DESIGN AND CONSTRUCT MULTIPLE LINEAR FACETS INTEGRATED COLLECTOR STORAGE SOLAR WATER HEATER (ICSSWH)

FON CHUN YIN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Engineering (Hons) Industrial Engineering

Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman

January 2018

DECLARATION

I hereby declare that this project report is based on my original work except for citations and quotations which have been duly acknowledged. I also declare that it has not been previously and concurrently submitted for any other degree or award at UTAR or other institutions.

Signature	:	
Name	:	
ID No.	:	
Date	:	

APPROVAL FOR SUBMISSION

I certify that this project report entitled "DESIGN AND CONSTRUCT MULTIPLE LINEAR FACETS INTEGRATED COLLECTOR STORAGE SOLAR WATER HEATER (ICSSWH)" was prepared by FON CHUN YIN has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Engineering (Hons) Industrial Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _____

Supervisor: Dr. Tan Ming Hui

Date : _____

The copyright of this report belongs to the author under the terms of the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© 2018, Fon Chun Yin. All right reserved.

Specially dedicated to my beloved parents and friends.

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of this project. I would like to express my gratitude to my research supervisor, Dr. Tan Ming Hui for his invaluable advice, guidance and his enormous patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving parent and friends who had helped and given me encouragement throughout this project.

Moreover, I would like to express my gratitude to Mr. Mohd. Syahrul Husni bin Hassan for his assistance in the construction of the prototype.

DESIGN AND CONSTRUCT MULTIPLE LINEAR FACETS INTEGRATED COLLECTOR STORAGE SOLAR WATER HEATER (ICSSWH)

ABSTRACT

Solar energy is a free, clean and safe form of energy source which can be obtained repetitively and persistently from the natural environment. The solar energy can be harvested and converted into thermal energy by solar water heater for domestic usage. Solar water heater is a well-established technology for water heating in many countries around the world. There are many different solar water heater systems and solar collectors available in the market due to the needs of different locations and applications. However, there are some weaknesses for all these solar water heater systems and solar collectors. In this project, a simple, high efficiency and easy fabricated multiple linear facets integrated collector storage solar water heater (ICSSWH) is constructed. A totally new design solar collector, multiple linear facets collector is designed by using trigonometry approach and ray tracing simulation is carried out to validate the design. Besides that, the mechanical structure of multiple linear facets ICSSWH is designed by using SolidWorks and then constructed in UTAR. The experimental study and cost analysis of the multiple linear facets ICSSWH are carried out and presented in detailed in this project. Lastly, the multiple linear facets ICSSWH has proved that it can achieved the theoretical maximum efficiency of 65.27% and highest water temperature of 83.0°C with a payback period of 4.23 years.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF SYMBOLS / ABBREVIATIONS	xiv
LIST OF APPENDICES	xvii

CHAPTER

1 INTR		RODUCT	ION	1
	1.1	Overv	iew	1
	1.2	Proble	m Statements	3
	1.3	Aims a	and Objectives	3
LITE	ERATUR	E REVIE	W	5
	2.1	Positic	on of the Earth and the Sun	5
	2.2	Solar V	Water Heating (SWH) System	6
		2.2.1	Active System	7
		2.2.2	Passive System	9
	2.3	Solar (Collector	11
		2.3.1	Flat Plate Collectors	11
		2.3.2	Evacuated Tube Collectors	14

		2.3.3	Concentrating Collectors	15
3	MET	HODOL	OGY	18
	3.1	Overvi	ew	18
	3.2	Optical	l Design of Multiple Linear Facets ICSSWH	19
	3.3	Ray Tr	acing for the Optical Design of Multiple Linear	r Facets
	ICSS	WH.		27
	3.4	Design	and Construct the Mechanical Structure of M	Aultiple
	Linea	r Facets I	CSSWH.	30
		3.4.1	Wooden Box	32
		3.4.2	Reflector	34
		3.4.3	Water Tank	35
		3.4.4	Insulation & Glazing	36
	3.5	Evalua	tion on the Performance of the Multiple Linear	r Facets
	ICSS	WH.		37
4	RESU	U LTS AN	D DISCUSSION	39
	4.1	System	Performance of Multiple Linear Facets Int	tegrated
	Colle	ctor Storag	ge Solar Water Heater	39
	4.2	Econor	nic Analysis of the Multiple Linear Facets IC	CSSWH
	System	m. 47		
5	CON	CLUSIO)	N AND RECOMMENDATIONS	50
5	REFI	ERENCE	S	51

5 APPENDICES 53

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	The Length and Angle for Different Mirrors for One Side of the Collector	26
4.1	The Specifications of the Multiple Linear Facets ICSSWH	44
4.2	The Breakdown Cost for All the Components That Used to Build the Multiple Linear Facets ICSSWH	
	System	48

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	The Sun Declination, δ Varies Throughout the Year	6
2.2	Open-loop (Direct) Active System	8
2.3	Closed-loop (Indirect) Active System	9
2.4	Thermosyphon System	10
2.5	Integrated Collector Storage (ICS) System	11
2.6	Flat Plate Collector	12
2.7	Graph of η_c against Operating Temperature	14
2.8	Evacuated Tube Collector	15
2.9	Schematic diagram of a CPC collector	16
2.10	Imperfection of CPC Collector	16
2.11	Concentrating Collector	17
3.1	Flowchart of Methodology	18
3.2	Determine the Length of the Base Mirror	19
3.3	A Slanted Line with 45° Angle was Draw	20
3.4	Determine the Reflected Ray	21
3.5	Determine the Angle for Next Mirror	23
3.6	Clearer View of the Circled Part in Figure 3.4	23
3.7	One Side of the Collector	25

3.8	Complete 2D model of the Collector	26
3.9	3D Model of the Optical Design	26
3.10	GUI of Adding Water Tank	27
3.11	GUI of Updating the Property of Water Tank	28
3.12	GUI of Updating the Property of Facets Mirrors	28
3.13	GUI of Grid Source Parameters Setting	29
3.14	Ray Tracing of the Optical Design of Multiple Linear Facets ICSSWH at Different Incident Angles. (a) 0° , (b) 5° , (c) 10° , (d) 15° , (e) 20° , (f) 25° , and (g) 28°	30
3.15	Technical Drawing of Multiple Linear Facets ICSSWH	31
3.16	3D Model of Multiple Linear Facets ICSSWH	31
3.17	The Profile of the Supportive Frame	33
3.18	Supportive Frame with Notches	33
3.19	Complete Supporting Frame for Mirrors	34
3.20	Mirrors were attached to the Supportive Frame	35
3.21	Water Tank with Piping System	36
3.22	Wooden Box with Glass and Acrylic Boards	37
3.23	Tank surface, Water and Ambient Temperatures Data Collection	38
4.1	Measurement Results of Tank Surface Temperature, Water Temperature in the Storage Tank, Ambient Temperature and Global Solar Irradiance versus Local Clock Time on 25 th Jan 2018	40
4.2	Measurement Results of Tank Surface Temperature, Water Temperature in the Storage Tank, Ambient Temperature and Global Solar Irradiance versus Local Clock Time on 10 th Feb 2018	41

4.3	Measurement Results of Tank Surface Temperature, Water Temperature in the Storage Tank, Ambient Temperature and Global Solar Irradiance versus Local Clock Time on 2 nd Mar 2018	42
4.4	Measurement Results of Tank Surface Temperature, Water Temperature in the Storage Tank, Ambient Temperature and Global Solar Irradiance versus Local Clock Time on 17 th Mar	
	2018	43
4.5	Graph of System Efficiency against $\Delta T/I_{ave}$	46

LIST OF SYMBOLS / ABBREVIATIONS

a	distance from the intersection point of reflected ray and tank
	surface to the end point of first slanted mirror, $^{\circ}$
Α	the total area of the entry aperture of the multiple linear facets
	ICSSWH, m ²
$A_{ m p}$	area exposed to irradiance, m ²
b	distance from the midpoint of the tank to the end point of first
	slanted mirror, °
Cm	y-intercept of slanted mirror
Cr	y-intercept of reflected ray
Cwater	specific heat capacity of water, J/(kg·°C)
g	gravitational acceleration, m/s ⁻²
G	solar irradiance, W/m ²
i	interest rate
Iave	average global solar irradiance, W/m ²
j	inflation rate of the fuel
m	mass of water, kg
m _m	gradient of slanted mirror
m _r	gradient of reflected ray
<i>n</i> _{pay}	payback period, year
Pann	annual saved fuel cost, RM/year
P_u	power output of a collector, W
Q_{col}	collected thermal energy, J
Qincident	total amount of solar energy radiated on the entry aperture, J
r	radius of tank
$R_{ m L}$	radioactive resistance, K/W

Stotal	total manufacturing cost of the multiple linear facets ICSSWH
	system, RM
T_a	ambient temperature, °C
$T_{ave, amb}$	average ambient temperature over an interval time, °C
$T_{ave,\ heating}$	average water temperature in the storage tank over the period of
	heating for an interval time, °C
$T_{f, amb}$	final ambient temperature over the interval of time, °C
$T_{f,\ heating}$	final heating temperature of the water, °C
T _{i, amb}	initial ambient temperature over the interval of time, $^{\circ}C$
Ti, heating	initial heating temperature of the water, °C
T_p	plate temperature, °C
$ar{T}_{ m f}$	mean fluid temperature, °C
U_L	coefficient of overall heat loss, W/m ² K
Δt	time interval, s
α_p	fraction of flux being absorbed
δ	declination angle, °
l _{base}	length of base mirror
$l_{\rm m}$	length of slanted mirror
η_c	efficiency of a collector
η_{sp}	capture efficiency
η_{pf}	transfer efficiency
$ au_{ m cov}$	transmittance of transparent cover
$ heta_{ m t}$	angle between center line of the tank and tank's radius which
	perpendicular to reflected ray, $^{\circ}$
$\theta_{m (new)}$	angle of the next mirror from base mirror, $^{\circ}$
$ heta_{\Gamma}$	angle of reflection of the 90° angle incident ray from the new
	mirror, °
$ heta_{ m r}$	angle between the reflected ray and a straight line which from the
	midpoint of the tank to the end point of first slanted mirror, °
$ heta_{ m z}$	depression angle from the end point of first slanted mirror to the
	midpoint of the tank, °
	1 /

CAD	computer aided design
GHI	global horizontal irradiance, W/m ²
GUI	graphic user interface
ICSSWH	integrated collector storage solar water heater
IGES	initial graphics exchange specification

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Raw Experiment Data of 25th Jan 2018	53
В	Raw Experiment Data of 10 th Feb 2018	57
С	Raw Experiment Data of 2 nd Mar 2018	62
D	Raw Experiment Data of 17th Mar 2018	66

CHAPTER 1

INTRODUCTION

1.1 Overview

Solar energy is one of the renewable energy which can be obtained repetitively and persistently from the natural environment (Twidell and Weir, 2015). According to Devanarayanan and Murugavel (2014), solar energy is a free, clean and safe form of energy source compared to fossil fuels; hence it is the most prosperous energy source in the world. The average power density of solar radiation reaching Earth's atmosphere is 1366 W/m², which also known as solar constant. Based on some calculations, the total power of solar radiation reaching the Earth is about 1.73×10^{17} W, and hence it is about 5.46 x 10^{24} J or 5.460,000 EJ of energy reaching the Earth annually. The annual energy consumption of the entire world is quite small when compared with it in which the annual energy consumption is just about 500 EJ or 0.01% of the annual solar energy. But not all the solar radiation which falls on the Earth's atmosphere can reaches the ground, about 30% of it will be reflected into space, 20% of it will be absorbed by clouds and molecules in the air and more important is that only one quarter of the Earth's surface is ground. Even only 10% of it is utilizable, it already able to power the whole world with only 0.1% of it (Chen, 2011).

According to Kumar and Rosen (2010), solar water heater is a wellestablished technology for water heating in many countries around the world. There are three different designs of the solar water heater such as natural convection (passive), forced circulation (active) and also integrated collector-storage (ICS). Due to the needs of different locations and applications, there are many different solar water heater designs available in the market in which some are simple and some are complicated (Kumar and Rosen, 2010). Flat-plate, evacuated-tube and compound parabolic concentrator are the most common collectors which used in these solar water systems.

In most of the cold climate countries such as Canada, the forced circulation type of solar water heater with antifreeze would be the best choice for them as it has a large variation in the air temperature and freezing conditions. However, the price for this system is relatively high and has payback periods up to 20 years or more. On the other hand, natural convection or thermosyphon solar water heater is more suitable for the developing countries due to its simple design and grid power independence (Kumar and Rosen, 2010).

For an integrated collector storage solar water heater (ICSSWH), the solar collector and the water storage tanks are combined into one unit. In comparison with other designs of solar water heater, the ICSSWH is simpler in design and operation as well as lower in costs. Nonetheless, there are also some weaknesses for the ICSSWH system. The heat loss of the ICSSWH system is high when compared with other solar water heaters due to the storage tank cannot be thermally well-insulated as it is act as the receiver of the system. As a result, the thermal performance of the ICSSWH system is relatively poor, especially during night time or non-collecting periods (Devanarayanan and Murugavel, 2014). Hence, the improvement studies of the thermal performance of the ICSSWH system have been done by researchers, especially for overnight applications. Based on the study done by Souliotis et al. (2013), double glazing able to reduce the thermal losses of the ICSSWH system significantly, during the day and night. Other than that, Kumar and Rosen (2010) suggested that corrugated absorber surface with small corrugation depth is a better choice compared to a plane absorber surface for ICSSWH system in which it has a higher characteristics length that can influence the coefficient of convective heat transfer from absorber to water. Moreover, Kumar and Rosen (2011) also proposed that ICSSWH system with an extended storage tank which is well-insulated will improve the heat retaining capability of the whole system.

1.2 Problem Statements

According to Kumar and Rosen (2010), ICSSWH system can be considered as one of the simplest designs solar water heater as it is simple, efficient and cost-effective in converting solar energy into useful thermal energy. Many studies have been carried out in order to improve the efficiency of ICSSWH system as well as to reduce the overall costs.

One of the factors that will affect the overall performance of the ICSSWH is the type of solar collector used. Currently, flat-plate, evacuated-tube and compound parabolic concentrator are the collectors that widely used in solar water heater systems. However, there are some weaknesses for each of these collectors. For flatplate and evacuated-tube collectors, they are non-concentrating so the concentration ratio for them will be smaller or equals to 1 (CR \leq 1). On the other hand, CPC able to attain concentration ratio of more than 1 (CR \geq 1) but with its complicated geometric due to its curvature, it is hard to fabricate and the imperfection of its symmetrical design may occurred during the manufacturing process, and hence reduce its effectiveness.

In conclusion, it is a need to design and develop a totally new design of collector in which it can attain concentration ratio of more than one with simpler optical geometry and manufacturing process which have good thermal performance.

1.3 Aims and Objectives

The objectives of the thesis are shown as following:

- To design the optical geometry of the multiple linear facets Integrated Collector Storage Solar Water Heater.
- ii) To construct the mechanical structure of the multiple linear facets Integrated Collector Storage Solar Water Heater.

iii) To evaluate the performance of the multiple linear facets Integrated Collector Storage Solar Water Heater.

CHAPTER 2

LITERATURE REVIEW

2.1 **Position of the Earth and the Sun**

According to Twidell and Weir (2015), it is crucial to take into account the position of the sun at different time period of the year at different places when designing for a solar energy generating system which including the angle of the sun's height (solar altitude or elevation which measured in degrees) and the azimuth (direction facing away from true north which also measured in degrees). Besides that, the sun in the tropics and equatorial zones is overhead for most of the time with slight difference between the seasons which means that a solar collector does not need to be tilted to any great extent. On the other hand, it is essential to tilt the collector which away from these zones towards the equator where facing north in southern, and facing south in the northern hemisphere (Laughton, 2010).

The Earth orbits around the Sun once per year with the direction of its axis remains fixed in space, at an angle, $\delta = 23.45^{\circ}$ away from the normal to the plane of revolution as shown in the Figure 2.1. The angle between the Sun and the equatorial plane is known as the declination angle, δ which relating to the seasonal changes. As a result, the δ will changes smoothly from $+\delta = +23.45^{\circ}$ at midsummer in the northern hemisphere, to $-\delta = -23.45^{\circ}$ at midwinter in the northern hemisphere (Twidell and Weir, 2015).

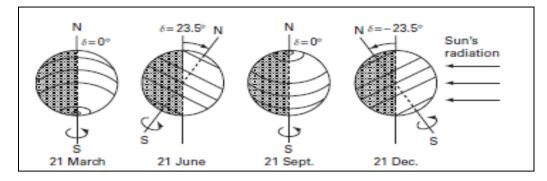


Figure 2.1: The Sun Declination, δ Varies Throughout the Year (Twidell and Weir,2015)

According to Twidell and Weir (2015), the amount of energy harvest will be probably the maximum if a solar collector can track the sun in order to ensure that the incident angle to the direct solar radiation is always perpendicular. However, the cost for the sun-tracking system is expensive and the operating and maintenance costs also higher than the fixed mounted collectors (Twidell and Weir, 2015).

2.2 Solar Water Heating (SWH) System

Solar water heating (SWH) system is used to harvest thermal energy from the sun to heat up water which will be used for clothes washing, domestic purposes in urban and rural areas as well as the needs in industry, agriculture and business (Twidell and Weir, 2015). According to Laughton (2010), a significant period of development in solar water heating in 1970s was due to the dramatically growth in oil prices and the further development was led by the aim to preserve the non-renewable resources such as coal, oil and natural gas as well as to reduce the carbon dioxide (CO₂) emissions. Based on the studies by Union of Concerned Scientists, it can fulfill 50 - 80% of a typical household's hot water needs with the installation of a SWH system and it may meet 100% of their hot water needs if it is in sunny and hot areas such as Hawaii. There are more than 200 million households in this world are using solar water heating system with more than half in China in order to fulfil their hot water needs for daily activities (Twidell and Weir, 2015). With this, it will reduce the usage

of electricity and hence cut down the demand on the fossil fuel resources. At the same time, it will indirectly enhance the environment by decreasing the emissions of greenhouse gasses which will lead to water and air pollution as well as the global warming. The working mechanism of a SWH system is very simple where a moving fluid will pass through a dark surface area that exposed to sunlight which used to heat up the fluid. This can be either an active system where water is being heated up directly, or a heat transfer fluid likes glycol or water mixture is used and then brought into some form of heat exchanger is known as an indirect system (Shelke et al., 2014). There are 2 different types of SWH system which are active system and passive system.

2.2.1 Active System

Electric pumps, valves and controllers are used in this kind of system in order to circulate water or different kind of heat-transfer fluids through the collectors. Therefore, active system can also be known as forced circulation system. Although it is more complex or even more expensive than other system but it carry some advantages (Shelke et al., 2014):-

- No restrictions of where to place the storage tanks.
- Able to have more control over the system.
- More efficient.
- Drainback tanks can be used.

For the active system, it can be further separated into Open-loop (direct) or Closed-loop (indirect) system.

2.2.1.1 Open-loop (Direct) Active System

Normally, this direct active system is usually used in a warmer or non-freezing climates so the water is directly circulated through the collectors and back into the storage tanks as shown in Figure 2.2. According to Union of Concerned Scientists, this system can be worked with photovoltaic or differential controllers for the controlling of circulating pump's operation.

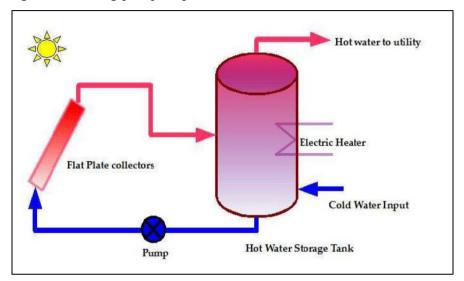


Figure 2.2: Open-loop (Direct) Active System (Johari et al., 2012)

2.2.1.2 Closed-loop (Indirect) Active System

This system is commonly used in those colder climates and instead of using the service water, heat-transfer liquids (usually a non-toxic propylene glycol-water antifreeze mixture) are used to circulate through the solar collectors. After leaving the solar collectors, the fluid will pass through a heat exchanger that placed inside the storage tanks and heat up the water that stored the tanks as depicted in Figure 2.3. The reason of using the antifreeze fluid is to prevent the piping of the system from freezing and increase the heat transfer rate from the collectors to the tanks.

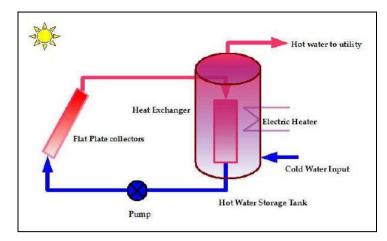


Figure 2.3: Closed-loop (Indirect) Active System (Johari et al., 2012)

2.2.2 Passive System

The passive system does not require any pumps or other electrical components for the circulation of water or a heat-transfer fluid between solar collectors and storage tanks. It circulates the water or heat-transfer fluid by natural convection where the storage tank is located at a higher level than the solar collectors (Shelke et al., 2014). The principle of natural convection is simple - the collector absorbs radiation from sun and heat up the water, the density of water will decrease as the temperature of water increases. As the density decreases, the water will become lighter and hence it will start flowing upward into the storage tank while the cold water at the bottom of the storage tank will run into the collector pipes and gets heated up there. Thermosyphon and integrated collector storage (ICS) systems are the most common types of passive systems.

2.2.2.1 Thermosyphon System

Thermosyphon system is simple and less maintenance is required due to the absence of electric pumps or controllers that are required in the active system. This system works based on the fact that cold water sinks and hot water rises. Water (cold) in this system is flowed from an overhead tank to bottom of solar collectors and when water is heated at the collectors, it will flows back into the storage tanks as illustrated in Figure 2.4. This process is a continuous cycle as long as there is solar radiation on the solar collectors. Besides that, the difference between collector temperature and ambient temperature will affect the efficiency of the collectors (Johari et al., 2012).

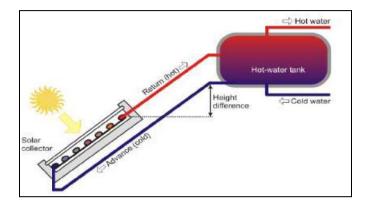


Figure 2.4: Thermosyphon System (Johari et al., 2012)

2.2.2.2 Integrated Collector Storage (ICS) System

It also known as batch system which is a simple passive system that used in warm climates. For this system, tank and collectors are combined into one unit and they are placed inside an insulated box with a glazed side facing the sun (Johari et. al, 2012). Figure 2.5 shows the integrated collector storage system. This system is simple effective and low cost as it does not need any pumps or moving parts. On the other hand, thermal protection of the storage tank is a weakness for this system as most of their surface is used for the absorption of solar radiation. As a result, the heat loss of the storage tank at night is relatively high so they only able to provide hot water during the day (Solar Energy – State of the art, 2001). Double glazing, transparent insulation materials and selective absorbing surface coatings are commonly used for the thermal protection of the ICS system.

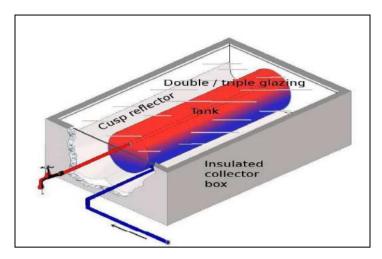


Figure 2.5: Integrated Collector Storage (ICS) System (Johari et al., 2012)

2.3 Solar Collector

A solar collector is designed to absorb solar irradiation and convert them into thermal energy. Solar collectors are available in many forms, sizes and shapes (Laughton, 2010). There are three common types of solar collectors such as flat plat collector, evacuated tube collector and also concentrating collector. For choosing a suitable collector, it mainly depends on the heating requirements and the environmental conditions (Johari et al., 2012).

2.3.1 Flat Plate Collectors

A flat plate collector is generally built by using flat sheet of absorber material and flat glazing. Normally, it is an insulated and weatherproof box that containing dark absorber plate with one or more transparent covers is shown in Figure 2.6. Inside the absorber, it contains pipes or passageways, which allows fluid to flow through and transport the heat away from the absorber. Absorber plate and pipes that used to construct this kind of collector are normally made of metal, such as copper, stainless steel or aluminium. On the other hand, the insulated enclosure box which is usually made of aluminium, plastic or even wood with glazing that made of glass or rigid

and thin films of plastics (Laughton, 2010). The flat plate collector is designed to collect both direct and diffuse radiation. The design of the collector is simple and without any moving parts, so the manufacturing cost and maintenance requirements are minimal (Johari et al., 2012).

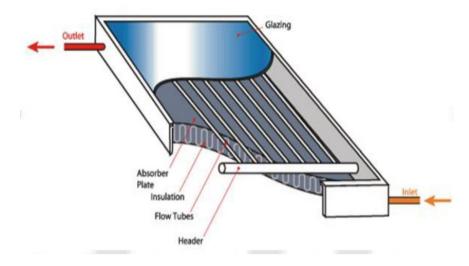


Figure 2.6: Flat Plate Collector (Shelke et al., 2014)

Besides that, there is usually a gap which about 2cm between the absorber and glazing. The function of this 2cm gap is to reduce the heat loss from the collector. If this gap is too narrow, radiation will be emitted back from absorber through the glazing and increases the heat loss. However, if it is too wide, unwanted warm air circulation in the system will be increase, and hence causing heat loss. A flat plate collector will operate at a temperature which around 40 to 80°C (100–180°F) under normal circumstances. Furthermore, the heat loss is directly proportional to the absorber temperature. As a result, the lower the absorber temperature, the smaller the amount of heat loss and hence the higher the efficiency of the collector. In order to further reducing the heat loss, some of the flat plate collectors are fitted in enclosures where the air is partially evacuated. The maximum stagnation temperature for a flat plate collector will be evaporated into a gas. In addition, flat plate collectors need to be tilted at least 15 degrees from the horizontal to facilitate drainage of rain water and air removal from the collector glazing and absorber respectively (Laughton, 2010).

2.3.1.1 Efficiency of a Flat Plate Collector

The power output of a collector, P_u can be computed by using the following formula:

$$P_u = \eta_c A_p G \tag{2.1}$$

where η_c is the efficiency of the collector, A_p is the area which exposed to irradiance and *G* is the solar irradiance.

The collector's efficiency, η_c can be further divided into two different stages which are the capture efficiency (η_{sp}) and the transfer efficiency (η_{pf}):

$$\eta_c = \eta_{sp} \eta_{pf} \tag{2.2}$$

where the capture efficiency is

$$\eta_{\rm sp} = \tau_{\rm cov} \, \alpha_p - U_L (T_p - T_a)/G \tag{2.3}$$

which shows that as the plate temperature increases, the losses will increase until η_{sp} reduces to zero at the "equilibrium" temperature T_p ^(m), which also known as the stagnation temperature. As the plate temperature T_p of an operating collector is not usually known, so it is more suitable to relate the useful energy gain to the mean fluid temperature \bar{T}_f . Hence:

$$\eta_{\rm c} = P_u / (AG) = \eta_{\rm pf} \, \tau_{\rm cov} \, \alpha_p - \eta_{\rm pf} \, U_L(\bar{T}_{\rm f} - T_a) / G \tag{2.4}$$

where τ_{cov} is the transmittance of transparent cover, α_p is the fraction of flux being absorbed, U_L is the coefficient of overall heat loss and T_a is the ambient temperature. For a well-designed collector, the difference between the temperature of the plate and the transfer fluid is small and the value of η_{pf} is approximately equal to one. Typically, η_{pf} is equals to 0.85 and is practically independent of the operating conditions, and, since pipes and storage tanks should be well insulated, so $\overline{T}_f \approx T_p$. Hence the U_L in Eq. 2.4 is numerically almost the same as that in Eq. 2.3. As a result, the capture efficiency η_{sp} and the collector efficiency η_c would change linearly with temperature if $U_L=1/(A_PR_L)$ which is a constant in (2.3) and (2.4), but in fact the radioactive resistance decreases significantly as T_p increases. Hence, a graph of η_c against operating temperature is plotted, as shown in Figure 2.7.

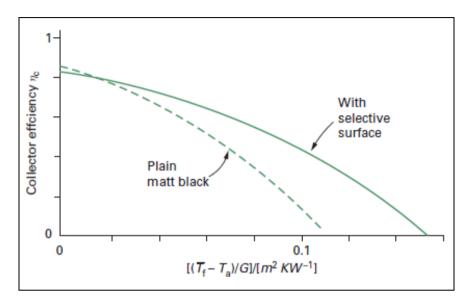


Figure 2.7: Graph of η_c against Operating Temperature (Twidell and Weir, 2015)

2.3.2 Evacuated Tube Collectors

An Evacuated Tube Collector is made up of rows of parallel, transparent glass tubes which mounted in rows and inserted into a manifold box as illustrated in Figure 2.8. Each tube consists of an absorber in it, which usually a strip of metal or glass that covered with a selective coating that absorbs solar radiation well but at the same time inhibits radiative heat loss. Normally, the air from the space between the tubes is removed or evacuated in order to create a vacuum which acts as insulation and reduces heat loss. The evacuated tube collector is most suitable for the extremely cold ambient temperature areas or in the areas where consistently low-light (Johari et al., 2012). This is because of the absorber in the evacuated tube collector is located in a vacuum space in which the effect of external ambient temperature on the performance will be minimal. In other words, this means that an evacuated tube collector will mostly outperform a flat plate collector on a cold sunny day (Laughton,

2010). Besides from domestic usage, it also can be used in industrial applications in which high water temperature or steam need to be generated (Johari et al., 2012).

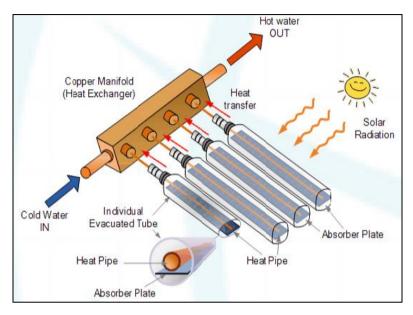


Figure 2.8: Evacuated Tube Collector (Shelke et al., 2014)

2.3.3 Concentrating Collectors

The concentrating collector is a solar collector that used reflective surfaces to concentrate the sun's ray onto an absorber which also known as a receiver. Inside the receiver, it allows heat transfer fluid to flow through and transfer the heat away from it. The temperature of this collector can reach much higher compared to the flat plate collectors and evacuated tube collectors, but they only able to do so when direct sunlight is available. Furthermore, the concentrators can only focus direct solar radiation, therefore their performance on hazy or cloudy days will be relatively low (Johari et al., 2012).

For concentrating collectors, they can be distinguished into two categories which are stationary collectors and sun tracking collectors. One of the examples of stationary concentrating collectors is compound parabolic concentrator (CPC). CPC collectors are non-imaging collectors that having the ability to accept incoming solar radiation over a wide-ranging angles and reflect most of the radiation to the absorber which located at the bottom of the collector. Winston's CPC which is the most common type of CPC collectors is shown in Figure 2.9 (Shulka et al., 2013). On the other hand, CPC is hard to fabricate and the imperfection of its symmetrical design may occurred during the manufacturing process, and hence reduce its effectiveness. Figure 2.10 shows the imperfection of CPC collector in which the surface of the collector full with waviness.

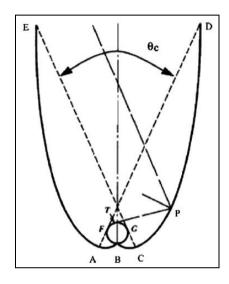


Figure 2.9: Schematic diagram of a CPC collector (Shulka et al., 2013)



Figure 2.10: Imperfection of CPC Collector (Souliotis et al., 2013)

On the other hand, parabolic trough collectors are one of the sun tracking collectors. It can efficiently produce heat at temperature within 50-400°C. It is made

by a sheet of reflective material which is bending into parabolic shape and a heat pipe which normally paints in black that covered with a glass tube to minimize heat loss and located along the focal line of the receiver as depicted in Figure 2.11. When the parabola is directly faced towards the sun, parallel rays that fall on the collector are then reflected onto the receiver tube. In addition, a single axis tracking of the sun is sufficient for it and hence result in long collector modules (Kalogirou, 2004).

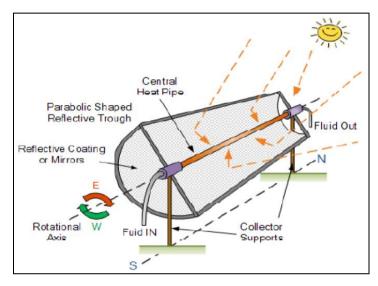


Figure 2.11: Concentrating Collector (Shelke et al., 2014)

CHAPTER 3

METHODOLOGY

3.1 Overview

This chapter is about the methodology of the study. Figure 3.1 illustrates the flow of the study. First, design the optical geometry of multiple linear facets ICSSWH with trigonometry approach. Next, the optical design is validated by using ray tracing software. Subsequently, the mechanical structure of the multiple linear facets ICSSWH is designed and constructed. Then, the performance of the ICSSWH is evaluated.

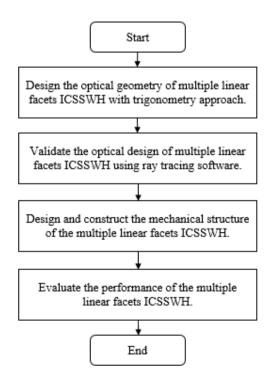


Figure 3.1: Flowchart of Methodology

3.2 Optical Design of Multiple Linear Facets ICSSWH

To create the optical design of the multiple linear facets ICSSWH, there are some steps that must be followed in order to determine the angle and length for different mirrors. Lastly, SolidWorks was used to draw out the final design of the multiple linear facets ICSSWH.

Step 1: Determine the length of the base mirror.

A circle and two straight lines were draw as shown in Figure 3.2. The circle represents the tank of the ICSSWH while the line under the tank represents the base mirror of the ICSSWH and another line represents the ray that enter the ICSSWH with 90° which means the sun is directly on top of the tank. With this, the length of the base mirror was obtained as its length is same as the radius of the tank ($\ell_{base} = r$).

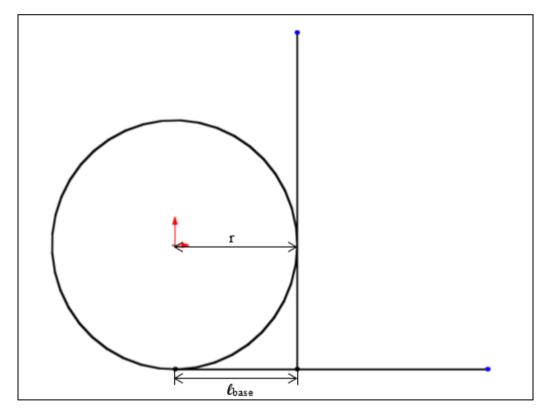


Figure 3.2: Determine the Length of the Base Mirror

Step 2: Set an Angle for First Slanted Mirror.

At the intersection point of the 90° ray and the base mirror, a slanted line which represents the mirror has an angle of 45° from the base mirror was draw as shown in Figure 3.3. 45° angle was selected is because when 90° ray falls on the mirror, the ray will be reflected perpendicularly to the bottom most surface of the tank and hence the maximum ray energy will fall on the surface of the tank.

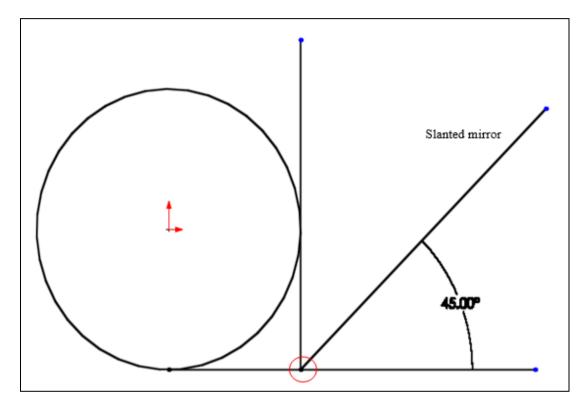


Figure 3.3: A Slanted Line with 45° Angle was Draw

Step 3: Determine the Length of First Slanted Mirror.

For our study, the multiple facets ICSSWH will be setup at Kampar, Malaysia which has the coordinate of 4.3085°N, 101,1537E. Because of the design was set to have east-west configuration and the maximum sun declination angle is 23.45°, hence the half acceptance angle of the ICSSWH should be 28° (rounding up) in which it summed up the latitude of Kampar and the maximum sun declination angle. Therefore, the incident ray with 28° angle must be reflected by the mirror and its reflected ray must be tangent to the surface of the tank as illustrated in Figure 3.4 so

that all the incident ray with the range of 0° to 28° angle able to be reflected onto the tank.

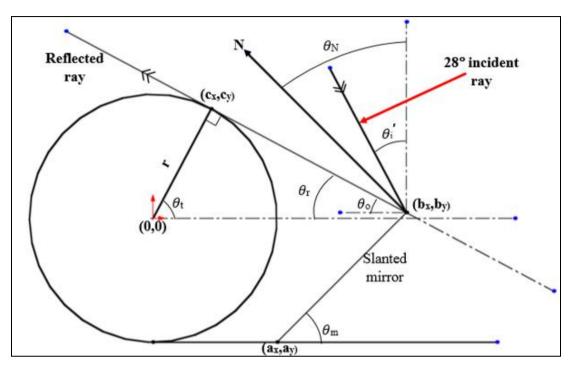


Figure 3.4: Determine the Reflected Ray

Referring to Fig. 3.4, the length of the slanted mirror can be written as

$$\boldsymbol{\ell}_{\rm m} = \sqrt{(b_x - a_x)^2 + (b_y - a_y)^2} \tag{3.1}$$

where (a_x,a_y) and (b_x,b_y) are the end points of base mirror and slanted mirror respectively. Since the length of the base mirror equals to the radius of the tank, so $(a_x,a_y) = (+r,-r)$ and the midpoint of the tank is (0,0) in which r is the radius of the tank. For (b_x,b_y) , the equations of two straight lines which are the slanted mirror and reflected ray are needed.

The line equation for the slanted mirror is written as

$$y = m_m x + c_m \tag{3.2}$$

where m_m is the gradient of the slanted mirror in which it can be calculated by using

$$m_m = \tan \theta_m \tag{3.3}$$

and for the c_m , it represents the y-intercept of the line and it can be obtained by substituting (a_x, a_y) into Eq. 3.2.

On the other hand, the line equation for the reflected ray is written as

$$y = m_r x + c_r \tag{3.4}$$

where m_r is the gradient of the reflected ray and it is calculated as

$$m_r = \tan \theta_r \tag{3.5}$$

in which $\theta_r = \theta_0 = \theta_1$ and the c_r is the y-intercept of the line. c_r can be obtained by substituting the coordinate of the intersection points of tank surface and reflected ray which is (c_x,c_y) into the Eq. 3.4.

In order to obtain the value of (c_x, c_y) , the equations below were used

$$c_x = r\cos\theta \tag{3.6}$$

$$c_y = r\sin\theta_t \tag{3.7}$$

where r is the radius of the tank and the θ_t is the angle between the center line of the tank and the tank's radius which perpendicular to the reflected ray. θ_t can be calculated by using trigonometry as

$$\theta = 180 - 90 - \theta \tag{3.8}$$

Hence, by solving Eqs. 3.2 and 3.4 simultaneously, the value of x and y can be obtained and they represent b_x and b_y respectively.

Step 4: Determine the Angle for Next Mirror.

A 90° straight line which represents the incident ray was draw at the end of the first slanted mirror. Next, a line which represents its reflected ray was draw from the end of the first slanted mirror and it was tangent to the bottom of the tank's surface as shown in the Figure 3.5.

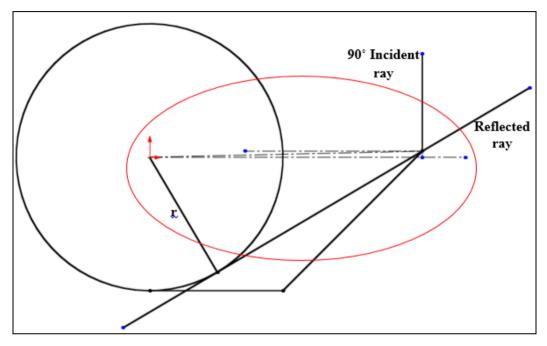


Figure 3.5: Determine the Angle for Next Mirror

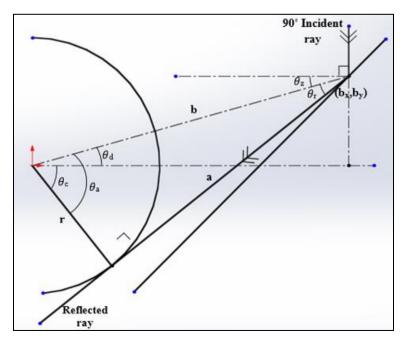


Figure 3.6: Clearer View of the Circled Part in Figure 3.4

Referring to Figs. 3.5 and 3.6, the angle of the next mirror from the base mirror is written as

$$\theta_{m(new)} = \frac{\theta_T}{2} \tag{3.9}$$

where θ_{T} is the angle of reflection of the 90° angle incident ray from the new mirror. For the θ_{T} , it can be calculated as

$$\theta_T = 90 + \theta_r + \theta_z \tag{3.10}$$

where θ_r is the angle between the reflected ray and a straight line which from the midpoint of the tank to the end point of first slanted mirror. θ_r is calculated as

$$\theta_r = \tan^{-1} \frac{r}{a} \tag{3.11}$$

in which r is the radius of the tank and a is the distance from the intersection point of reflected ray and tank surface to the end point of first slanted mirror. a can be obtained as

$$a = \sqrt{b^2 - r^2} \tag{3.12}$$

in which *b* is the distance from the midpoint of the tank to the end point of first slanted mirror and it can be calculated by substituting (0,0) and (b_x,b_y) into the formula below

$$Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
(3.13)

and for θ_z , it is the depression angle from the end point of first slanted mirror to the midpoint of the tank. θ_d need to be obtained in order to find θ_z since $\theta_z = \theta_d$. θ_d is calculated as

$$\theta_d = \tan^{-1} \frac{b_y}{b_x} \tag{3.14}$$

Step 5: Repeat Steps 3 and 4 to Find Other Mirrors.

The concepts of determining the length and angle for the mirror in steps 3 and 4 were repeated to obtain second mirror and so on. Hence, one side of the collector for multiple linear facets ICSSWH was formed (Figure 3.7) and the dimension of it can be used to create the other side of the collector.

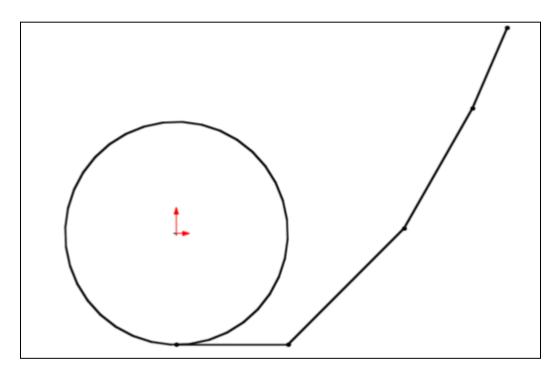


Figure 3.7: One Side of the Collector

Step 6: Using SolidWorks to Create the 2D and 3D Models for the Collector.

Lastly, SolidWorks was used to create the 2D (Figure 3.8) and 3D (Figure 3.9) models of the multiple linear facets ICSSWH based on the dimension that obtained from the previous steps. The dimension and angle for different mirrors for one side of the collector is tabulated in Table 3.1.

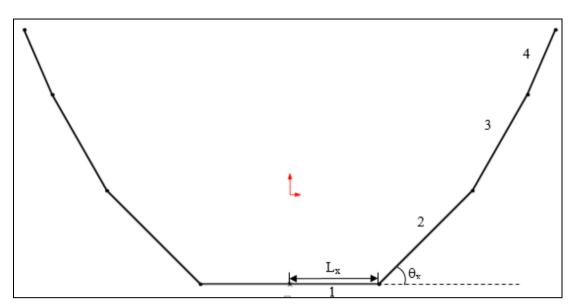


Figure 3.8: Complete 2D model of the Collector

Table 3.1: The Length and Angle for	Different Mirrors	for One Side of the
Collector		

X	Length of the mirror, L_x (mm)	Angle of the mirror, $\theta_x(^\circ)$
1	83.00	0
2	122.68	45.0
3	102.88	60.3
4	65.28	66.6

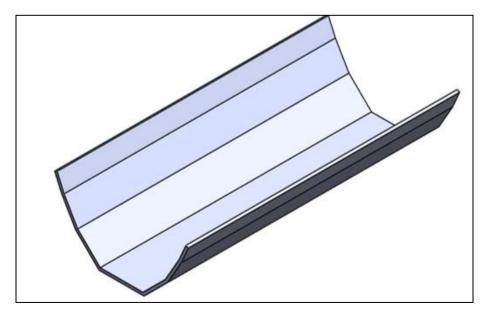


Figure 3.9: 3D Model of the Optical Design

3.3 Ray Tracing for the Optical Design of Multiple Linear Facets ICSSWH.

The file of the complete optical design was then saved as Initial Graphics Exchange Specification (IGES) file which allows the user using the 3D design in different Computer Aided Design (CAD) software. The IGES file was the imported to TracePro, a ray tracing software to test and validate the optical design of multiple linear facets ICSSWH.

In TracePro, a water tank with a radius of 83mm was added to the middle of the optical design with a 5mm gap above the base mirror. The graphic user interface (GUI) of adding the water tank was shown in Figure 3.10. Besides that, the property of the surface of the water tank and the facet mirrors of the optical design were changes to "perfect absorber" and "mirror" respectively. Figures 3.11 and 3.12 show the GUI of the updated property for water tank and facet mirrors respectively.

Name: Water Tank	
Fhickness: 8	Shape:
Length: 1000	Cylinder 🗾 💌
Inside Dimensions: Base	Ten
Major R: 83	Top Major R: 83
Minor R: 83	
, Closed	Closed
Base Position	Base Rotation
×: 0	X: 0
Y: 31	Y: 0
Z: 0	Z: 0
	in Degrees

Figure 3.10: GUI of Adding Water Tank

Bulk Scatter	Surface
Class and User Data Color Diffraction Exit Surface Fluorescence Gradient Index Importance Sampling Material Mueller Matrix Prescription Raytrace Flag RepTile Surface Surface Surface Temperature Distribution	Catalog: Default Catalog: Default Name: Perfect Absorber Description: 100% absorbing, no reflectance or transmittance Scatter: No Scatter Reference Data

Figure 3.11: GUI of Updating the Property of Water Tank

Bulk Scatter	Surface
Duik Scatter Color Diffraction Exit Surface Fluorescence Gradient Index Importance Sampling Material Mueller Matrix Prescription Raytrace Flag RepTile Surface Surface Surface Source Temperature Temperature Distribution	Catalog: Default Name: Mirror Description: Standard Mirror Scatter: ABg Scatter Reference Data Type: Table, no polarization, no retroreflector Reference Material Angles measured in Air - Refractive Index = 1.0
	Angles are corrected by Snell's law and the refractive index on either side of the Surface Property. Select measured index reference of Surface Property data.

Figure 3.12: GUI of Updating the Property of Facets Mirrors

Furthermore, the grid source which represents the sun in the ray tracing program is defined as shown in Figure 3.13. The Y half-height and X half-width of grid boundary are set to 300 and 5 respectively in order to fully cover the optical design. The irradiance value is set to $1000W/m^2$. The origin is set by adjusting the values of X, Y and Z to ensure the grid source is directly on top of the optical design. Next, the normal vector is used to adjust the angle of the grid source by changing the

values of X, Y and Z while the Y value must be in negative to ensure the rays shot downwards to the optical design. The X-up vector is set to 1 as normal ground.

a periodi periodi pe	etup Polarization V	Vavelengths
Name: Grid So	urce 1	
Grid Boundary — Y half-height: 30	Rectan <u>o</u> X half-widt	-
		12
Grid Pattern Rectangular	▼ Yı	points: 100
Units: Radior	netric 💌 Rays/	wave: 100 W/m2
Grid Position and (Drientation	
Grid orientation m	ethod: Direction Ve	ectors 💌
Origin	Normal vector	Up vector
X: 0	X: 0	X: 1
Y: 300	Y: -1	Y: 0
Z: 5	Z: 0	Z: 0
- 10	0	

Figure 3.13: GUI of Grid Source Parameters Setting

Lastly, different incident angles are tested to validate and ensure the rays enter the multiple linear facets ICSSWH design completely. The mentioned incident angles from y-axis are 0°, 5°, 10°, 15°, 20°, 25°, and 28°. The ray tracing of the optical design at different incident angles respectively are shown in Figure 3.14.

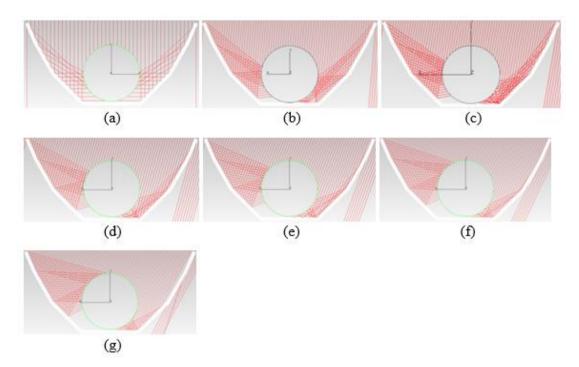


Figure 3.14: Ray Tracing of the Optical Design of Multiple Linear Facets ICSSWH at Different Incident Angles. (a) 0° , (b) 5° , (c) 10° , (d) 15° , (e) 20° , (f) 25° , and (g) 28°

3.4 Design and Construct the Mechanical Structure of Multiple Linear Facets ICSSWH.

SolidWorks is used for designing the 3D model of the multiple linear facets ICSSWH. The complete design of multiple linear facets ICSSWH contains wooden box, mirrors, water tank with piping system, acrylic boards as well as clear float glass. All of the parts were designed individually and assembly together to form the complete multiple linear facets ICSSWH. The technical drawing of the whole assembly and the complete 3D model of multiple linear facets ICSSWH are shown in Figures 3.15 and 3.16 respectively.

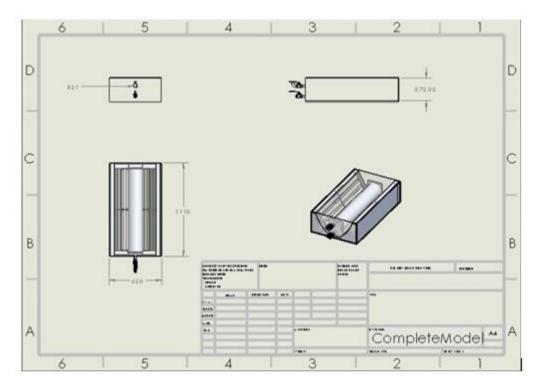


Figure 3.15: Technical Drawing of Multiple Linear Facets ICSSWH

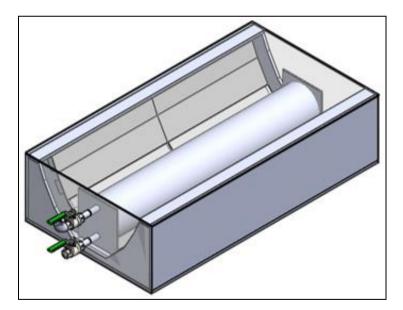


Figure 3.16: 3D Model of Multiple Linear Facets ICSSWH

For the prototype of the multiple linear facets ICSSWH, it was manufactured in Universiti Tunku Abdul Rahman, Kampar. The specifications of the different components of the multiple linear facets ICSSWH system and the techniques to construct the components are explained in detailed in the following section.

3.4.1 Wooden Box

The wooden box is made from two major parts: supportive frame for mirrors and wooden sheets that used to cover the frame. The supportive frame was created based on the profile of the optical design of multiple linear facets ICSSWH that has been validated by the ray tracing software. The profile of the optical design was drawn on the plywood sheets and cut made (Figure 3.17). Five such strips were made and three of it were undergo an extra process in which notches were cut as shown in Figure 3.18. Wooden strips were slotted into these notches in order to stabilize the frame and create a space for mirrors to fix on it (Figure 3.19). The other two pieces of the strips were used to cover the front and back of the frame, while three pieces of plywood sheets were cut based on the dimension that needed to cover the sides and bottom of the frame. For the sides, it needed two rectangular plywood sheets with a dimension of 272mm (width) \times 1104mm (length) \times 12mm (thickness) each. On the other hand, the bottom cover required a rectangular plywood sheet with a dimension of 617mm (width) \times 1104mm (length) \times 12mm (thickness). In addition, shellac was applied onto each of the plywood sheets and wooden strips so that the wooden frame is water-resistant and hence able to last for a longer period. Hence, the wooden box is completed.

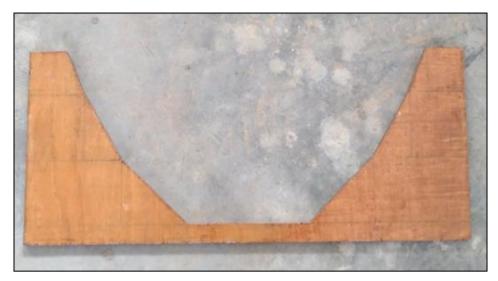


Figure 3.17: The Profile of the Supportive Frame

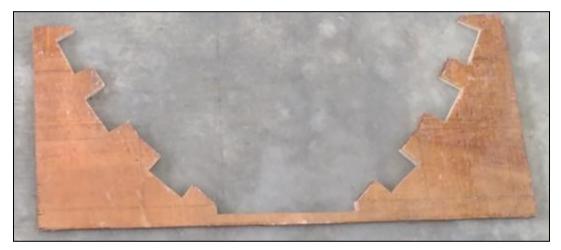


Figure 3.18: Supportive Frame with Notches

Figure 3.19: Complete Supporting Frame for Mirrors

3.4.2 Reflector

For this project, mirror with low iron silver coating was used to act as the reflector for this ICSSWH system. Mirror with 3mm thickness and a reflectivity of 0.96 was used. Different lengths of mirrors were cut according to the optical design and attached to the wooden frame by using adhesive (Figure 3.20).

Figure 3.20: Mirrors were attached to the Supportive Frame

3.4.3 Water Tank

The water tank was made by a 166mm diameter galvanized iron pipe which is 1m long and two pieces of metal plates with a dimension of 200mm (length) x 190mm (width) x 5mm (thickness) each. Welding process was used to join the pipe and metal plates together to form a metal tank. Two 22cm holes were drilled on one of the metal plates for the piping system in order to add or retrieve water from the tank. After that, the whole tank was painted black as to maximize its heat absorptivity. The tank was placed in the middle of the wooden box (Figure 3.21) so that all the reflected rays fall on the surface of the tank.

Figure 3.21: Water Tank with Piping System

3.4.4 Insulation & Glazing

Polyfoam was added to the side and bottom between the supportive frame and the covers to act as insulating material which helps to improve the heat retaining capability of the ICSSWH. In addition, the air gap inside the wood box also an additional thermal resistance for the ICSSWH. Besides that, two acrylic boards (front & back) and a glass cover (top) were used to cover the wood frame (Figure 3.22). They act as the glazing for the system which can protect the tank from the environment as well as reduce radiative heat losses.

Figure 3.22: Wooden Box with Glass and Acrylic Boards

3.5 Evaluation on the Performance of the Multiple Linear Facets ICSSWH.

The performance of the multiple linear facets ICSSWH is evaluated by measuring the temperatures of the water, tank surface, and ambient. In order to measure the temperatures, thermocouples and thermocouple reader are used. Besides that, the temperature data are recorded every 5 minutes. In addition, pyranometer is used to obtain the value of global horizontal irradiance (GHI) and the time interval to record GHI data is 1 minute. Fig. 3.23 shows the tank surface, water and ambient temperature data collection.

Figure 3.23: Tank surface, Water and Ambient Temperatures Data Collection

CHAPTER 4

RESULTS AND DISCUSSION

4.1 System Performance of Multiple Linear Facets Integrated Collector Storage Solar Water Heater

The thermal performance of the prototype was evaluated and data collection was carried out in four different days. For data collection, tank surface temperature, water temperature in the storage tank, ambient temperature as well as global solar irradiance in the function of local clock time were measured and recorded. The measurement results for four different days which are 25th Jan 2018, 10th Feb 2018, 2nd Mar 2018 and 17th Mar 2018 are shown in Fig. 4.1, 4.2, 4.3 and 4.4 respectively

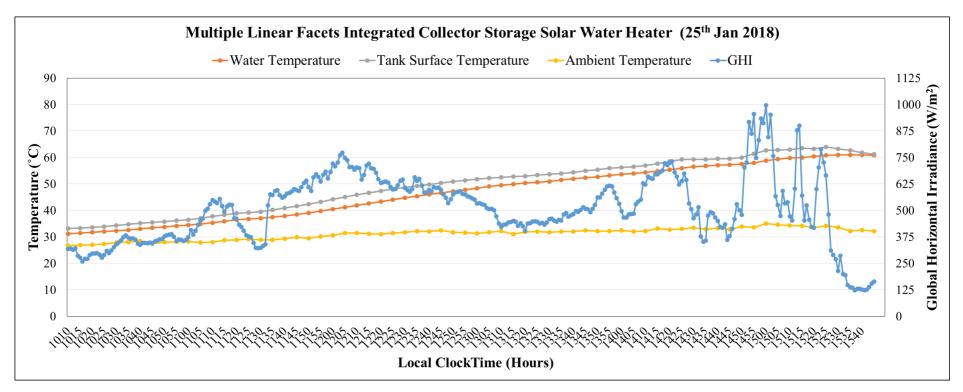


Figure 4.1: Measurement Results of Tank Surface Temperature, Water Temperature in the Storage Tank, Ambient Temperature and Global Solar Irradiance versus Local Clock Time on 25th Jan 2018

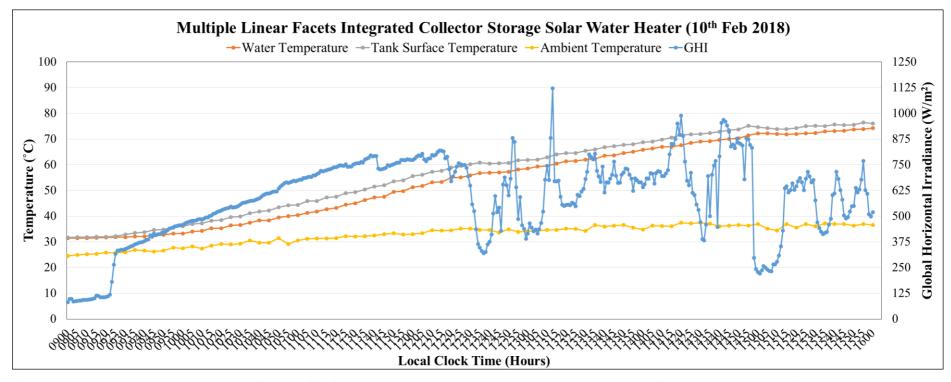


Figure 4.2: Measurement Results of Tank Surface Temperature, Water Temperature in the Storage Tank, Ambient Temperature and Global Solar Irradiance versus Local Clock Time on 10th Feb 2018

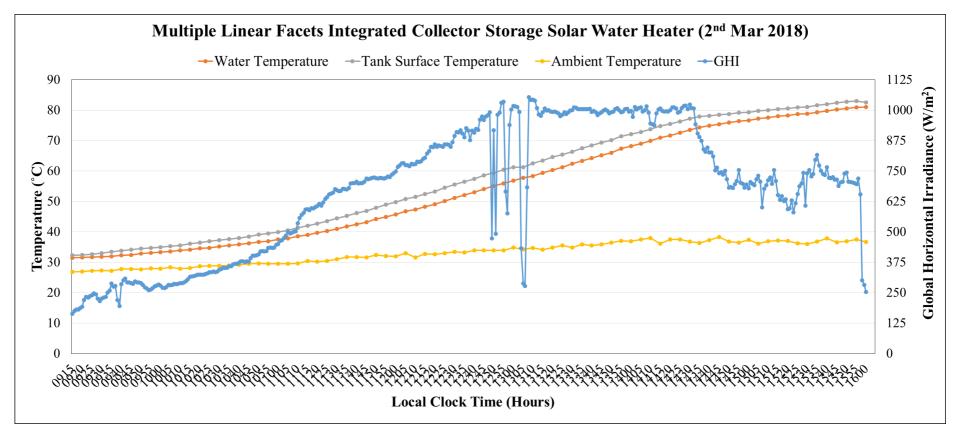


Figure 4.3: Measurement Results of Tank Surface Temperature, Water Temperature in the Storage Tank, Ambient Temperature and Global Solar Irradiance versus Local Clock Time on 2nd Mar 2018

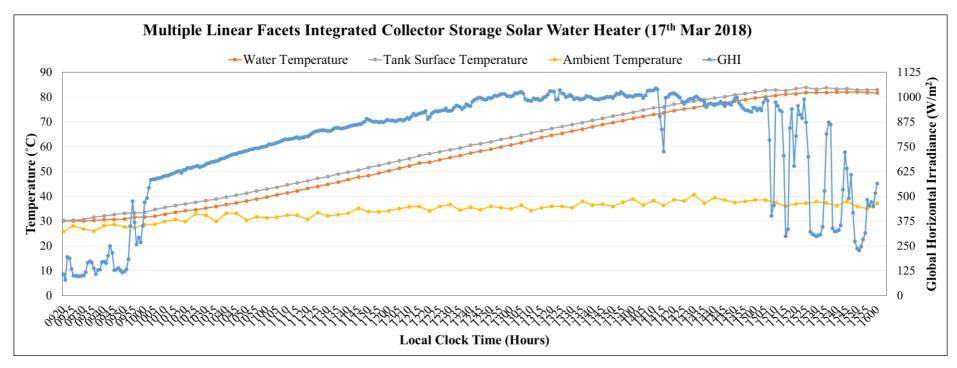


Figure 4.4: Measurement Results of Tank Surface Temperature, Water Temperature in the Storage Tank, Ambient Temperature and Global Solar Irradiance versus Local Clock Time on 17th Mar 2018

Based on the measurement results that shown in Fig. 4.1 to 4.4, the highest water temperature in the storage tank that can be achieved on 25th Jan 2018, 10th Feb 2018. 2nd Mar 2018 and 17th Mar 2018 are 61.0 °C, 74.2 °C, 83.0 °C and 82.2°C respectively. While the highest tank surface temperature that can be achieved on 25th Jan 2018, 10th Feb 2018, 2nd Mar 2018 and 17th Mar 2018 are 64.0 °C, 76.4 °C, 84.5 °C and 84.0 °C respectively. Besides that, there are also some common characteristics that shared by all of the measurement results. First of all, the temperature of the tank surface for all the measurement results were always higher than the temperature of water in the storage tank and there is always a gap in between these two temperatures. This is due to the solar radiation that radiated on the prototype will first heated up the tank surface and only then the heat gained was transfer to the water in the storage tank through natural convection. Besides that, when the global solar irradiance started to drop in the evening, the rate of increase for both tank surface and water temperatures were slowed down and the gap between them will be getting smaller. This is because the heat gained from the solar radiation is almost same as the heat loss to the surroundings due to the temperature differences between the prototype and the ambient, and hence the temperature for both the tank surface and water in the storage tank kept constant.

Description	Feature/Value
Type of reflector	Low iron silver coating mirror
Dimension of each mirror at one side	 - 83 mm (width) × 1000 mm (length) × 3 mm (thickness) - 122 mm (width) × 1000 mm (length) × 3 mm (thickness) - 103 mm (width) × 1000 mm (length) × 3 mm (thickness) - 65 mm (width) × 1000 mm (length) × 3 mm (thickness)
Total number of mirrors at one side	4
Inclined angle of each mirror	- 0° - 45.0° - 60.3° - 66.6°
Total reflective area of the collector	0.733 m ²
Dimension of glazing	1134 mm (length) \times 618 mm (width) \times 5 mm (thickness)
Dimension of absorber tank	150 mm (radius) × 1000 mm (length)

 Table 4.1: The Specifications of the Multiple Linear Facets ICSSWH

Area of the entry	0.493 m ²
aperture	
Total volume of water	17.67 L
in the storage tank	
Orientation of the	Along east-west direction
prototype	
Latitude	4.31 °N
Longitude	101.15 °E

In table 4.1, the specifications of the multiple linear facets ICSSWH prototype were shown. To further study the thermal performance of the prototype of the multiple linear facets ICSSWH system, the formulas that shown below were applied. The total amount of solar energy that radiated on the entry aperture of the prototype over a time interval can be computed by using

$$Q_{\text{incident}} = I_{\text{ave}} A \Delta t \tag{4.1}$$

where $Q_{incident}$ is the total amount of solar energy radiated on the entry aperture (J), I_{ave} is the average global solar irradiance (W/m²), A is the total area of the entry aperture of the multiple linear facets ICSSWH (m²) and Δt is the time interval (s). The area of the entry aperture of the prototype is 0.493m².

The total thermal energy that gained by the multiple linear facets ICSSWH can be calculated as

$$Q_{col} = mC_{water}(T_f, heating - T_i, heating)$$
 (4.2)

where Q_{col} is the total thermal energy gained (J), *m* is the total mass of water in the storage tank (kg), c_{water} is the specific heat capacity of water (4184 J/kg. °C), $T_{i, heating}$ and $T_{f, heating}$ are the initial and final temperature of water in the storage tank (°C).

Hence, the system efficiency of the multiple linear facets ICSSWH by using Eq. 4.3,

$$\eta_{sys} = \frac{mC_{water}(T_f, heating - T_i, heating)}{I_{ave}A\Delta t}$$
(4.3)

The thermal performance analysis of the multiple linear facets ICSSWH for different weather conditions is tabulated in Table 4.1 and a graph of system efficiency against $\Delta T/I_{ave}$ is plotted as shown in Figure 4.5 provided that

$$\Delta T = T_{ave, heating} - T_{ave, amb} \tag{4.4}$$

in which

$$T_{ave, heating} = \left(\frac{T_{i, heating} + T_{f, heating}}{2}\right)$$
(4.5)

and
$$T_{ave, amb} = \left(\frac{T_{i, amb} + T_{f, amb}}{2}\right)$$
 (4.6)

where ΔT is the difference between average water temperature in storage tank and average ambient temperature, $T_{ave, heating}$ is the average temperature of water in the storage tank over a time interval, $T_{i, heating}$ and $T_{f, heating}$ are the initial and final water temperature in the storage tank within the time interval, $T_{ave, amb}$ is the average ambient temperature over a time interval, $T_{i, amb}$ and $T_{f, amb}$ are the initial and final ambient temperature within the time interval.

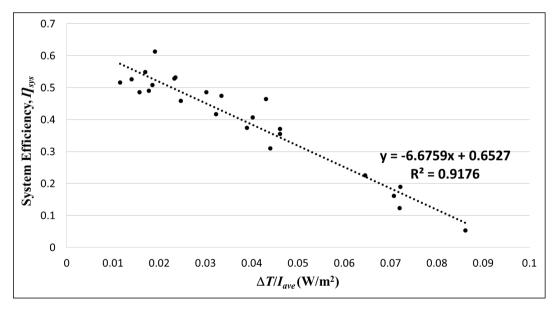


Figure 4.5: Graph of System Efficiency against $\Delta T/I_{ave}$

Based on the graph that displayed in Fig. 4.5, the y-intercept of the graph represents the theoretical highest system efficiency that can be achieved by the multiple linear facets ICSSWH which is 65.27 %. When comparing the highest system efficiency with the daily system efficiencies that achieved by the multiple linear facets ICSSWH in Table 4.1, it showed a difference between them and the different in efficiency is due to the loss of heat from the system to the environment. The value of the X-intercept of the graph in Fig.4.5 is 0.0978. By using the value of X-intercept and assume the average global solar irradiance to be 1000 W/m² with an ambient temperature of 28 °C, the theoretical highest water temperature in the storage tank that can be achieved will be 125.8 °C. Besides that, the graph in Fig. 4.5 also showed a linear relationship between the system efficiency and $\Delta T/I_{ave}$.

4.2 Economic Analysis of the Multiple Linear Facets ICSSWH System.

In order to evaluate the economic feasibility of the multiple linear facets ICSSWH system, the payback period of it can be computed with the following formulas:

$$n_{\text{pay}} = -\frac{\ln\left[1 - S_{\text{total}}i' / P_{\text{ann}}\right]}{\ln\left(1 + i'\right)}$$
(4.7)

$$i' = \left(\frac{1+i}{1+j}\right) - 1 \tag{4.8}$$

where S_{total} is the total manufacturing cost of the multiple linear facets ICSSWH system, P_{ann} is the electricity cost saving per year (RM/year), *i* is the interest rate and *j* is the inflation rate.

For this project, let us consider an interest rate of 3% if a loan is made to build the multiple linear facets ICSSWH system with the capacity of 17.67 L or 17.67 kg water and the inflation rate is 4%. The daily energy consumption to heat up 17.67 kg of water from 25 °C to 83.0 °C is equal to 1.1911 kWh which means a daily

in which

net energy of 1.1911 kWH can be obtained from the multiple linear facets ICSSWH system. The net energy gained is equivalent to daily consumption of RM 0.3287 in the electric bill as the electricity unit cost in Malaysia is RM 0.276/kWh. Hence, the total electricity cost saving per year will be RM 120.00 if the multiple linear facets ICSSWH system is used to replace the electrical water heater. The breakdown cost for all the components that used to build the multiple linear facets ICSSWH system is shown in Table 4.2. Based on the table, the total cost for the construction of the whole system is RM 520.85. By using the Eq. 4.7, the total payback period obtained is 4.23 years in which it is considered quite profitable as most of the SWH can lasts for about 20 years.

Table 4.2: The Breakdown Cost for All the Components That Used to Build theMultiple Linear Facets ICSSWH System

Component	Description	Quantity	Unit Price (RM)	Retail Price (RM)
	¹ / ₂ " VIP full bore ball valve (340)	2 units	11.50/unit	23.00
Dining	¹ / ₂ '' G.I. elbow	1 unit	1.40/unit	1.40
Piping System	¹ / ₂ '' K.C. nipple	2 units	1.80/unit	3.60
System	¹ / ₂ '' steam nipple	1 unit	2.60/unit	2.60
	8'' × $\frac{1}{2}$ '' G.I. Pipe	2 units	6.90/unit	13.80
	Seal tape	2 units	0.60/unit	1.20
Solar Collector	2 units of construction adhesive sealant	2 units	8.48/unit	16.96
	1unit of 1134 mm \times 618 mm \times 5 mm clear float glass	1 unit	42.40/unit	42.40
	732844 mm ² of Mirror	732844 mm ²	$6.6 \times 10^{-5}/\text{mm}^2$	48.37
	3 units of Polyfoam	3 units	2.50/unit	7.50
	Plywood	2423734 mm ²	$2.07 \times 10^{-5} / \text{mm}^2$	50.17
	Screw (25pieces/packet)	1 packet	1.80/packet	1.80

		Total	Retail Cost (RM)	520.85
Tank	200 mm × 190mm × 5mm metal plate	2 units	20.00/unit	40.00
Storage	150mm (6'') G.I. pipe	1m	122.192/m	122.19
	Black paint	2 units	5.90/unit	11.80
	$1'' \times 2'' \times 980 \text{ mm}$ timber strip	6 units	2.383/unit	14.30
Collector (cont.)	material 3mm transparency acrylic sheet	2 units	39.00/unit	78.00
Solar	Single sided signage 284 mm × 618 mm			
	Shellac	2 units	13.78/unit	27.56
	Sealant silicone	2 units	7.10/unit	14.20

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

In this project, the introduction of multiple linear facets collector into an integrated collector storage solar water heater (ICSSWH) system has proved that it can achieved the maximum system efficiency of 65.27 % and the highest water temperature in the storage tank of 83.0 °C on a sunny day. Besides that, the prototype of the system is easily constructed as its collector is made of different angles of facet mirrors and the materials that needed for other components are also easily obtained. Furthermore, the cost for the construction of the whole system is just RM 520.85 with a payback period of 4.23 years which is considered quite short as compared to other solar water heaters. Even though the system is already considered well-performed, but there are still some recommendations which can help to further improve the overall performance of the system.

Firstly, the angle on the supportive frame for the mirrors maybe slightly deviated from the actual angle that needed since it was manually made. Thus, inclinometer can be used to increase the accuracy of the angles on the supportive frame during the cutting process as well as when attaching the mirror onto the supportive frame. Next, the use of better thermal insulating materials to replace polyfoam as the insulation for the system and apply double glazing for the system will be able to enhance the heat retaining capability of the system especially during night time. Lastly, replacing the galvanized iron pipe with higher thermal conductivity materials such as copper, bronze and aluminium to act as the absorber tank will greatly improve the thermal performance of the system as the tank will be heat up faster and more heat will be transfer to the water.

REFERENCES

- Chen, C.J., 2011. Physics of Solar Energy. New Jersry: John Wiley & Sons, Inc.
- Chong, K.K., Chay, K.G. and Chin, K.H., 2012. Study of a Solar Water Heater using Stationary V-trough Collector. *Renewable Energy*, 39, pp. 207-215.
- Devanarayanan, K. and Murugavel, K.K., 2014. Integrated collector storage solar water heater with compound parabolic concentrator – development and progress. *Renewable and Sustainable Energy Reviews*, 39, pp. 51 - 64.
- Garnier, C., Currie, J. and Muneer, T., 2009. Integrated Collector Storage Solar Water Heater: Temperature Stratification. *Applied Energy*, 86, pp. 1465-1489.
- Gertzos, K.P., Pnevmatikakis, S.E. and Caouris, Y.G., 2008. Experimental and Numerical Study of Heat Transfer Phenomena, inside a Flat-Plate Integrated Collector Storage Solar Water Heater (ICSSWH), with Indirect Heat Withdrawal. *Energy Conversion and Management*, 49, pp. 3104-3115.
- Hamed, M., Fallah, A., Brahim, A.B., 2017. Numerical Analysis of Charging and Discharging Performance of an Integrated Collector Storage Solar Water Heater. *International Journal of Hydrogen Energy*, 42, pp. 8777-8789.
- Johari, D., Yadav, A. and Verma, R., 2012. Study of Solar Water Heaters Based On Energy Analysis. In: Trends and Advances in Mechanical Engineering, YMCA University of Science & Technology, Faridabad, Haryana, Oct 19-20, 2012.
- Kalogirou, S.A., 2004. Solar Thermal Collectors and Applications. *Progress in Energy and Combustion Science*, 30, pp. 231-295.
- Kumar, R. and Rosen, M.A., 2010. Thermal Performance of Integrated Collector Storage Solar Water Heater with Corrugated Absorber Surface. *Applied Thermal Engineering*, 30, pp. 1764-1768.
- Kumar, R. and Rosen, M. A., 2011. Integrated collector-storage solar water heater with extended storage unit. *Applied Thermal Engineering*, 31, pp. 348 354.
- Laughton, C., 2010. Solar Domestic Water Heating. London: Earthscan.
- Shelke, V.G., Patil, C.V. and Sontakke, K.R., 2014. Solar Water Heating Systems: A Review. *International Journal of Scientific Engineering and* Research, 3 (4), pp. 13-17.

- Shukla, R., Sumathy, K., Erickson, P. and Jiawei, G., 2013. Recent Advances in the Solar Water Heating Systems: A Review. *Renewable and Sustainable Energy Reviews*, 19, pp. 173-190.
- Smyth, M., Eames, P.C., and Norton, B., 2003. Heat Retaining Integrated Collector / Storage Solar Water Heaters. *Solar Energy*, 75, pp. 27-34.
- Smyth, M., Eames, P.C. and Norton, B., 2006. Integrated Collector Storage Solar Water Heaters. *Renewable and Sustainable Energy Reviews*, 10, pp. 503-538.
- Souliotis, M., Chemisana, D., Caouris, Y.G. and Tripanagnostopoulos, Y., 2012. Experimental study of integrated collector storage solar water heaters. *Renewable Energy*, 50, pp. 1083 - 1094.
- Twidell, J. and Weir, T., 2015. *Renewable Energy Resources*. 3rd ed. New York: Routledge.

APPENDICES

Appendix A: Raw Experiment Data of 25th Jan 2018

Date	1/25/2018
Weather	Cloudy

T_1	Water Temperature
T_2	Tank Surface Temperature
T_3	Ambient Temperature

Time	GHI	T 1	T ₂	T ₃	Time	GHI	T ₁	T ₂	T ₃	Time	GHI	T ₁	T ₂	T ₃
0900						721					996			
						708					847			
					1200	726	40.5	44.2	30.6	1500	952	58.8	62.7	35.0
						761					756			
						773					567			
						747					525			
						736					474			
0905					1205	705	41.2	45.1	31.4	1505	591	59.4	62.8	34.6
						705					533			
						692					538			
						702					472			
						699					452			
0910					1210	646	41.9	45.9	31.4	1510	603	59.8	63.0	34.3
						667					879			
						712					900			
						720					570			
						699					452			
0915					1215	695	42.6	46.7	31.2	1515	524	60.0	63.5	34.2
						677					456			
						647					421			
0920						630					419			
					1220	633	43.3	47.3	31.0	1520	601	60.4	63.3	33.5
0520					1220	636	+5.5	+7.5	51.0	1320	702	00.4	03.3	55.5
						631					789			

I				611					727			
				599					666			
				600	-				480	-		
0925	-		1225	619	44.1	48.0	31.5	1525	311	60.8	64.0	34.2
			1225	640		40.0	51.5	1525	289	00.0	04.0	54.2
				645					270			
				606					214			
				595					285			
0930	 -		1230	588	44.7	48.6	31.8	1530	200	61.0	63.2	33.6
				601			0 0	2000	194	0110	00.1	00.0
				657					148			
				641					137			
				650		49.2	32.1		136			
0935			1235	617	45.3			1535	123	61.0	62.7	32.2
				584					129	-		
				585					129			
				597					126			
				590					123			
0940			1240	609	46.0	49.8	32.0	1540	127	60.9	61.8	32.6
				607					138	1		
				608					155			
			598					164				
				576								
0945			1245	559	46.6	50.4	32.4	1545		60.8	61.2	32.2
				534								
				553								
				575	47.2	50.9	31.7	1550				
				585								
0950			1250	588								
				590								
				578								
			1255	576		51.4	31.6	1555				
	 -			566								
0955				563	47.8							
				556								
				550								
			1300	532			31.3					
				535		51.8		1600				
1000				529	48.4							
				525								
				511								
				506								
1005			1305	507	49.0	52.2	31.8	1605				
				500								
				471								

1						438						
	318					421						
	320					433						
1010	315	31.2	33.2	26.7	1310	435	49.5	52.5	32.1	1610		
	321			_		444			_			
	286					445	-					
	276					451						
	258					447	-					
1015	272	31.4	33.3	26.8	1315	427	49.9	52.8	31.0	1615		
	272					439	-					
	289					426	-					
	297					404						
	297					438	-					
1020	299	31.7	33.6	27.0	1320	440	50.3	53.0	31.9	1620		
	291					446	-					
	276					449	-					
	290					447						
	308					438						
1025	298	32.0	33.9	27.3	1325	441	50.7	53.3	32.0	1625		
	310					433	-					
	327					443						
	339					460	-					
	349					462						
1030	359	32.3	34.3	27.8	1330	453	51.0	53.6	31.8	1630		
	374					447						
	382					456						
	371					453						
	367					480						
1035	368	32.6	34.8	28.0	1335	488	51.5	54.0	32.0	1635		
	360					470						
	343					478						
	337					482						
	346					497						
1040	347	33.0	35.1	28.5	1340	493	51.9	54.4	32.0	1640		
	345					502						
	348					515						
	344					507						
	353					506						
1045	358	33.5	35.5	27.5	1345	491	52.3	54.9	32.4	1645		
	363					507						
	365					526						
	377					561						
1050	382	33.8	35.8	28.0	1350	562	52.7	55.3	32.1	1650		
1030	386	0.0	22.0	20.0	1320	579	52.7	55.5	JZ.1	1000		
	387					597						

	375					613							
	356					617							
	362					613							
1055	360	34.2	36.2	28.1	1355	585	53.2	56.0	32.1	1655			
	355	-		_		557			_				
	361					531							
	374					497							
	407					466							
1100	386	34.5	36.5	28.3	1400	467	53.6	56.2	32.5	1700			
	404					480							
	432					482							
	453					485							
	462					530							
1105	499	34.9	37.0	27.9	1405	542	54.0	56.5	32.0				
	508					550							
	529					627					L		
	548					623							
	541					660							
1110	535	35.3	37.7	28.0	1410	652	54.3	57.0	32.2				
	554					650							
	521					670							
	494					671							
	518					682							
1115	527	35.9	38.3	28.7	1415	689	54.8	57.7	33.2				
	526					722							
	463					714							
	462					725							
	433					731							
1120	422	36.4	38.9	28.8	1420	680	55.3	58.5	32.8				
	403					660							
	383					623							
	377					639							
	374					674							
1125	346	36.8	39.2	29.1	1425	644	56.0	59.2	33.0				
	324					532							
	322					506							
	324					463							
	332					481							
1130	340	37.1	39.4	28.8	1430	514	56.5	59.3	33.5				
	523					377							
	576					352							
	573					358							
1135	591	37.5	40.2	28.9	1435	475	56.8	59.3	32.9				
	595	_		_	_	491	_	-	_				
	573					487							

	560					466						
	566					450						
	579					421						
1140	582	37.9	40.9	29.3	1440	419	57.1	59.5	33.3			
	590					434						
	600					360						
	595					378						
	591					413						
1145	610	38.4	41.6	29.8	1445	460	57.2	59.5	32.9			
	630					530						
	640					501						
	609					479						
	592					703						
1150	657	39.0	42.4	29.5	1450	727	57.5	59.9	33.9			
	671					917						
	658					863						
	637					956						
	669					748						
1155	683	39.8	43.2	30.2	1455	831	58.0	61.4	33.6			
	651					934						
	682					913						

Appendix B: Raw Experiment Data of 10th Feb 2018

Date	2/10/2018]	T ₁	Water Temperature
Weather	Partially Sunny]	T ₂	Tank Surface Temperature
		-	T₃	Ambient Temperature

Time	GHI	T ₁	T_2	T ₃	Time	GHI	T ₁	T_2	T_3	Time	GHI	T ₁	T_2	T ₃
	82					774					228			
	97					780					221			
0900	98	31.4	31.7	24.6	1200	790	51.3	55.6	33.0	1500	236	72.2	74.7	37.0
	85					796					258			
	86					792					249			
	88					804					239			
0905	89	31.5	31.5 31.8	24.9	1205	777	51.8	56.1	33.4	1505	233	72.2	74.3	35.2
	90	51.5	51.0	24.9	1205	767	51.0	30.1	55.4	1202	232	12.2	74.5	55.2
	92					780					265			

	92					781					265			
	93					798					278			
	95					794					308			
0910	96	31.5	31.8	25.2	1210	799	53.2	57.3	34.5	1510	353	72.0	73.9	34.4
	97					811					430			
	101					819					636			
	114					818					645			
	112					815					615			
0915	105	31.6	32.0	25.3	1215	782	53.3	57.6	34.4	1515	627	71.8	73.9	37.0
	105					790					660			
	106					728					628			
	107					669					646			
	110					694					670			
0920	118	31.7	32.0	25.8	1220	715	54.9	58.9	34.5	1520	685	72.0	74.3	35.5
	180					741					664			
	263					758					626			
	316					753					682			
	333					748					715			
0925	334	31.8	32.2	25.7	1225	749	55.1	59.5	35.2	1525	694	72.2	75.0	37.0
	337					735					664			
	335					694					676			
	340					648					577			
	343					557					469			
0930	348	31.8	32.8	26.0	1230	524	55.8	60.2	35.2	1530	443	72.4	75.1	36.0
	353					436					425			
	357					365					412			
	362					346					418			
	366					330					423			
0935	370	32.1	33.5	26.8	1235	319	56.7	60.8	34.6	1535	459	73.0	75.0	37.2
	372					326					488			
	374					362					603			
	378					375					610			
	385					411					715			
0940	387	32.1	33.7	26.6	1240	513	56.9	60.5	34.6	1540	680	73.1	75.7	37.0
	408					598					626			
	400					519					580			
	415					542					504			
	408					428					489			
0945	412	32.6	34.6	26.2	1245	653	57.0	60.6	33.6	1545	495	73.2	75.4	37.0
	413					688					522			
	419					650					548			
	421					600					549			
0950	424	32.7	34.8	26.6	1250	682	57.2	60.7	34.9	1550	638	73.8	75.6	36.3
	431					881					615			
	440					861					630			

	442					640					678			
	445					485					768			
	451					592					627			
0955	453	33.2	35.7	27.7	1255	456	58.1	61.8	33.9	1555	608	73.9	76.4	36.9
	456					438					510			
	456					390					498			
	458					415					519			
	463					465								
1000	468	33.3	36.0	27.5	1300	445	58.6	61.9	34.1	1600		74.2	76.0	36.5
	471					426								
	475					435								
	477					415								
	477					437								
1005	480	34.0	37.0	28.3	1305	467	59.3	62.0	34.2	1605				
	484					523								
	485					678								
	484					745								
	488					676								
1010	493	34.2	37.2	27.4	1310	880	59.5	62.9	34.6	1610				
	493					1122								
	500					670								
	504					669								
	511					673								
1015	515	35.3	38.2	28.5	1315	595	60.4	64.0	34.6	1615				
	521					556								
	524					550								
	527					554								
	532					556								
1020	535	35.3	38.5	29.2	1320	553	61.3	64.5	35.2	1620				
	539					565								
	540					561								
	547					548								
	542					604								
1025	543	36.4	39.6	29.0	1325	597	61.5	64.6	35.0	1625				
	545					620								
	550					632								
	556					681								
	564					715								
1030	566	36.6	39.9	29.3	1330	800	62.0	65.5	34.3	1630				
	568					787								
	571					777								
	574					803								
1035	575	37.5	41.1	30.6	1335	720	62.3	66.0	36.5	1635				
1000	576	57.5	71.1	50.0	1333	694	02.5	00.0	50.5	1000				
	580					666								

	583					742						
	587					615						
	595					664						
1040	602	38.3	41.8	29.7	1340	663	63.5	66.9	35.9	1640		
	607					683						
	611					702						
	611					766						
	614					696						
1045	618	38.4	42.2	29.6	1345	661	63.7	67.2	36.3	1645		
	620					663						
	620					702						
	635					712						
	644					732						
1050	652	39.5	43.5	31.4	1350	729	64.6	67.7	36.5	1650		
	660					701						
	664					683						
	661					623						
	664					684						
1055	668	40.0	44.2	29.1	1355	674	65.0	68.0	35.6	1655		
	672					664						
	670					665						
	674					641						
	678					655						
1100	678	40.4	44.3	30.5	1400	684	65.8	68.8	34.8	1700		
	685					683						
	686					710						
	689					707						
	692					659						
1105	691	41.3	45.9	31.2	1405	709	66.3	69.0	36.3			
	699					719						
	699					716						
	705					695						
	710					695						
1110	720	41.8	45.9	31.3	1410	708	67.0	69.8	36.2			
	717					724						
	721					800						
	723					852						
	727					850						
1115	728	42.7	47.3	31.3	1415	875	67.0	70.6	36.0			
	733					950						
	738					896						
	738					989						
1120	743	43.2	47.6	31.4	1420	890	67.6	71.6	37.5			
	748				1.20	765	07.0	, 1.0				
	746					672						

	744	I	l	I		651	l			1	l		
	752					711							
1125	739	44 5	10.0	22.2	1425	613	со г	71 0	27.2				
1125	742 741	44.5	48.9	32.2	1425	602	68.5	71.8	37.2		-		
	751					556 531							
	756					471							
	757					388							
1130	757	45.0	49.3	32.1	1430	382	69.0	71.9	37.5				
1150	763	45.0	49.5	52.1	1450	459	09.0	/1.9	57.5				
	761					439 695							
	775					500							
	779					702							
1135	784	46.3	50.4	32.2	1435	746	69.2	72.3	37.1				
1122	795	40.5	50.4	52.2	1455	769	09.2	12.5	57.1				
	791					448							
	791					791							
	793					954					-		
1140	732	47.3	51.5	32.5	1440	968	69.6	72.8	36.0		-		
1140	727	47.5	51.5	52.5	1440	961	05.0	72.0	50.0		-		
	728					941							
	732					911							
	735					838							
1145	748	47.6	52.0	33.0	1445	849	70.0	73.5	36.3		-		
1113	745	17.0	52.0	55.0	1113	831	70.0	/ 5.5	50.5		-		
	749					877					-		
	753					857							
	757					851							
1150	761	49.5	53.6	33.4	1450		70.3	73.8	36.6				
	761					679							
	773					878							
	774					874							1
	771					846							
1155	776	49.7	54.0	32.9	1455	833	71.5	75.2	36.3				
	775					297							
	774					243							

2/3/2018	Date
Sunny	Weather
Sunny	Weather

T_1	Water Temperature
T_2	Tank Surface Temperature
T ₃	Ambient Temperature

Time	GHI	T ₁	T ₂	T ₃	Time	GHI	T ₁	T_2	T ₃	Time	GHI	T_1	T_2	T ₃
						749					679			
						768					705			
0900					1200	773	45.7	49.8	32.0	1500	698	76.7	79.3	37.4
						782					692			
						783					717			
						774					731			
						774					707			
0905					1205	770	46.8	50.9	33.0	1505	601	77.2	79.8	36.2
						781					677			
						777					692			
						779					713			
						789					724			
0910					1210	788	47.4	51.5	31.6	1510	698	77.6	80.0	37.0
						790					754			
						800					710			
	164					805					652			
	176					822					632			
0915	181	31.5	32.3	26.9	1215	833	48.3	52.5	32.8	1515	647	78.0	80.4	37.2
	181					850					627			
	187					849					634			
	193					860					594			
	221					850					596			
0920	233	31.6	32.4	27.0	1220	855	49.1	53.3	32.7	1520	630	78.3	80.6	37.1
	230					852					580			
	236					850					618			
	240					860					656			
	248					860					688			
0925	243	31.8	32.7	27.2	1225	858	50.2	54.5	33.0	1525	700	78.8	80.9	36.3
	226					850					743			
	216					869					608			
	226					894					741			
0930	231	31.9	33.0	27.3	1230	911	51.2	55.6	33.5	1530	754	78.9	81.1	36.0
0320	234	51.9	55.0	27.5	1230	909	51.2	0.0	55.5	1020	728	10.9	01.1	50.0
	251					918					739			

	260					905					796			
	288					889					817			
	276					927					773			
0935	278	32.0	33.5	27.2	1235	917	52.1	56.5	33.2	1535	752	79.3	81.6	36.8
	220					878					738		_	
	195					917					734			
	286					907					766			
	302					923					723			
0940	308	32.3	33.8	27.8	1240	919	53.0	57.5	34.0	1540	721	79.8	82.0	37.9
	293					961					725			
	292					974					715			
	290					960					715			
	287					974					689			
0945	297	32.5	34.2	27.8	1245	980	54.1	58.6	34.0	1545	704	80.3	82.4	36.6
	292					992					707			
	293					474					740			
	290					918					744			
	283					492					707			
0950	272	32.9	34.5	27.7	1250	982	55.1	59.4	33.9	1550	705	80.6	82.8	37.0
	268					990					704			
	261					1031					701			
	264					1035					697			
	270					666					719			
0955	277	33.1	34.7	28.0	1255	576	56.0	60.5	34.0	1555	654	80.9	83.0	37.5
	280					940					302			
	284					1003					282			
	280					1017					253			
	271					1016					250			
1000	270	33.4	35.0	27.9	1300	1014	56.9	61.3	34.9	1600	259	81.1	82.6	36.7
	274					993					606			
	283					433					703			
	281					289					676			
	283					278					724			
1005	287	33.6	35.3	28.4	1305	683	57.8	61.3	34.3	1605	757	80.8	82.6	35.3
	286					1054					743			
	287					1043					748			
	290					1044					741			
	290					1040					698			
1010	292	33.9	35.6	27.9	1310	1009	58.4	62.6	34.8	1610	702	81.2	83.2	37.2
	299					983					695			
	305					977					740			
	316					991					710			
1015	317	34.2	36.1	28.2	1315	1007	59.4	63.5	34.2	1615	329	81.6	83.5	36.6
1012	319	54.2	30.1	20.2	1010	999	55.4	03.3	54.2	1012	740	01.0	05.5	50.0
	321					1001					720			

327 987 675 330 976 669 334 982 645 334 991 636	3.8 37.5
1020 324 34.6 36.5 28.7 1320 992 60.4 64.6 34.9 1620 670 81.9 83 327 330 - - 987 - - 669 - - 669 - - - 669 - - - 669 - - - - 669 - - - - 645 - - - 645 - - - 645 - <td< td=""><td></td></td<>	
1020 324 34.6 36.5 28.7 1320 992 60.4 64.6 34.9 1620 670 81.9 83 327 330 - - 987 - - 669 - - 669 - - - 669 - - - 669 - - - - 669 - - - - 645 - - - 645 - - - 645 - <td< td=""><td></td></td<>	
327 987 675 330 976 669 334 982 645 334 991 636	
330 976 669 334 982 645 334 991 636	
334 982 645 334 991 636	
334 991 636	
<u> </u>	3.9 36.9
335 991 630	
338 999 631	
345 1000 652	
347 1012 654	
	1.0 36.2
1050 555 55.2 57.5 26.6 1051 66.4 54.5 1050 607 62.5 655 352 1005 1005 655 <t< td=""><td>1.0 50.2</td></t<>	1.0 50.2
353 1005 623	
359 1005 608	
359 1005 638	
	1.2 37.5
1000 500 500 500 1000 1000 1000 020	
370 1006 606	
373 993 604	
380 997 595	
	1.2 37.5
377 980 576	
380 987 605	
378 991 607	
393 999 627	
	1.2 37.1
403 997 613	
404 988 620	
408 992 641	
420 994 603	
	1.3 37.2
420 1009 594	
421 1001 617	
435 991 600	
436 995 618	
	1.3 37.4
436 1006 604	
448 994 624	
451 997 628	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.5 37.4
475 1003	

	485					1009						
	500					1012						
	494					995						
1105	496	37.9	40.6	29.5	1405	1001	69.0	72.9	37.5			
1100	501	07.13	1010	2010	1.05	1016	05.0	, 2.3	0710			
	503					990						
	536					946						
	558					942						
1110	570	38.6	41.3	29.7	1410	938	70.0	73.8	38.0			
1110	579	30.0	41.5	29.7	1410	987	70.0	75.0	30.0			
	592					1003						
	594					1003						
	590					997						
1115	590	39.0	42.0	30.5	1415		71.0	74.8	36.2			
1115	598	59.0	42.0	50.5	1415	995	/1.0	74.0	50.2			
	603					996 995						
	603					1000						
1120	616	20.7	12.0	20.2	1420	1012	71 7	75 5	27 5			
1120	608	39.7	42.8	30.2	1420	1012	71.7	75.5	37.5			
	621					1007						
	636 643					990						
						995						
1125	654 657	40.3	43.6	30.5	1425	1009 1018	72.6	76.3	37.5			
1125	661	40.5	45.0	50.5	1425	1018	72.0	70.5	57.5			
	676					1019						
	672					1003						
	668					1024						
1120		11 0	115	21.0	1/120	1005	72 5	77 2	36.8			
1150	677	41.0	44.5	51.0	1450	942	75.5	//.2	50.0			
	676					905						
	674					891						
	681					875						
1135	700	41.8	45.3	31.8	1435	839	74.3	77.9	36.4			
1155	701	41.0	-J.J	51.0	1433	830	74.5	77.5	50.4			
	701					830						
	701					827						
	699					827						
1140	701	42.5	46.2	31.7	1440	811	74.9	78.2	37.3			
1140	701	.2.5	10.2	51.7	1440	753	, 4.5	,0.2	57.5			
	701					765						
	720					742						
	717					745						
1145	719	43.2	46.9	31.6	1445	735	75.4	78.5	38.4			
	723					751						
L	, 25					, , , ,						

	724					716						
	721					682						
	720					685						
1150	722	44.2	48.0	32.4	1450	681	76.0	78.8	36.8			
	721					696						
	719					710						
	723					755						
	728					702						
1155	725	45.0	49.0	32.1	1455	698	76.4	79.2	36.5			
	735					682						
	741					695						

Appendix D: Raw Experiment Data of 17th Mar 2018

Date	17/3/2018		T ₁	Water Temperature
Weather	Sunny		T ₂	Tank Surface Temperature
		-	T ₃	Ambient Temperature

Time	GHI	T ₁	T ₂	T ₃	Time	GHI	T ₁	T ₂	T ₃	Time	GHI	T ₁	T ₂	T ₃
						883					947			
						883					934			
0900					1200	884	50.3	53.4	34.2	1500	943	79.6	82.0	38.6
						878					934			
						881					975			
						887					994			
						887					982			
0905					1205	881	51.3	54.3	35.1	. 1505	783	80.2	82.8	38.6
						888					402			
						896					455			
						890					974			
						903					956			
0910					1210	918	52.3	55.3	35.8	1510	933	80.7	82.9	37.5
						907					927			
						912					706			
						918					299			
0915 -					1215 -	921	53.4	56.5	25.0	1515	335	81.2	82.7	26.1
0912						922	55.4	50.5	35.9	1515	844	01.2	02.7	36.1
						930	-				941			

						889					653			
	108					901					805			
	80					917					957			
0920	195	30.1	30.3	25.9	1220	925	53.8	57.2	34.1	1520	913	81.4	83.4	37.0
0010	189	00.1	0010	_0.0		930	0010	0.1	0		894	01		07.0
	134					928					990			
	101					930					873			
	100					933					701			
0925	99	30.1	30.5	28.1	1225	934	54.8	58.0	35.9	1525	323	81.9	84.0	37.2
	98			_		944					311			_
	101					930					305			
	102					931					299			
	118					933					305			
0930	165	30.1	30.7	26.8	1230	947	55.6	58.8	36.8	1530	308	81.9	83.2	37.9
	174					959					346			
	167					955					527			
	138					950					815			
	109					940					874			
0935	130	30.3	31.7	26.0	1235	950	56.5	59.6	34.5	1535	862	81.9	83.8	37.4
	132					965					340			
	169					959					324			
	172					955					326			
	164					978					331			
0940	202	30.6	32.2	28.3	1240	986	57.5	60.6	35.6	1540	355	82.0	83.3	36.2
	250					993					534			
	217					997					723			
	128					998					641			
	131					991					490			
0945	139	30.7	32.7	28.6	1245	988	58.3	61.3	34.6	1545	610	82.0	83.5	38.1
	128					990					418			
	117					998					273			
	123					994					237			
	133					1000					228			
0950	184	30.9	33.2	27.8	1250	1009	59.0	62.1	35.9	1550	248	82.2	82.9	36.0
	351					1005					283			
	475					1011					316			
	369					1016					484			
	259					1017					455			
0955	293	31.6	33.4	27.5	1255	1015	59.9	62.9	35.4	1555	473	81.9	82.9	35.0
	269					1005					450			
	351					1005					516			
	471					1004					565			
1000	492	31.7	33.6	28.7	1300	1008	60.8	63.8	35.0	1600	550	81.8	83.0	37.3
	544					1020					620			
	583					1019					608			

	586					1023					472			
	586					1027					395			
	591					1018								
1005	593	32.0	34.8	28.8	1305	991	61.6	64.7	36.5	1605		81.9	82.9	37.6
	595					984								
	600					983								
	604					981								
	604					994								
1010	607	32.8	35.6	29.9	1310	990	62.7	65.6	34.3	1610				
	613					993								
	616					985								
	620					987								
	626					999								
1015	629	33.6	36.4	30.8	1315	1003	63.7	66.5	35.5	1615				
	619					1014								
	633					1030								
	634					1030								
	644					1028								
1020	644	34.2	37.0	29.8	1320	987	64.6	67.4	36.0	1620				
	644					990								
	648					1037								
	652					1020								
	655					1015								
1025	647	34.7	37.7	32.9	1325	1001	65.4	68.2	36.0	1625				
	652					1006								
	655					1012								
	662					1004								
	667					990								
1030	670	35.3	38.3	32.5	1330	996	66.4	69.0	35.5	1630				
	674					994								
	675					987								
	680					991								
	680					994								
1035	687	35.9	39.0	29.9	1335	1005	67.1	69.8	38.0	1635				
	691					1002								
	692					1001								
	697					994								
	702					991								
1040	707	36.7	39.8	33.2	1340	990	68.0	70.6	36.5	1640				
	710					988								
	713					993								
	713					994								
1045	720	37.4	40.5	33.2	1345	995	68.9	71.5	36.9	1645				
	722		.0.0	20.2		1003	20.5	. 1.0	20.5	_0.0				
	724					1001								

	729					1003						
	730					996						
	733					1007						
1050	736	38.2	41.3	30.5	1350	1018	69.7	72.3	36.0	1650		
	738					1015						
	742					1027						
	743					1018					 	
	743					1008						
1055	748	39.0	42.2	31.8	1355	1002	70.5	73.1	37.7	1655		
	749					1006						
	751					1005						
	755					1003						
	762					1010						
1100	763	39.7	43.0	31.4	1400	1011	71.4	73.9	38.9	1700		
	764					1012						
	767					1011						
	771					996						
	774					1008						
1105	779	40.6	43.7	31.6	1405	1031	72.2	74.8	36.5			
	784					1035						
	788					1034						
	787					1035						
	789					1044						
1110	790	41.4	44.7	32.5	1410	1040	73.0	75.7	38.3			
	792					905						
	796					838						
	799					727						
	792					998						
1115	796	42.2	45.5	32.5	1415	1003	73.7	76.0	36.3			
	796					1015						
	802					1019						
	802					1021						
	809					1013						
1120	817	43.2	46.3	30.8	1420	1005	74.6	77.2	38.7			
	823					997						
	827					977						
	829					967						
446-	832		47 0	<u></u>	4 4 6 -	978	75 0		20.0			
1125	834	44.0	47.3	33.5	1425	987	75.2	77.6	38.2			
	833					993						
	832					993					 	
	830					997						
1130	829	44.8	48.0	32.2	1430	1004	75.8	78.3	40.8			
	834					995						
	843					987						

	845					985						
	846					975						
	843					950						
1135	843	45.8	49.0	32.7	1435	965	76.6	79.0	37.2			
	845					968						
	848					965						
	851					960						
	856					966						
1140	857	46.8	49.8	33.2	1440	968	77.2	79.7	39.5			
	861					978						
	861					966						
	863					955						
	863					968						
1145	870	47.8	50.6	35.2	1445	968	77.8	80.2	38.6			
	876					962						
	891					978						
	886					993						
	883					997						
1150	877	48.4	51.6	33.9	1450	972	78.5	80.9	37.5			
	876					958						
	877					945						
	874					936						
	876					934						
1155	873	49.4	52.5	33.7	1455	930	79.0	81.5	38.1			
	878					925						
	886					947						