

POSTURE DETECTION OF SMARTPHONE USERS USING DEEP LEARNING

BY

TAN SONG LIM

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

JANUARY 2018

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Dr.Ng Hui Fuang

 Date: _____________________ Date: ____________________

POSTURE DETECTION OF SMARTPHONE USERS USING DEEP LEARNING

BY

TAN SONG LIM

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

JANUARY 2018

 ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “POSTURE DETECTION OF SMARTPHONE

USERS USING DEEP LEARNING” is my own work except as cited in the references.

The report has not been accepted for any degree and is not being submitted concurrently in

candidature for any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

 iii

ACKNOWLEDGEMENTS

I am grateful to have those with whom provide me assistance and courage to carry out my

final year project. I would sincerely like to thank Dr. Ng Hui Fuang, the supervisor of my

final year project for given me the chance to be involved in a deep learning related project.

His willingness to sacrifice his time in order to guide me and provide valuable suggestion

is deeply appreciated.

I would like to thank Jacqueling Lee Fang An and Dr. Ooi Boon Yaik for sponsoring an

Android application which is able to collect raw sensors data from the smartphone built in

sensors such as accelerometer, magnetometer and gyroscope. A million thanks for their

help in the project.

Last but not least, I would like to express my great appreciation to my family for their love,

unconditional support and continuous encouragement throughout my final year project.

 iv

ABSTRACT

Emerging of new technology is unavoidable in this modern era. Deep learning technology

arises and gets into the eyes of many researchers, achieving wonderful result in different

fields which includes computer vision, speech recognition, sentiment analysis and so on.

However, there seems to be lack of developers who utilize deep learning in predicting the

hand posture of user and phone placement of smartphone. This project involves applying

deep learning technology in predicting the hand posture of a user while interacting with

smartphone and its placement while it is idle. The final product of this project will be an

Android application which is able to do hand posture and phone placement detection

correctly. A long short-term memory (LSTM) network will be built from scratches and

deployed into Android platform. Different optimization such as different activation

function, optimization algorithms, updater, loss functions and other hyperparameter will

greatly affect how the model going to perform. In order to train and test the neural network,

an Android application will be used to collect random set of raw sensors data produced by

accelerometer, magnetometer and gyroscope of a smartphone. The network will later be

deployed in smartphone and produced an application named ‘Scarecrow’. The result

produced by Scarecrow is absolutely great. Among the 6 test cases (right hand, left hand,

both hand, put on table, put in pocket, single hand), the result produced by Scarecrow are

74.44%, 76.66%, 84.44%, 100% , 95.56% and 100%.

 v

Table of Contents

TITLE i

DECLARATION OF ORIGINALITY ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

Chapter 1: Introduction 1

1.1 Motivation and Problem Statement 1

1.2 Project Scope 2

1.3 Project Objectives 2

1.4 Contribution 2

1.5 Background 2

1.6 Report Organization 5

Chapter 2: Literature Review 6

2.1 Hand Posture & Phone Placement System Review 6

2.1.1 Introduction 6

2.1.2 Hand Posture Recognition 7

2.1.3 Phone Placement Recognition 10

2.1.4 Strength of Solutions 15

2.1.5 Weaknesses of Solutions 17

 vi

2.1.6 Summary 18

2.2 Introduction to Deep Learning 20

2.2.1 Introduction 20

2.2.2 Backpropagation 20

2.2.3 Activation Functions 21

2.2.4 Convolutional Neural Network 21

2.2.5 Recurrent Neural Network 22

Chapter 3: System Design 24

3.1 Hand Posture and Phone Placement 24

3.2 Train and Validation Data 24

3.2.1 Multiple Sensors Approach 25

3.3 Data Preprocessing 25

3.3.1 Training and Testing Stage 25

3.3.2 Deployment in Android 27

3.4 Design of Neural Network 28

3.4.1 Architecture of Network 28

3.4.2 Cross Validation 29

3.4.3 Hyperparameter 29

3.4.4 Functions and Methods 35

3.5 Android Application 40

3.5.1 Architecture of Application 40

3.5.2 Functions and Methods 41

3.6 General Workflow 47

3.7 Technology Involved 47

3.7.1 Hardware 47

3.7.2 Software 48

 vii

3.8 Data Sets 48

3.9 Implementation issue and Challenge 49

Chapter 4: Implementation and Result 50

4.1 Data Collection 50

4.2 Evaluation of Neural network 51

4.3 Evaluation of Android Application 55

4.3.1 Participants 55

4.3.2 Experimental Setup: 55

4.3.3 General Flow 55

4.3.4 Result 57

4.3.5 Comparison with other Systems 59

Chapter 5: Conclusion 60

5.1 Project Review 60

5.2 Future Work 60

Bibliography 61

 viii

LIST OF FIGURES

Figure Number Title Page

Figure 1.1 Simple Neural Network 4

Figure 2.1 Flowchart of Rotation of device, Touch Size & Shape of

Swipe Arc

 8

Figure 2.2 Discovery Inference Steps 10

Figure 2.3 System Diagram of In-Pocket Detection 12

Figure 2.4 Pseudo Code of Core Algorithm 12

Figure 2.5 Different Architecture of RNN 22

Figure 2.6 Unfolding of RNN in time computation 22

Figure 2.7 Structure of LSTM 23

Figure 3.1 Hand Posture and Phone Placement 24

Figure 3.2 Data Preprocessing in Training and Testing Stages 26

Figure 3.3 Data Preprocessing in Android Application 27

Figure 3.4 Architecture of Neural Network 28

Figure 3.5 Truncated Backpropagation through Time 34

Figure 3.6 Workflow of Application 40

Figure 3.7 Data Set 49

Figure 4.1 Watcher Interface 50

Figure 4.2 Watcher Interface (1) 50

Figure 4.3 Model Score vs. Iteration Graph 51

Figure 4.4 Layer Activation Graph 52

Figure 4.5 Graph of Accuracy of Proposed Prediction Model for

each Posture Type

 54

Figure 4.6 Interface of the application ‘Scarecrow’ 56

Figure 4.7 Average Accuracy of 6 Test Cases 57

 ix

LIST OF TABLES

Table Number Title Page

Table 2.1 Accuracy of each interaction techniques of BeyondTouch 9

Table 2.2 Phone Position Recognition with Basic Acceleration

Features

 14

Table 2.3 Phone Position Recognition with Angular Acceleration

Features

 14

Table 3.1 Difference of L1 and L2 Regularization 31

Table 3.2 Common Activation Functions Details 33

Table 4.1 Accuracy of Proposed Prediction Model for each Posture

Type

 53

Table 4.2 Result of Scarecrow 57

Table 4.3 Comparison of Scarecrow with other system 59

 x

LIST OF ABBREVIATIONS

ANN

API

Artificial Neural Network

Application Programming Interface

BPTT Truncated Backpropagation through Time

CNN Convolutional Neural Network

CPU

DL4J

Central Processing Unit

DeepLearning4j

ELU Exponential Linear Unit

GMM Gaussian Mixture Model

GPU Graphical Processing Unit

HMM Hidden Markov Model

LSTM Long short-term Memory

ND4J N-Dimensional Arrays for Java

NFC Near-field Communication

ReLU Rectified Linear Unit

RFID Radio Frequency Identification

RNN Recurrent Neural Network

SD Standard Deviation

SGD Stochastic Gradient Descent

SVM Support Vector Machine

Chapter 1: Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 1

Chapter 1: Introduction

1.1 Motivation and Problem Statement

In the matter of hand posture and phone placement recognition, there is a number of

researchers who applied algorithm and other methods as the solution. For instance, Goel,

Wobbrock and Patel, (2012) had developed an application to do hand posture, grip and

pressure detection with smartphone. With complex algorithm and careful design, the

application produced a good result in term of accuracy. Even though the result is good, the

complexity of algorithm filters out much of the people who can understand them. Not

everyone possessed with the ability in understanding how the system works, its behavior

and weaknesses. Besides, when an algorithm becomes complex, its vulnerability becomes

an issue. Despite the good result, there remains space for improvement.

Besides, some research had used external devices connected to smartphone in order to

detect posture. For example, Tanaka et al. (2015) had created a mobile application which

monitors and detects head posture called “Nekoze”. The application requires user to wear

sensing glasses which send out sensor data related to head angle to smartphone for

interpretation. The limitations are obvious. The application requires the users to wear an

external equipment in order for the application to work. This research gives inspiration on

developing a posture detection application based on the sensor data from smartphone’s

built-in sensors in the absence of external tracking devices.

Over the last few years, several good and useful techniques arise and in term of pattern

recognition, deep learning definitely works great. In the current trend, application which

practice deep learning approach to detect hand posture and phone placement doesn’t seems

to appear. When it comes to pattern recognition and huge volume of data, deep learning

definitely outperform other approach by a significant amount. The advantages allow the

detection and identification of hand posture and phone placement to have better result and

easier to implement as it replaces complex algorithm with the process of training, tuning

and testing neural networks.

Chapter 1: Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 2

1.2 Project Scope

The scope of the project includes building, training, testing and optimizing neural network

which would predict hand posture and phone placement based solely on accelerometer,

magnetometer and gyroscope data from smartphone built-in sensors. A LSTM network

will be built from scratch and go through the process of training, tuning and testing before

deployment.

