

OBJECT SEGMENTATION BASED ON MULTI ANGLE IMAGES ON MOBILE

DEVICE

BY

PONG CHANG SHENG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

January 2018

ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

OBJECT SEGMENTATION BASED ON MULTI ANGLE IMAGES ON MOBILE

DEVICE

BY

PONG CHANG SHENG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

January 2018

ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “OBJECT SEGMENTATION BASED ON MULTI

ANGLE IMAGES ON MOBILE DEVICE” is my own work except as cited in the

references. The report has not been accepted for any degree and is not being submitted

concurrently in candidature for any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

iii

ACKNOWLEDGEMENT

I would like to express my special thanks of gratitude to my supervisors, Mr. Tou Jing

Yi who has given me the golden opportunity to be involved in this project, which helped

me to do a lot of research and came to know a lot about topic related to image

processing.

Secondly, I must say thanks to my parents and my family for their love, support and

continuous encouragement throughout the course.

iv

ABSTRACT

In Computer Vision, image segmentation has long been a popular topic and serves as a

basis for lots of the software and mobile application on the market. Image segmentation

usually refers to the process of segmenting an object of interest apart from its

background. Most of the image segmentation can produce accurate results but with the

limitation of high computational complexity.

However, in the recent years, mobile devices have been a popular trend and under

constant improvement. Mobile devices are now equipped with mid-end to high-end

specification but doesn’t burn your pocket too much. Thus, image segmentation can

now be integrate onto mobile application by reducing the computational complexity.

This project aims to produce an algorithm that is capable of automatically segments

object from its background by facing the camera towards the object and input an object

bounding rectangle.

A new system which integrated KCF tracking algorithm and GrabCut segmentation was

proposed. The system is able to track an object in real time and then extract the object

of interest from its background. The results confirms the feasibility of real-time object

segmentation and tracking on a mobile device.

v

TABLE OF CONTENTS

TITLE i

DECLARATION OF ORIGINALITY ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

Chapter 1: Project Background 1

1.1 Background Information 1

1.2 Project Scope 2

1.3 Project Objectives 2

1.4 Problem Statement and Motivation 3

1.5 Report Organization 4

Chapter 2: Literature Review 5

2.1 Introduction 5

2.2 Existing Object Segmentation Approach 6

2.3 Strengths of Reviewed Approaches 16

2.4 Limitations of Reviewed Approaches 16

2.5 Existing Commercial Product Related to Current Work 17

2.6 Discussion 18

Chapter 3: System Design 19

3.1 System Design Overview 19

3.2 System Design Implementation 20

3.2.1 Display camera preview feed 20

3.2.2 User input object bounding rectangle 20

3.2.3 Apply KCF Tracking 21

3.2.4 Pre-processing for segmentation 22

3.2.5 GrabCut Segmentation 22

3.2.6 Post-processing 22

3.3 Important techniques and methods involved 24

3.3.1 KCF (Kernelized Correlation Filters) Tracking 24

vi

3.3.2 GrabCut 25

3.3.3 Pre-processing and post-processing for segmentation 26

3.4 Functions and methods implementation 27

3.4.1 MainActivity Class 27

3.4.2 OnCreate() Method 28

3.4.3 onResume() and BaseLoaderCallBack() 28

3.4.4 onCameraViewStarted() 29

3.4.5 onCameraFrame() 29

3.4.6 onTouch() 29

3.4.7 SetOnClickListeners() 30

3.4.8 KcfReinitialize() 30

3.4.9 Tracking() 30

3.4.10 GrabCutSegmentation() 31

3.4.11 SaveImage() 31

3.5 Research Tools Involved 32

3.5.1 Software 32

3.5.2 Hardware 32

Chapter 4: Implementation and Results 33

4.1 Implementation Issues and Challenges 33

4.2 Timeline 33

4.3 Experimental Design and Comparison 34

4.3.1 Comparison between Multiple Tracking Algorithms 34

4.3.2 Comparison between GrabCut and Watershed 37

4.4 Analysis of the complete system 39

4.4.1 Results 39

4.4.2 Result Analysis 40

4.4.3 Strengths 41

4.4.4 Limitations 41

Chapter 5: Conclusion 42

5.1 Project Review 42

5.2 Future work 42

Bibliography 43

Poster 45

Plagiarism Check Result 46

Checklist For Fyp2 Thesis Submission 48

vii

LIST OF FIGURES

Figure Number Title Page

Figure 2.2.1 Overall procedure for proposed foreground extraction 5

Figure 2.2.2 Foreground extraction result with ‘Dancer’ data set 6

Figure 2.2.3 The iterative segmentation algorithm 7

Figure 2.2.4 Colour model iteratively learning process 8

Figure 2.2.5 Hat sequence segmentation and reconstruction result 8

Figure 2.2.6 Overall object segmentation steps 9

Figure 2.2.7
Result from proposed method (first row) and result of

previous segmentation method (second row).
10

Figure 2.2.8 Overall algorithm of the proposed solution 11

Figure 2.2.9 Image sequence of a vase from different view 12

Figure 2.2.10 Result of the proposed method 12

Figure 2.2.11 Result shown as a visual hull 12

Figure 2.2.12 Overall steps of segmentation 13

Figure 2.2.14

(a) Input image is downsample. (b) Graph cut applied on

the downsampled image. (c) Segmentation is mapped

onto original resolution

14

Figure 2.2.15
(a) Original image (b) Boundary fix using polygon (c)

Boundary fix using Bezier curves
14

Figure 2.5.1 3D Creator Scanning Process 16

Figure 2.5.2 3D Model Constructed through 3D Creator 16

Figure 3.1.1 General overview system flowchart 19

Figures 3.2.1
(a) Original frames (b) Processed frame after user

inputted an object bounding rectangle
20

Figure 3.2.2
(a) to (f) Frames saved when moving around an object

while tracking it
21

Figure 3.2.3

(a) Original frame (b) Mask return by grabcut

segmentation (c) Result of masking (a) and (b) together

to extract the object

23

Figure 3.3.2.1 GrabCut illustration (Marsh, 2005) 25

viii

Figure 3.3.3.1 Image pyramid illustration (OpenCV) 26

Figure 4.2.1 Gantt chart 33

Figure 4.3.1.1
(a) frame #1 (b) frame #163 (c) frame #368 from

“FaceOcc2” dataset
34

Figure 4.3.1.2
(a) Frame #63 (b) Frame #308 (c) Frame #756 from

“Liquor” dataset
35

Figure 4.3.2.1

(a) Original image frame (b) Output of GrabCut

segmentation

 (c) Output of Watershed segmentation on a bottle

38

Figure 4.3.2.2

(a) Original image frame (b) Output of GrabCut

segmentation

(c) Output of Watershed segmentation on a cracker

container

38

Figure 4.5.1

(a) A cracker container and output of the system

(b) A fidget spinner and output of the system

(c) A can sprayer and output of the system

39

Figure 4.5.2
(a) Back side of a can sprayer and output of the system

(b) Front side of a can sprayer and output of the system
40

 ix

LIST OF TABLES

Table Number

Title Page

Table 3.3.1.1 Average fps achieved when using different colour

space in KCF

24

Table 4.3.1.1 Comparison between multiple tracking

algorithms on dataset “FaceOcc2”

