STANDALONE APPLICATION OF QUESTION CLASSIFICATION IN HIGHER EDUCATION INSTITUTIONS

BY

TAN HOW KIT

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONS)

BUSINESS INFORMATION SYSTEMS

Faculty of Information and Communication Technology (Perak Campus)

JANUARY 2018

UNIVERSITI TUNKU ABDUL RAHMAN

Litle:		
	Academic Ses	sion:
[
	(CAPIT	AL LETTER)
2. The Library is	allowed to make copies	of this dissertation for academic purposes.
		Verified by,
(Author's signature	:)	(Supervisor's signature)
(Author's signature Address:	;)	(Supervisor's signature)
(Author's signature Address:	;)	(Supervisor's signature)

STANDALONE APPLICATION OF QUESTION CLASSIFICATION IN HIGHER EDUCATION INSTITUTIONS

By TAN HOW KIT

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONS)

BUSINESS INFORMATION SYSTEMS

Faculty of Information and Communication Technology (Perak Campus)

JANUARY 2018

DECLARATION OF ORIGINALITY

I declare that this report entitled "STANDALONE APPLICATION OF QUESTION CLASSIFICATION IN HIGHER EDUCATION INSTITUTIONS"

is my own work except as cited in the references. The report has not been accepted for any degree and is not being submitted concurrently in candidature for any degree or other award.

Signature	:	
Name	:	
Date	:	

ACKNOWLEDGEMENTS

I am really grateful because I was engaged and managed to complete this project proposal. I would like to thanks and appreciate to my supervisor, Mr Anbuselvan a/l Sangodiah who has given me an opportunity to engage in this study. The patience and advises given by him has created a motivation for me to accomplish this study. Finally, I would like to take this opportunity to thanks my family members and friends for continuous support and encouragement throughout the entire process.

ABSTRACT

Assessing students through examination is always a universal test practiced in educational institutions. Designing a good examination question will help educators to better evaluate the understanding level of students. Classifying questions into Bloom Taxonomy categories will improve the overall quality of assessment as Bloom Taxonomy was invented to promote higher levels of thinking in education and to measure cognitive level of learners. However, mistakes might be made when labeling or classifying exam questions into category of BT work was done manually and the educators need a strong understanding and experience in Bloom Taxonomy in order to do the classification task in exam questions. This project proposed a question classification tool which will categorize exam questions into appropriate category of Bloom Taxonomy automatically using machine learning. Besides that, natural language processing techniques such as tokenization, stop-word removal, stemming and lemmatization played important role in text pre-processing stage before machine learning was used. It was used to transform the input questions into computer understandable structure to facilitate later processing. In this project, supervised machine-learning model (Support Vector Machine) was adopted by training it with a data set consisting of questions predefined with labels or categories of BT to classify the unseen exam questions into appropriate level or category of BT. For comparison purposes in terms of accuracy in classifying questions, other machine learning models such as Neural Network, Naive Bayes, Decision Tree had been used to compared with SVM. In summary, the deliverable of the project will benefit educators in labeling exam questions in accordance to BT automatically in higher education institutions.

Keywords: Question Classification, Bloom's Taxonomy, Educational Data Mining, Natural Language Processing, Machine Learning

TABLE OF CONTENTS

REPORT	STATUS DECLARATION FORM	i
TITLE P	AGE	ii
DECLAR	RATION OF ORIGINALITY	iii
ACKNO	WLEDGEMENTS	iv
ABSTRA	СТ	V
TABLE (OF CONTENTS	vi
LIST OF	FIGURES	viii
LIST OF	TABLES	ix
LIST OF	ABBREVIATIONS	X
СНАРТЕ	CR 1 INTRODUCTION	1
1.1	Problem Statement	1
1.2	Background Information	2
1.3	Project Objectives	5
1.4	Project Scope	6
1.5	Impact and Contribution	7
	1.5.1 Significant	7
СНАРТЕ	CR 2 LITERATURE REVIEW	8
2.1	Data Mining	8
	2.1.1 Text Mining	9
2.2	Bloom's Taxonomy	10
2.3	Natural Language Processing	13
2.4	Feature Selection	14
	2.4.1 Bag-of-Words Model	14
2.5	Question Classification	17
СНАРТЕ	CR 3 METHODOLOGY	19
3.1	Training Classifier	19
3.2	System Design	22

CHAPTER 4 EVALUATION	24
4.1 10-fold Cross-Validation Method	24
4.2 Evaluate with Real Data type	29
4.3 Graphical User Interface	34
CHAPTER 5 CONCLUSION	36
5.1 Implementation Issue and Challenge	37
5.2 Future Work	38
BIBLIOGRAPHY	39
APPENDIX ATRAINING DATASETA	4-1
PLAGIARISM CHECK RESULT	

CHECK LISTS

LIST OF FIGURES

Figure Number	Title	Page
Figure 1.5.1	Data Mining's Trend between years 2013 to 2018.	2
Figure 2.1	Common types of Data Mining methods.	8
Figure 2.1.1	Process of Text-Classification.	9
Figure 2.2.1	Compare of original cognitive domain with revised	10
	version.	
Figure 2.2.2	Six categories of Cognitive Domain - Original.	11
Figure 2.2.3	Six categories of revised Cognitive Domain.	12
Figure 3.1.1	Training Classifier.	19
Figure 3.2.1	Question Classification Tool Design.	22
Figure 4.3.1	Question Classifier Home Page.	34
Figure 4.3.2	Question Classifier Result Page.	35

LIST OF TABLES

Table Number Title Page Table 2.3.1 Five general steps in NLP. 13 Table 3.1.2 Sample of Processed Training Data. 21 Table 3.2.2 Sample of BoW and Term Weighting 23 Table 4.1.1 10-fold Cross-Validation (Support Vector Machine). 24 Table 4.1.2 10-fold Cross-Validation (Decision Tree). 25 Table 4.1.3 10-fold Cross-Validation (Na we Bayes). 26 Table 4.1.4 10-fold Cross-Validation (K-Nearest Neighbour). 27 Table 4.1.5 10-fold Cross-Validation (Comparing Classifiers). 28 Table 4.2.1 Support Vector Machine Classifier Result. 29 Table 4.2.2 Decision Tree Classifier Result. 30

Table 4.2.3	Na we Bayes Classifier Result.	31
Table 4.2.4	K-Nearest Neighbour Classifier Result.	32

LIST OF ABBREVIATIONS

DM	Data Mining
NLP	Natural Language Processing
BT	Bloom's Taxonomy
EDM	Educational Data Mining
KDD	Knowledge Discovery in Database
QA	Question Answering
IR	Information Retrieval
SVM	Support Vector Machine
FS	Feature Selection
NB	Na we Bayes
KNN	K-Nearest Neighbor
DT	Decision Tree
BoW	Bag-of-Words
CSV	Comma-Separated Values
ML	Machine Learning

Chapter 1: Introduction

1.1 Problem Statement

In the conventional educational model, people often only studied and learned the theories of a subject without giving much understanding. This is because the questions in examination usually are theory-based and therefore students only need to memorize those theories in order to pass a subject. Understanding the cognitive domain from Bloom Taxonomy is important because it can help educator to well design and classify the examination or practical questions in order to enhance the overall learning quality. However, there is a problem of inefficient in manual classification. Despite classifying questions manually could be effective; inefficiency of manual classification is occurring because the manual process is quite timeconsuming and can lead to mistakes being made (Mitchell 2014). This issue has negatively impacted on those who may want to use the classified information due to the questions are unable to process on time. A possible cause of this issue is people will slow down the process when they get tired. Thus, a study which investigates automated classification technique could remedy this situation.

Besides, there is also a problem of inconsistency of labeling in classifying questions. Despite human can make judgment better than a machine does, inaccuracy of results in classifying questions manually is still occurring due to the deteriorating quality of decisions made by individuals after a long period decision making (Tierney 2011). This issue has negatively impacted on those individuals that may want to use the distilled information because of the inaccuracy of labeling result. A possible cause of this issue probably is people tend to make mistake when they get tired. Thus, a study which investigates inconsistency of labeling by using classification technique could remedy this situation.

1.2 Background Information

Data mining, also known as Knowledge Discovery in Database, is a practice that analyzing a large amount of data among huge data repository and then interprets them into useful information associated with the techniques between artificial intelligence, machine learning, statistics, and database systems (Meseguer et al. 2015). According to Bagga & Singh (2012), data mining applications have been extensively applied in field of Medical science to understand the mapping relations between human DNA sequence variation and disease susceptibility; Financial Data Analysis to enable people to make better decisions according to market analysis; Retail Data Mining to identifying customer behavior; Telecommunication Data Mining to spot patterns, deceptive actions and helps to maximize the resources usage in order to increase the overall services condition. Figure 1.1.1 shows the trend of data mining from years of 2013 to 2018. According to Google Trends, the popularity of data mining is always above average and sometimes reaching a peak value around the world.

Figure 1.5.1 Data Mining's Trend between years 2013 to 2018 (Google Trend,

n.d.)

Educational Data Mining will be the focal point in this paper. Seal, Marzak & Behja (2013) says that educational data mining as a rising discipline, focusing on establishing new practices for searching the exclusive and huge data that derive from educational context to develop an improved understanding of scholars and the pattern which they study in. According to Baker (2010), educational data mining are disparate from others knowledge discovery in database methods because it needs to clearly utilize the numerous degree of purposeful hierarchy in educational data. Educational Data Mining divided into following general categories: relationship mining, discovery with models, prediction, clustering, and distillation of data for human judgment (Baker 2010). In the area of distillation of data for human judgment, data is distilled for two key objectives which are identification and classification (Baker 2010). For classification, data is distilled to support the development of prediction model. In previous researches, Xu and Reynolds (2012) had implement data mining techniques to evaluate students' written responses to a teacher leadership dilemma. Through this exercise, they were able to provide insight to understand the linguistic structure based on the unique concepts generated from the responses. Besides, He (2013) applied both data mining and text mining approach to analyze the online query and also conversations that documented by a live video streaming system. This exercise found the likeness along with differences in the students' patterns and participation's subject between the online query and online conversations. Moreover, Akcapinar (2015) used text mining technique to automated feedback in order to reduce the plagiarism behavior in the online assignment. The study was conducted by 59 participations who were participated the Computer Hardware class and the result has successfully reduced the ratio of plagiarism.

Text classification is one of the popular topics for researchers nowadays because peoples are living in a big data world. Text classification is a subfield of text mining which classifying text records into one or more predefined category (Manning & Schutze 1999). With good use of text classification in education, the learning and teaching process will be analyzed and therefore bring an improvement in the overall academic performance. Moreover, question classification is a process of analyzing a question and the system will automatically label the question to the predefined answer type. According to Sangodiah, Ahmad & Ahmad (2014), question classification is more challenging as contrasted to document classification in getting a satisfactory accuracy. This is due to very little information occurred in question classification and that might not be sufficient to effectively classify the questions as opposed to document classification. Question classification system was also treated as a component of Question Answering systems and Information Retrieval system too (Metzler & Croft 2004). There are some past researches of question classification in educational field. Omar et al. (2012) had used rule-based approach and proposed an automated analysis of examination questions and then categories to the correct level regarding Bloom Taxonomy by using Natural Language Processing approaches to determine important keywords in the questions. Similar work done by Haris (2015) has using hybrid ability of rules and statistical approach to determine the divisions of questions regarding Bloom Taxonomy. The combination of rules and N-gram had performed well to categorize the questions as these methods take advantages to overcome each of their weakness by each other's strength.