1.3 Project Objectives

The objectives of the project are:

a. To identify hand posture and phone placement based on the sensors data from

smartphone

b. To utilize deep learning in learning hand posture and phone placement

c. To create an Android application that predict user’s hand posture and phone

placement correctly

1.4 Contribution

By the end of this project, an Android application based on deep learning which is able to

recognize users’ hand posture and phone placement will be produced. This application is

able to do recognition based solely on smartphone built-in sensors without any additional

devices.

1.5 Background

Smartphone has becoming trendy and common. It is one of the information technology

gadgets that everyone tends to have. With its mobility and small size, users able to carry it

from one place to another easily. Nowadays, users prefer to use smartphone to get their

things done compared with sitting in front of a desk facing a computer. Due to enormous

number of smartphone users, interaction between the users with their smartphone has catch

Chapter 1: Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 3

the eyes of many researchers. The way how the users interact with the phone may change

the way how efficiently a phone works.

Among all the factors that affects how a phone functions, user’s hand posture is one of the

most important factor that have a gigantic impact on the phone. The changes of user’s hand

posture manipulates the way a mobile device works (Goel, Wobbrock and Patel, 2012).

When a user interacting with a smartphone, several hand posture can be generated such as

left hand, right hand, thumb, both hand and so on. These posture actually affects much of

the performance of a smartphone. For instance, users normally use their dominant hand in

holding and interacting with their smartphone in the case of one hand. If they switch their

hand, the interaction between the user and the phone may not be that efficient.

Besides, phone placement detection is also a rather hot topic among the developers. For

instance, place it in pocket, out of pocket, in a table and so on. Different developers had

tried out different method to detect the position of the phone. For instance, RFID based

approach. In a project developed by Wahl and Amft in the year 2014, the system developed

continuously utilized near-field communication (NFC) technology equipped in every

smartphone to read the data from a radio-frequency identification (RFID) tag.

As mentioned earlier, deep learning technology is currently a hot topic. Deep learning is

emerging and it is inspired from the structure of human brain. It is an artificial intelligence

mostly used in pattern recognition with huge amount of data sets which are impossible for

human to process (Sun and Vasarhelyi, 2017). In discussing deep learning, the term neural

network should be known beforehand. The term neural network is commonly referred to

artificial neural network (ANN). Deeplearning4j (2017) stated that neural networks are

defined as a set of algorithm which designed to recognize pattern and help on clustering

and classifying. According to Nielsen (2015), a neural network has three different parts:

input layer, hidden layer(s) and output layer. In a neural network, the leftmost layer is

known as input layer while the rightmost layer is known as output layer (Refer to Figure

Chapter 1: Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 4

1.1). The rest of the layers in between the input layer and output layer are known as hidden

layers. Each layer contains a number of nodes called neurons. For each neurons, it is

assigned with a weight (coefficient). When a neuron receives an input (Xn), it will multiply

it with the weight (Wn) and sum up with other dot product from other neurons. This can be

summarized as summation of dot product (XnWn). This either increase or decrease the

significance value of the inputs for the network to learn. Next, the sum is pass to a node’s

activation function to do classification leading to output.

Figure 1.1: Simple Neural Network

In the field of deep learning, there are several architecture which are famous and practical

in use. They are convolutional neural network (CNN), recurrent neural network (RNN) and

others. For different cases, different architectures of network can be applied. For instance,

CNN is well known in processing image and video frame. It has been proven that it

performs well in task related to images/frames. For RNN, it is used to handle sequential

data such as speech, sensors data, stock market price and so on.

Chapter 1: Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 5

In a nutshell, deep learning is the current trend right now and it definitely has a great

advantage in solving different types of problems when vast volume of high quality data

and resources such as graphical processing unit (GPU) are available.

1.6 Report Organization

This report consists total of 5 chapters. In the first chapter, motivations for working on this

project, scopes of the project and project objectives are clearly defined. This chapter also

introduces some background regarding the technology involved in the project. In the

chapter 2, several papers regarding detection of users’ hand posture and phone placement

are studied, reviewed and compared. In the same chapter, information and knowledge

regarding the technology involved in this project is explained.

For the next chapter, it explains the design of the long short-term memory (LSTM) network

that are going to be built and deployed. Besides, it also contain the description regarding

the methodologies and tools that had been used throughout this project. In chapter 4, the

result of the final product are being shown and discussion had been done on the result.

The last chapter concludes the project and states some possible future improvements on the

application.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 6

Chapter 2: Literature Review

2.1 Hand Posture & Phone Placement System Review

2.1.1 Introduction

In the past few years, hand posture and phone placement detection and identification had

become a relatively hot topic among the researchers. According to Wobbrock, Myers and

Aung (2007), hand posture includes one hands, both hands, index fingers and thumbs will

affect the performance of the phone crucially. Besides, the interaction with a smartphone

is limited to touching on the front screen and some physical button along the sides of a

phone (Zhang et al., 2015). Limitations in the different types of hand posture that a

smartphone able to detect currently limits the ways how a user interacts with smartphone.

With regards to phone placement recognition, a variety of phone placement adopted by

smartphone users such as carry it in bag, pocket, upper body and hands becomes a

challenge (Incel, 2015). Furthermore, by running an application which process phone

placement recognition on the smartphone, it consumes much of the resources and energy.

According to Yang, Munguia-Tapia and Gibbs (2013), “an efficient approach is needed in

sensing applications which are resource intensive and power consuming in terms of sensing,

computation and communication”.

Among all the solutions proposed by researchers regarding hand posture and phone

placement, most of the solutions preferred machine learning. Compared to deep learning,

machine learning actually focused more on feature engineering and less on feature learning.

Although most of the solutions are machine learning related, the difference between the

algorithms used by different researchers can be seen. Besides that, each solution has its

own unique strengths and weaknesses in detecting different types of hand postures and

phone placement.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 7

2.1.2 Hand Posture Recognition

2.1.2.1 GripSense

This application was developed by Goel, Wobbrock and Patel in the year 2012. GripSense

is a system that utilizes touchscreen, built-in sensors and built-in actuators of smartphone

in making inference regarding hand posture, grip and pressure applied to the phone. It

doesn’t require any additional sensors. For grip detection, even though no external devices

needed, the user needs to interact with the smartphone in order for it to make inference

about the detection. From the built-in sensor data, GripSense is able to interpret hand

posture that the user performed such as thumb, index finger, the hand that hold the phone

or whether the phone is lying on table. In order for the sensing mechanism to works, the

researchers of GripSense put their effort in measuring tap size, arc of swiping motion and

device’s rotation. With the combination of these three techniques, the accuracy of the

application in sensing hand posture is relatively high. Besides hand posture, the application

is also able to detect pressure and grip precisely.

For the measurement of device’s rotation, several cases had been discussed by the

researchers regarding hand posture used. For instance, touches at the top of smartphone

rotates the phone more compared with touches at the bottom due to range limitation of

thumb. With regards to touch size, the researchers discussed that when the user operates

the phone with one hand, the tap size will be bigger when the touch is far away from the

thumb. In contrast, touches on the same side as the hand gives smaller tap size. For the last

technique, it is only applicable when the user makes a swipe on the screen. According to

Goel, Wobbrock and Patel (2012), index finger doesn’t really create an arc when swiping

but for thumb, there will be a consistent and obvious arc either to the right or left depending

on which thumb is being used. Flowcharts of core algorithms of three techniques are shown

in Figure 2.1.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 8

Figure 2.1: Flowchart of Rotation of device, Touch Size & Shape of Swipe Arc

The combination of three techniques and majority voting in the final decision creates an

algorithm which able to detect hand posture efficiently and effectively in GripSense and

produces a good result for posture detection in term of accuracy.

2.1.2.2 BeyondTouch

BeyondTouch is an application developed by Zhang et al. in the year 2015 with the motive

to increase input languages by utilizing built-in sensors. The application extends a

smartphone input variety with additional inputs and these additional inputs are categorized

into two different groups, on-case interaction which includes phone and hands interaction,

and indirect interaction which includes touching the surface the phone placed at. In the

design of BeyondTouch, three interaction scenarios had been focused and they are one-

handed, two-handed and on-table.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 9

In the one-handed interaction scenario, it is not easy for a thumb to point or move across

the entire front screen when the user is using the phone with one hand especially the current

trendy smartphones are having large screen. For the two-handed interaction, when a user

is holding the phone in landscape, the area that both thumbs can reach is relatively small.

While for the on-table scenario, the researchers tried to capture any possible interactions

around the phone without any additional sensors.

For all of these case scenarios, the researchers had used a combination of rule-based and

machine learning approach to implement. Rule-based approach will be applied first to do

segmentation and machine learning approach will do the classification job later. More data

sets are collected for one-handed and two-handed interactions because these cases are

dependent on how the user holds and interacts with the phone. The result in term of

accuracy of BeyondTouch is above 70% for all three interactions scenarios and is shown

in Table 2.1 below.

Table 2.1: Accuracy of each interaction techniques of BeyondTouch

2.1.2.3 ContextType

ContextType is a system which leverages details about user’s hand posture in reducing

screen text entry error. It was developed by Goel et al. in the year 2013. Some of the

researchers who develop this system were from the team which developed GripSense.

ContextType has different touch models for different hand posture. For instance, left thumb,

right thumb, two thumbs and index finger. It switches between these models based on the

inference about hand posture of the user. Just like their previous work GripSense,

ContextType doesn’t require any additional sensor to do the sensing.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 10

According to the research team, four different touch pattern models were created to change

the underlying keyboard layout based on the user’s typing behavior. The visual keyboard

layout remains the same. The four models are for left thumb, right thumb, both thumb and

index finger.