35

Table 4.3.1.2 Comparison between KCF and MedianFlow

tracking algorithms on dataset “Liquor”

36

Table 4.3.2.1 Time taken to execute grabcut and watershed 37

 x

LIST OF ABBREVIATIONS

SfS Shape from Silhouettes

GMM Gaussian Mixture Model

KCF Kernelized Correlation Filters

FPS Frames per second

Chapter 1: Project Background

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 1

Chapter 1: Project Background

1.1 Background Information

From a computer perspective, an image is just a bunch of binary value or colour value

stored inside a vector of pixels. Without any processing, the image is meaningless for

a computer. Human has the ability to interpret meaningful information from a image

automatically. However, a computer need special instruction to process the image to

gain meaningful information out of it. For example, when given a picture of a man

standing in a hall, human can easily know extract the object of interest which is the man.

Furthermore, human can also gain information like the venue and situation based on

the image. In contrast, a computer will only see the image as a bunch of colour

connected together. By applying algorithm such as image segmentation or object

detection, computer will be able to extract important information such as the object,

foreground and background from the image.

Image segmentation is the process of segmenting an images into regions that represent

something that is meaningful. Furthermore, object detection refers to the process of

extracting an object from an image or a video sequence.

In computer vision, image segmentation and object detection is always a popular topic

as it act a core and basis for most of the computer vision related application. Over the

decades, more and more algorithm or solution with different strength has been

introduced. Some of it pay more attention to computation time or resource usage while

some of it might focus more on the accuracy of result and there might even be some

approaches that try to balance between those two. As a result of various solution

available for reference and research, there has been a constant improvement in the

object segmentation solution. A traditional 2D image segmentation or object detection

only accept a single image as input while the advance solution now takes in a sequence

of image from different angle of an object or even a video taken at a fixed motion

around an object.

Chapter 1: Project Background

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 2

1.2 Project Scope

The scope of the project includes:

i. Development of an application capable to track and segment an object in real

time camera preview.

ii. To investigate the constraints or relationships of background/foreground

between the camera preview frames.

iii. To initialise the starting point to start the segmentation.

iv. To track an object’s continuously in a real time preview feed.

v. To implement image segmentation based on object tracking result.

1.3 Project Objectives

The objectives of the project are:

i. To segment an object from its background based on the tracking result.

ii. To track an object in real time camera preview based on a user defined object

bounding box.

Chapter 1: Project Background

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 3

1.4 Problem Statement and Motivation

One of the famous approach in object detection is by applying background subtraction.

However, this method usually requires that the background pixel values are at minimum

changes which means that it is a static background while foreground pixel changes

regularly (Lee et. al., 2007). These methods also requires prior knowledge of the

background which makes the solution not so not useful in some cases where the

background information is not known. Moreover, dynamic background is a long existed

challenge in object detection and object segmentation applications. The background

appearance undergoes various changes over time which makes the

background/foreground modelling becomes complex.

Some existing approach or solution to segment object from an image required

interactive user input to guide the segmentation by segmenting region of interest

manually. This means that for every picture or dataset, a user will be required to

manually guide the segmentation one by one. This is fine if the dataset is relatively

small, however, in the industry, dataset is usually very large. A large dataset will be

time consuming for a user to finish the segmentation because large dataset usually

introduced a big difference between data and it is not feasible in real life. This infer that

manpower will gradually become a bottleneck of the system. Furthermore, interactive

input approach required the user to be equipped with basic or at least some knowledge

of image segmentation and the system and this might be a problem for those who are

not familiar with the system or even computer. So, an object segmentation algorithm

with minimal and easy user input will be able to reduce the need of manpower and be

more user friendly since it does not require much knowledge.

Furthermore, with the current popularity of mobile devices, most of the image

segmentation didn’t focus on mobile aspect. The existing algorithm might be too

complex to run on a mobile device. A complex algorithm might runs too slow on a

mobile device due to hardware limitation.

Chapter 1: Project Background

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 4

1.5 Report Organization

This report includes 5 chapters in total. The first chapter is the introduction which is

mainly on introducing the project background, motivation for this project and also the

project scopes and objectives. The next chapter covers the review of literature and past

year researches related to image segmentation.

The third chapter explains the proposed algorithm. Methods used in the algorithm is

also explained in details in this chapter. Chapter 4 includes the methodology and tools

used in the project. This chapter also describes the implementation issues or other

experimental solution and includes the results of the proposed approach.

The last chapter concludes this project with additional information and includes some

feasible further improvement

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 5

Chapter 2: Literature Review

2.1 Introduction

Over the course of the years, numerous amount of methods and approaches have been

developed for object segmentation and object detection. However, a challenge that

always existed is to detect object from dynamic background or segmenting object where

the background information is not known. For example, segment an object where single

image is available per viewpoint. This problem can be relate to the classic problem in

computer vision which is the Shape-from-Silhouettes (SfS). SfS is a popular problem

in Computer Vision has gain a lot of attention because in many cases (e.g. texture-less

objects) it is the only possible way for approximating 3D shape visually using sensors.

Even in textured scenes, silhouettes are known to improve reconstruction accuracy in

the cases of thin or awkward structures (Neill et. al., 2011).

According to Michael and Eduard (2012), 3D object reconstruction is a famous

challenge in computer vision. Some of the existing SfS approaches are based on static

background subtraction or manual segmentation (required interactive user input to

segment the object), which neither of it is always feasible. In a large data set, system

which rely on interactive user input is tedious and thus the relationship that exist in the

image sequence can be exploited to produce automatic segmentation. Since the image

sequence contains the same 3D object of interest, thus the object segmentation must

fulfil a silhouette coherency constraints (Carlos et. al., 2007).

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 6

2.2 Existing Object Segmentation Approach

Lee, Woo and Boyer (2007) proposed a solution to identifying foreground from

multiple images automatically. This method eliminates the need for interactive user

input and also prior knowledge of the images’ background. Probabilistic Modelling

method is used in this solution to compute the dependencies between variables such as

background, foreground, and other unknown variables.