Bloom taxonomy was developed in years 1956, by a group of the educational psychologist for the purpose of classifying the level of learning and understanding according to the levels of taxonomy (Bloom et al. 1956). According to Bloom et al. (1956), there are 3 domains in Bloom taxonomy: Cognitive, Affective, and also Psychomotor. Question classification incorporating to the Cognitive domain of Bloom taxonomy is able to classify the question into the 6 categories which are Knowledge, Comprehension, Application, Analysis, Synthesis and also Evaluation (Bloom, et al. 1956).

To develop a questions classification tool, this study compares several classification techniques in question classification in order to find an appropriate classification technique to classify question which can achieve a reasonable accuracy.

1.3 Project Objectives

I. <u>To investigate existing question classification work in the context of BT.</u>

In this study, several techniques and accuracies of question classifiers are studied in order to get a better insight and idea to develop a question classification tool with the desired accuracy by assessing the past experiences made by the researchers.

II. <u>To use appropriate NLP techniques and feature type to build question</u> <u>classifier model</u>

Natural language processing techniques such as tokenization, stop-word removal, stemming and lemmatization played important role in text preprocessing stage before machine learning was used. It was used to transform the input questions into computer understandable structure to facilitate later processing. Also, BoW was use as a feature extraction technique in this project.

 III.
 To develop a question classification tool to classify questions in accordance to

 BT

The primary objective of this study is to develop a question classification tool that will analyzes the text-based questions and then categorizes them based on BT cognitive domain and comes with at least 70% of accuracy by using NLP and ML techniques. Classifying the examination or practical questions set based on Bloom Taxonomy's cognitive domain could help educators better design the questions and improve the overall learning objectives of students effectively as Bloom Taxonomy was developed to promote higher levels of thinking in education rather than just rote learning (Clark 1999).

IV. To evaluate the question classification tool

In this project, supervised machine-learning model (Support Vector Machine) was adopted by training it with a data set consisting of questions predefined with labels or categories of BT to classify the unseen exam questions into appropriate level or category of BT. For comparison purposes in terms of accuracy in classifying questions, other machine learning models such as Neural Network, Naive Bayes, Decision Tree had been used to compared with SVM.

1.4 Project Scope

In this project, a question classification tool was constructed and developed. Support Vector Machine, Decision Trees, Na ve Bayes, and k-nearest neighbors classification techniques were studied and compared in order to find an appropriate classification technique to classify questions with the desired accuracy. Text-based documents such as practical, tutorial, or examination questions will be used as input to analyze and classify in this study. Besides, this question classifier is primarily focusing on business domain with various courses and subjects questions. Moreover, this question classification tool is designed for educators in order to allow them to identify the questions based on the cognitive domain from Bloom Taxonomy and therefore better design the practical or examination questions for students in order to achieve an overall improved academic performance. Furthermore, this question classification tool is built using Python programming and based on Text Mining, Natural Language Processing, and Question Classification in order to classify questions into predefined groups. Nevertheless, all of the questions are categories based on Bloom Taxonomy. In this project, a questions classification tool was delivered with the ability of question categorizing according to Bloom's Taxonomy Cognitive domain.

1.5 Impact and Contribution

This project will propose a question classification tool which can benefit educators in the educational environment. With this question classification tool, educators can easily evaluate the unstructured examination or practical questions and then better design the questions based on Bloom Taxonomy's cognitive domain for the purpose of improving the overall learning objectives of students. With the designed questions, educators are able to evaluate the understanding level of students and therefore can design and provide appropriate teaching methods to each of them in order to improve overall teaching and learning process effectively and efficiently.

1.5.1 Significant

This project is designed to develop a question classification tool with an automating processing ability. Classifying a set of questions manually will be inefficient and time-consuming because people need take some time to handle a huge workload (Mitchell 2014). Besides, inaccuracy result in classifying questions manually is also occurring due to deterioration quality of decisions made by an individual after a long period of decision making (Tierney 2011). Hence, this project will introduce an automated question classification tool with the desired accuracy to overcome the problems that may happen in manual classification. Besides, the question classification tool might improve the overall learning and teaching quality in education environment as educators can well-structured the examination questions accordance to BT level and to better access the understanding level of students.

Chapter 2: Literature Review

2.1 Data Mining

Data mining is an interdisciplinary field in between of artificial intelligence, machine learning, statistics, and database systems (Meseguer et al. 2015). Data mining is a technique of discovering and uncovering patterns in large datasets and then interprets them into an understandable structure. According to Fayyad et al. (1997), data mining is also a data analysis and discovery algorithms step in knowledge discovery in the database - KDD. Figure 2.1 shows 6 common types of data mining methods with their corresponding short description.

Types	Description				
Classification	Learning function that classifies a fata item into one				
	of several predefined classes.				
	(Weiss & Kulikowski 1991).				
Regression	Learning function that maps a data item to a real-				
	valued prediction variable.				
Clustering	Common descriptive task of grouping a set of objects				
	based on their similarity characteristics.				
Summarization	Involves methods for finding a compact description				
	for a subset of data.				
Dependency modeling	Finding a model that describes significant				
	dependencies between variables.				
Change and deviation detection	Detect the most significant changes in the data from				
	previous measured values				
	(Bemdt & Clifford 1996).				

Figure 2.1 Common types of Data mining methods (Fayyad et al. 1997)

2.1.1 Text Mining

According to Radovanovic & Ivanovic (2008), text mining has a strong connection with natural language processing, data mining, machine learning, information retrieval, and knowledge management. Text mining is derived from data mining and it discovers and extracts helpful knowledge from large-scale text data through analyzing and searching for impressive patterns (Feldman & Sanger 2007). One of the popular text mining techniques is text categorization or text classification. Text classification is a technique of classifying a text document into predefined categories with some similar keyword or patterns. Before text classification works, the document needs to transform first into a representation suitable for learning algorithm and classification task (Doleck et al. 2015). Aggarwal & Zhai (2012) said there are many existing techniques have been designed for text classification such as Decision Trees, Pattern (Rule)-based Classifiers, Support Vector Machine Classifiers, Neural Network Classifiers, Bayesian (Generative) Classifiers, et cetera (Dang et al. 2016). Figure 2.1.1 shows the process of text classification.

Figure 2.1.1 Process of Text Classification (Radovanovic & Ivanovic 2008)

2.2 Bloom Taxonomy

Bloom taxonomy was developed in years 1956 by a group of educational psychologist to promote higher levels of thinking in education rather than just rote learning (Clark 1999). The objective of Bloom taxonomy is to classify the level of understanding according to its corresponding level of taxonomy. According to Bloom et al. (1956), there are 3 domains in Bloom taxonomy, which are Cognitive, Affective, and Psychomotor. Cognitive domain deals with knowledge or mental skills, Affective domain deals with internal feelings and emotions, and Psychomotor domain deal with the manipulative or motor-skill area. Cognitive domain will be the main concerned in this study because it deals with knowledge area which is closely related to question classifications. There are 6 major classes of the cognitive domain in Bloom Taxonomy, starting from the simplest Knowledge, followed by Comprehension, Application, Analysis, Synthesis, and finally the complex one, Evaluation (Bloom et al. 1956). In the year 2001, the model of the taxonomy was revised by Anderson and a group of cognitive psychologist. According to Anderson et al. (2001), the revised model modified the name in 6 major classes from noun to verb forms and rearranged the sequence of them, which becomes Remembering, follow by Understanding, Applying, Analyzing, Evaluating, and the last, Creating. Figure 2.2.1 shows the figure of comparing the original taxonomy with the revised taxonomy.

Figure 2.2.1 Compare of original cognitive domain with revised version (Clark 2015)

Figure 2.2.2 shows each of the original categories of cognitive domain starting from low level to high level, and Figure 2.2.3 shows each of the revised version of categories which is starting from low level to high level too, as well as illustrating some keyword and simple examples that can be used as the reference on question classifications.

Category	Keywords	Example
Knowledge	Arrange, defines, describes,	Define a term.
(Recall information)	identifies, labels, lists, knows,	
	names, matches, recalls,	
	recognizes, selects, states	
Comprehension	Converts, distinguish, estimate,	Explain the steps for
(Understand the meaning)	explain, translates, summarizes,	performing a
	interpret, defend, infer	complicate task.
Application	Apply, compute, construct,	Use a manual to
(Apply what was learned in	demonstrates, discovers, operate,	calculate an
a new situation)	predict, solve, use	employee's vacation
		time.
Analysis	Analyze, compare, diagrams,	Gather information
(Distinguish, classifies, and	differentiate, distinguish, identify,	from a department and
relates the assumptions of a	illustrate, discriminate	select the required
statement)		tasks for training.
Synthesis	Categorize, compile, combine,	Design a machine to
(Put parts together to form a	design, compose, revise, create,	perform specific task.
new whole)	generate, rearrange	
Evaluation	Appraise, compare, conclude,	Explain and justify a
(Ability to make judgment	defend, evaluate, justify, criticize,	new budget.
about the value of ideas)	interpret, summarize	

Figure 2.2.2 Six categories of Cognitive Domain - Original (Clark 1999)

Category	Keywords	Example
Remembering	Define, describe, know, label, list,	Recite safety rules.
(Recall previous	state, select	
leamed material)		
Understanding	Convert, defend, distinguish,	Explain the step for
(Comprehend of	estimate, explain, infer, interpret	performing a complicate
instructions and		task.
problems)		
Applying	Apply, compute, construct,	Use a manual to calculate
(Apply a concept in a	discover, solve, predict,	an employee's vacation
new situation)	demonstrate, produces	time.
Analyzing	Analyze, compare, contrast,	Gather information from a
(Distinguish,	diagrams, differentiate,	department and select the
classifies, and relates	distinguish, discriminate, identify	required tasks for training.
the assumptions of a		
statement)		
Evaluating	Appraise, compare, conclude,	Explain and justify a new
(Ability to make	defend, describe, evaluate,	budget.
judgment about the	explain, justify, summarize, relate	
value of ideas)		
Creating	Categorize, create, generate,	Design a machine to
(Build a structure or	rearrange, reconstruct, reorganize,	perform specific task.
pattem from various	revise, rewrite, compose	
elements.)		

Table 2.2.3 Six categories of revised Cognitive Domain (Clark 2015)

Bloom Taxonomy had been widely spread in the educational environment to improve the quality of learning. In past research, bloom taxonomy had applied in a computer science class for testing and evaluating the programming questions (Scott 2003); Comparing the difficulty level of programming and networking course by computing Bloom Rating (Oliver et al. 2004); Applied the revised Bloom's taxonomy to classify assignment together with test questions in an Introduction to Linux subject (Johnson et al. 2012); and others field to improve the learning experiences.