Besides that, the research team created a language model based on the works of other

researchers. The language model works effectively in reducing error rates. Overall,

ContextType is able to detect four types of hand postures. With the hand posture

information combined with a language model, the error rate of participants was reduced by

20.6%.

2.1.3 Phone Placement Recognition

2.1.3.1 Discovery Framework

Discovery is a framework made by Miluzzo et al. in the year 2010. It is designed to detect

phone sensing context based on mobile sensors with improved accuracy. According to the

research team, phone sensing context refers to how the phone is carried in relation to the

event being sensed. In the preliminary work of this framework, the research team put their

focus in identifying whether the phone is in the pocket or out of the pocket. The framework

design is separated into 3 level of inference which is shown in Figure 2.2.

Figure 2.2: Discovery Inference Steps

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 11

The first level of inference is known as uni-sensor inference. In this layer, sensor data from

a single smartphone built-in sensor gives hints about the context that the phone is sensing

and it is not conclusive. The second level of inference is called multi-sensor inference. In

this level, the input is the output of first level. At this phase, combination of data from

different built-in sensor produces a more convincing result and gets closer in sensing the

actual context. The third level of inference is known as temporal smoothing. Techniques

such as temporal smoothing and Hidden Markov Model (HMM) are being used to process

the output of second level.

Initially, the system includes Gaussian Mixture Model (GMM) and Support Vector

Machine (SVM) in their inference models. GMM and SVM were included in the inference

models with the motive to evaluate which technique is better and to see the adoption of

more than one learning techniques. In the feature selection implementation, Discovery

relies on a 23-dimensional feature vector and this vector is extracted from an audio clip.

Discovery framework achieves an accuracy of 80% during the evaluation with practicing

single sensing modality which is the microphone. With more and more sensing models, the

potential of Discovery framework can be exploited.

2.1.3.2 In-Pocket Detection

In-Pocket detection is an efficient algorithm created by Yang, Munguia-Tapia and Gibbs

in the year 2013. Due to resource intensive context aware application, an efficient

algorithm in the process of sensing is very important. In-Pocket Detection focused mainly

in developing a more accurate, robust and energy-efficient recognition algorithm which

detects phone placement context automatically.

In-Pocket Detection categorized phone placement into three types: “in pocket” (inPocket),

“in bag” (inBag) and “out of pocket or bag” (outOfPocket). By recognizing one of these

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 12

placement types, the accuracy of recognizing other context can be improved. The project

utilizes the combination of embedded proximity and light sensors in sensing the phone

placement surrounding. Next, the data from these sensors will be processed before data

stream synchronization. After the synchronization of data stream based on a fixed timer,

feature extraction will be performed. Figure 2.3 below shows the overall system design for

In-Pocket Detection and Figure 2.4 shows the pseudo code of core algorithm:

Figure 2.3: System Diagram of In-

Pocket Detection

Figure 2.4: Pseudo code of Core Algorithm

Overall, In-Pocket Detection achieved an accuracy of 98% in their demo prototype. The

system also successfully reduces the power consumption of sensor reading to less than

6mW. For the CPU resources, the processing power can be negligible.

2.1.3.3 ARService

ARService is an Android application developed by Coskun, Incel and Ozgovde in the year

2015 to predict phone placement based solely on accelerometer data without any additional

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 13

data from other sensors. The three main phone placement aimed to be detected are in a

backpack, in the hand and in a pocket.

According to Coskun, Incel and Ozgovde (2015), “the effect of the location information

on classifier performance is dependent on the activities and the locations involved.”

Besides, the developers also mentioned resource optimization is a very important issue in

running sensing application in obtaining sensor data.

The system will only utilize accelerometer as mentioned earlier. The data collected will be

processed using Random Forest classifier from Weka machine learning toolkit. In details,

features will be extracted from raw data and this feature set will be mapped to a set of

activities by using a classification algorithm. The project team not only put their effort in

position recognition, but also activity recognition. The feature sets used for both were

different. However, random forest classifier was used in both cases in the classification

stage. Classification used can be differentiated into two types: classification with angular

acceleration features and classification with basic acceleration features. For classification

with angular acceleration features, the researchers placed their concern on finding the

orientation of smartphone using only information provided by accelerometer such as roll

and pitch values. For classification with basic acceleration features, common features in

activity recognition like mean and standard deviation are investigated to check which

feature provides the highest accuracy among all.

With only acceleration data, the result reached 77.34% in term of accuracy. By adding

features such as mean, variance and standard deviation used in activity recognition, the

accuracy increased to 85.04%. Overall, by just using acceleration data, the result wasn’t

that bad. Without any additional data from other sensors, resource optimization is achieved

in this project.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 14

Table 2.2: Phone Position Recognition with Basic Acceleration Features

Table 2.3: Phone Position Recognition with Angular Acceleration Features

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 15

2.1.4 Strength of Solutions

2.1.4.1 Strength of Solutions: Hand Posture Recognition

System Strengths

GripSense Achieved relatively high accuracy in hand posture, grip and

pressure detection. For hand posture the accuracy is 84.3% on

average while for pressure, the application differentiate 3

different levels with a success rate of 95.1%.

 Used smartphone built-in sensors to do hand posture

recognition, it doesn’t require any additional devices to assist

in the process of sensing context.

BeyondTouch The results of one-handed, two-handed and on table

recognition is good in term of accuracy, range from over 70%

to over 80%.

 Used only smartphone built-in sensors to detect hand posture

and extend the input language of smartphone. It doesn’t require

any external devices in sensing process.

 Do personalization according to users. It requires only a small

set of particular user training data to works on and personalize

that user’s model. This increases the accuracy.

ContextType Improved users typing experience by combining posture

recognition with a language model to classify user pressed key

and reduce the error rate. The application successfully reduced

20.6% of total text entry error rate.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 16

2.1.4.2 Strength of Solutions: Phone Placement Recognition

System Strengths

Discovery

Framework

 By using only one sensing modality, the application achieve an

average accuracy of 80% in placement recognition. The system

has potential in growing, and when more sensors data are added

on top of it, its performance might grow to a higher level.

 The application requires no additional sensor in the process of

processing phone placement recognition and thus, result in low

cost.

In-Pocket

Detection

 Achieved an accuracy of 98% with a demo prototype in

recognizing two types of phone placement: “in pocket” and

“out of pocket”. It performed better compared with ARService

due to sensor data fusion over proximity and light.

 The application is a pure light-weight software solution. It

doesn’t need additional hardware which will increase the size

and costs of smartphones.

 The application is energy and resource efficient due to an

efficient algorithm. Average of power consumption while

doing the sensing is less than 6mW and CPU processing power

is negligible.

ARService Successfully identified phone placement with an accuracy of

77.34% on three types of positions: in backpack, in the pocket

and in the hand. The accuracy can be further increases to 85%

when basic features such as mean, variance and standard

deviation are added into angular feature calculated.

 Optimize resource in term of computing and energy by using

only the sensor data from accelerometer to do phone placement

recognition.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 17

2.1.5 Weaknesses of Solutions

2.1.5.1 Weaknesses of Solutions: Hand Posture Recognition

System Weaknesses

GripSense For grip recognition, the user had to be interacting with the

device so that the application can make inferences. Because

GripSense used built-in vibration motor to detect pressure

applied, the motor is triggered only when the user interact with

the screen.

 Pressure detection algorithm of the system works fine in

limited phone. For different phone, the algorithm had to be

adjusted in order to works perfectly.

 In all sort of recognition performed by the application, many

built-in sensors were used to do sensing. Power consumption

of the smartphone is an issue.

BeyondTouch Energy consumption is an issue. Utilization of many built-in

sensors in computing and sensing consumes much power and

computing resources.

 The application unable to bear with extra user’s hand

movement. For example, the user shake the device heavily

while performing a hand posture.

 For two-handed interaction, when a user makes fast inputs (the

difference between two inputs is less than 0.5 second), the

classification result might be affected.

ContextType In processing hand posture recognition, a number of sensors are

used in sensing the context. Energy optimization becomes an

issue.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 18

2.1.5.2 Weaknesses of Solutions: Phone Placement Recognition

System Weaknesses

Discovery

Framework

 The application practiced single sensing modality approach, the

only sensor used is the accelerometer, resulting in lower

accuracy when compared with others.

 Simple heuristics which derived from a small data set was used

in the application to determine the classification rules can be

inaccurate..

In-Pocket

Detection

 The application only able to detect two phone placement, either

“in pocket” or “out of pocket”.

ARService Just like Discovery Framework, the application used single

sensing modality approach and accelerometer is the only sensor

being used.

2.1.6 Summary

For hand posture recognition, GripSense, BeyondTouch and ContextType produced

satisfying result. All of these three system actually achieved quite high accuracy in the

detection which range from 70% to 85%. With different approaches, previous researchers

bounded to the same objective in developing their project as they tried hard to eliminate

the needs of external hardware and utilized fully in the built-in sensors of a smartphone in

recognizing hand postures of the users. Energy optimization is still an issue due to

enormous number of sensors processing sensing jobs and collecting raw sensors data in

order to determine hand postures.

With regards to phone placement recognition, the result is pretty good in term of accuracy

for all three systems. Besides, the energy optimization had been achieved by all these

system because these systems either practiced single sensing modality approach or

implemented an efficient algorithm. As these systems main focus is in energy efficient,

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 19

their limitations are also obvious. Single sensing modality approach provides insufficient

information for a system to make excellent guess. Besides, In-Pocket Detection algorithm

has limits phone placement to only two even though it is very efficient in saving energy.

