

MONITORING SYSTEM FOR AN ELECTRIC VEHICLE

LOW YEW HING

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Electrical And Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2016

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : LOW YEW HING

ID No. : 1100894

Date : 17 SEPTEMBER 2016

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled MONITORING SYSTEM FOR AN

ELECTRIC VEHICLE was prepared by LOW YEW HING has met the required

standard for submission in partial fulfilment of the requirements for the award of

Bachelor of Engineering (Hons.) Electrical and Electronic Engineering at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : DR. CHEW KUEW WAI

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2016, LOW YEW HING. All right reserved.

v

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my research supervisor, Dr. Chew

Kuew Wai for his invaluable advice, guidance and his enormous patience throughout

the development of the research.

 In addition, I would like to thank everyone who had contributed to the

successful completion of this project especially my embedded system lecturer Mr.

See Yuan Chark, and other colleagues. Besides, thanks to the University for

providing me the facilities upon completing this project.

Lastly, I would also like to express my gratitude to my loving parent and

friends who had helped and given me encouragement.

vi

MONITORING SYSTEM FOR AN ELECTRIC VEHICLE

ABSTRACT

This final year project is aim to provide a monitoring system platform for an electric

vehicle. This electric vehicle monitoring system will monitor the electric motor

temperature, power condition of electric motor, battery status, communicate and

interface with the electric motor’s electronic control unit (ECU), and some other

subsystem on the electric vehicle for example radiator and cooling fan. An

interactive and informative display shows the condition of the entire electric vehicle.

The user will be alert by the display and audio speaker but during critical condition

the monitoring system will override. The monitoring system will make appropriate

decision to prevent any further damage to the vehicle and it is concern about the

safety of the passenger. This monitoring system for electric vehicle is built up by

multiple subsystem. Each subsystem has the initiative to do data acquisition from the

sensor and send to the central processing unit. These kind of system design has the

ability to minimize sensing delay, easy troubleshoot as well as improve system

stability. The development of this electric vehicle system monitoring is focus on

implementation of an embedded based operating system Windows 10 IoT Core

Operating System, that running on Raspberry Pi 2 single-board computer (SBC).

This electrical vehicle system monitoring has a simple graphic user interface design

and a touch display which provide an interactive platform with the user. Meanwhile,

an audio speaker will be alert the user when the monitoring system is detected any

critical situation from any subsystem on the electric vehicle.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS iv

ABSTRACT vii

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xvv

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Aims and Objectives 2

2 LITERATURE REVIEW 3

2.1 Current Available System 3

2.2 Operating System 3

2.2.1 Microsoft 4

2.2.2 Linux 5

2.3 Single-board Computers 6

2.4 Communication Protocol 9

2.4.1 CAN Bus 9

2.4.2 I2C 11

viii

2.4.3 SPI 13

2.4.4 UART 14

2.4.5 1-wire 16

2.5 Problem Statement 17

3 METHODOLOGY 18

3.1 Overview 18

3.2 System Platform 19

3.3 Current Sub-Systems 20

3.3.1 Battery Status 20

3.3.2 Current Measurement 21

3.3.3 Cooling Fan Failure Detection System 22

3.4 Implementation of New Sub-Systems 23

3.4.1 Monitor Temperature of Electric Motor 23

3.4.2 Monitor Temperature of ECU 23

3.5 Real-Time Monitoring List 24

4 RESULTS AND DISCUSSIONS 25

4.1 Software Development 25

4.1.1 Application Programming 25

4.1.2 User Interface Programming 31

4.2 Hardware Development 32

5 CONCLUSIONS AND RECOMMENDATIONS 35

5.1 Summary 35

5.2 Conclusions 36

5.3 Future Improvement 36

5.3.1 Battery Voltage Monitoring 36

5.3.2 Access Electronic Controller Unit Information via

CAN Bus Protocol 37

5.3.3 Replace the Alarm System with Human Voice

Command 37

ix

REFERENCES 38

APPENDICES 40

x

LIST OF TABLES

 TABLE TITLE PAGE

Table 2.1: Comparison of Single-board Computer 8

Table 3.1: Curtis Electric Motor ECU- 1239E’s CAN Bus Information 24

Table 3.2: Action List for Real Time Monitoring System 25

Table 3.3: Signal Source 25

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 2.1: Google’s Android Auto 6

Figure 2.2: Standard CAN Protocol Frame Format 11

Figure 2.3: Overview of I2C Connection 12

Figure 2.4: I2C Required Pull-up Resistor on SDA and SCL 12

Figure 2.5: I2C Data Transmission Bits 13

Figure 2.6: SPI – Master to Multiple Slave Device 14

Figure 2.7: UART Data Transmission Connection 15

Figure 2.8: UART Data Transmission Bits Frame 15

Figure 2.9: Overview of 1-wire Application 16

Figure 2.10: 1-wire Data Transmission Bits Frame 16

Figure 2.11: Steps of 1-wire Data transmission 16

Figure 3.1: Work Flow Distribution Block Diagram 19

Figure 3.2: DS2436 Circuit with Optocoupler 20

Figure 3.3: Circuit of DS2436 Sensor Module Built on PCB Board 21

Figure 3.4: Circuit connection of HTFS current sensor 21

xii

Figure 3.5: Cooling Fan Failure Detection System 22

Figure 3.6: Cooling Fan Failure Detection System 22

Figure 3.7: Curtis Electric Motor ECU- 1239E 24

Figure 4.1: Complete Circuit Schematic Diagram 32

 Figure 4.2: Full Setup of the Prototype 33

 Figure 4.3: Actual Circuit Construction 33

 Figure 4.4: Real Time Display Screen 34

xiii

LIST OF SYMBOLS / ABBREVIATIONS

ACK Acknowledge

ADC Analogue to Digital

API Application Program Interface

ARM Advance RISC Machine

AUX Auxiliary

BJT Bipolar Junction Transistor

CAN Controller Area Network

CPU Central Processing Unit

CRC Cycle Redundancy Check

CS Chip Select

CSI Camera Serial Interface

CTS Coolant Temperature Sensor

ECU Electronic Control Unit

EV Electric Vehicle

GPU Graphic Processing Unit

GUI Graphic User Interface

GB Gigabytes

GM General Motor

GND Ground

GPIO General Purpose Input and Output

HDMI High-Definition Multimedia Interface

HTFS Hall Effect Current Transducer

I/O Input Output

I2C Inter-Integrated Circuit

IC Integrated Circuit

IoT Internet of Things

IVCS In-Vehicle Computer System

xiv

JTAG Joint Test Action Group

Kbps Kilo Bits per Second

LED Light-Emitting Diode

Mbps Mega Bits per Second

MISO Master In Slave Out

MOSFET Metal-Oxide-Semiconductor Field-effect transistor

MOSI Master Out Slave Input

MSDN Microsoft Developer Network

OEM Original Equipment Manufacturer

OS Operating System

PCI Peripheral Component Interconnect

RAM Random Access Memory

RMS Root Mean Square

RPM Revolution per Minute

RTC Real-time Clock

RTR Request Transmission Request

Rx Receive

SATA Serial AT Attachment

SBC Single-Board Computer

SCK Serial Clock Line

SCL Serial Clock Line

SDA Serial Data Line

SPI Serial Peripheral Interface

SS Slave Select

Tx Transmit

UART Universal Asynchronous Serial Receiver and Transmitter

USB Universal Serial Bus

USD US Dollar

UTAR Universiti Tunku Abdul Rahman

UWP Universal Windows Platform

XAML Extensible Application Markup Language

xv

LIST OF APPENDICES

 APPENDIX TITLE PAGE

APPENDIX A Application Program Code 40

APPENDIX B XAML User Interface Program Code 45

CHAPTER 1

1 INTRODUCTION

1.1 Background

A system monitoring for an electric vehicle or conventional combustion engine

vehicle is a must for nowadays. Vehicle of today compared to the past century is

different. For the past century vehicle is mostly mechanical part built and today’s

vehicle involved of many electronics sensors and electronic controller. Introducing of

these electronics part to a conventional vehicle make it become more efficient, better

fuel consumption and higher safety regulation. Electronics component is found all

over vehicle and most of them are working independently. There is need of

monitoring system to centralize the information. Driver not just about responsible on

driving but also must well understand what their vehicle condition is. Electric

Vehicle (EV) is a trending for our next generation transportation. Electric Vehicle

involved many electronics component such as electric motor, electric motor

controller, battery, charger, regenerative braking system, current sensor, battery

temperature sensor and etc. These electronics parts is not found on conventional

vehicle. A monitoring system is needs to ensure the electric vehicle run smoothly and

effectively. (Wojdyla, 2012)

 Conventional vehicle’s driver display panel only show little information for

example, engine problem, high water temperature and etc. A good system monitoring

for an electric vehicle is able to alert driver what is the specific problem and suggest

on necessary action. These can prevent unscheduled breakdown or any accident due

to vehicle problem itself.

