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ABSTRACT 

 
 

TRACKING AND ANALYSIS OF EEG ACTIVATION ACROSS 
BRAIN LOBES IN AN ODDBALL TASK 

 
 

 LIM SENG HOOI  
 
 
 
 
 
 

Brain is an important organ of nervous system that controls the body. It 

can be divided into four different lobes: occipital lobe, frontal lobe, temporal 

lobe, parietal lobe and the motor region. Every region has its specific functions. 

The signal that flows in the brain is generated by synchronised activity of 

thousands of neurons, it is called Electroencephalography (EEG).  

In this dissertation, we have developed novel algorithms to track 

connectivity in brain by using Horn-Schunck (HS) optical flow and full search 

(FS) block matching motion estimation (ME) methods. First of all, we have 

acquired EEG data from twenty subjects using oddball paradigm to examine the 

flow of EEG signal across brain lobes for a specific activity. Next, the EEG data 

is converted into EEG topo-maps using EEGLAB. The motion vectors (MVs) 

between consecutive topo-maps is estimated by using HS optical flow and FS 

block matching ME methods. A tracking algorithm is developed to examine the 

flow of activation based on the overlapping of the MVs in the current frame and 

next frames. Different paths are tracked across various lobes for same activity. 

We have also used a classical method to find the functional connectivity of the 

brain. We have tracked the functional connectivity for different oddball cases 

by using cross-correlation method.  
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A comparison of HS and FS method shows that HS gives higher PNSR 

and uses less computational time as compared to FS method. In addition, the 

motion field of HS is more consistent than FS method. So, we conclude that HS 

is more suitable for tracking purposes. Finally we have come up with an average 

activation graph for different scenarios in the oddball paradigm. The behaviour 

of brain lobes for different oddball cases for individual subjects and average of 

all subjects has been observed on the average activation graph. For all subjects, 

the difference of the activation flow can be observed among different lobes for 

different oddball cases. Lobes for different cases also show different patterns 

for different activities. For frontal lobe, target response peak always come 

earlier or higher than target with no response at the end of the task. Besides, 

frontal lobes will have high amplitude of activation graph than other cases. For 

parietal lobe, the activation graph has very low amplitude. However, we are still 

able to observe a peak in the end of the task for target with response case. For 

occipital lobe, high peak occurs in the middle of the graph for all cases. However, 

the occipital lobe activation drop near the end of the task when the frontal lobe 

rises for target with response cases. 

For individual subjects, different performances such as poor, average 

and good different patterns on the activation graph is observed for different 

activities. For poor performance, occipital or frontal lobe has inconsistent graph 

with many high peaks which cause poor performance for the subject. For 

average performance, the pattern of the activation graphs are more consistent 

than poor performance. For good performance, graph clearly shows the good 

performance of the subjects. For measuring functional connectivity using the 

cross correlation method; we have been able to conclude that different oddball 
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cases show different connectivity in the correlation functional connectivity map. 

High connectivity can be observed in last segments when subjects give response 

to the target or non-target stimuli. In addition, we have also observed the 

connectivity in Fz, F3, F4, C3 or C4 electrodes which are used for motor 

planning or sensorimotor integrations in the last segment when subject responds 

to the target or non-target stimuli. In functional connectivity map, high 

connectivity can be observed in last segment when subject gives response to 

target on non-target stimuli which involves all lobes. 
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Introduction 

 

 

 

1.1 Background 

 

In 1980s, the Institute of Medicine of the National Academy of Science, 

United States was commissioned to set up a panel to study the value of 

integrating neuroscientific info across various methods (Pechura & Martin, 

1991).These methods include electroencephalography (EEG), 

magnetoencephalography (MEG), diffusion magnetic resonance imaging 

(dMRI), functional magnetic resonance imaging (fMRI), near infrared 

spectroscopy (NIRS) and other non-invasive methods to map anatomy, function, 

perfusion, phenotypes and physiology of the human brain. Human Brain Project 

was established to allow researchers for brain study in neuroscience field 

(Koslow & Huerta, 1997). Brain study can be divided into two types: normal 

brain study and diseased brain study. For normal brain study, researchers work 

on behavioural analysis, thinking, understanding, cognition, etc. For diseased 

brain study, researchers analyse the diseased brain.  Diseased and healthy brains 

were mapped to understand, learning, memory, aging for normal brains, and 

drug effects in various brain diseases like patients with autism, clinical 
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depression and schizophrenia. It is also critical to study the brain injuries and 

improve the treatment for brain injury (Van Horn, et al., 2012); (Irimia, et al., 

2012). 

 

1.2 Problem Statement 

 

Brain mapping is the visual illustration of brain used by neuro-science 

to relate the connectivity and functionality of the brain through imaging. 

Connectivity helps to find functionally integrated relationship between spatially 

separated brain regions. Brain mapping is important as it may help to solve the 

mystery of human uniqueness. There are several methods for mapping brain 

connectivity but yet no specific way has been identified to find the functionality 

connectivity of the brain. 

 

 

1.3 Aims and Objectives 

 

The aim of this research it to develop a method to track the EEG activity 

across different brain lobes to map the neural connectivity for a particular 

activity. It may be very useful to help neuroscientists to examine the pattern of 

connectivity of a subject for different activities. Hence, the objective of the 

project is: 

1. To develop an algorithm to track the brain EEG activation using 

motion estimation methods. 
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2. To investigate the behaviour of different brain lobes throughout 

a particular brain activity. 

3. To investigate the connectivity of brain based on the brain 

functional connectivity estimators. 

 

1.4 Overview of Dissertation 

 

In this section, we will provide a brief overview of this dissertation. In 

chapter 1, we have discussed about the background, problem statement and 

objectives of this research. In chapter 2, we will go through the literature review 

for this research; which contains a brief introduction of brain and its functions, 

electroencephalogram, oddball experiment, brain connectivity and computer 

vision based motion estimation methods. In chapter 3, we will discuss the 

methodology of this research. In chapter 4, we will discuss the experimental 

results and their discussion. Lastly we will conclude our research and will 

provide future recommendations in chapter 5.   
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Literature Review 

 

 

 

2.1 Introduction 

 

In this chapter, we will give a brief literature review. First, the different 

brain lobes and their functions are introduced. After that, we will talk about 

electroencephalogram (EEG), 10-20 international system of electrode 

placement for EEG acquisition and different EEG signal frequencies. Then we 

will discuss about the oddball experiment. Next, we will discuss about various 

brain connectivity methods which include a classical method that is used in this 

research by calculating the cross-correlation between signals. Finally, we will 

discuss the computer vision based algorithm for motion estimation which 

includes full search block matching and Horn-Schunck optical flow algorithm. 
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2.2 Different Brain Lobes and Their Functions 

 

Brain is the centre organ in human nervous system that is protected by 

the skull and is located in the head. The main function of the brain is to generate 

signals to control the body. The brain can be divided into three main parts, brain 

stem, cerebellum and cerebrum. Cerebrum can be separated into four different 

lobes; occipital lobe, frontal lobe, temporal lobe, and parietal lobe. Each lobe 

has its specific function (Bermudez, 2010). Fig. 2.1 shows the different brain 

regions and their functions (Bermudez, 2010). For example, frontal lobe is 

located in the front of human brain that is used for planning and problem solving. 

Occipital lobe is used for visual processing, it is located at the back of the brain. 

Temporal lobes (left and right) are located on either side of the human brain are 

used for memory, understanding and language. Parietal lobe is located in the 

front of occipital lobe. It is used for sensing, perception, arithmetic and spelling. 

Lastly, motor and sensory cortex is located in between parietal lobe and frontal 

lobe. It is involved in controlling the movements and receive sensation of body. 

 

Fig. 2.1 Different brain regions and their functions (Bermudez, 2010) 
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2.3 Electroencephalogram (EEG) 

 

Electroencephalography (EEG) is an electrical signal generated by the 

neurons in the brain. Our brain is full of neurons, these cells belong to the 

nervous system. The neurons are composed of a cell body. The individual nerve 

cells are interconnected with each other by axons and dendrites. The neurons 

are activated every time we think, feel, move and remember something. So, with 

more interconnection of neurons, the people will be smarter and clever. 

(Blackwell, et al., 2007). The brain cells or neurons talk to each other and 

produce tiny potential difference of the order of microvolts (μV). This potential 

difference is produced by the interchange of ions in the brain. EEG signal can 

be recorded by the help of electrodes placed on the scalp. EEG electrodes 

comprise of small metal discs of stainless steel, gold, tin, etc. The main 

advantage of EEG signal is very high time resolution; hence it is able to capture 

the cognitive processes in the same time frame as the cognition occurs. 

Cognition, emotional and motor processes are normally very fast. Most of the 

cognition processes occur within ten to hundreds of milliseconds. Brain 

mapping is the visual illustration of brain that is also known as topo-maps 

(Pechura & Martin, 1991); (Metwally, 2007). EEG topo-map displays can 

represent raw EEG data e.g. voltage amplitude, or derived parameters, like 

power or peak latency. Brain mapping is commonly used by neuroscientists to 

study the anatomical structure and the function of the brain. 
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2.3.1 10-20 International System of Electrode Placement 

 

10-20 system is a standardized system for the placement of electrodes 

on the scalp for recording of EEG signals (Jurcak, et al., 2007). The system 

follows a standard method of electrode placement. In this method either 10% or 

20% of the distance between fixed points from the Nasion (Nz) (the point 

between the forehead and the nose) to Inion (Iz) (lowest point of the skull) is 

used for electrode placement. These points are marked as occipital lobe (O), 

frontal (F), parietal (P), temporal (T) and central (C). Subscript z refers to 

electrode that is placed on midline. Each electrode in the 10-20 international 

system has their specific function.  Fig. 2.2 shows the 10-20 international system 

of electrodes placement. Table 2.1 shows the list of electrodes (10-20 

international system) and their functions (Walker, et al., 2007). 

 
Fig. 2.2 10-20 international system of electrodes placement (Trans Cranial 

Technologies, 2012) 
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Table 2.1 List of electrodes (10-20 international system) and their functions 
(Walker, et al., 2007)  

10-20 
Electrodes 

Functions 

FP1 Logical Attention 

FP2 Emotional Attention 
CZ Sensorimotor integration midline  
FZ Motor planning midline  
F7 Logical (verbal) expression 
F8 Emotional (non-verbal) expression 
F3 Motor planning right upper extremity  
F4 Motor planning left upper extremity  
C3 Sensorimotor integration right upper extremity  

C4 Sensorimotor integration left upper extremity  
P3 Perception or cognitive processing (verbal) 
P4 Perception or cognitive processing (non-verbal) 
PZ Perception and cognitive processing midline  
O1 Visual processing 
O2 Visual processing 

T3 (T7) Logical (verbal) memory  
T4 (T8) Emotional (non-verbal) memory  
T5 (P9) Logical (verbal) understanding  
T6 (P10) Emotional (non-verbal) understanding  

 

Nowadays, higher number of electrodes are used in the data acquisition 

to obtain high resolution of EEG signal. 10-10 international system is the EEG 

electrode placement system where additional electrodes are added in 10% 

division, these are placed halfway between the points of 10–20 system. Fig. 2.3 

shows the 10-10 international system of electrode placement. 
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Fig. 2.3 10-10 international system of electrode placement (Trans Cranial 
Technologies, 2012) 

 

2.3.2 EEG Signal Frequencies 

 

There are five main frequencies of the EEG signals. These are delta (δ), 

theta (θ), alpha (α), beta (β) and gamma (γ). Firstly, Delta has the frequency 

range of 0 - 4 Hz. Delta is the slowest frequency and tends to have highest in 

amplitude. The signals are present during deep sleep. Secondly, Theta signals 

have a frequency between 4 - 8 Hz. It is classified as “slow” activity. The signals 

are present during light sleep and deep meditation. Thirdly, alpha signals lie 

within the frequency between 8 - 12 Hz. It is present when the eyes are closed 

and deep relaxation. Next, the beta has frequency range of 12 - 35 Hz. Beta 

activity is known as “fast” activity. The signals are present in our waking 

awareness and a heightened state of alertness, critical and logical reasoning. 

Last, gamma has frequency of 35 Hz and above, which are the fastest frequency. 
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The signals are involved in high processing task. Fig. 2.4 shows the main 

frequencies of the EEG signals. 

 

Fig. 2.4 Frequencies of the EEG signals  

 

2.4 Oddball Experiment 

 

Oddball paradigm is an experimental design used in neuroscience to 

study evoked neural activity; this is done by detecting the rare appearance of 

target stimulus (Nisar & Yeap, 2014); (Polich, 2007); (Höller, et al., 2013). In 

the oddball paradigm, subjects are commonly asked to identify rare appearance 

of target stimuli (e.g. circle) from a series of common standard or non-target 

stimuli (e.g. square). The subject is asked to press a button when the target 

stimuli appears. The oddball experiment has been used in more than thousand 

published articles in neuroscience for electrophysiological studies (Herrmann & 

Knight, 2001); (Picton, 1992). Fig. 2.5 shows an example of the visualization 

of oddball experiment.  
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Fig. 2.5 Example of the visualization oddball experiment 

 

P300 or p3 is a signal of event related potential component which is 

present during the decision making process. In EEG signal, there is a positive 

detection of the amplitude in the latency of around 300ms (commonly within 

250-500ms) where an event is detected. It commonly occurs when a subject 

detects the target stimuli from high probability of standard stimulus (Picton, 

1992). In oddball paradigm, the P300 signal will result in the activation of 

frontal, parietal and temporal cortical regions for target detection. Detection of 

target involves activity in the pre-frontal cortical region. The magnitude, timing, 

topography and the presence of this signal is normally used as metrics of 

cognitive function in process of decision making (Qassim, et al., 2013). Fig. 2.6 

shows an example of P300 from one channel EEG signal (Amiri, et al., 2013). 
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Fig. 2.6 Example of P300 from one channel EEG signal (Amiri, et al., 2013) 

 

 

2.5 Brain Connectivity 

 

Brain connectivity is a research area in neuroscience to study the brain 

networks. Brain connectivity can be classified into different types: structural or 

anatomical connectivity, functional connectivity and effective connectivity. 