However, the limitations in these three systems are small and will not causes much issue

to the overall performance of the system. Their potential can be exploited by including

more sensors in predicting the phone placement.

In a nutshell, the six systems that had been reviewed have relatively high performance with

few limitations. Despite prior research and system developed by previous researchers, there

remains upgrade for a better system especially when new technology arises.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 20

2.2 Introduction to Deep Learning

2.2.1 Introduction

Deep learning is very different from conventional machine learning techniques. Machine

learning requires wide knowledge and engineering skill to build and design an extractor

which will process the raw data before applying a classifier. Because of this, traditional

machine learning is more towards feature engineering and focus less on feature learning.

For deep learning, it is classified as high feature learning and low feature engineering. Deep

learning is considered as representation learning, as it can takes raw data as inputs and find

out the elements needed for classification. The function needed for the classifier to work is

learn by the network through the training process. Layers by layers, in deep learning, higher

layers in the model indicates critical attributes of the inputs which are important and

essential in differentiating and crush those unrelated attributes. With deep learning, large

amount of effort in planning a careful design can be avoided. Basically, deep learning is

made up of multiple layers of nodes, and by going through the process of learning, it is

able to transform raw data into desired outputs.

In the middle of 19th century, the concept of neural network was already been introduced.

However, people preferred to use machine learning methods to solve a variety kinds of

problem. This is due to several reasons. First, network based on deep learning is so hard to

train at that time in the absence of backpropagation. Besides, the result produced by deep

learning wasn’t fascinating enough for machine learner to change their interest. But now,

with more computation power (introduction of GPU), more data and better algorithms and

models, deep learning starts to get popular and definitely works great in variety of fields.

2.2.2 Backpropagation

Backpropagation is a technique which computes the gradient of the cost function from the

output back to the inputs with respect to the weights (Wn) of multiple layers of nodes. With

backpropagation technique, how the changes in weights and biases of multiple layers of

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 21

nodes affects the overall performance of a neural network can be interpreted in detail.

Backpropagation actually involves chain rule and that’s it. It uses chain rule to compute

the gradient of the output with respect to neurons in the network. In the 19th century, neural

network and backpropagation were ignored as most of the developers think that the best

way to solve computer vision and speech recognition related problem is by having careful

design and engineering skills to build a feature extractor and it is unavoidable. Later, deep

learning and backpropagation technique begins to gain its popularity as graphics processing

units (GPUs) are introduced to the world.

2.2.3 Activation Functions

Activation function is an important aspect in deep learning. It consists of non-linearity

which will transform the weighted input (XnWn) of a node into output signal. Basically

activation function decide whether a neuron should be activated or not. Without activation

function, neural network collapse to linear functions and it can’t solve complex tasks. Some

examples of activation functions are sigmoid, tanh, ReLU and so on. Different activation

functions have different strengths and weaknesses.

2.2.4 Convolutional Neural Network

Convolutional neural network, often referred as CNN, is designed to process data in the

form of n-dimensional array. For instance, image. In the design of CNN, it is a structure

which build up from a series of stages. In the first few stages, a convolutional neural

network is made up of two different layers: convolutional layers and pooling layers.

Convolutional layers basically learns a set of filters and these filters are applied across

different spatial locations locally and in parallel. The size of the filter is a hyperparameter.

Convolutional layers is responsible to find the local conjunctions of features based on

previous layer while pooling layers will find the similarity between features and merge

those which are similar into one. CNN performs especially well in object detection,

segmentation and recognition from image. Currently, there are quite a number of pre-

trained model available for CNN such as AlexNet, VGG, ResNet, ZFNet, GoogLeNet,

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 22

LeNet and so on. These pre-trained models avoid the process of building a neural network

starting from scratches. With these pre-trained models, the process of training can be speed

up and it does improve the performance in overall.

2.2.5 Recurrent Neural Network

Recurrent neural network, often referred as RNN, is designed to deal with time series data

and sequential inputs. It is a network with loops which allows information to stay. Figure

below shows different design of RNN:

Figure 2.5: Different architecture of RNN

Without backpropagation, difficulty of training a RNN will increase a lot. RNN has proved

itself to be a very powerful dynamic system. However, training process of a RNN is

troublesome and problematic as the backpropagated gradients will either grow or shrink at

each time steps. This leads to gradient vanishing or gradient explodes problem after several

time steps. Some techniques are introduced to solve these situations. Gradient clipping can

be implemented to solve gradient explodes issue while long short-term memory (LSTM)

is an effective nodes designed to overcome gradient vanishing problem.

Figure 2.6: Unfolding of RNN in time computation

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 23

When a RNN unfolds at a certain time step, it can be seen as a feedforward network and

the layers lies in the network are sharing the same weights (Refer to Figure 2.6). According

to DeepLearning4j (2017), RNN has a feedback loop, which allows the output of last step

n-1 to be fed back to the same neural network and make an influence in the result of step n

and this continues for each following steps. RNN’s main objective is to learn long term

dependencies, however, it can only learn dependencies which are not too long. The

introduction of LSTM perfectly solve what RNN couldn’t do as LSTM able to learn long

term dependencies well. Basically, LSTM is a special neuron which consists of 4 inputs

and 1 output. It has 3 gates controlling the value in the memory and they are input gate,

output gate and forget gate (Refer to Figure 2.7).

Figure 2.7: Structure of LSTM

Input gate is controlling the inputs passing into the memory. While the output gate decides

whether the value in memory would affect the operation in the next step and for forget gate,

it controls the value update in the memory and clears the memory if needed. The cell sate

is like the memory for the LSTM. It either keep or discard the information stored in itself

based on the signal from the forget gate. While for the hidden state, it is the output of the

cell state.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 24

Chapter 3: System Design

3.1 Hand Posture and Phone Placement

Hand posture is relatively important in the interaction between smartphone and human.

The way how a smartphone user interacts with the phone can greatly enhance the user’s

experience. Among various type of hand posture and phone placement, several types had

been identified as the focus of this project (Refer to figures below).

Figure 3.1: Hand Posture and Phone Placement

3.2 Train and Validation Data

For the training process of neural network, huge amount of high quality data is needed. An

Android based application named Watcher is used to collect sensors data generated by the

smartphone sensors. Watcher application is derived from an application sponsored by

Jacqueling Lee Fang An with some modification such as setting file name, converting data

collected into comma-separated values (.csv) format, different sampling rate and so on.

The application practices multiple sensors approach which would collect a bunch of

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 25

accurate and good quality sensor data. Sensors data collected are labeled with the action

requested by the application to the users.

3.2.1 Multiple Sensors Approach

In the sensor data collection, three built in smartphone sensors had been utilized to collect

the data and they are accelerometer, magnetometer and gyroscope. Accelerometer handles

changes in orientation and measures the forces of acceleration which may be caused by

earth’s gravity. For magnetometer, it acts like a compass and detects Earth’s magnetic

fields. It would produces a simple orientation (X, Y, Z) about the smartphone. With these

two sensors, orientation of the phone can be calculated. However, result outputted by

magnetometer and accelerometer can be inaccurate as it contains a lot of noise. Among all

the sensors, gyroscope is considered the most accurate sensors. Besides, it has relatively

small response time compared to others. The sensors data collected from accelerometer

and magnetometer are combined into 3 inputs while gyroscope contributes another 3 inputs

resulting in a total of 6 inputs and these inputs will later be inserted to the network for train

and validation.

3.3 Data Preprocessing

3.3.1 Training and Testing Stage

As mentioned earlier, sensor data collected are saved in comma-separated values (.csv)

format. The data has 6 inputs (accel[X], accel[Y], accel[Z], azimuth, pitch, roll) and 6

outputs labeling the actions. These data will be used in training and testing phase of neural

network before the deployment. As these data are raw sequence data, they can’t be inputted

directly to the neural network. Extraction of input sequence and output sequence pairs must

be done before training or predicting can be done.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 26

Figure 3.2: Data Preprocessing in Training and Testing Stages

By referring to the figure above, raw sequential data collected is first loaded. Next, total

number of rows and columns of the data are calculated. This step is a must as different

dataset may have different number of rows since the data collection process is random and

control by timer. Each dataset contains roughly of 2800 rows of records. These sequential

data are then separated into two: input sequence and output sequence. Both the sequences

were reshaped into 3D array in the form of [#sample, #input/#output, #timestep] because

the input to the LSTM library of DL4J has that particular form. Afterwards, both input

sequence and output sequence are flattened and converted into NDArray object. According

to ND4J (2017), NDArray are in essence n-dimensional arrays and are stored in the

memory as a single contiguous block of memory which makes it different from typical

Java arrays. Next, both converted input sequences and output sequences will be

transformed into a dataset object. The dataset later undergoes normalization process and

splits into training data and testing data in the ratio of 0.7 (70% for training and 30% for

testing).