2.3 Natural Language Processing

Natural Language Processing (NLP), is a technique of automated or semiautomated processing of the human language (Copestake 2004). NLP is a subdomain of artificial intelligence and linguistics that focuses on making machines comprehend the statements or words drafted in the human language (Chopra et al. 2013). There are several forms of NLP in used today included dialog or speech systems, document classification, search and retrieval, textual analysis, question answering and information retrieval, etcetera (Eslick & Liu 2005). According to Chorpa et al. (2013), NLP involved 5 general steps starting from Morphological and Lexical Analysis, followed by Syntactic Analysis, Semantic Analysis, Discourse Integration, and finally, Pragmatic Analysis. Table 2.3.1 shows the steps involved in NLP with their corresponding descriptions.

Phases	Description
Morphological and Lexical Analysis	Analyze and identify the structure of words and
	then divide them into words, sentences, and
	paragraphs.
Syntactic Analysis (Parsing)	Analyze of words in grammatical sentences and
	transform them to shows the relationship among
	the words.
Semantic Analysis	Draw the exact meaning from text and check for
	its meaningfulness by mapping syntactic
	structure and objects in task domain.
Discourse Integration	Meaning of a sentences depends on the precede
	meaning of sentences, and also brings the
	meaning for the following sentences.
Pragmatic Analysis	Words will be re-interpreted on it real meaning
	which require real world knowledge because it
	involves deriving those aspects of language.

Table 2.3.1 Five general steps in NLP (Chopra et al. 2013)

2.4 Feature Selection

In machine learning, feature selection also known as variable selection or attributes selection. Feature selection is a technique about automated picking of attributes within the given data. For example, columns in tabular form, which are remarkably important for the predictive modeling issue that is working on (Brownlee 2014). According to Brownlee (2014), feature selection is likely performed as a filter; it attempts to decrease the number of attributes in the dataset by including and excluding the attributes that exist in the data without changing them. Guyon & Elisseeff (2003) said feature selection methods aid to improve the prediction performance of the predictors by selecting the features that will mostly achieve a satisfactory or improved accuracy meanwhile requiring minimal data. Moreover, feature selection technique can be applied to recognize and eliminate undesirable, unnecessary, and duplicated attributes against the data that not only have no significance to the predictive model accuracy result but also may reduce the accuracy of the prediction model.

2.4.1 Bag-of-Words Model

Most of the machine learning techniques and algorithms required well defined fixed-length inputs and outputs, therefore there is a problem existed which was modeling the raw text that is cluttered. Machine learning algorithms are unable to work with raw text straightly; the raw text must be transformed into number, or precisely, vectors of numbers (Brownlee 2017). According to Brownlee (2017), the process of transforming those raw text-based data into number also known as feature extraction or feature encoding. Moreover, one of the most well-known and simple techniques of feature extraction that deal with text-based documents be known as Bag-of-Words model. Bag-of-Words model is a technique of eliciting features from text data in order to facilitate the process in modeling, for example with machine learning algorithms. The process of Bag-of-Words is pretty simple and adaptable, and may also be applied in countless of methods for extracting features against text-based documents. According to Goldberg (2017), Bag-of-Words is a denotation of text which defines the existence of words inside a document that involved two elements. The first is a vocabulary of recognized words, and the second is a gauge of the existence of recognized words. It's known as "bag" of words since whichever information regard to the arrangement or organization of words within the text document is abandoned. BoW model is only focused on if known words exist in the text document, not the position of words in the text document. BoW model may be either simple or complicated, the complicatedness falls both in determining how to construct the vocabulary of recognized words (or tokens), and how to weigh the existence of recognized words.

Below shows the example of modeling two simple text-based documents using bagof-words.

- 1. Jack likes to play badminton. Jackson likes badminton too.
- 2. Jack also likes to play basketball.

Based on the above example, a list was composed as follow for each sentence. The sentences are chopped into a single word, also known as tokens. In this way, all word or token is known as a "gram". Building a vocabulary of single-word is called unigram.

- 1. "Jack", "likes", "to", "play", "badminton", "Jackson", "likes", "badminton", "too"
- 2. "Jack", "also", "likes", "to", "play", "basketball".

The next step is to construct a list of every word in the model vocabulary, and the list should not contain any duplicated word or token. The unique words extracted from the example are:

"Jack", "likes", "to", "play", "badminton", "Jackson", "too", "also", "basketball"

Afterward is to score the words in each sentence, also known as term frequency or term weighting. The purpose of this is to convert each sentence of free text in the direction of a vector that may work as input or output against a machine learning model. The easiest scoring approach is to record the existence of words as a Boolean form, 0 for missing, 1 for existing. The scoring of example would look like follows:

- 1. "Jack"= 1, "likes"= 2, "to"= 1, "play"= 1, "badminton"= 2, "Jackson"= 1, "too"= 1, "also"= 0, "basketball"= 0.
- 2. "Jack"= 1, "likes"= 1, "to"= 1, "play"= 1, "badminton"= 0, "Jackson"= 0, "too"= 0, "also"= 1, "basketball"= 1.

And last for a binary vector, which would look likes follows:

- Jack likes to play badminton. Jackson likes badminton too.
 = [1, 2, 1, 1, 2, 1, 1, 0, 0]
- 2. Jack also likes to play basketball.= [1, 1, 1, 1, 0, 0, 0, 1, 1]

2.5 Question Classification

Question classification is a process of analyzing a question and the system will automatically label the question based on the proposed answer group. According to Panicket et al. (2012), earlier approaches for automatic document classifier consisted of manually building. The advantages of these approaches were it required rules manually defined and when the classifier is transplanted to a completely different domain, the domain expert needs to intervene and the work has to be done in its entirety. Machine Learning approach is currently applied to overcome the defect of rule-based classification. In this approach, a set of pre-defined questions is fed to the classifier. This action will act as the training example for the classifier. Based on these examples, the classifier will classify the future questions. There is much existing text classifier approaches included probabilistic, decision tree, decision rule, regressionbased, neural network, support vector machine, and etcetera (Alpaydin 2010).

Although question classification functions in the same method as document classification, question classification is more challenging as opposed to document classification in getting a satisfactory accuracy because there exist only a little information in question classification, and that might not be sufficient to effectively classify the questions as compared to document classification (Sangodiah, Ahmad & Ahmad 2014). According to Metzler & Croft (2004), question classification was employed as part of question answering and information retrieval systems. Question answering is a process of fetching answers to the questions composed in natural language from a group of documents, where the answers are usually a limited segment of text extract from the corpus. And information retrieval is a task of returning relevant documents to a particular natural language query (Jurafsky & Martin 2000).

There are some past researches of classifying question according to Bloom taxonomy. Omar et al. (2012) proposed an automated analysis of exam question by using rule-based approach. The study was using written final examination questions in Programming subjects and fed with 70 training examination questions set and 30 questions to test it. First of all, they implement stopwords removal to process the questions to increase the readability. Next, each processed word will be tagged by a tagger to determine significant keywords which might be important in categorizing. After the cleaning process, some rules will be implemented to determine the questions'

category. However, the accuracy of the developed rules was not good due to most of the training questions start with a verb. Based on Bloom's Taxonomy, the verb 'Write' can be categorized into Knowledge and Synthesis. Hence, they used category weighting which assigns weight to the conflicting categories to increase the accuracy of categorizing. In this case, questions' classifying from subject matter experts (SMEs) is used to calculate the assigned weight.

Similar work has done by Haris & Omar (2015) by using the hybrid ability of rules and statistical approach. Haris & Omar (2015) has developed 64 rules and covers 6 categories of Bloom's Taxonomy in the study. The developed rules will try to determine the syntactic structure from the input questions and then categorize it into suitable categories. If all the defined rules do not match with the syntactic structure, N-gram will handle the categorization process by calculating the frequency and the degree of similarity in test questions and then compare to the training set. The combination of rules and statistical approach has performed well in question categorization because both methods take the advantages of own to overcome each other's weakness.

Osman & Alattab (2013) has done a study of analyzing classroom questions according to Bloom Taxonomy Cognitive Level. In this study, they perform four feature selection approaches which are Term Frequency, Mutual Information, Information Gain, and Chi-Square to filter out the important words from the questions. Besides, they also do implement four machine learning techniques which are k-Nearest Neighbour, Na we Bayes, Support Vector Machine, and Rocchio Algorithm to train the system to classify the questions. The result of this study shows that Rocchio Algorithm has achieved a better accuracy, particularly work with Information Gain feature selection approach, mainly because it can utilize the selected terms better than others. Support Vector Machine has a comparable performance with Rocchio Algorithm in particular when working with Term Frequency and Chi-Square feature selection approach. Moreover, Na we Bayes and k-Nearest Neighbour have collaborated well with Term Frequency approach to attain a satisfactory result. In a nutshell, the use of the combination of rule and statistical approach seems better to achieve a higher accuracy in questions classification.

Chapter 3: Methodology

3.1 Training Classifier

Dataset

A set of training data that stored in CSV file format will first be fed into the system in order to let the machine learn the patterns and also train the classifier. A total number of 163 questions along with its predefined answer that regarding on business domain with various courses and subjects will be used in this project and train the classifier. All the answers in training dataset has been labeled and verified by education experts.

Text-Preprocessing

Then, text preprocessing will take part to deal with the training dataset and split them into training questions for machine learning and also testing questions for evaluating the machine accuracy. Next, the program will transform both of the training and also testing questions into machine understandable format to facilitate later works. In the first stage of text preprocessing, the program will remove all the punctuation characters that exist in the training dataset because those punctuation characters do not have any value for the later process but will decrease the classifiers' accuracy. In the second stage, the program will tokenize and chopped every question into a separate pieces or words and then store into a list. Next, stemming will kick in to transform back every single word into their root form. For example, "fishing", "fished", "fisher" will be converted into their root form "fish" after stemming operate. Then, Lemmatization will be used to make sure there are only nouns and verbs exist in the features set. And last, stopword removal will be used to expel those unnecessary words such as "an", "and", "so", "that" and so on within the features set.

Feature Extraction

After that, feature extraction method, Bag-of-Words model was used to create the features set. A list was composed for every training questions that stored each word or tokens that have been processed in the text-preprocessing stage. The approach that has been used to create the vocabulary is also known as unigram. Next, a list of all the words in the model vocabulary was formulated. The list was then converted into a set

in order to make sure there have no duplicated word or token within the list (every word or token is unique within the list).

Term-Weighting

Afterwards, the machine will score the words in each training questions with the features set. The purpose of this is to turn each sentences of free text into a vector that can work as input or output for a machine learning model. The scoring approach that has been adopted is to mark the presence of words as a Boolean value, 0 for absent, 1 for present.

Features Set	above	define	accept	commerce	Bloom's
					Taxonomy Level
Questions					
Define	0	1	0	1	REMEMBER
Electronic					
Commerce					

Table 3.1.2 Sample of Processed Training Data

Evaluate the Classifier

In this stage, four different classification techniques such as Support Vector Machine, Na we Bayes, K-Nearest Neighbor, and Decision Tree were chosen to do a comparison with their accuracy. 10-fold cross validation method was used to evaluate the performance and accuracy among the classifiers.

Storing Classifier

And last, the trained classifier will be stored into a ".pickle" file so users no need to train the classifier every time when they run the question classification tool and therefore saving the processing time and computer resources.

3.2 System Design

Figure 3.2.1 shows the system design of question classification tool in this study. First of all, the program will prompt and receive an input from users. Next, the question classification tool will perform text pre-processing function in order to convert the question given by users into a machine-understandable format to facilitate the later process. Several text-pre-processing approaches will take part in here such as punctuation character removal, tokenization, stemming, lemmatization, and also stopword removal. After that, the machine will perform BoW to compare the processed question to the stored features set, and remove those words that do not exist in the features set. Then, the processed words or question will do the term weighting to compare the features set and determine whether how many processed word from the questions appear in the features set. Afterward, the trained and stored classifier in the earlier stage will be call out and input the processed question into it. And last, the classifier will automatically label and determine whether the question that given by users is belong to which category of Bloom's Taxonomy cognitive domain.

Features Set	above	define	accept	commerce	Bloom's
					Taxonomy Level
Questions					
Define	0	1	0	1	
Electronic					
Commerce					

Table 3.2.2 Sample of BoW and Term Weighting

Chapter 4: Evaluation

4.1 10-fold Cross-Validation Method

Support Vector Machine

Multiple	k-List	Accuracy
Scores		
when k =		
3	[0.64285714, 0.51851852, 0.62264151]	0.595 (+/- 0.11)
4	[0.56818182, 0.70731707, 0.5, 0.68421053]	0.615 (+/- 0.17)
5	[0.57142857, 0.73529412, 0.60606061, 0.5483871,	0.639 (+/- 0.16)
	0.73333333]	
6	[0.566666667, 0.75, 0.64285714, 0.57692308, 0.69230769,	0.645 (+/- 0.13)
	0.64]	
7	[0.57692308, 0.69230769, 0.69565217, 0.65217391,	0.645 (+-/ 0.18)
	0.56521739, 0.52380952, 0.80952381]	
8	[0.60869565, 0.5, 0.77272727, 0.71428571, 0.52380952,	0.628 (+/- 0.24)
	0.47368421, 0.61111111, 0.82352941]	
9	[0.59090909, 0.45, 0.9, 0.666666667, 0.666666667,	0.652 (+/- 0.26)
	0.52941176, 0.625, 0.625, 0.8125]	
10	[0.68421053, 0.38888889, 0.77777778, 0.625, 0.6875, 0.75,	0.652 (+/- 0.23)
	0.625, 0.6666666667, 0.533333333, 0.78571429]	

 Table 4.1.1 10-fold Cross-Validation (Support Vector Machine)

Decision Tree

Multiple	k-List	Accuracy
Scores		
when k =		
3	[0.51785714, 0.59259259, 0.60377358]	0.571 (+/- 0.08)
4	[0.63636364, 0.80487805 0.65, 0.60526316]	0.674 (+/- 0.15)
5	[0.68571429, 0.70588235, 0.6666666667, 0.67741935, 0.6]	0.667 (+/- 0.07)
6	[0.7, 0.71428571, 0.67857143, 0.61538462, 0.80769231,	0.693 (+/- 0.12)
	0.64]	
7	[0.76923077, 0.65384615, 0.69565217, 0.6956222, 0.69	0.685 (+-/ 0.15)
	0.73913043, 0.52380952, 0.71428571]	
8	[0.7826087, 0.54545455, 0.77272727, 0.57142857,	0.648 (+/- 0.29)
	0.57142857, 0.84210526, 0.388888889, 0.70588235]	
9	[0.81818182, 0.55, 0.9, 0.72222222, 0.55555556,	0.687 (+/- 0.28)
	0.76470588, 0.6875, 0.4375, 0.75]	
10	[0.73684211, 0.72222222, 0.83333333, 0.625, 0.6875, 0.75,	0.708 (+/- 0.17)
	0.8125, 0.6666666667, 0.533333333, 0.71428571]	

Table 4.1.2 10-fold Cross-Validation (Decision Tree)

Na ïve Bayes

Multiple	k-List	Accuracy
Scores		
when k =		
3	[0.55357143, 0.35185185, 0.43396226]	0.446 (+/- 0.17)
4	[0.5, 0.56097561, 0.45, 0.47368421]	0.496 (+/- 0.08)
5	[0.51428571, 0.58823529, 0.60606061, 0.41935484,	0.526 (+/- 0.13)
	0.5]	
6	[0.53333333, 0.60714286, 0.46428571, 0.5, 0.5, 0.52]	0.521 (+/- 0.09)
7	[0.57692308, 0.57692308, 0.39130435, 0.7826087,	0.551 (+-/ 0.24)
	0.43478261, 0.47619048, 0.61904762]	
8	[0.65217391, 0.5, 0.63636364, 0.61904762,	0.527 (+/- 0.21)
	0.52380952, 0.42105263, 0.33333333, 0.52941176]	
9	[0.68181818, 0.45, 0.7, 0.5, 0.77777778, 0.41176471,	0.537 (+/- 0.27)
	0.4375, 0.375, 0.5]	
10	[0.63157895, 0.44444444, 0.55555556, 0.4375, 0.5,	0.519 (+/- 0.23)
	0.8125, 0.4375, 0.4, 0.466666667, 0.5]	

Table 4.1.3 10-fold Cross-Validation (Na we Bayes)

K-Nearest Neighbour

Multiple	k-List	Accuracy
Scores		
when k =		
3	[0.58928571, 0.62962963, 0.50943396]	0.576 (+/- 0.10)
4	[0.54545455, 0.68292683, 0.625, 0.60526316]	0.615 (+/- 0.10)
5	[0.62857143, 0.52941176, 0.54545455, 0.61290323,	0.570 (+/- 0.08)
	0.53333333]	
6	[0.6, 0.60714286, 0.67857143, 0.61538462,	0.626 (+/- 0.09)
	0.69230769, 0.56]	
7	[0.65384615, 0.53846154, 0.60869565, 0.60869565,	0.614 (+-/ 0.07)
	0.65217391, 0.61904762, 0.61904762]	
8	[0.73913043, 0.5, 0.63636364, 0.52380952,	0.593 (+/- 0.16)
	0.61904762, 0.57894737, 0.5, 0.64705882]	
9	[0.72727273, 0.5, 0.65, 0.72222222, 0.44444444,	0.618 (+/- 0.19)
	0.70588235, 0.625, 0.5625, 0.625]	
10	[0.78947368, 0.55555556, 0.55555556, 0.625, 0.625,	0.637 (+/- 0.17)
	0.5625, 0.75, 0.73333333, 0.6, 0.57142857]	

 Table 4.1.4 10-fold Cross-Validation (K-Nearest Neighbour)

Comparing Result

Classifier	Means in k-List	Accuracy	Standard Deviation
		(Final mean value)	
Support Vector	[0.595, 0.615, 0.639,	0.633875	0.40179751562499993
Machine	0.645, 0.645, 0.628,		
	0.652, 0.652]		
Decision Tree	[0.571, 0.674, 0.667,	0.666625	0.44438889062500003
	0.693, 0.685, 0.648,		
	0.687, 0.708]		
Na ïve Bayes	[0.446, 0.496, 0.526,	0.515375	0.26561139062500005
	0.521, 0.551, 0.527,		
	0.537, 0.519]		
K-Nearest	[0.576, 0.615, 0.57,	0.60612499999999999	0.3673875156249999
Neighbour	0.626, 0.614, 0.593,		
	0.618, 0.637]		

 Table 4.1.5 10-fold Cross-Validation (Comparing Classifiers)

4.2 Evaluate with Real Data type

Support Vector Machine

No.	Questions	Predicted Answer	Correct Answer
1	Apply Porter's five competitive forces	CREATE	APPLY
	analysis to examine the summer job		
	industry for your uncle.		
2	Discuss the extent to which Value Chain	APPLY	APPLY
	Analysis can be applied in the logistics		
	sector		
3	Information Systems value is determined by	REMEMBER	REMEMBER
	the strong relationships among THREE (3)		
	major components. Name them.		
4	Briefly explain any TWO (2) observations	UNDERSTAND	UNDERSTAND
	of information technology trend using		
	Moore's Law.		
5	Relate cycle-time reduction to improved	EVALUATE	EVALUATE
	performance. Justify your answer.		
6	Prepare a research proposal on a study that	CREATE	CREATE
	you have to conduct on the purchasing		
	behaviour of teenagers in the Klang Valley.		
7	Compare FOUR (4) point of views of	ANALYZE	ANALYZE
	entrepreneurs with FOUR (4) for managers		
	the way they look at the things.		
8	Define electronic commerce.	UNDERSTAND	REMEMBER
9	Define the term project in the context of	REMEMBER	REMEMBER
	project management.		
10	Argue critically with relevant examples.	UNDERSTAND	EVALUATE
Tot	al Correct Answer	7/10	70%

Table 4.2.1 Support Vector Machine Classifier Result

Decision Tree

No.	Questions	Predicted Answer	Correct Answer
1	Apply Porter's five competitive forces	UNDERSTAND	APPLY
	analysis to examine the summer job		
	industry for your uncle.		
2	Discuss the extent to which Value Chain	EVALUATE	APPLY
	Analysis can be applied in the logistics		
	sector		
3	Information Systems value is determined by	UNDERSTAND	REMEMBER
	the strong relationships among THREE (3)		
	major components. Name them.		
4	Briefly explain any TWO (2) observations	UNDERSTAND	UNDERSTAND
	of information technology trend using		
	Moore's Law.		
5	Relate cycle-time reduction to improved	UNDERSTAND	EVALUATE
	performance. Justify your answer.		
6	Prepare a research proposal on a study that	UNDERSTAND	CREATE
	you have to conduct on the purchasing		
	behaviour of teenagers in the Klang Valley.		
7	Compare FOUR (4) point of views of	UNDERSTAND	ANALYZE
	entrepreneurs with FOUR (4) for managers		
	the way they look at the things.		
8	Define electronic commerce	UNDERSTAND	REMEMBER
9	Define the term project in the context of	UNDERSTAND	REMEMBER
	project management.		
10	Argue critically with relevant examples.	UNDERSTAND	EVALUATE
Tot	al Correct Answer	1/10	10%

Table 4.2.2 Decision Tree Classifier Result

<u>Na ïve Bayes</u>

No.	Questions	Predicted Answer	Correct Answer
1	Apply Porter's five competitive forces	APPLY	APPLY
	analysis to examine the summer job		
	industry for your uncle.		
2	Discuss the extent to which Value Chain	APPLY	APPLY
	Analysis can be applied in the logistics		
	sector		
3	Information Systems value is determined by	REMEMBER	REMEMBER
	the strong relationships among THREE (3)		
	major components. Name them.		
4	Briefly explain any TWO (2) observations	ANALYZE	UNDERSTAND
	of information technology trend using		
	Moore's Law.		
5	Relate cycle-time reduction to improved	EVALUATE	EVALUATE
	performance. Justify your answer.		
6	Prepare a research proposal on a study that	CREATE	CREATE
	you have to conduct on the purchasing		
	behaviour of teenagers in the Klang Valley.		
7	Compare FOUR (4) point of views of	ANALYZE	ANALYZE
	entrepreneurs with FOUR (4) for managers		
	the way they look at the things.		
8	Define electronic commerce	APPLY	REMEMBER
9	Define the term project in the context of	REMEMBER	REMEMBER
	project management.		
10	Argue critically with relevant examples.	APPLY	EVALUATE
Tot	al Correct Answer	7/10	70%

Table 4.2.3 Na ve Bayes Classifier Result

K-Nearest Neighbour

No.	Questions	Predicted Answer	Correct Answer
1	Apply Porter's five competitive forces	UNDERSTAND	APPLY
	analysis to examine the summer job		
	industry for your uncle.		
2	Discuss the extent to which Value Chain	APPLY	APPLY
	Analysis can be applied in the logistics		
	sector		
3	Information Systems value is determined by	REMEMBER	REMEMBER
	the strong relationships among THREE (3)		
	major components. Name them.		
4	Briefly explain any TWO (2) observations	APPLY	UNDERSTAND
	of information technology trend using		
	Moore's Law.		
5	Relate cycle-time reduction to improved	REMEMBER	EVALUATE
	performance. Justify your answer.		
6	Prepare a research proposal on a study that	EVALUATE	CREATE
	you have to conduct on the purchasing		
	behaviour of teenagers in the Klang Valley.		
7	Compare FOUR (4) point of views of	ANALYZE	ANALYZE
	entrepreneurs with FOUR (4) for managers		
	the way they look at the things.		
8	Define electronic commerce	UNDERSTAND	REMEMBER
9	Define the term project in the context of	UNDERSTAND	REMEMBER
	project management.		
10	Argue critically with relevant examples.	UNDERSTAND	EVALUATE
Tot	al Correct Answer	3/10	30%

Table 4.2.4 K-Nearest Neighbour Classifier Result

For the purpose of achieving a satisfactory accuracy for the question classification tool in this study, Support Vector Machine, Decision Tree, Na we Bayes, and also K-Nearest Neighbour classifier techniques were studied and compared through 10-fold cross-validation method and also real data type. A total number of 10 real data type act as testing questions regarding on business domain with various courses and subjects will be entered into the according classifier in order to determine which classification techniques can achieve the highest accuracy among others.

Table 4.1.5 shows the table regarding of the comparison of accuracy through 10-fold cross-validation method among four classifiers. Based on the table, Decision Tree has achieved 66.66% accuracy, which was the highest among others, followed by SVM which has 63.875% accuracy. Meanwhile although Decision Tree has achieved the highest accuracy with cross-validation method, it has been achieved the lowest accuracy when it comes to classifying with real data type.

Table 4.2.1 – Table 4.2.4 shows the tables regarding of a number of 10 real testing questions and its original answers along with predicted answers among 4 different classification techniques. Based on the table above, Decision Tree classification has achieved the lowest accuracy among others three which only correctly predicted 1 question out of 10. Next, K-Nearest Neighbour classification technique has achieved a slightly better result compared to Decision Tree classification which has correctly predicted 3 questions out of 10. However, K-Nearest Neighbour classifications were also not in the consideration to adopt due to the accuracy was not even hit 50%. Moreover, Support Vector Machine and also Na we Bayes classification have achieved a satisfactory accuracy which both of them has correctly predicted 7 questions out of 10 testing questions. Due to both of the classification techniques have achieved the same and satisfy accuracy, however, SVM has achieved a better accuracy compare to Na we Bayes in cross-validation method. Therefore, SVM will be chosen to develop the question classification tool in this study.

4.3 Graphical User Interface

Figure 4.3.1 – Question Classifier Home Page

Figure 4.3.1 shows the graphical user interface of the home page of proposed question classification tool. In this page, the program allows users to enter their question into the designated text box that places in the middle of the program with blue colour border. However, the program does only allow users to enter one question per check. After that, users just need to click the check button in order to view which category of Bloom's Taxonomy cognitive domain is the question belong to. If the users want to exit the system, they can just simply click the "X" mark that place in the top right corner of the program.

Figure 4.3.2 – Question Classifier Result Page

Figure 4.3.2 shows the result page of the proposed question classifier. In this page, the program will tell the users which level of Bloom's Taxonomy cognitive domain does the entered question belong to. The predicted level will be shown on top of this page. Next, users can view the uploaded questions in the middle left on this page, the description of the predicted bloom's taxonomy level, and also the keywords that identified from the inputted question. If the users want to check the level of another question, they can click the back button in order to navigate back them to the home page. Else if the users want to exit the program, they can just simply click the provided exit button on the bottom right part of the program or the "X" mark that place in the top right side of the program.

Chapter 5: Conclusion

This study has presented a question classification tool that comes with 70% accuracy and which might benefit to educators in educational environments. The proposed question classification tool will categorize the input questions into according Bloom Taxonomy's cognitive domain automatically. Understanding the cognitive domain from Bloom Taxonomy might be important because it helps educator to design better and classify the examination or practical questions in order to improve the overall quality of learning. To develop the classification tool, a study of Data Mining, Text Mining, Bloom Taxonomy, Natural Language Processing, and Question Classification has been done in order to get an insight or overview in the question classification. Several question classification techniques have also been studied and compared in this paper.

In this study, Natural Language Processing has played an important role. Text pre-processing techniques such as Tokenization, Stemming, Lemmatization, and Stopword Removal has used to do the cleaning of the raw question into computer understandable structure in order to facilitate later processing. Four machine learning classification techniques (Support Vector Machine, Decision Tree, Na we Bayes, and K-Nearest Neighbor) has also been studied and compared in order to identify the most suitable classifier that comes with the highest accuracy among others. After the comparison, Support Vector Machine has achieved a satisfactory result and therefore decided to use to develop the rules in order to match and categorize questions into according Bloom Taxonomy's category. In order to teach the machine, a number of 163 training questions along with its answer were first fed to the system to let it study the patterns.

This automated question classification tool might overcome the problem occurred when work was done manually. However, there might be a problem of accuracy because there exists only a very little information in examination questions and also due to the limited number of training data set. Therefore, that might not enough to be in classifying process to get a higher accuracy. In order to overcome this problem, a large training data set is required. Hence, this study compared several classification techniques in question classification and finds an appropriate classification technique with the desired accuracy.

5.1 Implementation Issue and Challenge

This study has developed a standalone desktop question classification tool that can classify the text-based examination or practical questions according to the six Bloom Taxonomy Cognitive levels. However, question classification could be challenging as compared to document classification in getting a reasonable accuracy because in the examination or practical questions, there exist only a very little information and that may not be enough to effectively classify the questions as opposed to document classification (Sangodiah, Ahmad & Ahmad 2014). Besides, some of the keywords from the questions might fall into two different categories of Bloom Taxonomy Cognitive level. For example, the verb 'Write' can be categorized into Knowledge and Synthesis level at the same time (Omar et al. 2012). Moreover, a large training set is required to train the system in order to achieve a higher accuracy. Furthermore, some final examination questions might use images as their question or description. In this case, the proposed question classification tool will not able to process the questions in the images form. Lastly, this program was only able to handle the questions that are in English language but not others.

5.2 Future Work

There are few further improvements that can be made on this standalone desktop question classification tool. First of all, the proposed classifier was designed and can just only operate in a desktop application based. Therefore, a further improvement can be made on this classifier in order to let it operate on a universal platform such as mobile devices, web-based, and so on. Besides, the proposed classifier can only classify those questions that are in English based language. Therefore, an improvement can be made on this existing classifier in order to let it understand and handling others languages too. Moreover, the accuracy of this classifier can be further improved also. Although the accuracy of this classifier has achieved the project objective, however, a higher percentage of the accuracy is possible as long as there is a sufficiently large amount of training dataset available. The larger the training data set, the higher the classifier's accuracy. Furthermore, the currently proposed question classifier was only allowed users to enter one question per check. An improvement might be made based on this issue to let users enter multiple questions at a time or even let the users import Microsoft Excel to it. Lastly, the proposed question classifier was only capable of dealing with text-based data. Hence, a further improvement can be made such as analysing graphical-based item or a Portable Document Format file and then identifying which level of Bloom's Taxonomy cognitive domain do they belong to.

Bibliography

- Aggarwal, C & Zhai, C 2012, 'A Survey of Text Classification Algorithms', *Mining Text Data*, pp. 163-222.
- Akcapinar, G 2015, 'How automated feedback through text mining changes plagiaristic behavior in online assignments', *Computers & Education*, vol. 87, no. C, pp. 123-130.

Alpaydin, E 2010, Introduction to Machine Learning. MIT Press, Cambridge.

- Alwan, M 2015, *What is System Development Life Cycle?*. Available from: https://airbrake.io/blog/insight/what-is-system-development-life-cycle>. [26 November 2016]
- Anderson, L, Krathwohl, D, Airasian, P, Cruikshank, K, Mayer, R, Pintrich, P, Raths,
 J & Wittrock, M 2001, *Taxonomy for Learning, Teaching, and Assessing, A: A Revision of Bloom's Taxonomy of Educational Objectives, Abridged Edition,*Pearson, New Jersey.
- Azevedo, A & Santos, M 2008, 'KDD, SEMMA and CRISP-DM: A Parallel Overview', in *IADIS European Conference Data Mining*, 24-26 July, Amsterdam, Netherlands, pp. 182-185.
- Bagga, S & Singh, G.N. 2012, 'Applications of Data Mining', International Journal for Science and Emerging Technologies with Latest Trends, vol. 19, no. 23, pp. 19-22. Available from: < http://www.ijsett.com/images/P5.pdf>. [19 November 2016]

- Baker, R 2010, 'Data Mining for Education', International Encyclopedia of Education, vol. 7, pp. 112-118.
- Berndt, D & Clifford, J 1996, *Finding Patterns in Time Series: A Dynamic Programming Approach*, AAAI Press, Menlo Park.
- Bloom, B, Engelhart, M, Furst, E, Hill, W & Krathwohl, D 1956, Taxanomy of educational objectives: Handbook 1: Cognitive domain, David McKAY, New York.
- Brownlee, J 2014, *An Introduction to Feature Selection*. Available from https://machinelearningmastery.com/an-introduction-to-feature-selection/>. [11 April 2018].
- Brownlee, J 2017, A Gentle Introduction to the Bag-of-Words Model. Available from < https://machinelearningmastery.com/gentle-introduction-bag-words-model/>. [11 April 2018].
- Chapman, P, Clinton, J, Kerber, R, Khabaza, T, Reinartz, T, Shearer, C & Rudiger, W 2000, *CRISP-DM 1.0*, SPSS Inc., Chicago. Available from: https://www.the-modeling-agency.com/crisp-dm.pdf>. [25 November 2016]
- Chopra, A, Prashar, A & Sain, C 2013, 'Natural Language Processing', International Journal of Technology Enhancements and Emerging Engineering Research, vol. 1, no. 4, pp. 131-133.

- Clark, D 1999, *Bloom's Taxonomy: The Original Cognitive Domain*. Available from: http://www.nwlink.com/~donclark/hrd/Bloom/original_cognitive_version.ht ml>. [24 November 2016].
- Clark, D 2015, *Bloom's Taxonomy of Learning Domains*. Available from: http://www.nwlink.com/~donclark/hrd/bloom.html>. [22 November 2016]
- Copestake, A 2004, *Natural Language Processing*, lecturer notes distributed in Computer Laboratory at University of Cambridge, England on 18 April 2004.
- Dang, N, Prieta, F, Corchado, J & Moreno, M 2016, 'Framework for Retrieving Relevant Contents Related to Fashion from Online Social Network Data', Advances in Intelligent Systems and Computing, vol. 473, pp. 335-347.
- Doleck, T, Basnet, R, Poitras, E & Lajoie, S 2015, 'Mining learner system interaction data: implications for modeling learner behaviors and improving overlay models', *Journal of Computers in Education*, vol. 2, no. 4, pp. 421-447.
- Eslick, I & Liu H 2005, *Lingutils: A Natural Language Toolkit for Common Lisp.* Available from: < https://common-lisp.net/project/langutils/LISP2005langutils.pdf >. [27 November 2016]
- Fayyad, U, Piatetsky, G & Smyth, P 1997, From Data Mining to Knowledge Discovery in Database, AAAI, Providence.

Feldman, R & Sanger, J 2007, *The Text Mining Handbook*, Cambridge University Press, New York.

- Goldberg, Y 2017, Neural Network Methods in Natural Language Processing.Morgan & Claypool Publishers, California.
- Guyon, I & Elisseeff, A 2003, 'An Introduction to Variable and Feature Selection', Journal of Machine Learning Research 3, pp. 1157-1182.
- Haris, S & Omar, N 2015, 'Bloom's Taxonomy Question Categorization using Rules and N-gram Approach', *Journal of Theoretical and Applied Information Technology*, vol. 76, no. 3, pp. 401-407.
- He, W 2013, 'Examining students' online interaction in a live video streaming environment using data mining and text mining', *Computers in Human Behavior*, vol. 29, no. 1, pp. 90-102.
- Ikonomakis, M, Kotsiantis, S & Tampakas, V 2005, 'Text Classification Using Machine Learning Techniques', WSEAS TRANSACTIONS on COMPUTERS, vol. 4, no. 8, pp. 966-974.
- International Educational Data Mining Society, n.d., *Educational Data Mining*. Avalilable from: http://www.educationaldatamining.org. [19 November 2016].
- Joachims, T n.d., 'Text Categorization with Support Vector Machines: Learning with Many Relevant Features', *Cornell CIS*. Available from: < http://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf>. [22 November 2016]

- Jurafsky, D & Martin, J 2000, Speech and Language Processing. Prentice-Hall, New Jersey.
- Li, X & Roth, D 2002, 'Learning Question Classifiers', *Proceedings of the 19th international conference on Computational linguistics*, vol. 1, pp. 1-7.
 Available from: < http://dl.acm.org/citation.cfm?id=1072378 >.
 [19 November 2016]
- Manning, C & Schutze H 1999, Foundations of Statistical Natural Language Processing, 2nd edn., The MIT Press, Cambridge.
- Meseguer, J, Calafate, C, Cano, J, Manzoni, P 2015, 'Assessing the Impact of Driving Behavior on Instantaneous Fuel Consumption', 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), pp. 443 – 448.
- Metzler, D & Croft, B 2004, 'Analysis of Statistical Question Classification for Fact -based Questions', *Journal of Information Retrieval*, vol. 8, no. 3, pp. 481-504.
- Mitchell, E 2014, 6 Indicators Your Business Processes are Inefficient. Available from: http://www.eclgrp.com/blog/6-indicators-your-business-processes-areinefficient>. [21 November 2016].
- Oliver, D, Dobele, T, Greber, M & Roberts, T 2004, 'This course has a Bloom Rating of 3.9', *Proceedings of Sixth Australasian Conference on Computing Education*, vol. 30, pp. 227-231.

- Omar, N, Haris, S, Hassan, R, Arshad, H, Rahmat, M, Zainal, NF & Zulkifli, R 2012 'Automated Analysis of Exam Questions According to Bloom's Taxonomy', *Procedia – Social and Behavioral Sciences*, vol. 59, pp. 297-303.
- Osman, A & Alattab, A 2013, 'Educational Data Mining: A Case Study of Teacher's Classroom Questions', in 13th International Conference on Intellient Systems Design and Applications, 8-10 December, Bangi, Malaysia, pp. 92-97.
- Radovanovic, M & Ivanovic, M 2008, 'Text Mining: Approaches and Applications', *Novi sad journal of mathematics*, vol. 38, no. 3, pp 227-234.
- Sael, N, Marzak, A & Behja, H 2013, 'Web Usage Mining Data Preprocessing and Multi Level Analysis on Moodle', 2013 ACS International Conference on Computer Systems and Applications (AICCSA).
- Sangodiah, A, Ahmad, R & Ahmad, W 2014, 'A Review in Feature Extraction Approach in Question Classification Using Support Vector Machine', 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 459-464.
- SAS n.d., *SEMMA*. Available from: http://faculty.smu.edu/tfomby/eco5385_eco6380/data/SPSS/SAS%20_%20S EMMA.pdf>. [25 November 2016]
- SAS n.d., *What can I do with SAS*. Available from: https://support.sas.com/software/products/university-edition/faq/SAS_whatis.htm>. [25 November 2016]

Scott, T 2003, 'Bloom's taxonomy applied to testing in computer science classes', Journal of Computing Science in Colleges, vol. 19, no. 1, pp. 267-274.

Shearer, C 2000, 'The CRISP-DM Model: The New Blueprint for Data Mining', Journal of Data Warehousing, vol. 5, no. 4, pp. 14-15.

SIGKDD 2006, *Data Mining Curriculum*. Available from: http://www.kdd.org/curriculum/index.html>. [18 November 2016]

- Tierney, J 2011. Do You Suffer From Decision Fatigue?. Available from: http://www.nytimes.com/2011/08/21/magazine/do-you-suffer-from-decision-fatigue.html>. [20 November 2016].
- Weiss, S & Kulikowski, C 1991, Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Networks, Machine Learning, and Expert Systems, Morgan Kaufmann, San Francisco.
- Xu, Y & Reynolds, N 2012, 'Using Text Mining Techniques to Analyze Students' Written Responses to a Teacher Leadership Dilemma', *International Journal* of Computer Theory and Engineering, vol. 4, no. 4, pp. 575-578.

Appendix A: Training Dataset

NO	QUESTION	LEVEL	BT LEVEL
	Suggest any TWO (2) efforts that organization		
	may perform in order to discourage unethical		
1	behavior.	HOTS	CREATE
	Discuss how Resource Based View can be		
	implemented in organizations to reinforce financial		
2	standing.	MOTS	APPLY
3	Define factors of production.	LOTS	REMEMBER
	Briefly describe FIVE (5) general types of factors of		
4	production.	LOTS	UNDERSTAND
	In your opinion, provide any TWO (2) reasons		
	why the actions of one firm can significantly		
	affect the sales of the other firms in an oligopoly		
5	market.	LOTS	UNDERSTAND
6	Define electronic commerce.	LOTS	REMEMBER
	Explain THREE (3) broad categories of e-commerce		
7	with examples.	LOTS	UNDERSTAND
	Discuss any THREE (3) ways by which an		
8	organization can benefit from e-commerce.	LOTS	UNDERSTAND
	Advise Smith on any FIVE (5) types of information		
9	which should be included in the website.	HOTS	CREATE
	Suggest any THREE (3) specific ways with		
	elaborations on how this new business may utilize the		
10	Internet technology to achieve cost efficiency.	HOTS	CREATE
	Differentiate between data and information using		
11	examples.	MOTS	ANALYZE
	State any FOUR (4) characteristics of valuable		
12	information.	LOTS	REMEMBER
	Explain the differences between volatile and non-		
13	volatile storage.	LOTS	UNDERSTAND
	Suggest THREE (3) specific types of application		
	software that may help to support James's business		
14	activities.	HOTS	CREATE
15	List and describe THREE (3) accounting cycles in an	LOTS	REMEMBER

	Accounting Information System.		
	Explain how SWOT and Porter's techniques is		
16	applied in the manufacturing industries.	MOTS	APPLY
	State FOUR (4) basic business activities that are		
17	performed in the revenue cycle.	LOTS	REMEMBER
	List any THREE (3) practical approaches for		
18	payment collection in revenue cycle.	LOTS	REMEMBER
	Compare and contrast Manufacturing Resource		
19	Planning (MRP-II) and Lean Manufacturing.	MOTS	ANALYZE
	As a manager in an Information Technology firm,		
	you are required to suggest and elaborate any THREE		
	(3) actions that organizations can take as part of the		
20	responsibility towards the society.	HOTS	CREATE
	Illustrate each of these situations with TWO (2) real-		
21	life examples.	LOTS	UNDERSTAND
	Explain the differences between ethical dilemma and		
22	ethical lapse.	LOTS	UNDERSTAND
	Suggest and justify ONE (1) strategy that your		
	company may consider for marketing its products		
23	internationally.	HOTS	EVALUATE
	Differentiate between Market Economy and Planned		
24	Economy.	MOTS	ANALYZE
	Provide each of Market Economy and Planned		
25	Economy with an example.	LOTS	UNDERSTAND
26	Differentiate between a wholesaler and a retailer.	MOTS	ANALYZE
	In your opinion, identify the relationship between		
27	factors of and a country's economic system.	LOTS	UNDERSTAND
	Briefly describe THREE (3) types of business		
	process that traditionally organized around		
	functional areas of business. Provide an example of		
28	each.	LOTS	REMEMBER
	Propose and justify ONE (1) international market-		
	entry strategy that you may consider to market		
29	your products internationally.	HOTS	EVALUATE
	Construct a basic diagram or figure to demonstrate		
30	your understandings on what Information System is.	LOTS	UNDERSTAND

	State a main difference between a customer and a		
31	contact.	LOTS	UNDERSTAND
	Identify ONE (1) most likely error of the following		
32	quotation.	LOTS	REMEMBER
	Determine which sub-stage that the deal is		
33	currently in for the following cases.	MOTS	APPLY
	Three sales sub-stages: qualification, proposition and		
	negotiation are included in both OpenERP and		
	SugarCRM, before a deal is won. Give a brief		
34	description of these sub-stages.	LOTS	UNDERSTAND
35	State your recommended solution with justification.	HOTS	EVALUATE
	Explain TWO (2) ways on how monopoly harms		
	consumers and hurts the economy. Justify and		
36	illustrate your answers.	HOTS	EVALUATE
	Suggest and elaborate any TWO (2) efforts or		
	methods that your company may use in order to gain		
37	competitive advantage over your competitors.	HOTS	CREATE
	Justify your answers with elaborations by providing		
38	any TWO (2) reasons.	HOTS	EVALUATE
	Differentiate between data and information using a		
39	real life example.	MOTS	ANALYZE
	Briefly discuss on the difference between volatile		
40	and non-volatile storage.	LOTS	UNDERSTAND
	Briefly discuss any THREE (3) specific internet		
	technologies or tools that are commonly found in		
41	providing support for business activities.	LOTS	UNDERSTAND
	Provide a real life example on conflict of interest		
42	situation.	LOTS	UNDERSTAND
	Illustrate your understanding for oligopoly		
	competition and monopolistic competition using		
43	ONE (1) real life example for each.	LOTS	UNDERSTAND
	Briefly discuss any TWO (2) consequences for		
44	whistle-blowing activity.	LOTS	UNDERSTAND
	List any TWO (2) real life examples of the		
	organization that implement the clicks-and-bricks		
45	B2C E-Commerce.	LOTS	REMEMBER

46	Provide THREE (3) examples of input devices.	LOTS	REMEMBER
	Identify and discuss THREE (3) issues on employee		
47	productivity problems that companies face.	LOTS	UNDERSTAND
	Briefly provide any TWO (2) real life situations to		
48	illustrate on ethical dilemma.	LOTS	UNDERSTAND
	Propose an e-commerce classification model that		
	suits the needs of John's business. Justify your		
49	answer.	HOTS	EVALUATE
	Explain the concept of clicks-and-bricks model in e-		
50	commerce.	LOTS	UNDERSTAND
	Explain each inventory control method and suggest		
51	TWO (2) types of products for each method.	HOTS	CREATE
	Explain Greimas square tool and discuss how it can		
52	be applied the aviation industry.	MOTS	APPLY
	List THREE (3) advantages and TWO (2)		
53	disadvantages codification.	LOTS	REMEMBER
	Identify and discuss THREE (3) issues on employee		
54	productivity problems that companies face.	LOTS	UNDERSTAND
	Provide TWO (2) possible reasons why AirAsia		
55	decide to offer this new online service.	LOTS	UNDERSTAND
	Identify THREE (3) possible threats you should		
56	anticipate for this Internet-based business.	LOTS	UNDERSTAND
	Suggest THREE (3) methods Game2 can take to		
	prevent damage to its Web sites and continuing		
57	operations. Justify your answer.	HOTS	EVALUATE
	Explain the concept of Customer Relationship		
58	Management (CRM).	LOTS	UNDERSTAND
	Apply Porter's five competitive forces analysis to		
59	examine the summer job industry for your uncle.	MOTS	APPLY
	Discover FOUR (4) characteristic of IT infrastructure		
60	to be considered.	HOTS	CREATE
	Concisely define what SWOT analysis is and state		
61	why it is frequently producing conflicting views.	LOTS	UNDERSTAND
62	Formulate the profit for the company.	HOTS	CREATE
	Discuss the extent to which Value Chain Analysis		
63	can be applied in the logistics sector.	MOTS	APPLY

	Information systems value is determined by the		
	strong relationships among THREE (3) major		
64	components. Name them.	LOTS	REMEMBER
	Cloud computing evolved from earlier technologies.		
65	State them.	LOTS	REMEMBER
	Briefly explain any TWO (2) observations of		
66	information technology trend using Moore's Law.	LOTS	UNDERSTAND
	Relate cycle-time reduction to improved		
67	performance. Justify your answer.	HOTS	EVALUATE
68	Define privacy.	LOTS	REMEMBER
	In your own words, describe Supply Chain		
69	Management (SCM).	LOTS	UNDERSTAND
	In your opinion, discuss how modern supply		
	chain management systems facilitate a pull-based		
70	model.	LOTS	UNDERSTAND
	Define the term Radio Frequency Identification		
71	(RFID).	LOTS	REMEMBER
72	Explain how RFID provides value to businesses.	LOTS	UNDERSTAND
	Use Porter's five competitive forces to analyze		
73	FiredUp, Inc.	MOTS	APPLY
	Explain how GST approach can be deployed in the		
74	context of Accounting Information System.	MOTS	APPLY
	Base on the case study given, summarize THREE (3)		
75	ISM security problems.	LOTS	UNDERSTAND
	Classify information systems based on the support IS		
76	can provide.	LOTS	UNDERSTAND
	Explain how Referral Networks approach can be used		
77	as a tool to increase number of customers.	MOTS	APPLY
	Draw the diagrams for a centralized database and a		
78	distributed database.	LOTS	UNDERSTAND
	Explain how the future of social media can be		
79	explained by Web 3.0.	LOTS	UNDERSTAND
	Define knowledge and provide an example of		
	knowledge produced by a vehicle management		
80	system.	LOTS	REMEMBER
81	Identify PayPal's business model.	LOTS	REMEMBER

	Scaling methods can improve the performance of the		
	web site. Propose to Jane which scaling method suit		
82	her current business needs. Justify your answer.	HOTS	EVALUATE
	Define CRM and discuss how the CRM can be		
83	implemented in the business environment.	MOTS	APPLY
	Examine how e-commerce facilitates Value Chain		
84	and Supply Chain.	MOTS	ANALYZE
85	Explain how auction is related to dynamic pricing.	LOTS	UNDERSTAND
	Compare and contrast Address Verification System		
86	(AVS) and Card verification number (CVN).	MOTS	ANALYZE
	Provide THREE (3) justification on how would the		
	university community be encouraged to place orders		
87	and become loyal customers.	HOTS	EVALUATE
	Personalization is becoming an important element in		
	Electronic Commerce. Explain TWO (2) techniques		
	that can be used to learn about consumer behavior		
88	and how it can be used to facilitate customer service.	LOTS	UNDERSTAND
	Provide TWO (2) suggestions on how a Web		
89	presence help Columbiana's government.	HOTS	CREATE
	Briefly discuss how TQM could be applied m		
90	the management of the newspapers' editorials.	MOTS	APPLY
	Based on your observation of the local newspaper		
	industry, discuss and state your stance on whether		
91	gender affects professional news selection.	HOTS	EVALUATE
	Discuss how far you agree with this statement with		
	emphasis on circulation management of a newspaper		
92	company.	HOTS	EVALUATE
93	Argue critically with relevant examples.	HOTS	EVALUATE
	Critically discuss the quote above and explain		
	FIVE(5) ways the interest groups can be more		
94	effective with relevant examples.	MOTS	ANALYZE
	Critically analyze and discuss the problems with		
	secondary data. Provide relevant examples to support		
95	your answer.	MOTS	ANALYZE
	Describe the term 'urbanization' and discuss how		
96	urbanization influences the development of marketing	LOTS	UNDERSTAND

	and advertising strategies.		
	Critically discuss how demographic characteristics		
	would affect a product development in a foreign		
97	market.	MOTS	ANALYZE
	Analyze and discuss the challenges and opportunities		
98	that social media creates.	MOTS	ANALYZE
	Critically analyze the image above and discuss the		
	strategic decisions associated with the appeals of the		
99	advertisement.	MOTS	ANALYZE
	Show how NLP techniques can be deployed in		
100	business.	MOTS	APPLY
	Suggest THREE (3) ethical considerations that ANA		
	advertisers should take into account in designing		
101	commercials.	HOTS	CREATE
	Create a poster that promote jeans to local senior		
	citizen which appeal directly to a multiracial citizen		
102	in Malaysia.	HOTS	CREATE
	Select a local 'HOMEGROWN' brand and discuss its		
103	international marketing mix.	LOTS	UNDERSTAND
	Critically discuss FOUR (4) main dimensions that		
	used to classify countries based on Hofstede's		
104	Cultural Dimensions Theory.	MOTS	ANALYZE
	Compare and contrast between low context cultures		
105	and high context cultures.	MOTS	ANALYZE
	Critically discuss the THREE (3) options in handling		
106	the international media planning or buying.	MOTS	ANALYZE
	Design an ideal newspaper organisational chart. Then		
	describe the functions of the respective departments		
	and how they relate to each other ?C horizontally and		
107	vertically.	HOTS	CREATE
	Demonstrate email and social media approaches to		
108	create effective marketing plan.	MOTS	APPLY
	Examine the two roles and show how newspaper		
	managers can successfully draw a balance between		
109	their economic role and social role.	MOTS	ANALYZE
110	Suggest a house-style and editorial policies for your	HOTS	CREATE

	newly introduced newspaper targeted at young		
	readers aged between 15 to 25 years.		
	Examine how conventional newspaper can continue		
	to maintain its circulation with the easy access to		
111	alternative information on the web.	MOTS	ANALYZE
	As an editor-in-chief, suggest how you can motivate		
	your experienced journalists to remain with your		
112	paper.	HOTS	CREATE
	Discuss the factors that you think may have affected		
	the quality of newspapers in Malaysia and identify		
113	the key elements for a successful newspaper.	MOTS	ANALYZE
	List any five departments and discuss the relations		
	between these departments and the importance of		
114	depending on each other.	MOTS	ANALYZE
	PEST and SWOT are popular strategy tools. Discuss		
	how the TWO(2) tools can be applied in		
115	manufacturing business environment.	MOTS	APPLY
	Evaluate the performance of Malaysian newspapers		
	and comment on what you think they should do to		
	win back readers, particularly those who show		
116	preference for online news.	HOTS	EVALUATE
	Prepare a research proposal on a study that you have		
	to conduct on the purchasing behaviour of teenagers		
117	in the Klang Valley.	HOTS	CREATE
118	Evaluate the need for ethics in research.	HOTS	EVALUATE
	Explain the case study research method and		
	distinguish between single and multiple case study		
119	design.	MOTS	ANALYZE
	Argue the case for conducting experimental research		
	involving humans and propose guidelines to ensure		
	that the dignity and welfare of the subjects are		
120	maintained.	HOTS	EVALUATE
	Differentiate between qualitative research and		
	quantitative research in terms of their goal and		
121	design.	MOTS	ANALYZE
122	Develop a questionnaire based on at least FOUR	HOTS	CREATE

	open-ended and FOUR closed-ended questions for		
	the interviews.		
	Analyze the purpose of having a Purchasing		
123	Department in an organization.	MOTS	ANALYZE
	Distinguish Paradox of the Commons from Tragedy		
124	of the Commons.	MOTS	ANALYZE
	Evaluate the three specific effects caused by the		
	applications of information technology on the nature		
125	of competition.	HOTS	EVALUATE
	Advise the five steps, as recommended by Porter and		
	Millar, that can be applied by business managers in		
126	taking advantage of information technology.	HOTS	CREATE
	Winer (2001) proposes a 7-component Customer		
	Relationship Management (CRM) Model as a		
	framework to implement a successful CRM program.		
	Evaluate each of the seven components of the CRM		
127	Model.	HOTS	EVALUATE
	Davenport (2000) discusses four emerging trends to		
	be considered in designing future enterprise systems.		
	Analyze each emerging trend, its relevance and		
	importance to the designing of future enterprise		
128	systems.	MOTS	ANALYZE
	Apply SWOT analysis in education environment and		
129	discuss its impact in the revenue analysis.	MOTS	APPLY
	Alavi and Leidner (2001) examine how information		
	technology (IT) can be a key enabler in supporting		
	four organizational knowledge management (KM)		
	processes. Critically assess the role of IT in		
130	supporting the four KM processes.	HOTS	EVALUATE
	PERCEPTION STUDIES based on SURVEY		
	METHOD are useful and common in both academic		
	and market research. Critically evaluate the strategies		
	used in data collection that can increase the response		
131	rate when conducting a survey.	HOTS	EVALUATE
	Critically review how a shift in the mental model		
132	with a different set of assumptions could change	HOTS	EVALUATE

	Yahoo.		
	With reference to the case, evaluate the similarities		
	and differences between open mindedness and		
133	mental models.	HOTS	EVALUATE
	Leaders often face a dilemma because of a		
	perceived conflict between the realm of business		
	and the realm of ethics. Compare the characteristics		
	of leaders who follow a strict rational self-interest		
134	approach with those who take an ethical approach.	MOTS	ANALYZE
	Evaluate the appropriateness of drugs advertising by		
135	the pharmaceutical firms.	HOTS	EVALUATE
136	Distinguish clearly between power and authority.	MOTS	ANALYZE
	Evaluate the types of power Benjamin Fang is		
	exercising in Sun Plantations, and explain how this is		
	being eroded by the changes taking place in the		
137	environment.	HOTS	EVALUATE
	Discuss the extent to which the existence of a conflict		
138	between a company's objectives is acceptable.	HOTS	EVALUATE
	Discuss and show the impact of CRM strategies in		
139	the telecommunication sector.	MOTS	APPLY
	Discuss the extent to which it is feasible for a		
	company to 'operationalise' its social responsibility		
	Spirations, that is, whether it is possible to bring these		
	considerations into strategic decision-making in a		
140	programmed or systematic way.	HOTS	EVALUATE
	Identify and recommend any appropriate amendments		
	to the proposal presented in order to rectify the errors		
	made in estimating the company's current cost of		
	capital and current value. For each of the revisions,		
141	explain the reasons why it should be amended.	HOTS	EVALUATE
	Recommend with justification, a value or range of		
	values to the Board of Directors for the acquisition of		
142	ESL Berhad.	HOTS	EVALUATE
	Compare how the Net Present Value (NPV), internal		
	rate of return (IRR) method and modified internal rate		
143	ofreturn (MIRR) method is different.	MOTS	ANALYZE

	Analyze the product-market options that are available		
144	to Associated Meats Sdn Bhd.	MOTS	ANALYZE
	Use philanthropy approach to manage corporate		
145	social responsibility effectively.	MOTS	APPLY
	Critically review the strengths, weaknesses,		
	opportunities and threats of Associated Meats Sdn		
146	Bhd in light of the forecast trends and developments.	HOTS	EVALUATE
	Critically appraise the five competitive forces		
	encased within Porter's "Five Forces" model within		
	the context of a profit-oriented organisation and		
	discuss the threat posed to the firm by each of these		
147	forces.	HOTS	EVALUATE
	Evaluate the nature and effect of significant "entry		
	barriers" on the formulation of a strategic plan for a		
148	business which is already established in the industry.	HOTS	EVALUATE
	Synthesize any FIVE (5) factors that should be		
	considered when devising a safe system to		
149	undertake a task in an organization.	HOTS	CREATE
	Synthesize the need for ventilation as an engineering		
150	control.	HOTS	CREATE
	Assess the reason for hazard communication and the		
	mode of communication practice for chemical safety		
151	at worksite.	HOTS	EVALUATE
	List FIVE (5) functions of Department of Safety and		
152	Health as outline in OSHA 1994.	LOTS	REMEMBER
	Define the term project in the context of project		
153	management.	LOTS	REMEMBER
154	Define standard operating procedures as highlighted.	LOTS	REMEMBER
	Show in a step by step manner how TQM can be		
155	implemented successfully in education sector.	MOTS	APPLY
	Compare FOUR (4) point of views of entrepreneurs		
	with FOUR (4) for managers the way they look at the		
156	things.	MOTS	ANALYZE
	Being a technopreneur means dealing with		
	innovation. Define what innovation is and also		
157	propose FOUR (4) types of innovations you can have	HOTS	CREATE

	in your organization.		
	Presenting the business plan is very crucial to		
	convince potential consumers and financers. List any		
	SEVEN (7) suggestions for good presentation of your		
158	business plan.	LOTS	REMEMBER
	List the advantages and disadvantages of Public		
159	Offering.	LOTS	REMEMBER
	Show your calculations for all THREE (3) options		
160	and then discuss which one of the options you prefer.	MOTS	ANALYZE
	Currently the product life cycle for Apple iPod is in		
	the 'growth stage'. Provide evidence to support your		
161	answer.	HOTS	EVALUATE
162	Define brand audit.	LOTS	REMEMBER
	Explain how Porter's concept can be used in		
163	education domain.	MOTS	APPLY

Plagiarism Check Result

	FYP2			
	ORIGINALITY REPORT			
	8%	5%	5%	%
	SIMILARITY INDEX	INTERNET SOURCES	PUBLICAT IONS	STUDENT PAPERS
	PRIMARY SOURCES			
	1 machine	elearningmastery	.com	2%
	2 Sangod Wan Fa extraction using So Internat Compute	iah, Anbuselvan, timah Wan Ahma on approach in qu upport Vector Ma ional Conference iing and Engineer	Rohiza Ahma ad. "A review in restion classifi chine", 2014 II on Control Sy ring (ICCSCE 2	d, and 1 % feature cation EEE stem 2014),
	2014. Publication 3 Baker. " Encyclo	Data Mining", Inte	ernational on. 2010	<1%
	2014. Publication 3 Baker. " Encyclo	Data Mining", Inte pedia of Educatio	ernational on, 2010	<1%
ĵ ≜ h preferen	2014. Publication Baker. " Encyclo	Data Mining", Inte pedia of Educatio	ernational on, 2010	< 1 %
	2014. Publication 3 Baker. " Encyclo ttps://tumitin.com/newreport.asp?r=50.36723 tcss ttps://tumitin.com/newreport.asp?r=50.36723 tcss ttps://tumitin.com/newreport.asp?r=50.36723 tcss ttps://tumitin.com/newreport.asp?r=50.36723 ttps://tumitin	Data Mining", Inte pedia of Educatio 43797199&svr=316⟨=en_us&oid=959541711& +08 FYP2 By How Kit TAN	pbd=2&ft=1&ro=	E ♥ ☆ Similarity Index Similarity Index 8% Student Papers: N/A
(i) (i)	2014. Publication 3 Baker. " Encyclo ttps://turnitin.com/newreport.asp?r=50.36723 ttps://turnitin.com/newrepor	Data Mining", Inte pedia of Educatio	ernational on, 2010	I w ♥ ☆ Similarity Index Similarity
(i) ▲ h preferer turn) Originalit Document Document Cha the basis dom que Desp as dom que thos this tech Desp soccor	2014. Publication 3 Baker. " Encyclo ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newrepo	Data Mining", Inter pedia of Educatio 43797199&svr=316⟨=en_us&oid=959541711& +08 FYP2 By How Kit TAN se ▼ the conventional educational model, people often of lerstanding. This is because the questions in examin prize those theories in order to pass a subject. Unde se it can help educator to well design and classify the g quality, However, there is a problem of inefficient in fiedtive; inefficiency of manual dassification is occurr mistakes being made (Mitchell 2014). This issue has ation due to the questions are unable to process on net they get their. Thus, a study which investigates here is also a problem of inconsistency of labeling in of machine does, inaccuracy of results in classifying qu	ernational on, 2010 pbd=2&ft=1&ro=	Control System Control Control System Control
() Preferer turn Originalit conginalit c	2014. Publication 3 Baker. " Encyclo ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 ttps:/tumitin.com/newreport.asp?r=50.36723 two down: 06-May-2018 16:16 ti: 93941711 word Count: 8668 submitted: 1 ent Viewer word count: 8668 ent V	Data Mining", Inter pedia of Educatio 437971998svr=3168dang=en_us8koid=9595417118 +08 FYP2 By How Kit TAN as T the conventional educational model, people often of ferstanding. This is because the queetions in examin price those theories in order to pass a subject. Unde set to an help educator to well design and classify the g quality. However, there is a problem of inefficient in gravity However, there is a problem of inefficient in gravity. However, there is a problem of inefficient in mistakes being made (Witchell 2014). This issue has ation due to the questions are unable to process on the they get tired. Thus, a study which investigates here is also a problem of inconsistency of labeling in r machine does, inaccuracy of results in classifying que ariod decision making	Principal Control Cont	Control System Control Control System Control Control System Computer Control System Computing Conference on Control System Computing Conference Control System Computer Control System Computing Conference Control System Computing Control System Computing Conference Control System Computing Control System Computing Control System Computing Control System Computing Control System Computer Control System Computing Control System Computing Control System Computer Control System Compute
(i) Preferer turn originalit tech bass das cha the bass cha the bass croid (the croid (the croid (the croid croid	2014. Publication Baker. " Encyclo ttps://turnitin.com/newreport.asp?r=50.36723 tcss ttps://turnitin.com/newreport.asp?r=50.36723 tcss top:sessification top:sessification tcsss top:sessification top:sessification tcssss top:sessification tcsssss top:sessification tcsssss top:sessification tcsssss tssue is equite time-consuming and can lead to se who may want to use the classified information tissue is equite time-consuming and can lead to se who may want to use the classified information tissue is equite time-consuming and can lead to se who may want to use the classified information tissue is equite time-consuming and can lead to se who may want to use the classified information the classified information teres 2011). This issue has negatively impacte teres incarcarcary of labeling result. A possible cas, a, a study which investigates inconsistency of ground Information	Data Mining", Inter pedia of Educatio 437971998syr=3168Jang=en_us&oid=9595417118 +08 FYP2 By How Kit TAN ■ FYP2 By How Kit TAN ■ The conventional educational model, people often of ferstanding. This is because the questions in examin prize those theories in order to pass a subject. Under set can help educator tor tol design and classify thin g quality, However, there is a problem of inefficient in ffective; inefficiency of manual dessification is occurrin ffective; inefficiency of manual dessification is observed instakes being made (Mitchell 2014). This issue has ation due to the questions are unable to process on hen they get tred. Thus, a study which investigates tere is also a problem of inconsistency of labeling in (machine does, inaccuracy of results in classifying que ariod decision making d on those individuals that may want to use the dist is of this issue probably is people tend to make mis labeling by using classification technique could reme	nly studied and learned ation usually are theory- retarding the cognitive examination or practical manual classification. ng because the manual negatively impacted on time. A possible cause of automated classification dassifying questions. estions manually is still illed information because take when they get tired. dy this situation. 1.2	Control