Structural or anatomical connectivity represents the connectivity at the 

microscopic scale of neurons or synaptic connections. Diffusion tensor imaging 

(DTI) can be used to provide the anatomical information of the brain. Functional 

connectivity represents the temporal correlation between the neural systems as 

an outcome when different activities are carried out, whereas effective 

connectivity may be defined as the direct or indirect influence between the 

neural systems. Brain connectivity estimation is commonly used in 

neuroscience to evaluate functional or effective connectivity from different 

brain activities. The brain connectivity estimation can be divided into bivariate 

and multivariate measurement and analysis. Different brain connectivity 
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estimation measurements provide different effectiveness of brain connectivity 

information. For example, multivariate method is able to provide the 

information of direct or indirect causality flow between the neural systems. 

However, bivariate method only provides the information of the directionality 

of interactions between two signals. The description and comparison between 

different methods are given in the reference (Kus, et al., 2004). 

Bivariate measurement is one of the simplest brain connectivity 

estimation methods in which the relationship between pairwise signals is 

evaluated. It can be classified into linear and non-linear methods. Linear 

methods estimate functional connectivity by using classical coherence and 

correlation measurements. Both measurements provide information of the 

directionality of interactions between two signals in terms of phase or delay 

correlation. However they are not able to provide the causal interaction 

information. In neuroscience research, the cross correlation is normally use to 

observe the correlation coefficient between the electrodes at different time lags. 

In this research, we will track the functional connectivity of the brain by tracking 

the higher correlation coefficient at the zero lag from electrodes for every 20 

samples per segment. By using this method, we will able to observe the changes 

of the functional connectivity at different time segments. Mutual information, 

generalized synchronization and phase synchronization, and transfer entropy; 

are the most common non-linear methods used in brain connectivity estimation. 

Among these methods, only transfer entropy is able to determine the 

directionality of the connectivity. Nonlinear measures are sensitive to noise and 

it requires long segments of stationary signals. Non-linear methods give poor 

performance than linear methods in the presence of noise (David, et al., 2004).  
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In statistical signal processing, an autoregressive (AR) model is used to 

represent time-varying processes; and it basically represents a random process. 

Specifically the output depends linearly on the previous values. In multivariate 

measurements, directed transfer function (DTF) was introduced by (Kaminski 

& Blinowska, 1991). DTF provides the direction and spectral properties of the 

relationship between brain signals by using multivariate autoregressive (MVAR) 

model. However, DTF will provide direct and indirect information. Directed 

DTF (dDTF) is enhancement of DTF introduced by (Korzeniewska, et al., 2003). 

It is able to distinguish direct from indirect flow. Partial Directed Coherence 

(PDC) is the most popular brain connectivity estimation proposed by (Baccalá 

& Sameshima, 2001); which transformed the MVAR coefficients into the 

frequency domain as a factorization of the Partial Coherence. PDC is able to 

distinguish direct and indirect causality flows of connectivity pattern likes 

dDTF method. The comparison between multivariate autoregressive and 

pairwise autoregressive approach had been demonstrated in (Kus, et al., 2004). 

Fig. 2.7 shows the example the pattern flow by using bivariate and multivariate 

methods (Kus, et al., 2004). In this research, we will use a simple method to 

track the functional connectivity of the brain by using cross-correlation method. 
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Fig. 2.7 Example of the pattern flow using bivariate and multivariate method 
(Kus, et al., 2004) 

 

 

2.5.1 Cross Correlation Method 

 

Functional connectivity captures deviations from statistical 

independence between neuronal units. In signal processing, cross-correlation is 

a linear method for measuring similarity of two series of variables and the lag 

(shifted) between these variables. The normalized cross correlation between 

different electrodes for a time interval can be calculated using Eq. 2.1. 

  Eq. 2.1 

In Eq. 2.1, NCOR[n] stands for normalized cross-correlation in terms of 

time lag n. m is the sample number and T is the total number samples. σf and σt 

are the standard deviations of the signal f and t. The normalized cross-

correlation value varies from -1 to +1. Higher correlation value means the two 
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signals are strongly correlated with each other. For the cross-correlation 

function, if the highest correlation is at positive lag, it means that signal f is 

leading. If the highest correlation is at negative lag, it means that signal f is 

lagging. However, the functional connectivity analysis depend on the zero-lag 

correlation between two time series (Deshpande, et al., 2009). Zero-lag 

correlation measures the simultaneous linear coupling relationship between two 

time-series. 

 

 

2.6 Motion Estimation Based Methods 

 

Motion analysis is a very popular topic in computer vision, owing to its 

numerous applications. Motion estimation (ME) is a technique that determines 

the transformation between two consecutive images in a video. In motion 

estimation technique, the motion vector (MV) defines the motion or movement 

in vector form (magnitude and direction) between two consecutive frames. 

These motion vectors are frequently used in video compression. These motion 

vectors are also used for detecting or tracking the motion. Fig. 2.8 shows the 

example of different motion estimation techniques. 
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Fig. 2.8 Example of different motion estimation techniques 

 

Motion estimation is classified into several techniques. Block matching 

and optical flow are the most common methods used for motion estimation. The 

most straight forward block matching method is full search or exhaustive search 

algorithm which searches all points within the search window. There are several 

types of fast block motion estimation algorithms proposed in literature (Nisar, 

et al., 2012). However their result in terms of PSNR is not as good as full search 

algorithm, but they are faster than full search (Barjatya, 2004).  

Optical flow is the distribution of apparent velocities of movement based 

on the change of the brightness patterns in an image. Optical flow technique 

provides better estimation accuracy compared with other motion estimation 

algorithms (Philip, et al., 2014). Gradient method is one of the basic techniques 

in optical flow that was introduced by (Fleet & Weiss, 2006). However, gradient 
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method cannot give a complete solution for optical flow fields because of the 

aperture problem. Aperture problem is the motion of an object (e.g. edge or bar) 

which cannot be determined in small aperture window.  To solve the aperture 

problem, another mathematical constraint is needed. Horn-Schunck and Lucas-

Kanade are the most common techniques used to solve the aperture problem by 

using differentiation method. Horn-Schunck method is a global method which 

introduces a constraint of smoothness (Horn & Schunck, 1981). The advantage 

of Horn-Schunck method is that it provides smooth flow, global information 

and also accurate time derivative. Although Horn-Schunck gives a solution for 

optical flow, but it takes high computational time due to the iterative problem 

(Zhariy, 2005). Hence, Lucas-Kanade method was introduced (Lucas & Kanade, 

1981). Lucas-Kanade is a local method which assumes the motion between two 

consecutive frames is constant over a small neighbourhood. The advantage of 

Lucas-Kanade method is simple, low computation time and also accurate time 

derivative. Although Lucas-Kanade gives low computation time, but it causes 

errors on the boundaries (Zhariy, 2005).  

 

 

2.6.1 Full Search Block Matching Method 

 

Block matching algorithm is the most  popular technique used for ME 

in which current frame is divided into non-overlapping macro blocks of size N 

x N. Full search (FS) algorithm calculates the motion vectors by using sum of 

absolute difference (SAD) at every possible location in the search window of 

range p in the reference frame. SAD can be calculated by using Eq. 2.2. 
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 Eq. 2.2 

 

In Eq. 2.2, (x, y) is the position of the current block and N is the size of 

the block. Current block is represent by c(x, y), whereas the reference block for 

possible locations in the search window range of p is represented by s(x+i, y+j), 

and (i, j) represents the motion vector (MV). The MV shows the displacement 

of the current block with respect to the reference frame which has the lowest 

SAD value in the search window. Fig. 2.9 gives an overview of full search block 

matching motion estimation algorithm. 

 

Fig. 2.9 Overview of full search block matching motion estimation algorithm 

 

2.6.2 Horn-Schunck Optical Flow Method 

 

Optical flow is apparent of movement based on the brightness patterns 

of an image. Horn-Schunck (HS) algorithm estimates the optical flow by 

introducing a global constraint of smoothness. It is able to minimize the 

distortion of the flow by assuming smoothness in the flow over whole image 
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(Horn & Schunck, 1981). The optical flow is computed by using the Eq. 2.3 and 

Eq.2.4 
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    Eq.2.4 

 

In the equation, fx, fy and ft are the derivatives of the image intensity 

along the x, y and t (time) dimension and the parameter α is the regularization 

constant. Larger value of α leads to smoother flow. ݑത  and ̅ݒ is the weighted 

average of u and v calculated in a neighbourhood around the pixel at location 

(x, y). k is the  iteration number for computing the flow vectors. The higher the 

iteration, the vectors is supposed to be more accurate. 

 

 

2.7 Vector Median Filter  

 

Vector median filter (VMF) is used to smooth the motion field. MVs are 

often distorted or are noisy at the boundaries/edges in an image, which may 

result in wrong ME. VMF is used avoid this problem (Liu, 2013). The basic 

idea of the median filter is that the current pixel value is replaced by the median 

of the pixels contained in a window around it. The median value is defined as 

(n/2)th element in the order of a set of n elements. Fig. 2.10 shows the 

illustration of the concept of median filter for a 3x3 window. 
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Fig. 2.10 Illustration of the concept of median filter for a 3x3 window 

 

The VMF is introduced for a vector signal. The vector median operator 

is obtained from the element of a set of vectors which have lowest sum of 

distances from all other elements. The distances can be calculated by using L2-

norm (Weisstein, n.d.). The distance between two vectors, [ux, uy] and [vx, vy] 

is given in Eq. 2.5: 

 
   22

2
, x x y yu v u v u v   

 Eq. 2.5 

In Eq. 2.5, ux and uy are the horizontal and vertical components of the 

vector u; vx and vy are the horizontal and vertical components of vector v. The 

mathematical representation of VMF is given below in Eq. 2.6: 
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m m k
v S k

v v v
 

 
 Eq.2.6 

In Eq. 2.6, vm is the median vector in the VMF window. Given a set of 

vector Si= {vk, vk+1… vK}, K is the total number of members in the window. 

The motion field is clean after applying VMF.  
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Methodology 

 

 

 

In this chapter, we will discuss the research methodology. In this 

research, the EEG data is acquired using the oddball experiment and converted 

into EEG topo-maps that are used in our computer vision based algorithms. 

Different brain lobes are marked on the EEG topo-map. Next, we will track the 

EEG activity on EEG topo-maps by using full search (FS) block matching and 

Horn-Schunck (HS) optical flow motion estimation (ME) method. As a result, 

we will be able to observe the path of the EEG activation flow and the lobes 

involved for individual and all subjects for a complete activity (from the start to 

the end of the experiment). Lastly, we will compare these results with the 

classical method of computing the functional connectivity. In this work, we 

have developed correlation based tracking algorithm to measure the functional 

connectivity. Fig. 3.1 shows the flow chart of the research. 
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Fig. 3.1 Flow chart of the research 

 

 

 

3.1 Experiment Setup and Data Acquisition 
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The EEG data is acquired using oddball experiment to study the 

functional brain connectivity. In the oddball experiment, the data was acquired 

from 20 healthy subjects with an age of around 19-23 years with normal or 

corrected-to-normal vision. The EEG data is acquired by using EGI 128-channel 

EEG machine with the sampling rate of 250 Hz. Subjects were asked to focus 

on the computer screen; when the target stimuli appears, they are required to 

respond to it by pressing a button. In this experiment, target (circle) and non-

target (square) stimuli appears randomly on the computer screen for a duration 

of 500ms. Target stimuli appears 40 times whereas the non-target stimuli 

appears 95 times in random order. In between stimuli, a blank screen will appear 

for a duration of 1000ms for fixation time. Fig. 3.2 shows the visualization of 

the oddball experiment for the data acquisition. 

 

Fig. 3.2 Visualization of the oddball experiment for the data acquisition 

 

The results for oddball experiment can be divided into four different 

cases, i.e.: target with response, target with no response, non-target with 

response and non-target with no response. Target stimuli with response means 

that target stimuli appears and the subject responded correctly. Target stimuli 
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with no response means the subject does not give any response when the target 

stimuli appeared. Non-target stimuli with response means the subject responded 

wrongly when the non-target stimuli appeared. Non-target with no response 

means the non-target stimuli appeared and the subject did not respond which is 

correct response. Table 3.1 shows the oddball experiment results for all subjects. 

From the table, we can see that subject 9 gives the best response for the oddball 

experiment. Subject 9 responded the target-stimuli 37 out of 40 times and did 

not give response to non-target stimuli.  

Table 3.1 Oddball experiment result for all subjects 

Subject 
Target Non-target 

Response No response Response No response 

1 28 12 0 95 
2 13 27 1 94 
3 28 12 0 95 
4 34 6 2 93 
5 13 27 2 93 
6 35 5 1 94 
7 24 16 0 95 
8 25 15 0 95 
9 37 3 0 95 

10 37 3 3 92 
11 17 23 1 94 
12 34 6 7 88 
13 12 28 1 94 
14 27 13 2 93 
15 28 12 1 94 
16 23 17 0 95 
17 36 4 0 95 
18 30 10 1 94 
19 31 9 2 93 
20 24 16 1 94 
 

The EEG data can be converted into visual form; EEG topo-maps by 

using the function “topoplot()” in EEGLAB (Delorme & Makeig, 2004). Fig. 

3.3 shows the example of EEG topo-map generated by EEGLAB from EEG 

signal at a particular frame. In this research, 35 out of 128 of the outermost 
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electrodes are removed because the outermost electrodes may have some noise; 

as some subjects may have small head size and the outermost electrodes may 

not touch the scalp well. Table 3.2 shows the list of electrodes in the EGI system 

used for data acquisition and their corresponding names in the 10-10 electrodes 

placement system  (Luu & Ferree, 2005). 

 

Fig. 3.3 Example of EEG topo-map generated by EEGLAB from EEG signal 
at a particular frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frame no.1 
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Table 3.2 List of electrodes in the EGI system used for data acquisition and 
their corresponding names in the 10-10 electrodes placement system  (Luu & 

Ferree, 2005) 

No. Electrode No. Electrode No. Electrode No. Electrode 

1 E2/AF8 25 E35 49 E67/PO3 73 E97 
2 E3/AF4 26 E36/C3 50 E69 74 E98/CP6 

3 E4/F2 27 E37/CP1 51 E70/O1 75 E100/TP10 

4 E5 28 E39 52 E71 76 E101 

5 E6/FCZ 29 E40/T7 53 E72/POZ 77 E102/TP8 

6 E7 30 E41/C5 54 E74 78 E103/C6 

7 E10 31 E42/CP3 55 E75/OZ 79 E104/C4 

8 E11/FZ 32 E45 56 E76 80 E105/C2 

9 E12 33 E46/TP7 57 E77/PO4 81 E106 

10 13/FC1 34 E47/CP5 58 E78/P2 82 E108 

11 E16/AFZ 35 E50 59 E79 83 E109/T8 

12 E18 36 E51 60 E80 84 E110 

13 E19/F1 37 E52/P5 61 E82 85 E111/FC4 

14 E20 38 E53 62 E83/O2 86 E112/CF2 

15 E23/AF3 39 E54 63 E84 87 E115 

16 E24/F3 40 E55/CPZ 64 E85/P4 88 E116/FT8 

17 E26/AF7 41 E58/P9 65 E86 89 E117/FC6 

18 E27/F5 42 E59/P7 66 E87/CP2 90 E118 

19 E28/FC5 43 E60/P3 67 E89 91 E122/F8 

20 E29/FC3 44 E61/P1 68 E91/P8 92 E123/F6 

21 E30/C1 45 E62/PZ 69 E92/P6 93 E124/F4 

22 E31 46 E64 70 E93/CP4   
23 E33/F7 47 E65/PO7 71 E95   

24 E34/FT7 48 E66 72 E96/P10   

 

 

3.2 Marking of Brain Regions on the EEG Topo-map 

 

After EEG topo-maps are generated, we need to mark the different brain 

lobes on EEG topo-maps so that we can track the brain activation across 

different lobes. The EEG topo-maps are divided into six different regions: 

frontal (F), occipital (O), right temporal (R), left temporal (L), parietal (P) and 

center or motor region (M). This division is based on the 10-10 international 
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electrode placement system. Fig. 3.4 shows the layout illustrating the 10 – 10 

equivalent on the 128-channel HydroCel GSN  (Luu & Ferree, 2005).  

 

Fig. 3.4 Layout illustrating the 10 – 10 equivalent on the 128-channel 
HydroCel GSN  (Luu & Ferree, 2005) 

 

10-10 international system contains electrodes in between two different 

lobes e.g. Frontal-Parietal (FP), Frontal-Center (FC), Center-Parietal (CP), 

Parietal-Occipital (PO) and Temporal-Parietal (TP).  Based on this electrode 

information, we were able to divide the EEG topo-map into six different lobes. 

Fig. 3.5 shows the marking of different lobes based on the electrodes 

information from the 10-10 system. The red color circles are the electrodes of 

10-20 international system. In 10-10 system, the electrode T7, T8, P9, and P10 

are equivalent to T3, T4, T5, and T6 in 10-20 system. Based on the electrodes 

in the 10-20 system, the function of electrodes C3 and C4 are used for 

sensorimotor integration (Walker, et al., 2007). So, we assume that the lobes 

between C electrodes belong to the motor region (M).  
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Fig. 3.5 Marking of different lobes based on the electrodes information of 10-
10 system 

 

 

3.3 Motion Field Generation 

 

3.3.1 FS Block Matching algorithm 

 

In FS block matching algorithm, there are some parameters that are very 

critical for good ME and tracking. These are the search window range (p), and 

the macro block size (N). Smaller the macro block size, more computation time 

is required but better result in terms of matching is achieved; on the other hand 

if macro block size is big, computation time decreases and so the accuracy of 

the result. Search window range (p) also has a significant effect on the ME 

results. The computation time increases by increase in the search window range. 

A bigger search window is useful if the range of motion is high. The peak signal 

to noise ratio (PSNR) is a quality measurement metric between the original 
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image and the compensated image. Higher PSNR means better quality of 

compensated image. The comparison of different macro block sizes and the 

search window range for FS block matching motion estimation is discussed in 

Chapter 4. 

 

3.3.1.1 Vector Median Filter 
 

For FS block matching algorithm, it has been observed that MVs are 

often distorted or are noisy at the boundaries/edges of topo-map, which may 

result in wrong ME. Since the noisy vector field may result in distortion in 

direction calculation especially for tracking. Vector median filter (VMF) is used 

to reduce the distortion in motion vector calculations. The displacement vector 

is replaced by the median vector in the 3x3 window size. The motion field is 

clean after applying VMF. The noisy MVs in the edges of topo-map are 

removed. The results for PSNR and the motion field after applying VMF are 

discussed in chapter 4. 

 

3.3.2 HS Optical Flow algorithm 

 

In HS optical flow algorithm, k is the iteration number for computing 

the flow vectors. The higher the iteration, the vector is more accurate. The 

motion field generated by using HS method is more detailed and noiseless 

compared with the block matching method, in addition it does not use vector 

median filter. 

After we generate the MVs, we extract the MVs at every 8, 16 and 32 

pixels in horizontal and vertical direction of topo-map to reduce the computation 
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time. Fig. 3.6 shows the example of MVs extracted at different pixel ranges for 

HS method (topo-map size of 351 x 351 pixels). 

 

Fig. 3.6 Example of MVs extracted at different pixel ranges for HS method 
(topo-map size of 351x351 pixels) 

 

 

3.4 Grouping and Labelling of Motion Vectors (MVs) 

 

In this research, we have focused only on the high activation region on 

the topo-map. Red color on the EEG topo-maps corresponds to high activation 

and blue color corresponds to low activation. The MVs with low activation on 

the topo-maps are removed and not used for tracking. The activation can be 

classified into high activation when the grayscale intensity of the pixel is lower 

Pixel range = 1 Pixel range = 8 

Pixel range = 16 Pixel range = 32 
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than 150 and the B-channel intensity in the RGB color model is lower than 10. 

We grouped the MVs based on the color intensity of topo-map. Fig. 3.7 shows 

the steps of grouping and labelling of motion vector clusters based on the color 

intensity of topo-maps. We have set the threshold of the grayscale intensity level 

from 0 to 150 by increasing threshold in steps of 5 intensity levels per step. Note 

that the grayscale intensity level varies from 0-255. So we considered the values 

from 151-255 as low activation region and do not track the motion vectors in 

this range. The grayscale values from 0-150 are considered as high activation 

region. For every threshold step, we group and label the MVs that are linked 

together in 8-connected neighborhood. Then we compare the grouped MVs of 

current threshold step with the grouped MVs of previous threshold to obtain 

more accurate but separate groups for MVs for every label. This will result in 

separate groups instead of combined groups. The final selected grouped MVs at 

current threshold will be compared with next threshold (+5) and the same step 

will be repeated till a threshold of 150. The advantage of this method is that we 

can separate MVs and provide more precise groups instead of setting one 

threshold only. Fig. 3.8 shows the example of grouped and labelled MVs for 

grayscale threshold of 70 and 75. It can be seen from the figure that at the 

grayscale threshold of 70, two MV clusters (label 1 and label 2) are observed 

whereas at grayscale threshold of 75 only one cluster (label 1) is present. Hence, 

the grouped MVs of label 1 and label 2 with grayscale threshold of 70 will be 

selected instead of grouped MVs of label 1 of grayscale threshold of 75. 
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Fig. 3.7 Steps of grouping and labelling motion vector clusters based on the 
color intensity of topo-maps 

 

 

Step 5: 
Remove all MVs lower than grayscale threshold and 
label all motion fields (e.g. 1, 2 …) as group B. 
 

Step 3: 
Remove all MVs lower than grayscale threshold and 
label all motion fields (e.g. 1, 2 …) as group A. 

Step 1: 
Read EEG TOPO-MAP 

Step 2: 
Set grayscale threshold = 0 ; Brgb<10 (fixed) 
 

Step 4: 
Increase grayscale threshold (+5) 

Step 6: 
Choose the motion field in group A or B which has more 
clusters and put in group A 

Step 7: 
Repeat step 4 to step 6 until the grayscale threshold= 150 
and choose group A as final group 
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Grayscale threshold = 70 

 

Grayscale threshold =75 

 

Fig. 3.8 Example of grouped and labelled MVs for grayscale threshold of 70 
and 75 

 

 

3.5 Tracking of MV Clusters 

 

After all the MVs are grouped and labelled, the movement will be 

tracked by the overlapping of the grouped motion field (cluster) in the current 

frame and the motion field in the next frames. If a group motion field overlaps 

with another motion field in the next frame, it means that the activation is 

moving from the current frame to next frame at this particular area. If there is 

no overlapping between consecutive frames, we will skip that frame and 

continue search in the next frame; however we will mark/hold the previous 

location. If a motion field overlaps then the tracking will be started again. Fig. 

3.9 shows an example of tracking of the MVs based on the overlapping of 

motion field in the next frame. The arrow shows the direction of the activation 

flow. 
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Fig. 3.9 Example of tracking of the MVs based on the overlapping of motion 
field in the next frame 

 

 

3.6 Plotting of Activation Graph for Analysis  

 

After tracking all the possible paths, we need to analyze the inter subject 

and intra subject activation behavior in different brain lobes for different oddball. 

We have converted all the possible tracked paths into a graph for each lobe for 

average activation of all subjects. Fig. 3.10 shows the procedure for plotting of 

average graph for each lobe for all subjects. First, we mark the lobe for every 

MV in every frame. After that, we count and record how many MVs are 

involved in activation in each lobe; e.g. if there are a total of 4 MVs in a 

particular frame in frontal lobe, the value under frontal lobe at that frame in the 

table is recorded as 4. Here the trial no. represents the number of trials for one 

case (e.g. target stimuli with response). The total no. represents the total number 
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of frames for which the subject response to the stimuli is observed. For different 

trials, subject responds with different timings for the case Target with response, 

as for different trials the subject response depends on when he observes the 

target. So the timing of response for different trials may be different. In order to 

average out the result of different trials we have considered three cases, i.e. the 

fastest the slowest and middle time trial. However, this results in different total 

no. of frames for every trial. Therefore, we have shifted the response of recorded 

lobes involving all the tracked paths to the right, so all of the tracked paths are 

aligned with the timing when button is pressed. After that, we calculate the 

average activation of each lobe for all subjects. However for the case target with 

no response and no target with non-response, there is not any timing issue as all 

the sequences end at the same time. Lastly, we plot the average activation graph. 

The graph is smoothed by using a 5-point moving average filter; this is plotted 

on the original graph to observe the pattern of flow of activation. 

 

Fig. 3.10 Procedure for plotting of average graph for each lobe for all subjects. 

Record how many MVs are 
involved in each lobe 

Shift recorded data to the right and 
calculate the average of each lobe 

Marks lobe for every MV 
every frame  

Plot average graph and the best fit 
line 



 
 

53 

3.7 Tracking of Functional Connectivity by using Cross-Correlation 

Method 

 

In this research, cross-correlation is used to track the functional 

connectivity between different electrodes. Next, we compare the functional 

connectivity with the average activation graph using motion estimation method 

at different segment for different cases. Fig. 3.11 shows the flow chart of 

tracking functional connectivity by using cross- correlation method. First of all, 

we extract the EEG data from for each stimuli segment (from appearance of 

stimuli to the event when button is pressed in response to stimuli appearance). 

After that, we separate the data into samples of 20 segment each (e.g.: 1-20, 21-

40 …). We have chosen 20 samples based on trial and error; as if the number of 

samples is too small, the correlation value will approximate to 1 or -1 (perfect 

correlation). On the other hand, if the average number of samples is too large, 

we may not be able to find a good correlation value. Hence, we have found that 

20 samples give good correlation results. Then, we calculate the cross-

correlation between different electrodes. We only calculate the cross-correlation 

for the electrodes that have high EEG signal (EEG amplitude higher than 20μV. 

The maximum amplitude of EEG signal is 700μV. Next, we will plot the 

connection between the electrodes that have correlation value higher than the 

specified threshold value at zero lag. We have set the threshold value at 0.9. 

However, if there is no connectivity in the segment, we will reduce the threshold 

value in steps of 0.1 until a value of 0.7. Fig. 3.12 shows the pseudo code for 

tracking the functional connectivity by using cross- correlation method. Fig. 
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3.13 shows the tracking of functional connectivity by using cross-correlation 

(2nd subject target with response trial no.4). 

 

Fig. 3.11 Flow chart of tracking functional connectivity by using cross- 
correlation method 

 

Extract EEG data from the 
time the stimuli appears to 
the time when the subject 

responds/ no response 

Separate 20 samples per 
segment 

 

Calculate the Cross 
Correlation coefficient of each 

electrode for every segment 
 

Plot line between electrodes 
with correlation value that is 
higher than threshold value at 

zero lag 

Correlation Coefficient at zero lag 

Functional connectivity for 1-20 samples  
(2nd subject target response trial no.4) 
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Fig. 3.12 Pseudo code for tracking the functional connectivity by using cross- 
correlation method 

 

 

Fig. 3.13 Tracking of functional connectivity by using cross-correlation (2nd 
subject  target with response trial no.4) 

threshold = 0.9 
count = 0 
while(count == 0 && threshold>=0.7) 
    for electrode A=1: total electrode 
        if (maximum amplitude of electrode A <20) 
            continue to next electrode; 
        end 
        for electrode B=1: total electrode 
            Calculate cross correlation between electrode A and B 
            if (max correlation > threshold && max correlation lag==0) 
                plot connectivity between electrode A and B 
                count = count+1 
            end 
        end 
     end 
     threshold = threshold-0.1 
end 

100 80 60 40 20 1 



 
 

56 

 

 

 

 

Result and Discussions 

 

 

 

 

In this chapter, we will discuss the experimental results. The experiment 

results are divided into seven parts. First of all, the parameter selection for 

motion estimation will be discussed. Secondly, we will make comparison 

between FS block matching and HS optical flow motion estimation. Thirdly, we 

will discuss the activation path involved for all subjects for different oddball 

cases for each brain lobe by using FS and HS method. Fourthly, we will make 

an analysis on the lobes involved for activation for all subjects at different 

oddball cases by using FS method. Fifthly, we will analyse the lobes involved 

for activation for all subjects at different oddball cases by using HS method. 

Sixthly, we will perform an analysis for activation for individual subjects for 

different oddball cases by using HS method. Lastly, we will observe the pattern 

of functional connectivity of brain by tracking cross-correlation method for 

single trial of each oddball case for each segment of 2nd and 9th subject. 
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4.1 Parameters Selection for Motion Estimation 

 

In this section, we will discuss about the parameters selection for motion 

estimation for this research. Firstly, we will discuss about the comparison of 

different topo-map sizes. After that, we discuss the macro block size and the 

search window range used in FS block matching method. Next, we discuss the 

motion field after applying VMF for FS method. Next, we discuss the iteration 

number and pixel range used in HS method. Lastly, we will discuss about 

comparison between FS and HS motion estimation techniques for this research. 

 

4.1.1 Comparison of Different Topo-map Sizes 

 

In this section, we will compare different topo-map sizes for proposed 

method to get optimized results. Fig. 4.1 shows tracked paths by using different 

topo-map sizes for HS method. The original topo-map size is 702x702 pixels. 

We have performed tracking on a single oddball trial (1st subject target response 

trial no.1) for topo-map size of 0.2, 0.5, 0.8 and 1.0 of the original size. 

Subjective assessment of tracked path shows that the change in topo-map size 

does not have much influence on the tracking results. Hence we will use a topo-

map size of 0.5 of the original size (351 x 351 pixels) in the rest of the paper. 

This will help to reduce the computation time taken by the proposed algorithms.  
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Topo-map size = 0.2 Topo-map size = 0.8 

  
Topo-map size = 0.5 Topo-map size = 1 

  

Fig. 4.1 Tracked paths by using different topo-map sizes for HS method 

 

4.1.2 Macro block Size and Search Window Range for FS Method 

 

Fig 4.2 shows a comparison of different macro block sizes and search 

ranges (p) for FS method (topo-map size of 351 x 351 pixels). From the figure, 

we have used three different macro-block sizes, 8, 16 and 32; and the search 

window ranges of 4, 8, 16 and 32 with the topo-map size of 351 x 351 pixels. 

The table also includes example of motion field, average PSNR and 

computation time for a single oddball trial (1st subject target response trial no.1). 

From the table, it is seen that when we increase the macro-block size, it produces 

less MVs and have lower PSNR value. It means that smaller the macro-block 

size, better the compressed image and motion field but it needs longer 

computation time as the total number of blocks in a frame will be increased. 

Change in the search window range does not have much influence on the motion 
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field for EEG topo-maps but the computation time is different. Larger the search 

window range, longer the computation time and PSNR is also decreased. For 

the proposed algorithm, we are focusing on the motion field and not on PSNR 

value and computation time. More MVs are needed to track the overlapping 

motion field between current and reference frames. Hence, we are using macro-

block size of 8 and the search window range of 4 for the FS block matching 

algorithm; it also gives better results in terms of PSNR. PSNR is a metric used 

to calculate the picture quality. A higher value of PSNR corresponds to an image 

of good subjective quality. Hence higher PSNR value may also mean that the 

image quality is good for tracking. 
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Macro-block size: 8 
p = 4 p = 8 p = 16 

 
PSNR=23.4661 

Computations= 34,528,928 

 
PSNR=23.1772 

Computations=122,977,952 

 
PSNR=23.16406 

Computations= 455,380,128 

Macro-block size: 16 
p = 8 p = 16 p = 32 

 
PSNR= 23.6025 

Computations= 29,772,392 

 
PSNR=23.1342 

Computations= 111,967,208 

 
PSNR=22.3054 

Computations= 419,352,552 

Macro-block size: 32 
p = 8 p = 16 p = 32 

 
PSNR=23.2975 

Computations= 6,968,762 

 
PSNR=22.2551 

Computations= 26,153,018 

 
PSNR=20.6818 

Computations= 101,250,362 

Fig. 4.2 Comparison of macro-block size and the search window range (p) for 
FS method (topo-map size of 351 x 351 pixels) 

 

4.1.3 Motion Field After Applying VMF for FS Method 

 

For FS method, vector median filter (VMF) is used to reduce the 

distortion in motion vector calculations. Fig. 4.3 shows the example of motion 

field before and after applying VMF and the respective PSNR values for FS 
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method (topo-map size of 351 x 351 pixels). The motion field is clean after 

applying VMF. Besides, the noisy MVs in the edges of topo-map are removed. 

Moreover, it is observed that the value of PNSR is higher after applying VMF. 

The higher PSNR means better quality of image.  

Before VMF 

 
PSNR = 21.386 

 
PSNR =16.368 

 
PSNR = 20.739 

After VMF 

 
PSNR =22.183 

 
PSNR =16.796 

 
PSNR = 21.361 

Fig. 4.3 Example of motion field before and after applying VMF for FS 
method (topo-map size of 351x351 pixels) 

 

4.1.4 Iteration Number and Pixel Range for HS method 

 

In HS optical flow algorithm, k is the iteration number for computing 

the flow vectors. The higher the iteration, the vectors are more accurate. Fig 4.4 

shows the example of motion field generated with different iteration numbers 

for HS method (topo-map size of 351 x 351 pixels). The increase in the iteration 

does not influence the motion field as observed subjectively but it takes more 

computational time. So we will use the iteration k=1 for our experiments. 
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Iteration: 1 Iteration: 10 

 
Computation time is 0.418120 

seconds. 

 
Computation time is 0.747896 

seconds. 

Iteration: 50 Iteration: 100 

 
Computation time is 2.212394 

seconds. 

 
Computation time is 4.009570 

seconds. 

Fig. 4.4 Example of motion field generated with different iteration numbers 
for HS method (topo-map size of 351x351 pixels) 

 

4.1.5 Comparison between FS and HS Motion Estimation Techniques 

 

In this section, we have compared FS block matching and HS optical 

flow motion estimation techniques. Fig. 4.5 shows the comparison of the motion 

field between FS and HS motion estimation techniques (original topo-map size). 

The figure shows the comparison of PSNR, computation time, compensation 

time between FS and HS. The PSNR and computation time is calculated by 

using EEG topo-map between two consecutive frames with the original topo-

map size (704 x 704 pixel). PSNR of HS is higher than FS. The higher PSNR 

means better quality of compensated image. As observed subjectively, the 
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motion field of HS method is smoother and less chaotic than FS. The 

computation time to generate MVs of HS is faster than FS but HS need more 

compensation time. However the total time for HS is still less than FS.  

FS HS 
Search window range of 8 Iteration  of 1 

Macroblock size = 16 

 
Computation time = 8.87 s 

Compensation time = 0.011 s 
PSNR = 20.89 

Pixel range = 16 

 
Computation time = 1.33 s 

Compensation time = 0.31 s 
PSNR = 24.96 

Fig. 4.5 Comparison of motion field between FS and HS motion estimation 
techniques (original topo-map size) 

 

Fig 4.6 shows the tracking path for FS and HS method (topo-map size 

of 351 x 351 pixels). The FS and HS tracking methods give different tracking 

results for different pixel ranges and block sizes. By increasing the pixel range 

and block size, we track less number of possible paths. We observed that block 

size (FS) or pixel range (HS) of 8 gives the maximum number of possible paths. 

So, we will use the HS method with the pixel range of 8 in the rest of the paper. 

 

 

 

 

FS HS 
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Search window range = 8 Iteration =1 
Macroblock size = 8 

(Recommended) 

 

Pixel range = 8 
(Recommended) 

 
Macroblock size = 16 

 

Pixel range = 16 

 
Macroblock size = 32 

 

Pixel range = 32 

 

Fig. 4.6 Tracking path for FS and HS method (topo-map size of 351 x 351 
pixels) 
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4.2 Activation Analysis 

 

In this section, we will discuss about the activation analysis in this 

research. Firstly, we do analysis on average activation for different oddball 

cases by using both HS and FS method to identify which method is better. Later 

we will do analysis using the chosen method. For activation analysis, first we 

analyze all subjects together and then we will perform inter and intra subject 

analysis. We will also identify the pattern of activation for different oddball 

tasks. Lastly we will identify the pattern of activation across different brain 

lobes. 

 

4.2.1 Average Activation Paths for Different Oddball Cases for Each 

Brain Lobe  

 

In this section, we will discuss about the average activation path tracked 

for all subjects for different oddball cases for each brain lobe by using FS and 

HS method. Fig. 4.7 shows average activation graph of different brain lobes. In 

the figure, we compare the pattern of the graph for all brain lobes for different 

oddball cases. This figure shows the average result for all subjects except 

subjects 4 and 8 for which data is inconsistent. For target with response case, 

we have used three trials (fastest, slowest and medium) for each subject. Hence 

a total of 54 trials are used to plot the graph. For target with no response and 

non-target with no response, we have used 3 trials for each subject, which means 

54 trials for each case. In the figure, FS and HS method show almost similar 

pattern of average activation graph. However, HS shows higher amplitude when 
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compared with FS method. The pattern of average graph for every lobe is 

different for different cases. From the figure, we conclude that the pattern for 

different types of oddball responses is different for different brain lobes. This 

difference in pattern correlates with the overall process encountered in the 

Oddball paradigm. 

(a) Frontal 

 

 

 
Target with response starts rising earlier than Target with no response. Hence 
there is a delay in rise in the target with no response, based on which we can 
conclude that because of this delay the subject was unable to make a decision. 
Target response also displays a very high peak at the end of the task (frame 
no.110). Non-target with no response graph does not show lots of variation. 
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(b) Parietal 

 

 

 
For event related task, higher activity is observed in frontal-parietal region so 
the graph for target response has highest peak around the end of the task 
(frame no. 120).  
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(c) Occipital 

 

 

 
Target response has almost constant graph but it slightly drops near the end 
of the task (when frontal graph rises). Target with no response and non-target 
no response have highest peaks around frame no.50 and drop to very low.  
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(d) Right Temporal 

  

 

 
Activation will pass through temporal lobes when the signal in transferred 
from the occipital lobe to frontal lobe for memory matching. The target 
response activation rises till it reaches the peak value around frame no.60 and 
has higher amplitude (average) than other two cases till frame no.90. 
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(e) Left Temporal 

 

 

 
Activation will pass through temporal lobes when transfer the signal from 
occipital lobe to frontal lobe for memory matching. The target response 
activation rises till it reaches higher than the other two cases at frame no.40 
and has the peak value around frame no. 60 and has higher amplitude 
(activation) than other two cases till frame no.90.  
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(f) Motor/ Center 

 

 

 
The motor region is less active. So the amplitude is very low. However we 
see two peaks for the motor region at around frame no.50 and no.80 for the 
target response which are not present for the other two cases within this time 
range. 

 

Fig. 4.7 Average activation graph of different lobe.  

 

From the above figure we may conclude that although the pattern of 

graphs for both FS and HS method are same however HS method shows higher 

activation as compared to FS method. Hence in the rest of the results we will 

concentrate on HS method for analysis. 
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4.2.2 Average Activation Paths for Different Oddball Cases (FS 

Method) 

 

In this section, we have done an analysis of the brain lobes involved for 

activation path for all subjects at different oddball cases by using FS method. 

Fig. 4.8 shows the average activation path graph for brain lobes involved for 

average of all subjects for different oddball cases using FS method. It is 

observed that the behaviour of different lobes for target response, target no 

response and non-target no response are different. The discussion and 

explanation of different patterns of the graph for each lobe is provided in the 

figure. From Fig. 4.8, we conclude that the pattern for different types of 

responses is different for different brain lobes. This difference in pattern 

correlates with the overall process encountered in the Oddball paradigm. 

(a) Target Response 

 

 
For frontal lobe, peak around frame no.80 (320ms) and no.110 (440ms) 
exists. Here subjects made decision to respond to the stimuli. For occipital 
lobe, peak appear around frame no. 80 (320ms) and drops till the end of the 
task. A very small increase in parietal activation is observed towards the end 
of the task around frame no.110 
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(b) Target No Response 

 

 
For frontal lobe, peak occurs around frame no. 85(340ms) but it occurs with 
a delay of 20ms than the case of target with response. Hence subject is not 
able to respond on the stimuli. For Occipital lobe, high peak around frame 
no.50 (200ms) and drops to a very low value towards the end.  

 
 

(c) Non-target No Response 

 

 
Smooth signal for frontal lobe. Because this is a non-target stimuli. For 
Occipital lobe, high peak around frame no.50 (200ms) just like previous case 
and drop to very low value. Subject has no need to respond. No ERP is 
generated here as it is a non-target case, so no frontal peak observed here. 
 

Fig. 4.8 Average activation path graph for average of all subjects for different 
oddball cases using FS method.  
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4.2.3 Average activation Paths for Different Oddball Cases (HS Method) 

 

In this section, we have done an analysis of the brain lobes involved for 

tracking activation path for all subjects at different oddball cases by using HS 

method. Fig. 4.9 shows the average activation path graph for average of all 

subjects for different oddball cases using HS method. It is observed that the 

behaviour of different lobes for three cases are different. The discussion and 

explanation of different patterns of the graph for each lobe is provided in the 

figure. Furthermore, we observed that the average activation path graph of HS 

method show almost similar result with the average activation path graph of FS 

method in the Fig. 4.8. However, HS method has higher amplitude compare 

with FS method.  

(a) Target Response 

 

 
For frontal lobe, peak around frame no.80 (320ms) and no.110 (440ms) 
exists. Here subjects made decision to respond to the stimuli. For occipital 
lobe, peak exits around frame no. 80(320ms) and drops till the end of the task. 
A very small increase in parietal activation is observed towards the end of the 
task around frame no.110. 
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(b) Target No Response 

 

 
For frontal lobe, peak occurs around frame no. 90 (360ms) but it occurs with 
a delay of 10ms than the case of target with response. Hence subject is not 
able to respond on the stimuli. For Occipital lobe, high peak around frame 
no.50 (200ms) and drops to a very low value towards the end.  

 
(c) Non-target No Response 

 

 
Smooth signal for frontal lobe. Because this is a non-target stimuli. For 
Occipital lobe, high peak around frame no.50 (200ms) just like previous case 
and drop to very low value. Subject has no need to respond. No ERP is 
generated here as it is a non-target case, so no frontal peak observed here. 
 

Fig. 4.9 Average activation path graph for average of all subjects for different 
oddball cases using HS method.  
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4.2.4 Analysis of Activation Pattern for Different Oddball Cases for 

Individual Subjects (HS Method) 

 

In this section, we will discuss the average activation pattern for brain 

lobes involved for different oddball cases for individual subjects by using HS 

method. Seven different subjects were chosen based on good, average and poor 

performance in the oddball experiment. For example, subject 13 had responded 

on target stimuli only 12 times out of 40, subject 2 and 5 had responded on target 

stimuli for only 13 times out of 40, subject 7 and 20 had responded on target 

stimuli for 24 times, and subject 9 and 10 give very good response on target 

stimuli that is 37 times. The number of trials used to calculate the average of all 

cases is based on the minimum number of trials that can be used for these cases 

with different performances. For poor performance, subject 2 and 5 had 

responded 13 times out of 40 times on target stimuli. So, we calculated the 

average for 13 trials for each case. However, subject 13 responded 12 times only 

on target stimuli. So, we calculated the average for 12 trials for each case. For 

average performance, subject did not respond to target stimuli for 16 times out 

of 40 times. So, we calculated the average for 16 trials for each case. For good 

performance, subject had responded to target stimuli for 37 times out of 40 times. 

So, we calculated the average for 37 trials for each case. Therefore, we ignored 

the target with no response case which had only 3 trials. Table 4.1 shows the 

response of individual subjects with different performances. 
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Table 4.1 Response of individual subjects with different performance 

Performance 
Subject 

Target Non-target 

Response 
No 

response Response 
No 

response 

poor 
2 13 27 1 94 
5 13 27 2 93 

13 12 28 1 94 

average 
7 24 16 0 95 

20 24 16 1 94 

good 
9 37 3 0 95 

10 37 3 3 92 
 

Fig. 4.10 4.11 and 4.12 shows the average activation graph for different 

oddball cases for 2nd, 5th and 13th subject who gave poor response. From Fig. 

4.10, we observed that occipital lobe has inconsistent graph with many high 

peaks which may result in poor performance of the subject. From Fig. 4.11, we 

observed that frontal lobe has inconsistent graph with many high peaks which 

cause poor performance of the subject. From Fig. 4.12, we observed that frontal 

lobe has inconsistent graph as same with 5th subject with many high peaks which 

cause poor performance of the subject.  Based on the Fig. 4.10, 4.11 and 4.12, 

subjects were unable to concentrate or focus on the screen that leads to the 

inconsistent graph for occipital or frontal lobe hence resulting in poor 

performance. However, we still are able to observe a peak that occurred in end 

of the stimuli for frontal and parietal lobe for target with response cases. 
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(a) S2 Target Response 

 

 
For frontal lobe, high peak around frame no.100(400ms) that is consistent 
with the appearance of the stimuli. Hence the subject makes decision to 
respond to the stimuli. Occipital lobe has inconsistent graph with many high 
peaks. For parietal lobe, a very small increase is observed towards the end of 
the task around frame no.120. 

 
 

(b) S2 Target No Response 

 

 
For frontal lobe, peak occur around frame  no.110 with an amplitude of 20. 
Hence, we may say that due to this delay the subject was not nable to make a 
decision. Occipital lobe has inconsistent graph with many peaks. 
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(c) S2 Non-target No Response 

 

 
Frontal peak appeared very early around frame no.40 and drop until very low 
as it’s a non-target case. Occipital lobe has inconsistent graph with many 
peaks. 
 

Fig. 4.10 Average activation graph for different oddball cases for 2nd subject 
(S2) 

 

(a) S5 Target Response 

 

 
Frontal lobe has inconsistent graph with many high peaks. However, we can 
observe that the peak that occurs arround frame no.80 with an amplitude of 
around 40 may be responsible for response to the target stimuli. Another peak 
can be seen at around frame no.100(400ms). For occipital lobe, peak occurs 
arround frame no. 50 and no.110. Parietal lobe also shows a peak around 
frame no. 110. 
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(b) S5 Target No Response 

 

 
For frontal lobe, peak occurs arround frame  no.100 and no.120. Hence there 
is a delay of peak for target no response, based on which we can conclude 
that because of this delay the subject was unable to make a decision. For 
occipital lobe, peak occurs arround frame no. 50 and frame no.80. 

 
(c) S5 Non-target No Response 

 

 
Frontal lobe has inconsistent response here. However, subject has no need 
to respond to stimuli. For occipital lobe, peak occurs around frame no. 50 
and no.80 as with target with no response case. 
 

Fig. 4.11 Average activation graph for different oddball cases for 5th subject 
(S5) 
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(a) S13 Target Response 

 

 
Frontal lobe has inconsistent graph with many high peaks. However, we can 
observe that the peak that occurs arround frame no.60 with an amplitude of 
around 70 may be responsible for response to target stimuli. Another peak 
can be seen at around frame no.100(400ms) with amplitude of 60. For 
occipital lobe, peak occurs arround frame no. 60 and no.110. Parietal lobe 
also shows a peak around frame no. 120. 

 
(a) S13 Target No Response 

 

 
Frontal lobe has inconsistent graph with many high peaks. However, we can 
observe that the peak that occurs arround frame no.60 with an amplitude of 
40 and arround frame  no.100 with amplitude of below than 60 which 
amplitude is lower than target with response. For occipital lobe, peak occur 
arround frame no. 60 and no.120. 
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(b) S13 Non-target No Response 

 

 
Frontal lobe has inconsistent response here. However, subject has no need to 
respond on stimuli. For occipital lobe, graph raise after frame no.40 and 
remain constant. Graph start dropping after frame no.90. 
 

Fig. 4.12 Average activation graph for different oddball cases for 13th subject 
(S13) 

 

Fig. 4.13 and 4.14 shows the average activation graph for 7th and 20th 

subject who gave average response. From Fig. 4.13 and 4.14, we can conclude 

that the pattern of the graph clearly follows the same trend for target with 

response and no response cases in terms of frontal and occipital activation. 

However here the activation graphs are clearer than the case for poor 

performance. For target response, high peak occurs in the frontal lobe in the end 

of the task after peak of occipital lobe. For non-target with no response, frontal 

and occipital lobe graphs are almost constant towards the end of the task. 
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(a) S7 Target Response 

 

 
For frontal lobe, peak occur arround frame no.100 (400ms). Hence subject 
able to response on target stimuli. For occipital lobe, peak occurs arround 
frame no.60. 

 
(b) S7 Target No Response 

 

 
For frontal lobe, graph is almost constant as subject does not respond on target 
stimuli. For occipital lobe, peak occurs arround frame no.60, no.80 and 
no.120. With so many peaks in the occipital lobe, it seens the subject in unable 
to concentrate on screen.  
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(c) S7 Non-target No Respose 

 

 
For frontal lobe, peak occurs around frame no.70 and drop to very low since 
it is non-target stimuli. For occipital lobe, peak occurs around frame no.60 
and no.80 and drops till the end of the task. 
 

Fig. 4.13 Average activation graph for different oddball cases for 7th subject 
(S7) 

 

(a) S20 Target Response 

 

 
For frontal lobe, peak occurs arround frame no.60 (amplitude 80) and no.100 
(amplitude 150). Hence subject is able to respond to the target stimuli. For 
occipital lobe, peak occurs arround frame no.60 and then shows an increasing 
trend from frame no 100. 
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(b) S20 Target No Response 

 

 
For frontal lobe, peak occurs arround frame no.60 (amplitude 40) and no.100 
(amplitude 90). In both cases the amplitude is less than target with response 
case. Subject does not respond to the stimuli. For occipital lobe, peak occurs 
arround frame no.60 and no.90. 

 
(c) S20 Non-target No Response 

 

 
For frontal lobe, a peak occurs around frame no.60 only. The subject has no 
need to respond as it is  non-target stimuli, so the amplitude is lower than 
other cases in the end of the task. For occipital lobe, peak occurs arround 
frame no.50 and drops till the end of the task. 
 

Fig. 4.14 Average activation graph for different oddball cases for 20th subject 
(S20) 
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Fig. 4.15 and 4.16 shows the average activation graph for brain lobes 

involved for different cases for 9th and 10th subject who gave good response. For 

the case “Target with no response” these subjects responded only for 3 times, 

therefore we will ignore the target with no response cases. From Fig. 4.15 and 

4.16, we can conclude that the pattern of the graph clearly shows the good 

performance of the subjects. For target with response, a clear high frontal 

activation is observed; this activation rises sharply to a high amplitude in both 

cases at around frame no. 40 and then decreases slowly till the end. For non-

target no response, the frontal activation is sort of constant from the start and 

drops faster than the case of target with response. 
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(a) S9 Target Response 

 

 
For frontal lobe, highest peak occurs around frame no. 80 and and another 
peak around frame no.100 (400ms). For occipital lobe, peak is around frame 
no.40 and no.110. 

 
(b) S9 Non-target No Response 

 

 
For frontal lobe, graph drops after peak arround frame no.50. For occipital 
lobe , the peak occur arround frame no.30 and no.90 and drops until the end 
of the task for non-target stimuli. 
 

Fig. 4.15 Average activation graph for different oddball cases for 9th subject 
(S9) 
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(a) S10 Target Response 

 

 
In frontal lobe, peak occur around frame no. 60 later around frame no.100 
(400ms). In Occipital lobe, peak occur around frame no.70 for visual 
processing. 

 
(b) S10 Non-target No Response 

 

 
For frontal lobe, graph is drops after peak arround frame no.70. For occipital 
lobe, the peak occur arround frame no.50 and drops until the end of the task 
for non-target stimuli. 
 

Fig. 4.16 Average activation graph for different oddball cases for 10th subject 
(S10) 
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Table 4.2 shows the summary of analysis for different performance of 

the subjects. From the table, we are able to conclude that different patterns of 

graphs can be observed for different performances. For Poor performance, the 

frontal or occipital lobe will have inconsistent graph. This can prove that the 

subject is not focussing or concentrating on the experiment. For average 

performance, the pattern of the graph is more consistent than poor performance. 

For good performance, the graph are clearly shows the frontal activation. The 

details of the summary of analysis are given in the table. 

Table 4.2 Summary of Analysis for different performance of subject 

Performance Subject Summary 

Poor 

2  Occipital or frontal lobe has inconsistent graph 
with many high peaks which cause poor 
performance for the subject. 

 However, we are still able to observe a peak 
that occurs in the end of the stimuli for frontal 
and parietal lobe for target with response cases. 

5 

13 

Average 

7 

 The pattern of the activation graphs are more 
consistent than poor performance. 

 For target response, high peak occurs in the 
frontal lobe in the end of the task after peak of 
occipital lobe. 

 For non-target with no response, frontal and 
occipital lobe graphs are almost constant 
towards the end of the task. 

20 

Good 

9 

 Graph clearly shows the good performance of 
the subjects. For target with response, a clear 
high frontal activation is observed; this 
activation rises sharply to a high amplitude in 
both cases at around frame no. 40 and then 
decreases slowly till the end. A second frontal 
peak is also observed at the end of the task. 

 For non-target no response, the frontal 
activation is sort of constant from the start and 
drops faster than the case of target with 
response. 

10 
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4.3 Tracking of Functional Connectivity by using Cross Correlation 

Method 

 

In this section, we will observe the pattern of the functional connectivity 

of brain by using cross-correlation method for single trial of each case for every 

segment. Firstly, we will discuss the functional connectivity for 2nd subject who 

had poor performance. Second, we will discuss the functional connectivity for 

9th subject who had good performance. 

 

4.3.1 Functional Connectivity of  2nd subject 

 

Fig. 4.17 shows the functional connectivity of 10-20 electrode for target 

stimuli with response (fastest) for 2nd subject. In the figure, there are 

connectivity between 10-20 electrodes for every segment except only sample 

61-80. Besides, we can see that these are connectivity for O1, O2, P3, P4, Pz, 

T6 and C3 in the last segment. These are involved in visual processing, 

perception, emotional understanding and sensorimotor integration in the last 

segment (when button pressed). 
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S2 Target with Response Trial No.4 

1-20 samples 

 
Emotional memory, emotional 
expression, emotional 
understanding, visual processing 

21-40 samples 

 
Logical memory, perception 

41-60 samples 

 
Emotional memory, visual sensation, 
verbal expression, perception, 
sensory integration 

61-80 samples 

 
No functional connectivity 

81-100 samples 

 
Perception, sensory integration, 
emotional memory, visual sensation 

 

Fig. 4.17 Functional connectivity of 10-20 electrodes for target stimuli with 
response (fastest) for 2nd subject 

 

Fig. 4.18 shows the functional connectivity of 10-20 electrodes for target 

with no response for 2nd subject. Less connectivity is observed for target with 

no response.  However, we still can observe that, there are connectivity for T4 
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and O2 in the beginning of the appearance of stimuli appear. This involves 

visual processing and emotional memory. However, no connectivity is present 

in the last segment as subject did not respond on the target stimuli. 

S2 Target with No Response Trial No.1 

1-20 samples 

 
Emotional memory, visual sensation  

21-40 samples 

 
Emotional understanding, visual 
sensation 

41-60 samples 

 
Logical memory, logical understanding, 
emotional memory, verbal expression 

61-80 samples 

 
No functional connectivity 

81-100 samples 

 
No functional connectivity 

101-125 samples 

 
No functional connectivity 

Fig. 4.18 Functional connectivity of 10-20 electrodes for target with no 
response for 2nd subject 
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Fig. 4.19 shows the 10-20 functional connectivity for non-target with 

response for 2nd subject. In the figure, here are connectivity for O1, O2, P3, P4, 

PZ, T5, T6, C3, and C4 in last segment. This involves visual processing, 

perception, logical and emotional understanding and sensorimotor integration. 

S2 Non-target with Response Trial No.1 

1-20 samples 

 
Emotional understanding,  perception  

21-40 samples 

 
Logical understanding, emotional 
understanding, visual sensation, 
perception  

41-60 samples 

 
Logical memory, logical understanding, 
visual sensation,  emotional expression 

61-80 samples 

 
No functional connectivity 

81-108 samples 

 
Perception, sensorimotor integration, 
logical understanding, emotional 
understanding, visual sensation 

 

Fig. 4.19 Functional connectivity of 10-20 electrodes for non-target with 
response for 2nd subject 
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Fig. 4.20 shows the functional connectivity of 10-20 electrodes for non-

target with no response for 2nd subject. In the figure, here are connectivity for 

O1, T4 and T6 in the beginning of stimuli appear. These involve the visual 

processing, emotional memory and understanding. However, no connectivity 

involved in the last segment as subject does not need to respond to the non-

target stimuli. 

S2 Non-target with No Response Trial No.2 

1-20 samples 

 
Emotional understanding, emotional 
memory, visual sensation 

21-40 samples 

 
No functional connectivity 

41-60 samples 

 
Visual sensation, emotional 
understanding 

61-80 samples 

 
Logical memory, logical 
understanding 

81-100 samples 

 
No functional connectivity 

101-125 samples 

 
No functional connectivity 

Fig. 4.20 Functional connectivity of 10-20 electrodes for non-target with no 
response for 2nd subject 
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Fig. 4.21 shows the functional connectivity of all electrodes for target 

with response for 2nd subject for three different trials (fastest, medium and 

slowest). For target with response, trial 4, 6 and 8 are the fastest, medium and 

slowest responses from the subject to the target stimuli. In the figure, high 

connectivity is observed for all cases in general for all segments compared with 

target with no response and non-target no response in Fig. 4.22 and 4.23. High 

connectivity can be observed in occipital lobe for every segment except for first 

segment of trial no.8 (slowest) only. In last segment, it shows high connectivity 

between occipital, temporal, parietal, frontal, and center region as response is 

given. We are able to observe connectivity in the frontal and center region for 

last segment, which is used for movement to press the button. 
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Trial no. 4 Trial no.6 Trial no.8 

 
1-20 

 
1-20 

 
1-20 

 
21-40 

 
21-40 

 
21-40 

 
41-60 

 
41-60 

 
41-60 

 
61-80 

 
61-80 

 
61-80 

 
81-100 

 
81-100 

 
81-100 

- 

 
1-113 

 
1-124 

Fig. 4.21 Functional connectivity of all electrodes for target with response for 
2nd subject 



 
 

97 

Fig. 4.22 shows the functional connectivity of all electrodes for target 

with no response of 2nd subject for three different trials. For target with no 

response, three trials were selected from the subject that has consistent EEG 

data. In the figure, target with no response shows less connectivity than target 

with response cases in Fig.  4.21. Since subject is not able to make response on 

the target stimuli. In trial no.1, segment 61-80 and 81-100 does not have any 

connectivity. Subject is not able to respond to this trial. In trial no.2, low 

connectivity for all segments. However, there is only a little connectivity in the 

frontal lobe at segment 21-40. Subject is not able to make decision to respond 

to this trial. Trial no.3 has higher connectivity compared to trial no.1 and no.2 

but the connectivity is still lower than target with response cases in Fig. 4.21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

98 

Trial no. 1 Trial no.2 Trial no.3 

 
1-20 

 
1-20 

 
1-20 

 
21-40 

 
21-40 

 
21-40 

 
41-60 

 
41-60 

 
41-60 

 
61-80 

 
61-80 

 
61-80 

 
81-100 

 
81-100 

 
81-100 

 
100-125 

 
100-125 

 
100-125 

Fig. 4.22 Functional connectivity of all electrodes for target with no response 
for 2nd subject 
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Fig. 4.23 shows the functional connectivity of all electrodes for non-

target with no response for 2nd subject for three different trials. For non-target 

with no response, three trials were selected from the subject which have 

consistent EEG data. In the figure, non-target with no response shows less 

connectivity than target with response cases in Fig. 4.21 except the first segment 

of trial no.2 and trial no.4. High connectivity is observed only in the first 

segment where all lobes are involved for trial no.2 and no.4. Since subject does 

not need to respond to the non-target stimuli. In trial no.3, we are only able to 

observe the connectivity in segment 81-100 which is in occipital lobe. 
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Trial no. 2 Trial no.3 Trial no.4 

 
1-20 

 
1-20 

 
1-20 

 
21-40 

 
21-40 

 
21-40 

 
41-60 

 
41-60 

 
41-60 

 
61-80 

 
61-80 

 
61-80 

 
81-100 

 
81-100 

 
81-100 

 
100-125 

 
100-125 

 
100-125 

Fig. 4.23 Functional connectivity of all electrodes for non-target with no 
response for 2nd subject 

 



 
 

101 

By summary, the target with response cases have high connectivity for 

every segment compared with target with no response and non-target with no 

response cases. Moreover, target response has high connectivity in the last 

segment. Fig. 4.24 shows the comparison of the average activation graph and 

the functional connectivity for last segment of target with response cases for 2nd 

subject. From the figure, the average activation graph is shifted to the timing 

when the button is pressed. So the functional connectivity of the segment 81-

100 will be around frame no.105-125 in the activation graph. From the figure, 

we can observe the activation graph and the functional connectivity of last 

segment shows high average activation and high connectivity for frontal, 

occipital and parietal lobes, which shows that the average activation graph gives 

same result with the functional connectivity. 
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Fig. 4.24 Comparison of the average activation graph and the functional 
connectivity at last segment of target with response cases for 2nd subject 

 

For target with no response cases, the connectivity is less than target 

with response cases for every segment. However, we are still able to observe 

some connectivity in the occipital lobe. Fig. 4.25 shows the comparison of the 

average activation graph and the functional connectivity for last segment of 

target with no response cases for 2nd subject. From the figure, a little peak is 

observed in the average activation graph for all lobes, but the amplitude is lower 

than target with response case. In addition, the connectivity is also lesser than 

target with response case. Since subject doesn’t respond to stimuli.  

Frame no.81-100  

Trial no.4 Trial no.6 Trial no.8 

Frame no. 100-113 Frame no. 100-124 
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Fig. 4.25 Comparison of the average activation graph and the functional 
connectivity for last segment of target with no response cases for 2nd subject 

 

For non-target no response cases, high connectivity is observed for 

frame no.1-20 only and there is very less connectivity from frame no. 100 -125 

as subject has no need to respond to the stimuli. Fig 4.26 shows the comparison 

of the average activation graph and functional connectivity of the last segment 

of non-target with no response cases for 2nd subject. From the figure, we are 

able to conclude that non-target with no response shows lower amplitude and 

lesser connectivity in last segment. 

 

Trial no.1 Trial no.2 Trial no.3 

Frame no. 100-125 
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Fig. 4.26 Comparison of the average activation graph and functional 
connectivity for last segment of non-target with no response cases for 2nd 

subject  

 

 

 

 

 

 

 

 

 

 

 

Trial no.1 Trial no.2 Trial no.3 

Frame no. 100-125 
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4.3.2 Functional Connectivity of  9th subject 

 

Fig. 4.27 shows the functional connectivity of 10-20 electrodes for target 

stimuli with response (fastest) for 9th subject. In the figure, there are 

connectivity between 10-20 electrodes for all segments. Besides, we can see that 

these are connectivity for O1, O2, Pz, F3, F4, Fz and T6 in the last segment. 

These are involved in motor planning, emotional understanding, visual 

processing and perception in the last segment (when button pressed). 

S9 Target with Response Trial No.10 

1-20 samples 

 
Motor planning, sensorimotor 
integration, verbal expression 

21-40 samples 

 
Motor planning, logical attention, 
non-verbal expression, sensorimotor 
integration, visual sensation 

41-60 samples 

 
Motor planning, sensorimotor 
integration, perception, visual 
sensation 

61-87 samples 

 
Motor planning, emotional 
understanding, visual sensation, 
perception 
 

Fig. 4.27 Functional connectivity of 10-20 electrodes for target stimuli with 
response (fastest) for 9th subject. 
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Fig. 4.28 shows the functional connectivity of 10-20 electrodes for target 

stimuli with no response for 9th subject. Target with no response have less 

connectivity compare with target with response cases.  However, we still able 

to observe the connectivity for O1, T5, PZ and P3 in sample 81-100 which 

involved in logical understanding, perception and visual processing.   

S9 Target with No Response Trial No.1 

1-20 samples 

 
No functional connectivity 

21-40 samples 

 
Motor planning, logical attention 

41-60 samples 

 
Verbal expression, logical attention, 
motor planning 

61-80 samples 

 
No functional connectivity 

81-100 samples 

 
Logical understanding, perception, 
visual sensation 

101-125 samples 

 
Sensorimotor integration, motor 
planning, logical understanding, 
emotional understanding 

Fig. 4.28 Functional connectivity of 10-20 electrodes for target stimuli with no 
response for 9th subject 
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Fig. 4.29 shows the functional connectivity of 10-20 electrodes for non-

target with no response for 9th subject. In the figure, here are only some 

connectivity in Fz, F4, F8 and Fp1 in sample 41-60. These involve in motor 

planning, logical attention and non-verbal expression. However, no 

connectivity involved in the last segment as subject does not need to respond to 

the non-target stimuli. 

S9 Non-target with No Response Trial No.2 

1-20 samples 

 
No functional connectivity 

21-40 samples 

 
No functional connectivity 

41-60 samples 

 
Motor planning, logical attention, 
non-verbal expression 

61-80 samples 

 
No functional connectivity 

81-100 samples 

 
No functional connectivity 

101-125 samples 

 
No functional connectivity 

Fig. 4.29 Functional connectivity of 10-20 electrodes for non-target stimuli 
with no response for 9th subject 
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Fig. 4.30 shows the functional connectivity of all electrodes for target 

with response for 9th subject for three different trials (fastest, medium and 

slowest). For target with response, trial 10, 18 and 1 are the fastest, medium and 

slowest responses from the subject to the target stimuli. In the figure, high 

connectivity is observed for all cases in general for all segments compared with 

target with no response and non-target no response in Fig. 4.31 and 4.32. High 

connectivity can be observed in occipital lobe for every segment. In last segment, 

it shows high connectivity between occipital, temporal, parietal, frontal, and 

center region as response is given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

109 

Trial no. 10 Trial no.18 Trial no.1 

 
1-20 

 
1-20 

 
1-20 

 
21-40 

 
21-40 

 
21-40 

 
41-60 

 
41-60 

 
41-60 

 
61-87 

 
61-80 

 
61-80 

 
 

 
81-104 

 
81-100 

 
 

 
 

 
100-124 

Fig. 4.30 Functional connectivity of all electrodes for target with response for 
9th subject 
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Fig. 4.31 shows the functional connectivity of all electrodes for target 

with no response of 9th subject for three different trials. In the figure, target with 

no response shows less connectivity than target with response cases in Fig.  4.30. 

Since subject is not able to make response on the target stimuli. However, more 

connectivity been observed in the occipital lobe than the frontal lobes at the last 

segment as subject not able to respond on the target stimuli 
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Trial no. 1 Trial no.2 Trial no.3 

 
1-20 

 
1-20 

 
1-20 

 
21-40 

 
21-40 

 
21-40 

 
41-60 

 
41-60 

 
41-60 

 
61-80 

 
61-80 

 
61-80 

 
81-100 

 
81-100 

 
81-100 

 
101-125 

 
101-125 

 
101-124 

Fig. 4.31 Functional connectivity for target with no response for 9th subject 
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Fig. 4.32 shows the functional connectivity of all electrodes for non-

target with no response for 9th subject for three different trials. For non-target 

with no response, three trials were selected from the subject which have 

consistent EEG data. In the figure, non-target with no response shows less 

connectivity than target with response cases in Fig. 4.30.  
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Trial no. 2 Trial no.3 Trial no.4 

 
1-20 

 
1-20 

 
1-20 

 
21-40 

 
21-40 

 
21-40 

 
41-60 

 
41-60 

 
41-60 

 
61-80 

 
61-80 

 
61-80 

 
81-100 

 
81-100 

 
81-100 

 
101-125 

 
101-125 

 
101-125 

Fig. 4.32 Functional connectivity for non-target with no response for 9th 
subject 
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By summary, the target with response cases have high connectivity for 

every segment compared with target with no response and non-target with no 

response cases. Moreover, Target response has high connectivity in the last 

segment. Fig. 4.33 shows the comparison of the average activation graph and 

the functional connectivity for last segment of target with response cases for 9th 

subject. From the figure, we can observe the activation graph and the functional 

connectivity of last segment shows high average activation and high 

connectivity for frontal, occipital and parietal lobes, which shows that the 

average activation graph gives same result with the functional connectivity. 

 

Fig. 4.33 Comparison of the average activation graph and functional 
connectivity for last segment of target with response cases for 9th subject 

 

Trial no.10 Trial no.18 Trial no.1 

Frame no.61-87  Frame no. 81-104 Frame no. 101-124 

S9 TARGET RESPONSE 
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For non-target no response cases, high connectivity only observed from 

sample 1-60 and there is very less connectivity from sample 61-125 as subject 

has no need to respond to the stimuli. Fig 4.34 shows the comparison of the 

average activation graph and functional connectivity of the last segment of non-

target with no response cases for 9th subject. From the figure, we are able to 

conclude that non-target with no response shows lower amplitude and lesser 

connectivity in last segment. 

 

Fig. 4.34 Comparison of the average activation graph and functional 
connectivity for last segment of non-target with no response cases for 9th 

subject 

Trial no.2 Trial no.3 Trial no.4 

Frame no. 101-125 

S9 NONTARGET NO RESPONSE 
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Conclusions and Future Recommendations 

 

 

 

5.1 Conclusions 

 

In this research, we have proposed novel algorithms to track brain 

activation using FS block matching and HS Optical flow motion estimation 

method for EEG topo-maps. MVs are tracked on EEG topo-maps with respect 

to time. We have also marked different brain lobes on the EEG topo-maps based 

on the electrode information for 10-20 and 10-10 international electrodes 

placement. After generating the motion vectors, low activation motion vectors 

are removed from the topo-maps based on intensity value. The connected 

motion vectors are grouped into a motion field or motion cluster. Finally, 

tracking is done by the overlapping of motion field between consecutive frames.  

In experiment result, we have compared the parameters for HS and FS 

method. Both methods give same tracking pattern but HS gives higher PSNR 

and need less computation time. Its motion field is also more consistent than 

full search method. The behaviour of brain lobes for different cases has been 

observed. The graph is plotted based on the average activation flow for every 

frame of all subjects for all lobes. In the average activation graph, FS and HS 
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method show almost similar pattern of graph. However, HS has higher 

activation amplitude compared with FS method. Furthermore, each lobe shows 

different patterns of graph for different oddball cases. This means that for 

different oddball cases the difference of the activation flow can be observed 

among different lobes. For frontal lobe, target response peak always come 

earlier or higher than target with no response at the end of the task. Besides, 

frontal lobes will have high amplitude of activation graph than other cases. For 

parietal lobe, the activation graph has very low amplitude. However, we are still 

able to observe a peak in the end of the task for target with response case. For 

occipital lobe, high peak occurs in the middle of the graph for all cases. However, 

the occipital lobe activation drop near the end of the task when the frontal lobe 

rises for target with response cases. 

 

Average graph of individual subject for all lobes at different cases had 

been plotted. Seven different subjects were chosen based on poor (2nd, 5th, 13th), 

average (7th and 20th) and good (9th and 10th) performance in the oddball 

experiment. Different performances show different patterns of the graph for 

different activities. For example, the occipital or frontal lobe shows inconsistent 

graph with many high peaks for poor performance. We can conclude that 

because of the inconsistent graph, subject is not able to concentrate or focus on 

the screen and his performance not very good. Hence subject is able to respond 

to the target stimuli for 12 or 13 times only. 

 

We have measured the functional connectivity by using classical cross- 

correlation method. Here we have proposed a new algorithm to track functional 
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connectivity. First, we extracted the EEG data from the stimuli that appears till 

the end of trial resulting in response or no response from the subjects. After that, 

we divided the data into 20 samples per segments and calculate their cross 

correlation. Lastly, we plot the connectivity between the electrodes that have 

highest correlation with zero lag for every segment in EEG topo-map. The 

pattern of connectivity for different cases has been observed. It has been seen 

that the pattern of connectivity between all different cases are different. For 

functional connectivity for 10-20 electrodes, we are able to observe the 

connectivity for Fz, F3, F4, C3 or C4 electrode in the last segment, which is 

used for motor planning or sensorimotor integrations; when subject responded 

on the target or non-target stimuli. In functional connectivity map, high 

connectivity can be observed in last segment when subject gives response to 

target on non-target stimuli which involves all lobes. For target with response, 

high connectivity is observed for all cases in general for all segments compared 

with other cases. Target with no response has less connectivity than target with 

response cases. For non-target with no response, high connectivity is present 

only in beginning, since subject does not need to respond to the non-target 

stimuli. 

 

5.2 Future Recommendation 

 

 First, tracking can be improve by increasing sampling rate of the 

EEG signal. EEG signal transfer very fast in the brain, so by 

increasing the sampling rate, the tracking result will be more 

accurate. 
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 Besides, the tracking can also be improved by reducing the block 

size for full search block matching or pixel range of motion 

vector for Horn-Schunck optical flow. Smaller block size or 

pixel range gives more information of the MVs in EEG topo-

map. However, it will take longer computation time.  

 Next, we can enhance the grouping method by acquiring more 

precise clusters on the EEG topo-map. We can use other 

grouping methods (e.g.: k-mean clustering) to separate the EEG 

activation into different clusters. Since EEG activation is 

produced from hundred billion of neurons in the brain, the more 

precise clusters will result in more accurate tracking. 

 Lastly, we can track the EEG activity by extracting EEG signal 

at different frequency bands e.g.: delta (δ), theta (θ), alpha (α), 

beta (β), and gamma (γ). So, we will able to get more detailed 

and precise information in the result of tracking at different 

frequency bands.  
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APPENDIX  

APPENDIX A: Average Activation Graph for 2nd Subject 
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APPENDIX B: Average Activation Graph for 5th Subject 
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APPENDIX C: Average Activation Graph for 13th Subject 
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APPENDIX D: Average Activation Graph for 7th Subject 
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APPENDIX E: Average Activation Graph for 20th Subject 
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APPENDIX F: Average Activation Graph for 9th Subject 
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APPENDIX G: Average Activation Graph for 10th Subject 
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APPENDIX H: Full Search Block Matching Algorithm 

%   Motion vectors using full search method 
%   imgP : The image for which we want to find motion vectors 
%   imgI : The reference image 
%   mbSize : Size of the macroblock 
%   p : Search parameter   
  
clear all; 
close all; 
clc; 
 
fprintf('\tSystem Estimates Motion in Brain Topographic 
Videos\n\n'); 
fprintf('\t\t\tKindly select video to be processed\n\n'); 
  
 % Require user input 
inVideo = input('Input Video:', 's'); 
  
%Parameter selection 
mbSize =8; p =4; 
imgSize=0.5; 
    
%% Read video and convert to sequence of Grayscale images 
[readSeq readSeqColor] = readVideoGrayColor(inVideo); 
  
%Crop and resize the video sequence to desired prosessing 
dimension 
cropSeq = imgCrop (readSeq); 
frameSeq = imresize(cropSeq,imgSize); 
  
% Obtain the size and sequences of the video    
[row, col, seq] = size (frameSeq); 
  
 
%Crop the color video sequence to desired prosessing dimension 
for i =1:seq 
    cropSeqColor{1,i}=imgCrop(readSeqColor{1,i}); 
    frameSeqColor{1,i}=imresize(cropSeqColor{1,i},imgSize); 
end 
   
%Template to store vectors  
vectors = zeros(2,row*col/mbSize^2,seq); 
  
%Template to store min MAD in each search 
costs = ones(2*p + 1, 2*p +1) * 65537; 
  
Ver = row/mbSize; 
Hor = col/mbSize; 
  
blockCost = zeros(Hor,Ver,seq); 
blockCostBlue = zeros(Hor,Ver,seq); 
  
  
minVals = zeros(2500,49); 
computations = 0; 
increment =0; 
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% we start off from the top left of the image 
% we will walk in steps of mbSize 
% for every marcoblock that we look at we will look for 
% a close match p pixels on the left, right, top and bottom of 
it 
 
for s = 1:1:seq % calculate the motion vector frame by frame 
     
    c = s+1; 
    if(c <=seq) 
    increment = increment +1; 
    imgI = frameSeq(:,:,c); % ref frame 
    imgP = frameSeq(:,:,s); % current frame    
    imgIColor=frameSeqColor{1,c}; 
    imgPColor=frameSeqColor{1,s}; 
 
    a = 0; 
    mbCount = 1; 
    for i = 1 : mbSize : row-mbSize+1 
        if(i >=340) 
            0; 
        end 
        b = 0; 
        a = a + 1; 
        for j = 1 : mbSize : col-mbSize+1  
 
        % the exhaustive search starts here 
        % we will evaluate cost for  (2p + 1) blocks vertically 
        % and (2p + 1) blocks horizontaly 
        % m is row(vertical) index 
        % n is col(horizontal) index 
        % this means we are scanning in raster order     
        b = b + 1; 
        for m = -p : p  
            for n = -p : p 
                refBlkVer = i + m;   % row/Vert co-ordinate for 
ref block 
                refBlkHor = j + n;   % col/Horizontal co-
ordinate 
                if (refBlkVer <1 || refBlkVer+mbSize-1> row           
                        || refBlkHor < 1 || refBlkHor+mbSize 

-1 > col) 
                    continue; 
                end 
 
% calculate the cost (SAD) for in the search window  
                costs(m+p+1,n+p+1) = imgMAD(imgP(i:i+mbSize-  

1,j:j+mbSize-1), 
imgI(refBlkVer:refBlkVer+mbSize-1, 
refBlkHor:refBlkHor+mbSize-1), mbSize); 
 

% extract the grey and blue intensity for in the search 
blockCost(a,b,increment) = 

sum(sum(abs(imgP(i:i+mbSize-1,j:j+mbSize-
1))))/(mbSize*mbSize); 

blockCostBlue(a,b,increment)= 
sum(sum(abs(imgPColor(i:i+mbSize-
1,j:j+mbSize-1,3))))/(mbSize*mbSize); 

                if(c ==seq) 
                    blockCost(a,b,increment+1) = 
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sum(sum(abs(imgI(i:i+mbSize-
1,j:j+mbSize- 1))))/(mbSize*mbSize); 

blockCostBlue(a,b,increment+1)= 
sum(sum(abs(imgIColor(i:i+mbSize-
1,j:j+mbSize-1,3))))/(mbSize*mbSize);  

                end 
            end 
        end 
         
        % Now we find the vector where the cost is minimum 
        % and store it ... this is what will be passed back.         
        [dx, dy] = minCost4(costs); 
 
        % finds which macroblock in imgI gave us min Cost 
        vectors(1,mbCount,increment) = dy-p-1;    % row co-
ordinate for the vector 
        vectors(2,mbCount,increment) = dx-p-1;    % col co-
ordinate for the vector 
        mbCount = mbCount + 1; 
        costs = ones(2*p + 1, 2*p +1) * 65537;      
        end 
    end 
    end 
end 
motionVect = vectors; 
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APPENDIX I: Horn-Schunck Optical Flow Algorithm 

function HS(im1, im2, alpha, ite, uInitial, vInitial, 
displayFlow, displayImg) 
% Horn-Schunck optical flow method  
% Horn, B.K.P., and Schunck, B.G., Determining Optical Flow, 
AI(17), No. 
% 1-3, August 1981, pp. 185-203 
http://dspace.mit.edu/handle/1721.1/6337 
% 
% Usage: 
% [u, v] = HS(im1, im2, alpha, ite, uInitial, vInitial, 
displayFlow) 
% For an example, run this file from the menu Debug->Run or 
press (F5) 
% 
% -im1,im2 : two subsequent frames or images. 
% -alpha : a parameter that reflects the influence of the 
smoothness term. 
% -ite : number of iterations. 
% -uInitial, vInitial : initial values for the flow. If 
available, the 
% flow would converge faster and hence would need less 
iterations ; default is zero.  
% -displayFlow : 1 for display, 0 for no display ; default is 
1. 
% -displayImg : specify the image on which the flow would 
appear ( use an 
% empty matrix "[]" for no image. ) 
% 
% Author: Mohd Kharbat at Cranfield Defence and Security 
% mkharbat(at)ieee(dot)org , http://mohd.kharbat.com 
% Published under a Creative Commons Attribution-Non-
Commercial-Share Alike 
% 3.0 Unported Licence http://creativecommons.org/licenses/by-
nc-sa/3.0/ 
% 
% October 2008 
% Rev: Jan 2009 
  
% Read video and convert to sequence of Grayscale images 
inVideo = input('Input Video:', 's'); 
readSeq = readVideo (inVideo); 
  
% Obtain the sequences of the video    
[~, seq] = size (readSeq); 
  
%% obtain vector in between range of pixel  
rSize=8; 
%%image size 
imgSize=0.5; 
  
%Crop the color video sequence to desired prosessing dimension 
for i =1:seq 
    cropSeq{1,i}=imgCrop(readSeq{1,i}); 
    frameSeq{1,i}=imresize(cropSeq{1,i},imgSize); 
end 
  
% Obtain the size and sequences of the video    
[row, col, ~] = size (frameSeq{1,1}); 
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increment = 0; 
  
for s = 1:1:seq 
    c = s+1; 
    if(c <=seq) 

increment = increment +1; 
     

    %% Default parameters 
    if nargin<1 || nargin<2 
        
        im1=frameSeq{:,s}; 
        im2=frameSeq{:,c}; 
        img{1,increment}=frameSeq{:,s}; 
        img1=frameSeq{:,s}; 
        img2=frameSeq{:,c}; 
 
%Obtain the color value of the image    
        R1=im1(:,:,1); 
        G1=im1(:,:,2); 
        B1=im1(:,:,3);   
        R2=im2(:,:,1); 
        G2=im2(:,:,2); 
        B2=im2(:,:,3); 
        gray1 = rgb2gray(im1); 
        gray2 = rgb2gray(im2); 
  
    end 
    if nargin<3 
        alpha=1; 
    end 
    if nargin<4 
        ite=1; 
    end 
    if nargin<5 || nargin<6 
        uInitial = zeros(size(im1(:,:,1))); 
        vInitial = zeros(size(im2(:,:,1))); 
    elseif size(uInitial,1) ==0 || size(vInitial,1)==0 
        uInitial = zeros(size(im1(:,:,1))); 
        vInitial = zeros(size(im2(:,:,1))); 
    end 
    if nargin<7 
        displayFlow=1; 
    end 
    if nargin<8 
        displayImg=im1; 
    end 
  
    %% Convert images to grayscale 
    if size(size(im1),2)==3 
        im1=rgb2gray(im1); 
    end 
    if size(size(im2),2)==3 
        im2=rgb2gray(im2); 
    end 
    im1=double(im1); 
    im2=double(im2); 
  
    im1=smoothImg(im1,1); 
    im2=smoothImg(im2,1); 
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    % Set initial value for the flow vectors 
    u = uInitial; 
    v = vInitial; 
  
    % Estimate spatiotemporal derivatives 
    [fx, fy, ft] = computeDerivatives(im1, im2); 
  
    % Averaging kernel 
    kernel_1=[1/12 1/6 1/12;1/6 0 1/6;1/12 1/6 1/12]; 
  
    % Iterations 
    for i=1:ite 
        % Compute local averages of the flow vectors 
        uAvg=conv2(u,kernel_1,'same'); 
        vAvg=conv2(v,kernel_1,'same'); 
        % Compute flow vectors constrained by its local average 
and the optical flow constraints 
        u= uAvg - ( fx .* ( ( fx .* uAvg ) + ( fy .* vAvg ) + 

ft ) ) ./ ( alpha^2 + fx.^2 + fy.^2);  
        v= vAvg - ( fy .* ( ( fx .* uAvg ) + ( fy .* vAvg ) + 

ft ) ) ./ ( alpha^2 + fx.^2 + fy.^2); 
    end 
  
    u(isnan(u))=0; 
    v(isnan(v))=0;   
  
% extract the motion vector and color intensity for every pixel 
range  
    m=0; 
    for i=1:row 
        if floor(i/rSize)==i/rSize  
           m=m+1; 
        end 
        n=0; 
        for j=1:col 
            if floor(i/rSize)==i/rSize && 

  floor(j/rSize)==j/rSize 
                n=n+1; 
                r1(m,n,increment)=R1(i,j); 
                g1(m,n,increment)=G1(i,j); 
                b1(m,n,increment)=B1(i,j);   
                r2(m,n,increment)=R2(i,j); 
                g2(m,n,increment)=G2(i,j); 
                b2(m,n,increment)=B2(i,j); 
                GRAY1(m,n,increment)=gray1(i,j); 
                GRAY2(m,n,increment)=gray2(i,j);   
     
                vx(m,n)=u(i,j); 
                vy(m,n)=v(i,j); 
            end    
        end 
    end 
     
    [Nx, Ny] = size(vx); 
    vxx(:,:,increment)=vx; 
    vyy(:,:,increment)=vy; 
    end  
end 
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APPENDIX J: Vector Median Filter 

Ver = row/mbSize; 
Hor = col/mbSize; 
Vvx = zeros(Hor,Ver,increment); 
Vvy = zeros(Hor,Ver,increment); 
marks=zeros(Hor,Ver,increment); 
marks_temp=zeros(Hor,Ver,increment); 
motionVect1 = zeros(2,(Hor)*(Ver),increment); 
motionVect2 = zeros(2,(Hor)*(Ver),increment); 
distrix = zeros(9,1); 
sub=cell(9,1); 
Vyy = zeros(Hor,Ver,increment); 
Vxx = Vyy; 
Vyy2 = zeros(Hor+1,Ver+1,increment); 
Vxx2 = Vyy; 
Vy = zeros(Ver,Hor,increment); 
Vx = Vy; 
ss=1; 
J=0; 
K=0; 
L=0; 
PSNR=zeros(increment,2); 
  
for i = 1:increment  
    Vyy (:,:,i) = reshape (motionVect(1,:,i),Hor,Ver); 
    Vxx (:,:,i) = reshape (motionVect(2,:,i),Hor,Ver); 
    Vy  (:,:,i) = Vyy (:,:,i).'; % y movement 
    Vx  (:,:,i) = Vxx (:,:,i).'; % x movement 
    Vx2(:,:,i)=Vx(:,:,i); 
    Vy2(:,:,i)=Vy(:,:,i); 
end 
  
%Vector median filter 
Vx_pad = padarray(Vx,[1 1]); 
Vy_pad = padarray(Vy,[1 1]); 
Vx_pad_temp = zeros(Ver,Hor); 
Vy_pad_temp = zeros(Ver,Hor); 
for i = 1:increment 
    for j = 2:Hor 
        for k = 2:Ver     
            u=0; 
            p=1; 
            for m = -1:1 
                for n = -1 : 1 
                    sub{p,1}=[Vy_pad(j+m,k+n,i) 

Vx_pad(j+m,k+n,i)]; 
                    p=p+1; 
                end  
            end 
 
% calculate the cost (SAD) for in the search 
            for q =1 : 9 
                sigmad  = 0; 
                for r =1 : 9  
                    d = norm(sub{q,:}-sub{r,:}); 
                    sigmad  = sigmad  + d; 
                end 
                distrix (q,1) =sigmad ; 
            end 
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% find the lowest L2-norm distance 
            [u,v] = find(distrix <= min(min(distrix))); 
            med=sub{u,1}; 
            Vy_pad_temp(j,k)=med(1); 
            Vx_pad_temp(j,k)=med(2); 
            Vy2(j,k,i)=Vy_pad_temp(j,k); 
            Vx2(j,k,i)=Vx_pad_temp(j,k);        
        end 
    end 
end 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

146 

APPENDIX K: Grouping and Labelling of Motion Vectors 

%% Group and label the motion vector base on the color of 
topomp 
grayscale=0:5:150; 
[~,ss]=size(grayscale); 
vx1=Vx2; 
vy1=Vy2;  
for i=1:increment %vector 1 
    for j=1:Hor 
        for k=1:Ver 
% extract high activation motion vector 
            if(vx1(j,k,i) ~= 0 || vy1(j,k,i) ~= 0) 
                  if(blockCostBlue(j,k,i)>=10|| 

 blockCost(j,k,i)>grayscale(1,1)) 
                    vx1(j,k,i) = 0;     
                    vy1(j,k,i) = 0; 
                 end      
            end 
        end 
    end  
end 
[marks1 vx1  vy1]=vecLabel(vx1,vy1,Hor,Ver,increment); % Group 
and label motion vector 1 
% compare vector 2 with vector 1 with different color threshold 
on topomap  
for pp=1:ss-1 
    vx2=Vx2; 
    vy2=Vy2; 
    for i=1:increment% vector 2 
        for j=1:Hor 
            for k=1:Ver 
                if(vx2(j,k,i) ~= 0 || vy2(j,k,i) ~= 0) 
                     if(blockCostBlue(j,k,i)>=10|| 

     blockCost(j,k,i)>grayscale(1,pp+1) ) 
                        vx2(j,k,i) = 0;     
                        vy2(j,k,i) = 0; 
                     end      
                end 
            end 
        end  
    end 

[marks2 vx2  vy2]=vecLabel(vx2,vy2,Hor,Ver,increment); % 
Group and label motion vector 2 
 
    marks_new=zeros(Hor,Ver,increment); 
    vx_new=zeros(Hor,Ver,increment); 
    vy_new=zeros(Hor,Ver,increment); 
    label=1; 
    for i=1:increment 
        MARKS1=marks1(:,:,i); 
        MARKS2=marks2(:,:,i); 
        minlabel2=min(min(MARKS2(MARKS2>0))); 
        maxlabel2=max(max(marks2(:,:,i)));    
        for l = minlabel2:maxlabel2 
            [j,k]=find(marks2(:,:,i)==l); 
            m=[]; 
            for jj=1:size(j,1) 
                m(jj,1)=marks1(j(jj,1),k(jj,1),i); 
            end 
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            L=unique(m(m>0)); 
            [s,~]=size(L); 
            if(s>1) 
                for n=1:s 
                    marks_new(marks1==L(n,1))=label; 
                    vx_new(marks1==L(n,1))= 

vx1(marks1==L(n,1)); 
                    vy_new(marks1==L(n,1))= 

vy1(marks1==L(n,1)); 
                    label=label+1;                 
                end 
            elseif(s<=1 || isempty(s)) 
                    marks_new(marks2==l)=label; 
                    vx_new(marks2==l)= vx2(marks2==l); 
                    vy_new(marks2==l)= vy2(marks2==l); 
                    label=label+1;           
            end 
        end 
  
    end  
    vx1=vx_new;  
    vy1=vy_new; 
    marks1=marks_new; 
    MaxLabel1=max(marks1(:)); 
end 
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APPENDIX L: Tracking of MVs Clusters 

Function vecTracking 
(Vx2,Vy2,Nx,Ny,increment,VideoFile,marks,MaxLabel,rSize,img,Lab
elRegion,p,imgSize) 
  
BR=imread('empty_topo.png'); 
cropBR=imgCrop(BR); 
BrainRegion=imresize(cropBR,imgSize); 
[sx,sy,~]=size(BrainRegion); 
 
% set the brain region  
BrainRegion(round(276*imgSize),round(1):round(sx),:)=150;%front
al 
BrainRegion(round(524*imgSize),round(1):round(sx),:)=150;%occip
ital 
BrainRegion(round(390*imgSize),round(150*imgSize):round(557*img
Size),:)=150;%center/motor 
BrainRegion(round(276*imgSize):round(524*imgSize),round(150*img
Size),:)=150;%left 
BrainRegion(round(276*imgSize):round(524*imgSize),round(557*img
Size),:)=150;%right 
t=1; 
PASS=[]; 
list=[]; 
lobe=[]; 
VXXmap=[]; 
VYYmap=[]; 
nn=0; 
location=[]; 
 
% track the path for every label group of motion field 
for label=1:MaxLabel 
nextLabel=0; 
marks_temp=zeros(Nx,Ny); 
for i =1:increment 
    marks_temp=marks(:,:,i); 
    [J,~]=find(marks_temp==label); 
    [JJ,~]=find(PASS==label); 
    if (~isempty(J) && isempty(JJ)) 
        nn=nn+1; 
        list(nn,1)=label; 
        I=i; 
        break; 
    elseif((~isempty(JJ))||(i==increment && isempty(J))) 
        nextLabel=1; 
    end 
end 
if(nextLabel==1) 
    continue; 
end  
Vx_path=zeros(Nx,Ny,increment); 
Vy_path=zeros(Nx,Ny,increment); 
track=zeros(Nx,Ny,increment); 
track2=zeros(Nx,Ny); 
VXX=zeros(increment,1); 
VYY=zeros(increment,1); 
Vlabel=zeros(Nx,Ny,increment); 
 
%%check for overlapping 
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for i=I:increment 
    nxt=0; 
    NT=0; 
    for j=2:Nx 
        for k=2:Ny  
            xmin=Nx; 
            xmax=0; 
            ymin=Ny; 
            ymax=0; 
 
%%find median value by using l2-norm method when i = I (I = 
current frame I=initial frame  
            if(i==I && marks(j,k,i)==label)   
               track(marks==label)=label;              
               y = 1:Nx; 
               x = 1:Ny; 
               [X,Y] = meshgrid(x,y); 
               distrix=[]; 
               U=[]; 
               [XX,YY] = find(track(:,:,i)==label); 
               for P=1:size(XX,1) 
                   sigmad=0; 
                   for Q=1:size(XX,1)    
                       d = norm([XX(P,1) YY(P,1)]-[XX(Q,1) 

 YY(Q,1)]); 
                       sigmad=sigmad+d; 
                   end 
                   distrix (P,1) =sigmad ; 
               end 
               [U,~] = find(distrix <= min(min(distrix))); 
               cX=XX(U(1,1),1); 
               cY=YY(U(1,1),1); 
               Vlabel(cX,cY,i)=label; 
               cX_initial=cX; 
               cY_initial=cY;        
               track2=zeros(Nx,Ny); 
               i2=i; 
               a=1; 
              
% find the median value using L2 norm method when i >1 
               if(i>1) 
                   if(marks(j,k,i-1)~=0 && NT==0) 
                        marks2=marks(:,:,i-1); 
                        distrix=[]; 
                        U=[]; 
                        [XX,YY] = find(marks2==marks(j,k,i-1)); 
                        for P=1:size(XX,1) 
                            sigmad=0; 
                            for Q=1:size(XX,1)    
                                d = norm([XX(P,1) YY(P,1)]- 

[XX(Q,1) YY(Q,1)]); 
                                sigmad=sigmad+d; 
                            end 
                            distrix (P,1) =sigmad ; 
                        end 
                        [U,~] = find(distrix <= 

    min(min(distrix))); 
                        cX=XX(U(1,1),1); 
                        cY=YY(U(1,1),1); 
                        VXX(i-1,1)=cX; 
                        VYY(i-1,1)=cY; 
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                        NT=1; 
                  
                   end 
               end 
     
%% find the median value using L2 norm method when i~=I 
            elseif(i>=I+1) 
                if(marks(j,k,i)~=0 && track(j,k,i)==0 && 

track(j,k,i2)~=0)                   
                    for m=2:Nx 
                        for n=2:Ny 
                            if(marks(m,n,i)==marks(j,k,i)) 
                                track2(m,n)=label;;   
                            end 
                        end        
                    end 
                    if(1)  
                        t=t+1; 
                        track(:,:,i)=track(:,:,i)+track2(:,:);  
                        y = 1:Nx; 
                        x = 1:Ny; 
                        [X,Y] = meshgrid(x,y); 
                        distrix=[]; 
                        U=[]; 
                        [XX,YY] = find(track2==label); 
                        for P=1:size(XX,1) 
                            sigmad=0; 
                            for Q=1:size(XX,1)    
                                d = norm([XX(P,1) YY(P,1)]- 

[XX(Q,1) YY(Q,1)]); 
                                sigmad=sigmad+d; 
                            end 
                            distrix (P,1) =sigmad ; 
                        end 
                        [U,~] = find(distrix <= 

   min(min(distrix))); 
                        cX=XX(U(1,1),1); 
                        cY=YY(U(1,1),1); 
                        if(cX~=0 &&cY~=0) 
                            Vlabel(cX,cY,i)=label; 
                        end 
                        nxt=1; 
                        PASS(t,1)=marks(j,k,i); 
                    end 
                    track2=zeros(Nx,Ny);  
                     
                end                            
            end 
           if(nxt==1) 
               break; 
           end 
        end  
        if(nxt==1) 
            break; 
        end 
    end 
         
    [xx,yy]=find(Vlabel(:,:,i)==label); 
    [r,~]=size(yy); 
    if(r~=0) 
        VXX(i,1)=xx; 
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        VYY(i,1)=yy; 
        for j=2:Nx 
            for k=2:Ny    
                if(track(j,k,i)==label) 
                    Vx_path(j,k,i)=Vx2(j,k,i); 
                    Vy_path(j,k,i)=Vy2(j,k,i);      
                end   
            end        
        end     
  
    end 
    if(i>=I+1) 
        [xx,yy]=find(Vlabel(:,:,i)==label);       
        [r,~]=size(yy); 
        if(isempty(xx) && isempty(xx)) 
            xx=0;yy=0; 
        end 
        VXX(i,1)=xx; 
        VYY(i,1)=yy;      
    end    
    if(I>1) 
        if(VYY(I-1,1)~=0 && VXX(I-1,1)~=0)  
            VXXmap{nn,I-1}=VXX(I-1,1); 
            VYYmap{nn,I-1}=VYY(I-1,1);    
        end 
    end 
    if(VYY(i,1)~=0 && VXX(i,1)~=0)    
        VXXmap{nn,i}=VXX(i,1); 
        VYYmap{nn,i}=VYY(i,1);    
 
    elseif(VYY(i,1)==0 && VXX(i,1)==0) 
        VXXmap{nn,i}=[]; 
        VYYmap{nn,i}=[]; 
        lobe{nn,i}=[]; 
    end 
    track_tf=track(:,:,i); 
    if(sum(track_tf(:))==0)         
        i2=i-a; 
        a=a+1; 
    else 
        i2=i; 
        a=1; 
    end 
end 
     
end 
 
%% check for the tracked path  
xidx = rSize:rSize:Nx*rSize; 
yidx = rSize:rSize:Ny*rSize; 
[X,Y] = meshgrid(xidx,yidx); 
X_a=[]; 
Y_a=[]; 
for l=1:nn 
    a=1; 
    for i=1:increment 
        X_a{l,a}= VXXmap{l,i}*rSize; 
        Y_a{l,a}= VYYmap{l,i}*rSize;                       
        a=a+1; 
    end      
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end 
X_a( all(cellfun(@isempty,X_a),2), : ) = []; 
Y_a( all(cellfun(@isempty,Y_a),2), : ) = [];        
[mm,~]=size(X_a); 
dd=1; 
 
% Plot the tracking line 
for ii=1:increment 
    imshow(BrainRegion,[]); 
    hold on;  
    quiver(X,Y,Vx2(:,:,ii),Vy2(:,:,ii),'blue'); 
    grid on;   
    for i=1:dd 
        for l=1:mm 
            if(i<dd) 

if(~isempty(X_a{l,i})&&~isempty(X_a{l,i+1})) 
plot([Y_a{l,i},Y_a{l,i+1}],[X_a{l,i},X_
a{l,i+1}],'-
','Color','b','LineWidth',2); 

end 
            end 
        end 
    end 
    hold off 
    dd=dd+1; 
end     
 