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 27

3.3.2 Deployment in Android

Figure 3.3: Data Preprocessing in Android Application

The data preprocessing task in the Android deployment is almost the same as the one in

the training and testing stage. Unlike the previous one, the raw sequence data is straight

obtained from the smartphone sensors in a dynamic environment. These data are later

reshaped and flattened together with a masking array. The masking array is an array

consists of few columns of zeros so that the total number of columns are identical through

all time (to fit the dimension). Next, both the input sequences and masking array are

converted into NDArray and merged as a dataset object. The dataset is normalized using

the normalizer that had been saved during the training process. After all these preprocess,

the data is ready to be inputted into the neural network for prediction.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 28

3.4 Design of Neural Network

3.4.1 Architecture of Network

Figure 3.4: Architecture of Neural Network

In this project, a recurrent neural network with 2 layers of long short-term memory (LSTM)

is built up from scratch and deploy after training. LSTM is a special node of RNN, which

is able to learn long-term dependencies and eliminates some weaknesses of RNN. LSTM

cells were introduced by Hochreiter and Schmidhuber in the year of 1997. Currently, this

special cells are widely used in solving different types of complex problems and worked

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 29

tremendously well. The network consists two layers of LSTM layers and for each LSTM

layer, there are 32 memory unit. As the neural network will be deployed to Android

platform later, it would be better if the overall size is keep small and enough to learn useful

feature. Less computing resources and power needed when processing prediction if the

neural network is small. Commonly, a recurrent neural network is constructed of 2 to 3

layers as going beyond 3 layers are proven to have no benefits empirically. Basically, the

network takes in an input sequence constructed of 6 columns (sensor data) and produces

an output vector containing the probability of 6 classes. A weights array had been added in

the output layer because the dataset collected is imbalance (having more left hand and right

hand data and the data collection process is random). Thus, the output vector which

contains the probability of 6 classes will be averaged.

3.4.2 Cross Validation

In deep learning, hyperparameters are attributes related to the network that have to be set

beforehand rather than learn. The process of deciding the value of hyperparameters can be

difficult as it is very problem-dependent. In order to find the optimal value of

hyperparameters for this particular scenario, cross validation technique had been applied.

Cross validation is a technique which splits a dataset into several folds (k) with equal size.

Among k number of folds, a single fold will be used as the validation set to evaluate the

performance while the rest k – 1 folds will be utilized as the training set with different

hyperparameter settings. The process is repeated k times and each fold will be the

validation set exactly once. Lastly, the model with least validation error will be taken as

the best model. This had been implemented using KFoldIterator class from DL4J library.

Besides, random search is utilized together with this technique.

3.4.3 Hyperparameter

For different cases, value of hyperparameters can be different to suit each case. The setting

of hyperparameter is time-consuming and every combination have to be tried out in order

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 30

to find the best. In this project, several hyperparameter had been fine tune in order to find

the optimal value which suits the case.

Size of LSTM layer

Empirically, deeper and larger network learns and performs better. However, the layer size

of LSTM layers are kept small in this project because small neural network will not

consume much computation power and battery when it is deployed in Android. The value

is set as the following.

* 32_ sizelayer

Input Sequence Length

This hyperparameter had been searched through cross validation technique in order to get

an optimal value. The value is set as the following.

* 40__ lengthsequenceinput

Learning Rate

Learning rate is considered one of the most important hyperparameter in deep learning.

According to DL4J (2017), learning rate decides the size of a step to take towards smaller

error rate as the networks weights get updated. When a learning rate is too high, the network

may fails to converge or miss out local minimal. Vice versa, the network would takes a

very long time to train as the step taken at every epoch is very small. In this project, the

learning rate had been set to the following value:

* 08.0_ ratelearning

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 31

Regularization

Different design of neural network often suffered overfitting and underfitting problem.

Regularization is a technique which deals perfectly against overfitting. Overfitting is a term

which describe a network which predicts train data well but makes bad prediction on

unseen data. Some common types of regularization that had been widely used are l1 and

l2. Both l1 and l2 regularization penalizes the weight of a node when it is too large.

However, they are quite different (Refer to Table 3.1).

Table 3.1: Difference of L1 and L2 Regularization

L1 Regularization L2 Regularization

R(W) = k l Wk,l R(W) = k l Wk,l
2

Computational inefficient (non-sparse

case)

Computational efficient (analytic

gradients)

Sparse output Non-sparse output (Prefer diffuse weight

vector)

Built-in feature selection No feature selection

In this project, l2 regularization had been used with a regularization factor set to the

following value:

.0020_* factortionregulariza

Weight Initialization

In a neural network, each node are equipped with weights. Weights of each node shouldn’t

be too big or too small. If not, it would in term leads to problem such as difficulty in

updating weights. The way how it is initialized will affect the performance of the network.

Thus, weight randomization is very important at the initialization process before training.

If there are two neurons holding the same weight value, they will not be able to diverge

and learn different useful features. Xavier initialization is widely used currently and it is a

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 32

work based on the paper written by Xavier Glorot and Yoshua Bengio. In this project,

Xavier initialization will be utilized in initializing the weights.

Gradient Clipping

Gradient clipping technique had been utilized in the project because when the gradients

propagated back (in training), there seems to be gradient exploding problem. Gradient

exploding problem happens when the gradients grow exponentially large, thus causing

difficulty in learning. It is very common in recurrent neural network. In this project, the

gradient is clipped on a per-element basis. A hyperparameter was introduced and it is

gradient threshold. For example, when gradients have a value larger than or smaller than

the threshold, they will be truncated. Gradient threshold had been initialized to the

following value in this project.

* 05.0_ thresholdgradient

Activation Function

Activation functions in neuron contains non-linearity which would decides whether to

activate that particular neuron or not. Its non-linearity ensures that useful features can be

learn throughout the training process. Currently, there are a variety types of activation

functions available and some common activation details are listed below.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 33

Table 3.2: Common Activation Functions Details

R
eL

U

m
ax

(0
,x

)

E
ff

ic
ie

n
t

co
m

p
u
ta

ti
o
n

C
o
n
v
er

g
e

fa
st

er

D
o
es

 n
o
t

sa
tu

ra
te

d
 i

n
 t

h
e

p
o
si

ti
v
e

re
g
io

n

N
o
t

ze
ro

-c
en

te
re

d

S
at

u
ra

te
d

in

th

e
n
eg

at
iv

e

re
g
io

n

D
ea

d
 R

eL
U

 p
ro

b
le

m

T
an

h

(e
x
 –

 e
-x

)
/

(e
x
 +

 e
-x

)

In
p
u
t

sq
u
as

h
ed

 i
n
to

 [
-1

,1
]

Z
er

o
-c

en
te

re
d

G
ra

d
ie

n
ts

 k
il

le
d
 i

n
 s

at
u
ra

te
d

re
g
io

n

S
ig

m
o
id

1
 /

 (
1
 +

 e
-x

)

In
p
u
t

sq
u
as

h
ed

 i
n
to

 [
0
,1

]

N
o
t

ze
ro

-c
en

te
re

d

C
o
m

p
u
ta

ti
o
n

o
f

ex
p
()

is

ex
p
en

si
v
e

G
ra

d
ie

n
ts

k
il

le
d

in

sa
tu

ra
te

d

re
g
io

n

 E
q
u
at

io
n

G
ra

p
h

S
tr

en
g
th

s

W
ea

k
n

es
se

s

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 34

In the LSTM layers, tanh had been used as it is very common to use a combination of

LSTM neuron together with tanh activation function even though ReLU converge faster.

In the output layer, softmax activation function had been chosen as the choice because it is

commonly applied in classification problem. Softmax is used to generate class probability

on the number of classes being categorized and outputted a vector of size equals to total

number of classes.

Truncated Backpropagation through Time Length

Truncated Backpropagation through Time (BPTT) is a very important hyperparameter in

recurrent neural network especially dealing with long sequences data. According to DL4J

(2017), BPTT is created in order to reduce training time and complexity of computing each

parameter update in recurrent neural network. It trains the network faster by doing more

parameter update. For example, given an input sequence of 10, 1 forward pass and 1

backward pass will be performed in normal backpropagation. For BPTT, it splits the passes

into smaller set of operation. For instance, if the BPTT length is initialized to 5 in this case,

total of 2 forward pass and backward pass will be done (Refer to Figure 3.4).

Figure 3.5: Truncated Backpropagation through Time

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 35

In this project, BPTT is initialized to the following value.

* 4_ lengthtbptt

Optimizing Algorithm & Updater

In DL4J, optimization algorithm decides how the updates are performed given gradients.

While for updater, it basically means training mechanisms such as Adam, adagrad,

RMSProp, momentum and so on. In this project, stochastic gradient descent and

momentum have been chosen as the optimization algorithm and updater for the network.

For the momentum updater, it did introduced a hyperparameter called momentum rate. This

hyperparameter had been tune using cross validation and the value is defined as below.

* 85.0_ ratemomentum

Total Number of Epochs

One epoch basically means one full pass of the training set through the network. In this

project, the data set size is quite small, thus no mini batching had been done. All training

data are passed into the network as a single batch. In the training process, the model which

performs the best is saved and will be loaded in the next training. The total number of

epochs is defined as below.

* 1024_ epochsno

3.4.4 Functions and Methods

buildNetwork()

 Builds the architecture of the recurrent neural network and returns the model

created.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 36

 Java: public static MultiLayerNetwork buildNetwork(int no_inputs, int

no_outputs)

 Parameter(s):

 no_inputs – total number of inputs for the neural network.

 no_outputs – total number of outputs for the neural network.

 Return:

 A MultiLayerNetwork object.

saveModel()

 Save the MultiLayerNetwork object into to a .zip file. If updater is true, the state

of network’s updater will be saved for further training. Vice versa, updater’s state

will not be saved.

 Java: private static void saveModel(MultiLayerNetwork net, String filename,

boolean updater)

 Parameter(s):

 net – MultiLayerNetwork object to be saved.

 filename – path where the model is saved.

 updater – decide whether to save network’s updater state or not.

 Return:

 None

loadModel()

 Load the model (MultiLayerNetwork) object given the file path.

 Java: private static MultiLayerNetwork loadModel(String filename, boolean

updater)

 Parameter(s):

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 37

 filename – path where the model is located.

 updater – decide whether to load network’s updater state or not.

 Return:

 A MultiLayerNetwork object.

saveNormalizer()

 Save DataNormalization object for further use.

 Java: private static void saveNormalizer(SplitTestAndTrain s ,String filename)

 Parameter(s):

 s – splits dataset into training set and testing set for normalizer.

 filename – path where the normalizer is saved.

 Return:

 None

loadNormalizer()

 Load DataNormalization object given the path.

 Java: private static void loadNormalizer(String filename)

 Parameter(s):

 filename – path where the normalizer is located.

 Return:

 None

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 38

UIStatistic()

 Binds a neural network to UIServer object for visualization.

 Java: private static void UIStatistic(MultiLayerNetwork net)

 Parameter(s):

 net – MultiLayerNetwork object to be binded to UIServer object.

 Return:

 None

readFile()

 Reads data file into 2d array.

 Java: private static double[][] readFile(String filename, int[] t)

 Parameter(s):

 filename – path where the data file is located.

 t – a 1d-array which store total number of rows and columns of data file.

 Return:

 A 2d-array consists of the data file.

getRowCol()

 Compute the total number of rows and columns of a dataset.

 Java: private static int[] getRowCol(String filename)

 Parameter(s):

 filename – path where the data file is located.

 Return:

 A 1d-array with type int consists of the total number of rows and columns.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 39

preProcessData()

 Transform the 2d-array data into 3d-array matching the format of DL4J recurrent

neural network input and output.

 Java: private static DataSet preProcessData(double data[][], int

sequence_length, int[] t)

 Parameter(s):

 data – 2d-array of data.

 sequence_length – input sequence length.

 t – a 1d-array which store total number of rows and columns of data file.

 Return:

 A DataSet object.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 40

3.5 Android Application

3.5.1 Architecture of Application

In the android application, same sensor fusion technique as the data collection application,

Watcher had been implemented. The flow of the application is shown below.

Figure 3.6: Workflow of the Application

The sensor data will be generated by the smartphone accelerometer, magnetometer and

gyroscope. These data will be sampled and transform into a 2D array in the form of [#input,

#sequence_length]. The input data will consists of 6 inputs and have the structure just like

the data set for the training and testing process of neural network. Unlike training, the

output array is replaced by a mask. The mask consists rows of zeros is created in order to

fit the dimension and its shape matches the output shape in the training data set. The mask

is created to pad the DataSet object because in DL4J library, the saved normalizer doesn’t

allow DataSet object with shape other than the one in training set to be normalized. Next,

both the input array and the mask are flattened and added a single dimension to form 3D

array in the form of [1, #input/#output, #sequence_length]. Then, they were converted into

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 41

INDArray and transformed into a DataSet object. The object will later get normalized

before throwing it into the neural network. After normalization process, the object is

inputted to the network to do prediction. The network would return the result with a shape

of [1, #output, #sequence_length]. The result contains probability of 6 classes for each row

of sequence. The result will go through processing such as majority voting before displayed

on the screen. For the right front pocket and left front pocket classes, these two classes had

been combined and outputted as a single label because it doesn’t seems significant to

differentiate which pocket the smartphone is in. Thus, left front pocket and right front

pocket are both classified as pocket.

Majority Vote Algorithm

This algorithm basically means finding the majority of a group of elements. In this

application, a set of data is predicted by the network for n times. For each time, the neural

network gives the probability of 6 classes for each row of sequence. Rows of probability

for each class will be sum up and the class with the largest score will be interpreted as the

predicted label. Since each prediction produces a result, we will be having n predicted

labels if the data is predicted by the network for n times. Here is where the voting algorithm

takes place. The algorithm will find the element with the highest occurrence and display it

as the final predicted label. With this, the accuracy of the application can be improved.

3.5.2 Functions and Methods

Private class Accelerometer

 A class which is used to initiate smartphone’s accelerometer process and extends

AsyncTask class so that these work will be done in the background.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 42

Private class Magnetic

 A class which is used to initiate smartphone’s magnetometer process and extends

AsyncTask class so that these work will be done in the background.

Private class Gyroscope

 A class which is used to initiate smartphone’s gyroscope process and extends

AsyncTask class so that these work will be done in the background.

Private class Sampling

 A class which is used to do sampling and preprocess the sensor data. It will also

interpret the prediction produced by the network and displayed it on the screen. It

extends the AsyncTask class so that these work will be done in the background.

Private class Testing

 A class which is used to do testing and evaluate the performance of the application.

onCreate()

 Android Activity’s function. It is called when the activity is first created.

 Java: protected void onCreate(Bundle savedInstanceState)

 Parameter(s):

 savedInstanceState – application state.

 Return:

 None.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 43

onClick()

 Override function from OnClickListener interface. It is used to detect click on

button event.

 Java: public void onClick(View view)

 Parameter(s):

 view – basic building block for user interface components.

 Return:

 None.

preProcess()

 Do preprocessing on the sensor data before inputted into the neural network.

 Java: private void preProcess()

 Parameter(s):

 None

 Return:

 None.

predictOutput()

 Do prediction and process the prediction result before displayed the final result on

the screen.

 Java: private void predictOutput()

 Parameter(s):

 None

 Return:

 None.

registerAccelerometer()

 Register accelerometer listener on the sensorManager object.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 44

 Java: private void registerAccelerometer()

 Parameter(s):

 None

 Return:

 None.

registerMagnetometer()

 Register magnetometer listener on the sensorManager object.

 Java: private void registerMagnetometer()

 Parameter(s):

 None

 Return:

 None.

registerGyroscope()

 Register gyroscope listener on the sensorManager object.

 Java: private void registerGyroscope()

 Parameter(s):

 None

 Return:

 None.

calculateAccMagOrientation()

 Calculate the absolute orientation of the smartphone from accelerometer and

magnetometer.

 Java: private void calculateAccMagOrientation()

 Parameter(s):

 None

 Return:

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 45

 None.

getRotationVectorFromGyro()

 Creates a rotation vector from the gyroscope data.

 Java: private void getRotationVectorFromGyro(float[] gyroValues, float[]

deltaRotationVector, float timeFactor)

 Parameter(s):

 gyroValues – gyroscope based rotation matrix.

 deltaRotationVector – empty vector to store the processed gyroscope

based rotation matrix.

 timeFactor – time interval.

 Return:

 None.

gyroFunction()

 Do additional processing on the gyroscope data.

 Java: private void gyroFunction(SensorEvent event)

 Parameter(s):

 event – holds details related to sensor (sensor’s data, accuracy, timestamp,

sensor’s type).

 Return:

 None.

getRotationMatrixFromOrientation()

 Convert orientation angles into rotation matrix.

 Java: private float[] getRotationMatrixFromOrientation(float[] o)

 Parameter(s):

 o – orientation angles vector to be converted into rotation matrix.

 Return:

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 46

 Rotation matrix.

matrixMultiplication()

 Do multiplication of two matrices.

 Java: private float[] matrixMultiplication(float[] A, float[] B)

 Parameter(s):

 A – matrix 1.

 B – matrix 2.

 Return:

 Result of two matrices multiplication.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 47

3.6 General Workflow

For this project, we want to create an Android based application which is able to do hand

posture and phone placement recognition with deep learning technology. As mentioned in

the introduction, it seems that there is no researchers who had utilized deep learning in this

particular field. A recurrent neural network will be built from scratch, which includes the

process of tuning, training, optimizing and testing.

The project is separated into few stages. Firstly, a recurrent neural network is built and

undergoes the tuning process. Next, the network is trained, optimized and tested. Lastly,

the network is transformed to Android application and deploy in a dynamic environment.

Evaluation will be made accordingly to test the final product and the result will be

discussed.

3.7 Technology Involved

3.7.1 Hardware

For hardware selection, a laptop will be used. The laptop specification are as below:

 Model: ASUS X550D

 Operating System: Windows 10 Professional

 Processor: AMD A-10-5750M 2.50 GHZ Quad Core

 Graphic Card: AMD Radeon 8650G + HD 8670M Dual Graphic

 Memory: 8GB RAM

No graphical processing unit (GPU) will be used due to lack of computing resources. The

whole process regarding the network will take place using the CPU.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 48

3.7.2 Software

Watcher

An Android application developed from the work of Jacqueling Lee Fang An and is used

to collect sensors data.

Android Studio 3.0.1

An IDE which provides tools related to Android platform for building Android based

application on different type of Android devices.

Java

The java programming language is used to develop the neural network and also the Android

application.

IntelliJ IDEA Community Edition 2017.1.4 x64

An IDE for java programming.

DL4J

It is an open source deep learning library for java virtual machine (JVM).In this project, it

is used in coding related to deep learning.

ND4J

It is an open source scientific computing library for the java virtual machine (JVM). It is

meant to be used in production environment. In this project, it is utilized in handling data.

3.8 Data Sets

In order to train the neural network built, a lot of sensors data are collected from the

smartphone accelerometer, magnetometer and gyroscope. These data collected will be

saved in a comma-separated values (.csv) format. Total of 20 datasets were collected to

train and validate the network. Basically, the dataset consists of 6 columns of inputs and 6

columns of labels for the action. Three of the input are generated by accelerometer and

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 49

magnetometer while the other 3 are generated by gyroscope. For the labels, they are

mentioned previously in the section 3.1. Example of the data set is shown below.

Figure 3.7: Data Set

3.9 Implementation issue and Challenge

In this project, several difficulties and challenges had been faced. Firstly, the lack of

computing resources. Without GPU, tuning and training of a neural network can eat up

much of the time. For instance, training the neural network with a single data set takes

around 3 hours to complete in CPU. Besides, quality and quantity of data sets are a problem

too. Even though we have the application to collect data from smartphone users, not

everyone willing to sacrifice their precious time to do the data collection.

Chapter 4: Implementation and Result

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 50

Chapter 4: Implementation and Result

4.1 Data Collection

In this project, an Android application called ‘Watcher’ had been used to collect the dataset.

Total of 20 datasets were collected from 10 participants (10 males) who are volunteered to

sacrifice their 10 minutes to complete two session (each session required 5 minutes to

complete). A session basically outputted 1 set of data. Before starting the collecting process,

users are required to enter a unique file name so that later the data file can be identified.

Next, they will be redirect to another simple interface which consists of two buttons. One

is for starting the data collection process while the other one to stop it halfway. Once the

user presses the start button, the application will prompt random action for the user to

complete which includes left hand, right hand, both hand, put on table, put in left front

pocket and put in right front pocket. For each action, users are given 7 seconds to switch

and maintain the posture. Users are told to be relax while performing different actions.

Sensor data collected will then be recorded in the file specified. These data will later be

used to train the neural network. Below are some interface of ‘Watcher’:

Figure 4.1: Watcher Interface Figure 4.2: Watcher Interface (1)

Chapter 4: Implementation and Result

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 51

4.2 Evaluation of Neural network

Total of 20 datasets collected from the data collection stage will be used to train and

validate the neural network built. In training the neural network, several graphs had been

observed to monitor any unusual behavior of the network. If there is any strange

phenomena found, the network is adjusted right away. For each dataset, the network is

trained for 1024 epochs. Each time in training, the best model will be searched and saved.

In DL4J library, it provides a training UI so that the network training process can be well

monitored. The figures shown in this section will only include graphs of training a

particular dataset.

Figure 4.3: Model Score vs. Iteration Graph

In Figure 4.3, the score over time had been plotted. We can observed that the line goes up

and down within a small range. This is caused by truncated backpropagation through time.

As we initialized our input sequence length as 40 and truncated backpropagation through

time length as 4, the graph will show a zig-zag every 10 iterations. If the stutter is large, it

can be a problem. For example, it can be issue related to learning rate, normalization, mini

batch and so on.

Chapter 4: Implementation and Result

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 52

Figure 4.4: Layer Activations Graph

With layer activation graph, we are able to recognize gradient explodes or gradient

vanishing problems. From Figure 4.4, we can see that the chart is stable over time which

means the architecture of the model is good enough to suit the case and no problem

mentioned previously had occurred. If the chart stutter too much, either gradient vanishing

or gradient explodes had happened.

In training, dataset is split into train set and validation set in the ratio of 70:30. For each

epoch, validation set is used to identify the performance of the network. The model which

produces the highest validation accuracy is saved for further use. Besides, we had also

calculated the accuracy for each class with the validation set during training. The accuracy

of each classes is calculated with the following formula:

*)/()(TNFNFPTPTNTPAccuracy

 TP: True Positive

 TN: True Negative

 FP: False Positive

 FN: False Negative

The result are recorded in the tables below.

Chapter 4: Implementation and Result

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 53

Table 4.1: Accuracy of Proposed Prediction Model for each Posture Type

Model Left Hand

(%)

Right Hand

(%)

Both Hand

(%)

Table (%) Left front

Pocket (%)

Right front

Pocket (%)

1 98.7 98.7 99.7 99.4 99.9 99.3

2 97.8 98.4 99.5 99.6 99.3 99.6

3 98.1 99.0 99.7 99.3 99.4 99.4

4 98.6 98.4 99.2 99.4 99.4 99.1

5 98.7 98.0 99.9 99.0 100.0 99.4

6 98.8 97.9 99.4 99.3 99.4 99.1

7 97.6 98.0 99.8 98.7 99.5 99.0

8 98.1 98.5 99.1 99.2 98.7 99.6

9 98.3 98.6 99.6 98.7 99.2 99.8

10 97.5 98.0 99.1 98.6 99.6 99.0

11 98.8 98.3 99.6 98.9 99.7 99.5

12 98.5 97.9 99.6 98.4 99.9 99.3

13 98.6 98.9 99.4 98.9 99.8 100.0

14 98.4 98.7 99.4 99.4 99.1 99.1

15 98.9 98.8 99.5 98.8 99.7 99.9

16 98.8 98.5 99.8 99.6 99.6 99.1

17 98.5 98.7 99.4 99.0 99.5 99.6

18 98.0 98.7 99.2 99.0 99.5 99.5

19 98.9 98.3 99.8 99.0 99.5 99.4

20 98.5 98.2 99.6 99.2 99.7 99.6

Average 98.59

(SD=0.414)

98.425

(SD=0.333)

99.515

(SD=0.233)

99.07

(SD=0.326)

99.52

(SD=0.296)

99.415

(SD=0.289)

Chapter 4: Implementation and Result

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 54

Figure 4.5: Graph of Accuracy of Proposed Prediction Model for each Posture Type

Table 4.1 had displayed the accuracies of each classes for 20 best models which we had

saved during training. The result of these tables are averaged and the standard deviation is

calculated. As we can observed from the result, the accuracy for each cases are quite stable

over 20 times of training (20 datasets). The recall accuracies range from 98% to 100% for

six different cases. From Figure 4.5, the accuracy for ‘Left Hand’ and ‘Right Hand’ are

slightly lower than the rest of the cases. This is because ‘Left Hand’ and ‘Right Hand’ are

complex and consists much variation. It is not easy for the network to learn a function to

differentiate them with little amount of data. For the rest of cases like ‘Table’, they are

relatively simple and the network is able to learn them well even though the amount of

datasets supplied to the network wasn’t that huge. Given more datasets, the performance

of the network can further be improved.

Chapter 4: Implementation and Result

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 55

4.3 Evaluation of Android Application

After the neural network was deployed to the Android platform, we would like to know

how well it can perform. In a dynamic environment, the network will receives real time

sensor data and do prediction based on the data it received.

4.3.1 Participants

3 random users will be selected from the same group of participants who joined in the data

collection. The user will need to spend around 6 minutes to complete the whole evaluation

process.

4.3.2 Experimental Setup:

Participants will be provided a smartphone with an Android application named ‘Scarecrow’

installed. The ‘Scarecrow’ application has a simple yet user friendly interface. Users will

only need to press certain button to initiate the testing.

4.3.3 General Flow

Firstly, users are introduced to the new application and some explanation regarding what

they are going to do next. For each users, they are required to complete a total of 6 tests

which includes different hand posture and phone placement. Each test takes approximately

1 minute to complete. The ‘Scarecrow’ simple interface allows the users to initiate the

process easily. Example of interface is shown below:

Chapter 4: Implementation and Result

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 56

Figure 4.6: Interface of the application ‘Scarecrow’

As shown in Figure 4.6, there are total of 6 buttons indicate 6 different test cases:-

 Button ‘0’: Test case for right hand

 Button ‘1’: Test case for left hand

 Button ‘2’: Test case for both hand

 Button ‘3’: Test case for put on table

 Button ‘4’: Test case for put in pocket

 Button ‘5’: Test case for single hand

For each test case, the user is asked to press the button and maintain a particular posture.

When a button is pressed, ‘Scarecrow’ will display a message telling the user what action

they should do and give them 3 seconds to get ready. After 3 seconds, the application starts

to do prediction and calculate the accuracy. The user is required to keep a particular posture

until accuracy is outputted. After 30 seconds, the application will display the accuracy

calculated. The accuracy will be recorded. The process will be repeated for the rest of the

test cases. For ‘Single Hand’ test case, the user is asked to hold the phone with their

Chapter 4: Implementation and Result

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 57

dominant hand which they used commonly. This test case is created to compare with other

systems.

4.3.4 Result

The result from participants is recorded in the table below:

Table 4.2: Result of Scarecrow

Test Case Right

Hand (%)

Left Hand

(%)

Both

Hand (%)

Put on

Table (%)

Put in

Pocket (%)

Single

Hand (%)

User 1 76.67 73.33 83.33 100.00 90.00 100.00

User 2 73.33 83.33 90.00 100.00 96.67 100.00

User 3 73.33 73.33 80.00 100.00 100.00 100.00

Average 74.44

(SD=1.57)

76.66

(SD=4.71)

84.44

(SD=4.16)

100.00

(SD=0.00)

95.56

(SD=4.16)

100.00

(SD=0.00)

The evaluation result performed by 3 users are averaged and a graph is plotted.

Figure 4.7: Average Accuracy of 6 Test Cases

Chapter 4: Implementation and Result

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 58

From the graph above, we can observed that the result for the test cases, ‘Left Hand’ and

‘Right Hand’ weren’t that good compared with other test cases. The result for left hand

was in the range of 73% to 83% while for the right hand the accuracy was around 73-76%.

Furthermore, the network seems to predict left hand sometimes even though the

smartphone is held using right hand. Vice versa, when a user holds the smartphone in right

hand, the network sometimes predicts left hand. The network doesn’t seems to learn

absolutely well on how to differentiate left hand and right hand.

The main reason why this happened is that the total datasets used to train the network is

too little. Besides, compared to cases like table and pocket, left and right hand cases

contains much variation and are more complex. In real life, different users may holds a

smartphone differently when they are interacting with the smartphone. Thus, it wasn’t easy

for the network to learn a particular pattern to separate these two cases given that the data

supplied to the network wasn’t that much. Given more high quality datasets, the

performance of the network in predicting left hand and right hand can be further be

improved.

From what we had noticed from the table, the accuracy for the case ‘put on Table’ and

‘Single Hand’ are 100%. This is because these two cases weren’t really complex compared

to left and right hand. The network basically learns them well and predicts perfectly in this

situation. Scarecrow also produced a great result in the rest of cases such as ‘Both Hand’

and ‘Put in Pocket’. The result collected were averaged and the averaged result recorded

will be used to compare with other systems that we had reviewed.

Chapter 4: Implementation and Result

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 59

4.3.5 Comparison with other Systems

Table 4.3: Comparison of Scarecrow with other system

System Single Hand (%) Both Hand (%) Put on Table (%) Put in Pocket (%)

BeyondTouch 88.47 71.28 93.74 -

In-Pocket

Detection

- - - 98.00

ARService 83.64 - - 68.07

Scarecrow 100.00 82.22 100.00 92.22

In this project, we had compare the performance of Scarecrow with other final products

from published papers such as BeyondTouch, In-Pocket Detection and ARService. From

the table, we can observed that some system doesn’t have the ability to perform multiple

different types of hand posture or phone placement. When comparing ‘Scarecrow’ with

BeyondTouch, we can noticed that ‘Scarecrow’ actually outperformed BeyondTouch in

every cases available. For single hand and table cases, ‘Scarecrow’ is able to predict them

100% correctly. While for BeyondTouch, it can only score an accuracy of 88.47% for

single hand and 93.74% for table case. For the both hand case, ‘Scarecrow’ actually

performed better and overtaking BeyondTouch by 10.94%.

In the other hand, In-Pocket Detection performed great in detecting whether the

smartphone is in the pocket or out of the pocket. It defeated ‘Scarecrow’ in the pocket case

with an accuracy of 98%. However, the postures or placement it can process are far less

compared to ‘Scarecrow’. For ARService, the system able to score an accuracy of 83.64%

in single hand case and 68.07% in pocket cases. Yet, ‘Scarecrow’ actually produced greater

result in these cases.

Chapter 5: Conclusion

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 60

Chapter 5: Conclusion

5.1 Project Review

Deep learning technology is a very powerful technology and it brings improvement in

different fields such as computer vision, sentiment analysis, speech recognition, language

translation and so on. Even though deep learning is popular these days, there seems to be

lack of researchers who had tried to apply it in detecting smartphone users’ hand posture.

In this project, we had utilized deep learning in identifying the hand posture and phone

placement of users. By applying deep learning in identifying 6 different types of

postures/placement, a great result had been achieved. The result produced by the end

product of this project definitely meets the project objective. Besides, it did outperform

other systems which practiced traditional methods in detecting hand postures and phone

placement.

5.2 Future Work

Scarecrow definitely had its potential to improve. Given more and more high quality

datasets, the network able to learn more and more variations of different postures and the

performance of the application certainly will reach a higher level.

In this world, there is no one solution to all problems. Thus, different combinations of

sensors can be tried for different kinds of hand postures and phone placement detection. In

a smartphone, there are a variety kinds of built in sensors available such as proximity sensor,

temperature sensor, light sensor and so on. These sensors produces sensor readings too just

like the sensors we had used in this project.

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 61

Bibliography

Andrej, K. (2015). The Unreasonable Effectiveness of Recurrent Neural Networks.

Andrej Karpathy blog [Online]. Available at: http://karpathy.github.io/2015/05/21/rnn-

effectiveness/. Accessed on 2th April 2018.

Christopher, O. (2015). Understanding LSTM Networks. colah’s blog [Online].

Available at: http://colah.github.io/posts/2015-08-Understanding-LSTMs/. Accessed on

11th November 2017.

Coskun, D., Incel, O. D. & Ozgovde, A. (2015). Phone position/placement detection

using accelerometer: Impact on activity recognition. 2015 IEEE Tenth International

Conference on Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP), pp. 1-6.

DeepLearning4J. (2017). Troubleshooting Neural Net Training. DEEPLEARNING4J

[Online]. Available at https://deeplearning4j.org/troubleshootingneuralnets. Accessed on

2th April 2018.

DeepLearning4J. (2017). Building Neural networks with DeepLearning4J.

DEEPLEARNING4J [Online]. Available at https://deeplearning4j.org/building-neural-

net-with-dl4j. Accessed on 2th April 2018.

DeepLearning4J. (2017). Introduction to deep neural network. DEEPLEARNING4J

[Online]. Available at https://deeplearning4j.org/neuralnet-overview. Accessed on 16th

August 2017.

DeepLearning4J. (2017). Tutorial: Recurrent Networks and LSTMs. DEEPLEARNING4J

[Online]. Available at https://deeplearning4j.org/recurrentnetwork. Accessed on 6th

November 2017.

Goel, M., Jansen, A., Mandel, T., Patel, S. N. & Wobbrock, J. O. (2013). ContextType:

using hand posture information to improve mobile touch screen text entry. Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (CHI '13), pp.

2795-2798.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://deeplearning4j.org/troubleshootingneuralnets
https://deeplearning4j.org/building-neural-net-with-dl4j
https://deeplearning4j.org/building-neural-net-with-dl4j
https://deeplearning4j.org/neuralnet-overview
https://deeplearning4j.org/recurrentnetwork

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 62

Goel, M., Wobbrock, J. O. & Patel, S. N. (2012). GripSense: Using built-in sensors to

detect hand posture and pressure on commodity mobile phones. Proceedings of the 25th

annual ACM symposium on User interface software and technology (UIST '12), pp. 545-

554.

Miluzzo, E., Papandrea, M., Lane, N. D., Lu, H. & Campbell A. T. (2010). Pocket, bag,

hand, etc. - automatically detecting phone context through discovery. First International

Workshop on Sensing for App Phones (PhoneSense) at SenSys’10.

Incel, O. D. (2015) Analysis of movement orientation and rotation-based sensing for

phone placement recognition. Sensors 2015, pp. 25474-25506.

Nielsen M. A. (2015). Neural Networks and Deep Learning. Determination Press.

Sepp, H. & Jurgen, S. (1997) LONG SHORT-TERM MEMORY. Neural Computation

9(8):1735-1780.

Sun, T. & Vasarhely, M. A. (2017). Deep learning and the future of auditing: How an

evolving technology could transform analysis and improve judgement. The CPA Journal.

Tanaka, K., Ishimaru, S., Kise, K., Kunze, K. & Inami, M. (2015). Nekoze! - monitoring

and detecting head posture while working with laptop and mobile phone. 2015 9th

International Conference on Pervasive Computing Technologies for Healthcare

(PervasiveHealth), pp. 237-240.

Yang, J., Munguia-Tapia, E. & Gibbs, S. (2013). Efficient in-pocket detection with

mobile phones. Proceedings of the 2013 ACM conference on Pervasive and ubiquitous

computing adjunct publication (UbiComp '13 Adjunct), pp. 31-34.

Wahl, F. & Amft, O. (2014). Personalised phone placement recognition in daily life using

RFID tagging. The First Symposium on Activity and Context Modeling and Recognition,

pp. 19-26.

Wobbrock, J. O., Myers, B. A. & Aung, H. H. (2007). The performance of hand posture

in front- and back-of-device interaction for mobile computing. Int. J. Human-Computer

Studies 66, pp. 857-875.

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 63

Xavier, G. & Yoshua, B. (2010). Understanding the difficulty of training deep

feedforward neural networks. Proceedings of the 13th International Conference on

Artificial Intelligence and Statistics (AISTATS) 2010, vol. 9

Yann, L.C., Yoshua, B. & Geoffrey, H. (2015). Deep learning. Nature 521, pp. 436-444

Zhang, C., Guo, A., Zhang, D., Southern, C., Arriaga, R. & Abowd, G. (2015).

BeyondTouch: extending the input language with built-in sensors on commodity

smartphones. Proceedings of the 20th International Conference on Intelligent User

Interfaces (IUI '15), pp. 67-77.

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 64

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 65

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 66

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

ID Number(s)

Programme / Course

Title of Final Year Project

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: ___ %

Similarity by source
Internet Sources: _______________%
Publications: _________ %
Student Papers: _________ %

Number of individual sources listed of
more than 3% similarity:

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality

report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the

Final Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: _________________________ _

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 67

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (PERAK CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id

Student Name

Supervisor Name

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

 Front Cover

 Signed Report Status Declaration Form

 Title Page

 Signed form of the Declaration of Originality

 Acknowledgement

 Abstract

 Table of Contents

 List of Figures (if applicable)

 List of Tables (if applicable)

 List of Symbols (if applicable)

 List of Abbreviations (if applicable)

 Chapters / Content

 Bibliography (or References)

 All references in bibliography are cited in the thesis, especially in the chapter of
literature review

 Appendices (if applicable)

 Poster

 Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all
the items listed in the table are included in my
report.

(Signature of Student)
Date:

Supervisor verification. Report with incorrect

format can get 5 mark (1 grade) reduction.

(Signature of Supervisor)
Date:

