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SLAM-BASED MAPPING FOR OBJECT RECOGNITION 

 

 

ABSTRACT 

 

 

The aim of this project is to map an unknown environment, autonomously navigate to the 

2D navigation goal set by user and recognize object placed in object database by using a 

custom made differential-drive mobile robot that works under the Robot Operating 

System (ROS) framework. The concept of deploying the robot in search and rescue 

mission, is being implemented so that the efficiency of search and rescue mission can be 

improved at a lower cost. The custom made robot is able to navigate in an unknown 

environment and feedback sensory data from Kinect Xbox 360 and odometry data to PC. 

Therefore, it is important for the robot to feedback a reliable and accurate odometry data 

efficiently so that the robot is able to localize itself in the unknown environment. The 

project architecture includes a personal laptop, a Kinect Xbox 360 sensor, the custom 

made robot and Arduino Mega 2560. The personal laptop acts as the command center 

where the Simultaneous Localization and Mapping (SLAM) algorithm are run by 

receiving odometry data from Arduino on the custom made robot. A USB connection is 

established between the Arduino, custom made robot and PC. After a map of the unknown 

environment is built, the Adaptive Monte Carlo Localization (AMCL) is used to localize 

the robot and Dijkstra’s algorithm is deployed to compute the shortest path to the 

destination goal. The SIFT (Scale-Invariant Feature Transform) is used to extract features 

from the current frame and match with the object database to identify and recognize the 

object whenever the robot come across the object. The location of object can also be 

obtained in respect to the location of Kinect sensor by using 3x3 Homography matrix. 

Implementation of project has been carried out successfully and the custom made robot is 

able to map and recognize object accurately. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1  Project Overview 

 

During disasters, it is critical to rescue the survivors who get trapped in the natural disaster such 

as earthquake, fire or flood, accident in manufacturing plant or manmade such as wars and terrorist 

attacks within the shortest period of time. According to the field of Urban Search and Rescue 

(USAR), there is a higher probability to rescue a victim within the golden 48 hours of rescue 

operation. Robots can be deployed in search rescue operating in recent years. Robots are also 

achieving a remarkable milestone in various fields which are manufacturing, education, medicine, 

military and industry.  

 

A robot is a programmable mechanical device that is capable of performing tasks 

respectively. Therefore, robots can aid human in search and rescue activity. Robots are deployed 

to assist human tasks in order to reduce fatigue, improve efficiency, precision and quality of 

product as a robot can work for 24/7 (Khatib et al., 1999).  Therefore, rescue robotics is one of the 

motivation in creating a truly autonomous system. Autonomous robot needs to have the 

capabilities of navigating around the dynamic environments, able to avoid obstacles, able to handle 

unpredictable situations and perform tasks and interact with its environment without the 

interference from human (Birk and Carpin, 2006). 

 



27 

 

Robots are widely used in the field of medicine such as telepresence, surgical assistants, 

medical transportation robots and even robotic prescription dispensing systems. Robots are also 

used to transport medicine and necessary aids among the patient and the medical team to reduce 

the burden of medical team. There is also application of robot which helps in increasing precision 

of surgery and even automated medicine dispensing systems as the biggest accuracy of robots are 

speed and accuracy. 

 

From the above it is observed that robots are also expected to play an important role in 

search and rescue field. Rescue robots are equipped with hardware and able to communicate to 

computer to act as a life-saving tool. The objective of rescue robot is to cover a large area as fast 

as possible to provide information about the environment to the human rescue team. Robot can 

also be able to generate map of the environment and detect the victim to be saved. Rescue robots 

serve the purposes to enter those environment that is too small or too dangerous for human rescue 

team (Lafih and Meer, 2015).  

 

 

 

1.2 Problem Statements 

 

During the occurrence of disaster such as accident in manufacturing plant, it is difficult to rescue 

the human beings under the debris or rubble. However, in search and rescue activity, time is very 

critical as a large unknown area need to be covered by human rescue team within a short period of 

time. Detection of human in appropriate time is very important in such situations. In order to rescue 

victim within the first 48 hours of the rescue operation as fast as possible, a robot can be deployed 

to send the detected victims’ location to a laptop PC as robot can operate 24/7. Then, these 

locations were marked and saved so that human rescue team can get to the location more accurately 

and thus saves time of searching the victim. 

 

 

 Furthermore, the robot designed is also meant to aid the search and rescue activity in an 

unknown environment. Therefore, the ability of robot to navigate and build a map in an unknown 
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environment is very important. Rescue robots should also be able to sense the environments by 

using sensors to avoid obstacle. Performance of rescue robots should be stable enough to aid the 

search and rescue activity. The accuracy and stability of sensory data greatly affects the 

performance and accuracy of navigation of robot and also directly affect the path planning process. 

Location identification process also greatly depends on navigation process. 

 

 In order to identify the location of an object, the object must first be recognized by 

extracting features from the object. Once there is enough features extracted, the object can be 

detected and recognized, the object’s position and orientation with respect to the pose of camera 

can be displayed in terms of image pixels. 

 

 

 

1.3 Aims and Objectives 

 

The objectives of the thesis are shown as following: 

1) To implement SLAM on custom-made robot working under ROS framework in simulation 

and practical implementation. 

2) To generate a 2D map about the unknown environment using SLAM-GMapping algorithm 

and 3D map using RGBD-SLAM algorithm. 

3) To incorporate navigation stack into the robot for autonomous navigation and 2D 

navigation goal. 

4) To identify, recognize and localize object without repeating and missing. 
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CHAPTER 2 

 

 

 

1 LITERATURE REVIEW 

 

 

 

2.1 Mobile Robot Navigation 

 

Mobile robot navigation is a process of first acquiring the location and orientation of self-

localization and then plan a path or route to allow the robot to reach its targeted destination by 

taking into account both sensor data and environment data. According to Leonard and Durrant-

Whyte, the issue in handling navigation can be concluded into three questions which are “Where 

Am I?”, “Where am I going?” and “How should I get there?” (Leonard and Durrant-Whyte, 1991). 

Robot navigation basically consists of three prime elements which are mapping, localization and 

path planning. Mapping is a process of generating a map based on sensory odometer data and 

environmental exploration. Localization is a process of identifying robot’s own location based on 

the map build. Path planning is the process of navigating to the targeted location by using the 

shortest path distance between the robot’s own location and the desired location (Pala et al., 2013). 

Robot need to run computations and calculations based on the sensory data collected to obtain the 

shortest path to the targeted location based on mapping and localization results as well. 

 

 

 

 

2.1.1 Localization and Mapping 

 

Navigation is a fundamental ability of a robot to localize itself based on robot orientation and 

location. The consistency and accuracy of sensor data play an important role to determine the best 
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path to get to the targeted location (Tang, 2008). The past location of the robot and the future 

location it desired based on map making also determines the path calculated.  

 

 

 

2.1.1.1 Dead Reckoning 

 

Dead reckoning which is derived from “deduced reckoning” of sailing days is a simple 

mathematical procedure (Borenstein et al., 1997). Dead reckoning computes the present location 

by taking consideration of past locations and information from velocity and angular motion over 

a known period of time (Shufeldt, Dunlap and Bauer, 1999). Dead reckoning is the fundamental 

element of navigation skills (Borenstein et al., 1997). 

 

 Dead reckoning plays an important role in mobile robot navigation and will simplify the 

navigation process if accuracy of this method can be enhanced (Xu, Tan and Chen, 2002). Dead 

reckoning obtains orientation (direction), position linear and angular velocity of robot by 

computing basic trigonometry calculations. Dead reckoning is widely used in Autonomous Mobile 

Robot (AMR) due to the nature of simplicity and easy to debug (Park, Chung and Lee, 1998). 

Figure 2.1 shows the location of robot is computed by using dead reckoning. 

 

 

Figure 2.1: Dead Reckoning of the Robot (Zhenjun, Nisar and Malik, 2014) 
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 Inertial sensors provide the robot with velocity and yaw angles which is measured by 

sensors integrated to the wheels of robot. Dead reckoning estimates the present location by using 

information relative to robot’s starting points. Dead reckoning does not rely on external signals. 

Therefore, dead reckoning is known to have the features of cheap, simple and fast estimating time 

in current position of the robot (Cho et al., 2011). Although dead reckoning is the backbone of 

robot localization system but the accuracy is not obviously improved to obtain an accurate and 

reliable location estimation over a long period of time (Lee et al., 2008). Besides easy 

implementation and fast speed, dead reckoning results in accumulated errors unless error 

correction algorithm is integrated to eliminate any accumulated errors (Varveropoulos, 2005). 

 

 Odometry data alone is insufficient to provide a consistent and accurate position localized 

by the robot in using dead reckoning method (Von Der Hardt, Wolf and Husson, 1996). 

Accumulation of small errors due to robot’s slippage in linear or rotational acceleration might lead 

to serious error in the process of self-localization of robot (Kanayama et al., 1990). Since dead 

reckoning is based on odometry data from the wheels, wheel slippage or mechanical rubber 

deformation and terrain roughness may lead to inability of the robot to keep track of its belief of 

its position over a long distance in a considerable amount of time (Tsai, 1998). The distance 

travelled is proportional to the accumulated error in estimating position of robot. As the distance 

travelled increases, the percentage error in position of robot also increases. Since the area of 

environment of experiments is expected to be large, dead reckoning is clearly not a suitable 

implementation to be used. 

 

 

 

2.1.1.2 Simultaneous Localization and Mapping (SLAM) 

 

SLAM is derived from a question raised from the robotics community which is whether it is 

possible to perform self-localization when placing a mobile robot in an unknown environment by 

building a reliable map of the environment. Therefore, a SLAM problem has been known as a 

“holy grail” for making the dream of fully autonomous mobile robot to come true (Bailey and 

Durrant-Whyte, 2006). An autonomous robot is known as a mobile robot with the capability of 
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react to responses and perform designated specific task by itself without intervention from human 

or user. Autonomous robot can also be known as an artificial intelligence robot which is capable 

of “thinking” and “acting” based on the results of computations and decision making (Hadjia et 

al., 2015). 

 

 SLAM technique is meant to solve the problem of employing a mobile robot to construct 

a map of an unknown environment and thus enabling it to navigate the environment based on the 

map constructed (Riisgaard and Blas, 2004). Figure 2.8 shows the map constructed by mobile 

robot through repeating observations of environment and landmark in an unknown environment. 

Mobile robot does not need to have a prior knowledge about the location of itself and environment. 

Both the process of building map and computing robot’s location should be done in real-time 

implementation (Bailey and Durrant-Whyte, 2006). Optimization of performance of mobile robot 

in terms of landmark extraction and estimation, robot previous and current estimation of position, 

efficient path planning and reduction of localization error are the objectives of introducing SLAM 

algorithm (Leonard and Durrant-Whyte, 1991). SLAM algorithm is built up with multiple sections 

which are extracting and updating of landmark, associating of data, estimating and updating of 

state (Riisgaard and Blas, 2004). 

 

 An autonomous vehicle or mobile robot is equipped with a set of sensors such as 

accelerometer and gyrometer which are capable of measuring the rotation of wheels and camera 

to act as a vision sensor which is capable of extracting landmarks from the environment relative 

to the vehicle. The landmarks may be static or dynamic (Dissanayake et al., 2001). A group of 

landmarks is known as priori in applications of robotics (Cadena et al., 2016). The mobile robot is 

placed at a starting point in an unknown environment with no knowledge about the position of 

landmarks relative to the mobile robot. Observations of location of landmarks have been recorded 

and computed as the mobile robot roams around to compute the accurate position of the robot 

(Dissanayake et al., 2001). However, the presence of dynamic landmarks can lead to inaccuracy 

of building of map and error in SLAM algorithms. This is a matter that cannot be underestimated 

as most mobile robot applications are meant to work in a non-static environment (Wolf and 

Sukhatme, 2005).  
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Extended Kalman Filter (EKF) is the main component in SLAM algorithm (Riisgaard and 

Blas, 2004). Corners and edges of wall are also been considered as landmarks to improve the 

accuracy of SLAM method. EKF is used to estimate the accurate position of the robot and 

landmarks present in the unknown environment (Wolf and Sukhatme, 2005). The overview of 

SLAM process integrated with Extended Kalman Filter (EKF) is shown in Figure 2.2. Figure 2.3 

to Figure 2.7 show the relationship between robot, sensor and odometry data and the compensation 

between the calculation of sensor and odometry data. 

 

 

 

Figure 2.2: An overview of SLAM process integrated with Extended Kalman Filter, EKF 

(Riisgaard and Blas, 2004) 

 

 

 

 



34 

 

Figure 2.3: The triangle is a representation of robot. The stars are representation of 

landmarks. The lightning are representation of location of landmarks based on measurement 

of sensors (Riisgaard and Blas, 2004). 

 

 

 

 

Figure 2.4: The robot estimates its current position and odometry provides distance travelled 

by robot (Riisgaard and Blas, 2004). 

 

 

 

 

Figure 2.5: Sensors are used to measure the location of landmark relative to position of robot 

but it does not match with the location provided odometry data. Thus, the robot is not located 

at where it thinks it is (Riisgaard and Blas, 2004). 
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Figure 2.6: Generally, the robot relies more on sensors than its odometry. Location of 

landmarks are used to determine the current position of the robot. Dashed triangle 

represents the position of robot originally it thought it was (Riisgaard and Blas, 2004). 

 

 

 

 

Figure 2.7: Straight line triangle represents the actual location of robot. Inaccuracy of 

sensors leads to inability of robot to know its precise location. However, the estimation is 

better when consider both odometry and sensor data. The dotted triangle is the 

representation of robot where it think it is. The dashed triangle tells where it was and last 

straight line triangle tells where it actually is (Riisgaard and Blas, 2004). 
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Figure 2.8: Map constructed by mobile robot through repeating observations of environment 

and landmark in an unknown environment (Riisgaard and Blas, 2004).  

 

 

 SLAM problem is solved by using a probability distribution which describes the past 

landmark locations and vehicle locations at certain time by given the control inputs and 

observations of vehicle towards landmarks. The probability distribution is shown below (Bailey 

and Durrant-Whyte, 2006): 

 

𝑃(𝒙𝑘, 𝒎|𝒁0:𝑘, 𝑼0:𝑘, 𝒙0)               (2.01) 

 

Given that: 

𝑿0:𝑘 = {𝑥0, 𝑥1, … , 𝑥𝑘} = {𝑋0:𝑘−1, 𝑥𝑘}               (2.02) 

 𝑼0:𝑘 = {𝑢1, 𝑢2, … , 𝑢𝑘} = {𝑈0:𝑘−1, 𝑢𝑘}                (2.03) 

𝒎 = {𝑚1, 𝑚2, … , 𝑚𝑛}                   (2.04) 

𝒁0:𝑘 = {𝑧1, 𝑧2, … , 𝑧𝑘} = {𝑍0:𝑘−1, 𝑧𝑘}                 (2.05) 

 

where 

𝑿0:𝑘 = the history of vehicle locations 

𝑼0:𝑘 = the history of control inputs 

𝒎 = the set of all landmarks 

𝒁0:𝑘 = the set of all landmark observations 

 

 

By using the observation model, the probability of obtaining the landmark observations, zk 

given the location of landmark, m and location of robot, xk. Assumption is made when the location 
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of landmark and robot are obtained, the landmark observation is conditionally independent of map 

of surrounding unknown environment and the current position of robot. The observation model 

used in SLAM algorithm is shown below (Bailey and Durrant-Whyte, 2006): 

 

   𝑷(𝒛𝑘|𝒙𝑘, 𝒎)                            (2.06) 

 

where 

𝒛𝑘 = landmark observations 

𝒙𝑘 = location of robot 

𝒎 = location of landmark / map 

 

By using the motion model, the probability distribution of state of robot can be determined. 

Markov process is used to predict the state transition of robot where the current position 𝒙𝑘 

depends on the previous position of robot 𝒙𝑘−1 whereas the input to control the movement of robot 

is conditionally independent of both the landmark observations and the map of surrounding 

environment. The motion model used in SLAM algorithm is shown below (Bailey and Durrant-

Whyte, 2006): 

 

          𝑷(𝒙𝑘|𝒙𝑘−1, 𝒖𝑘)                (2.07) 

     

 

where 

𝒙𝑘 = current state of robot 

𝒙𝑘−1 = previous state of robot 

𝒖𝑘 = control input of robot 

 

 

A major obstacle in overcoming the SLAM problem is associating data between previous 

observations of landmark and current observations of landmark. Inaccuracy in associating data 

may lead to serious failure of the SLAM algorithm (Bailey and Durrant-Whyte, 2006). Therefore, 

EKF which is a probabilistic method is used to limit the effect of inaccurate reading of sensor and 
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the accuracy of map constructed by mobile robot. This is known as EKF-SLAM (Naminski, 2013). 

FastSLAM is introduced by integrating both Particle Filter and Extended Kalman Filter which 

leads to higher data accuracy. FastSLAM employs modified particle filter to estimate the posterior 

along the path of robot by breaking down SLAM problem into problems of collecting landmark 

estimation and problem of robot self-localization (Montemerlo et al., 2002).  Particle filters were 

also used for multi-robot SLAM. Without prior knowledge of initial poses of robots, multi-robot 

SLAM is able to combine all data from all robots to construct a single map. When a Robot 1 

encounter with another Robot 2, they measure their relative location and fed the measurements 

into a filter and then combines into a common map (Howard, 2006).  

 

 Despite of the high accuracy of SLAM algorithm, the computations are complex and 

intensive as robot constructs the map by every move of robot along the map (Zhang and Martin, 

2013). Even though computational complexity can be deal with an advanced algorithm, there are 

still limitations to SLAM applications such as limitation to constructing map in outdoor 

environments (Thrun et al., 2004) and limitation to specific conditions and environments (Cheein 

et al., 2010). However, the performance of SLAM algorithm is good for the mobile robot to obtain 

information of the unknown environment to navigate and localize in unknown environment 

(Dissanayake et al., 2011). 

 

 

  

2.1.1.3 Monte Carlo Localization (MCL) 

 

Monte Carlo localization (MCL) is a combination of Kalman filter and particle filter algorithm 

(Chen et al., 2011). In order to navigate in a known indoor environment, a mobile robot must has 

knowledge about its position on the map. Monte Carlo localization is used to estimate the position 

of robot and orientation by employing particle filter (Naveed and Ko, 2014). MCL which is a 

probabilistic approaches is known as one of the reliable solution to provide real-time estimation of 

position in localizing robot (Dellaert et al., 2000). 
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 There are two phases in computing the global position of mobile robot by using MCL 

which are prediction phase and update phase. Global position can be used to navigate and planning 

of path in a complicated known environment. Prediction phase is the first phase in which a motion 

model is used in predicting the current position of robot by using predictive Probability Density 

Function (PDF) in Bayes filter. Update phase is the second phase in which a measurement model 

is used to obtain readings from sensors and then compute to obtain a posterior PDF (Dellaert et al., 

2000).  

 

 Fundamental idea of MCL algorithm is to collect a group of samples which is also known 

as particles. The samples represents the possible location of robot currently located in the known 

environment. Firstly, the samples are evenly distributed over a few possible location where the 

robot might be and every sample is given the same importance of weight. However, as the robot 

moves and times passes, those samples which are nearer to the current exact location will have 

more weightage than those who is further than the exact location (Fox et al., 1999). Figure 2.9 

shows the distribution of the importance weights of particles p(z|x) assigned when a door need to 

be sensed in the environment (Zhenjun, Nisar and Malik, 2014).  

 

The overview of MCL is as follows: 

1. A set of samples is initialized by evenly distributing it over the possible locations with the same 

importance weightage. 

2. The process is repeated until a spike of importance weight of samples is obtained: 

i. The robot is moved over a constant distance and readings from sensors have been 

taken. 

ii. Movement model is used to update the distribution of each samples 

iii. Sensor model is used to reassign the importance weightage of each sample based 

on their likelihood of new locations by using sensor readings. 

iv. A new set of samples is created based on the updated importance weightage of each 

sample. 

v. This new set of samples has been assigned to be the current set of samples. 
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 The accuracy of the computation results of MCL can be improved by increasing the total 

number of samples. However, there is a tradeoff between computational accuracy and efficiency 

as larger number of particles leads to lower computation efficiency in real-time applications 

(Naveed and Ko, 2014). Particle filters are easy to implement and it can be fused with various 

types of sensors, motion dynamics and it focus on the areas which has highest likelihood, therefore 

MCL has been used to solve many localization problems (Thrun et al., 2001). However, the 

performance and accuracy of MCL algorithm relies greatly on the symmetry of map and different 

configurations of maps might affect the result and number of iterations need to be computed to get 

the exact location of robot. MCL requires a relatively large amount of iterations to get accurate 

results and measurements from the same orientation. However, there is one problem faced in using 

MCL algorithm in real world, that is, the presence of noise will leads to uncertainties in the map 

built (Lee and Buitrago, 2015). 

 

 

Figure 2.9: Distribution of the importance weights of particles p(z|x) assigned when a door 

need to be sensed in the environment (Zhenjun, Nisar and Malik, 2014). 

2.1.2 Path Planning 

 

In the field of autonomous robotics, path planning is an important element in order to enable a 

robot to move from one point to another targeted destination by using the shortest path. By using 

the shortest path, many undesirable turning and braking can be avoided and this leads to less 

computations time and lower cost.  
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 Path planning also helps to determine a path to avoid obstacle from a starting point to a 

targeted goal which in turns also enhances the performance of autonomous navigation in terms of 

time consumed, energy consumed and distance travelled (Raja and Pugazhenthi, 2012). In order 

to navigate optimally in an environment, the robot must be able to avoid obstacle and have a precise 

information about the map. Path planning involves a series of decision sequence (Duchoň et al., 

2014). By dividing the map into nodes that are connected by edges, the shortest path would enable 

the robot to move from node to node as shown in Figure 2.7. 

 

 

 

2.1.2.1 Dijkstra’s Shortest Path Algorithm 

 

Dijkstra’s shortest path algorithm works on a basis of repeatedly computing the shortest distance 

from one source node to another vertices node and computes the nearest vertices node from the 

source node. For Dijkstra’s algorithm to work correctly, the edges of the directed-weighted graph 

must not be negative. 

 

 Initially, the source node is chosen and the distance to source node itself is zero. Next, the 

distances to all other vertices are set to infinity to indicate that these vertices have not been 

processed yet. Then, the distance to nearest adjacent nodes are computed and the shortest distance 

path will be chosen. At this stage, the adjacent node will become the source nodes and the 

computation will be repeated until there is no outgoing edges from the vertices anymore. When 

there are no more vertices, the algorithm will be terminated. After terminating the algorithm, a 

shortest distance from one source node to another vertex is obtained (Abhishek et al., 2014). For 

example as shown in Figure 2.10, the node a is the source node. The adjacent nodes from the 

source node is node b, node c and node f. After computing the distance, the distance from node a 

to node b is the shortest path which is a weightage of 7. Next, node c now become the source node 

and the adjacent nodes are node f and node d. Node c to node f has the least weightage of 2. Then 

from node f, the targeted node has been reached which is node e. Since we have set node e as the 

targeted node, there should be no outgoing edges from node e. Thus, the Dijkstra’s shortest path 
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algorithm terminates and gives the shortest path from node a to node b to node c to node f and 

finally node e. Figure 2.10(b) shows the shortest path found. 

 

           

  (a)      (b) 

Figure 2.10: (a): The distance from source node to adjacent node is calculated and the 

shortest distance is chosen. (b): The shortest path is found from node a to b to c to f and 

finally to node e (Abhishek et al., 2014). 

 

 

 However, there is a disadvantage in Dijkstra’s shortest path algorithm that it is computation 

intensive as it undergoes a blind search and it is time consuming and waste of resources (Abhishek 

et al., 2014). 

 

 

 

2.1.2.2 A Star (A*) Algorithm 

 

A* algorithm which is also known as A star algorithm is fundamentally the same as Dijkstra’s but 

it also includes a heuristic approach. A* algorithm employs a heuristic approximation, h(x) which 

gives the estimation of the optimal route that goes through the starting point to the ending point 

(Abhishek et al., 2014). A star algorithm is also known as best first search approach as it visits the 

nodes by following the order of heuristic approximation and each cell in the map uses the equation 

below to compute their value: 



43 

 

 

        f(v) = h(v) + g(v)                (2.08) 

 

where   

h(v) = heuristic distance between the cell to the goal state 

g(v) = length of path chosen from the initial state to the desired goal state    

via the chosen sequence of cells 

f(v) = sum of heuristic distance and length of path chosen 

 

 

 The cell which has the lowest value of f(v) will be the next sequence in the path. The reason 

A* algorithm has better advantage than Dijkstra’s algorithm is because it starts with the favouring 

vertices that are near to the initial point and used Best First-Search method to find those favouring 

vertices that are near to the target point (Duchoň et al., 2014). Figures below illustrate more about 

the process of A* algorithm. 

 

 

Figure 2.11: Assume green square represents the starting point and red point represents the 

goal point and the blue squares represent the obstacles that separates the two points (Abishek 

et al., 2014). 
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Figure 2.12: Search of 8-neighbouring nodes from the starting point (Abhishek et al., 2014). 

 

 

 

Figure 2.13: The Heuristics of 8-adjacent neighbouring nodes have been calculated by 

following f(n) = g(n) + h(n) (Abhishek et al., 2014). 

 

 

Figure 2.14: The nodes that are closer to the goal point from the starting point are chosen 

and shaded with blue border box. Then the nodes that have smallest value of f(n) will be the 

path chosen (Abhishek et al., 2014). 
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Figure 2.15: The red dots represent the path chosen with the smallest value of f(n). This 

shows the shortest path computed by using A* algorithm (Abhishek et al., 2014). 

 

 

 

2.2 GMapping Algorithm 

 

Gmapping algorithm make use of Rao-Blackwellized particle filter to solve grid map SLAM 

problem by estimating the location of robot and landmark observations by using the map and past 

trajectory of robot. Another characteristics of Rao-Blackwellized particle filter in SLAM algorithm 

is the use of factorization where the path of robot is first estimated to compute the surrounding 

environment based on the path of robot. By estimating the path of robot, a map which relies greatly 

on the estimation of pose of robot can be generated in an efficient way. The factorization equation 

used in Rao-Blackwellized particle filter is shown below (Grisetti, Stachniss and Burgard, 2007): 

 

     𝑃(𝑥1:𝑡, 𝑚 | 𝑧1:𝑡, 𝑢1:𝑡−1) = 𝑃(𝑚 | 𝑥1:𝑡, 𝑧1:𝑡)  ∙ 𝑃(𝑥1:𝑡 | 𝑧1:𝑡, 𝑢1:𝑡−1)               (2.09) 

 

where 

𝑥1:𝑡 = trajectory of robot 

 𝑧1:𝑡 = landmark observations 

𝑢1:𝑡−1 = odometry measurement 

𝑚 = map 

 

 Particle filter used in Rao-Blackwellized is the sampling importance resampling (SIR) filter. 

There are four steps in building a map by using the sensor and odometry information and also Rao-
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Blackwellized SIR filter which are sampling, importance weighting, resampling and map 

estimation. Sampling is the process to obtain the next set of particles with information from the 

previous set of particles. Motion model is used to sample the probability distribution by a factor 

of 𝜋  stated in equation 2.10. Then each particle is assigned with an importance weight, wt 

computed by using the equation below (Grisetti, Stachniss and Burgard, 2007): 

 

        𝑤𝑡
(i)

 =  
𝑃(𝑥1:𝑡

(𝑖)
 | 𝑧1:𝑡,𝑢1:𝑡−1)

𝜋(𝑥1:𝑡
(𝑖)

 | 𝑧1:𝑡,𝑢1:𝑡−1)
               (2.10) 

 

where 

𝑤𝑡 = importance weight 

𝑥1:𝑡 = trajectory of robot 

 𝑧1:𝑡 = landmark observations 

𝑢1:𝑡−1 = odometry measurement 

 

 

  

 Then resampling is done by thresholding the number of particles for continuous 

distribution according to the importance weight of each particle. After resampling, all the particles 

will have the same value of importance weight. Finally, by taking into account both the past history 

of landmark observation and path of robot, an estimation of the map of surrounding environment 

can be generated (Grisetti, Stachniss and Burgard, 2007). Scan matching algorithm which is the 

matching of the previous laser scan input and current laser scan input is used to obtain the landmark 

observation. The laser scan input data is used in estimation of the pose of robot (Balasuriya et al., 

2016).  

 

 

 

2.3 RGB-D Simultaneous Localization and Mapping (SLAM) 
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In robotics application, it is important for a robot to know its location in respect with the world so 

that the robot can navigate around the world. In order to achieve this objective, the 3D models of 

the surrounding environment and the localization of pose of camera need to be estimated in parallel. 

The input datas will be from Kinect camera as Kinect is able to provide both depth images and 

colour images at 30 frame per second.  

 

There are four stages in RGB-D SLAM which are features extraction, features matching, 

transformation estimation and lastly Octomap generation. Features extraction is done on the input 

colour images, then these features are matched with the previous images. The position of feature 

points on the depth images are used to compute the transformations between any two frames by 

using RANSAC (Random Sample Consensus). Finally, an Octomap library is used to generate a 

voxel occupancy map of the environment. The trajectory of robot can also be estimated by 

estimating the trajectory of pose of camera mounted on the robot (Endres et al., 2012). Trajectory 

estimated is divided into SLAM front-end and back-end as shown in Figure 2.16. 

 

 

Figure 2.16: Schematic Overview of RGB-D SLAM (Endres et al., 2012) 

 

 

 In the front-end stage, keypoints are detected from the RGB images and descriptors are 

then extracted from the images by using various features descriptors such as SURF (Speeded Up 

Robust Features), SIFT (Scale-Invariant Feature Transform) and ORB (Oriented FAST and 
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Rotated BRIEF). The locations of features are then projected to 3D coordinates by using the depth 

measurements obtained from depth images of RGB-D camera. The transformation between current 

frame and previous frame is obtained through the transformation of pose of camera. Then 

RANSAC algorithm is used to eliminate the outliers and unstable data. This is done by eliminating 

those feature points that are less than the Euclidean distances. Those feature points that match with 

the pairwise Euclidean distances are consider as inliers and the inliers are used for computation of 

refined transformation of pose of camera. The transformation between camera poses is then used 

to form the edges of global pose graph (Endres et al., 2012). 

 

 In the back-end stage, the global pose graph is optimized by using g2o framework which is 

a graph optimizer that is widely used in SLAM algorithm. By minimizing the non-linear error 

function presents in the pose graph, the pose graph can be optimized and loop closures can be 

formed. The non-linear error function is shown below (Endres et al., 2012): 

 

𝐹(𝑥) = ∑ 𝑒(𝑥𝑖, 𝑥𝑗 , 𝑧𝑖𝑗)
𝑇

Ω𝑖𝑗𝑒(𝑥𝑖, 𝑥𝑗 , 𝑧𝑖𝑗)<𝑖,𝑗>∈𝑐                (2.11) 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝐹(𝑥)                  (2.12) 

  

where 

x = vector of pose representations 

xi = mean of poses 

zij = information matrix 

 

 

 

 

2.4 Robot Operating System (ROS) 

 

Robot Operating System (ROS) is a framework that provides tools and libraries and is widely used 

in robotics field. ROS is fully compatible to Linux (Ubuntu) distributions and ROS usually are 

matched with respective Ubuntu distributions such as ROS Kinetic is compatible for Ubuntu 

16.04.4 LTS. ROS fully supported some of the popular robot nowadays which are Turtlebot, 
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Publish Messages 

Pepper and Robonaut. The ROS is an open source and free to use framework for research purpose 

and the functionalities of ROS can be expanded by contributing packages to ROS by developers. 

ROS also supports various programming languages such as Python, C++ and Libs (Joseph, 2017). 

 

 Programs created on ROS are known as nodes where communication between nodes are 

through topics by defining subscribers and publishers connections within the nodes. Then the 

programs is launched together with the executables created by using a launch file and the command 

roslaunch. In order for all the nodes to communicate with each other, a master node named roscore 

is used. Without running roscore while executing ROS programs, the nodes will not be able to 

find each other to exchange messages. To start using ROS, a ROS package which encompasses all 

the programs (ROS nodes), executable files and CMake text files for compiling are created under 

a workspace (Tawil, 2017). The relationship between ROS master, nodes and topics is shown in 

Figure 2.17. 

 

 

 

 

 

 

 

 

 

Figure 2.17: Relationship between ROS master, nodes and topics 

 

 

 

2.5 Object Detection and Recognition 

 

Object detection is important in the robotics field as during the process of mapping and executing 

tasks, a robot needs to have information about the surrounding environment and location of objects. 

The working principle of object recognition is to identify objects in the real world from input image 
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of the world with prior information about the object models in object database. The ability of robot 

to recognize a known object which is placed in object database from different point of view will 

be helpful in assisting the search and rescue activity in locating the position of a victim or certain 

objects (Ekvall, Kragic and Jensfelt, 2007). 

 

 Features can be extract from the object to identify a match from the object database. There 

are usually two phase in object recognition process which are training phase and testing phase. 

Training phase is the stage where a set of interest points are selected by using feature descriptors 

algorithm whereas testing phase is the stage where the images in the current frame are compared 

to the database set by determining the matches of interest points (Bhosale Swapnali, Kayastha 

Vijay and Harpale Varsha, 2014). There are a few image processing algorithm that can be used 

such as SURF (Speeded Up Robust Features) and SIFT (Scale-Invariant Feature Transform) 

(Rublee et al., 2011). 

 

 

 

2.5.1 SURF (Speeded Up Robust Features) Algorithm 

 

SURF algorithm is a feature descriptor algorithm which focus on the number of feature pairs 

generated between the input image and image database. There are four steps in SURF algorithm 

which is shown in Figure 2.18. First step is interest point detection and then generate descriptor of 

the interest points in second step based on first and second order derivatives. Following step is to 

match the feature points descriptors are used to match with the input image where only inlier points 

within the object are considered. With interest point detection, local maxima of Fast-Hessian-like 

operator is used to determine the potential significant points which are located at the corners and 

junctions.  The Hessian equation is shown as below (Matas and Mikolajczyk, 2012): 

 

 𝐻(𝑥, 𝑦) =  [
𝐿𝑥𝑥 𝐿𝑥𝑦

𝐿𝑥𝑦 𝐿𝑦𝑦
]                                                 (2.13) 

 

where  
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Lxx (x,y,σ) = Convolution of input image with Gaussian second order differential  

         operators 

 

 

 

 

 

Figure 2.18: Flow of SURF Algorithm (Bhosale Swapnali, Kayastha Vijay and 

Harpale Varsha, 2014) 

 

 

 Then each of the keypoint in the neighbourhood is represented by distinctive feature 

descriptors which are invariant to orientation. This is done by calculating a set of pixels within a 

radius of 6σ in the neighbourhood by using the Haar wavelet in (x,y) directions. The σ stands for 

the scale of identified interest points. Haar wavelet filters is shown in Figure 2.19 where the dark 

side carries a weightage of -1 and the bright side carries a weightage of +1 (Mistry and Banerjee, 

2017).  

 

 

 

 

 

 

         (a)        (b) 

Figure 2.19: (a) Haar wavelet filters to compute responses in x direction 

         (b) Haar wavelet filters to compute responses in y direction 
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2.5.2 SIFT (Scale-Invariant Feature Transform) Algorithm 

 

SIFT algorithm is an algorithm used to detect local features and generate descriptors of objects. 

SIFT algorithm is invariant to rotation, orientation and also changes in scales. SIFT algorithm is 

divided into four stages which are detection of extrema of scale-space by using Difference of 

Gaussians (DoG), localization of potential keypoints, computation of orientation of each keypoint 

and lastly extraction of descriptor of each keypoint. Difference of Gaussians (DoG) is used to 

determine the candidate interest points by computing the scale space extrema of the input images 

using the equations below (Hamid et al., 2012): 

 

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼(𝑥, 𝑦)                          (2.14)           

𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎)                                                   (2.15) 

  

where 

𝐼(𝑥, 𝑦) = Digital Image 

𝐿(𝑥, 𝑦, 𝜎) = Scale-space Representation 

𝐺(𝑥, 𝑦, 𝜎) = Variable-scale Gaussian kernel with standard deviation σ 

 

 Then the points with low contrast values and unstable edge responses are eliminated in the 

process of localization of keypoints. A threshold has been set by computing the ratio of eigenvalues 

of Hessian matrix. By using the threshold value, those interest points that has an unstable spatial 

value will be eliminated as high ratio of eigenvalues of Hessian matrix represents unstable corner 

interest points whereas low ratio represents stable corner interest points. Extrapolation across the 

DoG images were done to localise the remaining interest points. Then orientation of each keypoint 

are computed and assigned to respective interest point. In the final phase, feature descriptors for 

each keypoint are computed. An array of 4x4 histogram was created with eight orientation bins for 
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each region as shown in Figure 2.20. Therefore, feature descriptors for SIFT algorithm is using a 

dimension of 128 (4 x 4 x 8 =128) (Khan, McCane and Wyvill, 2011).    

 

    X 

       

      

     

 

Figure 2.20: 4 x 4 Computed Orientation Histogram Arrays in 128 Dimension SIFT 

(Modified from Khan, McCane and Wyvill, 2011) 
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2.6 Summary for Robot Navigation (Localization and Mapping) 

 

Table 2.1: Summary for Robot Navigation in Localization and Mapping 

Author/Year Data 

Collection 

Techniques 

Advantages Disadvantages Accuracy Algorithm 

Used 

Park, Chung 

and Lee 

(1998) 

Uses basic 

trigonometr

y operations 

and 

odometry 

datas. 

Cheap, 

simple and 

fast process. 

Accumulates 

error and short 

term accuracy. 

Low Dead 

Reckoning 

Dissanayake 

et al. (2001) 

Uses 

acceleromet

er, 

gyrometer, 

odometry 

data and 

EKF. 

High 

accuracy 

and works in 

unknown 

environment

. 

Computational 

intensive and 

complicated 

algorithm. 

Very high 

accuracy. 

Simultaneo

us 

Localizatio

n and 

Mapping 

(SLAM) 

Naveed and 

Ko (2014) 

Uses 

odometry 

data, sensors 

and 

randomized 

particles. 

Fast, 

reliable 

accuracy 

and less 

memory 

intensive. 

Only works in 

unknown map. 

Higher 

accuracy 

compared 

to dead 

reckoning. 

Monte 

Carlo 

Localizatio

n (MCL) 
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2.7 Summary of Robot Navigation (Path Planning) 

 

Table 2.2: Summary for Robot Navigation in Path Planning 

Author/Year Data 

Collection 

Techniques 

Advantages Disadvantages Accuracy Algorithm 

Used 

Abhishek, 

Prateek, 

Rishabh and 

Neeti (2014) 

Shortest 

path 

between 

nodes. 

Fast, 

accurate and 

easy. 

Slightly 

computational 

intensive. 

Accurate Dijkstra’s 

Algorithm 

Abhishek, 

Prateek, 

Rishabh and 

Neeti (2014) 

Shortest 

path 

between 

nodes by 

using 

Heuristic 

approach 

Fast, 

accurate, 

and less 

computation 

than 

Dijkstra’s 

algorithm. 

Does not 

mention. 

Accurate A* 

algorithm 
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2.8 Summary of Object Recognition 

 

Table 2.3: Summary for Robot Navigation in Object Recognition 

Author/Year Data 

Collection 

Techniques 

Advantages Disadvantages Accuracy Algorithm 

Used 

Mistry and 

Banerjee 

(2017) 

Determine 

keypoints 

with 

Hessian 

matrix and 

non-maxima 

suppression. 

Fast, 

invariant to 

blur. 

Not stable to 

rotation and 

scale changes  

Accurate SURF 

Algorithm 

Mistry and 

Banerjee 

(2017) 

Use local 

extrema 

detection, 

non-maxima 

suppression 

and 

eliminate 

edge 

response 

with 

Hessian 

matrix. 

Invariant to 

rotation, 

scale 

changes and 

blur. 

Computational 

intensive and 

not good at 

illumination 

changes. 

Accurate SIFT 

algorithm 
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CHAPTER 3 

 

 

 

1 METHODOLOGY 

 

 

 

3.1 Design Specifications 

 

In this project, a framework that uses a mobile robot to generate a map in unknown environment 

and which is used to localize the victim is designed. The project interfaces include the use of a 

personal computer (PC) to transmit commands and receive signals from Kinect Xbox 360 (images, 

depth information and pointcloud) and Arduino Mega 2560 Robot (sensory and odometry data) as 

shown in Figure 3.1. PC is the command center for mobile robot and Kinect module. Wired 

connection is set up between PC and mobile robot using a common A to B Male/Male type 

peripheral USB 2.0 cable is used to receive and transmit signal from Arduino.  

 

 The robot navigation process starts with mapping. The starting point is set arbitrarily and 

the ending point is the point when the SLAM Gmapping algorithm done loop closing thread. 

However, the movement of wheel’s rotations, distance covered by wheels and encoder odometry 

data are used in computing the location of the robot. Once the robot is localized, the robot will 

detect the depth of the object in the map built and will navigate to the destination set by user 

through the path planned by the PC. 

 

 

 Next, RGBD SLAM is also launched to build a 3D map of the environment and also 

detecting the object desired by the user. Object counting and localization is carried out after 
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detecting the object that matches with the database. If robot recognized the landscape as object, 

the location of object will be computed after obtaining a 3x3 Homography Matrix from Kinect 

module. 

 

                        

                    

 

Figure 3.1: The interfaces between PC, mobile robot, Arduino Mega 2560 and Kinect Xbox 

360 
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CHAPTER 4 

 

 

 

RESULTS AND DISCUSSIONS 

 

 

 

4.1 Preliminary Work 

 

In this project, there are a few preliminary work was carried out to ensure that the project’s 

objectives are met and verify the design methodology as stated in previous chapter.  

 

 

 

4.1.1 Robot’s Specification 

 

As mentioned in Section 3.4, the robot is constructed using differential steering to turn right or left 

and also to move forward and backward. By setting the DC motor with encoder (left motor and 

right motor) to rotate at same speed but different direction, the direction of spinning of robot can 

be controlled. Table 4.1 below shows the relationship between the motor’s setting and the 

movement of robot. 
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Table 4.1: Relationship between the motor’s setting and the movement of the robot. 

Movement 

of Robot 

  Setting of Motor  

(CW = clockwise ; CCW = counter clockwise ) 

Right Motor Left Motor 

Forward CW CW 

Backward CCW CCW 

Turn to Right CCW CW 

Turn to Left CW CCW 

 

 

In this project, the process of building of map in an unknown environment and navigation 

rely greatly on the robot’s ability to navigate accurately. Therefore, robot’s specification plays a 

very important role in determining the accuracy of the map build and also in navigating around 

without colliding into obstacles. Hence, a few experiments had to be carried out in order to 

calibrate the robot’s specifications which involves the wheel diameter, wheel width and also track 

width. Determining the correct set of robot’s specifications will ensure the robot is able to move 

and the wheels will rotate accurately when a command signal is sent from PC to the robot. 

 

 

Figure 4.1: Track width and wheel’s width of differential steering of robot 

Track Width 

Wheel’s Width 
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Figure 4.2: Wheel’s diameter of differential steering of robot 

 

 

The calibrating experiment is carried out with two different sets of wheel diameter and 

track width. Wheel width will remain constant in both sets of experiment. The results are shown 

in Table 4.2 and Table 4.3. Table 4.2 demonstrates the case when wheel’s diameter and track width 

are set at 8 cm and 23.7 cm respectively. For Table 4.3, wheel’s diameter and track width are set 

at 8 cm and 24.7cm respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wheel’s Diameter 
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Table 4.2: Total angle of rotation of robot when wheel’s diameter and track width are set at 

8 cm and 23.7 cm respectively. 

Angle of 

Rotation of 

Robot in PC (°) 

Actual Robot’s Rotation 

Made (°) 

Average Actual 

Robot’s Rotation 

Made (°) 

Error (°) 

1 2 3 

10 9.0 11.4 11.5 10.7 0.7 

30 32.6 32.9 30.6 32.0 2.0 

60 58.4 58.8 64.0 60.4 0.4 

90 90.8 88.4 90.1 89.8 0.2 

150 156.8 154.7 153.0 154.8 4.8 

180 172.8 178.5 180.3 177.2 2.8 

270 260.0 268.3 267.7 265.3 4.7 

300 299.6 297.2 298.6 298.5 1.5 

330 337.2 334.6 334.8 335.3 5.3 

360 367.0 356.0 361.0 361.3 1.3 

Average Actual Robot’s Rotation Error (° ) 2.4 
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Table 4.3: Total distance travelled of robot when wheel’s diameter and track width are set 

at 8 cm and 23.7 cm respectively. 

Distance 

Travelled by 

Robot in PC 

(cm) 

Actual Robot’s Distance 

Travelled (cm) 

Average Actual 

Robot’s Distance 

Travelled (cm) 

Error 

(cm) 

1 2 3 

5 5.0 5.0 5.0 5.0 0.0 

10 10.0 10.0 9.7 9.9 0.1 

13 12.9 13.2 13.3 13.1 0.1 

17 17.4 17.3 16.8 17.2 0.2 

20 20.5 20.4 19.7 20.2 0.2 

25 24.6 24.7 24.5 24.6 0.4 

30 28.6 28.6 28.4 28.5 1.5 

45 40.0 41.0 40.5 40.5 4.5 

60 52.0 55.0 55.1 54.0 6.0 

Average Actual Distance Travelled Error (cm ) 1.4 
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Table 4.4: Total angle of rotation of robot when wheel’s diameter and track width are set at 

8 cm and 24.7 cm respectively. 

Angle of 

Rotation of 

Robot in PC (°) 

Actual Robot’s Rotation 

Made (°) 

Average Actual 

Robot’s Rotation 

Made (°) 

Error (°) 

1 2 3 

10 13.4 12.6 12.1 12.7 2.7 

30 42.9 37.5 42.5 41.0 11.0 

60 69.3 68.7 73.3 70.4 10.4 

90 91.7 93.6 99.5 94.9 4.9 

150 153.8 161.1 167.6 160.8 10.8 

180 185.8 191.0 193.1 190.0 10.0 

270 286.1 287.7 287.7 287.2 17.2 

300 316.9 315.1 316.0 316.0 16.0 

330 357.9 355.7 369.6 361.1 31.1 

360 377.8 373.6 396.8 382.7 22.7 

Average Actual Robot’s Rotation Error (° ) 13.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

 

Table 4.5: Total distance travelled of robot when wheel’s diameter and track width are set 

at 8 cm and 24.7 cm respectively. 

Distance 

Travelled by 

Robot in PC 

(cm) 

Actual Robot’s Distance 

Travelled (cm) 

Average Actual 

Robot’s Distance 

Travelled (cm) 

Error 

(cm) 

1 2 3 

5 5.0 5.0 5.0 5.0 0.0 

10 10.0 10.0 10.0 10.0 0.0 

13 13.0 13.2 13.1 13.1 0.1 

17 16.5 16.7 17.0 16.7 0.3 

20 19.5 20.3 20.5 20.1 0.1 

25 22.0 21.7 22.7 22.1 2.9 

30 28.6 28.0 28.8 28.5 1.5 

45 40.0 41.0 39.5 40.2 4.8 

60 48.0 47.1 52.0 49.0 11.0 

Average Actual Distance Travelled Error (cm ) 2.3 

 

 

From the results shown above, the wheel’s diameter and track width should be set to 8 cm 

and 23.7 cm respectively in order to get a minimum average robot’s rotation error of 2.4° from 

Table 4.2 and distance travelled error of 1.4 cm from Table 4.3. By using this set of robot’s 

specification, the robot can move and rotate more accurately based on command given from PC.  

 

The actual rotation angle of robot is measured by using a measurement lever from Beckhoff 

with the range from 0° to 225°. The angle of rotation of robot in PC is observed by using RVIZ 

(ROS visualization) tool which is a 3D visualizer that display the joint rotation and state 

information of base_link based on the virtual robot model. The Quaternions angle (x, y, z, w) was 

then converted into axis angle in radian. Both position and orientation of virtual robot model can 

be obtained from the RVIZ (Lehman, 2015). Two equations are used, Equation 4.1 is used to 

change Quaternion angle to axis angle in radian and Equation 4.2 is used to change the axis angle 

in radian to axis angle in degree. 
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             𝑎𝑛𝑔𝑙𝑒(𝑟𝑎𝑑) = 2𝑐𝑜𝑠−1(𝑤)                                                           (4.1) 

 

                         𝑎𝑛𝑔𝑙𝑒(𝑑𝑒𝑔𝑟𝑒𝑒) =  
𝑎𝑛𝑔𝑙𝑒(𝑟𝑎𝑑𝑖𝑎𝑛)

𝜋
 × 180°                                                 (4.2) 

 

 

 

4.1.2 Range Detection towards Flat Surface (Wall) by using Kinect Xbox 360 sensor 

 

In this project, Kinect Xbox 360 sensor will be used for object detection in both map building 

process and also object recognition in Section 4.6. In order to build a map of an unknown 

environment, the robot should be able to detect the objects in the environment and the laser scan 

towards the object will be used as one of the input of SLAM-GMapping algorithm in Section 4.2. 

Therefore it is important to test the accuracy of Kinect Xbox 360 sensor towards flat surface such 

as wall of room. From the results shown below in Table 4.6, the average error is 3.7cm where the 

error increases when the distance of wall from the robot exceed 180cm. The minimum range of 

Kinect sensor towards an object is set at 45cm so any object that is placed at a range less than 

45cm, the robot will not be able to detect the object. 
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Table 4.6: The relationship between the actual distance of the wall from the robot and the 

range measured by Kinect Xbox 360 sensor towards the wall from the robot (cm) 

Actual Distance 

of Wall from 

the Robot (cm) 

Range Measured by 

Kinect Xbox 360 Sensor 

towards the wall from the 

robot (cm) 

Average Range 

Measured by Kinect 

Xbox 360 Sensor 

towards the Wall 

from the Robot (cm) 

Error 

(cm) 

1 2 3 

40 - - - - - 

45 45.0 46.5 47.0 46.2 1.2 

50 50.5 50.6 49.5 50.2 0.2 

55 55.5 55.0 56.0 55.3 0.3 

60 61.0 61.5 59.5 60.7 0.7 

70 69.0 71.0 71.0 70.3 0.3 

90 91.0 89.0 90.0 90.0 0.0 

100 100.5 99.0 100.0 99.8 0.2 

120 120.0 119.0 119.0 119.3 0.7 

150 149.0 145.0 146.0 146.7 3.3 

180 175.0 174.0 173.0 174.0 6.0 

220 211.0 208.0 207.0 208.7 11.3 

250 230.0 230.0 231.0 230.3 19.7 

Average Range Measured by Kinect Xbox 360 Sensor towards the 

Wall from the Robot Error (cm) 

3.7 
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4.1.3 Range Detection towards Curved Surface (Bag) by using Kinect Xbox 360 Sensor 

 

In an unknown environment, there might be presence of curved object such as chairs, bags and so 

on. Therefore, range detection towards curved surface must also be measured by using Kinect 

Xbox 360 sensor. From the results shown in Table 4.7, the range error is 6.7cm. This shows that 

the accuracy and reliability of Kinect sensor is reduced when measuring the range towards curved 

object due to irregular surface reflection (Manap et al., 2015). 
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Table 4.7: The relationship between the actual distance of the curved object from the robot 

and the range measured by Kinect Xbox 360 sensor towards the curved object from the robot 

(cm). 

Actual Distance of 

Curved Object 

from the Robot 

(cm) 

Range Measured by 

Kinect Xbox 360 Sensor 

towards the Curved 

Object from the Robot 

(cm) 

Average Range 

Measured by Kinect 

Xbox 360 Sensor 

towards the Curved 

Object from the 

Robot (cm) 

Error 

(cm) 

1 2 3 

45 47.0 48.0 48.0 47.7 2.7 

50 48.0 49.0 50.0 49.0 1.0 

55 54.0 53.5 54.3 53.9 1.1 

60 59.0 60.5 59.5 59.7 0.3 

70 65.0 66.0 65.7 65.2 4.8 

90 79.5 80.0 80.3 79.9 10.1 

100 103.0 102.0 102.5 102.5 2.5 

120 119.0 116.4 117.0 117.5 2.5 

150 147.5 146.0 144.0 145.8 4.2 

180 174.5 176.0 175.5 175.3 4.7 

220 204.0 204.6 207.0 205.2 14.8 

250 218.7 218.0 219.1 218.6 31.4 

Average Range Measured by Kinect Xbox 360 Sensor towards the 

Curved Object from the Robot Error (cm) 

6.7 
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4.1.4 Range Detection towards Distance between Objects by using Kinect Xbox 360 sensor 

 

In order for the robot to accurately navigate in an unknown environment with different type of 

objects, the robot must be able to estimate the distance between objects. This can help the robot in 

determining whether robot can go through the two objects or need to bypass the object. 

 

 

Table 4.8: The relationship between the actual distance between objects and Kinect sensor 

reading for the distance between objects (cm). 

Actual Distance 

between 

Objects (cm) 

Kinect Sensor Reading for 

the Distance between 

objects (cm) 

Average Kinect 

Sensor Reading for 

the Distance between 

objects (cm) 

Error 

(cm) 

1 2 3 

2 3.8 2.3 2.4 2.8 0.8 

4 5.0 4.2 4.4 4.5 0.5 

6 5.2 5.2 5.7 5.4 0.6 

8 7.7 7.7 7.5 7.6 0.4 

10 9.2 9.7 9.4 9.4 0.6 

12 11.6 11.8 12.1 11.8 0.2 

14 13.2 13.9 13.5 13.5 0.5 

20 19.2 19.6 19.3 19.4 0.6 

30 29.4 30.6 30.5 30.2 0.2 

40 40.6 40.2 41.4 40.7 0.7 

Average Distance between Objects Error (cm ) 0.5 
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CHAPTER 5 

 

 

 

CONCLUSION AND FUTURE WORKS ENHANCEMENT 

 

 

 

5.1 Introduction 

 

The aim of this project is to give the rescuers in search and rescue activity an edge about the 

unknown environment by deploying SLAM algorithm to build a map of the unknown environment. 

Therefore, a custom-made robot is designed and constructed for SLAM algorithm to be 

implemented on the custom-made robot working under ROS framework for both practical 

implementation and simulation. The robot is then used to generate a 2D map about the unknown 

environment using SLAM-GMapping algorithm and 3D map using RGBD-SLAM algorithm. 

After the 2D map is built, navigation stack is incorporated into the robot for autonomous navigation 

to the 2D navigation goal set by user within the map built. Lastly, by running RGBD-SLAM 

algorithm and find_object_2D algorithm in parallel, the robot is able to identify, recognize and 

localize the object without repeating and missing whenever the robot come across the objects saved 

in the object database. 

 

 

 

5.2 Review 

 

This section will review how the project was carried out. 
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5.2.1 Design of Robot 

 

In section 3.4, the process of designing and constructing a mobile robot is discussed. The mobile 

robot based on a differential drive structure with a two layer chassis to accommodate all the 

components and devices needed. The robot is successfully built and it is able to navigate around 

and feedback accurate sensory and odometry data for building of map, localizing itself in the 

unknown environment, detecting and recognizing of objects desired. 

 

 

 

5.2.2 SLAM Algorithm 

 

SLAM algorithm is used in this project to build map of unknown environment in practical 

implementation and simulation. Two types of SLAM algorithm have been successfully 

implemented in this project which are SLAM-GMapping algorithm for 2D map and RGBD-SLAM 

algorithm for 3D map. A Kinect Xbox 360 sensor is used to input depth images and RGB images 

into the RGBD-SLAM algorithm. A ROS node named depthimage_to_laserscan is used to convert 

the depth images into laser scan to be input into the SLAM-GMapping algorithm. In short, the 

robot is able to navigate autonomously to the 2D navigation goal set by user within the map built 

by using SLAM algorithm. 

 

 

 

5.2.3 Object Recognition 

 

In this project, SIFT algorithm is used to extract the features from the current frame of Kinect 

sensor while building the 3D map of the unknown environment. Two flat objects which are books 

and two curved objects which are human like dolls are saved into the object database. Therefore, 

whenever the robot come across the objects saved in the database while navigating around the 

unknown environment, the robot is able to detect, recognize and localize the objects. The objects 

are successfully being detected, recognized and localized without repeating and missing.  
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5.3 Conclusion 

  

The objectives of this project are achieved by building a map of an unknown environment using 

SLAM algorithm and using the map for object recognition. A 2D occupancy grid map of office 

room E108 is built by using a custom-made robot which works under the Robot Operating System 

(ROS) framework. The SLAM-GMapping algorithm is being implemented on both practical 

implementation and simulation. A simulation environment which is similar to the office room 

E108 is designed by using Gazebo. Both practical implementation and simulation generate a 

similar 2D map of the environment of office room E108. Navigation stack is then incorporated 

into the robot for autonomous navigation and 2D navigation goal. After the map is built, the robot 

is able to localize itself by using Adaptive Monte Carlo Localization (AMCL) and navigate 

autonomously to the 2D navigation goal set by user. Dijkstra’s algorithm is used to compute the 

shortest path which is the path with lowest cost values between the current positon of robot to the 

destination point. In a search and rescue area, the robot should has the ability to identify, recognize 

and localize the victim. Therefore, RGBD-SLAM algorithm is used to construct a 3D map of the 

surrounding environment and by implementing find_object_2D algorithm in parallel, the robot is 

able to identify and recognize the object in the object database when the robot come across the 

objects when navigating around. The location of object with respect to the pose of camera can also 

be obtained in terms of location of image pixels.  

 

 

 

 

 

5.4 Future Works  

 

In future, deep learning algorithm can be applied to SLAM algorithm so that loop closure detection 

and estimation of the position of robot can completed more accurately and efficiently. However, 
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implementation of deep learning algorithm is much more complicated and it cannot be 

accomplished within the given period of time. Deep learning algorithm can be used to construct a 

dense-depth point cloud with the depth measurements obtained from Kinect sensor. By using 

convolutional neural network in deep learning algorithm, the depth prediction of points in image 

can be obtained and can be input into the SLAM algorithm. 

 

Furthermore, image processing algorithm can also be implemented to detect human being 

instead of a flat object such as book or curved object such as human-like doll in this project. By 

detecting human being directly, it will be more convincing that the robot is able to localize the 

victim in the disaster area.  

 

Lastly, the range of distance that can be travelled by the robot can be increased by powering 

the Kinect sensor with a 11.1V Lipo battery instead of a wall adapter.  A replacement of Kinect 

sensor with Hokuyo laser scanner can also generate a higher accuracy map because a wider range 

laser scan input will be obtained.  

 

 In conclusion, this project has demonstrated that it is feasible to implement SLAM 

algorithm on the custom-made robot working under ROS framework in practical implementation 

and simulation. 2D map about the unknown environment using SLAM-GMapping algorithm and 

3D map using RGBD-SLAM algorithm have also been successfully generated. Navigation stack 

has successfully been incorporated into the robot for autonomous navigation to 2D navigation goal 

set by user within the map built. Lastly, the robot is able to identify, recognize and localize objects 

saved in object database without repeating and missing.  
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