Figure 2.2.1: Overall procedure for proposed foreground extraction (Lee et.al., 2007)

It is mentioned that the spatial consistency of the objects in all the images should be

consistent. They used a self-modified silhouette calibration ratio with a Gaussian

distribution to compute the spatial consistency:

𝑅𝑥 = 𝑒−(1−𝐶𝑥)2/𝜎2

 An image likelihood term has been developed to help determine whether a pixel

belongs to background or foreground.

𝑃𝑟(𝑇𝑥
𝑖| 𝐵𝑖 , 𝑆𝑥

𝑖 , 𝜏) = {
𝐻𝐵 (𝑇𝑥

𝑖)

𝑃𝑓

 𝑖𝑓 𝑆𝑥
𝑖 = 0

 𝑖𝑓 𝑆𝑥
𝑖 = 1

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 7

 Furthermore, graph cut method is used to compute the optimal segmentation map for

images of all the views. It is done iteratively until the segmentation map converges.

Computing min-cut minimizes the segmentation energy defined in the equation:

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝜆1𝐸𝑝(𝑥) + ∑ 𝜆2𝐸𝑛(𝑥, 𝑦)
(𝑥,𝑦)∈𝑁,𝑆𝑥≠𝑆𝑦𝑥 ∈ 𝐼𝑖

Graph cut based segmentation is also used as a post-processing to remove any

misclassified pixels.

Figure 2.2.2 below illustrate the result of the segmentation over iteration.

Figure 2.2.2: Foreground extraction result with ‘Dancer’ data set (Lee et.al., 2007)

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 8

Campbell, Vogiatzis, Hernandez and Cipolla (2007) proposed a solution to segment the

object of interest automatically based on the calibrated images sequence taken from

certain camera views. The automation is achieved by exploiting the fixation point of

the object. In this proposed solution, the object of interest is assumed to be at the

position around the central of the image which gives a fixation point in order to initialize

the segmenting process.

Figure 2.2.3: The iterative segmentation algorithm (Campbell et.al., 2007)

The 2 main stages in this method is developing the colour model and the volumetric

graph-cut. The colour model is developed in order to provide a probabilistic likelihoods

to determine whether a pixel belong to foreground or background. A K-component

Gaussian Mixture Model is used to model the likelihood where K=5:

𝜌(𝑢|𝜋𝑘, 𝜇𝑘 , 𝛴𝑘) = ∑ 𝑝(𝑘)

𝐾

𝑘=1

𝑝(𝑢|𝜋𝑘, 𝜇𝑘 , 𝛴𝑘) = ∑ 𝜋𝑘𝒩(𝑢|𝜇𝑘 , 𝛴𝑘)

𝐾

𝑘=1

In the process of volumetric graph-cut, the energy to be minimized is given by the

equation:

𝐸(𝑂, 𝐵|, {𝐼𝑚 ,⊖} = 𝜆𝐸𝑣𝑜𝑙(𝑂, 𝐵, {𝐼𝑚},⊖) + (1 − 𝜆)𝐸𝑠𝑢𝑟𝑓(𝑂, 𝐵, {𝐼𝑚})

There is two important term to be highlight in the energy minimization equation is: the

Volume term, 𝐸𝑣𝑜𝑙 and Boundary term 𝐸𝑠𝑢𝑟𝑓 .

Volume term is used to classify a voxel (pixel represented in 3d space) as outside or

inside of the object boundary. This term is constructed from the colour model developed

using the GMM.

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 9

𝐸𝑣𝑜𝑙(𝑂, 𝐵, {𝐼𝑚},⊖) = ∑ {
(1 − [ℒ𝑜(𝑣𝑛 ,⊖) − ∅])

(1 + [ℒ𝑜(𝑣𝑛 ,⊖) − ∅])

𝑣𝑛 ∈𝑂

𝑣𝑛 ∈𝑂
𝑣𝑛∈ 𝑉

Boundary term is used to determine the visual hull’s boundaries by using the colour

discontinuities within the images.

𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑂, 𝐵, {𝐼𝑚}) = ∑
𝑚𝑎𝑥

𝑚
𝑒−𝛽𝑍𝑚(𝑣𝑖,𝑣𝑗)

(𝑣𝑖,𝑣𝑗)∈𝜀,
𝑣𝑖∈𝑂
𝑣j∈𝐵

Figure 2.2.4: Colour model iteratively learning process (Campbell et.al., 2007)

Figure 2.2.5: Hat sequence segmentation result (Campbell et.al., 2007)

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 10

Kootstra, Bergstrom and Kragic (2010) proposed a solution to automatically detects

and segments objects from unknown background in real-time. This solution also

focuses on the computation time. The segmentation process are shown in figure 2.2.6.

Figure 2.2.6: Overall object segmentation steps

Initially, multiple fixation point has been set using object detection algorithm proposed

by other researcher to initialize the segmenting process. First, the image is segmented

into super pixels and cluster those regions which are homogenous in colour. This can

greatly reduce the computational complexity.

Secondly, those super pixels which contains the fixation point will be labelled as

foreground, else labelled as the background.

Next, the foreground and background information is updated with the colour histogram

and the dominant plane of image. The colour histogram of background and foreground

are computed with the equation below:

𝐶𝐹(𝑎, 𝑏) = ∑ 𝐶𝑠(𝑎, 𝑏)

𝑠∈𝐹

𝐶𝐵(𝑎, 𝑏) = ∑ 𝐶𝑠(𝑎, 𝑏)

𝑠∈𝐵

After that, graph-cut segmentation is applied on the image until the foreground super

pixels converges. The energy minimisation function is defined as:

𝐸(𝑙) = ∑ 𝐷𝑠(𝑙𝑠)+ ∝ ∑ 𝑉𝑠,𝑡(𝑙𝑠, 𝑙𝑡) ∙ 𝑇(𝑙𝑠 ≠ 𝑙𝑡)
{𝑠,𝑡}∈𝑁𝑠∈𝑆

where N is the set of neighbouring super pixels s and t.

I. Segment the image into super pixels.

II. Pre-segmentation of the background and foreground.

III. Update the background and foreground information.

IV. Repeat until convergence:

a. Graph-cut segmentation.

b. Update of background and foreground information.

V. Classify the super pixels connected to the fixated super pixels as

foreground.

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 11

During each iterative, the background and foreground information is updated after

every graph-cut segmentation.

Lastly, those super pixels that is connected to the fixated super pixels are also classify

as the foreground.

Figure 2.2.7 show the comparison between this proposed solution to a previous

proposed solution.

