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ABSTRACT 

 

This thesis reports on semiclassical and full quantum mechanical treatments of light-

matter interaction. In particular, we look at the interaction between single-mode light 

field and a two-level atom in a non-dissipating closed system. In semiclassical 

treatment, the interaction is dominated by electric-dipole interaction, thus the 

electric-dipole Hamiltonian is formulated in which, together with the atomic 

Hamiltonian, forms the total Hamiltonian of the system. Derivations to obtain the 

probability function of the atom in ground state and excited state are performed. Two 

cases of detuning, namely exact resonance and near resonance are then studied. In 

exact resonance, it is found that the probability of the atom to reside in ground state 

and excited state is conserved and varied in sinusoidal waveform. In the case of near 

resonant, the period and the amplitude of the probability function decreases with 

higher detuning. On the other hand, in full quantum mechanical treatment, we 

consider quantised light field of various initial field states interacting with a quantum 

mechanical two-level atom. The total Hamiltonian of the system consists of atomic 

Hamiltonian, field Hamiltonian and interaction Hamiltonian is derived, which is then 

transformed into the interaction picture. The derived Hamiltonian is then used to 

solve the Schrodinger equation to find the wavefunction of the joint system. Finally, 

initial field states such as number state, coherent state and thermal state are used to 

obtain the ground state probability functions of the two-level system. Initial number 

state renders the atom to undergo a uniform oscillation in probability function, 

similar as in the case of the semiclassical treatment. Initial thermal field interacting 

with the atom turns the probability function to exhibit chaotic characteristics, 

resulting in minimal amount of information to be extracted from the system. Most 

interestingly, initial coherent state condition allows for the observation of the 

collapse and revival of Rabi oscillation. Such phenomenon is a characteristic feature 

of the quantum mechanical treatment and in fact, is the direct evidence of the 

quantisation of the field state. The time period between each revival features is also 

investigated and is found that the period is related to mean photon number and 

interaction strength by the formula 𝑇 ≈ 2𝜋 𝜆−1√�̅�. Furthermore, the derived model is 

extended from single-photon model to multiple-photon model in which the two-level 

atom absorbs multiple photons to undergo excitation. In the case of two-photon 

model with initial coherent state, we observe collapse and revival features with much 
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shorter period. The probability function with initial thermal state, on the other hand, 

remains chaotic even in two-photon model.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background 

Much of the interests in studying the interaction of light with matter have been 

generated over the past few centuries. Traditional studies on such interaction involve 

classical treatment of light as an electromagnetic wave and atom as a Hertzian dipole. 

Interactions can be observed when the oscillation of electromagnetic wave is in 

resonant with the dipole. Besides that, the interaction of light with media may also be 

in the form of absorption, transmission, reflection and scattering. 

 In the advent of quantum mechanics, quantum optics is introduced which 

involves the semiclassical and quantum mechanical treatments of light-matter 

interaction. In quantum mechanics, the energy levels of the atom are quantised as 

opposed to continuous in classical theories. Semiclassical treatment requires such 

quantum mechanical atom, but still retains the classical properties of the light field.  

To completely investigate the light-matter interaction, a full quantum 

mechanical treatment is applied to both the atom and the light field. In this treatment, 

the light is quantised and is considered as photons. One important model of this 

treatment is the Jaynes-Cummings model which was introduced by Edwin Jaynes 

and Fred Cummings in 1963. This model was first used to investigate the classical 

aspect of spontaneous emission, but later found that their work resulted in showing 

the discreteness of the photons.    

 

1.2 Problem Statement and Importance of the Study 

Quantum applications have seen rapid development over the last few decades. One of 

the earliest progresses was in 1917 when Einstein developed the theoretical 

foundations of laser and maser. However it was not until in the year 1939 that Lamb 

and Rutherford first demonstrated the stimulated emission process. A few years later 

Kastler and Weber proposed light and microwave amplification respectively, which 

later became the experimental foundation for laser and maser. These developments 

stimulated a new field of quantum electronics. Besides that, photonic qubits remain 

as one of the main candidates for quantum computing and long-distance quantum 

teleportation.  
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 All these aforementioned developments require the interactions between light 

and matter. Therefore a solid understanding on the nature of such interaction is 

required in order to analyse the theories behind these recent progresses as well as 

possible future applications.  

 

1.3 Aims and Objectives of the Study 

Given the importance of quantum optics in the modern research and development, 

this study aims to investigate the fundamental problem of light-matter interaction 

using both semiclassical and quantum mechanical treatments. In semiclassical 

treatment, the probabilities of the two-level system to reside in either ground state or 

excited state is derived and discussed. This report also aims to highlight the 

mathematical procedure in obtaining the theoretical form of the interaction between 

an energetically quantised two-level atom and a classical light field. 

 Besides that, it is also one of this project’s main objectives to perform 

quantum mechanical treatment on the interaction between a two-level atom and 

various single-mode quantised light sources. The characteristic features of these 

light-matter interactions will be studied thoroughly. This study also aims to 

demonstrate the mathematical derivation of wavefunction of the interaction system. 

Furthermore, in-depth studies on the properties of the collapse and revival features of 

the Rabi oscillations are performed.   

 

1.4 Scope and Limitations of the Study 

This thesis reports primarily on the interaction between a single-mode light field and 

a two-level atom in a non-dissipative closed system. The scope of this study can be 

generally classified into two types, semiclassical and quantum mechanical treatments. 

In semiclassical treatment, the energy level of the atom is assumed to be quantised 

whereas the field is of classical nature. On the other hand, quantum mechanical 

treatment assumed energetically quantised two-level atom and quantised light field 

statistics.  

 The study, however, is limited to closed system in which decoherence and 

energy dissipation do not occur. Several approximations such as rotating-wave 

approximation and dipole approximation are also utilised in the derivations. A 

thorough study without the use of these approximations is beyond the scope of this 

project.  
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1.5 Outline of the study 

The study begins with a complete investigation on the semiclassical treatment of 

light-matter interaction. To simplify the scenario, several approximations such as 

dipole approximation and rotating-wave approximation are utilised. From the derived 

results, the probabilities of the atom to be found in either ground state or excited state 

are computed and discussed. 

 Then, derivations on the quantum mechanical treatment of interaction 

between a two-level atom and various single-modes quantised field states are 

performed. For the purpose of this study, Jaynes-Cummings Model was chosen to 

develop the wavefunction of the light-matter system. To achieve that, the 

quantisation of electromagnetic field, which is assumed to be a free field contained 

inside a closed resonator with perfectly conducting walls, is derived and reported. 

Various properties of quantum fields such as number states, coherent states and 

thermal states are investigated as well. After obtaining the wavefunction of the 

interacting system, the probability graphs of the atom staying in the ground state are 

plotted and studied for various conditions such as resonant and near resonant cases. 

Furthermore, an in-depth study on the properties of the collapse and revival features 

of the Rabi oscillations is performed.   
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Dipole Interaction with External Electric field 

In semiclassical treatment, the interaction Hamiltonian between a two-level atom and 

a classical field needs to be derived. There are commonly two starting points: a 

minimal coupling Hamiltonian and a direct coupling Hamiltonian (Rzazewski and 

Boyd, 2004). These methods are also known as velocity gauge and length gauge 

respectively. According to Dick (2016), although the two gauges may come into 

different results for atoms in strong fields, it is still mathematically consistent to mix 

some components of the two gauges. However, since quantum mechanics is 

generally gauge invariant, the choice of the formulation should not affect the final 

result considerably (Han and Madsen, 2010). Hence in this report, the direct coupling 

Hamiltonian is chosen to formulate the interaction Hamiltonian because it is 

conceptually simpler. The derivation for such formulation is shown in this section.  

According to Griffith (1999), a dipole may interact with a uniform or non-

uniform electric field. Suppose a perfect dipole is located inside an electric field as 

shown in figure 2.1, it experiences a force  

 

𝑭 = 𝑞(𝑬+ − 𝑬−) 

= 𝑭+ + 𝑭− , 

 

where 𝑭+ = 𝑞𝑬+ and 𝑭− = −𝑞𝑬−. The electric fields 𝑬+ and 𝑬− are the fields that 

interact with +𝑞 charge and – 𝑞 charge respectively. In a uniform field, the force in 

the positive direction 𝑭+ and the force in the negative direction 𝑭− cancel each other 

completely, leaving no net force acting on the dipole. There will be however a torque 

such that 

 

𝑵 = (𝒓+×𝑭+) + (𝒓−×𝑭−) 

= (
𝒓′

2
×𝑞𝑬) + (−

𝒓′

2
×−𝑞𝑬) 

= 𝑞𝒓′×𝑬 

= 𝒅×𝑬 , 



5 

 

where 𝒅 = 𝑞𝒓′ is the dipole moment and 𝒓′ is the position vector of the charges.  

 

 

Figure 2.1: Schematic drawing of a dipole located inside an electric field. 

 

 On the contrary, a non-uniform electric field does inflict a net force on the 

dipole because 𝑭+ and 𝑭− do not exactly cancel each other. The force experienced 

by the dipole is again given by 

 

𝑭 = 𝑞(𝑬+ − 𝑬−) 

= 𝑞(Δ𝑬) , (2.1) 

 

where Δ𝑬 is the difference between the 𝑬 field at the +𝑞 charge and the – 𝑞 charge. 

Now if we assume that the dipole is very short, the small change in the 𝑬 field can be 

approximated as Δ𝑬 = (𝒓′ ∙ 𝛁)𝑬 which can then be substituted back into equation 2.1 

so that 

 

𝑭 = (𝒅 ∙ ∇)𝑬. 

 

In addition to that, the dipole in a non-uniform field also experiences a torque which 

is the same as the torque experienced by the dipole in a uniform field.  

 To find the energy of an ideal dipole in an electric field, the work done on the 

point charge −𝑞  and +𝑞  are recognised to be 𝑊 = −𝑞𝑉(𝒓)  and 𝑊 = 𝑞𝑉(𝒓 + 𝒓′) 
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respectively. The vector 𝒓 describes the position of the −𝑞 charge measured from an 

arbitrary origin. The energy of the dipole is then given by 

 

𝑈 = 𝑞𝑉(𝒓 + 𝒓′) − 𝑞𝑉(𝒓) 

= 𝑞[𝑉(𝒓 + 𝒓′) − 𝑉(𝒓)] 

= 𝑞 [− ∫ 𝐸 ∙ 𝑑𝑙
𝒓+𝒓′

𝒓

] . 

 

For an ideal dipole, the energy can be simplified into 

 

𝑈 = −𝑞𝑬 ∙ 𝒓′ = −𝒅 ∙ 𝑬 , 

 

which can be extended as a direct coupling Hamiltonian taking the form  

 

�̂�𝐸𝐷 = −�̂� ∙ 𝑬 , (2.2) 

 

where �̂�𝐸𝐷 represents electric-dipole Hamiltonian operator and �̂� is a dipole operator. 

 

2.2 Quantum Harmonic Oscillator 

The solution of a quantum harmonic oscillator remains relevant in quantum optics 

because the quantisation of electromagnetic field yields similar result as a harmonic 

oscillator, hence this part of the literature is included. For simplicity, the harmonic 

oscillator is taken to be one-dimensional, however the solution may be generalised 

into higher dimensional oscillator. Firstly, the potential of a harmonic oscillator is 

written as 𝑉(𝑥) =
1

2
𝑚𝜔2𝑥2 , which can then be substituted into the Schrodinger 

equation so that  

 

𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2
+

1

2
𝑚𝜔2𝑥2Ψ . 

 

Since the potential is time independent, the wavefunction Ψ may take the form of 

separable solution where Ψ(𝑥, 𝑡) = 𝜓(𝑥)𝜙(𝑡). Since the left side of the equation 

only depends on time whereas the right side of the equation only depends on position, 
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the two sides must be equal to a certain constant. Let that constant be energy, 𝐸 and 

separate the equation, we therefore obtain 

 

𝑖ℏ
𝜕ϕ

𝜕𝑡
= 𝐸𝜙 , 

 

and 

 

−
ℏ2

2𝑚

𝜕2ψ

𝜕𝑥2
+

1

2
𝑚𝜔2�̂�2ψ = Eψ . 

 

The solution of the time dependent part of the equation is simply 

 

𝜙(𝑡) = exp (−
𝑖𝐸𝑡

ℏ
). 

 

On the other hand, the spatial part of the equation can be rewritten as 

 

1

2𝑚
[�̂�2 + (𝑚𝜔�̂�)2]𝜓 = 𝐸𝜓 . 

 

Since �̂�𝜓 = 𝐸𝜓 , then the Hamiltonian operator is 

 

�̂� =
1

2𝑚
[�̂�2 + (𝑚𝜔�̂�)2] . 

 

To obtain the solution using algebraic method, we define the ladder operators as 

 

�̂�± =
1

√2ℏ𝑚𝜔
(∓𝑖�̂� + 𝑚𝜔�̂�), (2.3) 

 

where �̂�+ is a step up operator and �̂�− is a step down operator. The product of these 

two operators yields  

 

�̂�+�̂�− =
1

2ℏ𝑚𝜔
[�̂�2 + (𝑚𝜔�̂�)2 + 𝑖𝑚𝜔(�̂��̂� − �̂��̂�)]. (2.4) 
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Since the �̂� operator and �̂� operator do not commute, the term −
1

2ℏ𝑚𝜔
[𝑖𝑚𝜔(�̂��̂� −

�̂��̂�)] remains non-zero. To simplify the extra term, the commutator of these two 

operators using a test function 𝑓 is found to be: 

 

�̂��̂� − �̂��̂� = [�̂�, �̂�]𝑓 

=
ℏ

𝑖

𝑑

𝑑𝑥
𝑥𝑓 −

𝑥ℏ

𝑖

𝑑

𝑑𝑥
𝑓 

=
ℏ

𝑖
(𝑥

𝑑𝑓

𝑑𝑥
+ 𝑓 − 𝑥

𝑑𝑓

𝑑𝑥
) 

= −𝑖ℏ𝑓 . 

 

∴  [�̂�, �̂�] = −𝑖ℏ . 

 

The extra term then simplifies into −
𝑚𝜔ℏ

2ℏ𝑚𝜔
= −

1

2
. In other words the Hamiltonian 

simplifies into  

 

�̂� = ℏ𝜔 (�̂�+�̂�− +
1

2
) (2.5) 

= ℏ𝜔 (�̂� +
1

2
), 

 

where �̂� = �̂�+�̂�−  is a number operator with eigenstates of |𝑛⟩  and corresponding 

eigenvalues of 𝑛. It therefore follows the relation 

 

�̂�|𝑛⟩ = 𝑛|𝑛⟩. 

 

The time-independent Schrodinger equation simplifies into 

 

ℏ𝜔 (�̂�+�̂�− +
1

2
) 𝜓 = 𝐸𝜓. 

 

It is also useful to note a few properties of the ladder operators as follows: 

 

[�̂�−, �̂�+] = 1, (2.6) 
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�̂�+|𝑛⟩ = √𝑛 + 1|𝑛 + 1⟩, (2.7) 

�̂�−|𝑛⟩ = √𝑛|𝑛 − 1⟩, (2.8) 

�̂�(�̂�+𝜓) = (𝐸 + ℏ𝜔)(�̂�+𝜓), (2.9) 

�̂�(�̂�−𝜓) = (𝐸 − ℏ𝜔)(�̂�−𝜓). (2.10) 

 

The observable operators can be expressed in terms of the ladder operators as well, 

i.e. 

 

�̂� = √
ℏ

2𝑚𝜔
(�̂�+ + �̂�−) (2.11) 

 

and 

 

�̂� = 𝑖√
ℏ𝑚𝜔

2
(�̂�+ − �̂�−). (2.12) 

 

2.3 Quantisation of Electromagnetic Field 

Majority of the works in this section were derived based on the methods shown by 

Loudon (2000) and Schleich (2001). The electromagnetic field to be quantised in this 

section is modelled as a free field trapped inside a resonator in which the walls are 

made of perfect conductors. While the classical fields are shown to have quantised 

properties for having spatial modes, the quantisation procedure in this section is 

focused more on the quantisation of the temporal part of the vector potential. We 

begin by describing the classical electromagnetic field using Maxwell’s four 

equations as shown below: 

 

𝛁×𝑬 = −
𝜕𝑩

𝜕𝑡
, (2.13) 

𝜇0
−1𝛁×𝑩 = 휀0

𝜕𝑬

𝜕𝑡
+  𝑱, (2.14) 

휀0𝛁 ∙ 𝑬 = 𝜌, (2.15) 

𝛁 ∙ 𝑩 = 0. (2.16) 
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The variables  𝑱  and 𝜌 are current density and charge density respectively. These 

classical fields are functions of position 𝒓  and time 𝑡 . The quantisation of 

electromagnetic field can be facilitated by re-expressing the Maxwell equation in 

terms of scalar potential 𝜙 and vector potential 𝑨.  

 

2.3.1 Wave Equations of the Potentials 

Firstly, it can be immediately seen that to satisfy equation 2.16, the 𝑩 field can be 

expressed as  

 

𝑩 = 𝛁×𝑨. (2.17) 

 

Substitute equation 2.17 into equation 2.13 and simplify it using the identity 𝛁×

𝛁𝜙 = 0, we obtain 

 

−𝛁×𝑬 − 𝛁×
𝜕𝑨

𝜕𝑡
= 0 = 𝛁×𝛁𝜙 

𝛁×𝛁𝜙 = 𝛁× (−𝑬 −
𝜕𝑨

𝜕𝑡
) 

𝛁𝜙 = (−𝑬 −
𝜕𝑨

𝜕𝑡
) 

 
𝑬 = −𝛁𝜙 −

𝜕𝑨

𝜕𝑡
 . (2.18) 

 

Then, we substitute equations 2.17 and 2.18 into equation 2.14 to obtain 

 

𝜇0
−1𝛁×𝛁×𝑨 = 휀0

𝜕

𝜕𝑡
(−𝛁𝜙 −

𝜕𝑨

𝜕𝑡
) +  𝑱  

𝛁(𝛁 ∙ 𝑨) − 𝛁2𝑨 = 𝜇0휀0 (−
𝜕𝛁𝜙

𝜕𝑡
−

𝜕2𝑨

𝜕𝑡2
) + 𝜇0 𝑱  

∇(∇ ∙ 𝑨) − ∇2𝑨 +
1

𝑐2

𝜕𝛁𝜙

𝜕𝑡
+

1

𝑐2

𝜕2𝑨

𝜕𝑡2
= 𝜇0 𝑱 , (2.19) 

 

where the identity 𝛁×𝛁×𝑨 = 𝛁(𝛁 ∙ 𝑨) − 𝛁2𝑨 and relation 𝑐 =
1

√𝜇0 0
 have been used. 

Similarly, we re-express equation 2.15 by substitute in equation 2.18 to obtain 
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휀0𝛁 ∙ (−𝛁𝜙 −
𝜕𝑨

𝜕𝑡
) = 𝜌 

−휀0(𝛁 ∙ 𝛁𝜙) − 휀0

𝜕

𝜕𝑡
(𝛁 ∙ 𝑨) = 𝜌. (2.20) 

 

Then the Coulomb gauge which is specified by the condition 𝛁 ∙ 𝑨 = 0 is imposed so 

that equations 2.19 and 2.20 can be further simplified into 

 

−𝛁2𝑨 +
1

𝑐2

𝜕𝛁𝜙

𝜕𝑡
+

1

𝑐2

𝜕2𝑨

𝜕𝑡2
= 𝜇0𝑱 (2.21) 

 

and  

 

−𝛁 ∙ 𝛁𝜙 =
𝜌

휀0
 . (2.22) 

 

Notice that equation 2.22 shows that the scalar potential 𝜙 satisfies the Poisson’s 

equation of electrostatics. Since the field quantisation is to be done on a free field (i.e. 

a radiation field that is free of current and charge), the variables 𝑱 and 𝜌 are set to 

zero. This simplifies equation 2.22 to Laplace equation which is in the form of  

 

𝛁 ∙ 𝛁𝜙 = 0. (2.23) 

 

In this case, 𝜙 can be set to equal to zero so that equations 2.18 and 2.21 can be 

simplified as  

 

𝑬 = −
𝜕𝑨

𝜕𝑡
  (2.24) 

 

and 

 

𝛁2𝑨 −
1

𝑐2

𝜕2𝑨

𝜕𝑡2
= 0 (2.25) 
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respectively. Note that equation 2.25 is actually a wave equation in terms of the 

vector potential 𝑨. 

 Before moving onto the next section, it should be noted that other gauges 

such as Lorentz gauge can be equivalently used in the quantisation procedure. The 

choice of Coulomb gauge is justified by the fact that it is a transverse gauge which 

allows the electric field to be a transverse field. Since only transverse photons are 

present, the solution is practically simpler. On the contrary, Lorentz gauge contains 

both transverse and longitudinal components, hence it is not used in the derivations 

here for simplicity purpose.   

 

2.3.2 Implications of the Wave Equation 

Equation 2.25 from the previous section is a wave equation in terms of the vector 

potential 𝑨 which can be expressed as 

 

𝑨 = α𝑞(𝑡)𝒖(𝒓), (2.26) 

 

where 𝛼 is a constant. We substitute equation 2.26 into equation 2.25 to give 

 

𝛁2𝒖(𝒓)

𝒖(𝒓)
=

1

𝑐2

�̈�(𝑡)

𝑞(𝑡)
 . 

 

Since the position dependent terms and the time dependent terms are separated to the 

left and right sides of the equation respectively, both sides of the equation must be 

equal to a constant which is independent from the position and time variables. Let 

that constant be −𝒌2 , where 𝒌  is a wave vector that depends on the boundary 

condition, we may then express the equation in the spatial form as 

 

𝛁2𝒖(𝒓) + 𝒌2𝒖(𝒓) = 0 

 

and in the temporal form as 

 

�̈�(𝑡) + 𝝎2𝑞(𝑡) = 0, 

 

where 𝝎 = 𝑐𝒌.  
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Now we proceed to study the boundary conditions on the vector potential 𝑨. 

Since it is assumed that the walls of the resonator are perfect conductors, the 

boundary conditions for dielectric-conductor boundary dictate that the tangential 𝑬 

field and the normal 𝑩 field must vanish. Suppose that 𝒆∥ is a unit vector parallel to 

the boundary whereas 𝒆⊥is a unit vector perpendicular to the boundary, the parallel 

component of the 𝑬 field at the boundary takes the form 

 

𝒆∥(𝒓) ∙ 𝑬(𝒓, 𝑡) = −𝒆∥(𝒓) ∙
𝜕𝑨

𝜕𝑡
 

= −𝛼�̇�(𝑡)[𝒖(𝒓) ∙ 𝒆∥(𝒓)] . 

 

Since the tangential component of 𝑬 field at the boundary must vanish, this leads to 

 

𝒖(𝒓) ∙ 𝒆∥(𝒓) = 0 . (2.27) 

 

Similarly, the orthogonal component of the 𝑩 field at the boundary takes the form 

 

𝒆⊥(𝒓) ∙ 𝑩(𝒓, 𝑡) = 𝒆⊥(𝒓) ∙ [𝛁×𝑨] 

= 𝛼𝑞(𝑡)[𝒆⊥(𝒓) ∙ (𝛁×𝒖(𝒓))] . 

 

Since the orthogonal component of the 𝑩 field at the boundary must vanish, this 

leads to 

 

𝒆⊥(𝒓) ∙ (𝛁×𝒖(𝒓)) = 0 . (2.28) 

 

It is important to note that the relations in equations 2.27 and 2.28 are only 

valid at the boundary. These two boundary conditions imply discrete property of the 

possible wave vectors. In other words, only a discrete set of mode functions 𝒖𝑘(𝒓) is 

allowed in a resonator. The subscript 𝑘  refers to a set of integer numbers. Such 

phenomenon is common for radiation field propagating inside a waveguide. In fact it 

is known that these mode functions obey orthonormality property given as 

 

∫ 𝑑3𝑟 𝒖𝑘(𝒓) ∙ 𝒖𝑘′(𝒓) = 𝛿𝑘,𝑘′ . (2.29) 
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Note that the orthonormality of mode functions imposes a constraint such that 

∫ 𝑑3𝑟 |𝒖𝑘|2 = 1 . To satisfy this condition, the relation 𝒖𝑘 = 𝑁𝒗𝑘  is introduced, 

where 𝑁 is the normalisation constant and 𝒗𝑘 is a dimensionless mode function. The 

normalisation constant 𝑁 is always in terms of the volume of the resonator, 𝑉 and an 

algebraic factor. Therefore we introduce the effective mode volume 𝑉𝑘 such that it 

contains both the volume of the resonator and the algebraic factor so that the 

normalisation constant is 𝑉𝑘. Hence the orthonormality condition in equation 2.29 

becomes  

 

1

√𝑉𝑘𝑉𝑘′

∫ 𝑑3𝑟 𝒖𝑘(𝒓) ∙ 𝒖𝑘′(𝒓) = 𝛿𝑘,𝑘′ . (2.30) 

 

Furthermore it can be observed that the Coulomb gauge condition now takes the 

form of  

 

∇ ∙ 𝒖𝑘(𝒓) = 0 , (2.31) 

 

which is valid throughout the whole resonator.  

 

2.3.3 Quantisation of the Radiation Field 

In the previous section, it is shown that the boundary condition of the resonator 

causes the discreteness of the spatial part of the vector potential. However this has 

nothing to do with the quantisation of the radiation field, instead it is the time 

dependent part of the vector potential that is needed for the quantisation procedure. 

In this section, the quantisation of the radiation field in a resonator of arbitrary shape 

is formulated. We begin by first recalling the form of the vector potential in equation 

2.26 and expand it into a discrete sum of mode functions which is in the form of 

 

𝑨 = ∑
1

√휀0𝑉𝑘

𝑞𝑘(𝑡)𝒗𝑘(𝒓)

𝑘

, 

 

where 휀0  is the electric permittivity. Separate out the terms 𝑉𝑘  and 휀0  for 

convenience and now the constant 𝛼  is determined by these two factors. This 
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expression of the vector potential is then substituted into equations 2.17 and 2.18 so 

that we obtain 

 

𝑯(𝒓, 𝑡) =
1

𝜇0
𝛁×𝑨 = ∑

1

𝜇0√휀0𝑉𝑘𝑘

𝑞𝑘(𝑡)(∇×𝒗𝑘(𝒓)), (2.32) 

𝑬(𝒓, 𝑡) =
𝜕𝑨

𝜕𝑡
= ∑

1

√휀0𝑉𝑘𝑘

�̇�𝑘(𝑡)𝒗𝑘(𝒓). (2.33) 

 

Now we proceed to calculate the total energy of the electromagnetic field in 

the resonator. The Hamiltonian of the total field inside the resonator is dependent on 

the 𝑬 field and 𝑯 field and is expressed as  

 

𝐻 = ∫ (
1

2
휀0𝑬2(𝒓, 𝑡) +

1

2
𝜇0𝑯2(𝒓, 𝑡)) 𝑑3𝑟 . 

 

We substitute the aforementioned 𝑬 field and 𝑯 field into the Hamiltonian to gain 

the expression of 

 

𝐻 =
1

2
∑ ∑

1

√𝑉𝑘𝑉𝑘′

�̇�𝑘𝑞𝑘′̇ ∫ 𝒗𝑘 ∙ 𝒗𝑘′𝑑3𝑟

𝑘′𝑘

+
𝑐2

2
∑ ∑

1

√𝑉𝑘𝑉𝑘′

𝑞𝑘𝑞𝑘′ ∫(𝛁×𝒗𝑘) ∙ (𝛁×𝒗𝑘′) 𝑑3𝑟

𝑘′𝑘

. 

 

By making use of the identity 𝛁 ∙ (𝒇×𝒈) = 𝒈 ∙ (𝛁×𝒇) − 𝒇 ∙ (𝛁×𝒈)  while letting 

𝒈 = 𝛁×𝒗𝑘 and 𝒇 = 𝒗𝑘′ , the identity becomes 

 

𝛁 ∙ (𝒗𝑘′×𝛁×𝒗𝑘) = (𝛁×𝒗𝑘) ∙ (𝛁×𝒗𝑘′) − 𝒗𝑘′ ∙ (𝛁×𝛁×𝒗𝑘), 

 

which can be rearranged into the form of 

 

(𝛁×𝒗𝑘) ∙ (𝛁×𝒗𝑘′) = 𝛁 ∙ (𝒗𝑘′×𝛁×𝒗𝑘) + 𝒗𝑘′ ∙ (𝛁×𝛁×𝒗𝑘). 

 

We substitute this back into the Hamiltonian expression to obtain 
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𝐻 =
1

2
∑ ∑

1

√𝑉𝑘𝑉𝑘′

�̇�𝑘𝑞𝑘′̇ ∫ 𝒗𝑘 ∙ 𝒗𝑘′𝑑3𝑟

𝑘′𝑘

+
𝑐2

2
∑ ∑

1

√𝑉𝑘𝑉𝑘′

𝑞𝑘𝑞𝑘′ ∫ (𝛁 ∙ (𝒗𝑘′×(𝛁×𝒗𝑘)) + 𝒗𝑘′

𝑘′𝑘

∙ (𝛁×𝛁×𝒗𝑘)) 𝑑3𝑟 . 

 

Using the Gauss theorem, the integral is converted into 

 

∫ 𝛁 ∙ (𝒗𝑘′×(𝛁×𝒗𝑘)) 𝑑3𝑟 = ∫(𝒗𝑘′×(𝛁×𝒗𝑘)) ∙ 𝑑𝑺 . 

 

It is observed that 𝒗𝑘′ is proportional to the spatial part of the electric field (equation 

2.24) whereas 𝛁×𝒗𝑘 is proportional to the spatial part of the magnetic field (equation 

2.17). Since the electric field is orthogonal to the surface of the resonator and 

magnetic field is parallel to it, the cross product of these two vectors will always 

yield a vector that is perpendicular to the surface vector of the resonator; hence the 

surface integral vanishes. Moreover, another term may also be simplified as 

 

𝛁×(𝛁×𝒗𝑘) = 𝛁(𝛁 ∙ 𝒗𝑘) − 𝛁2𝒗𝑘 

= −𝛁2𝒗𝑘 

= 𝒌𝑘
2  𝒗𝑘 

= (
𝜔𝑘

𝑐
)

2

𝒗𝑘 , 

 

where the Coulomb gauge condition in equation 2.31 and the identity 𝛁×(𝛁×𝒇) =

𝛁(𝛁 ∙ 𝒇) − 𝛁2𝒇 are utilised. Finally, we make use of the orthonormality to obtain the 

final form of the Hamiltonian as 

 

 
𝐻 = ∑ [

1

2
�̇�𝑘

2 +
1

2
𝜔𝑘

2𝑞𝑘
2]

𝑘

 (2.34) 

= ∑ 𝐻𝑘

𝑘

 , 
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where 𝐻𝑘 =  
1

2
�̇�𝑘

2 +
1

2
𝜔𝑘

2𝑞𝑘
2 . It is immediately recognised that the Hamiltonian of 

mode k (i.e. 𝐻𝑘) resembles the Hamiltonian of a harmonic oscillator. To confirm with 

this claim, the Hamilton equations of two conjugate variables 𝑞𝑘  and 𝑝𝑘 = �̇�𝑘  are 

�̇�𝑘 =
𝜕𝐻𝑘

𝜕𝑝𝑘
= 𝑝𝑘 and �̇�𝑘 = −

𝜕𝐻𝑘

𝜕𝑞𝑘
= −𝜔𝑘

2𝑞𝑘 , which lead to the equation of motion for 

harmonic oscillator 

 

�̈�𝑘 + 𝜔𝑘
2𝑞𝑘 = 0 . 

 

This indicates that the electromagnetic field in a resonator consists of a 

discrete set of harmonic oscillators with energies 𝐻𝑘. Therefore we make use of the 

known quantum mechanical solution of a harmonic oscillator which has been 

covered in section 2.2, the Hamiltonian operator for each individual oscillator is  

 

�̂�𝑘 = ℏ𝜔𝑘 (�̂�+�̂�− +
1

2
) . (2.35) 

 

The Hamiltonian of the radiation field is then the sum of all these oscillators’ 

Hamiltonian 

 

 
�̂� = ∑ [ℏ𝜔𝑘�̂�+�̂�− +

1

2
ℏ𝜔𝑘]

𝑘

 (2.36) 

= ∑[ℏ𝜔𝑘�̂�+�̂�−]

𝑘

+ 𝐻0 , 

 

where 

 

�̂�0 = ∑ [
1

2
ℏ𝜔𝑘]

𝑘

 

 

is the vacuum energy. It is observed that the vacuum energy does not contain any 

operator in its expression; hence the Hamiltonian remains non-zero even when there 

is no radiation field present. Moreover the frequencies 𝜔𝑘 have no upper bound and 

thus the vacuum energy term is infinite. 
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2.4 Three Pictures of Quantum Mechanics 

 

2.4.1 Schrodinger Picture 

In Schrodinger picture, quantum system is described by time dependent 

wavefunction which satisfies the Schrodinger equation, 

 

𝑑

𝑑𝑡
|Ψ𝑆(𝑡)⟩ = −

𝑖

ℏ
�̂�𝑆|Ψ𝑆(𝑡)⟩, (2.37) 

 

where |Ψ𝑆(𝑡)⟩ and �̂�𝑆 are the wavefunction and Hamiltonian of the quantum system 

respectively in Schrodinger picture. The time factors can in fact be factored out as a 

separable solution, so that 

 

|Ψ𝑆(𝑡)⟩ = exp (
−𝑖�̂�𝑆𝑡

ℏ
) |Ψ𝑆0⟩. (2.38) 

 

In contrast, the observables are represented by Hermitian operators which act on the 

wavefunction. These operators are time independent in Schrodinger picture.  

 

2.4.2 Heisenberg Picture 

Heisenberg picture has opposite traits compared to Schrodinger picture. In this 

picture, the operator is time dependent whereas the wavefunction is time independent. 

Transformation from Schrodinger picture to Heisenberg picture can be achieved 

using unitary transformation to eliminate the time dependence factor in the 

wavefunction in Schrodinger picture, such that 

 

|Ψ𝐻⟩ = �̂�|Ψ𝑆(𝑡)⟩ 

= exp (
𝑖�̂�𝑆𝑡

ℏ
) |Ψ𝑆(𝑡)⟩ 

= |Ψ𝑆(0)⟩, 

 

where �̂� = exp (
𝑖�̂�𝑆𝑡

ℏ
) and Ψ𝐻  is the wavefunction in Heisenberg picture which is 

time independent. By taking the inner product of Ψ𝐻, we observe that 
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⟨Ψ𝐻|Ψ𝐻⟩ = ⟨exp (
−𝑖�̂�𝑆𝑡

ℏ
) Ψ𝑆(𝑡)| exp (

𝑖�̂�𝑆𝑡

ℏ
) Ψ𝑆(𝑡)⟩ 

= ⟨Ψ𝑆(𝑡)|Ψ𝑆(𝑡)⟩. 

 

To include the time dependence factor into the operator, we take the expectation 

value of the observable to be 

 

⟨�̂�⟩ = ⟨Ψ𝑆(𝑡)|�̂�𝑆|Ψ𝑆(𝑡)⟩ 

= ⟨Ψ𝑆(0) |exp (
𝑖�̂�𝑆𝑡

ℏ
) �̂�𝑆 exp (

−𝑖�̂�𝑆𝑡

ℏ
)| Ψ𝑆(0)⟩ 

= ⟨Ψ𝑆(0)|�̂�𝐻|Ψ𝑆(0)⟩ 

= ⟨Ψ𝐻|�̂�𝐻|Ψ𝐻⟩. 

 

Therefore the observable operator in Heisenberg picture picks up the time 

dependence factor through unitary transformation, where 

 

�̂�𝐻(𝑡) = exp (
𝑖�̂�𝑆𝑡

ℏ
) �̂�𝑆 exp (

−𝑖�̂�𝑆𝑡

ℏ
). 

 

Heisenberg equation may be obtained by differentiating this operator as follows, 

 

𝑑�̂�𝐻

𝑑𝑡
=

𝑖

ℏ
�̂�𝑆�̂�𝐻 + exp (

𝑖�̂�𝑆𝑡

ℏ
)

𝑑�̂�𝑆

𝑑𝑡
exp (

−𝑖�̂�𝑆𝑡

ℏ
) −

𝑖

ℏ
�̂�𝐻�̂�𝑆 

 
=

𝑖

ℏ
[�̂�𝑆, �̂�𝐻] + exp (

𝑖�̂�𝑆𝑡

ℏ
)

𝑑�̂�𝑆

𝑑𝑡
exp (

−𝑖�̂�𝑆𝑡

ℏ
). (2.39) 

 

2.4.3 Interaction Picture 

Interaction picture, also known as Dirac picture allows both the wavefunction and the 

operator to carry the time dependence traits. It is an intermediary between 

Schrodinger picture and Heisenberg picture which can be very useful in solving 

problems involving time-dependent interaction Hamiltonian.  

 Firstly the free term and the interaction term in the Hamiltonian in the 

Schrodinger picture are separated, so that 
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�̂�𝑆 = �̂�𝑆,0 + �̂�𝑆,𝑖𝑛𝑡, (2.40) 

 

where �̂�𝑆,𝑜  and �̂�𝑆,𝑖𝑛𝑡  are the free unperturbed term and the small interaction 

perturbation term respectively in Schrodinger picture. From the experience in 

transforming Heisenberg picture, the wavefunction and the operator in interaction 

picture can be transformed in a similar manner using unitary transformation, such 

that 

 

|Ψ𝐼(𝑡)⟩ = �̂�|Ψ𝑆(𝑡)⟩ = exp (
𝑖�̂�𝑆,𝑂𝑡

ℏ
) |Ψ𝑆(𝑡)⟩, (2.41) 

�̂�𝐼(𝑡) = exp (
𝑖�̂�𝑆,𝑂𝑡

ℏ
) �̂�𝑆 exp (

−𝑖�̂�𝑆,𝑂𝑡

ℏ
), (2.42) 

 

where Ψ𝐼(𝑡) and �̂�𝐼(𝑡) are the wavefunction and observable operator respectively in 

Heisenberg picture. We differentiate equation 2.41 with respect to time to yield 

 

𝑑

𝑑𝑡
|Ψ𝐼(𝑡)⟩ =

𝑖

ℏ
�̂�𝑆,0  exp (

𝑖�̂�𝑆,𝑂𝑡

ℏ
) |Ψ𝑆(𝑡)⟩ + exp (

𝑖�̂�𝑆,𝑂𝑡

ℏ
)

𝑑

𝑑𝑡
|Ψ𝑆(𝑡)⟩ 

=
𝑖

ℏ
�̂�𝑆,0 |Ψ𝐼(𝑡)⟩ + exp (

𝑖�̂�𝑆,𝑂𝑡

ℏ
) (−

𝑖

ℏ
�̂�𝑆|Ψ𝑆(𝑡)⟩) 

=
𝑖

ℏ
�̂�𝑆,0 |Ψ𝐼(𝑡)⟩ −

𝑖

ℏ
(�̂�𝑆,0 + �̂�𝑆,𝑖𝑛𝑡)|Ψ𝐼(𝑡)⟩ 

= −
𝑖

ℏ
�̂�𝑆,𝑖𝑛𝑡|Ψ𝐼(𝑡)⟩. 

 
(2.43) 

 

This form indicates that the state vector in interaction picture evolves in time 

according to the interaction term only. Next, equation 2.42 can also be differentiated 

with respect to time to obtain 

 

𝑑

𝑑𝑡
�̂�𝐼(𝑡) =

𝑖

ℏ
�̂�𝑆,0�̂�𝐼 + exp (

𝑖�̂�𝑆,𝑂𝑡

ℏ
)

𝑑�̂�𝑆

𝑑𝑡
exp (

−𝑖�̂�𝑆,𝑂𝑡

ℏ
) −

𝑖

ℏ
�̂�𝐼�̂�𝑆,0 

 
=

𝑖

ℏ
[�̂�𝑆,0, �̂�𝐼] + exp (

𝑖�̂�𝑆,𝑂𝑡

ℏ
)

𝑑�̂�𝑆

𝑑𝑡
exp (

−𝑖�̂�𝑆,𝑂𝑡

ℏ
). (2.44) 
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Barnett and Radmore (1997) showed that the transformation of the Hamiltonian from 

Schrodinger picture to interaction picture can be obtained by solving the Schrodinger 

equation in interaction picture, such that 

 

�̂�𝐼|Ψ𝐼(𝑡)⟩ = 𝑖ℏ
𝜕

𝜕𝑡
|Ψ𝐼(𝑡)⟩ 

�̂�𝐼�̂�|Ψ𝑆(𝑡)⟩ = 𝑖ℏ
𝜕

𝜕𝑡
(�̂�|Ψ𝑆(𝑡)⟩) 

= 𝑖ℏ
𝜕�̂�

𝜕𝑡
|Ψ𝑆(𝑡)⟩ + 𝑖ℏ�̂�

𝜕

𝜕𝑡
|Ψ𝑆(𝑡)⟩ 

= 𝑖ℏ
𝜕�̂�

𝜕𝑡
|Ψ𝑆(𝑡)⟩ + �̂��̂�𝑆|Ψ𝑆(𝑡)⟩. 

 

Hence by comparison, the transformation is obtained to be 

 

�̂�𝐼 = 𝑖ℏ
𝜕�̂�

𝜕𝑡
�̂�† + �̂��̂�𝑆�̂�†. (2.45) 

 

2.5 Exponential of Diagonal Matrices 

The exponential of a two-by-two diagonal matrix is shown to take the form of  

 

𝑒𝐴 = (
𝑒𝑐11 0

0 𝑒𝑐22
), 

 

where 𝐴 is a diagonal matrix which is represented as  

 

𝐴 = (
𝑐11 0
0 𝑐22

). 

 

The mathematical proof of this formula is shown in this section. We first take the 

Taylor series of an exponential which is known as 

 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯, 
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and let A be a two by two matrix represented as  

 

𝐴 = (
𝑐11 𝑐12

𝑐21 𝑐22
), 

 

so that the exponential of matrix A is simply 

 

𝑒𝐴 = 𝐼 + 𝐴 +
𝐴2

2!
+

𝐴3

3!
+ ⋯. 

 

For a general form of matrix 𝐴, there is no simple solution to compute the power of 

the matrix. However, the solution is greatly simplified for diagonal matrix where the 

coefficients 𝑐12 and 𝑐21  are equal to zero so that 

 

𝐴 = (
𝑐11 0
0 𝑐22

), 

 

then an arbitrary power 𝑛 of the matrix is simply 

 

𝐴𝑛 = (
𝑐11

𝑛 0

0 𝑐22
𝑛 ). 

 

Hence the exponential of the diagonal matrix may be significantly simplified and 

takes the form of  

 

𝑒𝐴 = (
1 0
0 1

) + (
𝑐11 0
0 𝑐22

) +
1

2!
(

𝑐11
2 0

0 𝑐22
2 ) + ⋯ 

= (
1 + 𝑐11 +

1

2!
𝑐11

2 + ⋯ 0

0 1 + 𝑐22 +
1

2!
𝑐22

2 + ⋯

) 

= (
𝑒𝑐11 0

0 𝑒𝑐22
).  (2.46) 
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2.6 Coherent State 

Coherent state is a special class of field states that is an accurate representation of 

field produced by a stabilised laser. Its state |𝛼⟩  can be expressed as a linear 

superposition of number states |𝑛⟩ which is in the form of  

 

|𝛼⟩ = exp (−
1

2
|𝛼|2) ∑

𝛼𝑛

(𝑛!)
1

2

∞

𝑛=0

 |𝑛⟩, (2.47) 

 

where 𝛼 is a complex number. It can be easily shown that |𝛼⟩ is normalised by taking 

its inner product, such that 

 

 ⟨𝛼|𝛼⟩ = exp(−|𝛼|2) ∑
𝛼∗𝑛

𝛼𝑛

𝑛!

∞

𝑛=0

 

= exp(−|𝛼|2) ∑
|𝛼|2𝑛

𝑛!

∞

𝑛=0

 

= exp(−|𝛼|2) exp(|𝛼|2) 

= 1. 

 

One key feature of coherent state is that |𝛼⟩ is the right eigenstate of �̂�− operator 

with eigenvalue 𝛼. This can be easily shown as follows, 

 

�̂�−|𝛼⟩ = exp (−
1

2
|𝛼|2) ∑

𝛼𝑛

(𝑛!)
1

2

∞

𝑛=1

 √𝑛|𝑛 − 1⟩ 

= exp (−
1

2
|𝛼|2) ∑

𝛼𝑛

√(𝑛 − 1)!

∞

𝑛=1

 |𝑛 − 1⟩ 

= exp (−
1

2
|𝛼|2) ∑

𝛼𝑚+1

√𝑚!

∞

𝑚=0

 |𝑚⟩ 

= exp (−
1

2
|𝛼|2) ∑

𝛼𝑚𝛼

√𝑚!

∞

𝑚=0

 |𝑚⟩ 

= 𝛼|𝛼⟩. (2.48) 
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On the other hand, since the operators �̂�+ and �̂�− do not commute, |𝛼⟩ is naturally 

not the right eigenstate of �̂�+. Instead, |𝛼⟩ is the left eigenstate of �̂�+ with eigenvalue 

𝛼∗, i.e. 

 

⟨𝛼|�̂�+ =  �̂�−⟨𝛼| 

= exp (−
1

2
|𝛼|2) ∑

𝛼∗𝑛

(𝑛!)
1

2

∞

𝑛=1

 √𝑛 − 1⟨𝑛 − 1| 

= exp (−
1

2
|𝛼|2) ∑

𝛼∗𝑛

√(𝑛 − 1)!

∞

𝑛=1

 ⟨𝑛 − 1| 

= exp (−
1

2
|𝛼|2) ∑

𝛼∗𝑚+1

√𝑚!

∞

𝑚=1

 ⟨𝑚| 

= exp (−
1

2
|𝛼|2) ∑

𝛼∗𝑚
𝛼∗

√𝑚!

∞

𝑚=1

 ⟨𝑚| 

= 𝛼∗⟨𝛼|. (2.49) 

 

By making use of the results from equations 2.47, 2.48 and 2.49, we derive 

the mean photon number in coherent state as follows,   

 

�̅� = ⟨𝛼|�̂�|𝛼⟩ 

= ⟨𝛼|�̂�+�̂�−|𝛼⟩ 

= ⟨𝛼|𝛼∗𝛼|𝛼⟩ 

= |𝛼|2. (2.50) 

 

Hence the photon number probability distribution for coherent state can be expressed 

as 

 

𝑃(𝑛) = |⟨𝑛|𝛼⟩|2  

=
exp(−|𝛼|2) |𝛼|2𝑛

𝑛!
 

 
=

[exp(−�̅�) �̅�𝑛]

𝑛!
 . (2.51) 
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2.7 Thermal State 

When insufficient amount of information is known, the field state can be expressed 

as a mixed state represented by a density matrix. Thermal state is a kind of mixed 

state that is utilised when minimum amount of information is given, knowing only 

the mean value of energy. The density matrix of a thermal state is expressed as 

 

�̂� = ∑ 𝑃(𝑛) |𝑛⟩⟨𝑛|

∞

𝑛=0

, (2.52) 

 

where 𝑃(𝑛) = {1 − exp (−
ℏ𝜔

𝑘𝐵𝑇
)} exp (−

𝑛ℏ𝜔

𝑘𝐵𝑇
) is the probability of state |𝑛⟩  being 

measured. To derive for the expression of the mean photon number, the expression 

for 𝑃(𝑛) is first simplified into 

 

𝑃(𝑛) = ⟨𝑛|�̂�|𝑛⟩ 

= 𝑇𝑟(�̂�|𝑛⟩⟨𝑛|), 

 

where the identity ⟨𝑎|𝑏⟩ = 𝑇𝑟(|𝑏⟩⟨𝑎|) is used. Then the mean photon number is 

simply 

 

�̅� = ∑ 𝑛𝑃(𝑛)

∞

𝑛=0

 

= ∑ 𝑛 𝑇𝑟(�̂�|𝑛⟩⟨𝑛|)

∞

𝑛=0

 

= ∑ 𝑛 𝑇𝑟 ({∑ 𝑃(𝑛) |𝑛⟩⟨𝑛|

∞

𝑛=0

} |𝑛⟩⟨𝑛|)

∞

𝑛=0

 

= 𝑇𝑟 (∑ 𝑃(𝑛) 𝑛|𝑛⟩⟨𝑛|

∞

𝑛=0

). 

 

We make use of the relation �̂�|𝑛⟩ = 𝑛|𝑛⟩, so that the expression of mean photon 

number may be simplified into 
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�̅� = 𝑇𝑟 (∑ 𝑃(𝑛) �̂�|𝑛⟩⟨𝑛|

∞

𝑛=0

) 

= 𝑇𝑟(�̂��̂�). (2.53) 

 

Substitute equation 2.52 into equation 2.53, we therefore obtain 

 

�̅� = {1 − exp (−
ℏ𝜔

𝑘𝐵𝑇
)} ∑ 𝑛 [exp (−

𝑛ℏ𝜔

𝑘𝐵𝑇
)]

∞

𝑛=0

. 

 

We let 𝑥 = exp (−
ℏ𝜔

𝑘𝐵𝑇
), the mean photon number can then be rewritten as 

 

�̅� = {1 − 𝑥} ∑ 𝑛𝑥𝑛

∞

𝑛=0

 

= {1 − 𝑥} ∑ 𝑥
𝑑

𝑑𝑥
(𝑥𝑛)

∞

𝑛=0

 

= {1 − 𝑥}{𝑥}
𝑑

𝑑𝑥
 ∑ 𝑥𝑛

∞

𝑛=0

 

= {1 − 𝑥}{𝑥}
𝑑

𝑑𝑥
 (

1

1 − 𝑥
) 

= {1 − 𝑥}{𝑥}(1 − 𝑥)−2 

=
𝑥

1 − 𝑥
 

=
1

𝑥−1 − 1
 

=
1

exp (
ℏ𝜔

𝑘𝐵𝑇
) − 1

. 

 

We rearrange the expression so that  

 

exp (
ℏ𝜔

𝑘𝐵𝑇
) =

1

�̅�
+ 1 

=
1 + �̅�

�̅�
, 
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which can then be inverted so that  

 

exp (−
ℏ𝜔

𝑘𝐵𝑇
) =

�̅�

1 + �̅�
. (2.54) 

 

Substitute equation 2.54 back into the original probability function 𝑃(𝑛) , we 

therefore obtain 

 

𝑃(𝑛) = {1 −
�̅�

1 + �̅�
}

�̅�

1 + �̅�
 

= {
1

1 + �̅�
}

�̅�

1 + �̅�
 

 
=

�̅�

(1 + �̅�)2
 . (2.55) 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Derivations in Semiclassical Treatment 

Firstly, the total Hamiltonian of a quantum mechanical two-level system being 

coupled to a monochromatic classical radiation field with frequency ω was 

formulated. The expression of the electric field intensity 𝑬 was obtained by assuming 

dipole approximation to eliminate the spatial dependence factor of the field. Then the 

atomic Hamiltonian of the two-level system is formulated by assuming the ground 

state’s energy as zero. Next, the interaction Hamiltonian which is predominantly 

contributed by electric-dipole Hamiltonian was formulated. For this part, several 

methods such as minimal coupling and direct coupling could have been used, 

however direct coupling was utilised because of its conceptual simplicity. By using 

several identities, the expression of the dipole operator was derived. The interaction 

Hamiltonian is finally simplified using rotating-wave approximation to eliminate fast 

rotation factors. 

The total Hamiltonian was obtained by summing the atomic Hamiltonian and 

the interaction Hamiltonian, which was then substituted into the Schrodinger 

equation. The resulting differential equations were solved to obtain the expressions 

of the coefficients of the wavefunction. With the available expressions and 

assumption of initially unexcited atom, the solution of resonant case ∆= 0  was 

obtained. The graph depicting probability of atom in each state against Ω𝑡  was 

plotted using MATLAB software, where Ω is the Rabi frequency and 𝑡 is the time. 

Finally similar procedures were repeated for near resonant case. 

 

3.2 Derivations in Quantum Mechanical Treatment 

The full quantum mechanical treatment on light-matter interaction assumed single-

mode quantised light field of various initial field statistics interacting with an 

energetically quantised two-level atom. The objective of this treatment is to derive 

the field-atom wavefunction of the joint interaction system using Jaynes-Cummings 

Model.  
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 Firstly, the quantisation of electromagnetic field which was assumed to be a 

free field contained inside a closed resonator with perfectly conducting walls was 

derived and reported. Various properties of quantum field states such as number 

states, coherent states and thermal states were reported. The understanding on these 

quantum fields serves as the foundation to apply different types of initial light 

sources in the interaction. The transformations between Hamiltonians in different 

pictures (i. e. Schrodinger picture, Heisenberg picture and Interaction picture) were 

also investigated and reported.  

With all the available resources, the interaction system may then be derived 

using Jaynes-Cummings model. The atomic Hamiltonian, field Hamiltonian and 

interaction Hamiltonian, all in Schrodinger picture, were derived and combined to 

form the total Hamiltonian of the system. Then the total Hamiltonian in Schrodinger 

picture was transformed into interaction picture using the transformation relation 

derived previously. The rotating-wave approximation was applied to the resulting 

total Hamiltonian which was then used to solve the Schrodinger equation. Using 

similar manner as in semiclassical treatment, the coefficients of the wavefunction 

were derived using algebraic operations.  

 After solving for the coefficients 𝑐1 and 𝑐2, the modulus square of 𝑐1 was 

calculated to plot for the graph of ground state probability against time using 

MATLAB software. The probability here refers to the probability of the two-level 

atom to stay in ground state at any time 𝑡. However it is found that the coefficients 

depend on the initial field statistics, therefore the probability function of the initial 

field state had to be included in the derived equation to yield numerical solutions. In 

this study, number state, coherent state and thermal state were used to study the 

characteristics of light-matter interaction in quantum mechanical treatment. Both the 

cases of resonant and near resonant were applied here. The relationship between the 

probability functions and the parameters such as interaction strength, mean photon 

number and detuning were studied and discussed extensively.  
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CHAPTER 4 

 

4 RESULTS AND DISCUSSIONS 

 

4.1 Semiclassical Treatment 

 

4.1.1 Classical Electromagnetic Field 

We consider the simplest case of coupling a classical field to a quantum mechanical 

two-level atom. It is assumed that the classical field is monochromatic with 

frequency ω. Dipole approximation is also utilised so that the spatial dependence 

factor of the field equals to unity. This is fully justifiable as long as the wavelength λ 

is significantly greater than the dimension of the atom so that 𝑘𝑟 ≪ 1, which leads to 

𝑒𝑖𝑘𝑟 ≈ 1. The electric field of light may then be written as follows, 

 

𝑬(𝑡) = 𝜺𝐸0 cos 𝜔𝑡 

= 𝜺𝐸0

1

2
(𝑒−𝑖𝜔𝑡 + 𝑒𝑖𝜔𝑡) 

= 𝜺𝐸0

1

2
𝑒−𝑖𝜔𝑡 + 𝜺𝐸0

1

2
 𝑒𝑖𝜔𝑡 

= 𝑬+(𝑡) + 𝑬−(𝑡), (4.1) 

 

where 𝜺 is the unit polarisation of the vector field,  𝑬+(𝑡) = 𝜺𝐸0
1

2
𝑒−𝑖𝜔𝑡 and 𝑬−(𝑡) =

𝜺𝐸0
1

2
 𝑒𝑖𝜔𝑡. 

 

4.1.2 Atomic Hamiltonian 

Next, we proceed to derive the Hamiltonian of a two-level atom which is assumed to 

have state 1 (ground state) with frequency ω1 and state 2 (excited state) with 

frequency ω2. Hence the atomic Hamiltonian can be expressed as  

 

�̂�𝐴 = ħ𝜔2|2⟩⟨2| + ħ𝜔1|1⟩⟨1|. 
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In general, the relative energy difference between the two levels is more important 

rather than the absolute energy values, thus the Hamiltonian may be simplified by 

assuming ω1 = 0, then 

 

�̂�𝐴 = ħ𝜔2|2⟩⟨2|.  (4.2) 

 

Before moving on, it is now important to clarify that the detuning ∆= 𝜔 − 𝜔2 

is sufficiently small so that the two-level atom model stays valid. Otherwise at high 

detuning, the energy of the classical field may be sufficient to excite the electron to a 

third level. 

 

4.1.3 Interaction Hamiltonian 

The Hamiltonian of interaction between the light field and the atom is formulated in 

this section. The interaction Hamiltonian is predominantly contributed by the 

electric-dipole interaction (Loudon, 2000). Suppose there are Z numbers of electrons 

in the two-level atom, the classical result from the literature shows that the 

Hamiltonian takes the form 

 

�̂�𝐼 = −�̂� ∙ 𝑬,  (4.3) 

 

where �̂� = −𝑒 ∑ 𝒓𝒊
𝑍
𝑖=1   is the dipole operator, e is the elementary charge and 𝒓𝒊 is the 

position vector of each electron i.  

Since the interaction Hamiltonian is real and has odd parity, it is immediately 

concluded that ⟨1|�̂�|1⟩ = ⟨2|�̂�|2⟩ = 0 and ⟨1|�̂�|2⟩ = ⟨2|�̂�|1⟩
∗

≠ 0 provided that the 

two atomic states have opposite parity. While the aforementioned equation is a 

complex quantity in general, it is real for transitions between bound states (Loudon, 

2000). Therefore, the expressions can then be equated to each other as  

 

⟨1|�̂�|2⟩ = ⟨2|�̂�|1⟩. (4.4) 

 

Following that, the identity (|2⟩⟨2| + |1⟩⟨1|) is used to express the dipole operator �̂� 

into the following form, 
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�̂� = (|2⟩⟨2| + |1⟩⟨1|) �̂� (|2⟩⟨2| + |1⟩⟨1|)  

= |2⟩⟨2|�̂�|2⟩⟨2| + |2⟩⟨2|�̂�|1⟩⟨1| + |1⟩⟨1|�̂�|2⟩⟨2| + |1⟩⟨1|�̂�|1⟩⟨1| 

= |2⟩⟨2|�̂�|1⟩⟨1| + |1⟩⟨1|�̂�|2⟩⟨2|. 

 

Let �̂�− = |1⟩⟨2| and �̂�+ = |2⟩⟨1| , while applying the relationship in equation 4.4, 

then it is obtained  �̂� = ⟨1|�̂�|2⟩𝜎− + ⟨1|�̂�|2⟩𝜎+.  

It is worth discussing on the physical significance of �̂�− and �̂�+ operators. If 

these operators are applied on an arbitrary state |𝜓⟩ = 𝑐1|1⟩ + 𝑐2|2⟩, the results yield 

𝜎+|𝜓⟩ = 𝑐1|2⟩ and 𝜎−|𝜓⟩ = 𝑐2|1⟩. This means that �̂�+ causes a transition from state 

1 to state 2, whereas �̂�− causes a transition from state 2 to state 1. In fact, if the 

expectation value of �̂�− is computed, we obtain 

 

⟨�̂�−⟩ = (𝑐1
∗⟨1| + 𝑐2

∗⟨2|) �̂�− (𝑐1|1⟩ + 𝑐2|2⟩) 

= (𝑐1
∗⟨1| + 𝑐2

∗⟨2|) (|1⟩⟨2|) (𝑐1|1⟩ + 𝑐2|2⟩) 

= 𝑐1
∗𝑐2 . 

 

Similarly the expectation value of the operator �̂�+ is ⟨�̂�+⟩ = 𝑐2
∗𝑐1.  

Since the Hamiltonian is now explicitly depending on time, we let the time 

factor be absorbed by the coefficients so that  𝑐1 ~ 𝑒−𝑖𝜔1𝑡 and 𝑐2 ~ 𝑒−𝑖𝜔2𝑡. Therefore 

it is obvious that �̂�− ~ 𝑒−𝑖(𝜔2−𝜔1)𝑡 and �̂�+ ~ 𝑒𝑖(𝜔2−𝜔1)𝑡. Hence the dipole operator 

may be simplified into  

 

�̂� = �̂�+ + �̂�−, 

 

where �̂�+ = ⟨1|�̂�|2⟩�̂�− and �̂�− = ⟨1|�̂�|2⟩�̂�+. Rewriting the interaction Hamiltonian 

in equation 4.3, we therefore obtain 

 

�̂�𝐼 = − ((�̂�+ + �̂�−) ∙ (𝑬+ + 𝑬−)) 

= −(�̂�+ ∙ 𝑬+ + �̂�+ ∙ 𝑬− + �̂�− ∙ 𝑬+ + �̂�− ∙ 𝑬−) . 

 

Since |𝜔 − 𝜔2| ≪ 𝜔 + 𝜔2, this means that �̂�+ ∙ 𝑬+  and �̂�− ∙ 𝑬−  rotate rapidly and 

can therefore be approximated as zero average value (Steck, 2007). Such 
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approximation is known as rotating-wave approximation. Thus the interaction 

Hamiltonian becomes 

 

�̂�𝐼 = −(�̂�+ ∙ 𝑬− + �̂�− ∙ 𝑬+) 

= −⟨1|�̂�|2⟩ ∙ 𝜺𝐸0

1

2
(�̂�−𝑒𝑖𝜔𝑡 + �̂�+𝑒−𝑖𝜔𝑡) . 

 

We now define the Rabi frequency as 

 

Ω =
−⟨1|�̂�|2⟩ ∙ 𝜺𝐸0

ħ
 

 

which therefore simplifies the interaction Hamiltonian as 

 

�̂�𝐼 =
ħΩ

2
(�̂�−𝑒𝑖𝜔𝑡 + �̂�+𝑒−𝑖𝜔𝑡) . (4.5) 

 

4.1.4 Total Hamiltonian and Schrödinger equation 

The total Hamiltonian may be obtained by summing the atomic Hamiltonian in 

equation 4.2 and the interaction Hamiltonian from equation 4.5, so that 

 

�̂� = �̂�𝐴 + �̂�𝐼 

=  ħ𝜔2|2⟩⟨2| +
ħΩ

2
(�̂�−𝑒𝑖𝜔𝑡 + �̂�+𝑒−𝑖𝜔𝑡) 

=  ħ𝜔2|2⟩⟨2| +
ħΩ

2
(𝑒𝑖𝜔𝑡 |1⟩⟨2| + 𝑒−𝑖𝜔𝑡 |2⟩⟨1|). 

 

Suppose the two-level atom is represented by a wavefunction |𝜓⟩ = 𝑐1|1⟩ + 𝑐2|2⟩, 

then it is possible to solve the Schrödinger equation to give 

 

𝑖ħ
𝑑𝑐1

𝑑𝑡
|1⟩ + 𝑖ħ

𝑑𝑐2

𝑑𝑡
|2⟩ =  ħ𝜔2𝑐2|2⟩ +

ħΩ

2
𝑒𝑖𝜔𝑡𝑐2 |1⟩ +

ħΩ

2
𝑒−𝑖𝜔𝑡𝑐1 |2⟩ 

𝑑𝑐1

𝑑𝑡
|1⟩ +

𝑑𝑐2

𝑑𝑡
|2⟩ =  −𝑖𝜔2𝑐2|2⟩ −

𝑖Ω

2
𝑒𝑖𝜔𝑡𝑐2 |1⟩ −

𝑖Ω

2
𝑒−𝑖𝜔𝑡𝑐1 |2⟩ . 
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The forms of  |1⟩ and |2⟩ for both sides of the equation are compared and we obtain 

 

𝑑𝑐1

𝑑𝑡
= −

𝑖Ω

2
𝑒𝑖𝜔𝑡𝑐2, (4.6) 

 

and 

 

𝑑𝑐2

𝑑𝑡
=  −𝑖𝜔2𝑐2 −

𝑖𝛺

2
𝑒−𝑖𝜔𝑡𝑐1. (4.7) 

 

To further simplify equation 4.7, we let 𝑐2̃ = 𝑒𝑖𝜔𝑡𝑐2 to eliminate fast rotation so that 

its time derivative is  

 

𝑑𝑐2̃

𝑑𝑡
= 𝑖𝜔𝑒𝑖𝜔𝑡𝑐2 + 𝑒𝑖𝜔𝑡

𝑑𝑐2

𝑑𝑡
, 

 

which can be rearranged into the form of 

 

𝑑𝑐2

𝑑𝑡
= 𝑒−𝑖𝜔𝑡

𝑑𝑐2̃

𝑑𝑡
− 𝑖𝜔𝑒−𝑖𝜔𝑡𝑐2̃ . 

 

We substitute this expression into equation 4.7 to obtain 

 

𝑒−𝑖𝜔𝑡 𝑑𝑐2̃

𝑑𝑡
− 𝑖𝜔𝑒−𝑖𝜔𝑡𝑐2̃ =  −𝑖𝜔2𝑐2 −

𝑖Ω

2
𝑒−𝑖𝜔𝑡𝑐1  

𝑑𝑐2̃

𝑑𝑡
=  −𝑖𝜔2𝑐2𝑒𝑖𝜔𝑡 + 𝑖𝜔𝑐2̃ −

𝑖Ω

2
𝑐1  

𝑑𝑐2̃

𝑑𝑡
=  𝑖∆𝑐2̃ −

𝑖Ω

2
𝑐1, (4.8) 

 

where ∆= 𝜔 − 𝜔2 is the detuning between the field and the atom. Similarly equation 

4.6 may also be simplified into 

 

𝑑𝑐1

𝑑𝑡
= −

𝑖Ω

2
𝑐2̃ . (4.9) 
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To compute the probabilities of finding the two-level atom in state 1 and state 

2, the expressions of the coefficients 𝑐1 and 𝑐2̃ have to be first determined. First, the 

expression in equation 4.9 is rearranged into a simpler integral form. Both sides of 

the equation 4.9 are differentiated with respect to time to obtain 

 

𝑑2𝑐1

𝑑𝑡2
= −

𝑖Ω

2

𝑑𝑐2̃

𝑑𝑡
 . 

 

By substituting equation 4.8 into this expression, we therefore obtain  

 

𝑑2𝑐1

𝑑𝑡2
= −

𝑖Ω

2
(𝑖∆𝑐2̃ −

𝑖Ω

2
𝑐1) . 

 

Then equation 4.9 is substituted into the expression to replace 𝑐2̃ and obtain 

 

𝑑2𝑐1

𝑑𝑡2
= 𝑖∆

𝑑𝑐1

𝑑𝑡
− (

Ω

2
)

2

𝑐1 

𝑑2𝑐1

𝑑𝑡2
− 𝑖∆

𝑑𝑐1

𝑑𝑡
+ (

Ω

2
)

2

𝑐1 = 0 

 
(

𝑑2

𝑑𝑡2
− 𝑖∆

𝑑

𝑑𝑡
+ (

Ω

2
)

2

) 𝑐1 = 0 (4.10) 

[(
𝑑

𝑑𝑡
−

𝑖∆

2
)

2

+ (
Ω

2
)

2

+ (
∆

2
)

2

] 𝑐1 = 0 . 

 

Suppose Ω̃ = √Ω2 + ∆2, we then have 

 

(
𝑑

𝑑𝑡
−

𝑖∆

2
+

𝑖Ω̃

2
) (

𝑑

𝑑𝑡
−

𝑖∆

2
−

𝑖Ω̃

2
) 𝑐1 = 0 . (4.11) 

 

Now that a simpler expression for 𝑐1  is obtained, we move on to rearrange the 

expression for 𝑐2̃. First, both sides of equation 4.8 are differentiated with respect to 

time to obtain 

 

𝑑2𝑐2̃

𝑑𝑡2
= 𝑖∆

𝑑𝑐2̃

𝑑𝑡
− 𝑖

𝛺

2

𝑑𝑐1

𝑑𝑡
 . 
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Then we substitute equations 4.8 and 4.9 into the expression so that 

 

𝑑2𝑐2̃

𝑑𝑡2
= 𝑖∆ ( 𝑖∆𝑐2̃ −

𝑖Ω

2
𝑐1) −

𝑖𝛺

2
(−

𝑖Ω
2

𝑐2̃) . 

 

Following that, equation 4.8 is substituted into the expression to replace 𝑐1 , we 

therefore obtain 

 

𝑑2𝑐2̃

𝑑𝑡2
= −∆2𝑐2̃ + 𝑖∆

𝑑𝑐2̃

𝑑𝑡
+ ∆2𝑐2̃ − (

Ω

2
)

2

𝑐2̃ 

𝑑2𝑐2̃

𝑑𝑡2
− 𝑖∆

𝑑𝑐2̃

𝑑𝑡
+ (

Ω

2
)

2

𝑐2̃ = 0 

(
𝑑2

𝑑𝑡2
− 𝑖∆

𝑑

𝑑𝑡
+ (

Ω

2
)

2

) 𝑐2̃ = 0 . 

 

It is observed that the expression has the same form as equation 4.10, hence we may 

immediately deduce that it is equivalent to 

 

(
𝑑

𝑑𝑡
−

𝑖∆

2
+

𝑖Ω̃

2
) (

𝑑

𝑑𝑡
−

𝑖∆

2
−

𝑖Ω̃

2
) 𝑐2̃ = 0 . (4.12) 

 

Now that the equations involving 𝑐1 and 𝑐2̃ are expressed in suggestive forms, 

we proceed to solve for the coefficients. Firstly, we attempt to find 𝑐1 by solving the 

equation 4.11 such that 

 

𝑑𝑐1

𝑑𝑡
−

𝑖∆

2
𝑐1 ±

𝑖Ω̃

2
𝑐1 = 0 

𝑑𝑐1

𝑑𝑡
= (

𝑖∆

2
∓

𝑖Ω̃

2
) 𝑐1 

∫
𝑑𝑐1

𝑐1
= ∫ (

𝑖∆

2
∓

𝑖Ω̃

2
) 𝑑𝑡 

ln(𝑐1) = (
𝑖∆

2
∓

𝑖Ω̃

2
) 𝑡 + 𝑘 
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𝑐1 = 𝐾𝑒𝑥𝑝 (
𝑖∆

2
𝑡) 𝑒𝑥𝑝 (∓

𝑖Ω̃

2
𝑡) , 

 

where 𝑘 and 𝐾 = exp (𝑘) are constants. It may be further simplified into 

 

𝑐1(𝑡) = 𝑒𝑥𝑝 (
𝑖∆

2
𝑡) [𝐴1 cos

1

2
Ω̃𝑡 + 𝐵1 sin

1

2
Ω̃𝑡] . (4.13) 

 

Similarly 𝑐2̃ can be found by solving the equation 4.12 so that we obtain 

 

𝑐2̃(𝑡) = 𝑒𝑥𝑝 (
𝑖∆

2
𝑡) [𝐴2 cos

1

2
Ω̃𝑡 + 𝐵2 sin

1

2
Ω̃𝑡] . (4.14) 

 

𝐴1, 𝐴2, 𝐵1 and 𝐵2 are terms that need to be determined. When t = 0, obviously 

 

𝐴1 = 𝑐1(0),  (4.15) 

𝐴2 = 𝑐2̃(0) = 𝑐2(0).  (4.16) 

 

To solve for the remaining terms, we differentiate equation 4.13 with respect to time 

to yield 

 

𝑑𝑐1(𝑡)

𝑑𝑡
=

𝑖∆

2
𝑒𝑥𝑝 (

𝑖∆

2
𝑡) [𝐴1 cos

1

2
Ω�̃� + 𝐵1 sin

1

2
Ω�̃�]

+ 𝑒𝑥𝑝 (
𝑖∆

2
𝑡)

1

2
Ω̃ [−𝐴1 sin

1

2
Ω̃𝑡 + 𝐵1 cos

1

2
Ω̃𝑡] . 

 

If we equate this expression to equation 4.9 and let time t = 0, the expression 

 

−
𝑖Ω

2
𝑐2(0) =

𝑖∆

2
𝐴1 +

1

2
Ω̃𝐵1 

 

may be obtained. We then substitute in equation 4.15 and rearrange the equation such 

that 
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𝐵1 = −
𝑖Ω

Ω̃
𝑐2(0) −

𝑖∆

Ω̃
𝑐1(0)  

 
𝐵1 = −

𝑖

Ω̃
[Ω𝑐2(0) + Δ𝑐1(0)].  (4.17) 

 

In order to gain the solution to the last term 𝐵2, we repeat the same process by 

differentiating equation 4.14 with respect to time and equating it to equation 4.8, at 

the same time impose the initial condition time t = 0 to yield 

 

𝑖∆𝑐2(0) −
𝑖Ω

2
𝑐1(0) =

𝑖∆

2
𝐴2 +

1

2
Ω̃𝐵2 . 

 

We now substitute in equation 4.16 and rearrange the equation to obtain 

 

𝐵2 =
𝑖∆

Ω̃
𝑐2(0) −

𝑖Ω

Ω̃
𝑐1(0)  

 
𝐵2 =

𝑖

Ω̃
[∆𝑐2(0) + Ω𝑐1(0)] . (4.18) 

 

Finally, we substitute the equations from 4.15 to 4.18 into equation 4.13 and 4.14; 

the final expressions for the coefficients are obtained to be 

 

𝑐1(𝑡) = 𝑒𝑥𝑝 (
𝑖∆

2
𝑡) [𝑐1(0) cos

1

2
Ω̃𝑡 −

𝑖

Ω̃
[Ω𝑐2(0) + Δ𝑐1(0)] sin

1

2
Ω̃𝑡], (4.19) 

 

and 

 

𝑐2(𝑡) = 𝑒𝑥𝑝 (
𝑖∆

2
𝑡) [𝑐2(0) cos

1

2
Ω̃𝑡 +

𝑖

Ω̃
[∆𝑐2(0) + Ω𝑐1(0)] sin

1

2
Ω̃𝑡]. (4.20) 

 

4.1.5 Resonant case 

In resonant case, 𝜔 = 𝜔2 that is, ∆= 0. This also implies that Ω̃ = Ω. Applying these 

conditions to equation 4.19 and 4.20, the two simplified expressions can then be 

obtained as  
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𝑐1(𝑡) = 𝑐1(0) cos
1

2
Ω𝑡 − 𝑖𝑐2(0) sin

1

2
Ω𝑡, (4.21) 

𝑐2(𝑡) = 𝑐2(0) cos
1

2
Ω𝑡 + 𝑖𝑐1(0) sin

1

2
Ω𝑡. (4.22) 

 

Suppose the atom is initially unexcited, that is 𝑐1(0) = 1 and 𝑐2(0) = 0, then the 

probabilities of finding the atom in state 1 and state 2 are 

 

𝑃1(𝑡) = |𝑐1(𝑡)|2 = cos2
1

2
Ω𝑡, (4.23) 

𝑃2(𝑡) = |𝑐2(𝑡)|2 = sin2
1

2
Ω𝑡, (4.24) 

 

respectively. 

The probability expressions in equations 4.23 and 4.24 are plotted in 

MATLAB as depicted in figure 4.1 below. The probability of atom staying in each 

state is plotted against Ω𝑡, where Ω is the Rabi frequency and 𝑡 is time. For 𝑃2(𝑡), the 

upward swings correspond to the absorption of light field energy by the atom to jump 

up to the excited state whereas the downward trends correspond to the stimulated 

emission whereby the atom jumps back down to the ground state accompanied by the 

emission of light. In contrast, the trends in 𝑃1(𝑡)  indicate the exact opposite 

processes. The shapes of both 𝑃1(𝑡)  and 𝑃2(𝑡)  graphs are both in sinusoidal 

waveform, and it is observed that 𝑃1(𝑡) + 𝑃2(𝑡) = 1 holds for all Ω𝑡, indicating the 

conservation of probability. Such cyclic nature is also known as the Rabi oscillation. 

Another observation made is that the populations of both ground state and excited 

state oscillate between 0 and 1 with a period of  𝑇 =
2𝜋

Ω
. This means that if a laser 

light is shined upon the atom for half a period of time, that is  
𝑇

2
=

𝜋

Ω
 , a population 

inversion can be achieved. However, this also poses a problem such that if the laser 

light is shined on the atom to achieve population inversion (i.e. the atom is in excited 

state), then the laser light is switched off and the atom will stay excited for an 

indefinite amount of time. This violates the experimental observation that atom 

should always jump back down to the lower energy level by spontaneous emission, 

provided that there are available state in the ground state.  
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Figure 4.1: Populations in the ground state and the excited state for resonant case. 

 

4.1.6 Near resonant case 

We now proceed to employ the similar condition of initially unexcited atom from the 

previous section, so that the corresponding coefficients are now  

 

𝑐1(𝑡) = 𝑒𝑥𝑝 (
𝑖∆

2
𝑡) [cos

1

2
Ω̃𝑡 −

𝑖∆

Ω̃
 sin

1

2
Ω̃𝑡], (4.25) 

𝑐2(𝑡) = 𝑒𝑥𝑝 (
𝑖∆

2
𝑡) [

𝑖Ω

Ω̃
sin

1

2
Ω̃𝑡]. (4.26) 

 

Therefore the probabilities of finding the atom to reside in state 1 and state 2 are 

 

𝑃1(𝑡) = |𝑐1(𝑡)|2 = cos2
1

2
Ω̃𝑡 +

∆2

Ω̃2
sin2

1

2
Ω̃𝑡, (4.27) 

𝑃2(𝑡) = |𝑐2(𝑡)|2 =
Ω2

Ω̃2
sin2

1

2
Ω̃𝑡, (4.28) 

 

respectively. 
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Figure 4.2: Populations in ground state (top) and excited state (bottom) for near 

resonant case. 

 

Figure 4.2 illustrates the graph plot of ground state and excited state 

populations for near resonant case with different detuning Δ. At first glance, the 

populations of excited state and ground state are direct inversion of each other for all 

Δ, but the conservation of probability is no longer valid in this case. Nevertheless it is 

sufficient to focus the discussion solely on the excited state. Figure 4.2 shows that 

even with different detuning, the population exhibits similar smooth sinusoidal 

oscillation. In contrast, there are two key differences in the population oscillation 

with different detuning; as the detuning gets higher, both (1) the period and (2) the 

amplitude decreases. Interestingly, the lower amplitude indicates lower probability 

for the atom to jump up to the excited state when the field is out of resonance with 

the atom, despite the fact that the field may carry substantially more energy to 
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transfer to the atom. Nonetheless, in this two-level model, it is assumed that the 

detuning is sufficiently small so that higher energy levels are irrelevant. 

 

4.2 General Approach to Quantum Mechanical Treatment 

The following few sections shall demonstrate the solution for the full quantum 

mechanical treatment of the light-matter interaction. In this treatment, not only that 

the two-level atom is treated quantum mechanically, the single-mode light field is 

expressed as quantised field state. The general strategy of this treatment is to first 

obtain the total Hamiltonian of the joint system (i.e. the sum of atomic Hamiltonian, 

field Hamiltonian and interaction Hamiltonian), then transforms it from Schrodinger 

picture to interaction picture. The Hamiltonian obtained is then used to solve the 

Schrodinger equation to obtain the wavefunction of the joint system.  

 

4.3 Unitary Transformation on Hamiltonian 

 

4.3.1 Hamiltonian in Schrodinger Picture 

Suppose a two-state system is interacting with discrete photons, the Hamiltonian of 

the quantum system in Schrodinger picture may be expressed in the form  

 

�̂�𝑆 = �̂�𝑆,𝐴 + �̂�𝑆,𝐹 + �̂�𝑆,𝑖𝑛𝑡 

= �̂�𝑆,0 + �̂�𝑆,𝑖𝑛𝑡  ,  (4.29) 

 

where �̂�𝑆,0 = �̂�𝑆,𝐴 + �̂�𝑆,𝐹 is the free term of the Hamiltonian, �̂�𝑆,𝑖𝑛𝑡 is the interaction 

Hamiltonian, �̂�𝑆,𝐴 is the atomic Hamiltonian and �̂�𝑆,𝐹 is the field Hamiltonian.  

 The single-mode field Hamiltonian can be obtained through quantisation 

procedure on the photon field which is shown in section 2.3 as  

 

�̂�𝑆,𝐹 = ℏ𝜔�̂�+�̂�− +
1

2
ℏ𝜔. 

 

 The atomic Hamiltonian of a two-level system can be formulated as 

 

�̂�𝑆,𝐴(|1⟩⟨1| + |2⟩⟨2|) = 𝐸1|1⟩⟨1| + 𝐸2|2⟩⟨2|, 
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where |1⟩⟨1| + |2⟩⟨2| is complete and its density matrix form is equivalent to that of 

an identity matrix, such that  

 

|1⟩⟨1| + |2⟩⟨2| = (
1 0
0 1

) = 𝐼. 

 

Furthermore, 𝐸1 = ℏ𝜔1 and 𝐸2 = ℏ𝜔2, therefore the equation becomes 

 

�̂�𝑆,𝐴𝐼 = ℏ𝜔1|1⟩⟨1|+ℏ𝜔2|2⟩⟨2| , 

 

and �̂�𝑆,𝐴 may be rewritten in the form of  

 

�̂�𝑆,𝐴 = (
ℏ𝜔2 0

0 ℏ𝜔1
) . 

 

It may be useful to re-express �̂�𝑆,𝐴 in terms of Pauli matrices, so that it is in a more 

suggestive form. We suppose �̂�𝑆,𝐴 = 𝑎1𝐼 + 𝑎2�̂�𝑧, such that  

 

(
ℏ𝜔2 0

0 ℏ𝜔1
) = 𝑎1 (

1 0
0 1

) + 𝑎2 (
1 0
0 −1

) . 

 

By solving the simultaneous equation, the coefficients can be obtained as 

 

𝑎1 =
1

2
ℏ(𝜔2 + 𝜔1), 

𝑎2 =
1

2
ℏ(𝜔2 − 𝜔1). 

 

Hence the atomic Hamiltonian in Schrodinger picture can be expressed as 

 

�̂�𝑆,𝐴 =
1

2
ℏ(𝜔2 + 𝜔1)𝐼 +

1

2
ℏ(𝜔2 − 𝜔1)�̂�𝑧. (4.30) 

 



44 

 

 Next, we proceed to find the expression for the interaction Hamiltonian. In 

the photon-atom interaction, the electric-dipole interaction dominates. The dipole 

operator can be expressed in the form 

 

�̂� = 𝒅∗�̂�+ + 𝒅�̂�−, 

 

so that �̂�|1⟩ = 𝒅∗|2⟩ and �̂�|2⟩ = 𝒅|1⟩. For simplicity, the dipole vectors are taken to 

be real, so that 𝒅 = 𝒅∗, then the interaction Hamiltonian in Schrodinger picture is 

 

�̂�𝑆,𝑖𝑛𝑡 = −𝒅(�̂�+ + �̂�−) ∙ 𝑬. 

 

From equation 2.33 in section 2.3, the 𝑬 field of a single mode field is obtained to be  

 

𝑬(𝒓, 𝑡) =
1

√휀0𝑉
�̇̂�(𝑡)𝒗(𝒓), 

 

where �̇̂� =
𝑝

𝑚
= 𝑖√

ℏ𝜔

2
(�̂�+ − �̂�−). We then substitute in the 𝑬 field equation into the 

interaction Hamiltonian so that  

 

�̂�𝑆,𝑖𝑛𝑡 = −𝒅(�̂�+ + �̂�−) ∙ 𝒗(𝒓)𝑖√
ℏ𝜔

2휀0𝑉
(�̂�+ − �̂�−) 

= 𝑖ℏ𝒅 ∙ 𝒗(𝒓)√
𝜔

2ℏ휀0𝑉
(�̂�+ + �̂�−)(�̂�− − �̂�+) 

= 𝑖ℏ𝜆(�̂�+ + �̂�−)(�̂�− − �̂�+),  (4.31) 

 

where 𝜆 = 𝒅 ∙ 𝒗(𝒓)√
𝜔

2ℏ 0𝑉
  is the interaction strength. The total Hamiltonian in the 

Schrodinger picture can then be expressed in the form of  

 

�̂�𝑆 =
1

2
ℏ(𝜔2 + 𝜔1)𝐼 +

1

2
ℏ(𝜔2 − 𝜔1)�̂�𝑧 + ℏ𝜔�̂�+�̂�− +

1

2
ℏ𝜔

+ 𝑖ℏ𝜆(�̂�+ + �̂�−)(�̂�− − �̂�+). 
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4.3.2 Hamiltonian in Interaction Picture 

The Hamiltonian in the interaction picture can be derived using the transformation 

relation in equation 2.31 which can be found in section 2.4.3 as 

 

�̂�𝐼 = 𝑖ℏ
𝜕�̂�

𝜕𝑡
�̂�† + �̂��̂�𝑆�̂�† 

 
= 𝑖ℏ

𝜕�̂�

𝜕𝑡
�̂�† + �̂��̂�𝑆,0�̂�† + �̂��̂�𝑆,𝑖𝑛𝑡�̂�†. (4.32) 

 

The unitary transformation and its time derivatives are in the forms of  

 

�̂� = exp (
𝑖�̂�𝑆,𝑈𝑡

ℏ
), (4.33) 

�̂�† = exp (
−𝑖�̂�𝑆,𝑈𝑡

ℏ
), (4.34) 

𝜕�̂�

𝜕𝑡
=

𝑖

ℏ
�̂�𝑆,𝑈 exp (

𝑖�̂�𝑆,𝑈𝑡

ℏ
), (4.35) 

 

where �̂�𝑆,𝑈 = [ℏ(𝜔2 − 𝜔 − 𝛿)]|1⟩⟨1| + [ℏ(𝜔2 − 𝛿)]|2⟩⟨2| + ℏ𝜔 (�̂�+�̂�− +
1

2
)  is the 

free term of the joint system Hamiltonian, 𝛿 =
Δ

2
 and Δ = 𝜔2 − 𝜔1 − 𝜔  is the 

detuning.  

 We now proceed to find the simplified expression of each term in equation 

4.32. Firstly, the first term may be re-expressed as  

 

𝑖ℏ
𝜕�̂�

𝜕𝑡
�̂�† = 𝑖ℏ (

𝑖

ℏ
�̂�𝑆,𝑈𝑒

𝑖�̂�𝑆,𝑈𝑡

ℏ ) (𝑒
−𝑖�̂�𝑆,𝑈𝑡

ℏ ) 

= −�̂�𝑆,𝑈 

= −ℏ [
𝜔2 − 𝛿 0

0 𝜔2 − 𝜔 − 𝛿
] − ℏ𝜔 (�̂�+�̂�− +

1

2
). 

 

Similarly, the second term may also be simplified as 
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�̂��̂�𝑆,0�̂�† = (𝑒
𝑖�̂�𝑆,𝑈𝑡

ℏ ) �̂�𝑆,0 (𝑒
−𝑖�̂�𝑆,𝑈𝑡

ℏ ) 

= �̂�𝑆,0 

= ℏ [
𝜔2 0
0 𝜔1

] + ℏ𝜔 (�̂�+�̂�− +
1

2
). 

 

Hence the first two terms may be summed up so that   

 

𝑖ℏ
𝜕�̂�

𝜕𝑡
�̂�† + �̂��̂�𝑆,0�̂�† = ℏ [

𝛿 0
0 𝜔 + 𝜔1 − 𝜔2 + 𝛿

] 

=  ℏ [
Δ/2 0

0 −Δ/2
] 

 
= (

ℏΔ

2
) �̂�𝑧 . (4.36) 

 

On the other hand, the simplification process of the third term is trickier. We first re-

express the third term as  

 

�̂��̂�𝑆,𝑖𝑛𝑡�̂�† = (𝑒
𝑖�̂�𝑆,𝑈𝑡

ℏ ) (𝑖ℏ𝜆(�̂�+ + �̂�−)(�̂�− − �̂�+)) (𝑒
−𝑖�̂�𝑆,𝑈𝑡

ℏ ) 

= (𝑒
𝑖(�̂�𝑆,𝐴+�̂�𝑆,𝐹)𝑡

ℏ ) (𝑖ℏ𝜆(�̂�+ + �̂�−)(�̂�− − �̂�+)) (𝑒
−𝑖(�̂�𝑆,𝐴+�̂�𝑆,𝐹)𝑡

ℏ ), 

 

where �̂�𝑆,𝐴 = [ℏ(𝜔2 − 𝜔 − 𝛿)]|1⟩⟨1| + [ℏ(𝜔2 − 𝛿)]|2⟩⟨2|  is the atomic 

Hamiltonian and �̂�𝑆,𝐹 = ℏ𝜔 (�̂�+�̂�− +
1

2
) is the field Hamiltonian. Since the ladder 

operators �̂�+ and �̂�− act only on �̂�𝑆,𝐴 whereas �̂�+ and �̂�− act only on �̂�𝑆,𝐹 , the third 

term can thus be rearranged and solved separately for both the atomic Hamiltonian 

and field Hamiltonian, such that  

 

�̂��̂�𝑆,𝑖𝑛𝑡�̂�† = 𝑖ℏ𝜆 {𝑒
𝑖�̂�𝑆,𝐴𝑡

ℏ (�̂�+ + �̂�−)𝑒
−𝑖�̂�𝑆,𝐴𝑡

ℏ } {𝑒
𝑖�̂�𝑆,𝐹𝑡

ℏ (�̂�− − �̂�+)𝑒
−𝑖�̂�𝑆,𝐹𝑡

ℏ }.  (4.37) 
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To solve for the atomic Hamiltonian part of the factor, {𝑒
𝑖�̂�𝑆,𝐴𝑡

ℏ (�̂�+ + �̂�−)𝑒
−𝑖�̂�𝑆,𝐴𝑡

ℏ }, it 

is first noted that the atomic Hamiltonian can be expressed in matrix form as 

 

�̂�𝑆,𝐴 = (
ℏ(𝜔2 − 𝛿) 0

0 ℏ(𝜔2 − 𝜔 − 𝛿)
). 

 

Therefore, by making use of the mathematical identity derived in section 2.5, its 

exponential takes the form of  

 

𝑒
𝑖�̂�𝑆,𝐴𝑡

ℏ = (𝑒𝑖(𝜔2−𝛿)𝑡 0
0 𝑒𝑖(𝜔2−𝜔−𝛿)𝑡

). 

 

Moreover, the ladder operators may also be represented in matrix form such that 

 

�̂�+ = (
0 1
0 0

), 

 

and 

 

�̂�− = (
0 0
1 0

). 

 

Hence, we make use of these expressions of matrices to solve for the atomic 

Hamiltonian part of the factor, so that  

 

{𝑒
𝑖�̂�𝑆,𝐴𝑡

ℏ (�̂�+ + �̂�−)𝑒
−𝑖�̂�𝑆,𝐴𝑡

ℏ } 

= (𝑒𝑖(𝜔2−𝛿)𝑡 0
0 𝑒𝑖(𝜔2−𝜔−𝛿)𝑡

) (
0 1
1 0

) (𝑒−𝑖(𝜔2−𝛿)𝑡 0
0 𝑒−𝑖(𝜔2−𝜔−𝛿)𝑡

) 

= ( 0 𝑒𝑖𝜔𝑡

𝑒−𝑖𝜔𝑡 0
) 

= 𝑒𝑖𝜔𝑡�̂�+ + 𝑒−𝑖𝜔𝑡�̂�− ,  (4.38) 

 

where 𝜔 = 𝜔2 − 𝜔1 − Δ.  
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 Next, we proceed to solve for the field Hamiltonian part of the factor, 

{𝑒
𝑖�̂�𝑆,𝐹𝑡

ℏ (�̂�− − �̂�+)𝑒
−𝑖�̂�𝑆,𝐹𝑡

ℏ }. The raising and lowering operators are first re-expressed 

into the form of  

 

�̂�+ = ∑ √𝑛 + 1|𝑛 + 1⟩⟨𝑛|

𝑛

, 

�̂�− = ∑ √𝑛 + 1|𝑛⟩⟨𝑛 + 1|

𝑛

, 

�̂�+�̂�− = ∑(𝑛 + 1)|𝑛 + 1⟩⟨𝑛 + 1|

𝑛

. 

 

Thus the field Hamiltonian can be re-expressed as 

 

�̂�𝑆,𝐹 = ∑ ℏ𝜔 ((𝑛 + 1)|𝑛 + 1⟩⟨𝑛 + 1| +
1

2
)

𝑛

. 

 

Moreover, the field Hamiltonian part of the factor can be further separated into two 

parts for ease of derivation: 

 

{𝑒
𝑖�̂�𝑆,𝐹𝑡

ℏ (�̂�− − �̂�+)𝑒
−𝑖�̂�𝑆,𝐹𝑡

ℏ } = {𝑒
𝑖�̂�𝑆,𝐹𝑡

ℏ �̂�−𝑒
−𝑖�̂�𝑆,𝐹𝑡

ℏ } − {𝑒
𝑖�̂�𝑆,𝐹𝑡

ℏ �̂�+𝑒
−𝑖�̂�𝑆,𝐹𝑡

ℏ }.  (4.39) 

 

We first solve for the first term on the right side of equation 4.39 to yield  

 

{𝑒
𝑖�̂�𝑆,𝐹𝑡

ℏ �̂�−𝑒
−𝑖�̂�𝑆,𝐹𝑡

ℏ }

= ∑ ∑ ∑ {exp (
𝑖𝜔𝑡

2
) exp(𝑖𝜔𝑡(𝑚 + 1)) |𝑚 + 1⟩⟨𝑚

𝑟𝑛𝑚

+ 1|} {√𝑛 + 1|𝑛⟩⟨𝑛 + 1|} {exp (
−𝑖𝜔𝑡

2
) exp(−𝑖𝜔𝑡(𝑟 + 1)) |𝑟 + 1⟩⟨𝑟

+ 1|}. 
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Obviously due to the orthogonality property, 𝑛 = 𝑚 + 1 = 𝑟 must be true to produce 

any significant result. The expression may then be greatly simplified so that 

 

{𝑒
𝑖�̂�𝑆,𝐹𝑡

ℏ �̂�−𝑒
−𝑖�̂�𝑆,𝐹𝑡

ℏ }

= ∑{exp(𝑖𝜔𝑡(𝑛)) |𝑛⟩⟨𝑛|}{√𝑛 + 1|𝑛⟩⟨𝑛

𝑛

+ 1|}{exp(−𝑖𝜔𝑡(𝑛 + 1)) |𝑛 + 1⟩⟨𝑛 + 1|} 

= ∑ exp(−𝑖𝜔𝑡) √𝑛 + 1|𝑛⟩⟨𝑛 + 1|

𝑛

 

= �̂�−𝑒−𝑖𝜔𝑡.  (4.40) 

 

Now, we proceed to solve for the second term on the right side of equation 4.39 such 

that 

 

{𝑒
𝑖�̂�𝑆,𝐹𝑡

ℏ �̂�+𝑒
−𝑖�̂�𝑆,𝐹𝑡

ℏ } 

= ∑ ∑ ∑ {exp (
𝑖𝜔𝑡

2
) exp(𝑖𝜔𝑡(𝑚 + 1)) |𝑚 + 1⟩⟨𝑚 + 1|} {√𝑛 + 1|𝑛

𝑟𝑛𝑚

+ 1⟩⟨𝑛|} {exp (
−𝑖𝜔𝑡

2
) exp(−𝑖𝜔𝑡(𝑟 + 1)) |𝑟 + 1⟩⟨𝑟 + 1|}. 

 

Obviously due to the orthogonality property, 𝑛 = 𝑚 = 𝑟 + 1 must be true to produce 

any significant result. The expression may then be significantly simplified into  

 

{𝑒
𝑖�̂�𝑆,𝐹𝑡

ℏ �̂�+𝑒
−𝑖�̂�𝑆,𝐹𝑡

ℏ }

= ∑{exp(𝑖𝜔𝑡(𝑛 + 1)) |𝑛 + 1⟩⟨𝑛 + 1|}{√𝑛 + 1|𝑛

𝑛

+ 1⟩}{exp(−𝑖𝜔𝑡(𝑛)) |𝑛⟩⟨𝑛|} 

= ∑ exp(𝑖𝜔𝑡) √𝑛 + 1|𝑛 + 1⟩⟨𝑛|

𝑛

 

= �̂�+𝑒𝑖𝜔𝑡.  (4.41) 
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Finally, we substitute in all the solutions for the Hamiltonian in interaction picture to 

obtain  

 

�̂�𝐼 = 𝑖ℏ
𝜕�̂�

𝜕𝑡
�̂�† + �̂��̂�𝑆,0�̂�† + �̂��̂�𝑆,𝑖𝑛𝑡�̂�† 

= −�̂�𝑆,0 + �̂�𝑆,0 + 𝑖ℏ𝜆(𝑒𝑖𝜔𝑡�̂�+ + 𝑒−𝑖𝜔𝑡�̂�−)(�̂�−𝑒−𝑖𝜔𝑡 − �̂�+𝑒𝑖𝜔𝑡) 

= 𝑖ℏ𝜆(�̂�+�̂�− − �̂�−�̂�+ − �̂�+�̂�+𝑒2𝑖𝜔𝑡 + �̂�−�̂�−𝑒−2𝑖𝜔𝑡).  (4.42) 

 

By applying rotating-wave approximation to remove the fast rotating terms, the 

Hamiltonian in interaction picture can be simplified into  

 

�̂�𝐼 =
ℏΔ

2
�̂�𝑧 − 𝑖ℏ𝜆(�̂�+�̂�− − �̂�−�̂�+). (4.43) 

 

The physical consequences of equation 4.43 are obvious: �̂�+�̂�− term refers to the 

atom absorbing a photon to jump to the excited state and �̂�−�̂�+ term refers to the 

atom releasing a photon while jumping down to the ground state. Nevertheless this is 

not the sole possible form of interaction. Alternatively the atom may absorb 𝑘 

number of photons to be excited and similarly releases 𝑘 number of photons when it 

is de-excited. The solution to such case can be easily extended to take the form 

 

�̂�𝐼 =
ℏΔ

2
�̂�𝑧 − 𝑖ℏ𝜆(�̂�+�̂�−

𝑘 − �̂�−�̂�+
𝑘 ). (4.44) 

 

4.4 Probability Functions 

 

4.4.1 Probability Function of Single-Photon Model 

In this model, it is assumed that the atom absorbs single photon to be excited from 

the ground state to the excited state. Given a two-state system described by 

wavefunction 

 

|Ψ𝐼(𝑡)⟩ = ∑ 𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ + 𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

, (4.45) 
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where 𝑐1,𝑛  and 𝑐2,𝑛  are the only factors that carry the time dependence in the 

wavefunction. The atomic states |1⟩  and |2⟩ , and the photon states |𝑛⟩  are time 

independent in this case. Therefore the Schrodinger equation in interaction picture is 

given as 

 

−
𝑖

ℏ
�̂�𝐼|Ψ𝐼(𝑡)⟩ =

𝜕

𝜕𝑡
|Ψ𝐼(𝑡)⟩. (4.46) 

 

For the right-hand side of equation 4.46, we can simply differentiate the 

wavefunction to yield 

 

𝜕

𝜕𝑡
|Ψ𝐼(𝑡)⟩ =

𝜕

𝜕𝑡
∑ 𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ + 𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

 

= ∑ �̇�1,𝑛(𝑡) |1⟩|𝑛⟩ + �̇�2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

. 

 

On the other hand, the left-hand side of equation 4.46 may be re-expressed in the 

form of  

 

−
𝑖

ℏ
�̂�𝐼|Ψ𝐼(𝑡)⟩ =

−𝑖Δ

2
�̂�𝑧|Ψ𝐼(𝑡)⟩ − 𝜆(�̂�+�̂�− − �̂�−�̂�+)|Ψ𝐼(𝑡)⟩. 

 

By solving the first term, we obtain 

 

−𝑖Δ

2
�̂�𝑧|Ψ𝐼(𝑡)⟩ = (

𝑖Δ

2
|1⟩⟨1|  −

𝑖Δ

2
|2⟩⟨2|) (∑ 𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ + 𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

) 

= ∑
𝑖Δ

2
𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ −

𝑖Δ

2
𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

. 

 

Similarly, solving the second term yields 
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−𝜆(�̂�+�̂�− − �̂�−�̂�+)|Ψ𝐼(𝑡)⟩

= −𝜆(�̂�+�̂�− − �̂�−�̂�+) (∑ 𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ + 𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

) 

= −𝜆 ∑ √𝑛 𝑐1,𝑛(𝑡) |2⟩|𝑛 − 1⟩

∞

𝑛=0

+ 𝜆 ∑ √𝑛 + 1 𝑐2,𝑛(𝑡) |1⟩|𝑛 + 1⟩

∞

𝑛=0

 

= −𝜆 ∑ √𝑛 + 1 𝑐1,𝑛+1(𝑡) |2⟩|𝑛⟩

∞

𝑛=−1

+ 𝜆 ∑ √𝑛 𝑐2,𝑛−1(𝑡) |1⟩|𝑛⟩

∞

𝑛=1

 

= −𝜆 ∑ √𝑛 + 1 𝑐1,𝑛+1(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

+ 𝜆 ∑ √𝑛 𝑐2,𝑛−1(𝑡) |1⟩|𝑛⟩

∞

𝑛=0

. 

 

We may now combine the results of the two terms, so that the left-hand side of 

equation 4.46 becomes 

 

−
𝑖

ℏ
�̂�𝐼|Ψ𝐼(𝑡)⟩ = ∑

𝑖Δ

2
𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ −

𝑖Δ

2
𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

− 𝜆 ∑ √𝑛 + 1 𝑐1,𝑛+1(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

+ 𝜆 ∑ √𝑛 𝑐2,𝑛−1(𝑡) |1⟩|𝑛⟩

∞

𝑛=0

 

= ∑ (
𝑖Δ

2
𝑐1,𝑛(𝑡) + 𝜆√𝑛 𝑐2,𝑛−1(𝑡)) |1⟩|𝑛⟩

∞

𝑛=0

+ ∑ (−
𝑖Δ

2
𝑐2,𝑛(𝑡) − 𝜆√𝑛 + 1 𝑐1,𝑛+1(𝑡)) |2⟩|𝑛⟩

∞

𝑛=0

. 

 

Comparing the coefficients on the two sides of equation 4.46, we obtain two 

expressions which are  

 

�̇�1,𝑛(𝑡) =
𝑖Δ

2
𝑐1,𝑛(𝑡) + 𝜆√𝑛 𝑐2,𝑛−1(𝑡), (4.47) 

�̇�2,𝑛(𝑡) = −
𝑖Δ

2
𝑐2,𝑛(𝑡) − 𝜆√𝑛 + 1 𝑐1,𝑛+1(𝑡). (4.48) 

 

To maintain the consistency, we rewrite equation 4.48 into  
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�̇�2,𝑛−1(𝑡) = −
𝑖Δ

2
𝑐2,𝑛−1(𝑡) − 𝜆√𝑛 𝑐1,𝑛(𝑡). (4.49) 

 

The problem is therefore simplified into simple differential equations. Firstly, we 

differentiate both sides of equation 4.47 with respect to time to yield  

 

�̈�1,𝑛(𝑡) =
𝑖Δ

2
�̇�1,𝑛(𝑡) + 𝜆√𝑛 �̇�2,𝑛−1(𝑡). (4.50) 

 

Then, equation 4.49 is substituted into equation 4.50 so that  

 

�̈�1,𝑛(𝑡) =
𝑖Δ

2
�̇�1,𝑛(𝑡)  −

𝑖Δ

2
𝜆√𝑛𝑐2,𝑛−1(𝑡) − 𝜆2𝑛 𝑐1,𝑛(𝑡). (4.51) 

 

To further simplify it, we substitute equation 4.47 into equation 4.51 to obtain  

 

�̈�1,𝑛(𝑡) =
𝑖Δ

2
�̇�1,𝑛(𝑡)  −

𝑖Δ

2
�̇�1,𝑛(𝑡) −

Δ2

4
𝑐1,𝑛(𝑡) − 𝜆2𝑛 𝑐1,𝑛(𝑡), 

= − (𝜆2𝑛 +
Δ2

4
) 𝑐1,𝑛(𝑡) 

= − (
Ω𝑅

2
)

2

𝑐1,𝑛(𝑡), 

 

where Ω𝑅 = 𝜆2𝑛 +
Δ2

4
. The solution for this double differential equation is simply 

 

𝑐1,𝑛(𝑡) = 𝐴𝑠𝑖𝑛 (
Ω𝑅

2
𝑡) + 𝐵𝑐𝑜𝑠 (

Ω𝑅

2
𝑡). (4.52) 

 

Besides that, we also perform similar procedure on equation 4.49 to yield the result 

for 𝑐2,𝑛−1(𝑡) . We begin by first differentiating both sides of equation 4.49 with 

respect to time so that  

 

�̈�2,𝑛−1(𝑡) = −
𝑖Δ

2
�̇�2,𝑛−1(𝑡) − 𝜆√𝑛 �̇�1,𝑛(𝑡). (4.53) 
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Then we substitute equation 4.47 into equation 4.53 to obtain the expression  

 

�̈�2,𝑛−1(𝑡) = −
𝑖Δ

2
�̇�2,𝑛−1(𝑡) − 𝜆√𝑛 

𝑖Δ

2
𝑐1,𝑛(𝑡) − 𝜆2𝑛𝑐2,𝑛−1(𝑡). (4.54) 

 

To further simplify the equation, equation 4.49 is substituted into equation 4.54 such 

that  

 

�̈�2,𝑛−1(𝑡) = −
𝑖Δ

2
�̇�2,𝑛−1(𝑡) +

𝑖Δ

2
�̇�2,𝑛−1(𝑡) −

Δ2

4
𝑐2,𝑛−1(𝑡) − 𝜆2𝑛𝑐2,𝑛−1(𝑡) 

= − (𝜆2𝑛 +
Δ2

4
) 𝑐2,𝑛−1(𝑡) 

= − (
Ω𝑅

2
)

2

𝑐2,𝑛−1(𝑡), 

 

where Ω𝑅 = 𝜆2𝑛 +
Δ2

4
. The solution for this double differential equation is therefore 

 

𝑐2,𝑛−1(𝑡) = 𝐶𝑠𝑖𝑛 (
Ω𝑅

2
𝑡) + 𝐷𝑐𝑜𝑠 (

Ω𝑅

2
𝑡). (4.55) 

 

Suppose the system is initially unexcited whereas the field is in linear superposition 

of number states, the initial composite state can therefore be represented as 

 

|Ψ𝐼(0)⟩ = ∑ 𝑎𝑛 |1⟩|𝑛⟩

∞

𝑛=0

. 

Thus when 𝑡 = 0, we observe that  

 

𝑐1,𝑛(0) = 𝐵 = 𝑎𝑛, 

 

and 

 

𝑐2,𝑛−1(0) = 𝐷 = 0. 
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Imposing these initial conditions into equations 4.52 and 4.55 allows us to obtain the 

expressions of  

 

𝑐1,𝑛(𝑡) = 𝐴𝑠𝑖𝑛 (
Ω𝑅

2
𝑡) + 𝑎𝑛𝑐𝑜𝑠 (

Ω𝑅

2
𝑡), (4.56) 

𝑐2,𝑛−1(𝑡) = 𝐶𝑠𝑖𝑛 (
Ω𝑅

2
𝑡). (4.57) 

 

We now further differentiate equation 4.56 with respect to time such that  

 

�̇�1,𝑛(𝑡) = 𝐴
Ω𝑅

2
𝑐𝑜𝑠 (

Ω𝑅

2
𝑡) − 𝑎𝑛

Ω𝑅

2
𝑠𝑖𝑛 (

Ω𝑅

2
𝑡). 

 

The left-hand side of the expression can be replaced with equation 4.47 so that  

 

𝑖Δ

2
𝑐1,𝑛(𝑡) + 𝜆√𝑛 𝑐2,𝑛−1(𝑡) = 𝐴

Ω𝑅

2
𝑐𝑜𝑠 (

Ω𝑅

2
𝑡) − 𝑎𝑛

Ω𝑅

2
𝑠𝑖𝑛 (

Ω𝑅

2
𝑡). 

 

Now impose the initial condition again, we therefore obtain  

 

𝑖Δ

2
𝑐1,𝑛(0) + 𝜆√𝑛 𝑐2,𝑛−1(0) = 𝐴

Ω𝑅

2
, 

𝑖Δ

2
𝑎𝑛 = 𝐴

Ω𝑅

2
, 

𝐴 =
𝑖Δ𝑎𝑛

Ω𝑅
. 

 

Similarly, we differentiate equation 4.57 with respect to time to obtain the expression  

 

�̇�2,𝑛−1(𝑡) = 𝐶
Ω𝑅

2
𝑐𝑜𝑠 (

Ω𝑅

2
𝑡). 

 

The left-hand side of the equation can be replaced with equation 4.49 so that  

 

−
𝑖Δ

2
𝑐2,𝑛−1(𝑡) − 𝜆√𝑛 𝑐1,𝑛(𝑡) = 𝐶

Ω𝑅

2
𝑐𝑜𝑠 (

Ω𝑅

2
𝑡). 
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Now impose the initial condition again, we therefore obtain  

 

−
𝑖Δ

2
𝑐2,𝑛−1(0) − 𝜆√𝑛 𝑐1,𝑛(0) = 𝐶

Ω𝑅

2
. 

−𝑎𝑛𝜆√𝑛 = 𝐶
Ω𝑅

2
, 

𝐶 =
−2𝑎𝑛𝜆√𝑛

Ω𝑅
. 

 

Finally, the coefficients are obtained to be 

 

𝑐1,𝑛(𝑡) = 𝑎𝑛 {
𝑖Δ

Ω𝑅
𝑠𝑖𝑛 (

Ω𝑅

2
𝑡) + 𝑐𝑜𝑠 (

Ω𝑅

2
𝑡)}, (4.58) 

𝑐2,𝑛−1(𝑡) = 𝑎𝑛 {
−2𝜆√𝑛

Ω𝑅
𝑠𝑖𝑛 (

Ω𝑅

2
𝑡)}, (4.59) 

 

where Ω𝑅 = √Δ2 + 4𝜆2𝑛.  

Therefore the probability functions of state 1 (ground state) and state 2 

(excited state) at any given time can be obtained by computing  

 

𝑃1(𝑡) = ∑|𝑐1,𝑛(𝑡)|
2

∞

𝑛=0

, 

𝑃2(𝑡) = ∑|𝑐2,𝑛(𝑡)|
2

∞

𝑛=0

, 

 

respectively. Since the probabilities must be conserved, that is 𝑃1(𝑡) + 𝑃2(𝑡) = 1, 

the characteristics of the two probability curves are complement to each other. Hence 

it is sufficient to limit our studies to only state 1 (ground state). 

Besides that, both resonant case Δ = 0  and near resonant case Δ ≠ 0  are 

considered. Assuming resonance case, the probability function for state 1 is then 

given as 
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𝑃1(𝑡) = ∑|𝑐1,𝑛(𝑡)|
2

∞

𝑛=0

 

= ∑|𝑎𝑛|2 cos2 (
Ω𝑅

2
𝑡)

∞

𝑛=0

 

= ∑|𝑎𝑛|2 cos2(𝜆𝑛1/2 𝑡)

∞

𝑛=0

. 

 

On the other hand, assuming near resonant case Δ ≠ 0, the probability function for 

state 1 is then given as  

 

𝑃1(𝑡) = ∑|𝑐1,𝑛(𝑡)|
2

∞

𝑛=0

 

= ∑|𝑎𝑛|2 (cos2 (
Ω𝑅

2
𝑡) + (

Δ

Ω𝑅
)

2

sin2 (
Ω𝑅

2
𝑡))

∞

𝑛=0

. 

 

where Ω𝑅 = √Δ2 + 4𝜆2𝑛. 

 

4.4.2 Probability Function of Multiple-Photon Model 

In this section, the excitation of atom may absorb multiple photons. Similar to the 

previous section in 4.3.1, the initial wavefunction of the system is represented as  

 

|Ψ𝐼(𝑡)⟩ = ∑ 𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ + 𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

, (4.60) 

 

where 𝑐1,𝑛  and 𝑐2,𝑛  are the only factors that carry the time dependence in the 

wavefunction. The atomic states |1⟩  and |2⟩ , and the photon states |𝑛⟩  are time 

independent in this case. By solving the Schrodinger equation in interaction picture, 

we obtain  

 

−
𝑖

ℏ
�̂�𝐼|Ψ𝐼(𝑡)⟩ =

𝜕

𝜕𝑡
|Ψ𝐼(𝑡)⟩. (4.61) 
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Firstly, the right-hand side of equation 4.61 is derived to be in the form of  

 

𝜕

𝜕𝑡
|Ψ𝐼(𝑡)⟩ =

𝜕

𝜕𝑡
∑ 𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ + 𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

 

= ∑ �̇�1,𝑛(𝑡) |1⟩|𝑛⟩ + �̇�2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

. 

 

On the other hand, the left-hand side of equation 4.61 can be re-expressed as  

 

−
𝑖

ℏ
�̂�𝐼|Ψ𝐼(𝑡)⟩ =

−𝑖Δ

2
�̂�𝑧|Ψ𝐼(𝑡)⟩ − 𝜆(�̂�+�̂�−

𝑘 − �̂�−�̂�+
𝑘 )|Ψ𝐼(𝑡)⟩. 

 

We proceed by first solving the first term such that  

 

−𝑖Δ

2
�̂�𝑧|Ψ𝐼(𝑡)⟩ = (

𝑖Δ

2
|1⟩⟨1|  −

𝑖Δ

2
|2⟩⟨2|) (∑ 𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ + 𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

) 

= ∑
𝑖Δ

2
𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ −

𝑖Δ

2
𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

. 

 

Next, we proceed to solve the second term to yield  

 

−𝜆(�̂�+�̂�−
𝑘 − �̂�−�̂�+

𝑘 )|Ψ𝐼(𝑡)⟩

= −𝜆(�̂�+�̂�−
𝑘 − �̂�−�̂�+

𝑘 ) (∑ 𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ + 𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

) 

= −𝜆 ∑ √𝑛 √𝑛 − 1 … √𝑛 − 𝑘 + 1𝑐1,𝑛(𝑡) |2⟩|𝑛 − 𝑘⟩

∞

𝑛=0

+ 𝜆 ∑ √𝑛 + 1 √𝑛 + 2 … √𝑛 + 𝑘𝑐2,𝑛(𝑡) |1⟩|𝑛 + 𝑘⟩

∞

𝑛=0

 

= −𝜆 ∑ √𝑛 + 𝑘 √𝑛 + 𝑘 − 1 … √𝑛 + 1 𝑐1,𝑛+𝑘(𝑡) |2⟩|𝑛⟩

∞

𝑛=−𝑘

+ 𝜆 ∑ √𝑛 − 𝑘 + 1 √𝑛 − 𝑘 + 2 … √𝑛 𝑐2,𝑛−𝑘(𝑡) |1⟩|𝑛⟩

∞

𝑛=𝑘
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= −𝜆 ∑ √𝑛 + 𝑘 √𝑛 + 𝑘 − 1 … √𝑛 + 1 𝑐1,𝑛+𝑘(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

+ 𝜆 ∑ √𝑛 − 𝑘 + 1 √𝑛 − 𝑘 + 2 … √𝑛 𝑐2,𝑛−𝑘(𝑡) |1⟩|𝑛⟩

∞

𝑛=0

. 

 

By combining the two terms, the left-hand side of equation 4.61 becomes 

 

−
𝑖

ℏ
�̂�𝐼|Ψ𝐼(𝑡)⟩ = ∑

𝑖Δ

2
𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ −

𝑖Δ

2
𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

− 𝜆 ∑ √𝑛 + 𝑘 √𝑛 + 𝑘 − 1 … √𝑛 + 1 𝑐1,𝑛+𝑘(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

+ 𝜆 ∑ √𝑛 − 𝑘 + 1 √𝑛 − 𝑘 + 2 … √𝑛 𝑐2,𝑛−𝑘(𝑡) |1⟩|𝑛⟩

∞

𝑛=0

 

−
𝑖

ℏ
�̂�𝐼|Ψ𝐼(𝑡)⟩ = ∑ (

𝑖Δ

2
𝑐1,𝑛(𝑡) + 𝜆√𝑛 − 𝑘 + 1 √𝑛 − 𝑘 + 2 … √𝑛 𝑐2,𝑛−𝑘(𝑡)) |1⟩|𝑛⟩

∞

𝑛=0

+ ∑ (−
𝑖Δ

2
𝑐2,𝑛(𝑡)

∞

𝑛=0

− 𝜆√𝑛 + 𝑘 √𝑛 + 𝑘 − 1 … √𝑛 + 1 𝑐1,𝑛+𝑘(𝑡)) |2⟩|𝑛⟩. 

 

Through comparisons between the two sides of equation 4.61, we obtain two 

expressions which are  

 

�̇�1,𝑛(𝑡) =
𝑖Δ

2
𝑐1,𝑛(𝑡) + 𝜆√𝑛 − 𝑘 + 1 √𝑛 − 𝑘 + 2 … √𝑛 𝑐2,𝑛−𝑘(𝑡), (4.62) 

�̇�2,𝑛(𝑡) = −
𝑖Δ

2
𝑐2,𝑛(𝑡) − 𝜆√𝑛 + 𝑘 √𝑛 + 𝑘 − 1 … √𝑛 + 1 𝑐1,𝑛+𝑘(𝑡). (4.63) 

 

To maintain the consistency, equation 4.63 can be rewritten as 

 

�̇�2,𝑛−𝑘(𝑡) = −
𝑖Δ

2
𝑐2,𝑛−𝑘(𝑡) − 𝜆√𝑛 − 𝑘 + 1 √𝑛 − 𝑘 + 2 … √𝑛 𝑐1,𝑛(𝑡). (4.64) 
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We let 𝑛′ = √𝑛 − 𝑘 + 1 √𝑛 − 𝑘 + 2 … √𝑛, so that equations 4.62 and 4.64 can be 

rewritten into simpler form as follows,  

 

�̇�1,𝑛(𝑡) =
𝑖Δ

2
𝑐1,𝑛(𝑡) + 𝜆𝑛′ 𝑐2,𝑛−𝑘(𝑡), (4.65) 

�̇�2,𝑛−𝑘(𝑡) = −
𝑖Δ

2
𝑐2,𝑛−𝑘(𝑡) − 𝜆𝑛′ 𝑐1,𝑛(𝑡). (4.66) 

 

Remarkably equations 4.65 and 4.66 are very similar to equations 4.47 and 

4.49 respectively. There are only two distinctions between the two sets of equations: 

(a) the coefficient term 𝑛 − 1  is replaced with 𝑛 − 𝑘  and (b) the constant √𝑛  is 

replaced with  𝑛′. Therefore, the exact same derivation process in section 4.4.1 may 

be carried out and the results are simply 

 

𝑐1,𝑛(𝑡) = 𝑎𝑛 {
𝑖Δ

Ω𝑅
𝑠𝑖𝑛 (

Ω𝑅

2
𝑡) + 𝑐𝑜𝑠 (

Ω𝑅

2
𝑡)}, (4.67) 

𝑐2,𝑛−𝑘(𝑡) = 𝑎𝑛 {
−2𝜆𝑛′

Ω𝑅
𝑠𝑖𝑛 (

Ω𝑅

2
𝑡)}, (4.68) 

 

where Ω𝑅 = √Δ2 + 4𝜆2𝑛′2 and 𝑛′ = √𝑛 − 𝑘 + 1 √𝑛 − 𝑘 + 2 … √𝑛 .  

Finally, if we assume resonance case, the probability function for state 1 is 

therefore  

 

𝑃1(𝑡) = ∑|𝑐1,𝑛(𝑡)|
2

∞

𝑛=0

 

= ∑|𝑎𝑛|2 cos2 (
Ω𝑅

2
𝑡)

∞

𝑛=0

 

= ∑|𝑎𝑛|2 cos2(𝜆𝑛′ 𝑡)

∞

𝑛=0

. 

 

On the other hand, assuming near resonant case, the probability function for state 1 is 

therefore given as  
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𝑃1(𝑡) = ∑|𝑐1,𝑛(𝑡)|
2

∞

𝑛=0

 

= ∑|𝑎𝑛|2 (cos2 (
Ω𝑅

2
𝑡) + (

Δ

Ω𝑅
)

2

sin2 (
Ω𝑅

2
𝑡))

∞

𝑛=0

. 

 

where Ω𝑅 = √Δ2 + 4𝜆2𝑛′2 and 𝑛′ = √𝑛 − 𝑘 + 1 √𝑛 − 𝑘 + 2 … √𝑛. 

 

4.5 Interpretation of Results 

 

4.5.1 Initial Number State 

Assume that the field state initially resides in a single number state |𝑛′⟩ and make use 

of the orthonormality property of number states, the corresponding wavefunction 

reduces to  

 

|𝑛′⟩⟨𝑛′|Ψ𝐼(𝑡)⟩ = |𝑛′⟩⟨𝑛′| (∑ 𝑐1,𝑛(𝑡) |1⟩|𝑛⟩ + 𝑐2,𝑛(𝑡) |2⟩|𝑛⟩

∞

𝑛=0

) 

= 𝑐1,𝑛(𝑡) |1⟩|𝑛′⟩ + 𝑐2,𝑛(𝑡) |2⟩|𝑛′⟩. 

 

Hence the probability function for state 1 reduces to 

 

𝑃1(𝑡) = |𝑐1,𝑛(𝑡)|
2
 

= cos2 (
Ω𝑅

2
𝑡) + (

Δ

Ω𝑅
)

2

sin2 (
Ω𝑅

2
𝑡), 

 

where Ω𝑅 = √Δ2 + 4𝜆2𝑛′ . It is therefore observed that the probability function 

simplified to the form derived in the semiclassical treatment (equation 4.27).  

 Moreover, the solution of two-photon model with initial number state actually 

reduces to the same form as above, with the exception that the constant 𝑛′ is replaced 

with √𝑛′ − 1√𝑛′. In simple resonant case, such distinction only results in a minor 

difference in the angular frequency of the sinusoidal probability wave. Figure 4.3 

illustrates the distinctions in probability graphs for one-photon model and two-

photon model at 𝑛′ = 10. 
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Figure 4.3: Probability graph to illustrate the comparison between single-photon 

model (blue) and two-photon model (red) with initial number state 𝑛′ = 10. 

 

4.5.2 Initial Coherent State (Single-Photon) 

Assume that the field is initially in coherent state, the probability distribution 

function, as shown in equation 2.51 is 

 

|𝑎𝑛|2 =
exp(−�̅�) �̅�𝑛

𝑛!
. 

 

In resonant case, the probability function for state 1 is  

 

𝑃1(𝑡) = ∑ (
exp(−�̅�) �̅�𝑛

𝑛!
) cos2(𝜆𝑛1/2 𝑡)

∞

𝑛=0

, 

 

which is plotted using MATLAB software as shown from figures 4.4 to 4.7.  
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Figure 4.4: Probability graph of atomic ground state with initial coherent field state, 

mean photon number �̅� = 10 and interaction strength 𝜆 = 1. 

 

 

Figure 4.5: Probability graph of atomic ground state with initial coherent field state, 

mean photon number �̅� = 100 and interaction strength 𝜆 = 1. 

 

 Figures 4.4 and 4.5 show the probability function against time for the ground 

state of a two-level atom interacting with initial coherent photons. The mean photon 

number of the coherent field was set to �̅� = 10 (figure 4.4) and �̅� = 100 (figure 4.5) 

respectively. The probability function initially oscillates starting from a maximum 

value of 𝑃(𝑡) = 1 which agrees with the assumption of initially unexcited atom. In 

figure 4.4 the oscillation amplitude gradually decreases until at approximately time 
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𝑡 = 3 𝑠 , the oscillation ceases, resulting in a quiescence period at constant 

probability of 0.5. During this period the atom is in maximally mixed state, being 

equally likely to reside in either ground state or excited state. The Rabi oscillation 

however revives at around time 𝑡 = 13 𝑠  with its amplitudes modulated in an 

envelope. The observation of collapse and revival of Rabi oscillation is unique in 

quantum mechanical treatment and serves as the direct evidence of the quantisation 

of photon fields. As time progresses, the feature becomes less prominent, the 

envelope that contains the revived Rabi oscillations becomes wider, and the envelope 

peaks decreases in amplitude.  

 Mathematically, the cause of the phenomenon of collapse and revival of Rabi 

oscillation is simply the destructive and constructive interference between individual 

n-th terms in the probability function. The type of interference exhibited by the total 

probability function depends on the phase-relation between the oscillating terms. If 

the oscillating terms are in-phase with each other, maximum constructive 

interference is observed; if the oscillating terms are anti-phase (𝜋-phase difference) 

with each other, maximum destructive interference is observed.  

 

 

Figure 4.6: Probability graph of atomic ground state with initial coherent field state 

to illustrate the effects of mean photon numbers. From top to bottom: �̅� = 5 (black), 

�̅� = 25 (red), �̅� = 55 (green) and �̅� = 100 (blue). 

 



65 

 

Figure 4.6 illustrates the differences in the behaviour of the ground state 

probability function with various choices of mean photon number. At low mean 

photon number (�̅� = 5), little photon-atom interactions occur and hence the collapse 

and revival feature is not observed; instead the energy level of the atom oscillates 

between excited state and ground state in a chaotic manner. As the mean photon 

number increases, collapse and revival feature becomes more prominent. The 

frequency of the Rabi oscillation inside the envelopes also increases. On the contrary, 

higher mean photon number has very little, if any effect at all, on the average 

probability values. The quiescent periods remain at probability of 0.5 regardless of 

the mean photon number. Interestingly the period of time between revival features 

increases as the mean photon number increases, signifying that there may a relation 

between these two variables. 

 

 

Figure 4.7: Probability graph of atomic ground state with initial coherent field state 

and �̅� = 50 to illustrate the effects of interaction strength 𝜆. From top to bottom: λ =

1 (red), λ = 2 (green) and λ = 3 (blue). 

 

 Figure 4.7 displays the comparison between the ground state probability 

graphs with different interaction strengths. As its name suggests, the parameter 𝜆 

measures the strength of interaction between the photons and the two-level atom. As 

the parameter increases, it is observed that the envelopes that contain the revived 

Rabi oscillations become increasingly narrower. Its width, however still becomes 
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wider as time progresses. The initial collapse of Rabi oscillation also happens sooner 

as the interaction strength increases. More importantly the period between revival 

features shortens with greater interaction strength, indicating some form of relations 

between these two parameters. 

Since the observations from figures 4.6 and 4.7 indicate that the period 

between the revival features of Rabi oscillations is dependent on the mean photon 

number �̅� and the interaction strength λ, it is therefore instructive to determine the 

exact relation between these variables which should be in the form of  

 

𝑇 = 𝑓(𝜆, �̅�),  (4.69) 

 

where 𝑇 is the period between revival features.  

First the interaction strength was set constant at value 𝜆 = 1 and the value of 

�̅�  was varied from 30 to 100. Through observation, the separation time between 

revival features is proportional to the square root of mean photon number �̅�. Hence 

the corresponding straight line graph is plotted as shown in figure 4.8. The 

corresponding raw data are shown in appendix A.  

 Similarly the mean photon number �̅� was set constant at value �̅� = 50 and 

the value of 𝜆 was varied from 0.2 to 5.0. Through observation, the separation time 

between revival features is proportional to the inverse of the interaction strength 𝜆. 

Thus the corresponding straight line graph is plotted in figure 4.9. The corresponding 

raw data are shown in appendix B. 
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Figure 4.8: Graph of separation time between revival features against square root of 

mean photon number �̅�. 

 

 

Figure 4.9: Graph of separation time between revival features against inverse of 

interaction strength 𝜆. 

 

 From figure 4.8 and 4.9, it is easy to see that the formula in equation 4.69 

may be simplified into 

 

𝑇 = 𝑘𝜆−1√�̅�,  (4.70) 

 

where 𝑘 is a constant. From figure 4.8, the straight line equation is approximately  
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𝑇 ≈ 6.2682√�̅�. 

 

Since 𝜆 = 1 in this case, hence the constant  𝑘 = 6.2682. Similarly from figure 4.9, 

the straight line equation is approximately  

 

𝑇 ≈ 44.829𝜆−1. 

 

Since √�̅� = √50 in this case, hence the constant  𝑘 = 6.3398. The average value is 

then 𝑘 = 6.3040. Finally the expression 4.70 is found to be  

 

 

𝑇 = 6.3040 𝜆−1√�̅�, 

𝑇 ≈ 2𝜋 𝜆−1√�̅�.  (4.71) 

 

On the other hand, in near resonant case the probability function for state 1 is  

 

𝑃1(𝑡) = ∑ (
exp(−�̅�) �̅�𝑛

𝑛!
) (cos2 (

Ω𝑅

2
𝑡) + (

Δ

Ω𝑅
)

2

sin2 (
Ω𝑅

2
𝑡))

∞

𝑛=0

, 

 

which is plotted using MATLAB software as shown in figure 4.10.  
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Figure 4.10: Probability graph of atomic ground state with initial coherent state and 

�̅� = 50 and different detuning. Δ = 1 𝑟𝑎𝑑/𝑠 (red), Δ = 5 𝑟𝑎𝑑/𝑠 (green) and Δ =

10 𝑟𝑎𝑑/𝑠 (blue). 

 

Figure 4.10 depicts the observations of the probability function with different 

values of detuning. Generally as the detuning increases, the atom has higher 

probability to reside in the ground state. This is expected because at higher detuning, 

the difference between photon energy and the energy gap of the two-level atom 

increases, causing the atom to be less likely to obtain sufficient energy from the 

photons and hence unable to jump into the excited state. Besides that, the quiescence 

period is also observed to increase with the detuning. 

 

4.5.3 Initial Coherent State (Two-Photon) 

The results of the coherent photon-atom interaction using two-photon model is 

shown and discussed in this section.  
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Figure 4.11: Probability graph of atomic ground state with initial coherent field state 

and mean photon number of �̅� = 50. The blue line represents single-photon model 

and the red line represents two-photon model.  

 

Figure 4.11 illustrates the distinctions between one-photon model and two-

photon model. One clear difference that can be observed is the period between 

revival features. The probability graph for two-photon model has significantly 

shorter time between revival features compared to one-photon model. The width of 

the envelope containing the Rabi oscillations is also much narrower for two-photon 

model compared to its one-photon counterpart. Furthermore, the peaks of revival of 

two-photon model are very high with values generally above 0.9, whereas one-

photon model’s peaks are only just above 0.7. Noticeably the quiescent periods, 

however remain the same at 0.5 probabilities for both one-photon model and two-

photon model. 
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Figure 4.12: Probability graph of atomic ground state with initial coherent field state 

using two-photon model to illustrate the effects of mean photon numbers. From top 

to bottom: �̅� = 10 (red), �̅� = 50 (green) and �̅� = 100 (blue).  

 

 

Figure 4.13: Probability graph of atomic ground state with initial coherent field state 

and �̅� = 50 using two-photon model to illustrate the effects of interaction strength 𝜆. 

From top to bottom: λ = 1 (red), λ = 2 (green) and λ = 3 (blue). 

 

Figure 4.12 reveals the comparison between two-photon models with 

different mean photon number. Generally there are little differences between the 

graphs. The collapse and revival features take place at pretty much the same time 
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with generally the same distribution of probabilities. A clear distinction however, can 

be made on the revived Rabi oscillations. Similar to the case in single-photon model, 

the frequency of the Rabi oscillations in the envelope increases with the mean photon 

number. 

 Figure 4.13 displays the comparison between two-photon models with 

different interaction strength. Interestingly as the interaction strength increases, more 

collapse and revival features can be observed within the same period of time. 

However at higher interaction strength, some of the revived Rabi oscillations have 

lower peaks at around 0.6 compared to other revival features which are usually above 

0.8.  

 

4.5.4 Initial Thermal State (Single-Photon) 

Assume that the field is initially in thermal state, the probability distribution function, 

as shown in equation 2.55 is 

 

|𝑎𝑛|2 =
�̅�𝑛

(�̅� + 1)𝑛+1
 . 

 

In resonant case, the probability function for state 1 is  

 

𝑃1(𝑡) = ∑ (
�̅�𝑛

(�̅� + 1)𝑛+1
) cos2(𝜆𝑛1/2 𝑡)

∞

𝑛=0

, 

 

which is plotted using MATLAB software as shown in figures 4.14, 4.15 and 4.16.  
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Figure 4.14: Probability graph of atomic ground state with initial thermal state, mean 

photon number �̅� = 100 and interaction strength 𝜆 = 1. 

 

Figure 4.14 shows the probability function against time for the ground state 

of a two-level atom interacting with initial thermal photons. The mean photon 

number of the thermal field was set to �̅� = 100.  Unlike the case in coherent field, no 

collapse and revival features of Rabi oscillations can be observed. The probability 

function fluctuates chaotically and no distinctive oscillation feature is observed even 

after a long time (𝑡 = 100 𝑠). The observation made from the initial thermal field is 

vastly different from the initial coherent field. The chaotic behaviour is attributed to 

the fact that thermal field is a statistical mixture with minimum amount of 

information other than its mean value of energy.  

 



74 

 

 

Figure 4.15: Probability graph of atomic ground state with initial thermal field state 

to illustrate the effects of mean photon numbers. From top to bottom: �̅� = 10 (red), 

�̅� = 50 (green) and �̅� = 100 (blue). 

 

 

Figure 4.16: Probability graph of atomic ground state with initial thermal field state 

and �̅� = 50 to illustrate the effects of interaction strength 𝜆. From top to bottom: λ =

1 (red), λ = 2 (green) and λ = 3 (blue). 

 

Figure 4.15 illustrates the differences in the behaviour of the ground state 

probability functions with different mean photon numbers. The feature of chaotic 

fluctuation persists even with different mean photon number. It is observed that as 
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the mean photon number increases, the probability graphs have smaller fluctuations 

around the probability 0.5. Besides that, figure 4.16 shows no observable differences 

between the ground state probabilities of the atom with different interaction strength. 

In sum, the mean photon number and interaction strength parameters have little to no 

effect on the probability functions. The atom generally remains chaotic as it interacts 

with thermal photons.  

In near resonant case, the probability function for state 1 is  

 

𝑃1(𝑡) = ∑ (
�̅�𝑛

(�̅� + 1)𝑛+1
) (cos2 (

Ω𝑅

2
𝑡) + (

Δ

Ω𝑅
)

2

sin2 (
Ω𝑅

2
𝑡))

∞

𝑛=0

, 

 

which is plotted using MATLAB software as shown in figure 4.17.  

 

 

Figure 4.17: Probability graph of atomic ground state with initial thermal state and 

�̅� = 10 and different detuning. From top to bottom: Δ = 1 𝑟𝑎𝑑/𝑠 (red), Δ = 5 𝑟𝑎𝑑/𝑠 

(green) and Δ = 10 𝑟𝑎𝑑/𝑠 (blue). 

 

Figure 4.17 depicts the observations of the probability function with different 

values of detuning. Similar to initial coherent state, as the detuning increases, the 

atom is more likely to be found in the ground state. Expectedly, the probability 

graphs of the ground state of the two-level atom remain chaotic as detuning increases. 
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With higher detuning, the amplitudes of the fluctuations also decrease, rendering the 

probability function to have greater resemblance to quiescence behaviour.  

 

 

4.5.5 Initial Thermal State (Two-Photon) 

The results of thermal photon-atom interaction using two-photon model is shown and 

discussed in this section.  

 

 

Figure 4.18: Probability graph of atomic ground state with initial thermal state using 

two-photon model and mean photon number of �̅� = 100 (shorter time range).  
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Figure 4.19: Probability graph of atomic ground state with initial thermal state using 

two-photon model and mean photon number of �̅� = 100 (longer time range). 

 

Figures 4.18 and 4.19 illustrate the probability graphs of two-photon model 

using initial thermal state. While it is observed that the probability function is 

generally at 0.5, numerous sharp peaks can be observed as well. Suppose we 

categorise these peaks into two types: primary peak (higher amplitude) and 

secondary peaks (lower amplitude). While it is observed that primary peaks generally 

do not occur consecutively, the order between primary and secondary peaks remain 

seemingly random. Curiously the time between peaks is generally the same. 

However if the probability graph is viewed over a long time as shown in figure 4.19, 

it is observed that the secondary peaks slowly increase over time whereas the 

primary peaks gradually decrease over time. After a long time (around 150 𝑠), the 

peaks transformed so much in amplitude that the two types of peaks can no longer be 

clearly differentiated, with the average probability centre around 0.5.  
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Figure 4.20: Probability graph of atomic ground state with initial thermal field state 

using two-photon model to illustrate the effects of mean photon numbers. From top 

to bottom: �̅� = 10 (red), �̅� = 50 (green) and �̅� = 100 (blue). 

 

Figure 4.20 reveals the comparison between two-photon models with 

different mean photon numbers. Generally there are little differences between the 

graphs. The transformations of the primary and secondary peaks take longer time to 

be undifferentiated as the mean photon number increases. It is also observed that at 

lower mean photon number, the average probability shifts slightly upward. This may 

be caused by less possible interactions at lower mean photon numbers, therefore it is 

less likely that the two-level atom is to be excited.  
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Figure 4.21: Probability graph of atomic ground state with initial thermal field state 

and �̅� = 50 using two-photon model to illustrate the effects of interaction strength 𝜆. 

From top to bottom: λ = 1 (red), λ = 2 (green) and λ = 3 (blue). 

 

Figure 4.21 displays the comparison between two-photon models with 

different interaction strength. With stronger interaction strength, the transformation 

of the primary and secondary peaks takes much shorter time to become 

undifferentiated. In fact, the distinctions between the two peaks become less 

prominent as interaction strength increases. This is in-line with the understanding of 

thermal interaction with atom. As interaction strength increases, thermal photons are 

interacting more strongly with the two-level atom, resulting in the atom gaining more 

of the chaotic nature. Hence the distinctions lessen and the probability graph 

becomes more randomised.  
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In semiclassical treatment, the interaction between a single-mode classical field and a 

quantum mechanical two-level atom is studied. The probability of the atom to be in 

the ground state and excited state are derived to be  𝑃1(𝑡) = cos2 1

2
Ω𝑡 and 𝑃2(𝑡) =

sin2 1

2
Ω𝑡  respectively, where Ω  is the Rabi frequency. Dipole approximation and 

rotating-wave approximation are utilised in the derivation process. It is found that the 

populations in the ground state and the excited state oscillate with Ω𝑡. Two cases of 

detuning are investigated: exact resonance and near resonance. In exact resonance, 

the conservation of probability holds for both the ground state and the excited state; 

whereas in near resonance, the conservation is no longer valid and it is found that the 

period and the amplitude decreases with increasing detuning.  

 In full quantum mechanical treatment, the interaction between a single-mode 

quantised light-field of various field states and a quantum mechanical two-level atom 

is studied. The probability of the atom to be in the ground state is derived to be 

𝑃1(𝑡) = ∑ |𝑎𝑛|2 (cos2 (
Ω𝑅

2
𝑡) + (

Δ

Ω𝑅
)

2

sin2 (
Ω𝑅

2
𝑡))∞

𝑛=0 , where Ω𝑅  is the Rabi 

frequency and 𝑎𝑛  is the probability distribution of the initial field state. Rotating 

wave approximation was used in the derivation process.  

The effects of parameters such as interaction strength, mean photon number 

and detuning on the ground state probability functions are studied. When number 

state is assumed to be the initial field state, the probability function reduces to the 

similar form as semiclassical treatment, exhibiting uniform oscillation behaviour. On 

the other hand, initial thermal state renders the probability function of the two-level 

atom to be generally chaotic. Most interestingly, imposing initial coherent state 

condition returns the result of collapse and revival feature of Rabi oscillations which 

is a signature of quantised light field. The same observation cannot be obtained using 

classical treatment of light-matter interaction. Besides that, the model was also 

extended from one-photon model to two-photon model. Generally the trends of the 

probability graphs in two-photon model are mostly similar as in single-photon case.  
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5.2 Recommendations for future work 

In this study, we used rotating-wave approximation in both semiclassical and 

quantum mechanical treatments to simplify the expressions in the derivation process. 

Such approximation is justified by the fact that fast rotation terms may be averaged 

to zero, thus these terms will have little effects on the expression containing it. 

Nonetheless, derivation process without the usage of rotating-wave approximation 

may be attempted in future work to obtain a more complete picture of the final 

expression.   

Moreover, this study focused solely on a closed two-level system. This study 

may therefore be extended to investigate a system with more energy levels (e.g. 

three-level system). To further align with practical purposes, this study may also be 

extended to open systems where energy dissipation and quantum decoherence may 

occur. Then, a generalisation of quantum mechanical interaction between photon and 

atom may be performed based on these results.  

  



82 

 

REFERENCES 

 

Barnett, S. M. and Radmore P. M., 1997. Methods in Theoretical Quantum Optics. 

New York: Oxford University Press. 

Dick, R., 2016. Analytic sources of inequivalence of the velocity gauge and length 

gauge. Physical Review A, 94(6), pp. 062118.  

Griffiths, D. J., 1994. Introduction to Quantum Mechanics. London: Prentice-Hall 

International Limited.  

Griffiths, D. J., 1999. Introduction to Electrodynamics. New Jersey: Prentice Hall.  

Han, Y. C. and Madsen L. B., 2010. Comparison between length and velocity gauges 

in quantum simulations of high-order harmonic generation. Physical Review A, 81(6), 

pp. 063430.  

Loudon, R., 2000. The Quantum Theory of Light. 3rd ed. New York: Oxford 

University Press Inc. 

Phoenix, S. J. D. and Knight, P. L., 1990. Periodicity, phase, and entropy in models 

of two-photon resonance. Journal of Optical Society America B, 7(1), pp. 116-124.  

Rzazewski, K. and Boyd, R. W., 2004. Equivalence of interaction Hamiltonians in 

the electric dipole approximation. Journal of Modern Optics, 51(8), pp. 1137-1147.  

Schleich, W. P., 2001. Quantum Optics in Phase Space. Berlin: WILEY-VCH. 

Shafer, R. T., 2009. Three Pictures of Quantum Mechanics. [lecture note] Available 

at: http://uncw.edu/phy/documents/Shafer_09.pdf [Accessed 30 May 2017]. 

Steck, D. A., 2007. Quantum and Atom Optics. 1st ed. [ebook] Available at: 

http://steck.us/teaching/ [Accessed 1 Mar. 2017]. 

Sukumar, C. V. and Buck, B., 1981. Multi-Photon Generalisation of the Jaynes-

Cummings Model. Physics Letters, 83A(5), pp. 211-213.  



83 

 

APPENDICES 

 

APPENDIX A: Data for Figure 4.8 

 

Table A.1: Data for Graph in Figure 4.8. 

Mean Photon Number, �̅� √�̅� Separation Time, 𝑻 (s) 

30 5.48 34.43 

35 5.92 37.18 

40 6.32 39.74 

45 6.71 42.62 

50 7.07 44.44 

55 7.42 46.60 

60 7.75 48.67 

65 8.06 51.10 

70 8.37 52.58 

75 8.66 54.83 

80 8.94 56.24 

85 9.22 57.91 

90 9.49 59.92 

95 9.75 61.29 

100 10.00 62.48 

  



84 

 

APPENDIX B: Data for Figure 4.9 

 

Table B.2: Data for Graph in Figure 4.9 

Interaction Strength, 𝝀 (s-1) 𝝀−𝟏 (s) Separation Time, 𝑻 (s) 

0.2 5.00 224.3 

0.4 2.50 111.1 

0.6 1.67 74.9 

0.8 1.25 55.6 

1.0 1.00 44.4 

1.5 0.67 29.6 

2.0 0.50 22.2 

2.5 0.40 17.6 

3.0 0.33 15.0 

3.5 0.29 12.6 

4.0 0.25 11.1 

4.5 0.22 10.0 

5.0 0.20 9.0 

 

 

 