 In year 2011, Universiti Tunku Abdul Rahman started an Electric Vehicle

conversion project. A vehicle originally has an internal combustion engine and then

replaced by an electric motor. However, there is absent of monitoring system on the

electric vehicle. A monitoring system will be designed and built for this electric

vehicle project.

1.2 Aims and Objectives

• Study on vehicle monitoring system available on market

• Identify suitable operating system platform

• Identify suitable single-board computer

• Determine the possible information need to be monitor

• Design and built a real time monitoring system platform which able to alert

user when error is found

3

CHAPTER 2

2 LITERATURE REVIEW

2.1 Current Available System

Each car manufacturer offer difference In-Vehicle Computer System or In-Vehicle

Infotainment System for their vehicle and it is customized to suit their own design

language. Generally, the features provide are multimedia, voice command,

navigation, remote access to the vehicle, driver assists, vehicle driving mode, and etc.

For example, BMW’s iDrive/ConnectedDrive, Mercedes-Benz’s Mbraze2 and

Audi’s Audi MMI/Audi Connect are some of the system available on market but they

are installed on their own product only.

Basically, all the system mention above are custom made and they never

share the platform each other. The system is highly custom made due to security

issue. Users are not allow to access the internal system and it is accessible by the car

manufacturer only. Again, these practice created another problem for the driver.

Whenever there is any false indicator appear on dashboard, the owner can only send

back to the original vehicle manufacture for diagnostic (Kiley, 2015).

2.2 Operating System

From the past century, automotive industrial is all about fastest acceleration,

horsepower output and now become fuel economy, multimedia, both active and

4

passive safety feature and more. But these 21st century needs feature could not

operate without an Operating System (OS). Operating System is like our human

brain. They will decide which program code or task running before another 1. Most

of the time program code is interlinking where they are sharing same recourses or

access the same data. A smart Operating System must be introduce when deal with

complex system in a vehicle.

The next Operating System competition war is in your dashboard. Although

there are a lot of difference In-Vehicle Computer System offered by difference

manufacture but operating system that run the computer system are basically 2 types:

Microsoft and Linux. (Newcomb, 2012)

2.2.1 Microsoft

Windows Embedded Automotive 7 is an operating system design for automotive

industrial. It is an embedded system platform for car manufacturer design In-Vehicle

Computer System which allow drivers communicate with the vehicle and understand

what the status of their vehicle is. The well famous successful in-vehicle computer

system Sync by Ford is using Windows Embedded platform. Some other car

manufacturers adopt this platform are Fiat, Nissan, Kia and etc. (Tannert, 2013)

 Tier-1 car manufacturer tend to look for highest security, reliable and stable

system. Microsoft is the company that come out with mature solution to fit those car

manufacturer. Windows Embedded is able to fulfil the requirement of real-time

processing. There are hundreds of sub-computer system found in a vehicle and

running million lines of programing code every minute and second. A powerful real

time operating system must be capable to handle these tasks. (Newcomb, 2012)

 Internet of Things IoT, has been very popular lately. Basically, it means that

connect up the sensors surround us to cloud and enable internet access for all

machine. These will enables new business opportunities, change people lifestyle and

things far away always stay connected. (Burrus, 2014)

5

 Windows 10 IoT Core is the answer to the Internet of Things by Microsoft.

Windows 10 IoT Core Operating System is designed for embedded design

development. It is optimized for Single-Board Computers such as Raspberry Pi 2 and

3 and etc. which utilizes the extensible Universal Windows Platform (UWP) API that

capable to develop infinite solution. Most importantly, it is provides good platform to

build small footprint and high effectively low cost for an industrial ready product

meanwhile capable of enterprise grade security. Although Windows 10 IoT Core is

new but they have big enough support by the community such as Stack Overflow,

MSDN Forums, Raspberry Pi Forums, and GitHub. Every platform need a

developing tools so called Integrated Development Environment IDE such as Visual

Studio. Visual Studio is a powerful and complete development tool that create and

design solution for application that run on Windows. Windows 10 IoT Core is also

support for graphic user interface GUI by Extensible Application Markup Language,

XAML. Varity of programing language is also support such as C++, C#, JavaScript

and Python. (Microsoft, 2016)

2.2.2 Linux

BlackBerry subsidiary QNX is another software that allows to running on various

platform such as ARM and x86. It is an infotainment platform support integrated

third-party application, Mobile connectivity, voice recognition, HMI and frameworks,

Navigation and software update. QNX support QT and HTML5 to create extensive

graphic user interface for difference application. It is found in Audi, BMW, Ford,

GM, Honda, Mercedes-Benz and Maserati. QNX is closely collaborate with Maserati

in 2015. They integrate all of their technology concept based on Maserati

Quattroporte GTS. (QNX, 2015) For example, sensors, camera, navigation, cloud-

based services and etc.

GENIVI is an open-source in-vehicle infotainment software. They are non-

profit organization which welcome all parties and car manufacturer to work on In-

Vehicle Infotainment Software. They will define and allow flexible definition of In-

Vehicle Infotainment System as consumer needs, partner and support across the

6

supply chain, built up the architectures and provide standard, and the most important

is allows to reuse of the framework or system to achieve a true open source

ecosystem environment. Currently car manufacturer under this collaboration includes

BMW, GM, Honda, Hyundai and Nissan. (Newcomb, 2012)

Android Auto is the latest In-Vehicle Infotainment System by Google. It is

about how a driver can be safely communicate with the car as well as connected to

the world. When the driver is on the road that’s doesn’t mean they are disconnected

to the world because there is a lot information coming in like traffic info, audio

music, social media notification, navigation and even a phone call. So, the platform

will integrated ours smartphone into the car dashboard and allow the driver handle

everything on the steering wheel. (Carter, 2016) Figure 2.1 is the interface of

Android Auto.

Figure 2.1: Google’s Android Auto

2.3 Single-board Computers

Single-board Computer is a credit card size full function computer with support of

various input device like USB, Ethernet, storage media, camera and output port like

HDMI display, AUX audio. Processing power of single-board computer is very high,

7

up to 2 GHz, quad core processor and massive of Random Access Memory, RAM up

to 4 GB. The power of single-board computer doesn’t end there, some is even

intergraded with graphic processing unit GPU. These allow render of high quality

images when graphic user interface GUI is introduce in the application.

Most importantly is, a number of general purpose I/O port, GPIO is offered

on the board which allows sensors, analogue to digital converter (ADC), bipolar

junction transistor BJT, metal-oxide-semiconductor field-effect transistor MOSFET,

LEDs and etc. Some communication protocol is also found on single-board computer

for example, Inter-Integrated Circuit I2C, Serial Peripheral Interface bus SPI, RS-232,

Controller Area Network CAN bus and etc.