Figure 2.2.7: Result from proposed method (first row) and result of previous

segmentation method (second row) (Kootstra et.al., 2010)

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 12

Campbell, Vogiatzis, Hernandez and Cipolla (2011) proposed a new solution to obtain

the 3D shape of the object of interest with unknown background based on image

sequence of known camera calibration.

Figure 2.2.8: Overall algorithm of the proposed solution (Campbell et.al., 2011)

Firstly, all the image sequence was over-segmented to obtain a set of super pixels. Then,

each super pixels was labelled as either background or an object. Each super pixel has

an associated position decided by the centre of the super pixel. The edge matrix W is

generated by computing an edge adjacency matrix W where Wij denotes the weight of

the edge between two super pixels i and j.

𝑊𝑖,𝑗 = {
𝑝(𝑑𝑛)𝑐(𝑠𝑖 , 𝑠𝑗)

𝑠𝑖 ∈ 𝐼𝑚 , 𝑠𝑗 ∈ 𝑁(𝐼𝑚)

𝑑(𝑠𝑖 , 𝑠𝑗) ∈ [𝑑𝑛]

𝑐(𝑠𝑖 , 𝑠𝑗) 𝑠𝑖 ∈ 𝐼𝑚 , 𝑠𝑗 ∈ 𝐼𝑚

Next, two colour models are maintained by using K component Gaussian Mixture

Models (GMMs) mentioned before.

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 13

The main loop of the algorithm determines whether the pixel belong to foreground or

background using the colour models and combined with the edge matrix W to perform

graph-cut to label super pixels as foreground/background. The energy model is

formulated as the equation below:

𝐸({s𝑖}) = 𝐸𝑑({𝑠𝑖}) + 𝜑𝐸𝑠({𝑠𝑖 , 𝑠𝑗})

In order to ensure the silhouette consistency, the resulting silhouettes are intersected to

produce a visual hull. Lastly, the object colour model is updated using the new

silhouettes until convergence.

Figures 2.2.9, 2.2.10 and 2.2.11 show the result of Campbell, Vogiatzis, Hernandez and

Cipolla proposed method.

Figure 2.2.9: Image sequence of a vase from different view (Campbell et.al., 2011)

Figure 2.2.10: Result of the proposed method (Campbell et.al., 2011)

Figure 2.2.11: Result shown as a visual hull (Campbell et.al., 2011)

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 14

Garcia, Kelley and Yang (2015) proposed a solution which implemented a fast and

highly reliable algorithm to segment an object from an image taken using mobile

devices’ camera. It is an interactive application which required a certain user interaction.

Due to the nature of interactive application, it needs to be fast and responsive which

means it requires lower computational complexity.

Figure 2.2.12: Overall steps of segmentation

Firstly, the input target image will be down-sample to a lower resolution image. This

action is done to reduce the number of pixels as a high resolution means higher pixels

and longer computation time which might be unbearable for an interactive application.

Next, SLIC superpixel algorithm is applied to further decrease the number of pixels.

Figure 2.2.13: (a) Original image and pre-segmented image using SLIC superpixel

with (b) 100, (c) 1000, and (d) 10,000 number of superpixels. (Garcia et.al., 2015)

1. Down-sample the input image.

2. Apply SLIC superpixel algorithm to over-segment and reduce pixels

complexity.

3. Interactive section where user input is needed to mark the foreground and

background.

4. Graph cut is applied on the pre-segmented image which consists of users’

marking.

5. Successful foreground segmentation will be up-sample to original input

image’s quality.

6. Boundary is further edited by Bezier curves method.

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 15

Interactive user input will be required to mark the foreground and background to be

used in the graph cut segmentation process. The successful segmentation will then be

up-sample back to original resolution for an accurate result. The object boundary is

further edited by using Bezier curve curves.

Figure 2.2.14: (a) Input image is downsample. (b) Graph cut applied on the

downsampled image. (c) Segmentation is mapped onto original resolution (Garcia

et.al., 2015)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.2.15: (a) Input image (b) Superpixel algorithm is applied (c) user mark the

foreground object (d) initial graph-cut (e) segmentation is upsampled (f) final

segmentation (Garcia et.al., 2015)

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 16

2.3 Strengths of Reviewed Approaches

 Eliminates the need of interactive user input which is tedious when the data set

is large.

 Exploit the spatial consistency, silhouette coherency to segment the object

based on image from different views.

 High accuracy of segmentation.

 Some of the reviewed systems are capable of running in real time or on mobile

devices which mean the algorithms are less computational complex and run

faster.

2.4 Limitations of Reviewed Approaches

 In most of the reviewed system, the fixation point seems to be useful in

initializing the segmentation but there exists some cases where it is insufficient

to develop the colour models.

 Require images taken from different views which might not be feasible in real

life application.

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 17

2.5 Existing Commercial Product Related to Current Work

Sony 3D Creator

The latest Sony flagship smartphone now comes with a new application called 3D

Creator. It allows the user to scan an object and construct a 3D model based on it. It

works by scanning the object in a motion guided by the application then segment the

object of interest and construct a 3D model of it.

Figure 2.5.1: 3D Creator Scanning Process (n.d.)

Figure 2.5.2: 3D Model Constructed through 3D Creator

Chapter 2: Literature Review

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 18

2.6 Discussion

In the past researches regarding object segmentation, it is obvious that most of the

approaches are not targeting real time tracking and segmentation probably due to the

lack of processing power of mobile devices. However, with the increasing processing

power in mobile device, it is capable of running more complex algorithm now.

In the reviewed existing approaches, the main technique that produces very satisfying

results is Graph Cut segmentation. However, graph cut segmentation requires multiple

iteration in order to produce good results. In terms of computational complexity, graph

cut is a rather resource hungry algorithm. This algorithm also requires a foreground and

background markers which makes it harder to produce good results. If it is an interactive

system, users need to mark a foreground region explicitly.

In 2004, Carsten, Vladimir and Andrew introduced a new interactive foreground

segmentation method using iterative graph cuts named GrabCut. This GrabCut

algorithm outperformed the original Graph Cut segmentation in 3 aspect:

1. Requires minimal interactive user input (only require an object bounding box).

2. Allows the use of colour instead of monochrome model by using Gaussian

Mixture Model (GMM).

3. Introduced an iterative algorithm that performs foreground estimation and

parameter learning to construct complete foreground and background model.

