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DEEP LEARNING FOR EEG DATA ANALYSIS

ABSTRACT

Electroencephalogram (EEG) is a multi-dimensional time-series brain signal that is

highly information packed. While an EEG has high potential to serve in medicine

(e.g. disease diagnosis, prognosis, pre-disease risk identification), psycho-physiology

(e.g. mood classification, stress monitoring, alertness monitoring, sleep stage

monitoring), brain-computer interface application (e.g. thought typing, prosthesis

control), and many other areas, the classical design of EEG feature extraction

algorithms and EEG classifiers is time-consuming and challenging to fully tap into

the vast data embedded in the EEG. Deep learning (or deep neural network) which

enables higher hierarchical representation of complex data has been strongly

suggested by a wide range of recent research that these deep architectures of artificial

neural network generally outperform the classical EEG feature extraction algorithms

or classical EEG classifiers.

In this project, deep neural network architectures have been constructed to perform

binary classification on an EEG dataset that was shown by traditional EEG feature

extraction methods to have no significant difference between its two data pools

(resting EEG recorded before and recorded after listening to music). The

convolutional neural network (CNN) model constructed in this project has achieved a

validation accuracy of 75±1% using the same EEG dataset.

Using the top performing CNN architectures, short duration of relaxing music

listening is found to affect the EEG signals generated by the frontal lobe more than

the other lobes of the brain; and also to affect the EEG generated by the left cerebral

hemisphere more than the right hemisphere.
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CHAPTER 1

1INTRODUCTION

1.1 Background

1.1.1 Electroencephalogram

Electroencephalograms (EEG) are recordings of the electrical potentials of the brain

typically measured from the scalp, as signal waveforms of varying frequencies and

amplitude (in mV). The EEG is packed with information regarding the electrical

activities of the brain, be it pathological or physiological.

Hence, EEGs are very useful in the medical field (such as diagnostic purposes,

real-time monitoring of clinical progress of patients, prognostic purposes, and the

pre-disease identification of prodromal neuro-pathological signals in preventive

healthcare of increasing importance), for Brain-Computer-Interface (BCI)

applications (such as thought-typing, prosthetic limbs control, and many others

which can potentially improve the quality of life of the people with motor disabilities,

as well as the normal), and myriad forms of other potential applications such as

drowsiness warning system for drivers or lie detection for criminal investigation.
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1.1.2 Machine Learning

Machine Learning is the set of soft computing techniques that allow the

computers to have learning capability without being explicitly programmed. Machine

Learning (or such soft computing paradigms) is particularly significant for studying,

analyzing, and modeling solutions for very complex (usually real-life) tasks or

phenomena. These groups of tasks or phenomena are usually too complicated to be

possibly modeled or solved with conventional hard computing methods.

Soft computing and Machine Learning are not the recently discovered

paradigms. The most early works related to soft computing can be dated back to as

early as the 18th century where the ideas of Bayes’ theorem started to emerge. The

first neural network machine was invented in the 1950’s and the Rosenblatt’s

perceptron was invented in 1957. Even the Backpropagation algorithm had been

published pretty early in 1970. Despite all these early exciting discoveries and

invention, the field of Artificial Intelligence had its “winter” in the 1970’s due to

several reasons which were mostly due to insufficiency in the hardware computing

capability. Even to date, the hardware processing power and memory requirements

by the Machine Learning methods are still in a pressing need for improvement.

Hence, it was very disheartening back in the 1970’s and 80’s that the soft computing

algorithms were not being able to be realized or implemented. The recent re-

emergence of “spring” of Machine Learning is at a large extent due to the significant

progress in the speed of the hardware processors.

1.1.3 Deep Learning

Deep Learning is a paradigm of Machine Learning technique, which makes

use of the artificial neural network. However, the Deep Learning differs from the

earlier forms of conventional neural network in a way that Deep Learning adopts

more hidden layers (thus the term “Deep”). Besides, Deep Learning architectures are

capable of undertaking the supervised learning, or unsupervised learning, or even

both (unsupervised pre-training followed by supervised tuning to one model).
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1.1.4 Convolutional Neural Network

The Convolutional Neural Network (CNN) is a method of Deep Learning that

incorporates the convolutional layers into the neural network. The architecture of the

CNN is generally composed of the alternating layers of convolutional layers, rectifier

layers (such as ReLU), and pooling layers, before passing the convoluted and pooled

outputs into the Fully-Connected (FC layers) Neural Networks. The outputs of the

convolution are termed feature maps, as they are regarded as containing the features

extracted from the original input matrix by the convolutional kernels.

Fully-connected layers are Multi Layer Percpetrons (MLP). MLP are

modelled in such a way that it is capable of being trained to recognize patterns and

perform categorization. The training of fully-connected layers was achieved with

backpropagating the output layer errors backward layer-by-layer, in order to

gradually adjust the neuronal input weights for the most optimal values.

The final output of categorization is usually achieved with functions such as

Softmax, which is defined as follows:

The output of Softmax function is a K-dimensional vector σ(z) of real values in the

range of [0, 1] that add up to 1, giving a probability distribution of K different

possible outcomes. This probability distribution can be regarded as the representation

of a categorical distribution. For example, referring to Figure 1.1, among the four

categories (dog, cat, boat, bird), the “boat” category has the highest probability and

thus is the most likely input signal.

Figure 1.1: FC layers followed by Softmax function (Karn, 2016)

(1.1)
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1.2 Problem Statement

EEG signals are packed with information and hence it requires lots of effort and time

to perform manual analysis or decoding of these signals. Siuly and Li (2014) stated

that to manually design the feature extraction model for multiple-class

electroencephalogram (EEG) signal classification is an extremely challenging task

because the true representative features/patterns have to be identified and extracted

precisely from the multidimensional time series of EEG measured from the brain.

With the advances in the techniques for modelling the deep learning

architecture, deep learning has revolutionized the computer’s capability for

processing information-packed data. For example, convolutional neural network for

image processing has provided solutions to challenges previously encountered by the

computer vision community, while recurrent neural network has resulted in much

improvement in the processing of time-series signals such as speech processing.

It is thus very likely that deep learning will improve the analysis of EEG

signals as well. A number of different studies (Ren and Wu, 2014; Behncke et al,

2017; Schirrmeister et al, 2017) trained and tested various architectures of deep

learning for EEG data analysis and reported improved accuracies compared with the

state-of-art EEG feature extraction methods. Yet, the research in the application of

deep learning on EEG analysis is a new area of study and further analytical accuracy

improvement is in need for much more reliable practical application.

In this project, various architectures of DNN for EEG analysis, feature

extraction, and classification will be carried out.
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1.3 Aims and Objectives

The objectives of this project are as follows:

i) To study the techniques of deep learning modelling and to construct deep

learning models for EEG classification

ii) To investigate the performance of pure multilayer perceptrons (MLP) models

for EEG signal classification

iii) To investigate the performance of convolutional neural networks (CNN) for

EEG signal classification

iv) To interpret and analyze the results.
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CHAPTER 2

2LITERATURE REVIEW

2.1 Machine Learning for Epileptic EEG Pattern Recognition

The classification of EEG signals using various versions of artificial neural networks

have been published with higher sensitivity, specificity, and accuracy than other

traditional feature extraction and statistical methods.

Patnaik and Manyam (2008) applied the neural network for the identification

of epileptic EEG segment from the non-epileptic EEG. They used discrete wavelet

transform (DWT) for feature extraction, followed by a feed-forward backpropagating

artificial neural network (ANN) for classification, with the training set for the ANN

model being selected by a genetic algorithm instead of randomization. They

improved their classification result by incorporating a post-classification stage using

harmonic weights. The training and validation were done using the invasive pre-

surgical EEG recording of 21 patients with medically intractable focal epilepsy. The

average specificity of 99.19%, sensitivity of 91.29%, and selectivity of 91.14% were

obtained. Each patient’s EEG recording contained at least 50 min of pre-ictal and 50

min of post-ictal recording and the average duration of EEG with epileptic data was

7.73 min for one patient.

Subasi and Ercelebi (2016) compared logistic regression and neural network

models for EEG signals (epileptic vs. normal data) classification. They obtained 89%

accuracy using logictic-regression based classifier, which was lower than the two

neural network models. The Multi Layer Perceptron Neural Network (MLPNN)
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trained with common error backpropagation algorithm achieved an accuracy of 92%;

while the MLPNN trained with Levenberg-Marquardt (L-M) optimization method

achieved an even higher accuracy of 93%. The MLPNN models were trained with a

total of 300 EEG examples (102 epileptic and 198 normal EEG), and validated with

another set of 200 EEG examples (88 epileptic and 112 normal EEG).

Satapathy, Dehuri and Jagadev (2017) performed classification of EEG for

epileptic seizure identification using a version of neural network known as Radial

Basis Function Neural Network (RBFNN). Their RBFNN was trained for mean

square error optimization with a modified Particle Swarm Optimization (PSO). The

improved PSO (termed IPSO in the paper) was designed for improving the searching

speed of traditional PSO for global optimum. The RBFNN with IPSO had achieved a

maximum accuracy of 99%.

2.2 Deep Learning for Sleep Stages Classification using EEG

Supratak et. al. (2017) constructed a Deep Learning model which utilizes:

1. convolutional neural network (CNN) to extract time-invariant features, and

2. bidirectional long-short-term-memory (bidirectional-LSTM) to learn

transition rule among sleep stages from EEG epochs.

Their model was trained with a two step training algorithm which:

1. pre-trains the model using over-sampled data to lessen class-imbalance

problems, and later

2. fine tunes the weights of the pre-trained model with sequences of EEG

epochs to encode the model with necessary patterns for sleep stages

classification.

The training dataset was from the F4-EOG channel of 62 subjects, giving rise

to a total of 58600 EEG epochs, with the total recording duration close to 490 hours.

The model achieved an accuracy of 86.2% and the macro F1-score of 81.7 as shown

in Table 2.1.
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Table 2.1: Confusion Matrix for the Performance of the DeepSleepNet

(Supratak et. al., 2017)

2.3 Cognitive/Mental State Interpretation using EEG with Deep Learning

Hajinoroozi, Mao and Huang (2015) applied Deep Learning to perform

prediction of driver’s drowsy or alert states using the EEG data. They introduced the

Channel-wise Convolutional Neural Network (CCNN) and a variation of CCNN

(termed CCNN-R in the paper) which adopted the Restricted Boltzmann Machine

(RBM) in place of the convolutional filter/layers of conventional CNN models.

The EEG data set was collected from three studies of the driver’s cognitive

states using a virtual reality dynamic driving simulator. The simulated driving scenes

were night time driving with 100 km/h with perturbation being injected into driving

path every 8 to 12 seconds. The reaction times of the drivers were used to determine

their alert/drowsy mental states. The dataset was collected from 70 sessions for 37

subjects. The EEG was recorded for 3 seconds before each perturbation was taken

into consideration for CNN models training, with a total of 35074 non-overlapping

1s epochs (23074 alert and 15924 drowsy epochs).

In contrast to the conventional CNN which uses 2-D or multi-dimensional

convolutional kernels for feature extraction, CCNN applies a 1-D kernel to convolve

along each channel (hence channel-wise). After the feature extraction, the

categorization with Fully Connected (FC) layers also uses backpropagation for

weight optimization. The common kernels for CCNN include the Gaussian or Xavier

filters.
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A model variation mentioned above (CCNN-R) uses a more complicated

feature extraction layers (RBM). The FC layers’ backpropagation method has to be

adjusted accordingly.

The algorithms’ performance were evaluated using Az-score, with the CCNN

having achieved the Az-score of 79.63% and the CCNN-R 82.78%. The prediction

performance of other popular methods were investigated too, with the LDA

achieving 52.81%, SVM achieving 50.38%, and CNN 71.41%.

Figure 2.1: Performance (Az-score) of varous machine learning methods at

predicting drivers’ alertness using raw EEG data (Hajinoroozi, Mao and Huang,

2015)

Behncke et al (2017) attempted to classify the EEG signals of humans

observing robot action into two classes (observing a successful robotic operation or

observing a robotic failure). The classification task was performed with deep

convolutional neural network (deep ConvNets), regularized Linear Discriminant

Analysis (rLDA), and filter bank common spatial patterns (FB-CSP) combined with

rLDA. Deep ConvNets achieved accuracies of 75% ± 9%, significantly higher than

both the other two commonly used EEG classifiers, with the rLDA of 65% ± 10%

and the FB-CSP combined with rLDA of 63% ± 6%, as shown in Table 2.2.
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Table 2.2: Accuracies of ConvNet, rLDA and FB-CSP at identify EEG of

human observing robotic failure (Behncke et. Al., 2017)

Ren and Wu (2014) also compared the performance of a deep learning

architecture using Convolutional Restricted Boltzmann Machines (CRBM), to other

state-of-art classical feature extraction methods including power band, multivariate

adaptive autoregressive (MVAAR), and common spatial pattern (CSP). For 2-class

and 4-class classification, the deep learning model achieved accuracies of 83% - 88%

which is in general higher than the classical feature extraction methods (80% - 86%).

The accuracy of the deep learning method in particular increased as the number of

training samples increased from 80 to 240, as shown in Table 2.3 and Table 2.4.

Table 2.3: Mean 2-class motor imagery EEG classification accuracy of various

methods (Ren and Wu, 2014)
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Table 2.4: Mean 4-class motor imagery EEG classification accuracy of various

methods (Ren and Wu, 2014)

All the research findings discussed above strongly support that deep learning

is more powerful at decoding and analysis of the information-packed EEG data. A

recent research (Schirrmeister et. al., 2017) indicates that the deep learning for EEG

analysis is still having vast room for improvement with all the recent advances in the

deep learning modelling techniques.

Literature review has been summarized in Table 2.5a and Table 2.5b.
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Table 2.5a: Summary of Literatures Reviewed
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Table 2.5b: Summary of Literatures Reviewed (cont.)
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CHAPTER 3

3METHODOLOGY

3.1 Overview

Two main varieties of deep learning architecture investigated in this project are pure

multilayer perceptron (MLP) models and convolutional neural networks (CNN). The

impact of modelling techinques and hyperparameters of deep learning models on the

model’s performance are also investigated, which include the effect of different

optimizers, activation functions and dropout rates.

The EEG data used for training and validation of the deep learning models

are 14-channel EEG of 26 participants of a music-based neurofeedback training

previously conducted by a UTAR FYP student (Phneah, 2017).

3.2 EEG Dataset

3.2.1 Neurofeedback Training

In neurofeedback training, the measurement of brain activity (EEG in this case) is

used as the feedback information to the participant for the purpose of attaining

desired regulation of the brain function.



15

The EEG data used for this project is a portion of the EEG recorded at the

very initial phase of the neurofeedback study, with each participant having

undergone only a single short session of listening to favourite and relaxing music.

3.2.2 Training and Validation EEG Dataset

Three-minute EEG signal was recorded, at sampling frequency of 128Hz, before and

during each of the 26 participants listened to their favourite and relaxing music,

generating 52 EEG recordings (26 before listening to music and another 26 after

listening to music). Each of the EEG recordings, after artifact removal and data

cleaning, has different lengths ranging from 80-100 seconds. Hence, only the first

10000 sampling points (about 78 seconds) of each pre-processed EEG are used as the

dataset of this project.

Each of the 52 cleaned EEG recordings is then split into 40 sub-segments,

generating 2080 EEG recording segments (1040 before music and 1040 after music).

Each of the sub-segments has the time span of about 1.95 seconds (250 sampling

points). This dataset is shuffled and divided randomly into the training set and

validation set at the ratio of 9:1, giving 1872 EEG segments (942 before music and

930 after music) as the training data set and 208 EEG segments (98 before music and

110 after music) as the validation set, as shown in Table 3.1.

Table 3.1: The numbers of categorized EEG data contained in the training set

and the validation set.

EEG Dataset Training set Validation set

Before listening to music 942 (45.3%) 98(4.71%)

After listening to music 930(44.7%) 110(5.29%)

Total 1872(90%) 208(10%)
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3.3 Project Equipment Utilized

3.3.1 Hardware

The computer system used for the training and validation of the models is a Dell

Inspiron 7567 laptop, with the following specifications:

 CPU: Intel Core i5-7300HQ 2.50 GHz

 RAM: 4GB DDR4, plus an extra 8GB upgrade

 GPU: NVIDIA Geforce GTX 1050 4GB graphic RAM

The capability of GPU is of utmost importance because the fundamental

design of GPUs allows huge amount of parallel computation of the same instructions.

This suits the requirement of running deep learning models which are generally

designed with large matrix of repetitive computational nodes.

In fact, the NVIDIA GTX 1050 GPU used in this project is designed for

gaming purpose and is a rather low end GPU for deep learning research.

3.3.2 Software

The programming language used in this project is the Python language, version 3.6.4,

under Anaconda distribution. Anaconda enables convenient creation and

management of Python environment (conda environment), under which we can

selectively run different tools specifically installed to the particular environment.

The scientific programming Python libraries used in this project include the

numpy library, scikit-learn (sklearn) library, and matplotlib library. The Python ‘os’

library is used to move around, read from, and write to the system’s directories. The

‘mne’ library is used to handle EEG data. And last but not of any less, the

‘tensorflow’ machine learning library is used for the constructing and running the

deep learning models (Abadi, et al, 2016). Table 3.2 summarizes the Python libraries

used.
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Table 3.2: The Python libraries used in this project.

Python libraries Usage/Purpose

numpy to handle data as n-dimensional arrays

scikit-learn (sklearn) for data preparation before model training

matplotlib for visualization of data

os to move around, read from, and write to the operating
system’s directories

mne to read and handle EEG data

tensorflow to construct, run, and analyse machine learning
models

3.4 Supervised Learning

Deep learning models can learn or be trained through unsupervised or supervised

learning process. Unsupervised learning of a deep learning model will enable the

model to divide the dataset into classifiable clusters, without any indication as to

which group any training or validation data belongs to. On the other hand, supervised

learning, which is the training method used in this project, requires each example (x)

of the training data to be associated or encoded with a label (y). After repeated

observation of the paired examples of data x and label y, the model learns to predict y

from data x.

3.5 Modeling, Training and Validation

Conceiving and constructing a deep learning model involve specifying the type of

feature extraction operation to be incorporated (the application of convolutional

kernels in convolutional neural network as in this project or the application of
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feedback loop in the neural network forming a recurrent neural network), the number

of network layers (the depth of the model), the number of neuron at each layer (the

width of the model), the type of activation function for the neural layers, the model

regularization methods such as the drop-out mechanism to prevent overfitting, the

choice of error back-propagation optimizer and the learning rate.

The training data set is divided from a total of 1872 segments of EEG into 16

smaller mini-batches, each containing 117 segments of EEG. During the model

training stage, the mini-batches are fed batch-by-batch to the model-under-training.

The advantage of this splitting of training data into mini-batches is that (1)

training with mini-batches requires less GPU memory, hence allowing to design

more complex model with larger architecture; and (2) although mini-batches add

noise to the training process, they may help the training process to avoid being

trapped in local minima of the loss function.
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3.6 Overall Project Flow

The overall project flow is illustrated in Figure 3.2 below, incorporating the

“model design. training and validation cycle” illustrated in Figure 3.1 as a step within

the overall project flow.

Figure 3.1: Overall methodology flow of the project

Research different the open source machine learning libraries available

and select a suitable library for this project.

Ensure the hardware (especially the GPU type and generation)

specifications meeting the requirement of the software.

Installing/updating/downgrading the softwares so that they meet each

others’ compatibility requirements.

Review literetures for methodology, model architecture

and other related modelling techniques and their

performance.

Model design, training and validation cycle

Performance comparison and analysis of the architectures

and modelling techniques.

Analysis of results

Conclusion and future recommendation
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3.7 Project Gantt Chart
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3.8 Project Cost and Sustainability

3.8.1 Cost

A new laptop (Dell Inspiron 7567) was purchased for the project because the old

laptop of mine has a very old-generation GPU (NVIDIA Geforce 610M, with

NVIDIA computational capability of only 2.1). Therefore, this old GPU is not

CUDA-compatible. CUDA is is required for running gpu version of tensorflow.

The new laptop costs RM 3249. Additional RAM is also installed because the

Dell Inspiron 7567 has only 4Gb original RAM. The additional 8GB of RAM costs

RM385. Assembling a complete desktop workstation of equal capability should cost

below RM3000.

All the softwares used are free and open-source.

The EEG data used in this project is from the previous project. Hence, no

equipment or license fee is required for EEG collection at this stage.

3.8.2 Sustainability

The hardware power consumption, EEG data volunteers’ privacy protection, and the

cost of living of the researcher are the only three major areas of concern in this

project, for its sustainability.

The hardware (Dell laptop Inspiron 7657) operates at 150W, which is very

sustainable.

In details, the CPU (Intel i5-7300HQ) operates at around 3.30 GHz close to

its max turbo frequency of 3.50 GHz, consuming 35-45W of power. The major

concern is about the lifespan of the CPU is consistently being operated at over-

clocked condition.
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The GPU (NVIDIA GTX 1050) can have a maximum operational power

consumption of 75W. Overheating of the processors should be taken note of with

sufficient ventilation for lowering room temperature and processors’ temperature.

All the EEG retrieved and used in this project does not contain any personal

identification tags or details. No privacy issue should be of concern at this stage.
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CHAPTER 4

4RESULTS AND DISCUSSIONS

4.1 Effect of Optimizer, Activation Functions and Dropout Mechanism

In order to investigate the impact of different optimizers, activation functions, and

dropout rates on the progress of deep learning training process, all the different

modelling techniques are independently tested on the same single convolutional

neural network architecture.

4.2 Effect of Optimizer

Two optimization algorithms (the basic gradient descent algorithm and the adaptive

moment estimation (Adam)) are tested for their effectiveness in searching the

minimal point of the cost function of the deep learning model for EEG classification.

The activation function is fixed as ReLU and the dropout rate is fixed at 50%

for either of the optimization techniques. This is to ensure that the changes in the

performance of the model are all the result of the change in optimizer, instead of

being the combined effect of changing various different modelling techniques.
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4.2.1 Basic Gradient Descent Optimizer

The gradient descent optimizer is a very widely used algorithm to perform

optimization of neural networks. As outlined by Ruder (2017), gradient descent has

three basic variants, namely the batch gradient descent, the stochastic gradient

descent and the mini-batch gradient descent. These three variants of gradient descent

differ in the amount of data used for calculating gradient of the loss function of the

neural network.

The batch gradient descent works as follows:

 
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where J is the cost function, θj is a parameter of the cost function, and α is the

learning rate of the algorithm. The symbol := denotes an assignment operation. The

gradient of the loss function is calculated using the complete training dataset (Ruder,

2017).

The stochastic gradient descent operation works as follows:
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where x(i) and y(i) denote any single training example (or input data) and its

corresponding training label. The gradient of the loss function, at each training step,

is calculated using only any random single training data (Ruder, 2017).

The mini-batch gradient descent works as follows:

(4.1)

(4.2)
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where x(i:i+n) and y(i:i+n) denote a particular mini-batch of training dataset (input data

and the corresponding labels). The superscript index i will be updated to i+n for each

next round of training, hence feeding in another mini-batch of training dataset. The

gradient of the loss function is calculated using the mini-batch, instead of the

complete training dataset (Ruder, 2017).

Using the above operation, with an optimal value of α (the learning rate), the

value of θj will be updated towards a local or global converging point where the

value of the cost function J will be at a local or global minimum, at which point the

derivative of it δJ will be zero.

Algorithmic implementation of the gradient descent optimizer can be done as

follow:

 

 

);0(}
_:

0_:

...,,:_

,,:0_

{

0

0

0
0

0

















Jwhile
ntemp

temp

Jntemp

Jtemp

do

n

n
n

n

n





















which ensures simultaneous update of all the parameters in the cost function.

(4.3)

(4.4)
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The mini-batch gradient descent is the type of gradient descent investigated in

this project. Hence, all the “gradient descent” terms that follow will refer to mini-

batch gradient descent.

4.2.2 Adaptive Moment Estimation (Adam Optimizer)

The Adam optimizer incorporates the operation of both the momentum optimizer and

the RMSprop optimizer. Both the momentum optimizer and the RMSprop optimizer

allow speeding up of the optimization process towards the minimal loss, by ignoring

noises in the parameter updating process.

Adam optimizer significantly outperformed the other optimizers (including

stochastic gradient descent, RMSprop, AdaGrad and AdaDelta optimizers) in

training both the multilayer neural network and convolutional neural network models,

using MINST and CIFAR-10 data. Adam optimizer is able to achieve a much lower

training cost (training error) than the other optimizers. Adam has also markedly

increased the optimization convergence speed (Kingma and Ba, 2015).

The performance of the multilayer neural network and convolutional neural

network with different optimizers, published by Kingma and Ba (2015) is shown in

Figure 4.1.

Figure 4.1: Performance of multilayer neural network (left) and convolutional

neural network (right) working over MNIST and CIFAR-10 dataset

respectively, using different optimizers (Kingma and Ba, 2015)
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Adam optimizer works as follow:
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where

 dw denotes the change in parameter w (weight),

 db denotes the change in parameter b (bias),

 the terms Vdw, Vdb are the momentum terms of the parameters w and b

respectively,

 the terms Sdw, Sdb are the RMSprop terms of the parameters w and b respectively,

 the terms βm, βr are the “friction” restriction (or the exponential decay rate) to the

momentum and RMSprop respectively,

 α is the learning rate of the optimizer, and

 Ɛ is a parameter used to avoid division by zero.

The default values of the parameters in Adam optimizer tested to be good for

machine learning tasks are α = 0.001, βm = 0.9, βr = 0.999, and Ɛ = 10-8. These are

also the values used in this project.

(4.5)
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4.2.3 Comparison between Gradient Descent and Adam Optimizer

When the gradient descent optimizer is used, the model fails to learn from the EEG

training dataset. The optimization process may have been trapped at a very early

local minimum, or the deep model may have a cost function with extremely low

gradient which has caused the gradient descent optimizer to learn too slowly.

On the other hand, when the Adam optimizer is used, the model has

successfully learned and extracted the distinctive features between the two groups of

EEG (before and after listening to music), enabling its classification accuracy to

improve above 70% over the training iterations.
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4.3 Effect of Activation Function

The purpose of applying nonlinear activation function to the neural network is to

introduce non-linearity in the model, in order to model a non-linear representation of

a complicated non-linear data domain. Without the nonlinear activation function, any

arbitrary number of hidden layers would simply result in the formation of another

linear representation. Hence, without non-linearity, the hidden layers in a model will

not result in performance improvement.

A number of recent research (Clevert, Unterthiner, and Hochreiter, 2016; Ide

and Kurita, 2017; Ramachandran, Zoph, and Le, 2018) showed that the proper

selection of activation function has significant impact on the performance of deep

learning models. Additional modifications made onto traditional activation functions

such as the sigmoid and the ReLU functions have also resulted in improved

performance (Ide and Kurita, 2017; Ramachandran, Zoph, and Le, 2018).

Figure 4.2 below shows the training log of the same model with the type of

activation function as the only manipulated variable. Three different activation

functions are examined: the exponential linear unit (ELU), rectified linear unit

(ReLU), and sigmoid function.

ELU function has the formula
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The sigmoid and ReLU activation functions both resulted in an increased

classification accuracy, as compared to the model without activation function. ReLU

activation function is the most suitable, among the tested functions, for the designed

model to perform classification on the EEG data.

ELU activation function has negatively impacted the model’s optimization,

resulting in a performance worse than that without any activation function. However,

the reason for ELU’s negative impact is not clear.
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4.4 Effect of Dropout Mechanism

One of the main challenges in the design of a machine learning model is the

requirement for the model to perform with an almost equal accuracy on previously

unobserved data (such as the test dataset), as on the training data set. This is a desired

ability of the learning model, termed as generalization. The models that can

generalize well are usually models with large capacity that are properly regulated.

The capacity of the model is defined as the ability of the learning model to fit

or be modeled into a variety of complicated functions. Models with low capacity will

not be able to recognize, memorize and learn from the huge pool of available features

or parameters in the training data domain, resulting in underfitting where the model

fails to approximate a fine/detailed representation of the training data set. Models

with much higher capacity than the available effective parameters in the training data

set will tend to overfit by memorizing all trivial characteristics of the training data set

that might not be the true data-generating process. Such model is said to be overfitted

to the training data set, and does not perform as well at the previously unobserved

data (the validation or testing data).

Hence, for the design of deep learning training model, certain strategies are

explicitly carried out for the purpose of reducing the test error, usually at the expense

of increasing the training error.

Dropout mechanism is one of the regularization methods. In dropout method,

a percentage of neurons (or computational nodes) of certain layers of the neural

network is specified to be randomly blocked out during the training steps. Each

training step will make a different combination of computational nodes available,

instead of the full network, Hence, the model-under-training will not be able to rely

too much on any selective few features propagated by certain computational nodes.

Instead, every partial combination of the network will be more sufficiently trained,

having their weights been updated more properly through backpropagation of error.



32

The best dropout rate among the examined is 40-50% dropout. The model

with no dropout mechanism overfits the earlier. Extremely high dropout rate (such as

70% dropout) throttled the learning speed too much although overfitting is avoided.
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4.5 Comparing the architecture and performance of pure FC-MLP models

and various CNN models

A few different convolutional neural network (CNN) models are constructed and

trained, in comparison with pure fully-connected-multilayer-perceptrons (FC-MLP)

models without convolution mechanism. The performance of the CNN models and

FC-MLP models at classifying the EEG dataset into 2 groups (before and after

listening to music) are discussed in the following sub-section.

4.5.1 Performance of the CNN models and pure FC-MLP models

With the adoption of convolution mechanism, the CNN models are better at

extracting the temporal relationship of the adjacent/successive sampling points and

the spatial relationship across the EEG channels, contributing to higher EEG

classification accuracy.

Using only the six frontal EEG channels, one of the CNN models with FC-

MLP (classification accuracy of 71±1%) performs better than its counterpart without

FC-MLP (accuracy of 65±3%). This shows that the additional hidden fully-

connected layers of perceptrons have improved the classification accuracy of the

CNN model by about 6%. This is probably due to the additional capability granted

by the hidden layers to the CNN model to assume a more fine-tuned representation

of the complicated EEG data domain.

Using the 1-path CNN model without FC-MLP to perform the classification

based on all fourteen EEG channels has achieved 71±1% accuracy. While using the

same 1-path CNN model without FC-MLP to perform the classification based on

only six frontal channels has achieved a lower accuracy of 65±3%. This shows that

the other EEG channels do also carry significant information, which can contribute to

the EEG classification accuracy.
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Apart from the above discussed, the pure FC-MLP models does not perform

as good as the CNN models. In addition, the pure FC-MLP models’ classification

accuracy deteriorates with increasing depth (more hidden layers) of the model.
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4.6 Which brain region’s EEG changes more due to music listening

4.6.1 Comparing the degree of impact of short duration of music on the

frontal lobes and the rest of the brain

The classification accuracy achieved using the temporal, parietal and occipital

channels combined without the frontal channels is significantly lower than that

achieved using six frontal channels. The model is able to classify frontal lobe EEG

signals better than the signals from the other lobes.

This is probably because the short session of relaxing music listening has a

greater impact on the frontal lobe than the other regions of the brain, causing the

EEG generated by the frontal lobe to differ more significantly (before and after

listening to music) than the EEG from the other regions.
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4.6.2 Comparing the degree of impact of short duration of music on the left

and right cerebral hemispheres

The CNN model trained and validated with the left hemisphere EEG signals has

achieved significantly higher classification accuracy than the model trained and

validated with the right hemisphere EEG.

This indicates that the short session of relaxing music has affected the left

cerebral hemisphere more than it does to the right cerebral hemisphere. This finding

is in contrary to our expectation that the right cerebral hemisphere, which is in charge

of our emotion, should be affected more by the music than the left hemisphere.
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CHAPTER 5

5CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

For the task of binary classification of EEG, one of the 14-channel CNN model has

achieved the top validation accuracy of 75±1%. This performance is closely followed

by another 6-frontal-channel CNN model, which has achieved validation accuracy of

71.5±2%.

This finding is significant as the models are operating on the EEG dataset that

was shown by previous classical manual feature extraction methods to have no

statistical significant difference.

5.1.1 Optimizer

Basic Gradient Descent Optimizer is not sufficient for training the deep learning

models for the task of EEG data classification. Using basic gradient descent

optimization algorithm to minimize the cost function, deep learning models have

failed to learn from the EEG data, causing the validation accuracy to stay below 50%.

Adam Optimizer performs significantly better at training the deep learning

model for EEG data classification, with the validation accuracy to reach up to and

above 67±2%.
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5.1.2 Activation Function

ReLU is the most suitable activation function for deep learning model for EEG

classification, followed by the sigmoid function. The model with ELU activation

function performs worse (with validation accuracy below 50%) than the model

without any activation function.

5.1.3 Dropout Mechanism

The most suitable dropout rate is around 40% to 50%. Too low the dropout rate (0%

to 30%) does not help much in preventing overfitting of the model to the training

data. Too high the dropout rate (70%) will slow down the model learning speed

excessively.

5.1.4 Effect of Convolution

Convolutional layers significantly improve the performance of the deep learning

model for EEG classification, elevating the validation accuracy from below 64% up

to above 75%.

5.1.5 Degree of impact of music on different brain regions

A short session of listening to relaxing music has greater degree of impact to the

frontal region than the other regions of the brain, and also greater impact to the left

cerebral hemisphere than the right, inferring from the discrepancy at the

classification accuracy as discussed in Section 4.6.
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5.2 Recommendations

5.2.1 Hardware

Future work on deep learning for EEG data classification should ideally be

implemented on more powerful GPU with at least 12GB of graphic RAM.

5.2.2 Deep Learning Model Design

Variants of convolutional neural network such as residual network (ResNet), as well

as other deep learning models such as recurrent neural network which is designed for

processing time series data should be implemented for performing EEG data analysis.

More advanced techniques in modelling deep learning architecture and

training should be adopted. For example, other model regularization techniques can

be used in combination with dropout mechanism for potentially better results.

5.2.3 EEG Dataset

As the EEG dataset used in this project comprised of 2 groups of EEG signals

(recorded before and after listening to a short session of music) which may indeed

have no much difference in their data generation domain, other established EEG

datasets that have shown distinct generalizable features can be used in the future

work to first determine the performance of the deep learning model.
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