definitely there was no

overlapping cluster.

In order to find average constant value for those samples which had missing

value on bacterium C, we computed the average constant value by sum up all the

constant values for the samples which are not missing value’s sample and divide among

themselves.

𝑋𝐶𝑗 = 𝑋𝐵𝑗𝑤𝐵𝑗 + 𝑋𝐷𝑗𝑤𝐷𝑗 + 𝑋𝐸𝑗𝑤𝐸𝑗 + 𝑐̅

By using the equation above, imputation value for bacterium C in sample j can

be calculated.

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 30

3.3 Implementation Issues and Challenges

 First of all, we would like to parallelize the module’s analysis part. That was,

our module should be able to distribute the tasks to the all processors. Our initial plan

was to use Parallel Pattern Library (PPL), provided by Microsoft, to parallelize the

modules. As our server was running in Linux OS, we had to use GNU Compiler

Collection (GCC) to compile our module. Regrettably, we found that GCC does not

provide this library yet. Therefore, we were forced to change to another library that

provide similar feature which was Thread Building Block (TBB by Intel). In order to

use TBB, our server must use Intel’s processors. Luckily, this was indeed the case.

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 31

3.4 Timeline

Figure 3.4.1: Project timeline (Text)

CHAPTER 3: PROPOSED METHOD/ APPROACH

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 32

Figure 3.4.2: Project timeline (Diagram)

CHAPTER 4: EXPERIMENTAL RESULT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 33

4.1 Constructing Directed Network Module by Using CBDN

This module, we were using human gut microbiome which was from Li et al.

(2014) to construct the network. This dataset was collected from different individuals

which were Chinese, Danish, Spanish and American. The motive of the paper actually

was to show the differences of gut microbial of different countries. However, we were

using this dataset to construct the regulatory network of all microbes. This dataset

contained 337 microbes and 1266 samples. The module would output 2 files which

were interactions between microbes and ranking of microbes. In order to visualize the

network, we turned our interactions result into Cytoscape and the figure below was the

network diagram.

Figure 4.1.1: Human Gut Microbiome Network

CHAPTER 4: EXPERIMENTAL RESULT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 34

In this network, each of the node represented one kind of microbe and the edge

represented the interaction between two microbes. The edges in the graph had their

directionality which meant we could understand the microbes regulatory. From the

Figure 4.1.1, three separated networks were found, and two of them actually were small

networks with the size of 5 and 6, whereas the remaining microbes were in the large

network. From the result, the microbe which had the highest total influence value was

Methylobacillus. This bacterium actually regulated Leptospira, Magnetococcus and

Neisseria in the community. The table below was the top 10 bacteria who had the

highest total influence score among other bacteria.

Bacteria Name Total Influence Value

Methylobacillus 0.160151

Albidiferax 0.148100

Rubrivivax 0.134855

Nitrospira 0.130282

Listeria 0.123234

Desulfurivibrio 0.115652

Pediococcus 0.111823

Acetobacter 0.109131

Treponema 0.104006

Pelotomaculum 0.099158

Table 4.1.1: Top 10 of important regulators

CHAPTER 4: EXPERIMENTAL RESULT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 35

4.2 Biological Network Inference by Using TIGRESS

To test the module, we used the stimulation data from TIGRESS. The dataset

obtained expression data of 20 genes and a list of transcriptional factors. The gene 1, 2,

3 and 4 were the transcriptional factors. In order not to output all the interactions, we

were selected first 15 important interactions to construct the graph below. What make

TIGRESS different from CBDN was the directionality of the edges. In TIGRESS, we

did not know the directionality of the edges. In fact, the interaction between genes

indicated the interaction only, but it did not tell us which gene was the parent node, and

which gene was the child node.

Figure 4.2.1 Biological network constructed by TIGRESS

CHAPTER 4: EXPERIMENTAL RESULT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 36

We furthered our testing on in silico data from DREAM 5 challenge as

TIGRESS took it as the benchmark dataset. In the dataset, there were 1643 genes and

data were collected from 804 experiments. There were 195 transcriptional factors which

were from gene 1 to gene 195. Among 320,190 interactions, we were selected top 1000

interactions and visualized the network below. The interesting fact was there were many

sub-networks in the figure below and some of them even isolated from each other

because we were selected only 0.3% of the edges. Besides, from the network below, we

could determine which gene actually was important regulator.

Figure 4.2.2 in silico data network constructed by TIGRESS

CHAPTER 4: EXPERIMENTAL RESULT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 37

4.3 Inferring Biomarker Module

The dataset that we were using was genomics data about the lung injury with

carbonyl chloride inhalation exposure which was being used by Liu et al. (2012). This

dataset could be separated into two sets, one was case group and another one was

control group. The dataset was collected by exposing mice to air (control) and phosgene

(case). The dataset had 9 sampling points which were 0hr, 0.5hr, 1hr, 4hr, 8hr, 12hr,

24hr, 48hr and 72hr and each of them had 6 samples. In the dataset, there were 12871

genes. By using this module, we would like to detect early warning sign for acute lung

injury.

After gone through FDR and 2-fold change, we obtained an array of number of

differential expression genes throughout the entire timeline, [0, 29, 72, 195, 269, 173,

188, 176]. In order to find dominant group, we clustered the differential expression

genes to maximum 40 clusters in each sampling points.

After clustering, each cluster in each sampling point would calculate their

indices and checked with the criteria. In this case, we would have a list of number of

potential dominant group throughout entire timeline, [0, 0, 0, 0, 1, 1, 1, 1, 0].

The first potential dominant group appeared in period 5 (8hr) and there were

only 2 genes in the groups which were Ensmusg00000058905 and Tlr9. Figure below

showing the composite index of the first potential dominant group that fulfilled all

criteria. In the figure, we noticed the composite index increases sharply after 4hr and

reached the peak on 8hr. In this case, the figure showed that pre-disease state was

starting on 4hr.

CHAPTER 4: EXPERIMENTAL RESULT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 38

Figure 4.3.1 Composite Index of the first potential dominant group

 0 0.5 1 4 8 12 24 48 72
G

1

0.3959 0.3159 0.0105 0.1523 2.3230 0.5341 0.9283 0.3175 0.8850

G

2

0.1600 0.0735 0.0670 0.0600 0.1318 0.3386 0.1089 0.1122 0.1562

G

3

0.0659 0.1258 0.0707 0.0852 0.0672 0.1654 0.3889 0.0755 0.0946

G

4

6.0122

e-007

7.0229

e-007

9.5050

e-007

8.7669

e-007

1.3669

e-006

1.3700

e-006

1.1781

e-006

1.8187

e-006

1.3896

e-006

Table 4.3.1 Composite Index of all potential dominant groups

0

0.5

1

1.5

2

2.5

0 0.5 1 4 8 12 24 48 72

Composite Index

CHAPTER 4: EXPERIMENTAL RESULT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 39

4.4 Imputation

To check whether the module worked fine or not, we used the dataset which

was used in 4.3 Inferring Biomarker Module. This was data about the lung injury

with carbonyl chloride inhalation exposure. However, due to large volume of data, it

was very lengthy to complete first step which was constructing biological network.

Therefore, we selected first 50 genes to test the module and we made 6 expression

values of gene 15 to be zero, which were considered as missing values.

Figure 4.4.1 Biological network of the first 50 bacteria

CHAPTER 4: EXPERIMENTAL RESULT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 40

First, a network had been constructed by using the control abundance data on

first 50 genes (Figure 4.4.1). Among this 50 genes, we detected 2 seeds which were

gene 15 and gene 33.

Figure 4.4.2 First degree neighbours of gene 15

Figure 4.4.3 First degree neighbours of gene 33

CHAPTER 4: EXPERIMENTAL RESULT

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 41

 In fact, gene 33 had no missing values but it showed the significant changes

between case and control group. Hence, this was not our imputation concern so far.

After we found gene 15 as seed, we expanded the seed to its first degree neighbour

genes to form a community which were shown in the Figure 4.4.2. The imputation

values were shown in the table below. The initial average expression value for gene 15 was

1889.95 whereas the average expression value of the gene after imputation was 1889.81,

different in 0.14.

Table 4.4.1 Imputation values before and after

phosgene
_0.5h_4A

phosgene
_0.5h_5B

phosgene
_0.5h_5A

phosgene
_0.5h_6B

phosgene
_0.5h_6A

phosgene
_1h_10B

Case

(Initial)
1845.85 1962.05 2164.8 1734.85 1858.45 1958.25

Case

(Set as

missing

value)

0 0 0 0 0 0

Case

(After)
1949.37 1970.41 1919.31 1888.44 1830.64 1958.41

CHAPTER 5: CONCLUSION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 42

Our ultimate aim was to develop a platform that provided a series of analysis

services to researchers. The platform provided an all-in-one venue for such analyses.

The aim of the platform was to allow researchers to perform all the standard analyses

on the website, in an easy and convenient fashion.

This project involved the development of four modules of the platform, namely

constructing directed network on metagenomics data by two different approaches,

inferring its biomarkers and imputation. For all of the module, we were going to

parallelize them so that they work effectively and efficiently. We used Thread Building

Block (TBB) library to enable parallelism in the modules. The program would distribute

the tasks to processors and fully utilize them.

For the constructing directed network module, we used CBDN method which

was introduced by Zhang, Ng & Li (2015). First, influence value of each gene to others

would be calculated then transitive relationship would be removed. After that, we

would like to figure out the important regulator by ranking their total influence value.

TIGRESS, another method that could be used to construct biological network, which

was introduced by Haury et al. (2012). This method used feature selection approach to

infer the relationships of each gene pair.

In the other hand, DNB was used to infer biomarker in this project. The method

was proposed by Liu et al. (2015). First, differential expression genes would be selected

and clustered at each sampling point then we would like to determine the criteria of

each cluster at each sampling point. When the cluster fulfilled the criteria, then the

particular cluster was considered as biomarker.The last module was imputation that was

used to recover missing value in the expression data. Several algorithms were integrated

to develop this module.

In order to speed up computational speed of this two modules, we implemented

parallelism in our software. We used TBB library in the software as it provided

sufficient functions to the software. The process would be distributed to all processors

and fully utilized the resource available.

At the end of the project, we had achieved to complete 4 modules. However,

the modules did not fully tested as there were limited datasets and processing power.

Therefore, we forced to use genomics data for some test cases.

REFERENCES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 43

 Andrea Califano 2016, Modeling Cell Regulatory Networks. Available from:

<http://califano.c2b2.columbia.edu/modeling-cell-regulatory-networks>. [19

November 2016].

Efron, B, Hastie, T, Johnstone, I & Tibshirani, R 2004, ‘Least Angle Regression’, The

Annals of Statistics, vol. 32, no. 2, pp. 407-499. [16 November 2016].

EMBL-EBI, n.d., Project: BGI Type 2 Diabetes study. Available from:

<https://www.ebi.ac.uk/metagenomics/projects/SRP008047> [31 March.

2017].

Genetic Science Learning Center 2014, What are Microbes?. Available from:

<http://learn.genetics.utah.edu/content/microbiome/intro/>. [2 November

2016].

Goh, W, Lee, Y, Zubaidah, R, Jin, J, Dong, D, Lin, Q, Chung, M & Wong, L 2011,

‘Network-Based Pipeline for Analyzing MS Data: An Application toward

Liver Cancer’, Journal of Proteome Research, vol. 10, no. 5, pp. 2261-2272.

[20 March 2017]

Goh, W., Sergot, M., Sng, J. and Wong, L. 2013, ‘Comparative Network-Based

Recovery Analysis and Proteomic Profiling of Neurological Changes in

Valproic Acid-Treated Mice’, Journal of Proteome Research, vol. 12, no. 5, pp.

2116-2127. [1 March 2017].

Haury, A, Mordelet, F, Vera-Licona, P& Vert, J 2012, ‘TIGRESS: Trustful Inference

of Gene REgulation using Stability Selection’, BMC Systems Biology, vol. 6,

no. 1. [20 October 2016].

REFERENCES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 44

Li, J, Jia, H, Cai, X, Zhong, H, Feng, Q, Sunagawa, S, Arumugam, M, Kultima, J, Prifti,

E, Nielsen, T, Juncker, A, Manichanh, C, Chen, B, Zhang, W, Levenez, F,

Wang, J, Xu, X, Xiao, L, Liang, S, Zhang, D, Zhang, Z, Chen, W, Zhao, H, Al-

Aama, J, Edris, S, Yang, H, Wang, J, Hansen, T, Nielsen, H, Brunak, S,

Kristiansen, K, Guarner, F, Pedersen, O, Doré, J, Ehrlich, S, Pons, N, Le

Chatelier, E, Batto, J, Kennedy, S, Haimet, F, Winogradski, Y, Pelletier, E,

LePaslier, D, Artiguenave, F, Bruls, T, Weissenbach, J, Turner, K, Parkhill, J,

Antolin, M, Casellas, F, Borruel, N, Varela, E, Torrejon, A, Denariaz, G,

Derrien, M, van Hylckama Vlieg, J, Viega, P, Oozeer, R, Knoll, J, Rescigno,

M, Brechot, C, M'Rini, C, Mérieux, A, Yamada, T, Tims, S, Zoetendal, E,

Kleerebezem, M, de Vos, W, Cultrone, A, Leclerc, M, Juste, C, Guedon, E,

Delorme, C, Layec, S, Khaci, G, van de Guchte, M, Vandemeulebrouck, G,

Jamet, A, Dervyn, R, Sanchez, N, Blottière, H, Maguin, E, Renault, P, Tap, J,

Mende, D, Bork, P & Wang, J 2014, ‘An integrated catalog of reference genes

in the human gut microbiome’, Nature Biotechnology, vol. 32, no. 8, pp. 834-

841. [8 March 2017]

Liu, R, Li, M, Liu, Z, Wu, J, Chen, L & Aihara, K 2012, ‘Identifying critical

transitions and their leading biomolecular network in complex diseases’,

Scientific Report, vol. 2.

Margolin, A, Nemenman, I, Basso, K, Wiggins, C, Stolovitzky, G, Favera, R &

Califano, A 2006, ‘ARACNE: An Algorithm for the Reconstruction of Gene

Regulatory Networks in a Mammalian Cellular Context’, BMC

Bioinformatics, vol. 7, no. 1, p. S7. [20 October 2016].

Markowetz, F & Spang, R 2007, ‘Inferring cellular networks – a review’, Markowetz,

F. and Spang, R. (2007). Inferring cellular networks – a review. BMC

Bioinformatics, vol.8, no. 6, p. S5. [15 November 2016].

REFERENCES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 45

Mayeux, R 2004, ‘Biomarkers: Potential Uses and Limitations.’, NeuroRx, vol. 1, no.

2, pp. 182-188. [3 November 2016].

Members.cbio.mines-paristech.fr. n.d., The TIGRESS page. Available from:

<http://members.cbio.mines-

paristech.fr/~ahaury/svn/dream5/html/index.html>. [2 Febuary 2017].

Meta.genomics.cn. n.d., Integrated reference catalog of the human gut microbiome.

Available from: <http://meta.genomics.cn/meta/home>. [1 April 2017].

Morrison, JL, Breitling, R, Higham, DJ & Gilbert, DR 2005. ‘GeneRank: Using search

engine technology for the analysis of microarray experiments’, BMC

Bioinformatics, vol. 6, no. 1, p. 233. [25 Febuary 2017]

Palla, G, Derényi, I, Farkas, I & Vicsek, T 2005, ‘Uncovering the overlapping

community structure of complex networks in nature and society’, Nature, vol.

435, no. 7043, pp. 814-818. [24 Febuary 2017]

Parallel Pattern Library, n.d.. Available from: < https://msdn.microsoft.com/en-

us/library/dd492418.aspx>. [23 October 2016].

Taylor, RC, Acquaah-Mensah, G, Singhal, M, Malhotra, D & Biswal, S 2008,

‘Network Inference Algorithms Elucidate Nrf2 Regulation of Mouse Lung

Oxidative Stress’, PLoS Comput Biol, vol. 4, no. 8. [19 November 2016].

The Common Fund n.d., Human Microbiome Project. Available from:

<https://commonfund.nih.gov/hmp/overview>. [3 November 2016].

REFERENCES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 46

Threading Building Blocks, n.d.. Available from:

<https://www.threadingbuildingblocks.org>. [25 October. 2016].

Strimbu, K & Tavel, J 2010, ‘What are biomarkers?’, Current Opinion in HIV and

AIDS, vol. 5, no. 6, pp. 463-466. [3 November 2016].

Wiki.c2b2.columbia.edu 2015, ARACNe - Workbench. Available from:

<http://wiki.c2b2.columbia.edu/workbench/index.php/ARACNe>. [19

November 2016].

Zhang, L, Ng, Y & Li, S 2015, ‘Reconstructing directed gene regulatory network by

only gene expression data’, 2015 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), pp. 163-170.

Zyga, L 2014, ‘Diseases, symptoms, genes, and proteins linked together in giant

network’, Medical Xpress 18 July. Available from

<http://medicalxpress.com/news/2014-07-diseases-symptoms-genes-proteins-

linked.html >. [3 November 2016].

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR A-1

Appendix A Online Platform Introduction

As our main objective was to collaborate with City University of Hong Kong to

come out a comprehensive online platform. However, developing online platform was

not the concern in this project, we were just in charge in four modules.

http://dl380a.cs.cityu.edu.hk/ is the link to the online platform.

Figure A.1 Main page of the online platform

The online platform was a cloud-based system that provided free services to

gene regulation analysis. Besides, they had their own gene database which had been

processed from raw data and they offered over 30 modules to users to analyse the

dataset. Other than that, users may visualize their result after analysed the data in over

70 ways such as scatter plots, histograms, pie charts, and so on.

http://dl380a.cs.cityu.edu.hk/

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR A-2

Figure A.2 Visualizations that provided by the online platform

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR A-3

Figure A.3 Modules that provided by the online platform

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR A-4

Figure A.4 Gene DB of the online platform

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR A-5

Figure A.4 Delta team of the online platform

Development of this online platform was led by Dr. Shuaicheng Li with a group

of enthusiastic students. In this project, Ms Chen JiaXing was the mentor who provided

guidances and information about the modules to me. At the end of the project, we

delivered 4 modules and all of the modules would be integrated with other modules to

form a pipeline, then would be published under pipeline category in the online platform.

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-1

B-1 Constructing Directed Network Module by Using CBDN (Source Code)

B-1.1 main.cpp

#include "tbb/blocked_range.h"

#include "tbb/parallel_for.h"

#include "tbb/task_scheduler_init.h"

#include "tbb/mutex.h"

#include <iostream>

#include <fstream>

#include <string>

#include <vector>

#include "Dependency.h"

#include <armadillo>

using namespace std;

using namespace arma;

using namespace tbb;

int main(){

 string inputFile;

 //get input file from user

 cout << "Enter Abudance Matrix File Name: ";

 cin >> inputFile;

 //open input stream

 ifstream input(inputFile);

 //open output stream

 ofstream outputRankFull("Output-Rank(FullName).txt");

 ofstream outputRankIndex("Output-Rank(Index).txt");

 ofstream outputDependencyFull("Output-Dependency(FullName).txt");

 ofstream outputDependencyIndex("Output-Dependency(Index).txt");

 cout << "1. Retriving Data" << endl << endl;

 //This part of code is retrieve the gene ID and sample ID from the input file

 string line;

 getline(input, line);

 vector<string> sampleID;

 vector<string> geneID;

 line.erase(line.begin(), line.begin() + line.find(',') + 1);

 while (line.find(',') != -1){

 sampleID.push_back(line.substr(0, line.find(',')));

 line.erase(line.begin(), line.begin() + line.find(',') + 1);

 }

 sampleID.push_back(line);

 while (getline(input, line)){

 geneID.push_back(line.substr(0, line.find(',')));

 }

 //Load abundance matrix from input file

 mat exp;

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-2

 exp.load(inputFile);

 //remove first row and first column which are storing gene ID and sample ID

 exp.shed_col(0);

 exp.shed_row(0);

 cout << "2. Constructing Network" << endl << endl;

 //creating a matrix to store influence score of each gene pair

 mat influenceScore(exp.n_rows, exp.n_rows, fill::zeros);

 //calculate correlation of each gene to another gene

 mat corrMat = cor(trans(exp));

 int infrow = influenceScore.n_rows;

 //parallelize the influence score calculation part to all processors

 //parallelize row by row (each row represents a gene who is influences other genes)

 parallel_for(0, infrow, [&](int i){

//loop through each column(each column represents a gene who is being influenced

by another gene)

 for (int j = 0; j < influenceScore.n_cols; j++){

 //get rid of self regulatory interaction

 if (i == j){

 influenceScore(i, j) = 0;

 continue;

 }

 //influence score calculation part

 double totalInflu = 0.0;

 for (int k = 0; k < influenceScore.n_cols; k++){

 if (k != i && k != j){

double pc = (corrMat(i, k) - (corrMat(i, j) * corrMat(k,

j)))/ sqrt((1 - pow(corrMat(i, j), 2)) * (1 - pow(corrMat(k,

j),2)));

 totalInflu += abs(corrMat(i, k) - pc);

 }

 }

 influenceScore(j, i) = totalInflu / (influenceScore.n_rows - 1);

 }

 });

 //Remove cyclic interactions

 for (int row = 1; row < influenceScore.n_rows; row++){

 for (int col = 0; col < row; col++){

 if (influenceScore(row, col) < influenceScore(col, row))

 influenceScore(row, col) = 0;

 else

 influenceScore(col, row) = 0;

 }

 }

 //Remove transitive interactions and final output will be stored in variable "graph"

 urowvec maxIndex = index_max(influenceScore);

 mat graph(influenceScore.n_rows, influenceScore.n_cols, fill::zeros);

 for (int col = 0; col < maxIndex.n_cols; col++){

 graph(maxIndex(col), col) = influenceScore(maxIndex(col), col);

 }

 graph.save("graph.csv", csv_ascii);

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-3

 cout << "4. Storing Result" << endl;

 //calculate total influence score in row bias

 vec totalInfluence = sum(graph, 1);

 //sort the total influence value to find out important regulators

 uvec indices = sort_index(totalInfluence, "descend");

 //output ranked important regulators

 cout << "Ranked regulators will be stored in Output-Rank(FullName).txt and Output-

 Rank(Index).txt" <<endl;

 for (int i = 0; i < indices.n_rows; i++){

 int index = indices.at(i);

 outputRankFull << geneID.at(index) << "\t" << totalInfluence(index) << endl;

 outputRankIndex << index << "\t" << totalInfluence(index) << endl;

 }

 cout << "Dependency of gene pairs will be stored in Output-Dependency(Index).txt and

 Output - Dependency(FullName).txt" << endl;

 //output dependency of gene pairs

 for (int i = 0; i < indices.n_rows; i++){

 int index = indices.at(i);

 if (totalInfluence(index) == 0)

 continue;

 for (int col = 0; col < indices.n_rows; col++){

 if (graph(index, col) == 0)

 continue;

outputDependencyFull << geneID.at(index) << "\t" <<

geneID.at(col) << "\t" << graph(index, col) << endl;

 outputDependencyIndex << index << "\t" << col << "\t"<<

 graph(index, col) << endl;

 }

 }

 cout << "Done." << endl;

 input.close();

 outputRankFull.close();

 outputRankIndex.close();

 outputDependencyFull.close();

 outputDependencyIndex.close();

 return 0;

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-4

B-2 Biological Network Inference by Using TIGRESS (Source Code)

B-2.1 main.cpp

#include "tbb/blocked_range.h"

#include "tbb/parallel_for.h"

#include "tbb/task_scheduler_init.h"

#include <iostream>

#include <fstream>

#include <string>

#include <armadillo>

#include "tigress.h"

using namespace std;

using namespace arma;

using namespace tbb;

mat score_edges(cube, int);

mat rank_edges(mat, urowvec, int = 0);

urowvec indexing(vector<string>, vector<string>);

int main(){

 ofstream outputDependencyFull("Output-Dependency(Full).txt");

 ofstream outputDependencyIndex("Output-Dependency(Index).txt");

 cout << "--------------- TIGRESS Method ---------------" << endl << endl;

 cout << "------------- 1. Retrieving Data -------------" << endl;

 string dataset, tfset;

 //Request input file name from user and store it into variable inputTxt

 cout << "Input Dataset: ";

 cin >> dataset;

 //Request input file name from user and store it into variable inputTxt

 cout << "Input TF: ";

 cin >> tfset;

 //Declare an input stream for reading data from inputTxt

 ifstream input(dataset);

 //Declare an input stream for reading data from inputTxt

 ifstream input2(tfset);

 //This variable is used to keep all genes' name

 vector<string> geneName;

 vector<string> tfList;

 string tfName;

 while (getline(input2,tfName)){

 tfList.push_back(tfName);

 }

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-5

//This portion of code is used to move the pointer to next line in order to read a correct row of

data

 string geneNameStr;

 getline(input, geneNameStr);

 geneNameStr.erase(geneNameStr.begin(), geneNameStr.begin() + geneNameStr.find(',') + 1);

 //while (getline(input, geneNameStr)){

 // geneName.push_back(geneNameStr.substr(0, geneNameStr.find(',')));

 //}

 while (true){

 if (geneNameStr.find(',') == -1){

 geneName.push_back(geneNameStr);

 break;

 }

 geneName.push_back(geneNameStr.substr(0, geneNameStr.find(',')));

 geneNameStr.erase(geneNameStr.begin(), geneNameStr.begin() +

 geneNameStr.find(',') + 1);

 }

 mat exp;

 exp.load(dataset);

 exp.shed_col(0);

 exp.shed_row(0);

 cout << "------------- 2. Setting Parameters ----------" << endl;

 int R = 500;

 int L = 3;

 double alpha = 0.3;

 cout << "R\t= " << R << endl;

 cout << "L\t= " << L << endl;

 cout << "Alpha\t= " << alpha << endl << endl << endl;

 //Passing parameters to tigress function, refer to Tigress class

 cout << "------------- 3. Inferring Network -----------" << endl;

 //get list of tf index

 urowvec tfIndex = indexing(geneName, tfList);

 //cube freq = Tigress::tigress(R, L, alpha, trans(exp), tfIndex);

 cube freq = Tigress::tigress(R, L, alpha, exp, tfIndex);

 //scoring the interactions, refer to score_eges function in below

 cout << "------------- 4. Edges' Score ---------------" << endl;

 mat scores = score_edges(freq, 2);

 //Ranking the interactions, refer to rank_edges function in below

 cout << "------------- 5. Edges' Ranking -------------" << endl;

 mat sortedEdges = rank_edges(scores, tfIndex, 10000);

 cout << "------------- 6. Output Result ---------------" << endl;

 //output ranked important regulators

 for (int i = 0; i < sortedEdges.n_rows; i++){

 outputDependencyFull << geneName.at(sortedEdges(i, 0)) << "\t" <<

 geneName.at(sortedEdges(i, 1)) << "\t" << sortedEdges(i, 2)<<endl;

 outputDependencyIndex << int(sortedEdges(i, 0)) << "\t" << int(sortedEdges(i, 1))

 << "\t" << sortedEdges(i, 2) << endl;

 }

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-6

 outputDependencyFull.close();

 outputDependencyIndex.close();

 input.close();

 input2.close();

 return 0;

}

//this function is used to score the interactions

mat score_edges(cube freq, int method){

 int ntf = freq.n_rows;

 int L = freq.n_cols;

 int ngene = freq.n_slices;

 mat scores;

 switch (method){

 case 1:

 scores = reshape(max(freq, 1), ntf, ngene, 1);

 break;

 case 2:

 scores = reshape((zeros(ntf, 1, ngene) + freq(span(), span(0,0), span())) / 2 +

 sum((freq(span(), span(1, L - 1), span()) + freq(span(),

 span(0, L - 2), span())) / 2, 1), ntf, ngene, 1);

 scores = 1 / (L - 0.5) * scores;

 break;

 }

 return scores;

}

//This method is used to rank the edges

mat rank_edges(mat scores, urowvec tfIndex, int cutoff){

 int ntf = tfIndex.n_cols;

 int ngene = scores.n_cols;

 int k = 0;

 mat edges((ngene * ntf) - ntf, 3);

 mat sortedEdges((ngene * ntf) - ntf, 3);

 for (int i = 0; i < ntf; i++){

 for (int j = 0; j < ngene; j++){

 if (tfIndex(i) != j){

 edges(k, 0) = tfIndex(i);

 edges(k, 1) = j;

 edges(k, 2) = scores(tfIndex(i), j);

 k++;

 }

 }

 }

 uvec indexList = sort_index(edges.col(2), "descend");

 for (int i = 0; i < indexList.n_rows; i++){

 sortedEdges.row(i) = edges.row(indexList(i));

 }

 sortedEdges = sortedEdges.rows(find(sortedEdges.col(2) > 0));

 int nedges = sortedEdges.n_rows;

 if (cutoff != 0)

 sortedEdges = sortedEdges.head_rows(cutoff);

 return sortedEdges;

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-7

//This function is used to get index number of tf gene

urowvec indexing(vector<string> geneName, vector<string> tfList){

 urowvec index(tfList.size());

 for (int i = 0; i < tfList.size(); i++){

 for (int j = 0; j < geneName.size(); j++){

 if (tfList.at(i) == geneName.at(j))

 index(i) = j;

 }

 }

 return index;

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-8

B-2.2 Tigress.h

#ifndef TIGRESS_H

#define TIGRESS_H

#include <armadillo>

//This class is used to perform tigress

//removeTG: a function that remove TG from TF list

//stabilitySelection: a function that perform stability selection

//tigress: a function that perform tigress

//normalize_data: a function that used to normalize the expression data

class Tigress{

 private:

 static arma::urowvec removeTG(int, arma::urowvec);

 static arma::mat stabilitySelection(arma::mat, arma::mat, int, int, double alpha,

arma::uvec, int);

 public:

 static arma::cube tigress(int, int, double, arma::mat, arma::urowvec);
 static arma::mat normalize_data(arma::mat);

};
#endif

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-9

B-2.3 Tigress.cpp

#include <string>

#include <vector>

#include <armadillo>

#include "tigress.h"

#include "lars.h"

#include "tbb/blocked_range.h"

#include "tbb/parallel_for.h"

#include "tbb/task_scheduler_init.h"

using namespace std;

using namespace arma;

using namespace tbb;

//The function that perform tigress

//stabilitySelection function can refer in below

cube Tigress::tigress(int R, int L, double alpha, mat expdata, urowvec tfIndex){

 expdata = normalize_data(expdata);

 int ntf = tfIndex.n_cols;

 cube freq(ntf, L, expdata.n_cols);

 //for (uword i = 0; i < expdata.n_cols;i++){

 parallel_for(uword(0), expdata.n_cols, [&](uword i){

 cout << i << endl;

 urowvec TFofTG = removeTG(i, tfIndex);

 mat x = expdata.cols(TFofTG);

 mat y = expdata.col(i);

 mat tmp = stabilitySelection(x, y, R, L, alpha, find(TFofTG >= 0), ntf);

 freq.slice(i) = trans(tmp);

 });

 return freq;

}

//Normilize expression data

mat Tigress::normalize_data(mat expdata){

 mat dataMean = mean(expdata);

 mat dataStd = stddev(expdata);

 return (expdata - (mat(expdata.n_rows, 1, fill::ones) * dataMean)) * diagmat(1 / dataStd);

}

//The function that used to perform remove TG from TF list

//before perform stability selection

urowvec Tigress::removeTG(int index, urowvec tfIndex){

 for(uword i = 0; i < tfIndex.size(); i++){

 if(tfIndex(i) != index) continue;

 tfIndex.shed_col(i);

 }

 return tfIndex;

}

//Feature selection function used to determine the interactions

mat Tigress::stabilitySelection(mat X, mat Y, int R, int L, double alpha, uvec predictorTF, int ntf){

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-10

 mat freq(L, ntf, fill::zeros);

 arma_rng::set_seed_random();

 for(int i = 0; i < floor(R/2); i++){

 //reweight the expression data

 mat reweightedData = X % repmat(alpha + ((1 - alpha) * randu(1, X.n_cols)),

X.n_rows, 1);

 //create a list of number for randomly split the experiments into two sets

 uvec listExperiment(X.n_rows);

 for(int a = 0; a < X.n_rows; a++){

 listExperiment(a) = a;

 }

 //randomly shuffle the numbers

 listExperiment = shuffle(listExperiment);

 int half = floor(X.n_rows / 2);

 //variable Lars can refer to class Lars

 Lars l1(reweightedData.rows(listExperiment.subvec(0, half - 1)),

Y.rows(listExperiment.subvec(0, half - 1)), L);

 Lars l2(reweightedData.rows(listExperiment.subvec(half, listExperiment.n_rows -

1)), Y.rows(listExperiment.subvec(half, listExperiment.n_rows - 1)), L);

 //get result from lars

 mat result1 = l1.getBeta();

 mat result2 = l2.getBeta();

 //store the result

 freq.cols(predictorTF) = freq.cols(predictorTF) + abs(sign(result1(span(1, L),

span())));

 freq.cols(predictorTF) = freq.cols(predictorTF) + abs(sign(result2(span(1, L),

span())));

 }

 return freq / (R * 1.0);

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-11

B-2.4 Lars.h

#ifndef LARS_H

#define LARS_H

#include <armadillo>

//The class that used to perform least angle regression

//Beta: variable to keep the result

//Lars: a constructor

//lars: a function that perform lars

//setDiff: a function that used to perform set different

//minplus: a function that used to find minimum positive feature

//normalize: a function that used to normalize expression data

//getBeta: a function that used to access private variable Beta

class Lars{

 private:

 arma::mat Beta;

 public:

 Lars(arma::mat, arma::mat, int);

 arma::mat lars(arma::mat, arma::mat, int, bool=false);

 arma::urowvec setDiff(arma::urowvec, arma::urowvec);

 double minplus(arma::mat, arma::uvec &, arma::urowvec &);

 arma::mat normalize(arma::mat);

 arma::mat getBeta();

};

#endif

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-12

B-2.5 Lars.cpp

#include <string>

#include <vector>

#include <armadillo>

#include "lars.h"

using namespace std;

using namespace arma;

//A contructor

Lars::Lars(mat X, mat Y, int L){

 Beta = lars(X, Y, L);

}

//least angle regression function

mat Lars::lars(mat X, mat Y, int L, bool lasso){

 double eps = 1e-10;

 int n = X.n_rows;

 int p = X.n_cols;

 X = normalize(X);

 Y = Y - (mat(n, 1, fill::ones) * mean(Y));

 mat t;

 t << numeric_limits<double>::infinity();

 int T = t.size();

 mat beta(1, p, fill::zeros);

 mat mu(n, 1, fill::zeros);

 mat mu_old(n, 1, fill::zeros);

 mat gamma(L, 1, fill::zeros);

 urowvec A;

 urowvec Ac(p);

 for (int a = 0; a < p; a++){

 Ac(a) = a;

 }

 int nVars = 0;

 int signOk = 1;

 uword i = 0;

 int t_prev = 0;

 mat beta_t = zeros(T,p);

 int ii = 0;

 mat tt = t;

 uvec addVar;

 while (nVars < L){

 mat c = trans(X) * (Y - mu);

 double C = as_scalar(max(abs(c)));

 if (C < eps || t.is_empty())

 break;

 if (i == 0)

 addVar = find(C == abs(c));

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-13

 if (signOk){

 nVars++;

 A.insert_cols(A.size(), addVar);

 }

 mat s_A = sign(c(A));

 Ac = setDiff(Ac, A);

 int nZeros = Ac.n_cols;

 mat X_A = X.cols(A);

 mat G_A = trans(X_A) * X_A;

 mat invG_A = inv(G_A);

 double L_A = as_scalar (1 / sqrt(trans(s_A) * invG_A * s_A));

 mat w_A = L_A * invG_A * s_A;

 mat u_A = X_A * w_A;

 mat a = trans(X) * u_A;

 mat beta_tmp(p, 1, fill::zeros);

 mat gammaTest(nZeros, 2, fill::zeros);

 if (nVars == L){

 gamma(i) = C / L_A;

 }

 else {

 for (uword j = 0; j < nZeros; j++){

 double jj = Ac(j);

 gammaTest(j, 0) = (C - c(jj)) / (L_A - a(jj));

 gammaTest(j, 1) = (C + c(jj)) / (L_A + a(jj));

 }

 uvec min_i;

 urowvec min_j;

 gamma(i) = minplus(gammaTest, min_i, min_j);

 addVar = unique(trans(Ac.cols(min_i)));

 }

 for (uword o = 0; o < A.n_cols; o++){

 beta_tmp(A(o)) = beta(i, A(o)) + (gamma(i) * w_A(o));

 }

 mu = mu_old + gamma(i) * u_A;

 mu_old = mu;

 beta.insert_rows(beta.n_rows, trans(beta_tmp));

 i++;

 }

 return beta;

}

//set different function

urowvec Lars::setDiff(urowvec a, urowvec b){

 urowvec maxList;

 maxList << a.max() << b.max();

 urowvec sortMat(maxList.max() + 1, fill::zeros);

 urowvec result;

 for (int i = 0; i < a.n_cols; i++){

 if (sortMat(a(i)) != 0)

 continue;

 sortMat(a(i)) = 1;

 }

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-14

 for (int i = 0; i < b.n_cols; i++){

 if (sortMat(b(i)) == 0)

 continue;

 sortMat(b(i)) = 0;

 }

 result = trans(find(sortMat));

 return result;

}

//function used to get minimum positive feature

double Lars::minplus(mat X, uvec &i, urowvec &j){

 for (int col = 0; col < X.n_cols; col++){

 uvec a = find(imag(X.col(col)) != 0);

 if (a.is_empty()) continue;

 for (int row = 0; row < a.n_rows; row++){

 X(a(row), col) = numeric_limits<double>::infinity();

 }

 }

 for (int col = 0; col < X.n_cols; col++){

 uvec a = find(X.col(col) <= 0);

 if (a.is_empty()) continue;

 for (int row = 0; row < a.n_rows; row++){

 X(a(row), col) = numeric_limits<double>::infinity();

 }

 }

 vector<int> tmpi, tmpj;

 double minValue = min(min(X));

 for (uword row = 0; row < X.n_rows; row++){

 for (uword col = 0; col < X.n_cols; col++){

 if (X(row, col) == minValue){

 tmpi.push_back(row);

 tmpj.push_back(col);

 }

 }

 }

 i = conv_to<uvec>::from(tmpi);

 j = conv_to<urowvec>::from(tmpj);

 return minValue;

}

//normalized expression data

mat Lars::normalize(mat X){

 int n = X.n_rows;

 X = (eye<mat>(n, n) - ((1 / (n * 1.0)) * ones<mat>(n, n))) * X;

 mat n22 = sqrt(diagvec(trans(X) * X));

 X = X / (ones<mat>(n, 1) * trans(n22));

 return X;

}

//getBeta function

mat Lars::getBeta(){

 return Beta;

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-15

B-3 Inferring Biomarker Module (Source Code)

B-3.1 main.cpp

#include <iostream>

#include <fstream>

#include <string>

#include <armadillo>

#include <vector>

#include "Period.h"

#include "EntirePeriod.h"

#include "TTest.h"

#include "Cluster.h"

#include "Dominant.h"

using namespace std;

using namespace arma;

uvec clustering(mat,int);

uvec reset(uvec);

int main(){

 string fileNameCase;

 string fileNameControl;

 //Get Case file and control file from user

 cout << "Enter Case File Name and Control File Name:" << endl;

 cout << "Case File: " << endl;

 cin >> fileNameCase;

 cout << "Control File: " << endl;

 cin >> fileNameControl;

 //open input and output stream

 ifstream caseExp(fileNameCase), controlExp(fileNameControl);

 ofstream out("Experiment Result.txt");

 //This variable is keep whole timeline for control and case

 //Refer to its class for functions

 EntirePeriod entirePeriodCase, entirePeriodControl;

 string line;

 vector<string> geneID1, geneID2;

 //Retrieve case samples data and store them into separate period

 //This part is reading case samples name and categorize them

 cout << "Retriving Case Samples Data..." << endl;

 getline(caseExp, line);

 line.erase(line.begin(), line.begin() + line.find(',') + 1);

 bool flag1 = true;

 int index1 = 0;

 while (flag1){

 string sample;

 if (line.find(',') == -1){

 sample = line;

 flag1 = false;

 }

 else{

 sample = line.substr(0, line.find(','));

 line.erase(line.begin(), line.begin() + line.find(',') + 1);

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-16

 }

 sample.erase(sample.begin(), sample.begin() + sample.find('_') + 1);

 string period = sample.substr(0, sample.find('_'));

 sample.erase(sample.begin(), sample.begin() + sample.find('_') + 1);

 entirePeriodCase.addPeriod(period, sample, index1);

 index1++;

 }

 //This part is reading expression value of each samples

 mat expCase;

 while (getline(caseExp, line)){

 vector<double> geneData;

 geneID1.push_back(line.substr(0, line.find(',')));

 line.erase(line.begin(), line.begin() + line.find(',') + 1);

 while (true){

 int curP = line.find(',');

 if (curP < 0){

 geneData.push_back(stod(line));

 break;

 }

 geneData.push_back(stod(line.substr(0, curP)));

 line.erase(line.begin(), line.begin() + curP + 1);

 }

 expCase.insert_rows(expCase.n_rows, conv_to<rowvec>::from(geneData));

 }

 entirePeriodCase.setExpData(expCase);

 entirePeriodCase.setGeneName(geneID1);

 //This part is similar to retriving case samples data

 cout << "Retriving Control Samples Data..." << endl;

 getline(controlExp, line);

 line.erase(line.begin(), line.begin() + line.find(',') + 1);

 bool flag2 = true;

 int index2 = 0;

 while (flag2){

 string sample;

 if (line.find(',') == -1){

 sample = line;

 flag2 = false;

 }

 else{

 sample = line.substr(0, line.find(','));

 line.erase(line.begin(), line.begin() + line.find(',') + 1);

 }

 sample.erase(sample.begin(), sample.begin() + sample.find('_') + 1);

 string period = sample.substr(0, sample.find('_'));

 sample.erase(sample.begin(), sample.begin() + sample.find('_') + 1);

 entirePeriodControl.addPeriod(period, sample, index2);

 index2++;

 }

 mat expControl;

 while (getline(controlExp, line)){

 vector<double> geneData;

 geneID2.push_back(line.substr(0, line.find(',')));

 line.erase(line.begin(), line.begin() + line.find(',') + 1);

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-17

 while (true){

 int curP = line.find(',');

 if (curP < 0){

 geneData.push_back(stod(line));

 break;

 }

 geneData.push_back(stod(line.substr(0, curP)));

 line.erase(line.begin(), line.begin() + curP + 1);

 }

 expControl.insert_rows(expControl.n_rows, conv_to<rowvec>::from(geneData));

 }

 entirePeriodControl.setExpData(expControl);

 entirePeriodControl.setGeneName(geneID2);

 //This part is choosing genes which have differential expression value

 //between case and control for each period

 cout << "\n-----------------1. Choosing Differential Expression Genes-----------------" << endl;

 //Each Period

 for (int i = 0; i < entirePeriodCase.size(); i++){

 cout << i;

 //Retrieve case and control Exp data for the period

 uvec caseIndex = conv_to<uvec>::from(entirePeriodCase.getPeriod(i).SampleIndex);

 uvec controlIndex =

 conv_to<uvec>::from(entirePeriodControl.getPeriod(i).SampleIndex);

 mat caseExp = entirePeriodCase.getExpData().cols(caseIndex);

 mat controlExp = entirePeriodControl.getExpData().cols(controlIndex);

 int controlsize = controlExp.n_rows;

 //Store the gene's P value

 vector<double> PValues;

 //Go Through Student T-test

 for (int j = 0; j < caseExp.n_rows; j++){

 //Retrieve case and control Exp data for each gene

 rowvec caseGene = caseExp.row(j);

 rowvec controlGene = controlExp.row(j);

 TTest tTest(caseGene, controlGene);

 PValues.push_back(tTest.pvalue);

 }

 vec PValuesList = conv_to<vec>::from(PValues);

 //Go through FDR and 2-Fold Change

 //Sort the Pvalues list and get the index of the gene

 uvec sortedPValuesList = sort_index(PValuesList, "ascending");

 vector<int>geneIndex;

 //For each index value in sorted index

 for (int j = 0; j < sortedPValuesList.n_rows; j++){

 //FDR

 if (PValuesList(sortedPValuesList.at(j)) < ((j + 1) / float(controlsize)) *

 0.05){

 //2-fold change

 if (stddev(caseExp.row(sortedPValuesList.at(j))) /

 stddev(controlExp.row(sortedPValuesList.at(j))) < 2)

 continue;

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-18

 //keep the index into a list

 geneIndex.push_back(sortedPValuesList.at(j));

 }

 else

 break;

 }

 //Keep differential expression genes and retrieve their expression value for case and

 control

 uvec selectedGene = conv_to<uvec>::from(geneIndex);

 cout << selectedGene.n_rows << " ";

 entirePeriodCase.addFilteredGene(selectedGene);

 entirePeriodControl.addFilteredGene(selectedGene);

 entirePeriodCase.addFilteredExp(caseExp.rows(selectedGene));

 entirePeriodControl.addFilteredExp(controlExp.rows(selectedGene));

 }

 //Normalize the filtered expression data

 vector<mat> normalizedExp;

 for (int i = 0; i < entirePeriodCase.size(); i++){

 mat filteredGeneExpCase = entirePeriodCase.getFilteredExp(i);

 mat filteredGeneExpCon = entirePeriodControl.getFilteredExp(i);

 mat geneM = mean(filteredGeneExpCon, 1) * ones(1, filteredGeneExpCase.n_cols);

 mat geneStd = stddev(filteredGeneExpCon, 0, 1) * ones(1,

 filteredGeneExpCase.n_cols);

 mat normalized = (filteredGeneExpCase - geneM) / geneStd;

 normalizedExp.push_back(normalized);

 }

 //Output result to a file

 out << "---------------------Choosing Differential Expression Genes---------------------" << endl;

 for (int c = 0; c < entirePeriodCase.size(); c++){

 out << "\nPeriod " << entirePeriodCase.getPeriod(c).period << ":" << endl;

 if (entirePeriodCase.getFilteredGene(c).is_empty()){

 out << "None" << endl;

 continue;

 }

 for (int cc = 0; cc < entirePeriodCase.getFilteredGene(c).n_rows; cc++){

 out << entirePeriodCase.geneName

 .at(entirePeriodCase.getFilteredGene(c).at(cc)) << " ";

 }

 out << endl;

 }

 //Perform clustering for differential expression genes for each period

 //We are using hierarchical clustering method to group the genes

 //Clustering can refer to clustering function in below

 //The result is storing in a Cluster variable, refer to Cluster class

 cout << "\n\n-----------------2. Clustering The Genes-----------------" << endl;

 //clusterPeriod is used to store clusters for all periods

 vector<Cluster> clusterPeriod;

 for (int i = 0; i < entirePeriodCase.size(); i++){

 cout << i << " ";

 uvec cluster = clustering(normalizedExp.at(i), 40);

 if (cluster.is_empty()){

 Cluster tmp;

 clusterPeriod.push_back(tmp);

 continue;

 }

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-19

 clusterPeriod.push_back(Cluster(cluster, entirePeriodCase.getFilteredGene(i),

 expCase, expControl));

 }

 //Calculating indices for all clusters found in whole timeline

 cout << "\n\n-----------------3. Calculating Indices-----------------" << endl;

 //Loop through every period to access every clusters

 vector<Dominant> candidateDNB;

 urowvec numDominatedGroup(clusterPeriod.size(), fill::zeros);

 for (int p = 0; p < entirePeriodCase.size(); p++){

 cout << p;

 int clustercount = clusterPeriod.at(p).clusterList.n_rows;

 //Go through each of the cluster and retrieve normalized exp based on the genes in

 each cluster

 for (int i = 0; i < clustercount; i++){

 uvec clustergene = find(clusterPeriod.at(p).clusterList == i);

 int numclustergene = clustergene.n_rows;

 mat nexpcase = clusterPeriod.at(p).sickExp.rows(clustergene);

 uvec othergene = find(clusterPeriod.at(p).clusterList != i);

 mat othergeneexp = clusterPeriod.at(p).sickExp.rows(othergene);

 int othergenenum = othergene.n_rows;

 vector<mat> pccallPeriod;

 vector<double> sumpccallPeriod;

 vector<double> sumstdPeriod;

 vector<double> sumMixpccPeriod;

 for (int period = 0; period < entirePeriodCase.size(); period++){

uvec tmp =

conv_to<uvec>::from(entirePeriodCase.getPeriod(period)

.SampleIndex);

 //calculate pcc of the cluster in each period

 mat pccall = cor(trans(nexpcase.cols(tmp)));

 pccallPeriod.push_back(pccall);

 sumpccallPeriod.push_back((sum(sum(abs(pccall))) -

 numclustergene) / 2);

 //calculate std of the cluster in each period

 vec stdEachGene = stddev(nexpcase.cols(tmp), 0, 1);

 double sumStd = sum(stdEachGene);

 sumstdPeriod.push_back(sumStd);

 //calculate sum of pcc of all other clusters

 mat sumMixpcc(1, 1, fill::zeros);

 mat tmpnexpcase = nexpcase.cols(tmp);

 mat tmpothergeneexp = othergeneexp.cols(tmp);

 for (int ii = 0; ii < numclustergene; ii++){

 for (int jj = 0; jj < othergenenum; jj++){

 sumMixpcc +=

 abs(cor(trans(tmpnexpcase.row(ii)),

 trans(tmpothergeneexp.row(jj))));

 }

 }

 sumMixpccPeriod.push_back(sumMixpcc(0, 0));

 }

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-20

 //calculate average of pcc of cluster, standard deviation of cluster, and sum

 of pcc of others clusters

 rowvec avgpccPeriod;

 rowvec avgstdPeriod;

 rowvec avgmixpccPeriod;

 avgpccPeriod = conv_to<rowvec>::from(sumpccallPeriod) /

 (numclustergene * (numclustergene - 1)) * 2;

 avgstdPeriod = conv_to<rowvec>::from(sumstdPeriod) / numclustergene;

 avgmixpccPeriod = conv_to<rowvec>::from(sumMixpccPeriod) /

 numclustergene / othergenenum;

 //Checking whether the cluster fulfil the criteria or not

 for (int period = 1; period < entirePeriodCase.size() - 1; period++){

 if ((avgstdPeriod(period) > avgstdPeriod(period - 1)) &&

 (avgstdPeriod(period) > avgstdPeriod(period + 1)) &&

 (avgpccPeriod(period) > avgpccPeriod(period - 1)) &&

 (avgpccPeriod(period) > avgpccPeriod(period + 1)) &&

 (avgmixpccPeriod(period) < avgmixpccPeriod(period - 1))

 &&

 (avgmixpccPeriod(period) < avgmixpccPeriod(period +

 1))){

 //keep the dominanted group into a variable

 numDominatedGroup(p)++;

 rowvec compositeIndex = (avgstdPeriod /numclustergene)

 % (avgpccPeriod / (numclustergene * (numclustergene -

 1)) * 2) / avgmixpccPeriod;

 candidateDNB.push_back(Dominant(entirePeriodCase.getPeriod(p).period, p,

 trans(clustergene),compositeIndex));

 break;

 }

 }

 }

 }

 //output experimental result

 out << "\n\n-----------------Experimental Result-----------------" << endl;

 out << "Number of Candidate DNB In Each Sampling Point: " << numDominatedGroup

 << endl;

 for (int a = 0; a < candidateDNB.size(); a++){

 Dominant tmpDNB = candidateDNB.at(a);

 out << "Period " << tmpDNB.period << ":" << endl;

 out << "Cluster : \n" << tmpDNB.cluster << endl;

 out << "Composite Index : \n" << tmpDNB.compositeIndex << endl << endl;

 }

 out.close();

 caseExp.close();

 controlExp.close();

 return 0;

}

//Clustering function

uvec clustering(mat X, int cutoff){

 //if input X is empty

 if (X.n_rows == 0){

 uvec a;

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-21

 return a;

 }

 //declare a column vector to keep group number of each gene

 uvec cluster(X.n_rows, fill::zeros);

 //initialize the group number to each gene

 for (int i = 0; i < X.n_rows; i++){

 cluster(i) = i;

 }

 int clusterNo = max(cluster) + 1;

 //if group number is smaller than cutoff, return the result

 if (clusterNo <= cutoff){

 return cluster;

 }

 //calculating correlation of each gene

 mat corrMat = cor(trans(X), trans(X));

 corrMat = 1.000 - corrMat;

 mat ref = corrMat;

 //Set upper triangle area of correlation matrix to NaN

 for (int row = 0; row < corrMat.n_rows; row++){

 for (int col = row; col < corrMat.n_cols; col++){

 corrMat(row, col) = NAN;

 }

 }

 //Loop the clustering process until the total number of cluster is equal to cutoff

 while (clusterNo > cutoff){

 //find min value of each clumn and their index

 rowvec tmpMin = min(corrMat);

 urowvec tmpMinIndex = index_min(corrMat);

 //find the smallest value location

 uword minCol = index_min(tmpMin);

 uword minRow = tmpMinIndex.at(minCol);

 //perform cluster merging

 uvec clusterItems = find(cluster == minCol);

 for (int i = 0; i < clusterItems.n_rows; i++){

 cluster(clusterItems(i)) = minRow;

 }

 //reset cluster number, refer to reset function in below

 cluster = reset(cluster);

 clusterNo = max(cluster) + 1;

 //This part is reset the correlation matrix

 mat tempCorrMat;

 tempCorrMat = corrMat;

 //min col

 for (uword row = 0; row < tempCorrMat.n_rows; row++){

 if (std::isnan(tempCorrMat(row, minRow)) || (row == minCol)

 || (row == minRow))

 continue;

tempCorrMat(row, minRow) = min(corrMat(max(row, minRow),

min(row,minRow)), corrMat(max(row, minCol), min(row,minCol)));

 }

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-22

 //min row

 for (uword col = 0; col < tempCorrMat.n_cols; col++){

 if (std::isnan(tempCorrMat(minRow, col)) || (col == minCol)

 || (col == minRow))

 continue;

 tempCorrMat(minRow, col) = min(corrMat(max(minRow, col),

 min(minRow, col)) ,corrMat(max(minCol, col), min(minCol, col)));

 }

 tempCorrMat.shed_col(minCol);

 tempCorrMat.shed_row(minCol);

 corrMat = tempCorrMat;

 }

 return cluster;

}

//This function is used to reset the cluster number

uvec reset(uvec X){

 int c = 0;

 for (int i = 0; i < X.n_rows; i++){

 uvec list = find(X == i);

 if (list.n_rows == 0)

 continue;

 for (int j = 0; j < list.n_rows; j++){

 X(list(j)) = c;

 }

 c++;

 }

 return X;

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-23

B-3.2 Cluster.h

#ifndef CLUSTER_H

#define CLUSTER_H

#include <vector>

#include <armadillo>

#include <string>

using namespace std;

using namespace arma;

//This class is used to create an instance for each clustered genes

//clusterList = List of genes and their group

//geneList = List of genes'name

//clusterNo = List of clusters and number of their members

//sickExp = Case Expression Genes dataset

//healthyExp = Control Express Genes dataset

class Cluster{

 private:

 public:

 uvec clusterList;

 uvec geneList;

 urowvec clusterNo;

 mat sickExp;

 mat healthyExp;

 Cluster(uvec, uvec, mat, mat);

 Cluster();

};

#endif

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-24

B-3.3 Cluster.cpp

#include "Cluster.h"

#include <vector>

#include <string>

#include <armadillo>

using namespace std;

using namespace arma;

Cluster::Cluster(){}

Cluster::Cluster(uvec list, uvec geneIndex, mat caseExp, mat controlExp){

 int NoCluster = max(list) + 1;

 clusterList = list;

 urowvec cNo(NoCluster, fill::zeros);

 for (int i = 0; i < list.n_rows; i++){

 cNo(list(i))++;

 }

 clusterNo = cNo;

 geneList = geneIndex;

 sickExp = caseExp.rows(geneIndex);

 healthyExp = controlExp.rows(geneIndex);

 mat sickM = mean(sickExp, 1) * ones(1, sickExp.n_cols);

 mat healthyM = mean(healthyExp, 1) * ones(1, healthyExp.n_cols);

 mat sickStd = stddev(sickExp, 0, 1) * ones(1, sickExp.n_cols);

 mat healthyStd = stddev(healthyExp, 0, 1) * ones(1, healthyExp.n_cols);

 sickExp = (sickExp - healthyM) / healthyStd;

 healthyExp = (healthyExp - healthyM) / healthyStd;

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-25

B-3.4 Dominant.h

#ifndef DOMINANT_H

#define DOMINANT_H

#include <vector>

#include <armadillo>

#include <string>

#include "Cluster.h"

//This class is used to create an instance of dominant group

//period = period name of the dominant group

//periodIndex = index of the period

//cluster = list of genes

//compositeIndex = composite index of the dominant group throughout the timeline

class Dominant{

 private:

 public:

 string period;

 int periodIndex;

 urowvec cluster;

 Dominant(string, int, urowvec, rowvec);

 arma::rowvec compositeIndex;

};

#endif

B-3.5 Dominant.cpp

#include "Dominant.h"

#include "Cluster.h"

#include <armadillo>

#include <string>

using namespace std;

using namespace arma;

Dominant::Dominant(string period, int periodIndex, urowvec cluster, rowvec compositeIndex){

 this->period = period;

 this->periodIndex = periodIndex;

 this->cluster = cluster;

 this->compositeIndex = compositeIndex;

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-26

B-3.6 EntirePeriod.h

#ifndef ENTIREPERIOD_H

#define ENTIREPERIOD_H

#include "Period.h"

#include <vector>

#include <string>

using namespace std;

//This class is used to create a timeline that have several sampling point

//entirePeriod = list of periods

//expData = expression data

//filteredExp = List of filtered expression data (over periods)

//filteredGene = List of selected genes (over periods)

//geneName = List of genes' name

class EntirePeriod{

private:

 vector<Period> entirePeriod;

 arma::mat expData;

 vector<arma::mat> filteredExp;

 vector<arma::uvec> filteredGene;

public:

 vector<string> geneName;

 void setExpData(arma::mat);

 void setGeneName(vector<string>);

 arma::mat getExpData();

 void addPeriod(string, string, int);

 void addFilteredExp(arma::mat);

 void addFilteredGene(arma::uvec);

 arma::mat getFilteredExp(int);

 arma::uvec getFilteredGene(int);

 int size();

 bool isEmpty();

 Period getPeriod(int);

};

#endif

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-27

B-3.7 EntirePeriod.cpp

#include "Period.h"

#include "EntirePeriod.h"

#include <vector>

#include <string>

using namespace std;

//Add period to the list and makesure there is no duplicated period

void EntirePeriod::addPeriod(string period, string sample, int index){

 //If list is empty, straight away add new period

 if (entirePeriod.size() == 0){

 entirePeriod.push_back(Period(period, sample, index));

 return;

 }

 //Check for existance of period. If yes then add sample to the period

 for (int i = 0; i < entirePeriod.size(); i++){

 if (entirePeriod.at(i).period == period){

 entirePeriod.at(i).SampleID.push_back(sample);

 entirePeriod.at(i).SampleIndex.push_back(index);

 return;

 }

 }

 //Else create a new period

 entirePeriod.push_back(Period(period, sample, index));

}

//Keep expression data

void EntirePeriod::setExpData(mat exp){

 this->expData = exp;

}

//Keep Genes Name

void EntirePeriod::setGeneName(vector<string> geneName){

 this->geneName = geneName;

}

//Retrieve expression data

mat EntirePeriod::getExpData(){

 return expData;

}

//Keep Filtered expression data

void EntirePeriod::addFilteredExp(mat exp){

 filteredExp.push_back(exp);

}

//Keep differential expression genes

void EntirePeriod::addFilteredGene(uvec geneList){

 filteredGene.push_back(geneList);

}

//determine number of list items

int EntirePeriod::size(){

 return entirePeriod.size();

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-28

//Get particular period

Period EntirePeriod::getPeriod(int index){

 return entirePeriod.at(index);

}

//Get filtered expression data

mat EntirePeriod::getFilteredExp(int index){

 return filteredExp.at(index);

}

//Get differential expression gene

uvec EntirePeriod::getFilteredGene(int index){

 return filteredGene.at(index);

}

//Check the list is empty or not

bool EntirePeriod::isEmpty(){

 if (entirePeriod.size() == 0)

 return true;

 return false;

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-29

B-3.8 Period.h

#ifndef PERIOD_H

#define PERIOD_H

#include <vector>

#include <armadillo>

#include <string>

using namespace std;

using namespace arma;

//This class is used to create a period

//period = name of period

//SampleID = ID of the samples

//SampleIndex = Index of the samples

class Period{

 private:

 public:

 string period;

 vector<string> SampleID;

 vector<int> SampleIndex;

 Period(string, string, int);

};

#endif

B-3.9 Period.cpp

#include "Period.h"

#include <armadillo>

#include <string>

using namespace std;

using namespace arma;

Period::Period(string period, string SampleID, int index){

 this->period = period;

 this->SampleID.push_back(SampleID);

 this->SampleIndex.push_back(index);

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-30

B-3.10 TTest.h

#ifndef TTEST_H

#define TTEST_H

#include <boost/math/distributions/students_t.hpp>

#include <armadillo>

using namespace boost::math;

//This class is used to perform student-t test

//flag = return true if the p values is smaller than significant value

//pvalue = p value

class TTest{

 private:

 public:

 bool flag;

 double pvalue;

 TTest(arma::rowvec, arma::rowvec);

};

#endif

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-31

B-3.11 TTest.cpp

#include <boost/math/distributions/students_t.hpp>

#include <armadillo>

#include "TTest.h"

using namespace std;

using namespace arma;

//T-test function

TTest::TTest(rowvec caseGene, rowvec controlGene){

 double caseMean = mean(caseGene);

 double controlMean = mean(controlGene);

 double caseVar = var(caseGene);

 double controlVar = var(controlGene);

 int caseSize = caseGene.n_cols;

 int controlSize = controlGene.n_cols;

 double alpha = 0.05;

 int df = caseSize + controlSize - 2;

 double diff = caseMean - controlMean;

 double pooledVar = ((caseSize - 1) * caseVar + (controlSize - 1) * controlVar) / float(df);

 double t = diff / sqrt(pooledVar * ((1 / float(caseSize)) + (1 / float(controlSize))));

 t = -abs(t);

 students_t dist(df);

 pvalue = 2 * cdf(complement(dist, fabs(t)));

 if (pvalue <= alpha)

 flag = true;

 else

 flag = false;

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-32

B-4 Imputation (Source Code)

B-4.1 main.cpp

#include <iostream>

#include <armadillo>

#include <boost/math/distributions/students_t.hpp>

#include "tbb/blocked_range.h"

#include "tbb/parallel_for.h"

#include "tbb/task_scheduler_init.h"

#include "TTest.h"

using namespace std;

using namespace arma;

using namespace tbb;

int overlapping(urowvec, urowvec);

int main(){

 string casefileName;

 string controlfileName;

 //Get Case file and control file from user

 cout << "Enter Case File Name and Control File Name:" << endl;

 cout << "Case File: ";

 cin >> casefileName;

 cout << "Control File: ";

 cin >> controlfileName;

 ifstream inputCase(casefileName);

 ifstream inputCont(controlfileName);

 //This part of code is retrieving expression data from case and control file

 cout << "1. Retriving Data" << endl << endl;

 string line;

 getline(inputCont, line);

 vector<string> sampleID;

 vector<string> geneID;

 line.erase(line.begin(), line.begin() + line.find(',') + 1);

 while (line.find(',') != -1){

 sampleID.push_back(line.substr(0, line.find(',')));

 line.erase(line.begin(), line.begin() + line.find(',') + 1);

 }

 sampleID.push_back(line);

 while (getline(inputCont, line)){

 geneID.push_back(line.substr(0, line.find(',')));

 }

 mat expCase, expControl;

 expCase.load(casefileName);

 expCase.shed_col(0);

 expCase.shed_row(0);

 expControl.load(controlfileName);

 expControl.shed_col(0);

 expControl.shed_row(0);

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-33

 //construct a biological network by using CBDN method

 //refer to CBDN module

 cout << "2. Constructing Network" << endl << endl;

 mat influenceScore(expControl.n_rows, expControl.n_rows, fill::zeros);

 mat corrMat = cor(trans(expControl));

 int infrow = influenceScore.n_rows;

 parallel_for(0, infrow, [&](int i){

 //for (int i = 0; i < influenceScore.n_rows; i++){

 for (int j = 0; j < influenceScore.n_cols; j++){

 if (i == j){

 influenceScore(i, j) = 0;

 continue;

 }

 double totalInflu = 0.0;

 for (int k = 0; k < influenceScore.n_cols; k++){

 if (k != i && k != j){

 double pc = (corrMat(i, k) - (corrMat(i, j) * corrMat(k, j))

)/ sqrt((1 - pow(corrMat(i, j), 2)) * (1 - pow(corrMat(k, j),

 2)));

 totalInflu += abs(corrMat(i, k) - pc);

 }

 }

 influenceScore(j, i) = totalInflu / (influenceScore.n_rows - 1);

 }

 });

 for (int row = 1; row < influenceScore.n_rows; row++){

 for (int col = 0; col < row; col++){

 if (influenceScore(row, col) < influenceScore(col, row))

 influenceScore(row, col) = 0;

 else

 influenceScore(col, row) = 0;

 }

 }

 urowvec maxIndex = index_max(influenceScore);

 mat graph(influenceScore.n_rows, influenceScore.n_cols, fill::zeros);

 for (int col = 0; col < maxIndex.n_cols; col++){

 graph(maxIndex(col), col) = influenceScore(maxIndex(col), col);

 }

 //choosing differential expression gene like DNB module

 cout << "3. Detect Differentially Expressed Genes" << endl << endl;

 //Store the gene's P value

 vector<double> PValues;

 //Go Through Student T-test

 for (int j = 0; j < expCase.n_rows; j++){

 //Retrieve case and control Exp data for each gene

 rowvec caseGene = expCase.row(j);

 rowvec controlGene = expControl.row(j);

 TTest tTest(caseGene, controlGene);

 PValues.push_back(tTest.pvalue);

 }

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-34

 vec PValuesList = conv_to<vec>::from(PValues);

 //Go through FDR and 2-Fold Change

 //Sort the Pvalues list and get the index of the gene

 uvec sortedPValuesList = sort_index(PValuesList, "ascending");

 vector<int>geneIndex;

 //For each index value in sorted index

 for (int j = 0; j < sortedPValuesList.n_rows; j++){

 //FDR

 if (PValuesList(sortedPValuesList.at(j)) < ((j + 1) / float(expControl.n_rows)) * 0.5){

 //2-fold change

 if (stddev(expCase.row(sortedPValuesList.at(j))) /

 stddev(expControl.row(sortedPValuesList.at(j))) < 2)

 continue;

 //keep the index into a list

 geneIndex.push_back(sortedPValuesList.at(j));

 }

 else

 break;

 }

 //Expending the seeds to include their neighbor genes

 cout << "4. Expending to Neighbor genes" << endl << endl;

 //a list used to keep all clusters

 vector<vector<int>> clusters;

 //get list of different expression genes

 urowvec diffExpGene = conv_to<urowvec>::from(geneIndex);

 //loop through each of them, each of them will include their neighbor genes and consider as a

 cluster

 //neighbor genes are determined by using the network constructed in step 1

 for (int i = 0; i < diffExpGene.n_cols; i++){

 vector<int> clustergene;

 clustergene.push_back(diffExpGene(i));

 for (int row = 0; row < graph.n_rows; row++){

 if (graph(row, diffExpGene(i)) == 0)

 continue;

 else

 clustergene.push_back(row);

 }

 for (int col = 0; col < graph.n_cols; col++){

 if (graph(diffExpGene(i), col) == 0)

 continue;

 else

 clustergene.push_back(col);

 }

 clusters.push_back(clustergene);

 }

 //Identify which clusters have overlapping genes

 //merge them as are considered as one community

 //overlapping function can refer below

 cout << "5. Identifying overlapping clusters" << endl << endl;

 mat overlappingMat(clusters.size(), clusters.size(), fill::zeros);

 int kc = 3;

 for (int row = 0; row < overlappingMat.n_rows; row++){

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-35

 for (int col = 0; col < overlappingMat.n_cols; col++){

 overlappingMat(row, col) =

 overlapping(conv_to<urowvec>::from(clusters.at(row)),

 conv_to<urowvec>::from(clusters.at(col)));

 }

 }

 //set diagonal elements to 1 if they are greater than k value

 for (int i = 0; i < overlappingMat.n_rows; i++){

 if (overlappingMat(i, i) < kc)

 overlappingMat(i, i) = 0;

 else

 overlappingMat(i, i) = 1;

 }

 //set each cells to 0 or value greater than 1 for number of similir genes

 for (int row = 0; row < overlappingMat.n_rows; row++){

 for (int col = 0; col < overlappingMat.n_cols; col++){

 if (row == col)

 continue;

 if (overlappingMat(row, col) < kc - 1)

 overlappingMat(row, col) = 0;

 else

 overlappingMat(row, col) = 1;

 }

 }

 //sum columny by column

 rowvec sumMat = sum(overlappingMat, 0);

 //find which cluster is overlapping clusters

 uvec clique = find(sumMat != 0);

 uvec cliqueList(clique.n_rows);

 //create a list of number for each overlapping clusters

 for (int i = 0; i < cliqueList.n_rows; i++){

 cliqueList(i) = i + 1;

 }

 //group clusters which are same community

 for (int i = 0; i < clique.n_rows; i++){

 for (int j = 0; j < clique.n_rows; j++){

 if (clique(i) == clique(j))

 continue;

 if (overlappingMat(clique(i), clique(j)) == 1)

 if (cliqueList(j) != cliqueList(i))

 cliqueList(j) = cliqueList(i);

 }

 }

 //reset the communities number

 int nc = 1;

 for (int i = 1; i <= cliqueList.n_rows; i++){

 uvec list = find(cliqueList == i);

 if (list.n_rows == 0)

 continue;

 for (int j = 0; j < list.n_rows; j++){

 cliqueList(list(j)) = nc;

 }

 nc++;

 }

 //merge the clusters from same communities to form a larger cluster

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-36

 int size = max(cliqueList);

 vector<vector<int>>cliques;

 for (int i = 0; i < size; i++){

 uvec group = find(cliqueList == i + 1);

 vector<int>tmp;

 for (int j = 0; j < group.n_rows; j++){

 for (int k = 0; k < clusters.at(clique(group(j))).size(); k++){

 tmp.push_back(clusters.at(clique(group(j))).at(k));

 }

 }

 cliques.push_back(tmp);

 }

 //checking for duplicated genes

 vector<vector<int>> tmpList;

 for (int i = 0; i < cliques.size(); i++){

 urowvec tmp = conv_to<urowvec>::from(cliques.at(i));

 tmp = unique(tmp);

 tmpList.push_back(conv_to<vector<int>>::from(tmp));

 }

 cliques = tmpList;

 //score the communities/clusterss

 cout << "6. Calculating Imputation Value" << endl << endl;

 rowvec score(cliques.size(), fill::zeros);

 int n = expCase.n_cols;

 for (int i = 0; i < cliques.size(); i++){

 mat genesMat = expCase.rows(conv_to<urowvec>::from(cliques.at(i)));

 rowvec E = sum(genesMat, 0) / (cliques.at(i).size() * 1.0);

 score(i) = accu(E) / (n * 1.0);

 uvec missingValueIndex = find(genesMat.row(0) == 0);

 if (missingValueIndex.n_rows == 0)

 continue;

 rowvec cValues = genesMat.row(0) - sum(genesMat.rows(1, genesMat.n_rows - 1),

 0);

 double sumMissC = sum(cValues(missingValueIndex));

 double c = (sum(cValues) - sumMissC) / (cValues.n_cols -

 missingValueIndex.n_rows);

 for (int k = 0; k < missingValueIndex.n_rows; k++){

 expCase.at(cliques.at(i).at(0), missingValueIndex(k)) = c +

 abs(cValues(missingValueIndex(k)));

 cout << c + abs(cValues(missingValueIndex(k))) << " ";

 }

 }

 cout << mean(expCase.row(15))<<endl;

 expCase.save("newCase.csv", csv_ascii);

 return 0;

}

//overlapping function, used to determine how many genes exist in both cluster

int overlapping(urowvec a, urowvec b){

 urowvec maxValue;

 maxValue << a.max() << b.max() << endr;

 urowvec list(maxValue.max() + 1, fill::zeros);

 for (int i = 0; i < a.n_cols; i++){

 int x = a(i);

 list(a(i))++;

 }

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-37

 for (int i = 0; i < b.n_cols; i++){

 list(b(i))++;

 }

 uvec result = find(list == 2);

 return result.n_rows;

}

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-38

B-4.2 TTest.h

#ifndef TTEST_H

#define TTEST_H

#include <boost/math/distributions/students_t.hpp>

#include <armadillo>

using namespace boost::math;

//This class is used to perform student-t test

//flag = return true if the p values is smaller than significant value

//pvalue = p value

class TTest{

 private:

 public:

 bool flag;

 double pvalue;

 TTest(arma::rowvec, arma::rowvec);

};

#endif

APPENDICES

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR B-39

B-4.3 TTest.cpp

#include <boost/math/distributions/students_t.hpp>

#include <armadillo>

#include "TTest.h"

using namespace std;

using namespace arma;

//T-test function

TTest::TTest(rowvec caseGene, rowvec controlGene){

 double caseMean = mean(caseGene);

 double controlMean = mean(controlGene);

 double caseVar = var(caseGene);

 double controlVar = var(controlGene);

 int caseSize = caseGene.n_cols;

 int controlSize = controlGene.n_cols;

 double alpha = 0.05;

 int df = caseSize + controlSize - 2;

 double diff = caseMean - controlMean;

 double pooledVar = ((caseSize - 1) * caseVar + (controlSize - 1) * controlVar) / float(df);

 double t = diff / sqrt(pooledVar * ((1 / float(caseSize)) + (1 / float(controlSize))));

 t = -abs(t);

 students_t dist(df);

 pvalue = 2 * cdf(complement(dist, fabs(t)));

 if (pvalue <= alpha)

 flag = true;

 else

 flag = false;

}

POSTER

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR

PLAGIARISM CHECK SUMMARY

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR

PLAGIARISM CHECK SUMMARY

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR

PLAGIARISM CHECK SUMMARY

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

Tan Kok Hoong

ID Number(s)

1302418

 Programme / Course Computer Science

Title of Final Year Project Online Tools For Analyzing Metagenomics Data

Similarity Supervisor’s Comments

(Compulsory if parameters of originality exceeds

the limits approved by UTAR)

Overall similarity index: ___ %

 Similarity by source
 Internet Sources: _______________ %

 Publications: _________ %

 Student Papers : _________ %

Number of individual sources listed of
more than 3% similarity:

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality

report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the

Final Year Project Report submitted by my student(s) as named above.

 ________________________________ ________________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR