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 19

Chapter 3: System Design

3.1 System Design Overview

Figure 3.1.1: General overview system flowchart

Algorithm 1 : Object Tracking and Segmentation

Input: Real time camera input frames, Fi

Users’ input object bounding rectangle, R

Intermediate: GrabCut segmentation mask, M

Output: Processed frames with object tracking rectangle and object boundary, Fo.

for each Fi do

 Rescale the width, w and height, h of Fi

 Ri = KCFTracking(Fi);

 Preprocess(Fi);

 M = GrabCutSegmentation(Fi, Ri);

 Fo = Postprocess(M);

end for

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 20

3.2 System Design Implementation

3.2.1 Display camera preview feed

At runtime, the application needs to display the camera real time preview frames and

let user draw an object bounding rectangle. At UI level, camera view was implemented

to display the camera frames. Since this system utilizes OpenCV library, it allows the

main class to inherit CameraBridgeViewBase.CvCameraViewListener2

interface provided by OpenCV. This interface allows the conversion of real time camera

preview frames into Mat (matrix object) which can be feed directly into OpenCV

related functions. By inheriting the interface, it introduced an important method

OnCameraFrame(inputFrame) that accepts camera preview frames and returns

frames to be displayed on the screen. This allows the frame processing to take place in

between it. Before user input any object bounding rectangle, the OnCameraFrame()

method will be returning original camera preview frames.

3.2.2 User input object bounding rectangle

When the user face the camera at the object of interest, he/she had to input a bounding

rectangle by dragging from left top of the object to right bottom (or in a reverse manner)

of the object (drawing a diagonal line as shown in figure 3.2.1(b)). Since the system

had implement the OnTouchListener interface, it will listen for the touch event and

trigger the method onTouch(). When this method is triggered, a rectangle object will

be created to initialize the tracker.

(a) (b)

Figures 3.2.1: (a) Original frames (b) Processed frame after user inputted an object

bounding rectangle

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 21

3.2.3 Apply KCF Tracking

After the user inputted a bounding rectangle and a rectangle object had been created,

the KCF tracker will be initialized with it through KCFReinitialize() method. This

method will takes in a parameter gray representing the grayscale frame which will be

used for tracking purpose. Grayscale was chosen instead of RGB colour space because

it brought significantly increase in frames-per-second (fps) without sacrificing too

much accuracy. Then, for every frame, KCF tracking will be applied through

Tracking(gray,rgba). This will update the bounding rectangle values as long as

the object is under tracking. If the object was lost tracked due to a large motion of

camera, the user can usually re-track by just move the camera back to the last tracked

position.

(a) (b) (c)

(d) (e) (f)

Figure 3.2.2: (a) to (f) Frames saved when moving around an object while tracking it.

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 22

Based on KCF tracking results, the system is able to keep track of the object of interest

through the updated bounding rectangle. Since the object bounding is updated at every

frame through KCF tracking, this eliminates the needs for extra interactive inputs.

By having this bounding rectangle, it can be safely assumed that all the pixels outside

of the rectangle are sure background pixels. So, image segmentation can be done based

on the object bounding rectangle to extract the object of interest from its background.

3.2.4 Pre-processing for segmentation

However, due to the limited processing power of a mobile device, the frame cannot be

segmented directly because it will be too large and imposed too much workload for a

real time system which will result in a very low fps. In order to maintain an acceptable

performance, the frame need to under pre-processing before segmentation. So, this is

where image pyramid comes into play. In GrabCutSegmentation(gray) method,

the frames was downscaled (pyrDown) by original size/6 to reduce the number of pixels

that will be processed during segmentation. This act will greatly improve the

performance as the segmentation’s execution time is linear to the number of pixels

being processed.

3.2.5 GrabCut Segmentation

After the pre-processing (down-scaling), GrabCut segmentation will take place. This is

done by invoking grabCut(). The important parameters when invoking this method

are the pre-processed frame, downsampled, the tracked object bounding rectangle,

rect, and the mode of segmentation which in this case will be utilizing the rectangle,

GC_INIT_WITH_RECT. This method will return a mask with labelled foreground and

background pixels.

3.2.6 Post-processing

This mask is then undergo post-processing (upsampled back to original size using

pyrUp and applied Gaussian blur to smooth out the boundary). Then, the object can be

segmented by masking the segmentation mask with original frame which is shown in

figure 3.2.3.

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 23

Afterwards, the result will be returned and displayed on screen. User can toggle

between mask and result frame. The displayed frame can be saved by tapping the Save

button which will invoke SaveImage() method.

(a) (b) (c)

Figure 3.2.3: (a) Original frame (b) Mask return by grabcut segmentation (c) Result of

masking (a) and (b) together to extract the object.

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 24

3.3 Important techniques and methods involved

3.3.1 KCF (Kernelized Correlation Filters) Tracking

In 2015, Henriques et.al introduced a KCF as a high-speed tracking algorithm. In the

research, by proving that the data matrix is circulant, they managed to diagonalize it

using the Discrete Fourier Transform. In this way, the storage and complexity is lessen

by multiple orders of magnitude. Based on this, they managed to derive a new

Kernelized Correlation Filter that outperforms state-of-the-art tracking algorithm by

that time in terms of both accuracy and frames-per-second.

In this system, OpenCV variant of KCF Tracker is used. This variant of KCF is able to

track on either RGB or grayscale frames. However, due to the computational power

limit of mobile devices, the tracking is done based on grayscale frames to speed up the

processing. Although grayscale frames have been used for tracking, it doesn’t hurt the

performance too much in terms of tracking precision. This will be further elaborate in

the later chapter.

Colour space Average frames per second (fps)

RGB 6.5

Grayscale 10.3

Table 3.3.1.1: Average fps achieved when using different colour space in KCF

Algorithm 2 : KCF Tracking

Input: Real time camera input frames, F

Users’ input object bounding rectangle, R

Output: Updated rectangle, Ri according to tracking result.

for each F do

 if firstTrack do

 Initialize KCF tracker using R;

 end if

 Ri = KCFTracking(F);

end for

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 25

3.3.2 GrabCut

In 2004, Carsten, Vladimir, and Andrew introduced GrabCut based on iterated graph

cuts. This algorithm aims to overcome the limitation of graph cuts by introducing

minimal user interaction.

Firstly, GrabCut requires user to input a rectangle which should include foreground

region completely inside it. Pixels outside of the rectangle will be label as sure

background then GMM will be used to construct the foreground and background model.

Other pixels will be labelled as either possible foreground or background depending on

the relationship between the pixels and the already labelled sure background or

foreground pixels. Then, a graph will be generated according to the pixels distribution.

The background pixels will be linked to the Sink node while the foreground pixels is

linked to the Source node. Mincut algorithm will be adopted to separate the source node

and sink node by using minimum cost function.

Figure 3.3.2.1: GrabCut illustration (Marsh, 2005)

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 26

3.3.3 Pre-processing and post-processing for segmentation

1. Image pyramid (upsample and downsample)

Figure 3.3.3.1: Image pyramid illustration (OpenCV)

Image pyramid was used to downsample the input frame for by the scale of 4. This

had greatly improved the time needed for GrabCut segmentation.

After the segmentation, the obtained marker from GrabCut was upsampled back to

original size and mask with the original frame to produce the output. Although the

mask is upsampled from a much smaller size, the output is actually still quite accurate

except the boundary is not perfectly segmented due to the details loss during image

pyramid scaling.

2. Gaussian blur (to smooth the boundary)

As mentioned in the section before this, the boundary is not perfectly segmented due to

the details loss during image pyramid scaling. The upsampled mask has a very blocky

boundary and not smooth or fit to the object. Thus, Gaussian blur is applied on it to

further smooth out the boundary to have a better looking output.

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 27

3.4 Functions and methods implementation

This system is built using Android Studio (Java) and OpenCV library.

Before implementing the system, this application requires permission for camera and

internal storage. This will allows the application to access real time camera frames and

write access to the storage.

3.4.1 MainActivity Class

In order to utilize OpenCV function, the main class need to implements OpenCV’s

CameraBridgeViewBase.CvCameraViewListener2. This interface allows the

class to override OnCameraFrame() method which convert the camera preview buffer

into Mat object directly. Other than that, this class also implements

OnTouchListener interface to capture touch event on the camera preview.

Class variables:

frameWidth, frameHeight are the width and height of the frames after rescaling

according to phone specification while screenWidth, screenHeight are the width

and height of the phone. These variables are used in the OnTouch() method to rescale

the X and Y coordinates according to the rescaled frame’s width and height.

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 28

frameCount records the number of frame after tracking is initialized. All the boolean

variables act as toggle to trigger some event. Furthermore, p1 and p2 are two Point

variable used to create a rectangle (trackRect) for tracking purpose.

In order to save a specific frame into internal storage, matSave will be utilized. Tracker

object is created for tracking purpose. The button objects and mCameraView are the

objects used to reference the UI layout objects.

3.4.2 OnCreate() Method

During OnCreate(), all the UI layout objects such as Buttons and CameraView are

referenced programmatically in order to utilize them. setMaxFrameSize() is

invoked to cap the maximum frame size so that lesser computational power is needed

when processing the frames.

3.4.3 onResume() and BaseLoaderCallBack()

In every android application, onResume() will be invoked after onCreate() or after

onPause() so OpenCV library will be loaded in this method. When the application

runs on real time, it will look for OpenCV library in the its application package first, if

not found, it will invoked BaseLoaderCallBack() to look for OpenCV Manager on

the phone as external library.

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 29

3.4.4 onCameraViewStarted()

This method will be used to initialize the class variable such as frameHeight,

frameWidth, and etc.

Parameter: width – The width of input camera frame.

 height - The height of input camera frame.

3.4.5 onCameraFrame()

This method will be invoked when the frames need to be delivered for preview.

It returns the final results after segmentation to be displayed on camera view.

Parameter: inputFrame – The frame received from real time camera feed.

3.4.6 onTouch()

This method will be invoked touch event is dispatched to the view.

Parameter: view – The View object that has touch event dispatched to it.

motionEvent – MotionEvent object containing information about the

touch event.

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 30

3.4.7 SetOnClickListeners()

This method will be invoked during onCreate() to defined the callback for each

button.

3.4.8 KcfReinitialize()

This method is invoked whenever touch event takes place and a new bounding rectangle

was created. It will re-initialized the tracker by clearing the initial tracker content and

create a new KCFTracker.

Parameter: gray – Grayscale input frame used to initialize the tracker.

3.4.9 Tracking()

This method is invoked after the tracker object is initialized. It will call

tracker.update() to update the value of object bounding rectangle.

This method will return the processed frame obtained from

GrabCutSegmentation().

Parameter: gray – Grayscale input camera frame used during tracking update.

 rgba – RGB input frame used during segmentation.

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 31

3.4.10 GrabCutSegmentation()

This method is responsible to pre-process the input frame, apply grabcut segmentation

and apply post-processing obtain the result.

Returns either segmentation result mask or a result frame with segmented object.

Parameter: rgba – RGB input frame.

 gray – Grayscale input frame.

3.4.11 SaveImage()

This method will be invoked when SaveImage button is pressed. This will saved the

current on screen frame into internal storage.

Paramter : mat – The frame to be saved into internal storage.

Chapter 3: System Design

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 32

3.5 Research Tools Involved

3.5.1 Software

 OpenCV master branch built with contrib modules (extra modules) for Android.

 Android Studio for developing the application.

 Visual Studio 2015 for testing and comparison.

3.5.2 Hardware

 Laptop Specification

Model Asus X550D

Operating System Windows 10 Professional

Processor AMD A10-5750M 2.50GHZ Quad Core

Memory (RAM) 8GB

Graphic Card
AMD Radeon HD 8650G + HD 8670M Dual

Graphic

 Mobile Device

Model Xiaomi Redmi Note 3

Operating System Android 7.1.2

Processor Snapdragon 650

Memory (RAM) 2GB

Graphic Card Adreno 510

Chapter 4: Implementation and Results

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 33

Chapter 4: Implementation and Results

4.1 Implementation Issues and Challenges

During this project, several issues and difficulties are faced. First and foremost, the

hardware limitation of mobile devices is the main difficulties. With the limited

computational resource, the system needs to be more resource-friendly to avoid high

memory consumption or extremely low frames-per-second. Other than that, some

methods or libraries are not supporting Android platform yet which sometimes make

the situation difficult.

4.2 Timeline

The project spans the duration of two and a half trimesters, which is approximately 38

weeks. Figure 3.4.1 shows the Gantt chart for the research project. There will be 3

reports submission during the project duration and a viva presentation to demonstrate

the work done.

Figure 4.2.1: Gantt chart

Chapter 4: Implementation and Results

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 34

4.3 Experimental Design and Comparison

4.3.1 Comparison between Multiple Tracking Algorithms

In this comparison and testing, a dataset “FaceOcc2” was downloaded from Visual

Tracker Benchmark site,

https://sites.google.com/site/trackerbenchmark/benchmarks/v10.

This dataset was chosen due to the simpler movement and partial occlusion in the image

sequences. The testing was carried out using OpenCV and Visual Studio 2015, running

in release mode x64. “FaceOcc2” dataset consists of 812 frames. This dataset is a

320*240 image sequences and tracked under grayscale colour space. Partial occlusion

also happened in between some frames.

