

GESTURE CONTROLLED ROBOTIC ARM

CHEAH KAH HOU

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Hons) Electronics Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

January 2018

II

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

III

APPROVAL FOR SUBMISSION

I certify that this project report entitled “GESTURE CONTROLLED ROBOTIC

ARM” was prepared by CHEAH KAH HOU has met the required standard for

submission in partial fulfilment of the requirements for the award of Bachelor of

Engineering (Hons) Electronics Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. Teh Peh Chiong

Date : _________________________

IV

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2018, CHEAH KAH HOU. All right reserved.

V

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Dr. Teh

Peh Chiong for his invaluable advice, guidance and his enormous patience throughout

the development of the research.

VI

GESTURE CONTROLLED ROBOTIC ARM

ABSTRACT

Robotic arm is widely used in various fields such as industry, medical and even

military due to its abilities of high accuracy, efficiency and repeatability. Some special

application in military such as bomb disposing by bomb disposal robot, human control

is needed for the robotic arm on top of it. However, the bomb disposal robot typically

controlled by special design joystick or gaming console such as Playstation controller,

the control of those controller for the robotic arm is complicated and unintuitive. Thus,

the goal of this project is to build a 6-axis robotic arm and implement gesture control

into it. Leap motion sensor technology is part of the study since the sensor was used

for capturing the gestures as the control of the robotic arm. The captured gesture data

was then extracted and processed in the Processing software and sent to Linkit board

by serial communication, the Linkit board was responsible to disassemble the data to

drive the servo motors. The 6-axis robotic arm was built and gesture control with the

Leap motion sensor was successfully implemented into it as the results.

VII

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

COPY RIGHT iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 3

1.3 Aims and Objectives 3

2 LITERATURE REVIEW 3

2.1 Background of study 4

2.1.1 Gesture control 4

2.2 Journal review 5

2.2.1 Gesture Control of Drone Using a Motion Controller

by Sarkar, a. et al. 5

VIII

2.2.2 Development of a Robotic Arm and implementation

of a control strategy for gesture recognition through Leap

Motion device by J.S., A. and J.L., M. 7

2.2.3 Robot-arm Control System Using LEAP Motion

Controller by Y., P. et al. 8

3 METHODOLOGY 10

3.1 System working principle 10

3.2 Project management 11

3.3 Leap motion control panel 12

3.4 Leap motion visualizer 14

3.5 Coding in Processing software 15

3.5.1 Importing the libraries 15

3.5.2 Creation of knobs for indication 16

3.5.3 Data extraction and conversion 17

3.5.4 Inverse Kinematics calculation 19

3.5.5 Serial communication to Linkit board 21

3.6 Arduino IDE (Integrated Development Environment) 22

3.6.1 Setting up servo motors 22

3.6.2 Receive data from Processing software 23

3.7 Equipment and Cost analysis 26

4 RESULTS AND DISCUSSIONS 27

4.1 Robotic arm outlook 27

4.2 Testing 29

5 CONCLUSION AND RECOMMENDATIONS 37

5.1 Conclusion 37

REFERENCES 38

APPENDICES 40

IX

LIST OF TABLES

 TABLE TITLE PAGE

2.1 Comparison between offline and online gestures.

Source from: (Sziládi, Ujbányi and Katona, 2016) 5

3.2.1 Gantt chart for FYP 1 11

3.2.2 Gantt chart for FYP 2 11

3.7.1 Equipment and component list with price. 26

4.1 Voltage and current comparison between power

supply and power bank. 36

X

LIST OF FIGURES

 FIGURE TITLE PAGE

1.1 Industrial articulated robotic arm 2

1.2 Bomb disposal robot (iRobot 510 PackBot) 2

2.1 the block diagram of the system architecture 6

3.1.1 flow chart of the system 10

3.3.1 Leap motion control panel window with sensor

disconnected 12

3.3.2 Leap motion control panel window with sensor

connected 13

3.4.1 Leap motion visualizer window showing data

generated from the sensor 14

3.5.1.1 code of importing libraries 15

3.5.2.1 knobs created for indicating the gesture parameters 16

3.5.2.2 knobs declaring code 17

3.5.2.3 knobs creating code 17

3.5.3.1 Data extraction code 18

3.5.3.2 Data conversion code 18

3.5.3.3 setting the range for the various palm size 19

3.5.4.1 2D inverse kinematics derivation 20

3.5.4.2 2D inverse kinematics equations in Java code 21

3.5.5.1 Enabling serial communication in Processing 22

3.5.5.2 Send processed data through serial communication 22

XI

3.6.1.1 setting up pins for servo motors 23

3.6.1.2 pre-setting the angle for the servo motors 23

3.6.2.1 reading string from serial 24

3.6.2.2 Parsing function 25

4.1.1 The 6-axis robotic arm 28

4.2.1 starting position at centre point 29

4.2.2 gripping 30

4.2.3 move to left 30

4.2.4 move to right 31

4.2.5 no roll 31

4.2.6 roll in counter-clockwise 32

4.2.7 roll in clockwise 32

4.2.8 pitch-up 33

4.2.9 pitch-down 33

4.2.10 back to centre point 34

4.2.11 move downward 34

4.2.12 move upward 35

4.2.13 move forward 35

4.2.14 move backward 36

XII

LIST OF SYMBOLS / ABBREVIATIONS

NUI natural user interface

VR virtual reality

USB universal serial bus

SDK software development kit

ROS robot operating system

API application programming interface

GPIO general-purpose input/output

CAT computer assisted translation

DOF degree of freedom

GUI graphic user interface

PWM pulse width modulation

XIII

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Source code of Processing software 40

B Source code of Arduino IDE 45

C Pinout of Linkit smart 7688 duo board 47

CHAPTER 1

INTRODUCTION

1.1 Background

Robotic arm is a programmable manipulator, it comprises of linear and rotary joints to

allow for controlled movements (Robots.com, 2017). It widely used in various field

such as industry, medical and military for many years due to its high repeatability,

accuracy and efficiency. The flexibility or dexterity of an articulated robotic arm is

proportional to the number of axes of it. For the industrial articulated robotic arm, it

ranging from different sizes depending on different application, for instance, the big

heavy duty articulated arm perform automotive assembly while application such as

electronics assembly is performed by smaller articulated arm.

 In military, articulated robotic arm is used in bomb disposal robot. According

to (Ray Allison, 2016), bomb disposal robot is used to disable explosive ordnance over

years and saved countless lives. The robot is remotely controlled by bomb expert at a

safe distance to examine explosive devices closely without putting themselves in

danger. Thus the robot usually equipped with cameras as the "eyes" of the robot to

provide the vision of the surrounding situation so that the operator can control the

robotic arm through cameras to examine and dispose explosive devices. The robot also

equipped with pairs of caterpillar tracks or wheels to allow it to traverse rough terrain

such as climbing stairs and tools can be attached on the robotic arm such as wire cutter

in order to bypass fences. The body itself also armed with explosive detectors and X-

2

ray devices for the detection of explosives, not only bomb but unexploded munitions

and landmines as well. Bomb disposal robot technically is not a "robot", more

accurately as a drone, as human control still needed since bomb experts' experience

and decision is crucial in explosive disposal operation.

Figure 1.1: Industrial articulated robotic arm

Figure 1.2: Bomb disposal robot (iRobot 510 PackBot)

Image taken from: Army Technology. (2014). Detect and diffuse – The top 5 military

robots for explosive ordnance disposal. [online] Available at: http://www.army-

technology.com/features/featuredetect-and-diffuse-the-top-5-military-robots-for-

explosive-ordnance-disposal-4372678/ [Accessed 19 Aug. 2017].

3

1.2 Problem statement

The number of terrorist attack increasing recently, terrorist like ISIS they used to plant

explosive devices at crowded areas such as shopping mall or roadside in order to

murder. Remote controlled bomb disposal robot will do the job to disable the explosive

devices as it lowers down the chances of injury if the bomb expert examines and

disposes the bomb manually, but the problem is the robot is typically controlled by a

specially designed joystick controller with buttons and knobs, some with computer

based controller or even gaming console. The bomb expert need to be trained on how

to use the controller since it is difficult to be used. The bomb disposal operation is slow

since the control is not intuitive, a more intuitive way in controlling the robotic arm is

needed.

1.3 Aims and objectives

The objectives of the project are shown as following:

- To build a 6-axis robotic arm.

- To implement gesture control on the robotic arm.

- To familiar with Leap motion sensor technology.

Gesture control method will be adopted in this project. With this gesture controlled

robotic arm, the bomb disposal operation will be higher efficiency as the robot can be

operate in faster and more intuitive way and no training is needed.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Background of study

2.1.1 Gesture control

"Gesture control is the ability to recognize and interpret movements of the human body

in order to interact with and control a computer system without direct physical

contact." The interface of these system is known as natural user interface (NUI),

generally lack of intermediate devices between the system and the user. (Gartner IT

Glossary, 2017)

 Gesture control is much more effortless and intuitive compared to pressing

switches, tweaking knobs, manipulating mouse and touching screens. It especially

contributes to ease the interaction between user and devices, replacing or reducing the

need for keyboard, mouse or buttons. Human language will be more understandable

by the computers and that will create a better user experience through gestures when

face recognition and voice commands such advanced user interface technologies

combined together. (dipert et al., 2013) Gesture control is being used in medical

applications, alternative computer interfaces, entertainment applications and

automation systems. In medical applications, life threatening conditions can be

recognized with advanced gesture recognition robotic systems. For the entertainment

5

applications, gesture control can provide more intuitive control environment that can

immerse the player in the game like never before while in the automation systems in

vehicles, homes and offices, gesture control can be incorporated to reduce the necessity

of primary and secondary input systems such as buttons in the car entertainment

systems as that will distract the drivers when the driver wants to control it while driving.

(Gondane, 2017)

Gesture control can be separated into two categories by the processing methods:

Table 2.1: Comparison between offline and online gestures. Source from:

(Sziládi, Ujbányi and Katona, 2016)

Offline

gestures

Controlling methods such as menu or function activation, which

the processing starts after the user's interaction. (not real time)

Online

gestures

Kinect and Virtual Reality (VR) systems, the processing begins

when the user starts an interaction, the controlling results is

instant with minimal lateness. (real time)

2.2 Journals review

2.2.1 Review on Journal: Gesture Control of Drone Using a Motion Controller

by Sarkar, a. et al.

This study presenting the implementation of motion sensor to control a drone by hand

gestures. Leap motion sensor is used as the motion sensor or controller and the Parrot

AR DRONE 2.0 as well in the implementation. This study shows a simple gesture

controller can make the task of piloting much easier. LEAP motion sensor is used due

to its wide range of infrared tracking, large field of view and high frame rate of tracking

of gestures. The Parrot AR DRONE 2.0 is an off the shelf quadcopter with built in

WIFI. The drone is connected to the ground station through the built in WIFI and

6

LEAP motion sensor also connected to the ground station via USB cable when

operating. The gestures are captured by the LEAP motion sensor and then relayed to

the ground station, thus the drone receives the signal from the ground station that

captured by the LEAP and perform different movements such as yaw, pitch and roll.

The method of retrieving of gesture raw data is using LEAP software development kit

(SDK). Robot Operating System (ROS) is running in the ground station in Linux

operating system, which is the platform for this entire system. Python programming

language is used to interact between LEAP motion sensor and the AR DRONE, to

interpret the hand gestures into the AR DRONE motions. With the aid of LEAP, the

drone can perform various task or more since the "LEAP can be taught to recognize

more hand gestures and movements by altering the python scripts and adding more

functionality to it." In other words, by input certain gestures to the LEAP, SDK is then

used to recognize the gestures which the gestures can be predefined or set by the user,

some commands also need to be added into the python codes to interpret the new

gestures which predefined in the SDK. Thus, the system can recognize those new

gestures when it is made to the LEAP as this study added the "flip" gesture to carry

out the flipping movement of the drone, it is an extension of the previous project.

 In conclusion, this study provided an idea on how a gesture control system is

formed. Which is shown in the Figure 2.1 below:

Figure 2.1: the block diagram of the system architecture.

7

The system basically constituted by gesture input, motion sensor, a platform and the

robot. The motion sensor act as the controller as it replaces those typical joystick or

console controller since it provided a more intuitive way of control. The platform is a

"middle man", an interface between input and the output that interprets the gesture to

the robot, usually is an operating system.

2.2.2 Review on Journal: Development of a Robotic Arm and implementation of

a control strategy for gesture recognition through Leap Motion device by J.S., A.

and J.L., M.

The objective of this study is to develop an articulated robotic arm prototype with

implementing the gesture recognition control strategy through Leap motion sensor

which focus on detection of hand gesture. This kind of control techniques in robotics

introduce a complement in obligatory basic teachings in education which can provide

a more entertaining and fun form, showing that there are always with additional

motivation to the students when they develop and control robotic elements remotely

or locally.

 The robotic arm is made with obsolete materials such as some shafts and gears

from the old printer, some are 3D printed out in order to stay the cost low. The

relationship between the user and the robotic arm is enhanced by the incorporated

gesture control through Leap motion sensor since it has a better control ability. This

robotic arm prototype is capable to simulate the human forearm which can operate in

3D that follows the degree of freedom of human forearm. The reason to adopt gesture

control is applications can be generated in a very intuitive way, this is the most

effective gestures since the software adapts to human, not human adapts to the software.

Human moves by instinct, without the need of thinking in most cases. Thus the best is

computer understands human, that would make our life better.

8

 The entire control system is integrated with several systems and new

technology such as Leap motion device, implementation of hardware constituted by

microcontroller and 3D printing technology. The control is performed by an Arduino

controller that receives commands from the computer via serial communication to

transmit the data to drives servo motors. Arduino is a platform that interface between

the computer and the robotic arm, that translate the gestures into motion of the robotic

arm.

 In this study, several kinds of motion sensor such as Microsoft Kinect, Asus

Xtion sensor, Wii remote, MYO and Leap motion are discussed and compared. These

motion devices mostly used in video games to enrich the gaming experience. However,

in this study shows that those devices can also be used in robotic development. Leap

motion sensor is chosen due to its highest accuracy compared to other devices, which

has the accuracy of 0.2mm and capturing frame can reach up to 200 frames per second,

high portability with small size, easy to use and low cost. The SDK of the Leap

transform the data captured into intuitive vectors such as position of fingers and hands

and gestures like pinching and touching that facilitates the programmer works. There

are application programming interfaces (APIs) inside the Leap, data of hands and

fingers can be sent to the program that designed by programmer through the software.

A few microcontroller boards are compared, the most important aspects to be

considered is the connectivity, versatility and accessibility. For instance, the GPIO, the

board has a large number output ports that will increase the accessibility of it since

different types of peripherals can be accessed to. The Arduino One board is chosen

because it met the necessary requirements and properties.

2.2.3 Review on Journal: Robot-arm Control System Using LEAP Motion

Controller by Y., P. et al.

The objective of this study is to design and construct the control system for the robotic

arm with Leap motion controller. The principle of Leap motion sensor and servo

9

motors control adapted in this research. Leap motion sensor again is used in this

research due to its specification is better than other motion device in this application.

Basically the design of the control system is composed by three parts which is

detection, data processing and signal control using microcontroller Arduino UNO R3

and robotic arm with a mini gripper. The system is tested and successfully function as

it can control the robotic arm movements. The program is written in Javascript, leapjs

and johnny-five package these two libraries need to be installed in computer in order

to get raw data from Leap motion controller and send to microcontroller to execute.

 The coordinates of the hand model inside Leap data have to map with the real

coordinates of the robotic arm, the angle of the servo motors at each joint have to

calculated with the captured X, Y and Z axes data. The X-axis is for the base rotation

of the robotic arm, two fingers for the end-effector gripper, and the Y and Z axes are

for the rest of the joint between base and gripper. Inverse kinematics equations are

used in calculation for the servo motors angle between base and gripper. The robotic

arm is 3D printed, the prototype is first designed by using CAT software. The results

are satisfactory as the distance between hand and Leap motion versus angle of servo

motor are similar for all the three axes, meaning that the robotic arm with this system

that using inverse kinematics calculation can mimic the user's hand movement with

high accuracy. The only limitation for this robotic arm is it cannot mimic the human

hand movements completely as it only had 4 degree of freedoms (DOF), a higher DOF

robotic arm have a better dexterity.

10

CHAPTER 3

METHODOLOGY

3.1 System working principle

Figure 3.1.1: flow chart of the system.

The Figure 3.1 above showing how the system works. First, the gesture is captured by

the Leap Motion sensor as the gesture input data, this gesture is then simulated by the

Leap software development kit (SDK) in the form of 3D hand model which can be

visualized by the Leap Motion Visualizer. Next, data processing such as inverse

kinematics calculation and data conversion is done in the Processing software by

coding in Java language so the angle or position of the servo motors are determined.

After data processing is done, the processed data is then sent to the Linkit Smart 7688

duo board through serial communication to drive the servo motors so that the desired

movement of the robotic arm can be rendered out.

11

3.2 Project management

The schedule of the project is shown in the Gantt chart below:

Table 3.2.1: Gantt chart for FYP 1

Activity/week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Title selection

Idea discussion

Literature review

Methodology research

Component selection

and procurement

Table 3.2.2: Gantt chart for FYP 2

Activity/week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Hardware design and

build

Gesture data extraction

and implementation

Program writing

Testing and

improvement

Report writing

12

3.3 Leap motion control panel

Device status can be shown in the troubleshooting tab in Leap motion control panel

window such as service, device, calibration, tracking, bandwidth, lighting and smudge

statuses to ensure whether the sensor in connected to the computer, whether the

software development kit is tracking the hand and streaming to the visualizer and

whether there is smudge on the sensor. Recalibration of the sensor also can be done in

this window, it should be done if the sensor is out of its initial alignment, otherwise it

will cause the tracking range become poorer, discontinues in the tracking data and

jumpiness. There is an avoid poor performance option which tracking will pause when

bad conditions on sensor is detected. This option was chosen since smooth gesture

tracking data is needed, in order words, to avoid discontinuities occur in the control of

the robotic arm. Sensor was connected to computer by USB port, before the sensor is

connected, the device status is shown as in the Figure 3.3.1 below while Figure 3.3.2

is when the sensor is connected.

Figure 3.3.1: Leap motion control panel window with sensor disconnected.

13

Figure 3.3.2: Leap motion control panel window with sensor connected.

14

3.4 Leap motion visualizer

Motion tracking data generated by the sensor can be displayed in the Leap motion

visualizer in the form of modelled 3D hand as shown in the Figure 3.4.1 below.

Various fps (frame per second) such as render fps, data fps and device fps were shown

at the top right corner of the window. By referring to the specification of the Leap

motion sensor, which claimed the tracking can have a fps of up to 120, which is very

accurate. The basic three axes coordinate of the hand also been tracked and displayed

here as well as the speed. Thus, the Leap motion visualizer was used to ensure the hand

or gesture is being well tracked by the sensor and also visualization can be done to get

a better understanding of how the gesture looks like.

Figure 3.4.1: Leap motion visualizer window showing data generated from the

sensor.

15

3.5 Coding in Processing software

3.5.1 Importing the libraries

Importing libraries is a very crucial step in code writing, since there are some important

data such as configuration data, classes and parameter types that were predefined

inside, those data need to be imported when the programmer needs it for program

development. There are few libraries were imported in the code by writing "import" in

front of the library name as shown in Figure 3.5.1.1 below, those libraries are:

"de.voidplus.leapmotion.*" for extracting the motion tracking data for the gesture

captured by the Leap motion sensor, "controlP5.*" and "g4p_controls.*" for creating

the GUI (graphic user interface) and the last one is "processing.serial.*" to enable the

serial communication function of Processing software in order to send data between

Processing software and Linkit smart 7688 duo board.

Figure 3.5.1.1: code of importing libraries.

16

3.5.2 Creation of knobs for indication

Figure 3.5.2.1: knobs created for indicating the gesture parameters.

Processing software is powerful in creation of graphic user interface, as shown in

Figure 3.5.2.1, knobs were created for monitoring the gesture parameters extracted

from sensor such as X, Y, and Z direction of hand, degree of pitch, degree of roll and

the palm size for gripping during the control of the robotic arm. In figure 3.5.2.2 below,

knobs were created by first declaring the name in "Knob" type, this "Knob" type can

be created because the graphic user interface library of the Processing software was

imported in the previous step. Next, the knob parameters were set as shown in Figure

3.5.2.3 below, by "myKnobA = cp5.addknob("X")" at the first line, which means the

knob named "X" was created. Second line " .setRange(0, 180)" meaning that set the

range of the knob set to from 0 to 180. Third line " .setValue(50)" is setting the initial

value of the knob. Fourth line " .setPosition(50, 50)" is setting the position of the knob

in the knob window which the first value is the horizontal coordinate and second value

is the vertical coordinate. Fifth line " .setRadius(50)" was setting the radius of the knob

and the last line " .setDragDirection(Knob.VERTICAL)" was allowed the knob to be

scrolled in vertical direction for changing the value.

17

Figure 3.5.2.2: knobs declaring code.

Figure 3.5.2.3: knobs creating code.

3.5.3 Data extraction and conversion

This section is the main part of the entire system that shows how the tracked gesture

data being extracted and processed by the codes. The main 6 data of the hand to control

the robotic arm were extracted by accessing the "hand1" class that created earlier. The

statements were extracting the position of the hand, stabilized position of the hand

which includes the x, y and z coordinates that need to be access later, roll of the palm

in degree that used to control the wrist of the robotic arm, the time for the hand visible

on the sensor that used to confirm whether the hand is appeared on the sensor, the pitch

of the palm in degree that used to control the wrist of the robotic arm too and lastly,

the sphere radius of the palm or palm size that used to control the gripper of the robotic

arm.

18

Figure 3.5.3.1: Data extraction code.

For the data conversion as shown in Figure 3.5.3.2, before sending the data out to the

board, some process or conversion must be done first. For using the data to drive the

servo motor, those raw data must be mapped, the range of the extracted data must be

converted to match the operating range of the servo motor which is 0 to 180 degree.

The operating range of the servo motor not necessary to be fully utilized to render the

movement of the hand. The "map(hand1_stabilized.x, 570, 30, 40, 180)" is the

mapping statement, this mapped the hand stabilized position of x coordinate from the

range of 30 – 570 to 40 – 180. After that, this mapped value was sent to the respective

knob that created earlier to indicate this mapped data during the control of the robotic

arm, in this case is the myKnobA for x coordinate. This value is then converted to

integer type first from float type since the servo motor only accept integer value to

drive. "PosX(X)" is the function header that used to send this processed data to the

Linkit board through serial communication. The serial communication function will

be explained later. The last statement "delay(1)" was added in the code to give some

time to the Linkit board to respond for the signal that send out from the Processing

software, the control of the robotic arm will be crashed without this delay function.

Figure 3.5.3.2: Data conversion code.

19

For the gripper, an additional step was done for better control and smoother by making

the gripper to close only when the palm size bigger smaller than a certain value. Figure

3.5.3.3 shows that the gripper closes only when the palm size is bigger than 120, it is

inverted because the configuration of the motor on the robotic arm structure was

inverted. At the beginning, the gripper opens when the palm closes, with it invert

mapping, now the gripper closes when the palm closes. Why the value was set to 120

because it is the most suitable value that match various palm size when different users

take control.

Figure 3.5.3.3: setting the range for the various palm size.

3.5.4 Inverse Kinematics calculation

Inverse Kinematics is the process realizing the desired end effector pose by finding the

value of the joint variables. (De Luca, 2018) The angle of each joint of the robotic arm

were found by using the Inverse kinematics calculation, the servo motor can be driven

by the value that found in the calculation to realize the desired motion. This calculation

only applied to two servo motors at middle, which is "shoulder" and "elbow".

Remaining servo motors were controlled separately and individually by respective

data. 2D inverse kinematics were used since the desired movement only realized in x

and y axes. This 2D inverse kinematics calculation can be done by using trigonometry

equations as shown below.

20

Figure 3.5.4.1: 2D inverse kinematics derivation.

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 𝑐𝑜𝑠 𝛶 (3.1)

𝛶 = cos−1 [
𝑎2+𝑏2−𝑐2

2𝑎𝑏
] (3.2)

𝐸𝑙𝑏𝑜𝑤 = cos−1 [
𝐴𝐵2+𝐵𝐶2−𝐴𝐶2

2×𝐴𝐵×𝐵𝐶
] (3.3)

𝐴2 = cos−1 [
𝐴𝐵2−𝐵𝐶2+𝐴𝐶2

2×𝐴𝐵×𝐵𝐶
] (3.4)

𝐴𝐶 = √𝑦2 + 𝑥2 (3.5)

𝐴1 = tan−1(
𝑦

𝑥
) (3.6)

𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 = 𝐴1 + 𝐴2 (3.7)

21

The angle of Elbow and Shoulder have to be found for realizing the robotic arm desired

pose, which is the "Elbow" and "A1" + "A2" for shoulder. Equation 3.6 was used to

calculate the angle of A1 while A2 was found by using the equation 3.4 which derived

from the law of cosine as shown in equation 3.1 and equation 3.2. The "AC" from

equation 3.3 was found by the equation 3.5 which is the Pythagoras theorem. The "x"

and the "y" is the x coordinate and y coordinate of the hand respectively. All the

equation was converted to code in Processing software as shown in Figure 3.5.4.2

below.

Figure 3.5.4.2: 2D inverse kinematics equations in Java code.

3.5.5 Serial communication to Linkit board

For sending data between Processing software and Linkit board, serial communication

was established by first declaring serial port named "myPort" as shown in Figure

3.5.5.1 below. The data was sent with the serial function as shown in Figure 3.5.5.2.

22

X-axis coordinate sending function was the example in this explanation. The serial

port must be cleared before sending data through, writing data after clearing that

ensures the data send out was not mixed with other data. The first number in the bracket

is the servo motor number that assigned in the programme in the Linkit board. The

value is the servo motor angle that processed out from the data conversion. The "\n" is

the "next line" command which used to indicate the serial data was ended here. These

three things were concatenated together for faster serial transfer.

Figure 3.5.5.1: Enabling serial communication in Processing.

Figure 3.5.5.2: Send processed data through serial communication.

3.6 Arduino IDE (Integrated Development Environment)

3.6.1 Setting up servo motors

The task of the Linkit board is interfacing servo motors and gesture data from

Processing software. Certain pins must be reserved for the servo motors in order for

sending PWM (pulse width modulation) signal from the Linkit board to servo motors.

Figure 3.6.1.1 shows that how the pins were assigned for the servo motors. For instance,

the pin 3 was assigned to servo 0 which is for the x coordinate, meaning that this servo

0 is responsible to turn left and right for the robotic arm. For the Figure 3.6.1.2, which

23

is the pre-setting the angle for the servo motors, this pre-setting is for the robotic arm

starting pose.

Figure 3.6.1.1: setting up pins for servo motors.

Figure 3.6.1.2: pre-setting the angle for the servo motors.

3.6.2 Receive data from Processing software

When the data sent out from the Processing software through serial communication, it

has to be read and decoded in the Linkit board. In Figure 3.6.2.1 and Figure 3.6.2.2

showing the code that how to read the string from serial and how the string data parsing

24

down respectively. The "serialEvent()" containing a while loop that keep checking the

serial is it available, meaning that as long as the signal sending in from the serial, the

loop will keep looping for reading data. Since the serial is transferring the signal byte

by byte, so the new byte must keep concatenating with the previous byte to form the

complete signal. How to know whether the signal is completed was by checking

whether the "\n" or "next line" is read from the serial. When this "next line" is read,

the flag "stringComplete" will be raised, become true and this flag signal will be sent

to the next function "parseCommand()" to do the parsing task as shown in Figure

3.6.2.2.

Figure 3.6.2.1: reading string from serial.

The "parseCommand()" function will first checking whether the "stringComplete" flag

is true, if yes, this function only starts to do the task. It will start to trim the leading

and tailing whitespaces in the string to remove unnecessary signal. Next, the servo

number was extracted from the string by taking the value before the comma (,). With

using the command of "indexOf(',')", the comma (,) position was found, this position

was used as the separator index to separate the servo number and the servo angle. Thus

the servo angle was retrieved by looking at the value after the separator index. Recap

that the signal was sent out by this format from the Processing software as shown in

Figure 3.5.5.2, so the signal has to be parsed in this way to retrieve back the actual

signal. Lastly, all the strings buffer and the flag must be cleared for the next parsing.

25

Figure 3.6.2.2: Parsing function.

26

3.7 Equipment and Cost analysis

Table 3.7.1: Equipment and component list with price.

No. Component Quantity Price

(RM)

Remarks:

1. Leap motion sensor 1 418 From Taobao

2. Linkit smart 7688 duo 1 - Acquired from lab, with

cable

3. Servo motor 6 113.4 RM 18.9 each

4. Gripper 1 36.9 From lelong

5. Acrylic board 1 - Acquired from senior

6. PCB stand 4 - Acquired from senior

7. U shape servo motor

bracket holder

3 20.7 From lelong, RM 6.9 each

8. Multipurpose servo

motor bracket holder

5 54.5 From lelong, RM 10.9

each

9. Screw 54 10.8 From lelong, RM 0.2 each

10. Nut 54 10.8 From lelong, RM 0.2 each

11. Computer 1 - Own laptop with

Processing software and

Arduino IDE installed

12. Power bank 1 60 With cable

13. Breadboard 1 - Acquired from lab

14. Jumper wire - Acquired from lab

The total cost is RM 725.1

27

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Robotic arm outlook

The robotic arm was built with six servo motors, servo motor bracket holders and a

gripper. It powered up by power bank with 5 Volts and 2.1 Ampere output. There are

3 pins in the cable of servo motor which positive, negative and signal pin. The positive

and negative pin of the servo motor connected to the positive and negative wire that

separated out from the USB to micro USB cable of power bank. The servo motor signal

pin connected to the assigned pin on the Linkit board for receiving signal.

28

Figure 4.1.1: The 6-axis robotic arm.

29

4.2 Testing

The robotic arm was able to follow the hand gesture such as grip, left, right, roll in

counter-clockwise, roll in clockwise, pitch-up, pitch-down, downward, upward,

forward and backward as shown in the figures below. All these movements can be

done simultaneously.

Figure 4.2.1: starting position at centre point.

30

Figure 4.2.2: gripping

Figure 4.2.3: move to left.

31

Figure 4.2.4: move to right.

Figure 4.2.5: no roll.

32

Figure 4.2.6: roll in counter-clockwise.

Figure 4.2.7: roll in clockwise.

33

Figure 4.2.8: pitch-up

Figure 4.2.9: pitch-down

34

Figure 4.2.10: back to centre point.

Figure 4.2.11: move downward

35

Figure 4.2.12: move upward

Figure 4.2.13: move forward

36

Figure 4.2.14: move backward

Table 4.1: Voltage and current comparison between power supply and power

bank.

 Power supply Power bank

Stationary voltage 6.592 V 4.92 V

Stationary current 300 mA 330 mA

Moving voltage (min.) 5.812 V 4.333 V

Moving current (max.) 1471 mA 1507 mA

The optimum voltage for the servo motor is 6.6 V, however the power bank only can

output 5 V. For the portability, power bank was used to power up the robotic arm.

Overall performance of the robotic arm powered up by power bank was satisfied. If

power supply were used to power up, the robotic arm can produce more energetic,

smoother, more stable and responsive movement since with the optimum power source.

Use Linkit as the power source was avoided, it can result in burn up the Linkit board

since six servo motors will draw too much current from the board.

37

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, the 6-axis robotic arm was built and it is able follow the gesture of the

user. Six (6) for the axis number of a robotic arm is consider high, 6-axis was chosen

to build is because when the number of axis higher meaning that higher the dexterity

of the robotic arm is. Next, with the technology of Leap motion, gesture control is

successfully implemented on the robotic arm, meaning that the robotic arm is now able

to follow the user hand gesture movement, controlling the robotic arm intuitively. This

project showed how convenient is the robotic arm controlled by this pendrive-size

Leap motion sensor with a computer. This addressed the problem of using typical

controller of the bomb disposal robot.

 Leap motion sensor can capture the gesture with high accuracy, according to

the its manufacturer, the Leap motion sensor can capture the gesture up to 200 frame

per second by two infrared cameras with accuracy up to 0.2 mm. (J.S., A, 2016) This

technology can be applied to many applications especially the one that required human

control such as medical surgery, controlling the robotic arm remotely in operation with

high accuracy to avoid infection.

 One of the limitation of this project is the robotic arm is bonded to the computer

for serial communication. Wi-Fi technology can be implemented into this project in

future improvement work for better portability of the robotic arm and user can

remotely control the robotic arm anywhere for better convenience.

38

REFERENCES

Army Technology. (2014). Detect and diffuse – The top 5 military robots for

explosive ordnance disposal. [online] Available at: http://www.army-

technology.com/features/featuredetect-and-diffuse-the-top-5-military-robots-for-

explosive-ordnance-disposal-4372678/ [Accessed 19 Aug. 2017].

De Luca, A. (2018). Inverse kinematics. [online] Diag.uniroma1.it. Available at:

http://www.diag.uniroma1.it/~deluca/rob1_en/10_InverseKinematics.pdf

[Accessed 9 Apr. 2018].

dipert, b., siegel, y., morris, s., rostock, l. and kutliroff, g. (2013). The gesture

interface: A compelling competitive advantage In the technology race | EE Times.

[online] EETimes. Available at:

http://www.eetimes.com/document.asp?doc_id=1280756 [Accessed 22 Aug.

2017].

Gartner IT Glossary. (2017). Gesture Control - Gartner IT Glossary. [online]

Available at: http://www.gartner.com/it-glossary/gesture-control/ [Accessed 22

Aug. 2017].

Gondane, R. (2017). Future with Gesture Recognition Technology Control and

Applications. [online] Edgefx Kits Official Blog. Available at:

http://www.edgefxkits.com/blog/what-is-gesture-recognition-technology-glimpse-

of-the-future/ [Accessed 22 Aug. 2017].

J.S., A. and J.L., M. (2016). Development of a Robotic Arm and implementation of a

control strategy for gesture recognition through Leap Motion device. [online]

Available at: http://ieeexplore.ieee.org.libezp.utar.edu.my/document/7528373/

[Accessed 13 Aug. 2017].

Ray Allison, P. (2016). What does a bomb disposal robot actually do?. [online]

Bbc.com. Available at: http://www.bbc.com/future/story/20160714-what-does-a-

bomb-disposal-robot-actually-do [Accessed 19 Aug. 2017].

39

Robots.com. (2017). What is a robot arm?. [online] Available at:

https://www.robots.com/faq/show/what-is-a-robot-arm [Accessed 19 Aug. 2017].

sarkar, a., Arvindbhai Patel, k., Ram R.K., G. and Krishna Capoor, G.

(2016). Gesture Control of Drone Using a Motion Controller. [online] IEEE.

Available at:

http://ieeexplore.ieee.org.libezp.utar.edu.my/stamp/stamp.jsp?arnumber=7462401

[Accessed 6 Aug. 2017].

Sziládi, G., Ujbányi, T. and Katona, J. (2016). Cost-effective hand gesture computer

control interface - IEEE Xplore Document. [online] Ieeexplore.ieee.org. Available

at: http://ieeexplore.ieee.org/document/7804555/ [Accessed 22 Aug. 2017].

Y., P., P., C., N., T., K., K. and Ch., P. (2016). Robot-arm control system using

LEAP motion controller. [online] IEEE Xplore. Available at:

http://ieeexplore.ieee.org.libezp.utar.edu.my/document/7782091/ [Accessed 13

Aug. 2017].

40

APPENDICES

APPENDIX A: Source code of Processing software

41

42

43

44

45

APPENDIX B: Source code of Arduino IDE

46

47

APPENDIX C: Pinout of Linkit smart 7688 duo board