Table 2.1 shows some comparison of single-board computer. Processing

power of below single-board computer is more than enough to handle normal task

but there is a highlight for HummingBoard’s i.MX6 Cortex-A9 CPU which is

automotive grade feature processor. All listed single-board computer support Linux

and Android Operating System except Raspberry Pi 2, can support on Windows 10

IoT Core. On the costing point of view, Raspberry Pi 2 is the cheaper in development

cost among other 3 computers. (Sims, 2015)

8

Table 2.1: Comparison of Single-board Computer

Device

ODROID C1 Raspberry Pi 2
HummingBoard

i2eX
Creator CI20

CPU

1.5Ghz quad

core ARM

Cortex-A5 CPU

from Amlogic

900MHz quad-

core ARM

Cortex-A7 CPU

from Broadcom

1GHz i.MX6 dual-

core Cortex-A9

CPU

1.2GHz dual-

core

Imagination

MIPS32 CPU

GPU
Mali-450 MP2

GPU
Videocore IV GC2000

PowerVR

SGX540

Memory 1GB 1GB 1GB 1GB

Storage
SD card slot or

eMMC module
SD card slot SD card slot

8GB onboard

flash, SD card

slot

Connectivity

4 x USB,

microHDMI,

Gigabit

Ethernet, infra

red remote

control receiver

4 x USB, HDMI,

Ethernet,

3.5mm audio

jack

2 x USB, HDMI,

Ethernet, 3.5mm

audio jack, infra

red remote

control receiver

Ethernet,

802.11 b/g/n

Wi-Fi,

Bluetooth 4.0, 2

x USB, HDMI,

3.5mm audio

jack

OS Android, Linux
Linux,

Windows 10
Linux, Android Linux, Android

Connectors

GPIO, SPI, I2C,

RTC (Real Time

Clock) backup

battery

connector

Camera

interface (CSI),

GPIO, SPI, I2C,

JTAG

Camera interface

(CSI-2), GPIO,

UART, SPI, I2C,

PCI-Express Gen

2, mSATA II, RTC

with backup

battery

Camera

interface

(ITU645

controller), 14-

pin ETAG

connector,

2 x UART, GPIO,

SPI, I2C, ADC

Price RM 230 RM 160 RM 440 RM 300

9

2.4 Communication Protocol

Communication protocol allows different devices such as computer, microcontroller,

modules and sensors communicate with each other for data exchange information. In

a vehicle there is range from 60 up to hundreds of controller exchange information in

between and the communication bus is transmitting billions of bits every minutes.

Some commonly used communication protocol are: Controller Area Network CAN

Bus, Inter-Integrated Circuit I2C, Serial Peripheral Interface SPI, Universal

Asynchronous serial Receiver and Transmitter (UART), and 1-Wire bus. In order to

work across multiple controller, sensors, and module on a vehicle, some basic

overview of these communication protocol is a must. (Patrick, 2002)

2.4.1 CAN Bus

Controller Area Network, CAN bus is a controller’s network bus standard with the

characteristics of communicate between controllers and sensors without a host in the

olds day. It is widely use on automotive industrial nowadays. The Electronic

Controller Unit ECU in vehicle is using CAN bus as a standard communication

protocol. CAN bus is a broadcast type of communication protocol which mean there

is not relief on specific address in the transmission bits. All the devices or so call

nodes on the same network are capable of both send and receive message. So, it is

not designed for transmit a specific bit or bytes to a specific node on the network.

But, it is a label for the content of the message named identifier. Each identifier is

unique throughout the network so that the message can be recognized. An acceptance

test will be performs on every receiving nodes to determine whether the message is

matched and so all unintended messages will not be responds. The identifier is

predefined and indicate the priority of the message. Higher priority message has

lower identifier value. Means, if there are 2 message transmission at the same time

the message has more ‘0’ logic low bits will overwrite other message and only this

message is received by all nodes.

10

When an electronic control unit was introduced, the fuel injection system of a

combustion engine then become electronic fuel injection. In result in better fuel

efficiency, controllable power output and controllable air pollution cause by vehicle

exhausts. There are many other sensors in an engine such as air flow sensor,

temperature sensors, piston position. All message is broadcast into CAN network and

ECU get the information from the bus. A CAN message never send from a device

directly to a specific device. It is always uses broadcast method. A CAN Controller

read bits by bits from the bus up to predefined number of data block.

 Basically there are 3 common practices happen on every node. Firstly, any

undefined or failure happen the node is start to broadcast a message. Secondly, node

broadcast message continuously, for example monitoring of air flow when the engine

is running. Thirdly, a node is broadcast a message if and only if another node ask to

do so. For example, ultrasonic sensor detected a potential of collision might be

happen then broadcast a message on the CAN bus for brake assist ECU. Brake assist

ECU received such message then broadcast another message asking Engine Control

Unit to use engine braking and slow down the vehicle. It is commonly happen when

one node broadcast a message and multiple of nodes accept the message because

some information is required by multiple module or device.

 CAN communication protocol is using 2 wire which are CAN High line and

CAN Low line, half duplex system. The communication rate is up to 1 Mbps but

only for a short distance like 12 Meter. Physically, CAN bus allows up to 110 nodes

connect to a network. It is capable on self-diagnose and reparation of error data.

 CAN massage has 2 types of frame format for both receive and transmit,

Standard CAN protocol and Extended CAN protocol. Standard CAN frame format

consist of 7 parts. First part has 1 bit of Start of Frame (SOF). Second part has 12 bits,

an arbitration field, which provide identifier (11 bits) and Remote Transmission

Request (RTR) bit (1 bit). Third part has 6 bits, it is a Control Field with 2 reserved

bits and 4 Data Length Code. Data Length Code is a message that tell number of

bytes in the Data Field. Fourth part is Data Field which varies up to 8 Bytes. Fifth

part is CRC field which has 15 bits redundancy check-code and a recessive delimiter

bit. Sixth part has 2 bits which is Acknowledge field, the first bit is Slot bit and

11

second bit is delimiter bit. Lastly, the seventh part has 7 recessive bits which is end

of Frame field. Then the Bus is free from busy status. Figure 2.2 shows how the

entire set of CAN protocol message is.

Figure 2.2: Standard CAN Protocol Frame Format

In contrast, the Extended Frame format has two identifier bit fields instead of 1 bits

field on Arbitration which correspond of the second part out of the seven. The first

part of identifier bit fields (11 bits) is same as Standard CAN protocol but second

part is 18 bits long in result 29 bits in total compare with originally 11 bits. Other

than that, a Substitute Remote Request bit has included in Arbitration Field.

(Electronics Engineering Herald, 2006)

2.4.2 I2C

Inter-Integrated Circuit, I2C is a synchronous protocol that use only 2 wires, and it is

known as 2 wire communication. It is uses only 2 wires, one is clock line SCL

another is data line SDA connect from a Master (or host, such as microcontroller)

device to multiple Slave device (e.g. sensors) without the needs of Chip Select line

CS found on SPI communication. Figure 2.3 shows the overview of I2C connection.

12

Figure 2.3: Overview of I2C Connection

Without the uses of Chip Select line CS, I2C is using addressing method to access

different slave device. A pair of pull up resistors need to connect SDA and SCL line

to Vdd as basic configuration meanwhile its resistor value is depending on

communication speed. Basically there is 3 mode, slow (under 100Kbps), fast 400

Kbps) and high-speed (3.4 Mbps) and the bus length typically within 1 meter range.

Figure 2.4 shows how I2C wire up 2 device and the setup of pull up resistor.

Figure 2.4: I2C Required Pull-up Resistor on SDA and SCL

For I2C Protocol, Master device will send a start condition bit on SDA and clock is

generating on SCL then follow by slave address (7 bits), a read / write (R/W) bit and

follow by a Acknowledge ACK bit. After mater completely sent 1 byte of data (8 bits)

the coming up 8 bits is the Data need to be transmit or receive from the specific slave

device that matched the slave address until there is a stop condition bit.

13

 Start condition bit is SDA’s falling edge when SCL is ‘1’ logic HIGH, Stop

condition bit is SDA’s rising edge when SCL is ‘1’ logic HIGH. For the

Acknowledge ACK bit, when the receiver ‘pull down’ SDA to ‘0’ logic LOW

meanwhile the transmitter leave SDA ‘1’ logic HIGH. Lastly, for a valid data

transmission, SCL is always ‘1’ logic HIGH. (Patrick, 2002) Figure 2.5 shows the

entire I2C data transmission bits.

Figure 2.5: I2C Data Transmission Bits

2.4.3 SPI

Serial Peripheral Interface SPI is another serial communication protocol but have

minimum of 3 wires and maximum of 4 wire configuration. There are clock line

SCK, Master Out Slave In MOSI, Master In Slave Out MISO and Slave Select SS (or

Chip Select CS). The uniqueness of this serial communication protocol is it has Slave

Select line instead of using addressing method to communicate with specific slave

device. Another things is the master device’s output is connects to the slave device

input and master device’s input is connects to the slave device output, if there is

multiple of slave device parallel connection is allow but not for slave select line.

Each slave device need a dedicated slave select pin connected to master device’s SS

(or CS) pin or a normal general purpose input-output GPIO pin. In the event of

14

multiple slave device then same amount of extra GPIO pin is needed. Figure 2.6

shows how to wire up to multiple slave device from a master device.

Figure 2.6: SPI – Master to Multiple Slave Device

 The SPI communication protocol has 4 types of mode which is based on phase and

polarity of the clock line SCK which need to first configure during the initialization

of SPI protocol. A disadvantage of SPI for small footprint or low pin-count

microcontroller might not enough for multiple slave SPI interface. (Patrick, 2002)

2.4.4 UART

Universal Asynchronous serial Receiver and Transmitter (UART) is the most simple

serial communication protocol with 2 line, transmit and receive. It is very common in

embedded world. Most of the microcontroller have UART or transmit receive pin.

Transmit line is use for transmit data whereas receive line is use for receive data.

Asynchronous mean, the interval between data strings can be undefined. Detection of

start and end of data strings is determined by the receiver, receive. Figure 2.7 shows

TX and RX communication wiring.

15

Figure 2.7: UART Data Transmission Connection

Before transmission start, configuration of frequency transmission bit knows as baud

rate, need to be fixed. When baud rate mismatch, two devices are not able to talk at

the same speed eventually all receiving data is messed up. There are other parameters

need to be configure on data reception terminal such as number of bits or frame,

number of stop bits, and parity. For a standard UART, it will transmit of 8 bits in

total, 1 ‘start’ bit, 5 ‘data’ bit, 1 ‘parity’ bit and lastly 1 ‘stop’ bit to make a

transmission complete or end. (Patrick, 2002) Figure 2.8 showing the UART data

transmission bits frame.

Figure 2.8: UART Data Transmission Bits Frame

16

2.4.5 1-wire

Maxim-Dallas Semiconductor’s 1-Wire communication protocol is an asynchronous

system and it has no protocol for multi-master. Only 1 wire is needs (and a ground)

for signalling and power, transmission rate is slow (< 1Kbps) but with advantages of

long range (up to 500m), low cost and easy implementation. Typically, it is used to

communicate with multiple device such as multiple of thermometers, sensor, and

project which require a lot of same sensors. (Patrick, 2002) Figure 2.9 gives the

overview of 1-wire application on multiple slave device.

Figure 2.9: Overview of 1-wire Application

 There is always one bus master per series connection. Many slave devices can

share the same bus and each device has a unique 64-bit serial number. Figure 2.10

shows how 1-wire data transmission bits frame looks like.

Figure 2.10: 1-wire Data Transmission Bits Frame

There are broadcast commands and commands addressed to particular devices.

Figure 2.11 gives the overall idea of how 1-wire transaction sequence

Figure 2.11: Steps of 1-wire Data transmission

17

2.5 Problem Statement

The Universiti Tunku Abdul Rahman Electric Vehicle Conversion project currently

has only separate module status display unit. Such as battery meter, voltage display,

current display. The electric vehicle has no complete monitoring system as a

platform allows driver to focus on 1 single display panel. It is important that driver

need to focus on road situation rather than keep looking at several separated gauge

and small segmental display.

 From the perspective of driver, a platform that can centralize all the

monitored information on and single display panel with real time update is needed.

This is allows the driver can have direct information from the current status of the

electric vehicle. Meanwhile, the real time monitoring system need to be smart

enough to giving feedback, suggestion or alert to the driver when any of the monitor

reading is out of predefined value. These can prevent any breakdown happen or

further maintenance cost due to system failure.

 Another suggestion is from the perspective of mechanics. A good monitoring

platform should able to help on maintenance work by logging the monitored data and

save for later analysis or tuning work. Monitor the health of component of the

electric vehicle is very important which allow maintenance work to be done in

schedules and further reduce the chance of unexpected breakdown happen.

18

CHAPTER 3

3 METHODOLOGY

3.1 Overview

This project is design and built a real time monitoring system platform for an electric

vehicle. Some of the sensors and different type of electronic controller unit were

done. Unfortunately, all the sub-system are independent. So, a platform need to

gather up the signal and monitor together. Basically, the system will be able to real

time monitoring the:

• Battery status include voltage, temperature and state of charged

• Temperature of the electric motor

• Temperature of Electronic Controller Unit

• Current measurement

• Cooling fan failure system

• Information provided by the Electronic Controller Unit via CAN protocol

This monitoring system is designed with the capability of alert user when predefined

problem is found. The flow of implementation work as shown in Figure 3.1.

19

Figure 3.1: Work Flow Distribution Block Diagram

3.2 System Platform

In-Vehicle Monitoring System is all in-house custom built by car manufacturer due

to different configuration of the vehicle. So, the author decided to create own

platform that suit Universiti Tunku Abdul Rahman’s Electric Vehicle Conversion

Project.

 Microsoft Windows 10 IoT Core is the operating system of this monitoring

system platform. It is designed for embedded design development and support of

graphic user interface GUI. The programing language to write the application for this

operating system has many option, such as C++, C#, JavaScript and Python. There

are also a large community support such as GitHub and MSDN. This operating

system is also internet of things IoT ready. The operating system is newly introduce

Decide the system platform:

• Operating System

• Single-board Computer

Learn Programing Language:

• Object-Oriented programing

• C#

Understand on current sub-

systems and how to link

together

Design the system circuit and

programing

Debugging

and troubleshooting

20

by Microsoft therefore it is expected some bug or lag of library support for some

high level API (Application Program Interface). However, this is sustainable

platform in near future and back support by Microsoft.

 Raspberry Pi 2 is the single-board computer that run monitoring system. The

price of Raspberry Pi 2 is most low cost compare to other single-board computer. For

this development stage this is enough for the platform. Several communication

protocol like, SPI Serial Peripheral Interface, I2C Inter-integrated Circuit and UART

Universal Asynchronous Receive and Transmit. It has 17 GPIO General Purpose

Input Output pin sufficient enough for this project application.

3.3 Current Sub-Systems

3.3.1 Battery Status

The existing sub-system is using DS2436 sensor with One-wire communication

protocol with capability of measure voltage and temperature. There are 12 battery

pack in this electric vehicle each and every battery pack was attached this sensor

module. Figure 3.2 and figure 3.3 show DS2436 circuit with Optocoupler and actual

prototype respectively.

 Figure 3.2: DS2436 Circuit with Optocoupler

21

Figure 3.3: Circuit of DS2436 Sensor Module Built on PCB Board

3.3.2 Current Measurement

A Hall Effect current transducer by LEM, which can measured up to 600 ampere

(LEM, 2015) is placed on the summing battery pack terminal to measure the total

current flow. Figure 3.4 shows the circuit connection of HTFS current sensor.

Figure 3.4: Circuit connection of HTFS current sensor

22

3.3.3 Cooling Fan Failure Detection System

The Cooling Fan Failure Detection System is reports several information such as

coolant temperature, cooling fan speed in rpm, fan failure, coolant temperature

sensor CTS failure and relay failure. Currently the sub-system is controlled by

Arduino. Figure 3.5 and Figure 3.6 shows the cooling fan failure detection system

prototype.

Figure 3.5: Cooling Fan Failure Detection System

Figure 3.6: Cooling Fan Failure Detection System 2

23

3.4 Implementation of New Sub-Systems

3.4.1 Monitor Temperature of Electric Motor

Monitor the working temperature of electric motor can ensure it is operate at desire

and health operation. An automotive grade temperature sensor MCP9700 by

Microchip is selected for this application. MCP9700 is a Linear Active Thermistor

Integrated Circuit (IC). It can measure from -40 degree Celsius up to 150 degree

Celsius, the accuracy is up to +/- 1 degree Celsius and low power consumption.

Signal-conditioning circuit is very important for normal resistive sensors but this

temperature sensor is unrequired. There are only 3 pins, power supply at Vdd, ground

connect at GND and Vout for analogue signal output.

 Analogue signal is further feed into an ADC Analogue-to-Digital Converter.

An ADC converter the author used is MCP3008 8 channel 10 bits resolution with

SPI communication protocol. This ADC allows up to 8 input and, zero to 1023 step

of conversion (210).

3.4.2 Monitor Temperature of ECU

Electronic Controller Unit, ECU is the brain of an electric vehicle that regulate and

supply electricity to the electric motor. This is a very expensive controller which is

cost USD 2700 dollar. Some protection job is needs to ensure it is operate in a good

temperature condition. Basically, the sensors and ADC converters used are same

with monitor of electric motor temperature, there are MCP9700 automotive grade

linear active thermistor IC and connect to the same MCP3008 ADC chip. The

MCP3008 ADC can be share together because it can input up to 8 channel of

analogue signal. Figure 3.7 shows the actual product of Curtis electric motor ECU –

1239E.

24

Figure 3.7: Curtis Electric Motor ECU- 1239E

3.5 Real-Time Monitoring List

Table 3.2 is a list for real time monitoring components and action to be taken and

table 3.3 is the signal source reference.

Table 3.2: Action List for Real Time Monitoring System

Monitor List Action Note

Battery Current

1. Alert user with buzzer

2. Light up LED on circuit board

3. Alert user with Soft-LED on

Real-Time display screen

L

Fan Cooling System

Relay failure S-sys

CTS failure S-sys

Fan failure S-sys

Motor Temperature L

Controller Temperature L

Table 3.3: Signal Source

Signal Source

S-sys Sub-system

L Sensor

25

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Software Development

The core development of this project is about REAL-TIME monitoring system. This

monitoring system has the capability of process sensor signal, process the data and

display on a LCD display all in real-time manner. Real-time monitoring system is

very important not just electric vehicle but for all automotive application.

 For the software development C# programing language is used and develop

using Microsoft Visual Studio 2015. Development of software consist of 2 parts

which are application programing and user interface programing. Both can be done

on a same software development application, Microsoft Visual Studio 2015.

4.1.1 Application Programming

For the application programming with related to hardware program there are several

step must go through before the algorithm programming can be entered, which is

initialization. After reviews of all kind of communication protocol this project will be

mainly employ Serial Peripheral Interface, SPI.

26

First of all, global constant, global variable, and global function need to be start off.

The LED need to be initialize as low and assign the pin number for the LED.

 private int LEDStatus = 0; //initialize the LED value
 private const int LED_PIN = 6; //assigned the PIN 6 for output

 private GpioPin pin;

For the SPI, we need to choose which SPI chip select line’s pin to be use, and for this

project line 0 is used.

 /*RaspBerry Pi2 Parameters*/

 private const string SPI_CONTROLLER_NAME = "SPI0"; /* For Raspberry
Pi 2, use SPI0 */

 private const Int32 SPI_CHIP_SELECT_LINE = 0; /* Line 0 maps to

physical pin number 24 on the Rpi2 */

For our MCP3008 IC the sending and receiving data bytes is in 3 bytes.

 byte[] readBuffer = new byte[3]; /*this is defined to hold the output

data*/

 byte[] writeBuffer = new byte[3] { 0x06, 0x00, 0x00 };//00000110 00;
// It is SPI port serial input pin, and is used to load channel configuration

data into the device

This is to configure RED colour of soft-LED display on screen.

 private SpiDevice SpiDisplay;

 private SolidColorBrush redBrush = new
SolidColorBrush(Windows.UI.Colors.Red);

 private SolidColorBrush grayBrush = new

SolidColorBrush(Windows.UI.Colors.LightGray);

Then, create a timer for the system and create variable with data type defined.

 // create a timer
 private DispatcherTimer timer;

 int res0;

 double res1;
 int res2;

 double res3;

 int res4;
 int res5;

 int res6;

 int res7;

 string res5_;

 string res6_;

 string res7_;

27

Secondly, followed by initialization of system clock, SPI protocol and GPIO

(General-purpose Input Output) port. For the system clock initialization, first need to

define the timer interval.

 public MainPage()

 {

 this.InitializeComponent();
 timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromMilliseconds(500);

 timer.Tick += Timer_Tick;
 timer.Start();

 InitSPI(); //call function SPI initialize

 InitGpio(); //call function GPIO initialize
 }

Then call function to initialize Serial Peripheral Interface communication protocol.

For SPI communication clock frequency set to 0.5 Mbps, Mode 0, and point the chip

select line. If fail to initialize then will tell the user on screen that there is some

problem with SPI initialization.

 private async void InitSPI() //SPI initialization function

 {
 try

 {

 var settings = new SpiConnectionSettings(SPI_CHIP_SELECT_LINE);

 settings.ClockFrequency = 500000;
 settings.Mode = SpiMode.Mode0;

 string spiAqs =
SpiDevice.GetDeviceSelector(SPI_CONTROLLER_NAME);

 var deviceInfo = await DeviceInformation.FindAllAsync(spiAqs);

 SpiDisplay = await SpiDevice.FromIdAsync(deviceInfo[0].Id,
settings);

 }

 /* If initialization fails, display the exception and stop running
*/

 catch (Exception ex)

 {
 throw new Exception("SPI Initialization Failed", ex);

 }

 }

Function to initialize the General Purpose Input-Output port. Activate the GPIO pin

and test the pin to high then low and again high. If fail to initialize then will tell the

user on screen that there is some problem with GPIO initialization.

 private void InitGpio() //GPIO initialization function

 {
 var gpio = GpioController.GetDefault();

 // Show an error if there is no GPIO controller

28

 if (gpio == null)

 {
 pin = null;

 GpioStatus.Text = "There is no GPIO controller on this

device.";
 return;

 }

 pin = gpio.OpenPin(LED_PIN);

 // Show an error if the pin wasn't initialized properly
 if (pin == null)

 {

 GpioStatus.Text = "There were problems initializing the GPIO

pin.";
 return;

 }

 pin.SetDriveMode(GpioPinDriveMode.Output);
 pin.Write(GpioPinValue.High);

 pin.Write(GpioPinValue.Low);

 pin.Write(GpioPinValue.High);

 GpioStatus.Text = "GPIO pin initialized correctly.";

 }

After the global parameter and initialization work has done then the program

algorithm can only be continue. Send a start signal on SPI communication link, then

send 0x80 to the slave device and immediately the SPI slave device (MCP3008) will

return a bunch of bits. So, we need to call function SpiDisplay.TransferFullDuplex()

to capture the signal. Later, the signal need to convert to integer and store to variable

res0. These is repeating for another 7 times to get total of 8 data.

 public void DisplayTextBoxContents()

 {
 writeBuffer[0] = 0x01; // set to start

 writeBuffer[1] = 0x80; // set to channel 0

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res0 = convertToInt(readBuffer);

But, each and every time repeating the data will be sending difference address so that

difference channel of data will be received. For example, channel 1 address is 0x90,

channel 2 address is 0xa0, channel 3 address is 0xb0, channel 4 address is 0xc0,

channel 5 address is 0xd0, channel 6 address is 0xe0, and channel 7 address is 0xf0.

 writeBuffer[1] = 0x90; // set to channel 1

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);
 res1 = convertToInt(readBuffer);

 res1 = (((res1 / 1023) * 4.60) - 0.5) / 0.01;

 writeBuffer[1] = 0xa0; // set to channel 2

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

29

 res2 = convertToInt(readBuffer);

 writeBuffer[1] = 0xb0; // set to channel 3

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res3 = convertToInt(readBuffer);
 res3 = (((res3 / 1023) * 4.60) - 0.5) / 0.01;

 writeBuffer[1] = 0xc0; // set to channel 4
 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res4 = convertToInt(readBuffer);

 writeBuffer[1] = 0xd0; // set to channel 5

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res5 = convertToInt(readBuffer);

From here will straight decide wht is the data means for, if the data return is larger

than integer value of 850 then another variable res5_ will be store string “FAIL”, else

res5_ will be store string “OK”. This is repeated for channel 5, channel 6 and channel

7.

 if (res5 > 850)

 {
 res5_ = "FAIL";

 } else

 {
 res5_ = "OK";

 }

 writeBuffer[1] = 0xe0; // set to channel 6

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res6 = convertToInt(readBuffer);

 if (res6 > 850)

 {

 res6_ = "FAIL";
 }

 else

 {
 res6_ = "OK";

 }

 writeBuffer[1] = 0xf0; // set to channel 7
 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res7 = convertToInt(readBuffer);

 if (res7 > 850)

 {

 res7_ = "FAIL";
 }

 else

 {
 res7_ = "OK";

 }

Then, store all the data received earlier to text place holder for later display on screen.

Once the data is store into text place holder it will immediately display and update on

output display. This make the information deliver in real-time manner.

30

 textPlaceHolder0.Text = res0.ToString();
 textPlaceHolder1.Text = Math.Round(res1, 1).ToString();

 textPlaceHolder2.Text = res2.ToString();

 textPlaceHolder3.Text = Math.Round(res3, 1).ToString();
 textPlaceHolder4.Text = res4.ToString();

 textPlaceHolder5.Text = res5_;
 textPlaceHolder6.Text = res6_;

 textPlaceHolder7.Text = res7_;

 }

Another function here is create a soft-LED to be display on screen to alert the user.

The following coding will be define whether the receiving data channel is in wht

condition. If the received data is more than a certain predefined value, then the soft-

LED will be light up on-screen. Else will be dim the soft-LED. Meanwhile, the soft-

LED on screen is linked with the hard wired LED and buzzer to alert the user. So,

whenever the system found that any of the receiving data channel above predefined

value, all 3 (soft LED, hard wired LED and buzzer) will be alert the user.

 private void LightLED()

 {
 if (res0 > 950)

 {

 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;
 }

 else if (res1 > 850)

 {
 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;

 }
 else if (res2 > 850)

 {

 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;
 }

 else if (res3 > 850)

 {
 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;

 }
 else if (res4 > 850)

 {

 pin.Write(GpioPinValue.Low);
 LED.Fill = redBrush;

 }

 else if (res5 > 850)

 {
 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;

 }
 else if (res6 > 850)

 {

 pin.Write(GpioPinValue.Low);
 LED.Fill = redBrush;

31

 }

 else if (res7 > 850)
 {

 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;
 }

 else

 {
 pin.Write(GpioPinValue.High);

 LED.Fill = grayBrush;

 }
 }

 private void Timer_Tick(object sender, object e)

 {
 DisplayTextBoxContents();

 LightLED();

 }

This program is processing 8 data in real time. Beginning with the potentiometer for

test about the real time or how the system response in real time is. Secondly, is

monitor and display the temperature of Electronic Controller Unit ECU in degree

Celsius. Thirdly, is monitor of entire electrical system current in Ampere. Fourth, is

monitor and display the temperature of electric motor in degree Celsius. Fifth, is a

predefined test for always stable state condition. Sixth, is monitor of the condition of

the vehicle cooling fan system. Seventh, is monitor the health of coolant temperature

sensor. And lastly, is monitor the fault of cooling fan relay.

4.1.2 User Interface Programming

This program must be able to tell the user what is the current condition of the vehicle

he is driving and the information shown must be in real-time base and now come to

user interface programing. The program is using Extensible Application Markup

Language (.XAML) is a declarative XML-based language developed by Microsoft

that is used for initializing structured values and objects. From the earlier part,

already mention how the program pass the value to text place holder for later display

on output screen. And the full program code is listed on Appendix B: XAML User

Interface Program Code.

32

4.2 Hardware Development

The application program is specifically programed for Raspberry Pi 2 running on

Windows 10 IoT (Internet of Things) Operating System. Figure 4.1 is the circuit

diagram for the hardware part.

Figure 4.1: Complete Circuit Schematic Diagram

The entire circuit is constructed on printed circuit board (PCB). In this project, all

electrical system is running on 5 V where supplied by the Raspberry Pi 2 and no

other power supply is needed. This makes the electrical system clean and tidy. An

analogue to digital convertor ADC, MCP3008 is 8 channel 10 bits ADC with SPI

Communication Protocol IC integrated is the bridge communicate between sensor (or

input data) and microcomputer (Raspberry Pi 2). Channel 0 is a potential meter for

real-time varying the result, Channel 1 is ECU temperature, Channel 2 is current

measure, Channel 3 is electric motor temperature, Channel 4 is purposely set to

always reading low logic, Channel 5 is testing for fan failure, Channel 6 is testing for

coolant temperature sensor failure, and Channel 7 is testing for fan relay failure. For

any of the 8 channel had reached the fault value, the alarm and LED will be trigger to

alert the user. However, there is a soft LED on real time display screen and user will

notice when the buzzer is deactivated.

33

Figure 4.2, Figure 4.3, and Figure 4.4 are the photos of actual prototype.

Figure 4.2: Full Setup of the Prototype 33

Figure 4.3: Actual Circuit Construction

34

Figure 4.4: Real Time Display Screen 34

35

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

The real-time monitoring system for electric vehicle is based on Windows 10 IoT

(Internet of Things) Operating System and running on Raspberry Pi 2 single board

computer. The monitoring system has the capability of capture data, process and

output to display unit all in real-time based. This is huge improvement over the

existing system because of real-time based data process and information display.

 Although the current system can only display ECU temperature, electric

motor temperature, battery current measure, analogue information reading, coolant

temperature sensor fault detection, cooling fan fault detection, and fan relay fault

detection but this project provided a very sustainable platform for future improve.

The application is programmed using C# programming language based on objected-

oriented programming language. So, the coding is well structure and organized. With

the help of Microsoft Universal Application Platform, this application can be port

into any Microsoft Windows devices in future eventually allows more developer to

join this electric vehicle monitoring system project.

36

5.2 Conclusion

The monitoring system for an electric vehicle can perform both data process and

information display in real-time based. User will be alerted by the hardware LED and

buzzer alert when any fault is found on the electric vehicle. There is also soft-LED

on LCD display to bring attention to the user when system fault is happens. The

information shown on LCD display is in real time based so that user can perform

maintenance work before any further damage on any part of the electric vehicle.

5.3 Future Improvement

The project is provide a platform that can perform real-time base data process and

display. Based on this platform there are many possible on future improvement. This

can be centralize all information into a single LCD display unit allows user access all

the information.

5.3.1 Battery Voltage Monitoring

The existing monitoring system with battery voltage and battery temperature monitor

but on this project they are absent. The development time needs to write a new

Application Platform Interface (API) for One-Wire Communication Protocol is very

time consuming. One-Wire Communication Protocol is a type of communication

method which only need 1 data line to bridge up to 128 slave devices. With the

adoption of this communication protocol, a number of 12 unit battery on the electric

vehicle is very practical and simplified the sensor circuit.

37

5.3.2 Access Electronic Controller Unit Information via CAN Bus Protocol

Another huge improvement can be done is accessing Electronic Controller Unit

information via CAN Bus protocols. The very advance ECU on electric vehicle is

able to provide huge useful information such as, throttle percentage, battery status,

electric motor load, electrical regenerative information, charging state of the battery,

current flow into and out going the controller. These information includes into the

monitoring system enable user to understand how the electric vehicle is performs.

5.3.3 Replace the Alarm System with Human Voice Command

Currently the alert is done using buzzer noise, soft-LED and illumination of LED

light. This Windows 10 IoT Operating Platform can support audio clip playback

where provide better user friendly command to the driver or specific information to

the driver when fault is occurs. Eventually, provide more informative system to a

general user without the need of maintenance engineer or mechanics.

38

REFERENCES

Altestore, 2014. TROJAN T-105 6V, 225AH (20HR) FLOODED LEAD ACID

BATTERY. [online] Available at: <http://www.altestore.com/store/Deep-Cycle-

Batteries/Batteries-Flooded-Lead-Acid/Trojan-T-105-6V-225AH-20HR-Flooded-

Lead-Acid-Battery/p1771/> [Accessed 16 March 2016].

Burrus Research, 2014. THE INTERNET OF THINGS IS FAR BIGGER THAN

ANYONE REALIZES. [online] Available at:

<http://www.wired.com/insights/2014/11/the-internet-of-things-bigger>

[Accessed 30 March 2016]

Carter, J., 2016. Android Auto News & Update: Google’s In-Car Operating System

Launched in 18 More Countries. [online] Available at: <

http://www.parentherald.com/articles/35364/20160406/android-auto-news-

update-google-s-car-operating-system-launched.htm> [Accessed 6 April 2016]

Electronics Engineering Herald, 2006. Controller Area Network (CAN) interface in

embedded systems. [online] Available at:

<http://www.eeherald.com/section/design-guide/esmod9.html> [Accessed 3

March 2016]

GENIVI, 2016. About GENIVI. [online] Available at: < http://www.genivi.org/about-

genivi> [Accessed 1 March 2016]

Groiß, D. R., 2014. The influence of temperature on the operation of batteries and

other electrochemical energy storage systems. [online] Available at:

<http://www.basytec.de/Literatur/temperature/DE_2002.htm> [Accessed 16

March 2016].

Javier Ibáñez Vial, J. W. D., 2004. Monitoring battery system for electric vehicle

based on one wire technology. In: IEEE Vehicular Power & Propulsion. Santiago,

6 October 2004. Santiago: Vehicle Power and Propulsion Committee.

Available at: < http://web.ing.puc.cl/~power/paperspdf/dixon/64a.pdf> [Accessed

24 March 2016].

Kiley, D., 2015. BMW, Mercedes-Benz have best in-car technology of German

makes. [online] Available at:

<http://www.chicagotribune.com/classified/automotive/sc-cons-0402-autocover-

grading-the-germans-20150327-story.html> [Accessed 10 March 2016].

39

LEM, 2015. Farnell. [online] Available at:

<http://www.farnell.com/datasheets/65377.pdf> [Accessed 9 March 2016].

Mayer, E., 2006. Serial Bus Systems in the Automobile. [online] Available at: <

http://vector.com/portal/medien/cmc/press/PTR/SerialBusSystems_Part1_Elektro

nikAutomotive_200611_PressArticle_EN.pdf> [Accessed 3 March 2016]

Microsoft, 2016. What is the Internet of Things? [online] Available at:

<https://www.microsoft.com/en-us/server-cloud/internet-of-things/default.aspx>

[Accessed 14 March 2016]

Microsoft, 2016. Develop Windows 10 IoT apps on Raspberry Pi 3 and Arduino.

[online] Available at: <https://developer.microsoft.com/en-us/windows/iot>

[Accessed 14 March 2016]

Newcomb, D., 2012. THE NEXT BIG OS WAR IS IN YOUR DASHBOARD. [online]

Available at: <http://www.wired.com/2012/12/automotive-os-war> [Accessed 10

March 2016].

Patrick, J., 2002. Serial Protocols Compared. [online] Available at:

<http://www.embedded.com/design/connectivity/4023975/Serial-Protocols-

Compared> [Accessed 3 March 2016]

QNX, 2015. QNX CAR Platform for Infotainment. [online] Available at: <

http://www.qnx.com/products/qnxcar/index.html> [Accessed 1 March 2016]

Sims, G., 2015. Showdown: Raspberry Pi 2 vs ODROID C1 vs HummingBoard vs

MIPS Creator C120 (updated). [online] Available at: <

http://www.androidauthority.com/raspberry-pi-2-vs-odroid-c1-vs-hummingboard-

vs-mips-creator-ci20-599418> [Accessed 2 March 2016]

Tannert, C., 2013. Microsoft wants one automotive OS to rule them all. [online]

Available at: <http://www.roadandtrack.com/new-cars/news/a4435/go-news-

microsoft-wants-one-automotive-os-to-be-windows> [Accessed 11 March 2016]

Teixeira, S., 2015. Hello, Windows 10 IoT Core. [blog] 10 August 2015 Available at:

<https://blogs.windows.com/buildingapps/2015/08/10/hello-windows-10-iot-

core> [Accessed 14 March 2016]

Wojdyla, B., 2012. How it Works: The Computer Inside Your Car. [online] Available

at: <http://www.popularmechanics.com/cars/how-to/a7386/how-it-works-the-

computer-inside-your-car> [Accessed 15 April 2016]

40

APPENDICES

APPENDIX A: Application Program Code

using System;

using System.Collections.Generic;

using System.IO;
using System.Linq;

using System.Runtime.InteropServices.WindowsRuntime;

using Windows.Foundation;

using Windows.Foundation.Collections;
using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;

using Windows.UI.Xaml.Input;

using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

using Windows.Devices.Gpio;

using Windows.Devices.Spi;

using Windows.Devices.Enumeration;

namespace PotentiometerSensor
{

 public sealed partial class MainPage : Page

 {
 public MainPage()

 {

 this.InitializeComponent();
 timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromMilliseconds(500);

 timer.Tick += Timer_Tick;

 timer.Start();

 InitSPI(); //call function SPI initialize

 InitGpio(); //call function GPIO initialize
 }

 private async void InitSPI() //SPI initialization function
 {

 try

 {

 var settings = new SpiConnectionSettings(SPI_CHIP_SELECT_LINE);
 settings.ClockFrequency = 500000;

 settings.Mode = SpiMode.Mode0;

41

 string spiAqs =

SpiDevice.GetDeviceSelector(SPI_CONTROLLER_NAME);
 var deviceInfo = await DeviceInformation.FindAllAsync(spiAqs);

 SpiDisplay = await SpiDevice.FromIdAsync(deviceInfo[0].Id,

settings);
 }

 /* If initialization fails, display the exception and stop running
*/

 catch (Exception ex)

 {
 throw new Exception("SPI Initialization Failed", ex);

 }

 }

 private void InitGpio() //GPIO initialization function
 {

 var gpio = GpioController.GetDefault();

 // Show an error if there is no GPIO controller

 if (gpio == null)

 {
 pin = null;

 GpioStatus.Text = "There is no GPIO controller on this

device.";

 return;
 }

 pin = gpio.OpenPin(LED_PIN);

 // Show an error if the pin wasn't initialized properly

 if (pin == null)
 {

 GpioStatus.Text = "There were problems initializing the GPIO

pin.";

 return;
 }

 pin.SetDriveMode(GpioPinDriveMode.Output);

 pin.Write(GpioPinValue.High);
 pin.Write(GpioPinValue.Low);

 pin.Write(GpioPinValue.High);

 GpioStatus.Text = "GPIO pin initialized correctly.";

 }

 private void LightLED()

 {

 if (res0 > 950)
 {

 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;
 }

 else if (res1 > 850)

 {
 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;

 }

 else if (res2 > 850)
 {

 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;
 }

42

 else if (res3 > 850)

 {
 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;

 }
 else if (res4 > 850)

 {

 pin.Write(GpioPinValue.Low);
 LED.Fill = redBrush;

 }

 else if (res5 > 850)
 {

 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;

 }
 else if (res6 > 850)

 {

 pin.Write(GpioPinValue.Low);
 LED.Fill = redBrush;

 }

 else if (res7 > 850)
 {

 pin.Write(GpioPinValue.Low);

 LED.Fill = redBrush;

 }
 else

 {

 pin.Write(GpioPinValue.High);
 LED.Fill = grayBrush;

 }

 }

 private void Timer_Tick(object sender, object e)

 {

 DisplayTextBoxContents();
 LightLED();

 }

 public void DisplayTextBoxContents()

 {

 writeBuffer[0] = 0x01; // set to start
 writeBuffer[1] = 0x80; // set to channel 0

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res0 = convertToInt(readBuffer);

 writeBuffer[1] = 0x90; // set to channel 1

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res1 = convertToInt(readBuffer);
 res1 = (((res1 / 1023) * 4.60) - 0.5) / 0.01;

 writeBuffer[1] = 0xa0; // set to channel 2
 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res2 = convertToInt(readBuffer);

 writeBuffer[1] = 0xb0; // set to channel 3

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res3 = convertToInt(readBuffer);

 res3 = (((res3 / 1023) * 4.60) - 0.5) / 0.01;

 writeBuffer[1] = 0xc0; // set to channel 4

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);
 res4 = convertToInt(readBuffer);

43

 writeBuffer[1] = 0xd0; // set to channel 5

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res5 = convertToInt(readBuffer);

 if (res5 > 850)
 {

 res5_ = "FAIL";

 } else
 {

 res5_ = "OK";

 }

 writeBuffer[1] = 0xe0; // set to channel 6

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res6 = convertToInt(readBuffer);

 if (res6 > 850)

 {
 res6_ = "FAIL";

 }

 else

 {
 res6_ = "OK";

 }

 writeBuffer[1] = 0xf0; // set to channel 7

 SpiDisplay.TransferFullDuplex(writeBuffer, readBuffer);

 res7 = convertToInt(readBuffer);

 if (res7 > 850)

 {

 res7_ = "FAIL";
 }

 else

 {
 res7_ = "OK";

 }

 textPlaceHolder0.Text = res0.ToString();

 textPlaceHolder1.Text = Math.Round(res1, 1).ToString();

 textPlaceHolder2.Text = res2.ToString();
 textPlaceHolder3.Text = Math.Round(res3, 1).ToString();

 textPlaceHolder4.Text = res4.ToString();

 textPlaceHolder5.Text = res5_;
 textPlaceHolder6.Text = res6_;

 textPlaceHolder7.Text = res7_;

 }

 public int convertToInt(byte[] data)

 {
 int result = data[1] & 0x0F;

 result <<= 8;

 result += data[2];

 return result;
 }

 private int LEDStatus = 0; //initialize the LED value
 private const int LED_PIN = 6; //assigned the PIN 6 for output

44

 private GpioPin pin;

 /*RaspBerry Pi2 Parameters*/

 private const string SPI_CONTROLLER_NAME = "SPI0"; /* For Raspberry

Pi 2, use SPI0 */
 private const Int32 SPI_CHIP_SELECT_LINE = 0; /* Line 0 maps to

physical pin number 24 on the Rpi2 */

 byte[] readBuffer = new byte[3]; /*this is defined to hold the output

data*/

 byte[] writeBuffer = new byte[3] { 0x06, 0x00, 0x00 };//00000110 00;
// It is SPI port serial input pin, and is used to load channel configuration

data into the device

 private SpiDevice SpiDisplay;
 private SolidColorBrush redBrush = new

SolidColorBrush(Windows.UI.Colors.Red);

 private SolidColorBrush grayBrush = new
SolidColorBrush(Windows.UI.Colors.LightGray);

 // create a timer
 private DispatcherTimer timer;

 int res0;

 double res1;
 int res2;

 double res3;

 int res4;
 int res5;

 int res6;

 int res7;

 string res5_;

 string res6_;

 string res7_;
 }

}

45

APPENDIX B: XAML User Interface Program Code

<Page
 x:Class="PotentiometerSensor.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:PotentiometerSensor"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d"
 xmlns:igCA="http://infragistics.com/Chart"

>

 <Grid VerticalAlignment="Center" HorizontalAlignment="Center">
 <Border BorderBrush="BlanchedAlmond" CornerRadius="6"

BorderThickness="4" HorizontalAlignment="Left" VerticalAlignment="Top">

 <Grid Background="Silver" Width="635" Height="587" >
 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal" Grid.Row="0"

HorizontalAlignment="Center">

 <Image Source="Assets\Breadboard.jpg" Height="200"
Stretch="Uniform" />

 </StackPanel>

 <StackPanel Orientation="Horizontal" Grid.Row="1"
HorizontalAlignment="Center">

 <Ellipse x:Name="LED" Fill="LightGray" Stroke="White"

Width="30" Height="30" Margin="5"/>
 </StackPanel>

 <StackPanel Orientation="Horizontal" Grid.Row="2"

HorizontalAlignment="Center">

 <TextBlock x:Name="GpioStatus" Text="Waiting for GPIO to
be initialized" Margin="10,30,10,10" TextAlignment="Center" />

 </StackPanel>

 <StackPanel Orientation="Horizontal" Grid.Row="3"
HorizontalAlignment="Center">

 <TextBlock Text=" ADC Ch0 - Potentialmeter: "

TextAlignment="Left" />
 <TextBlock x:Name="textPlaceHolder0" Text="Show Values 0

Here" TextAlignment="Right" />

 </StackPanel>

46

 <StackPanel Orientation="Horizontal" Grid.Row="4"

HorizontalAlignment="Center">
 <TextBlock Text=" ECU Temp (C): " TextAlignment="Left"

/>

 <TextBlock x:Name="textPlaceHolder1" Text="Show Values 1
Here" TextAlignment="Right" />

 </StackPanel>

 <StackPanel Orientation="Horizontal" Grid.Row="5"
HorizontalAlignment="Center">

 <TextBlock Text=" Current (Amp): " TextAlignment="Left"

/>
 <TextBlock x:Name="textPlaceHolder2" Text="Show Values 2

Here" TextAlignment="Right" />

 </StackPanel>

 <StackPanel Orientation="Horizontal" Grid.Row="6"
HorizontalAlignment="Center">

 <TextBlock Text=" Motor Temp (C): " TextAlignment="Left"

/>
 <TextBlock x:Name="textPlaceHolder3" Text="Show Values 3

Here" TextAlignment="Right" />

 </StackPanel>
 <StackPanel Orientation="Horizontal" Grid.Row="7"

HorizontalAlignment="Center">

 <TextBlock Text=" etc... : " TextAlignment="Left" />

 <TextBlock x:Name="textPlaceHolder4" Text="Show Values 4
Here" TextAlignment="Right" />

 </StackPanel>

 <StackPanel Orientation="Horizontal" Grid.Row="8"
HorizontalAlignment="Center">

 <TextBlock Text=" Cooling Fan Status: "

TextAlignment="Left" />
 <TextBlock x:Name="textPlaceHolder5" Text="Show Values 5

Here" TextAlignment="Right" />

 </StackPanel>

 <StackPanel Orientation="Horizontal" Grid.Row="9"
HorizontalAlignment="Center">

 <TextBlock Text=" Coolant Sensor Status: "

TextAlignment="Left" />
 <TextBlock x:Name="textPlaceHolder6" Text="Show Values 6

Here" TextAlignment="Right" />

 </StackPanel>
 <StackPanel Orientation="Horizontal" Grid.Row="10"

HorizontalAlignment="Center">

 <TextBlock Text=" Relay Status: " TextAlignment="Left"
/>

 <TextBlock x:Name="textPlaceHolder7" Text="Show Values 7

Here" TextAlignment="Right" />

 </StackPanel>
 </Grid>

 </Border>

 </Grid>

</Page>