(a) (b) (c)

Figure 4.3.1.1: (a) frame #1 (b) frame #163 (c) frame #368 from “FaceOcc2” dataset

Along with the dataset, ground truth of the object bounding rectangle for each frame

was provided. So, the precision of each tracking algorithm can be calculated by

comparing the tracking rectangle’s x value, y value, width and height with the ground

truth value provided by the dataset. An error margin of 20 pixels was considered during

the calculation.

Mean Precision, 𝑃 =
𝑅

𝐹

𝑅 = Number of correct rectangle (where 𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡 values within

 ground truth value ± error margin)

𝐹 = Number of total video frames

Chapter 4: Implementation and Results

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 35

Tracking

Algorithm

Execution Time (sec) Mean Precision

(error margin 20px) 1st 2nd 3rd Average

KCF 25.90 36.28 34.08 32.09 709/812 = 87.32%

TLD 148.66 130.28 139.80 139.58 59/812 = 7.27%

Boosting 164.38 172.42 158.31 165.04 599/812 = 73.77%

MIL 362.82 369.89 354.20 362.30 593/812 = 73.03%

MedianFlow 18.49 26.39 22.10 22.33 708/812 = 87.19%

Table 4.3.1.1: Comparison between multiple tracking algorithms on dataset

“FaceOcc2”

From table 4.3.1.1, it can be seen that KCF tracking algorithm has the highest tracking

precision and relatively low execution time while MedianFlow gives a very similar

precision to KCF and only consumes 30% less time in this testing set. The other

algorithms (TLD, Boosting, and MIL) consumes too much time to process which is not

feasible for a real time application. Despite the much longer execution time, these 3

algorithms still has a relatively low precision.

Looking back at KCF and MedianFlow, it might seems like these two algorithms are

both competitive enough to be running on limited resources. However, MedianFlow

algorithm can only works with scenario where the motion is very simple.

Another dataset was used in order to understand the capability of KCF and MedianFlow.

This dataset “Liquor” is a 1741 frames, 640*480 image sequences. In this dataset, larger

motion, more occlusion, and similar background will be involved.

(a) (b) (c)

Figure 4.3.1.2: (a) Frame #63 (b) Frame #308 (c) Frame #756 from “Liquor” dataset

Chapter 4: Implementation and Results

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 36

Tracking

Algorithm

Execution Time (sec) Mean Precision

(error margin 20px) 1st 2nd 3rd Average

KCF 110.22 87.95 104.04 100.74 1175/1741 = 67.49%

MedianFlow 69.88 60.64 76.28 68.93 349/1741 = 20.04%

Table 4.3.1.2: Comparison between KCF and MedianFlow tracking algorithms on

dataset “Liquor”

By observing table 4.3.1.1, it is obvious that median flow is giving a very low precision

which makes it not really useful. In the case of KCF, it is still showing some desired

precision and the execution time taken is still acceptable compared to MedianFlow.

So, through this experiment, KCF is can be concluded as an overall winner in terms of

execution time and tracking precision in different scenario and thus it is chosen as the

tracking algorithm in this system.

Chapter 4: Implementation and Results

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 37

4.3.2 Comparison between GrabCut and Watershed

In this section, a comparison between GrabCut and Watershed will be carried out and

then explains why Grabcut has been chosen for this system. All the testing was

implemented on mobile devices to have a better visualization in par with this system.

Both GrabCut and Watershed was done based on KCF tracking results.

One important aspect of comparison between algorithms is the time taken to execute it.

In a real-time application, an algorithm that takes longer time to execute usually results

in a lower performance in terms of fps.

Segmentation Algorithm Average Execution Time

(millisecond)

GrabCut 130

Watershed 5

Table 4.3.2.1: Time taken to execute grabcut and watershed

From table 4.3.2.1, a dramatic difference can be seen between GrabCut and Watershed

algorithm. Watershed only consumed around 5 seconds to segment an object while

GrabCut is 26 times slower on average.

The reason behind this is because Watershed is a marker-based segmentation method

which requires a good initial marker to guide the segmentation. With the help of

markers and an object bounding rectangle, Watershed will initialize the segmentation

from the labelled background and foreground markers until both of these markers meet

a distinct difference which is the object boundary. In this testing, the Watershed is

initialized with a cross marker in the middle of the bounding rectangle.

In the case of GrabCut, it initialize its segmentation solely based on the object bounding

rectangle. All the pixels outside of the rectangle can be safely assumed as background

pixels. Then, GrabCut will perform iterative foreground estimation and parameter

learning to construct complete foreground and background model. It is much more

complex than Watershed and requires a minimal amount of interactive input.

Chapter 4: Implementation and Results

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 38

Segmentation Result on Single Texture Object

(a) (b) (c)

Figure 4.3.2.1: (a) Original image frame (b) Output of GrabCut segmentation

 (c) Output of Watershed segmentation on a bottle

Segmentation Result on Multi Texture Object

(a) (b) (c)

Figure 4.3.2.2: (a) Original image frame (b) Output of GrabCut segmentation

(c) Output of Watershed segmentation on a cracker container

By looking at the results of both segmentation algorithm, it is obvious that when the

object is a single texture (e.g. consistent colour) object, both the algorithm can performs

really well. Watershed is preferable in this scenario due to its fast run time.

However, when observing the segmentation of multi-texture object, GrabCut is the

clear winner. It managed to extract the object almost perfectly while Watershed failed

to obtain the object boundary because the pre-defined marker is not suitable for a multi-

texture scenario. Without extra interactive user input to define a new marker for each

scenario, Watershed is unable to produce a satisfying result. So, GrabCut is much stable

and better in terms of segmentation accuracy by sacrificing some performance. The

Chapter 4: Implementation and Results

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 39

longer execution time can be overcome by pre-processing the frame and reduce the

number of pixels.

Thus, despite having a limited processing power on mobile device, GrabCut was still

chosen as the segmentation technique due to its high accuracy.

4.4 Analysis of the complete system

4.4.1 Results

This section will demonstrate how this system performs under different scenarios.

Scenario 1: Distinct background

(a)

(b)

(c)

Figure 4.5.1: (a) A cracker container and output of the system

(b) A fidget spinner and output of the system

(c) A can sprayer and output of the system

Chapter 4: Implementation and Results

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 40

Scenario 2: Similar Colour Background

(a)

(b)

Figure 4.5.2: (a) Back side of a can sprayer and output of the system

(b) Front side of a can sprayer and output of the system

4.4.2 Result Analysis

In a distinct background scenario, this system is able to perform very well. In figure

4.5.1, it can be seen that the system was able to extract the object from its background

successfully. Although the boundary is not perfectly segmented due to the detail loss

during re-scaling of the image, the results produced were still satisfying.

However, in scenario where the background colour is similar to the object, the results

might not be that convincing. In figure 4.5.2 (a), the segmentation is not stable due to

the very similar background colour. The effect of similar background was more obvious

in figure 4.5.2 (b). In the figure, only the part where the colour of the object differs from

the background was segmented.

Chapter 4: Implementation and Results

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 41

4.4.3 Strengths

1. This system was able to produce convincing and desired result in scenario where

the background has a distinct colour from the object itself.

2. Minimal interactive user interaction is needed. Requires only an object

bounding rectangle at the start.

4.4.4 Limitations

1. Performance in terms of FPS is acceptable but not very satisfying.

2. Unable to produce desired result if the background is complex or having similar

texture (e.g. colour) with the object.

Chapter 5: Conclusion

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 42

Chapter 5: Conclusion

5.1 Project Review

Image segmentation has always been important to computer vision. In the past, lot of

algorithms and applications have been developed to tackle this popular topic. However,

despite having a lot of different available algorithms, most of it are actually not

designed for mobile devices.

In this research study, a system which is capable of performing tracking and

segmentation together in real time was proposed. This is done by analysing existing

tracking and segmentation algorithm and chooses the suitable method for this system.

In the end, KCF (Kernelized Correlation Filter) tracking algorithm and GrabCut was

proved to be capable of producing desired result on mobile devices.

The final results produced was quite satisfying although the performance in terms of

fps was considered acceptable but not perfect. This system can produce the best result

in the scenario where the object of interest is a single-texture object (in terms of colour,

shape or etc) and the background is simple and has a distinct colour from the object.

5.2 Future work

This research try to produce a real time image segmentation and tracking application.

In order to keep it “real time”, the average frame per second has to be high enough so

that the user won’t feel the delay caused by frame processing. Thus, further studies can

be conducted to improve the execution time of the algorithms to increase the fps

performance and delivers a better user experience.

Other than that, more studies can be done to improve the poor segmentation results

produced under complex background.

Bibliography

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 43

Bibliography

Campbell, N.D.F., Vogiatzis, G., Hernandez, C. and Cipolla, R., (2011), ‘Automatic

Object Segmentation from Calibrated Images’, 2011 Conference for Visual Media

Production, pp. 126-137.

Campbell, N.D.F., Vogiatzis, G., Hernández, C. and Cipolla, R., (2007), ‘Automatic

3D object segmentation in multiple views using volumetric graph-cuts’, Proceedings of

the British Machine Conference, pp 58.1-58.10. BMVA Press, September 2007.

Garcia S., Kelley P.G., Yang Y., (2015), ‘Fast Image Segmentation on Mobile Phone

Using Multi-Level Graph Cut’, GI '15 Proceedings of the 41st Graphics Interface

Conference, pp. 81-88.

Hernandez, C., Schmitt, F. and Cipolla, R., (2007), ‘Silhouette Coherence for Camera

Calibration under Circular Motion’, IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol.29, no. 2.

Holuša, M. and Sojka, E., (2012), ‘Object Detection from Multiple Images Based on

the Graph Cuts’, Advances in Visual Computing. ISVC 2012. Lecture Notes in

Computer Science, vol 7431, pp. 262-271.

Kootstra, G., Bergström, N. and Kragic, D., (2010) ‘Fast and Automatic Detection and

Segmentation of unknown objects’, 2010 10th IEEE-RAS International Conference on

Humanoid Robots, pp. 442-447.

Lee W., Woo W., Boyer E. (2007), ‘Identifying Foreground from Multiple Images’

Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol

4844, pp. 580-589.

Li, H., Meng, F. and Ngan, K.N. (2013), ‘Co-Salient Object Detection From Multiple

Images,’ IEEE Transactions on Multimedia, vol. 15, no. 8, pp. 1896-1909.

Mallick, S, (2017), ‘Object Tracking using OpenCV (C++/Python)’, Available from: <

https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/> [Accessed

25 February 2018]

Marsh, Matthew, (2005), Implementing the "GrabCut" Segmentation Technique as a

Plugin for the GIMP. [image] Available from:

http://www.cs.ru.ac.za/research/g02m1682/ [Accessed 18 March 2018]

Bibliography

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 44

n.d., Superpixel: Empirical Studies and Applications. Available from:

<http://ttic.uchicago.edu/~xren/research/superpixel/> [Accessed 17 August 2017]

OpenCV, Image Pyramids. Available from:

<https://docs.opencv.org/2.4/doc/tutorials/imgproc/pyramids/pyramids.html>

[Accessed 18 March 2018]

Visual Tracker Benchmark. Available from: <

https://sites.google.com/site/trackerbenchmark/benchmarks/v10> [Accessed 18 March

2018]

Yang, Y., Zhang, Q., Wang, P., Hu, X., Wu, N., (2017), ‘Moving Object Detection for

Dynamic Background Based on Spatiotemporal Model’, Advances in Multimedia, vol.

2017.

Poster

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 45

Poster

Plagiarism Check Result

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 46

Plagiarism Check Result

Plagiarism Check Result

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 47

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

ID Number(s)

Programme / Course

Title of Final Year Project

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: ___ %

Similarity by source
Internet Sources: _____________%
Publications: ________ %
Student Papers: _________ %

Number of individual sources listed of
more than 3% similarity:

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality

report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the

Final Year Project Report submitted by my student(s) as named above.

 ______________________________ _____________________________
Signature of Supervisor Signature of Co-Supervisor

Name: _________________________

 Name: __________________________

Date: __________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Bachelor of Computer Science (Hons)

Faculty of Information and Communication Technology (Perak Campus), UTAR 48

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (PERAK CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id

Student Name

Supervisor Name

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you
have checked your report with respect to the corresponding item.

 Front Cover

 Signed Report Status Declaration Form

 Title Page

 Signed form of the Declaration of Originality

 Acknowledgement

 Abstract

 Table of Contents

 List of Figures (if applicable)

 List of Tables (if applicable)

 List of Symbols (if applicable)

 List of Abbreviations (if applicable)

 Chapters / Content

 Bibliography (or References)

 All references in bibliography are cited in the thesis, especially in the chapter of
literature review

 Appendices (if applicable)

 Poster

 Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

I, the author, have checked and confirmed all
the items listed in the table are included in my
report.

(Signature of Student)
Date:

Supervisor verification. Report with incorrect
format can get 5 mark (1 grade) reduction.

(Signature of Supervisor)
Date:

