MONITORING THE COEFFICIENT OF

VARIATION THROUGH A

VARIABLE PARAMETERS CHART

LIM CHUEN YANG

BACHELOR OF SCIENCE (HONS) STATISTICAL COMPUTING AND OPERATIONS RESEARCH

FACULTY OF SCIENCE UNIVERSITI TUNKU ABDUL RAHMAN MAY 2017

MONITORING THE COEFFICIENT OF VARIATION THROUGH A

VARIABLE PARAMETERS CHART

By

LIM CHUEN YANG

A project report submitted to the Department of Physical and Mathematical

Science

Faculty of Science

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirements for the degree of

Bachelor of Science (Hons) Statistical Computing and Operations Research

May 2017

ABSTRACT

MONITORING THE COEFFICIENT OF VARIATION THROUGH A VARIABLE PARAMETERS CHART

LIM CHUEN YANG

Statistical Process Control (SPC) is widely used in a variety of fields, such as in manufacturing industries, healthcare, environmental monitoring and so on. Traditional control charts mostly monitor the deviation in the process mean and/or process variance. However, in some processes, the mean is not constant, even when the process is in-control. As a further complication, in many of these processes, the variance is a function of the mean. As a result, it is not appropriate to monitor the mean and standard deviation for such processes, as it will result in dubious results. If such processes have a standard deviation which is proportional to the mean, monitoring the coefficient of variation as a source of variability is a better measure. The coefficient of variation (CV) chart monitors the ratio of the standard deviation, σ to the mean, μ . In this project, we improve the detection ability of CV charts by proposing the variable parameters chart. Variable parameters chart is a chart that varies the sample size, sampling interval, control limits and warning limits according to the prior sample information to improve the performance of the chart. Formulae for various performance measures, for example the Average Time to Signal (ATS), the Average Sample Size (ASS) and Average Sampling Interval (ASI) are derived. Optimization algorithms to optimize the out-of-control ATS, subject to constraints in the in-control *ATS*, in-control *ASS* and in-control *ASI*, are proposed. Next, the performance of the proposed chart is compared with the Shewhart CV chart, the variable sampling interval (VSI) CV chart, the variable sample size (VSS) CV chart, the variable sample size and sampling interval (VSSI) CV chart, the Synthetic CV control chart and the EWMA CV^2 chart. In addition, the proposed chart is implemented on an actual industrial data. In general, a comparison with the VSSI, VSI, VSS, Synthetic and Shewhart CV charts shows that the VP CV chart gives better performance than all of these charts for all shift sizes, including small shift sizes, based on the *ATS*₁ performance criterion, and the proposed chart also outperforms all of these charts for all ranges of shift sizes, based on the *EATS*₁ performance criterion. Compared to the EWMA CV^2 chart, the VP CV chart outperforms this chart for moderate and large shift sizes. However, for small shift sizes, the EWMA CV^2 chart outperforms the VP CV chart. Through the industrial example, the VP CV chart performs better compared to other competitor charts.

ACKNOWLEDGMENTS

First and the foremost, I would like to express my gratitude to my supervisors, Dr. Yeong Wai Chung and Ms. Ng Peh Sang from the Department of Physical and Mathematical Science in Universiti Tunku Abdul Rahman. They have been sharing their knowledge and providing the valuable advices in this project. Their guidance had successfully helping me to complete my project.

I would also like to express my gratitude to Universiti Tunku Abdul Rahman as it had provided me the opportunity to conduct this research. Finally, I would also like to thank my family and friends for providing support throughout this project.

DECLARATION

I hereby declare that the project report is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTAR or other institutions.

(LIM CHUEN YANG)

APPROVAL SHEET

This report entitled "<u>MONITORING THE COEFFICIENT OF</u> <u>VARIATION THROUGH A VARIABLE PARAMETERS CHART</u>" was prepared by LIM CHUEN YANG and submitted as partial fulfilment of the requirements for the degree of Bachelor of Science (Hons) Statistical Computing and Operations Research at Universiti Tunku Abdul Rahman.

Approved by:

(Ms. Ng Peh Sang)

Date:

Supervisor

Department of Physical and Mathematical Science

Faculty of Science

Universiti Tunku Abdul Rahman

FACULTY OF SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: _____

PERMISSION SHEET

It is hereby certified that <u>LIM CHUEN YANG</u> (ID No: <u>13ADB03410</u>) has completed this final year project entitled "MONITORING THE COEFFICIENT OF VARIATION THROUGH A VARIABLE PARAMETERS CHART" under the supervision of MS. NG PEH SANG from the Department of Physical and Mathematical Science, Faculty of Science.

I hereby give permission to the University to upload the softcopy of my final year project in pdf format into the UTAR Institutional Repository, which may be made accessible to the UTAR community and public.

Yours truly,

(LIM CHUEN YANG)

TABLE OF CONTENTS

				Page
ABS	STRAC	Г		ii
AC	KNOWI	LEDGE	MENTS	iv
DE	CLARA'	TION		V
API	PROVA	L SHEE	Т	vi
PEF	RMISSI	ON SHE	ЭЕТ	vii
TAI	BLE OF	CONT	ENTS	viii
LIS	T OF TA	ABLES		X
LIS	T OF FI	GURES	5	xiv
LIS	T OF A	BBREV	IATIONS	XV
СН	APTER			
1	INTRODUCTION		1	
	1.1	Resea	rch Background	1
	1.2	Proble	em Statement	3
	1.3	Objec	tives	4
	1.4	Signif	icance of the Research	4
	1.5	Limita	ation of the Research	5
	1.6	Organ	ization of the Report	5
2	LITE	RATUR	E REVIEW	6
	2.1	Introd	uction	6
	2.2	Adaptive Type Charts		6
		2.2.1	Variable Sampling Interval (VSI) Charts	6
		2.2.2	Variable Sample Size (VSS) Charts	9
		2.2.3	Variable Sample Size and Sampling	
			Interval Charts (VSSI) Charts	10
		2.2.4	Variable Parameters (VP) Charts	13
	2.3	CV C	harts	15

	3	THE DESIGNS OF VARIABLE PARAMETERS			
		CONT	TROL CHART		
		3.1	Basic properties of the sample CV	19	
		3.2	The VP CV chart	20	
		3.3	Optimization procedure	27	
	4	NUMERICAL RESULTS AND DISCUSSIONS FOR THE			
		VARL	ABLE PARAMETERS CONTROL CHART	31	
		4.1	Numerical Result	31	
		4.2	Numerical Comparisons	42	
			4.2.1 <i>ATS</i>	43	
			4.2.2 <i>SDTS</i>	46	
			4.2.3 <i>EATS</i>	48	
		4.3	Illustrative Example	51	
	5	CONC	CLUSION	63	
		5.1	Conclusion	63	
		5.2	Recommendations for Future Research	65	
	REFE	RENCE	2S	66	
				00	
	APPE	NDICE	S	77	
APPENDIX A – FOUATION DERIVATION 78				78	
$APPENDIX B = PHASE_II DATASETS FOR OTHER CHARTS 22$			82		
	APPENDIX C = PROGRAM FOR VARIARI F PARAMETERS CHART & 82			88	
	APPE) – ACCEPTANCE EMAIL FOR PUBLICATION IN	00	
			OUALITY ENGINEERING	96	
	$\Delta PPENDIX E - TURNITIN REPORT 07$			97	
	$\frac{1}{2}$				

LIST OF TABLES

Table

- 4.2 Values of $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$, optimal chart parameters $(n_{\rm S}, n_{\rm L}, h_{\rm L}, W_{\rm L}, W_{\rm S}, K_{\rm L}, K_{\rm S})$ and the corresponding out-of-control *ATS*₁ and *SDTS*₁ of the VP- γ chart when $\gamma_0 = 0.10, n_0 = \{5, 7, 10, 15\}, h_{\rm S} \in \{0.01, 0.10\}$ and $\tau \in \{1.1, 1.2, 1.5, 2.0\}$
- 4.3 Values of $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$, optimal chart parameters $(n_{\rm S}, n_{\rm L}, h_{\rm L}, W_{\rm L}, W_{\rm S}, K_{\rm L}, K_{\rm S})$ and the corresponding out-of-control ATS_1 and $SDTS_1$ of the VP- γ chart when $\gamma_0 = 0.15$, $n_0 = \{5, 7, 10, 15\}$, $h_{\rm S} \in \{0.01, 0.10\}$ and $\tau \in \{1.1, 1.2, 1.5, 2.0\}$
- 4.4 Values of $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$, optimal chart parameters $(n_{\rm S}, n_{\rm L}, h_{\rm L}, W_{\rm L}, W_{\rm S}, K_{\rm L}, K_{\rm S})$ and the corresponding out-of-control *ATS*₁ and *SDTS*₁ of the VP- γ chart when $\gamma_0 = 0.20$, $n_0 = \{5, 7, 10, 15\}$, $h_{\rm S} \in \{0.01, 0.10\}$ and $\tau \in \{1.1, 1.2, 1.5, 2.0\}$

Page

34

35

Х

- 4.5 Values of (a_S, b_S, c_S, a_L, b_L, c_L), optimal chart parameters (n_S, n_L, h_L, W_L, W_S, K_L, K_S) and the corresponding EATS₁ for the VP CV chart when (τ_{min}, τ_{max}) = (1.00, 2.00), γ₀ ∈ {0.05, 0.10, 0.15, 0.20}, n₀ ∈ {5, 7, 10, 15} and h_S ∈ {0.01, 0.10}
- 4.6 Values of (a_S, b_S, c_S, a_L, b_L, c_L), optimal chart parameters (n_S, n_L, h_L, W_L, W_S, K_L, K_S) and the corresponding *EATS*₁ for the VP CV chart when (τ_{min}, τ_{max}) = (1.25, 2.00), γ₀ ∈ {0.05, 0.10, 0.15, 0.20}, n₀ ∈ {5, 7, 10, 15} and h_S ∈ {0.01, 0.10}
- 4.7 Values of (a_S, b_S, c_S, a_L, b_L, c_L), optimal chart parameters (n_S, n_L, h_L, W_L, W_S, K_L, K_S) and the corresponding *EATS*₁ for the VP CV chart when (τ_{min}, τ_{max}) = (1.50, 2.00), γ₀ ∈ {0.05, 0.10, 0.15, 0.20}, n₀ ∈ {5, 7, 10, 15} and h_S ∈ {0.01, 0.10}
- 4.8 A comparison of the out-of-control ATS_1 values of the VP CV chart and competing charts when $\tau \in \{1.1, 1.2, 1.5, 2.0\},$ $\gamma_0 = 0.05, n_0 \in \{5, 7, 10, 15\}$ and $h_s = 0.10$ 44
- 4.9 SDTS₁ of the VP CV chart and the corresponding SDTS₁ of the VSSI CV, VSI CV, VSS CV, EWMA CV², Synthetic CV and Shewhart CV charts, for n₀ ∈ {5, 7, 10,15}, τ ∈ {1.1, 1.2, 1.5, 2.0} and γ₀ = 0.05

47

- 4.10 *EATS*₁ values of the VP CV chart and competing charts when $(\tau_{\min}, \tau_{\max}) = (1.00, 2.00), n_0 \in \{5, 7, 10, 15\}, \gamma_0 = 0.05, \text{ and } h_S$ = 0.1049
- 4.11 *EATS*₁ values of the VP CV chart and competing charts when $(\tau_{\min}, \tau_{\max}) = (1.25, 2.00), n_0 \in \{5, 7, 10, 15\}, \gamma_0 = 0.05, \text{ and } h_S$ = 0.1049
- 4.12 *EATS*₁ values of the VP CV chart and competing charts when $(\tau_{\min}, \tau_{\max}) = (1.50, 2.00), n_0 \in \{5, 7, 10, 15\}, \gamma_0 = 0.05, \text{ and } h_S$ = 0.10 50
- 4.13 Phase-I and Phase-II datasets 53 B.i Phase-II datasets for VSSI CV chart 82 B.ii Phase-II datasets for VSI CV chart 83 B.iii Phase-II datasets for VSS CV chart 84 B.iv Phase-II datasets with the shift size, $\tau = 1.1$ for EWMA CV 85 chart B.v Phase-II datasets for Synthetic CV chart and Shewhart chart 86

LIST OF FIGURES

Figure		Page
2.1	VSI chart's graphical view	7
2.2	VSS chart's graphical view	10
2.3	VSSI chart's graphical view	11
2.4	VP chart's graphical view	14
3.1	A graphical view of the one-sided upward VP CV chart	21
4.1	VP CV, VSSI CV, VSI CV, VSS CV, EWMA CV, Synthetic CV and Shewhart CV charts are applied to the industrial example (Phase-II with the shift size, $\tau = 1.1$)	56
4.2	VP CV, VSSI CV, VSI CV, VSS CV, EWMA CV, Synthetic CV and Shewhart CV charts are applied to the industrial example (Phase-II with an unknown shift size)	60

xiv

LIST OF ABBREVIATIONS

The following are the list of abbreviations, notations and the symbols of input parameters used in this project:

a/b/c	Parameters $(a/b/c)$ to compute the T_i
aL	Value of <i>a</i> for large sample size
as	Value of <i>a</i> for small sample size
$lpha_0$	Probability of Type-I error
AL	Adjusted loss function
ARL	Average run length
ARL_0	In-control average run length
ARL_1	Out-of-control average run length
ASI_0	In-control average sampling interval
ASS_0	In-control average sample size
ATS	Average time to signal
ATS_0	In-control average time to signal
ATS_1	Out-of-control average time to signal
b '	Vector of starting probability
$b_{ m L}$	Value of <i>b</i> for large sample size
$b_{\rm S}$	Value of <i>b</i> for small sample size
В	Diagonal element with the h_j element
CL	Value of <i>c</i> for large sample size
CS	Value of c for small sample size
CCC	Joint three one-sided CUSUM chart $(I, D \text{ and } V \text{ charts})$
cdf	Cumulative distribution function

CL	Center limit
CRL	Conforming run length
CUSUM	Cumulative sum
CV / γ	Coefficient of variation
CV^2	Coefficient of variation squared
CVSSIDS	Variable sample size, sampling interval and double
	sampling features
χ^2	Chi-squared
DEWMA	Double exponentially weighted moving average
EARL	Expected average run length
EATS	Expected average time to signal
$EATS_1$	Out-of-control EATS
EWMA	Exponentially Weighted Moving Average
$f_{\tau}(au)$	Probability density function of τ
$F_t(. c,d)$	cdf of a noncentral t distribution with c degrees of
	freedom and noncentrality parameter d
$F_N^{-1}(r)$	Inverse distribution function of the normal distribution
	with parameter (0, 1)
$F_t^{-1}\big(. c,d\big)$	Inverse cdf of $\hat{\gamma}$
Ŷ	Sample CV
$\widehat{\gamma}_i$	i^{th} sample CV
γ_0	In-control CV
γ_1	Out-of-control CV
h	Sampling interval

h_0	In-control sampling interval
$h_{ m L}$	Long sampling interval
$h_{ m S}$	Short sampling interval
FSI	Fixed sampling interval
FVP-WV	Fuzzy variable parameters \overline{X} control charts by weighted
	variance method
Ι	Identity matrix
Κ	Control limit coefficient
KL	Large control limit coefficient
K _S	Small control limit coefficient
λ	Weighting factor for EWMA CV chart
L	Threshold
LCL	Lower control limit
LCL _{CV}	LCL for the Shewhart CV chart
LWL	Lower warning limit
μ	Mean
$\mu_0ig(\widehat{\gamma}ig)$	Mean of the sample CV
σ	Standard deviation
$\sigma_{_0}(\widehat{\gamma})$	Standard deviation of the sample CV
т	Number of Phase-I samples
n	Sample size
n_0	In-control average sample size
np	Number of non-conforming units
nL	Large sample size
n _S	Small sample size

Р	Transition probability matrix
P_{ij}	Transition probability from the previous state i to the
	current state <i>j</i>
Q	2x2 transition probability matrix for the transient states
r	Selected quantile of the CV distribution
R	Range
S	Sample standard deviation
S _i	<i>i</i> th sample <i>S</i>
s	Generalized sample variance
S^2	Sample variance
SDRL	Standard deviation of the run length
SDTS	Standard deviation of the time to signal
SDTS ₀	In-control SDTS
$SDTS_1$	Out-of-control SDTS
SVSSI	Special VSSI
SSGR	Side sensitive group runs
SSVSS	VSS scheme with the side-sensitive synthetic rule
SPC	Statistical process control
SynCV	Synthetic chart
τ	Shift size
$ au_{ m min}$	Smallest shift size
$ au_{ m max}$	Largest shift size
T_i	<i>i</i> th transformed CV
$\hat{T_i}$	i^{th} sample T_i
<i>t</i> '	Vector of sampling intervals

TSVP	VP control chart with three stage process
UCL	Upper control limit
UCL _{CV}	UCL for the Shewhart CV chart
UWL	Upper warning limit
VSI	Variable sampling interval
VSIFT	VSI with fixed times
VSS	Variable sample size
VSSI	Variable sampling size and sampling interval
VSSIFT	VSSI \overline{X} charts based on fixed sampling time
VSSIWL	Variable sample size, sampling interval and warning
	limits
VP	Variable parameters
\overline{X}	Sample mean
\overline{X}_i	<i>i</i> th sample mean
W	Warning limit coefficient
$W_{ m L}$	Large warning limit coefficient
W _S	Small warning limit coefficient
WLC	Weighted-loss-function-based scheme
Z_i	Statistic for EWMA CV chart

CHAPTER 1

INTRODUCTION

1.1 Research Background

Nowadays, quality has been established as one of the key competitive factors in the business world. Statistical Process Control (SPC) is a collection of tools to measure and control quality during the production process. There are seven major SPC tools which include the Pareto Chart, the Cause and Effect Diagram, the Defect Concentration Diagram, the Histogram, the Scatter Diagram, the control chart and the Check Sheet.

Among all those SPC tools, control chart is one of the widely used tools to monitor and identify the changes of the process effectively. For instance, control chart is used in industries to detect whether the process is out-of-control. If the process is in an out-of-control state, corrective action is taken to ensure the process is in-control.

One of the principles of SPC is that a normally distributed process cannot be claimed to be in-control until it has a constant mean and variance. Traditional control charts monitoring the mean and/or variance may not work in some processes. This is because some processes do not have a constant mean and the standard deviation may be a function of the mean, i.e. the standard deviation changes when the mean changes. When the standard deviation (σ) is directly

proportional to the mean (μ) , the coefficient of variation, $\gamma = \frac{\sigma}{\mu}$ is a constant.

For such processes, monitoring the coefficient of variation as a measure of variability is a better approach. There are several significances of monitoring the coefficient of variation (CV). In finance, CV is used to measure the risk and uncertainty met by investors. In chemical and biological assay quality control, the CV is used to validate results. In physiological science, the CV can be applied to assess the homogeneity of bone sample. In clinical and diagnostic areas, the CV is often used as a measurement to determine the amount of certain chemicals in a patient's urine and blood to diagnose the presence of a disease.

A robust control chart is able to detect the changes of the process in the shortest time and it should not have a high number of false alarms. In order to study the control chart's performance, some performance measures are needed. For examples, the measurements are average run length (*ARL*), the average time to signal (*ATS*), the expected average run length (*EARL*) and the expected average time to signal (*EATS*). The *ARL* is the average number of samples taken until an out-of-control signal is produced, while the *ATS* is the average time until the process signals an out-of-control condition. The difference between the *ARL* (*ATS*) and the *EARL* (*EATS*) is in the computation of the *ARL* (*ATS*), the shift size needs to be specified as a specific value, while in computation of the *EARL* (*EATS*), the shift size only needs to be specified as a particular range of possible values. A good control chart will have a small number of false alarms, which is shown through a large *ARL* (*ATS*) when the process is in-control, and will be able to detect changes in the process quickly, as shown by a small *ARL* (*ATS*) when the process is out-of-control.

By comparing the adaptive charts and standard control charts, adaptive charts are more efficient because it uses historical information to determine the next chart parameter. Adaptive charts are charts where the sample size, the sampling interval, the control limits or the warning limits are made to vary. An adaptive chart that varies the sample size is called the variable sample size chart, while the chart that varies the sampling interval is called the variable sampling interval chart. Meanwhile, the chart that varies both the sample size and the sampling interval is called the variable sample size and the sampling interval is called the variable sample size and the sampling interval is called the variable sample size and sampling interval chart, while the variable parameter chart is a chart which varies all the control chart's parameters, i.e. the sample size, sampling interval, control limit and warning limit.

In this project, a Variable Parameters chart (VP CV chart) is proposed to improve the performance of the traditional CV chart. VP CV chart is a chart that varies the sample size, sampling interval, warning limits and control limits according to the prior sample information. It is expected that this chart will result in better performance compared to the variable sampling interval (VSI) CV chart, the variable sample size (VSS) CV chart and the variable sample size and sampling interval (VSSI) CV chart.

1.2 Problem Statement

In the existing literature, it is shown that the VP chart outperforms the charts with fixed chart parameter. However, monitoring the CV using VP technique does not exist in the literature. Thus, this project proposes a Variable Parameters (VP) chart to monitor the CV.

1.3 Objectives

The objectives of this study are as follows:

- (i) To propose a variable parameters chart to monitor the CV.
- (ii) To propose optimization algorithms to obtain the chart parameters which result in optimal performance of the proposed chart.
- (iii) To compare the performance of the proposed chart with other charts.

1.4 Significance of this Research

This research proposes a VP chart to monitor the CV, which is not available in the literature prior to this research. It is expected that the proposed chart will show a significant improvement in detecting changes in the CV, compared to existing charts such as the Shewhart CV chart, the variable sampling interval (VSI) CV chart, the variable sample size (VSS) CV chart, the variable sample size and sampling interval (VSSI) CV chart, the Synthetic CV control chart and EWMA CV^2 chart.

Through this research, practitioners will be able to implement the VP CV chart easily as the step-by-step procedure which include the derived formulae of the VP CV chart is proposed. Furthermore, the optimization algorithms proposed in this project will enable practitioners to implement the proposed chart at the optimal level. Finally, comparisons are made with other existing charts in the literature to show the improvement of the proposed chart with other existing charts.

1.5 Limitations of the Research

The limitation of the research is the VP CV chart may not the best chart to monitor the CV with the shift size is small. Apart from that, the data must be normal distribution when implement the VP CV chart. Next, there are many methods to compute the statistic, the VP CV chart use the T_i statistic to compute the chart.

1.6 Organization of the Report

This report is organized into five chapters. The problem statement, the objectives and the significance of this project are stated in Chapter 1. Chapter 2 reviews the existing literatures that are related to CV control charts and adaptive charts. The design of the VP CV chart, formulae derived and the optimization algorithms are introduced and discussed in the following chapter. Subsequently, Chapter 4 interprets and discusses all of the numerical results on the proposed VP CV chart. The VP CV chart's performance is compared with the performance of the Shewhart CV chart, the variable sampling interval (VSI) CV chart, the variable sample size (VSS) CV chart, the variable sample size and sampling interval (VSSI) CV chart, the Exponentially Weighted Moving Average (EWMA) CV^2 chart and the synthetic CV control chart. This is followed by an illustrative example from an actual industrial scenario. The last chapter is the conclusion of this project.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, a review of past studies related to adaptive type charts and CV charts is given.

2.2 Adaptive Type Charts

When the control chart has at least one parameter, for example the sample size, the sampling interval or the control limits that vary according to the prior sample information, it is considered as an adaptive control chart.

2.2.1 Variable Sampling Interval (VSI) Charts

VSI control charts are charts that vary the sampling interval h. From the diagram shown in Figure 2.1, the VSI chart is divided into three regions, which are the central region, the warning region and the out-of-control region. The line in between the central region and the warning region is called warning limits, whereas control limits are the line in between the warning region and the out-of-control region. When the sample falls in the warning region, there is high possibility for the process to be out-of-control, so the next sample should be taken after a short sampling interval (h_S) to tighten the control. In contrast, if the sample falls in the central region, the next sample should be taken after a long sampling interval (h_L) as it is more unlikely for the process to go out-of-control. The process is considered as out-of-control when the sample falls in the cample falls in the control.

Figure 2.1: VSI chart's graphical view.

From the previous research about the VSI charts, Reynolds, et al. (1988) stated that the performance of the VSI \bar{X} chart is better than the standard Shewhart \bar{X} control chart. When the time between samples is varied, expressions for the optimal one-sided Shewhart control chart subject to some constraints are derived (Reynolds and Arnold, 1989). The one-sided control limit for a VSI Shewhart \bar{X} control chart was proposed and had shown improvement compared to the two-sided VSI Shewhart \bar{X} control chart (Runger and Pigonetiello, 1991).

Amin and Miller (1993) studied the VSI \overline{X} chart's performance when the data is not normally distributed. VSI for multi-parameter Shewhart chart showed that it performs better compared to the FSI control chart (Chengalur, Arnold and Reynolds, 1989). A VSI control chart with fixed times (VSIFT) was proposed and the performance is similar to the EWMA chart and the CUSUM chart. VSIFT charts showed better performance than FSI charts. However, when compared with the VSS charts, the VSIFT charts only showed better performance when detecting a large shift (Reynolds, 1996). Reynolds, Amin and Arnold (1990) proposed the standard cumulative sum (CUSUM) control chart with VSI. In small and moderate shifts in terms of mean, it is more efficient than the VSI Shewhart \overline{X} control chart and the FSI CUSUM control chart. A double exponentially weighted moving average (EWMA) with VSI was proposed by Shamma, Amin and Shamma (1991). From the research, VSI-DEWMA chart is more efficient compared with FSI-DEWMA. The ATS properties of two-sided VSI EWMA charts were evaluated (Saccucci, Amin and Lucas, 1992). Castagliola, Celano and Fichera (2006) designed a Variable Sampling Interval (VSI) *R* Exponentially Weighted Moving Average (EWMA) control chart. VSI R EWMA monitors the range (R) from a normally distributed process and showed improvement in the performance compared with other charts. Next, the VSI S^2 EWMA chart was proposed to monitor the process in term of the variance (Castagliola, et al., 2007). Kazemzadeh, Karbasian and Babakhani (2013) proposed a variable sampling interval (VSI) exponentially weighted moving average (EWMA) t chart and found that it is more robust compared with the FSI EWMA \overline{X} chart. By comparing the FSI EWMA t and FSI EWMA \overline{X} charts, the VSI EWMA t chart performed well in terms of the ATS performance.

Lee and Khoo (2015) proposed a multivariate synthetic generalized sample variance |s| chart with variable sampling interval (VSI). By detecting the shifts in the covariance matrix, the VSI multivariate synthetic control chart had outperformed other multivariate control charts. Next, a variable sampling interval (VSI) S^2 chart was proposed by Guo and Wang (2015). The VSI S^2

chart performed well compared with the FSI S^2 chart in terms of detecting the shifts in the process variance.

2.2.2 Variable Sample Size (VSS) Charts

VSS control charts vary the sample size n. When the sample falls in the warning region, it is suspected that the process had a higher chance to shift to the out-of-control region. Thus, a large sample size is taken to tighten control. In contrast, when the sample falls in the central region, a small sample size is taken as it is less likely for the process to go out-of-control. Figure 2.2 shows the VSS control chart, where n_S and n_L represent the small and large sample sizes, respectively.

Prabhu, Runger and Keats (1993) proposed a dual sample size scheme and the control limits and sampling interval are kept constant. Zimmer, Montgomery and Runger (1998) developed a three-state adaptive sample size. Based on the results from small shifts in the process mean, three-state adaptive control chart performs better compared to the two-state adaptive control. Annadi, et al. (1995) designed the VSS CUSUM charts. Comparisons are made between the average run length (*ARL*) for the adaptive sample scheme with the fixed sample scheme. In order to monitor the process mean, Aparisi (1996) developed the Hotelling's T^2 control chart with adaptive sample size. A new VSS EWMA control charts which determine the next sample size by the location of the prior EWMA statistic was proposed (Amiri, Nedaie and Alikhani, 2014). The new VSS EWMA chart showed better performance compared with the FSI EWMA chart and the traditional VSS EWMA chart.

Figure 2.2: VSS chart's graphical view.

De Magalh æs and Von Doellinger (2016) designed a variable sample size chisquared control chart (VSS χ^2). The purpose of the VSS χ^2 control chart is to monitor the linear profiles. In general, the VSS χ^2 control chart has outperformed the fixed parameter chi-squared control chart in terms of *ARL*. Costa and Machado (2016) proposed the \bar{X} chart by combining the VSS scheme with the side-sensitive synthetic rule (SSVSS \bar{X} chart) and showed that it performed better compared with the VSS \bar{X} chart.

Aslam, Arif and Jun (2016) designed a variable sample size (VSS) chart with multiple dependent state sampling. This chart showed better performance than the existing VSS chart.

2.2.3 Variable Sample Size and Sampling Interval Charts (VSSI) Charts

The VSSI chart varies two parameters which are the sample size and the sampling interval. For the VSSI chart, when the sample falls in the warning region, the next sample to be taken should be a large sample (n_L) and it should

Figure 2.3: VSSI chart's graphical view.

be taken after a short sampling interval (h_S) due to a higher chance for the process to be out-of-control. However, when the sample falls in the central region, a small sample size (n_S) is taken after a long sampling interval (h_L) as it is less likely for the process to go out-of-control. Figure 2.3 shows the VSSI control chart.

There are several researchers that studied the VSSI charts. The VSSI \bar{X} chart was proposed by Prahbu, Montgomery and Runger (1994) and Costa (1997). The proposed chart by Prahbu, Montgomery and Runger (1994) is compared with the standard Shewhart \bar{X} chart, a VSS chart, and a VSI chart in terms of the *ATS*. The VSSI \bar{X} chart developed by Costa (1997) showed better performance than the VSI or VSS \bar{X} charts for moderate shifts in the process. VSSI \bar{X} charts based on fixed sampling time (VSSIFT) were developed by Costa (1998a). VSSI \bar{X} chart with runs rules was proposed by Mahadik (2013a) to reduce the frequency of switches. Mahadik (2013b) developed the variable sample size, sampling interval and warning limits (VSSIWL) \bar{X} chart which includes one more parameter of control chart (warning limits) to reduce the frequency of switches.

In order to have better performance in terms of *ATS*, Yang and Yang (2013) proposed the optimal VSSI mean squared error control chart. By modifying the VSSI mean squared error control chart, Cheng, Yang and Wu (2013) used the square root transformation for improvement. From the result shown, the optimal proposed control chart performed better than the other charts. The assumption for using control chart is the data is normally distributed, but the assumption may be violated in real life. From Lin and Chou (2005)'s paper, the VSSI \overline{X} chart under non-normality by using the Burr distribution were studied.

For the VSI, VSS and VSSI charts, there are two levels for each parameter. This leads Mahadik and Shirke (2009) to propose a special VSSI (SVSSI) \overline{X} chart which uses two sampling intervals and three sample sizes. In this paper, SVSSI \overline{X} chart had the same efficiency as the VSSI \overline{X} chart in small shifts and the same efficiency as the VSI \overline{X} chart in detecting large shifts.

A hybrid adaptive scheme used by Celano, Costa and Fichera (2006) considers both the VSI and VSS with runs rules. The combination of Costa's cost model with Yang and Hancock's correlation model was designed by Chen, Hsieh and Chang (2007) in the economic design of the VSSI chart to monitor data which are correlated. Moreover, Wu, Tian and Zhang (2005) proposed the Adjusted Loss Function (AL) with VSSI (VSSI AL chart). Researchers applied the VSSI strategy into other charts since most of the studies were on \overline{X} charts from the past. Arnold and Reynolds (2001) designed the VSSI joint three one-sided CUSUM chart (CCC) scheme. From Wu, Zhang and Wang (2007)'s paper, the VSSI weighted-loss-function-based scheme (WLC) based CUSUM scheme was proposed and it's operation is simpler than the VSSI CCC scheme. The VSSI CCC scheme consist of three individual CUSUM charts which are two for monitoring increasing and decreasing mean shifts and one for monitoring increasing variance shifts, whereas the VSSI WLC scheme comprises one two-sided chart to monitor the mean shift and another chart to monitor increasing shifts in the standard deviation.

Noorossana, Shekary and Deheshvar (2015) designed the \overline{X} chart by combining the variable sample size, sampling interval and double sampling features (CVSSIDS). The CVSSIDS used different levels for different parameter, for instance, three different levels for sample size, two different levels for the sampling interval, two control limits, and two warning limits. By comparison in terms of *ATS*, the CVSSIDS always showed smaller values compared with the other charts.

2.2.4 Variable Parameters (VP) Charts

VP chart varies four parameters which are the sample size, the sampling interval, the warning limits and the control limits. When the sample falls in the warning region, the chart parameters for the next sample to be taken is a large sample size (n_L), short sampling interval (h_S), small control limit coefficient (K_S) and small warning limit coefficient (W_S) to tighten the control. When the

Figure 2.4: VP chart's graphical view.

sample falls in the central region, a small sample size (n_S) , long sampling interval (h_L) , large control limit coefficient (K_L) and large warning limit coefficient (W_L) are adopted. Figure 2.4 shows the VP control chart.

A joint \overline{X} and R charts with variable parameters was first proposed by Costa (1998b). The variable parameters chart improves the joint \overline{X} and R charts when detecting shifts in the process mean (Costa, 1998b). Apart from that, Costa (1999) proposed the \overline{X} charts with variable parameters. For detecting shifts in the process mean, the new VP \overline{X} chart is more powerful than the CUSUM scheme. Lin and Chou (2007) claimed the assumption of normally distributed quality variables may not work for some processes. This leads Lin and Chou (2007) to study the VP \overline{X} chart under non-normality. In the non-normal process of detecting small mean shifts, the VP \overline{X} chart performs better than other charts and reduce the false alarm rate. Chen and Chang (2008) studied the economic design of the VP \overline{X} control chart for fuzzy mean shifts. Lin (2009) studied the effect of autocorrelation on the features of the VP \overline{X} control chart. The VP \overline{X}

chart does not show a good performance when the data are strongly autocorrelated.

The Shewhart R control chart (R chart) performs poorly in detecting small process shifts in variability. Hence, Lee (2011) proposed the R chart with variable parameter and the chart shows significant improvement. A modified version of the VP control chart with three stage process (TSVP) was designed by Deheshvar, et al. (2013). However, a modified version of the VP control chart showed a larger complexity compared to the traditional VP control chart.

Hashemian, et al. (2016) proposed an adaptive *np*-VP control chart with estimated parameters and compared it with the *np*-VP control chart with known parameters in terms of *ATS* as the performance measure. The *np*-VP control chart with known parameters does not perform well when the parameters are estimated from the Phase I data.

Panthong and Pongpullponsak (2016) introduced fuzzy variable parameters \bar{X} control charts by weighted variance method (FVP-WV). Panthong and Pongpullponsak (2016) used triangular fuzzy numbers (a, b, c) to propose FVP-WV charts. From the results, FVP-WV chart is more efficient than the traditional VP \bar{X} control charts.

2.3 CV charts

Monitoring the CV was kick started by Kang, et al. (2007). Kang, et al. (2007) proposed a Shewhart CV control chart for monitoring the cyclosporine level in

organ-transplantation procedures using rational subgroups. Cyclosporine is an immunosuppressive drug that is used to prevent rejection of the implanted organ. Excessive use of cyclosporine will weaken the immune system and hence leads to dangerous infections, conversely insufficient amount of cyclosporine will cause organ rejection. The suitable amount of circulating drug varies from patient to patient. Therefore, frequent blood assays are required to monitor the drug level that best stabilizes every patient. The interest is on the CV as the means of these assays vary widely. As a result, this chart is only sensitive to large shifts but is less sensitive to small and moderate shifts. Because of this reason, several studies were carried out to improve this chart.

Hong, et al. (2008) proposed an Exponentially Weighted Moving Average (EWMA) CV control chart. From this paper, the comparisons of the EWMA CV chart with the Shewhart CV chart were performed. The EWMA CV chart proposed by Hong, et al. (2008) yields smaller out-of-control *ARL* (*ARL*₁) values than the control chart proposed by Kang, et al. (2007). However, the *ARL* is evaluated by using intensive simulations, and no theoretical method has been provided to compute the *ARL*.

This leads Castagliola, Celano and Psarakis (2011) to develop a new chart to monitor the CV (two one-sided EWMA charts). From this paper, the researchers used a Markov chain to compute the *ARL* of the EWMA CV^2 chart. Castagliola, Celano and Psarakis (2011) showed that using two one-sided charts, one to detect an increasing shift in the CV and another to detect a decreasing shift in the CV, results in an improved ability to detect shifts
compared to using a single two-sided chart to simultaneously monitor both an increasing and decreasing shift in the CV. By comparing the *ARL* values, the EWMA CV^2 chart shows smaller *ARL* values compared with the EWMA CV chart.

Next, Calzada and Scariano (2013) developed a synthetic chart (SynCV) to monitor the CV. The results showed that the ARL_1 s obtained for the synthetic chart are clearly smaller than the ones for Kang, et al. (2007), but generally larger than the ones obtained by Castagliola, Celano and Psarakis (2011) for small shifts in the CV. However, for large shifts in the CV, the synthetic chart had shown good performance in terms of smaller *ARL* values compared with the EWMA CV² chart.

Subsequently, Castagliola, et al. (2013a) developed a Shewhart-type chart with supplementary run rules to monitor the CV. However, the runs rules charts for monitoring the CV does not outperform more advanced strategies like the chart proposed by Castagliola, Celano and Psarakis (2011) and Calzada and Scariano (2013). In general, Shewhart-type chart with supplementary run rules perform better in detecting small shift in the CV, but is not efficient in detecting large shift in the CV compared to the Shewhart CV chart proposed by Kang, et al. (2007).

Zhang, et al. (2014) proposed a modified EWMA CV chart which improves the performance of the EWMA CV chart proposed by Castagliola, Celano and

Psarakis (2011). The modified EWMA CV chart had outperformed the EWMA CV chart in terms of the *ARL* values from small to large shifts in the CV.

Next, Castagliola, et al. (2015b) proposed a one-sided Shewhart CV chart for short production runs. Subsequently, You, et al. (2015) proposed a side sensitive group runs (SSGR) chart to monitor the CV. Comparative studies show that the SSGR CV chart outperforms the Shewhart CV, runs rules CV, synthetic CV and EWMA CV charts.

Adaptive strategies, which vary the chart parameters according to the prior sample statistics, are proposed by Castagliola, et al. (2013b), Castagliola, et al. (2015b) and Yeong, et al. (2015). Castagliola, et al. (2013b) monitored the CV using a variable sampling interval (VSI) chart. From the results shown, the VSI CV chart does not perform well compared with the EWMA CV chart. After that, Castagliola, et al. (2015b) proposed a VSS CV chart (variable sample size control chart) by using the T_i statistic which approximates a normal distribution. The VSS CV chart is shown to outperform the VSI CV chart for shifts of less than 1.5 and outperform the Synthetic chart for shifts of less than 2 based on the out-of-control *ARL*. Yeong, et al. (2015) monitored the CV using the variable sample size (VSS) charts. It was found that varying the chart parameters results in an improved performance in detecting shifts in the CV. Yeong, et al. (2016) proposed a chart which monitors the CV for multivariate data. Finally, Khaw, et al. (2016) proposed VSSI chart to enhance the basic CV chart's performance.

CHAPTER 3

THE DESIGNS OF THE VARIABLE PARAMETER CONTROL CHART

3.1 Basic properties of the sample CV

Let X be a random variable and let $\mu = E(X)$ and $\sigma = \sigma(X)$ be the mean and standard deviation of X respectively. The CV of X is defined as

$$\gamma = \frac{\sigma}{\mu}.$$
 (3.1)

Assume that $\{X_1, X_2, ..., X_n\}$ is a sample of size n from the normal distribution. Let \overline{X} and S be the sample mean and sample standard deviation respectively, where

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, (3.2)

and

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\overline{X} - X_i)^2} .$$
 (3.3)

The sample CV $\hat{\gamma}$ is defined as

$$\hat{\gamma} = \frac{S}{\overline{X}}.$$
(3.4)

According to Iglewicz, Myers and Howe (1968), $\frac{\sqrt{n}}{\gamma}$ follows a noncentral t

distribution with n-1 degree of freedom and noncentrality parameter $\frac{\sqrt{n}}{\gamma}$ by concerning the probability distribution of sample CV.

Iglewicz, Myers and Howe (1968) noticed that the cumulative distribution function (cdf) of $\hat{\gamma}$ can be approximated as the following equation if $\gamma > 0$ is not too large ($\gamma \in (0, 0.5]$).

$$F_{\hat{\gamma}}\left(x \mid n, \gamma\right) \simeq 1 - F_t\left(\frac{\sqrt{n}}{x} \mid n-1, \frac{\sqrt{n}}{\gamma}\right), \qquad (3.5)$$

where $F_t(.|c,d)$ refers to the cdf of a noncentral *t* distribution with *c* degrees of freedom and noncentrality parameter *d*. The inverse cdf of $\hat{\gamma}$, can be computed as

$$F_{\hat{\gamma}}^{-1}(\alpha \mid n, \gamma) \simeq \frac{\sqrt{n}}{F_t^{-1}\left(1 - \alpha \mid n - 1, \frac{\sqrt{n}}{\gamma}\right)}, \qquad (3.6)$$

where $F_t^{-1}(.|c,d)$ refers to the inverse cdf of a noncentral *t* distribution with *c* degrees of freedom and noncentrality parameter *d*.

3.2 The VP CV chart

For the VP CV chart, the sample size, the sampling interval, the control limits and the warning limits vary between two levels. The reason the VP CV chart with dual sampling schemes is adopted is due to the administrative difficulty level if more than two levels of the parameter are used (Jensen, Bryce and Reynolds, 2008). The sample size used by the VP CV chart is varied, which are the small sample size, $n_{\rm S}$, and the large sample size, $n_{\rm L}$. The interval of the sample size is $n_{\rm S} < n_0 < n_{\rm L}$, where n_0 is the in-control average sample size (*ASS*₀). The chart varies the sampling interval into the short sampling interval, $h_{\rm S}$, and long sampling interval, $h_{\rm L}$, where $h_{\rm S} < h_0 < h_{\rm L}$ and h_0 is the average sampling interval when in-control (*ASI*₀). Next, the control limits are varied into the small control limit coefficient, $K_{\rm S}$, and the large control limit coefficient, $K_{\rm L}$, whereas the warning limits are varied between the small warning limit coefficient, $W_{\rm S}$, and the large warning limit coefficient, $W_{\rm L}$.

The VP CV chart is the one-sided upward chart. The first reason is the CV follows a non-symmetric distribution. Thus, it does not make sense to assume that the control limits and the warning limits are symmetrical about different directions in the chart. The second reason for using one-sided upward chart instead of a two-sided chart is because it is usually of interest to detect an increase in the CV as it corresponds to increased variability in the process (Castagliola, Celano and Psarakis, 2011). Figure 3.1 shows the VP CV chart.

Figure 3.1: A graphical view of the one-sided upward VP CV chart.

Since the CV is a right skewed distribution, the VP CV chart used the T_i statistic instead of using CV directly (Castagliola, et al., 2015a). The purpose of using T_i statistic is the T_i statistic approximately follows a normal distribution with parameter (0, 1). From that, this indicates that the central line monitoring T_i is CL = 0. The T_i statistic is defined as

$$T_i = a + b \ln(\bar{\gamma} - c), \qquad (3.7)$$

where *a*, b > 0 and *c* are three parameters depending on n(i) and γ_0 .

In order to obtain the parameters (a, b, c), the 3-parameter lognormal distribution are fitted from three selected quantiles of the CV distribution which are r, 0.5 and 1-r (Castagliola, et al., 2015a).

$$b = \frac{F_N^{-1}(r)}{\ln\left(\frac{x_{0.5} - x_r}{x_{1-r} - x_{0.5}}\right)},$$
(3.8a)
$$a = -b \ln\left(\frac{x_{0.5} - x_r}{1 - \exp\left(\frac{F_N^{-1}(r)}{b}\right)}\right),$$
(3.8b)

and

$$c = x_{0.5} - e^{-\frac{a}{b}}.$$
 (3.8c)

where $F_N^{-1}(r)$ is the inverse distribution function of the normal distribution with parameter (0, 1).

Based on Castagliola, et al. (2015a), the suitable value of r is in between 0.01 and 0.1. The value of r could not be less than 0.01, to prevent too much contribution given from the tails of the CV distribution. However, the value of

r also could not be more than 0.1 to obtain enough information from the tails of the CV distribution. This can be proven by using normality test to compute the values of *a*, *b*, and *c* from different *r* values. Note that since the parameters (*a*, *b*, *c*) are the functions of the quantiles x_r , $x_{0.5}$ and x_{1-r} , and these parameters are depend on the values of n_i and γ_0 , and thus n_i and γ_0 will have an impact on the value of the transformed statistics T_i .

According to the Costa (1999), the operations of the VP CV chart strategy (Figure 3.1) are described as follows:

- The process is considered as an in-control process if the $(i-1)^{\text{th}}$ sample \hat{T}_i falls in the interval $\text{CL} \leq \hat{T}_i \leq \text{UWL}$, and n_{S} , h_{L} , K_{L} and W_{L} should be taken for calculating the current sample, \hat{T}_i .
- The process is considered as an in-control process if the $(i-1)^{\text{th}}$ sample \hat{T}_i falls in the interval UWL $\leq \hat{T}_i \leq$ UCL, and n_{L} , h_{S} , K_{S} and W_{S} should be taken for calculating the current sample, \hat{T}_i .
- The process is considered as an out-of-control process if the $(i-1)^{\text{th}}$ sample \hat{T}_i falls out of the $\text{CL} \leq \hat{T}_i \leq \text{UCL}$ region, and immediate correction action need to be taken to determine the assignable cause of variation.

The measurement of the performance of the VP CV chart are derived to evaluate whether the control chart is performing well. In order to compute the *ATS*, the Markov chain approach is used. The Markov chain process is a process that transits from one state to another state. The Markov chain is memoryless, where the probability of the next state occurring only depends on the previous state and do not depend on the sequence of the event which occurs prior to that (Costa, 1997). The Markov chain model for the VP CV chart with three states is defined as follows:

State 1: Pr (CL $\leq \hat{T}_i \leq UWL$),

State 2: Pr (UWL $\leq \hat{T}_i \leq$ UCL),

State 3: Pr ($\hat{T}_i \ge \text{UCL}$).

From the Markov chain theory, state 3 is known as absorbing state. State 3 is also known as the out-of-control state. The transition probability matrix shown below:

$$\mathbf{P} = \begin{bmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{bmatrix},$$
(3.9)

where P_{ij} is defined as the transition probability from the previous state *i* to the current state *j*. In order to obtain γ_1 , the shift size, τ is introduced and apply $\gamma_1 = \tau \gamma_0$. For example, if the τ is 1.1, it represents a 10% [(1.1-1.0) / 1.0 X 100%] increase in the CV when the process is out-of-control. From the Castagliola, et al. (2015a), the formulas of the transition probabilities of the Markov chain are shown as follows:

$$P_{11} = P\left(\exp\left(\frac{-W_{\rm L}-a}{b}\right) + c < \hat{\gamma}_i < \exp\left(\frac{W_{\rm L}-a}{b}\right) + c \left| n_{\rm S}, \gamma_1 \right|, \tag{3.10a}$$

$$P_{12} = P\left(\exp\left(\frac{-K_{\rm L}-a}{b}\right) + c \le \hat{\gamma}_i < \exp\left(\frac{-W_{\rm L}-a}{b}\right) + c \left| n_{\rm S}, \gamma_1 \right| \right) + P\left(\exp\left(\frac{W_{\rm L}-a}{b}\right) + c < \hat{\gamma}_i \le \exp\left(\frac{K_{\rm L}-a}{b}\right) + c \left| n_{\rm S}, \gamma_1 \right| \right),$$
(3.10b)
$$P_{21} = P\left(\exp\left(\frac{-W_{\rm S}-a}{b}\right) + c < \hat{\gamma}_i < \exp\left(\frac{W_{\rm S}-a}{b}\right) + c \left| n_{\rm L}, \gamma_1 \right| \right),$$
(3.10c)

and

$$P_{22} = P\left(\exp\left(\frac{-K_{\rm s}-a}{b}\right) + c \le \hat{\gamma}_i < \exp\left(\frac{-W_{\rm s}-a}{b}\right) + c \left| n_{\rm L}, \gamma_1 \right| \right) + P\left(\exp\left(\frac{W_{\rm s}-a}{b}\right) + c < \hat{\gamma}_i \le \exp\left(\frac{K_{\rm s}-a}{b}\right) + c \left| n_{\rm L}, \gamma_1 \right| \right).$$
(3.10d)

The average time to signal and the standard deviation of the time to signals proposed by Saccucci, Amin and Lucas (1992) computed as:

$$ATS = \mathbf{b'} (\mathbf{I} \cdot \mathbf{Q})^{-1} \mathbf{t} \cdot \mathbf{b't}, \qquad (3.11)$$

and

$$SDTS = \sqrt{\mathbf{b'QB}(2\mathbf{Q}-\mathbf{I})\mathbf{t}-(\mathbf{b'Qt})^2}$$
, (3.12)

where $\mathbf{b}' = (b_1, b_2)$ is the vector of starting probability and the summation of b_1 and b_2 is equals to 1. **Q** is a 2X2 transition probability matrix for the transient states, **B** is a diagonal element with the h_j element, **I** is a 2X2 identity matrix with all values equal to 1 and $\mathbf{t}' = (h_L, h_S)$ is the vector of sampling intervals.

The formula to compute b_1 is shown below (Khaw, et al., 2016):

$$b_{1} = \frac{F_{\hat{\gamma}}\left(UWL \mid n_{s}, \gamma_{0}\right) - F_{\hat{\gamma}}\left(LWL \mid n_{s}, \gamma_{0}\right)}{F_{\hat{\gamma}}\left(UCL \mid n_{s}, \gamma_{0}\right) - F_{\hat{\gamma}}\left(UCL \mid n_{s}, \gamma_{0}\right)},$$
(3.13)

and

$$b_2 = 1 - b_1 . \tag{3.14}$$

The VP CV chart restricts the ASS, n_0 and ASI, h_0 below (Khaw, et al., 2016):

$$b_1 n_{\rm S} + b_2 n_{\rm L} = n_0, \qquad (3.15a)$$

and

$$b_1 h_L + b_2 h_S = h_0$$
 (3.15b)

When compute the *ATS*, τ is needs to be specified. However, practitioners could not clearly define the shift size in real life. From the Castagliola, Celano and Psarakis (2011), *EATS* is introduced which can measure the performance of control chart without specifying the shift size.

$$EATS_{1} = \int f_{\tau}(\tau) ATS_{1}(n_{\rm S}, n_{\rm L}, h_{\rm S}, h_{\rm L}, W_{\rm S}, W_{\rm L}, K_{\rm S}, K_{\rm L}, \gamma_{0}, \tau) d\tau, \qquad (3.16)$$

where $f_{\tau}(\tau)$ is the probability density function of τ . As it is difficult to estimate the actual distribution for $f_{\tau}(\tau)$ is very hard to obtain the actual shape and distribution on it, one assumption which can be made is that τ follows a uniform distribution with the parameter (τ_{\min} , τ_{\max}), where the τ_{\min} is the smallest shift size and τ_{\max} is the largest shift size (Castagliola, Celano and Psarakis, 2011). Castagliola, Celano and Psarakis (2011) suggested using $\tau_{\min} =$ 1 and $\tau_{\max} = 2$ for increasing shift in the CV. Due to the difficulty in evaluating the integral of *EATS* directly, the Gauss-Legendre quadrature is used to approximate it.

3.3 Optimization procedure

In this section, the algorithms to obtain the optimal VP CV chart's parameters $(n_{\rm s}^*, n_{\rm L}^*, h_{\rm s}^*, h_{\rm L}^*, W_{\rm s}^*, W_{\rm L}^*, K_{\rm s}^*, K_{\rm L}^*)$ are explained. Two optimization criteria are considered. For the first criterion, we select the optimal chart's parameters which minimize ATS_1 , while for the second criterion, we select the optimal chart's parameters which minimizes $EATS_1$. The first criterion is used when τ is known, while the second criterion is used when τ is unknown. For both of these criteria, constraints in the in-control ATS (ATS_0), in-control sample size (n_0) and in-control average sampling interval (h_0) need to be satisfied.

For the first optimization criterion, in order to minimize the ATS_1 , $(n_s^*, n_L^*, h_s^*, h_L^*, W_s^*, W_L^*, K_s^*, K_L^*)$ is obtained such that $(n_s^*, n_L^*, h_s^*, h_L^*, W_s^*, W_L^*, K_s^*, K_L^*) = \underset{(n_s, n_L, h_s, h_L, W_s, W_L, K_s, K_L)}{\operatorname{arg min}} ATS_1(n_s, n_L, h_s, h_L, W_s, W_L, K_s, K_L, \gamma_0, \tau),$ (3.17)

subject to the constraints

$$b_1 n_{\rm S} + b_2 n_{\rm L} = n_0, \qquad (3.18)$$

$$b_1 h_{\rm L} + b_2 h_{\rm S} = h_0 \,, \tag{3.19}$$

and

$$P[|T_i| > K_{\rm L}]b_1 + P[|T_i| > K_{\rm S}]b_2 = P[|T_i| > K_0], \qquad (3.20)$$

where $P[|T_i| > K_0] = \frac{1}{ATS_0}$ of the standard Shewhart CV chart with fixed chart parameters. Constraints (3.18) to (3.20) ensures the n_0 , h_0 and ATS_0 constraints

are satisfied and enables a fair comparison with other charts with fixed chart parameters (Costa, 1999).

The following steps are employed to minimize Equation (3.17) subject to constraints (3.18) to (3.20):

- 1. Set γ_0 , τ , n_0 , h_0 , ATS_0 and h_S . The value of h_S needs to be determined to avoid getting a value of h_S which is too small to be implemented in practical scenarios, as too frequent samplings are usually infeasible.
- 2. Set $n_{\rm S} = 2$.
- 3. Set $n_{\rm L} = n_0 + 1$.
- 4. From Equation (18) and since $b_1 + b_2 = 1$, $b_1 = \frac{n_0 n_L}{n_S n_L}$.
- 5. Substitute $b_1 = \frac{n_0 n_L}{n_S n_L}$ and $b_2 = 1 b_1$ into Equation (3.19), then solve for h_L .
- 6. Substitute $b_1 = \frac{n_0 n_L}{n_S n_L}$ and $b_2 = 1 b_1$ into Equation (3.20), then by

using a non-linear equation solver, obtain the $(K_{\rm s}, K_{\rm L})$ combination which solves Equation (3.20) and choose the combination which results in minimum ATS_1 .

7. By using a non-linear equation solver, obtain the (W_s, W_L) combination

which solves
$$b_1 = \frac{p_{11}^0}{p_{11}^0 + p_{12}^0} = \frac{n_0 - n_L}{n_S - n_L}$$
 and choose the combination

which results in minimum ATS_1 .

- 8. Increase $n_{\rm L}$ by 1, and retain the same value for n_s .
- 9. Repeat Steps (4) to (8) until $n_{\rm L} = 31$. Values of $n_{\rm L} > 31$ are not considered as larger values of sample sizes are usually not preferred by practitioners.

- 10. Increase $n_{\rm S}$ by 1.
- 11. Repeat Steps (3) to (10) until $n_{\rm S} = n_0 1$.

From the outputs computed from Steps 1 to 11, the combination of $(n_{\rm S}, n_{\rm L}, h_{\rm S}, h_{\rm L}, W_{\rm S}, W_{\rm L}, K_{\rm S}, K_{\rm L})$ that provides the smallest value of ATS_1 is the optimal chart's parameters $(n_{\rm S}^*, n_{\rm L}^*, h_{\rm S}^*, h_{\rm L}^*, W_{\rm S}^*, W_{\rm L}^*, K_{\rm S}^*, K_{\rm L}^*)$.

In this project, the maximum value of n_L is set as 31. In most applications, there is usually a maximum feasible value for n_L because of constraints on how many items can be conveniently handled in one sample (Reynolds and Arnold, 2001). The maximum number of items which can be handled usually depends on experience and on the particular process involved. In industrial context, it is a common practice to use moderately small sample sizes. Some of the recent papers which also adopted $n_L = 31$ as the maximum value for n_L are Castagliola, et al. (2015a), Yeong, et al. (2015) and Khaw, et al. (2016). However, setting $n_L = 31$ as the maximum value is only a guideline, and other maximum values of n_L can be adopted depending on the process. The same steps to obtain the optimal chart parameters can still be adopted, even though other maximum values of n_L are used.

For the second optimization criterion, in order to minimize the $EATS_1$, $\begin{pmatrix} n_s^*, n_L^*, h_s^*, h_L^*, W_s^*, W_L^*, K_s^*, K_L^* \end{pmatrix}$ is obtained such that $\begin{pmatrix} n_s^*, n_L^*, h_s^*, h_L^*, W_s^*, W_L^*, K_s^*, K_L^* \end{pmatrix} = \underset{\begin{pmatrix} n_s, n_L, h_s, h_L, W_s, W_L, K_s, K_L \end{pmatrix}}{\operatorname{arg min}} EATS_1(n_s, n_L, h_s, h_L, W_s, W_L, K_s, K_L, \gamma_0, \tau_{\min}, \tau_{\max}),$ (3.21) subject to the same constraints in Equations (18) to (20) and by adopting a similar procedure as in Steps (1) to (11). τ_{min} and τ_{max} are determined by the practitioner depending on the process. Note that *EATS*₁ is computed from Equation (16), and unlike *ATS*₁, the exact value of τ does not need to be specified.

CHAPTER 4

NUMERICAL RESULTS AND DISCUSSIONS FOR THE VARIABLE PARAMETERS CONTROL CHART

4.1 Numerical result

By referring to the past reviews, the researchers normally use the *ARL* and the *SDRL* to measure the chart's performance when the sampling interval is fixed. However, the *ATS* and the *SDTS* are used to evaluate the performance of VP CV chart due to the sampling interval is varies. The in control average of the time to signals and the standard deviation of the time to signals are denoted as ATS_0 and $SDTS_0$ respectively. On the other hand, when the process is out-of-control the average of the time and the standard deviation of the time to signals are denoted as ATS_1 and $SDTS_1$ respectively.

Based on the VP CV chart, the sampling intervals, the sample sizes, the warning limits and the control limits are vary into two levels (i.e. the sampling intervals is vary into h_L and h_S) to minimize the ATS_1 . Firstly, the optimal chart's parameters n_S , n_L , h_L , W_L , W_S , K_L , K_S are obtained to minimize the ATS_1 , subject to the constraints ATS_0 , ASI_0 and ASS_0 with 370.4, 1 and n_0 . In order to detect the increasing CV shifts, $\tau \in \{1.1, 1.2, 1.5, 2.0\}$, $n_0 \in \{5, 7, 10, 15\}$ are considered for the Tables 4.1 to Table 4.4. The ATS_1 and $SDTS_1$ values are obtained for a specific shift size by using the Markov chain discussed in Chapter 3 after the charting parameters, n_S , n_L , h_L , W_L , W_S , K_L , K_S are computed. Take note that an increasing value of τ such as $\tau \in \{1.1, 1.2, 1.5, 2.0\}$ in computing the ATS_1 will increase the value of γ_0 . For this project, we

Table 4.1: Values of $(a_S, b_S, c_S, a_L, b_L, c_L)$, optimal chart parameters $(n_S, n_L, h_L, W_L, W_S, K_L, K_S)$ and the corresponding out-of-control *ATS*₁ and *SDTS*₁ of the VP- γ chart when $\gamma_0 = 0.05$, $n_0 = \{5, 7, 10, 15\}$, $h_S \in \{0.01, 0.10\}$ and $\tau \in \{1.1, 1.2, 1.5, 2.0\}$.

		~
τ		$n_0 = 5$
	hs = 0.01	hs = 0.10
1.1	6.27, 2.21, -0.02, 43.22, 22.23, -0.09	6.27, 2.21, -0.02, 43.22, 22.23, -0.09
	2,31, 1.11,1.63, 1.53, 2.86, 2.24	2, 31, 1.10, 1.63, 1.53, 2.86, 2.24
	84.17, 85.48	84.40, 85.62
1.2	6.27, 2.21, -0.02, 43.22, 22.23, -0.09	6.27, 2.21, -0.02, 43.22, 22.23, -0.09
	2, 31, 1.11, 1.63, 1.53, 2.93, 2.23	2, 31, 1.10, 1.63, 1.53, 2.92, 2.23
	20.62, 21.82	20.77, 21.85
1.5	9.86, 4.14, -0.05, 30.31, 15.37, -0.09	9.86, 4.14, -0.05, 31.34, 15.92, -0.09
	3, 16, 1, 18, 1, 45, 1, 39, 2, 88, 2, 45	3, 17, 1, 15, 1, 49, 1, 42, 2, 87, 2, 44
	2.96. 3.84	3.05, 3.82
2.0	9 86 4 14 -0.05 16 91 8 08 -0.08	9 86 4 14 -0.05 18 69 9.07 -0.08
2.0	3 6 2 98 0 46 0 44 2 79 2 77	3 7 1 90 0 72 0 68 2 79 2 75
	0 57 2 10	0.65, 1.73
	0.37, 2.19	0.03, 1.75
τ	1 0.01	$n_0 = /$
	hs = 0.01	hs = 0.10
1.1	6.27, 2.21, -0.02, 43.22, 22.23, -0.09	6.27, 2.21, -0.02, 43.22, 22.23, -0.09
	2, 31, 1.21, 1.44, 1.33, 2.97, 2.42	2, 31, 1.21, 1.44, 1.33, 2.97, 2.42
	72.25, 73.68	72.25, 73.68
1.2	6.27, 2.21, -0.02, 43.22, 22.23, -0.09	6.27, 2.21, -0.02, 43.22, 22.23, -0.09
	2, 31, 1.21, 1.44, 1.33, 2.99, 2.41	2, 31, 1.21, 1.44, 1.33, 3.04, 2.41
	15.04, 16.35	15.04, 16.35
1.5	12.63, 5.69, -0.06, 31.34, 15.92, -0.09	12.63, 5.69, -0.06, 32.34, 16.45, -0.09
	4, 17, 1.30, 1.22, 1.18, 2.98, 2.58	4, 18, 1.25, 1.26, 1.22, 2.96, 2.56
	1.72, 2.65	1.82, 2.62
2.0	14.92, 6.98, -0.07, 20.31, 9.96, -0.08	14.92, 6.98, -0.07, 20.31, 9.96, -0.08
	5, 8, 2.98, 0.44, 0.44, 2.92, 2.83	5, 8, 2.80, 0.44, 0.44, 2.92, 2.83
	0.24, 1.74	0.30, 1.62
τ		$n_0 = 10$
_	hs = 0.01	hs = 0.10
1.1	6.27, 2.21, -0.02, 43.22, 22.23, -0.09	6.27, 2.21, -0.02, 43.22, 22.23, -0.09
	2, 31, 1.38, 1.20, 1.08, 3.08, 2.57	2, 31, 1, 34, 1, 20, 1, 08, 3, 08, 2, 57
	61.68, 63.23	62.15. 63.56
1.2	9 86 4 14 -0 05 43 22 22 23 -0 09	9 86 4 14 -0 05 43 22 22 23 -0 09
1.2	3 31 1 33 1 19 1 13 3 39 2 54	3 31 1 30 1 19 1 13 3 39 2 54
	10 77 12 11	11 02 12 21
1.5	14.02.6.08 0.07 31 34 15.02 0.00	16.01 8.08 0.08 33 30 16.06 0.00
1.5	5 17 1 71 0 92 0 91 2 12 2 72	6 10 140 102 101 214 265
	5, 17, 1.71, 0.65, 0.61, 5.15, 2.75	0, 19, 1.40, 1.05, 1.01, 5.14, 2.05
2.0	0.92, 2.07	
2.0	20.51, 9.90, -0.08, 24.55, 12.20, -0.09	20.51, 9.90, -0.08, 24.55, 12.20, -0.09
	8, 11, 2.98, 0.44, 0.43, 2.95, 2.89	8, 11, 2.80, 0.44, 0.43, 2.95, 2.89
	0.08, 1.51	0.11, 1.39
τ	1 0.01	$n_0 = 15$
	hs = 0.01	<i>h</i> s = 0.10
1.1	9.86, 4.14, -0.05, 43.22, 22.23, -0.09	9.86, 4.14, -0.05, 43.22, 22.23, -0.09
	3, 31, 1.74, 0.84, 0.79, 3.43, 2.72	3, 31, 1.68, 0.84, 0.79, 3.43, 2.72
1.2	52.04, 53.76	52.74, 54.29
1.2	9.86, 4.14, -0.05, 43.22, 22.23, -0.09	9.86, 4.14, -0.05, 43.22, 22.23, -0.09
	3, 31, 1.74, 0.84, 0.79, 3.57, 2.72	3, 31, 1.68, 0.84, 0.79, 3.57, 2.72
	7.40, 8.99	7.74, 9.12
1.5	21.81, 10.78, -0.08, 33.30, 16.96, -0.09	21.81, 10.78, -0.08, 35.15, 17.95, -0.09
	9, 19, 2.49, 0.53, 0.52, 3.23, 2.84	9, 21, 1.90, 0.68, 0.67, 3.21, 2.80
	0.38, 1.75	0.48, 1.49
2.0	27.00, 13.59, -0.09, 30.31, 15.37, -0.09	27.00, 13.59, -0.09, 30.31, 15.37, -0.09
	13, 16, 2.98, 0.43, 0.43, 2.95, 2.94	13, 16, 2.80, 0.43, 0.43, 2.95, 2.94
	0.02, 1.42	0.03, 1.30
	0102, 1112	,

Table 4.2: Values of $(a_S, b_S, c_S, a_L, b_L, c_L)$, optimal chart parameters $(n_S, n_L, h_L, W_L, W_S, K_L, K_S)$ and the corresponding out-of-control *ATS*₁ and *SDTS*₁ of the VP- γ chart when $\gamma_0 = 0.10, n_0 = \{5, 7, 10, 15\}, h_S \in \{0.01, 0.10\}$ and $\tau \in \{1.1, 1.2, 1.5, 2.0\}$.

τ	$n_0 =$	5
	$h_{\rm S} = 0.01$	hs = 0.10
1.1	4.70, 2.18, -0.05, 27.30, 20.94, -0.17	4.70, 2.18, -0.05, 27.30, 20.94, -0.17
	2, 31, 1.11, 1.63, 1.53, 2.88, 2.24	2, 31, 1.10, 1.63, 1.53, 2.88, 2.24
	85.12, 86.44	85.36, 86.57
1.2	4.70, 2.18, -0.05, 27.30, 20.94, -0.17	4.70, 2.18, -0.05, 27.30, 20.94, -0.17
	2, 31, 1.11, 1.63, 1.53, 2.95, 2.23	2, 31, 1.10, 1.63, 1.53, 2.95, 2.23
	20.98, 22.17	21.13, 22.21
1.5	6.89, 4.04, -0.10, 19.30, 14.53, -0.17	6.89, 4.04, -0.10, 19.94, 15.04, -0.17
	3, 16, 1.18, 1.45, 1.39, 2.90, 2.45	3, 17, 1.15, 1.49, 1.42, 2.89, 2.44
2.0	3.02, 3.91	3.11, 3.88
2.0	6.89, 4.04, -0.10, 11.11, 7.73, -0.14	0.89, 4.04, -0.10, 12.18, 8.05, -0.15
	5, 0, 2.98, 0.40, 0.44, 2.79, 2.78	5, 7, 1.90, 0.71, 0.08, 2.79, 2.70
	0.39, 2.22	7
τ	$h_0 = -0.01$	$\frac{1}{10000000000000000000000000000000000$
11	$\frac{1}{470} 218 - 0.05 2730 20.94 - 0.17$	4 70 2 18 -0.05 27 30 20.94 -0.17
1.1	2, 31, 1, 21, 1, 44, 1, 33, 2, 99, 2, 42	2, 31, 1, 19, 1, 44, 1, 33, 2, 99, 2, 42
	73.23, 74.65	73.56, 74.87
1.2	4.70, 2.18, -0.05, 27.30, 20.94, -0.17	4.70, 2.18, -0.05, 27.30, 20.94, -0.17
	2, 31, 1.21, 1.44, 1.33, 3.07, 2.41	2, 31, 1.19, 1.44, 1.33, 3.07, 2.41
	15.36, 16.66	15.54, 16.72
1.5	8.54, 5.50, -0.12, 19.94, 15.04, -0.17	8.54, 5.50, -0.12, 20.55, 15.54, -0.17
	4, 17, 1.30, 1.22, 1.18, 3.00, 2.58	4, 18, 1.25, 1.26, 1.22, 2.98, 2.56
	1.76, 2.70	1.87, 2.66
2.0	9.91, 6.70, -0.14, 13.17, 9.48, -0.15	9.91, 6.70, -0.14, 13.17, 9.48, -0.15
	5, 8, 2.98, 0.44, 0.44, 2.94, 2.83	5, 8, 2.80, 0.44, 0.44, 2.94, 2.83
	0.25, 1.75	0.32, 1.64
τ	$n_0 = 1$	$h_{0} = 0.10$
11	$n_{\rm S} = 0.01$	$\frac{ns = 0.10}{4.70, 2.18, -0.05, 27.30, 20.94, -0.17}$
1.1	2 31 1 38 1 20 1 08 3 11 2 57	2 31 1 34 1 20 1 08 3 11 2 57
	62.63.64.18	63 10, 64 51
1.2	6.89, 4.04, -0.10, 27.30, 20.94, -0.17	6.89, 4.04, -0.10, 27.30, 20.94, -0.17
	3, 31, 1.33, 1.19, 1.13, 3.42, 2.54	3, 31, 1.30, 1.19, 1.3, 3.42, 2.54
	11.04, 12.38	11.30, 12.48
1.5	9.91, 6.70, -0.14, 20.55, 15.54, -0.17	9.91, 6.70, -0.14, 21.15, 16.02, -0.17
	5, 18, 1.62, 0.89, 0.87, 3.14, 2.71	5, 19, 1.50, 0.94, 0.92, 3.12, 2.69
	0.95, 2.05	1.05, 1.98
2.0	13.17, 9.48, -0.15, 15.75, 11.63, -0.16	13.17, 9.48, -0.15, 15.75, 11.63, -0.16
	8 11 2 98 0 44 0 43 2 96 2 90	
	0, 11, 2.90, 0.44, 0.43, 2.90, 2.90	8, 11, 2.80, 0.44, 0.43, 2.97, 2.89
	0.08, 1.52	8, 11, 2.80, 0.44, 0.43, 2.97, 2.89 0.12, 1.40
τ	$\frac{0.08, 11, 2.36, 0.44, 0.43, 2.30, 2.30}{0.08, 1.52}$	8, 11, 2.80, 0.44, 0.43, 2.97, 2.89 0.12, 1.40
τ	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	8, 11, 2.80, 0.44, 0.43, 2.97, 2.89 $0.12, 1.40$ 15 $680, 4.04, 0.10, 27, 20, 20, 04, 0, 17$
τ 1.1	$\begin{array}{r} & & & & & & & & & & & & & & & & & & &$	8, 11, 2.80, 0.44, 0.43, 2.97, 2.89 0.12, 1.40 15 $hs = 0.10$ 6.89, 4.04, -0.10, 27.30, 20.94, -0.17 3 31, 1.68, 0.84, 0.79, 3.46, 2.72
τ 1.1	$\begin{array}{r} & & & & & & & & & & & & & & & & & & &$	8, 11, 2.80, 0.44, 0.43, 2.97, 2.89 0.12, 1.40 15 6.89, 4.04, -0.10, 27.30, 20.94, -0.17 3, 31, 1.68, 0.84, 0.79, 3.46, 2.72 53.64, 55, 19
τ 1.1	$ \begin{array}{r} & n_{0} = \\ \hline & n_{0} $	8, 11, 2.80, 0.44, 0.43, 2.97, 2.89 $0.12, 1.40$ 15 $6.89, 4.04, -0.10, 27.30, 20.94, -0.17$ $3, 31, 1.68, 0.84, 0.79, 3.46, 2.72$ $53.64, 55.19$ $6.89, 4.04, -0.10, 27, 30, 20.94, -0.17$
τ 1.1 1.2	$ \begin{array}{r} & n_{0} = \\ \hline & n_{0} $	8, 11, 2.80, 0.44, 0.43, 2.97, 2.89 $0.12, 1.40$ 15 $6.89, 4.04, -0.10, 27.30, 20.94, -0.17$ $3, 31, 1.68, 0.84, 0.79, 3.46, 2.72$ $53.64, 55.19$ $6.89, 4.04, -0.10, 27.30, 20.94, -0.17$ $3, 31, 1.68, 0.84, 0.79, 3.60, 2.72$
τ 1.1 1.2	$\begin{array}{r} n_{0} = \\ \hline n_{0} = \\ n$	8, 11, 2.80, 0.44, 0.43, 2.97, 2.89 $0.12, 1.40$ 15 $6.89, 4.04, -0.10, 27.30, 20.94, -0.17$ $3, 31, 1.68, 0.84, 0.79, 3.46, 2.72$ $53.64, 55.19$ $6.89, 4.04, -0.10, 27.30, 20.94, -0.17$ $3, 31, 1.68, 0.84, 0.79, 3.60, 2.72$ $7.96, 9.34$
τ 1.1 1.2 1.5	$ \begin{array}{r} n_{0} = \\ \hline n_{0} = \\ $	8, 11, 2.80, 0.44, 0.43, 2.97, 2.89 $0.12, 1.40$ 15 $6.89, 4.04, -0.10, 27.30, 20.94, -0.17$ $3, 31, 1.68, 0.84, 0.79, 3.46, 2.72$ $53.64, 55.19$ $6.89, 4.04, -0.10, 27.30, 20.94, -0.17$ $3, 31, 1.68, 0.84, 0.79, 3.60, 2.72$ $7.96, 9.34$ $14.08, 10.25, -0.16, 22.84, 17.38, -0.17$
τ 1.1 1.2 1.5	$ \begin{array}{r} n_{0} = \\ \hline n_{0} = \\ $	$\begin{array}{r} 8, 11, 2.80, 0.44, 0.43, 2.97, 2.89\\ 0.12, 1.40\\ \hline \\ \hline$
τ 1.1 1.2 1.5	$ \begin{array}{r} n_{0} = \\ \hline n_{0} = \\ $	$\begin{array}{r} 8, 11, 2.80, 0.44, 0.43, 2.97, 2.89\\ 0.12, 1.40\\ \hline \\ \hline$
τ 1.1 1.2 1.5 2.0	$ \begin{array}{r} n_{0}=\\ 0.08, 1.52\\ \hline n_{0}=\\ \hline n_{0}=$	$\begin{array}{r} 8, 11, 2.80, 0.44, 0.43, 2.97, 2.89\\ 0.12, 1.40\\ \hline \\ \hline$
τ 1.1 1.2 1.5 2.0	$ \begin{array}{r} n_{0}= \\ \hline n_{$	$\begin{array}{r} 8, 11, 2.80, 0.44, 0.43, 2.97, 2.89\\ 0.12, 1.40\\ \hline \\ \hline$

Table 4.3: Values of $(a_S, b_S, c_S, a_L, b_L, c_L)$, optimal chart parameters $(n_S, n_L, h_L, W_L, W_S, K_L, K_S)$ and the corresponding out-of-control *ATS*₁ and *SDTS*₁ of the VP- γ chart when $\gamma_0 = 0.15$, $n_0 = \{5, 7, 10, 15\}$, $h_S \in \{0.01, 0.10\}$ and $\tau \in \{1.1, 1.2, 1.5, 2.0\}$.

τ	$n_0 =$	5
·	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
1.1	3.76, 2.13, -0.07, 18.69, 19.11, -0.23	3.76, 2.13, -0.07, 18.69, 19.11, -0.23
	2, 31, 1.11, 1.63, 1.53, 2.92, 2.25	2, 31, 1.10, 1.63, 1.53, 2.92, 2.25
	86.71, 88.02	86.95, 88.16
1.2	3.76, 2.13, -0.07, 18.69, 19.11, -0.23	3.76, 2.13, -0.07, 18.69, 19.11, -0.23
	2, 31, 1.11, 1.63, 1.53, 3.00, 2.24	2, 31, 1.10, 1.63, 1.53, 3.00, 2.24
	21.58, 22.76	21.73, 22.82
1.5	5.16, 3.87, -0.14, 13.72, 13.79, -0.22	5.16, 3.87, -0.14, 14.13, 14.23, -0.22
	3, 17, 1.17, 1.48, 1.42, 2.93, 2.43	3, 18, 1.14, 1.52, 1.45, 2.91, 2.42
	3.12, 3.99	3.21, 3.97
2.0	5.16, 3.87, -0.14, 8.56, 8.04, -0.20	5.16, 3.87, -0.14, 8.56, 8.04, -0.20
	3, 7, 1.99, 0.71, 0.68, 2.81, 2.77	3, 7, 1.90, 0.71, 0.68, 2.81, 2.77
	0.63, 1.85	0./1, 1./8
τ	$n_0 =$	1 0.10
1.1	$h_{\rm S} = 0.01$	$\frac{n_{\rm S} = 0.10}{2.76 \cdot 2.12 \cdot 0.07 \cdot 18.60 \cdot 10.11 \cdot 0.22}$
1.1	3.70, 2.13, -0.07, 18.09, 19.11, -0.23	5.70, 2.15, -0.07, 18.09, 19.11, -0.25
	2, 51, 1.21, 1.44, 1.55, 5.04, 2.42	2, 51, 1.19, 1.44, 1.55, 5.04, 2.42
12	3 76 2 13 -0.07 18 69 19 11 -0.23	3 76 2 13 -0.07 18 69 19 11 -0.23
1.2	2 31 1 21 1 44 1 33 3 13 2 41	2 31 1 10 1 44 1 33 3 13 2 41
	15 89 17 20	16.08 17.26
15	6 21 5 20 -0 17 14 13 14 23 -0 22	6 21 5 20 -0 17 14 53 14 67 -0 22
10	4, 18, 1.27, 1.26, 1.22, 3.01, 2.56	4, 19, 1.23, 1.30, 1.26, 3.00, 2.55
	1.84, 2.75	1.94, 2.73
2.0	7.08, 6.29, -0.19, 9.21, 8.79, -0.21	7.08, 6.29, -0.19, 9.21, 8.79, -0.21
	5, 8, 2.98, 0.44, 0.43, 2.96, 2.84	5, 8, 2.80, 0.44, 0.43, 2.96, 2.84
	0.27, 1.78	0.34, 1.66
τ	$n_0 =$	10
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
1.1	3.76, 2.13, -0.07, 18.69, 19.11, -0.23	3.76, 2.13, -0.07, 18.69, 19.11, -0.23
	2, 31, 1.38, 1.20, 1.08, 3.17, 2.58	2, 31, 1.34, 1.20, 1.08, 3.17, 2.58
1.0	64.22, 65.77	64.70, 66.11
1.2	5.10, 5.87, -0.14, 18.09, 19.11, -0.23	3.76, 2.13, -0.07, 18.69, 19.11, -0.23
	5, 51, 1.55, 1.19, 1.15, 5.46, 2.54	2, 51, 1.54, 1.20, 1.08, 5.27, 2.57
	11 50 12 84	11 76 12 04
15	11.50, 12.84 7.08, 6.29, -0.19, 14, 13, 14, 23, -0.22	11.76, 13.04 7.08 6.29 -0.19 14.92 15.09 -0.22
1.5	11.50, 12.84 7.08, 6.29, -0.19, 14.13, 14.23, -0.22 5, 18, 1, 62, 0, 89, 0, 87, 3, 17, 2, 71	11.76, 13.04 7.08, 6.29, -0.19, 14.92, 15.09, -0.22 5 20 1 45 0 98 0 96 3 14 2 68
1.5	11.50, 12.84 7.08, 6.29, -0.19, 14.13, 14.23, -0.22 5, 18, 1.62, 0.89, 0.87, 3.17, 2.71 1.00, 2.10	11.76, 13.04 7.08, 6.29, -0.19, 14.92, 15.09, -0.22 5, 20, 1.45, 0.98, 0.96, 3.14, 2.68 1 10, 2 01
1.5 2.0	11.50, 12.84 7.08, 6.29, -0.19, 14.13, 14.23, -0.22 5, 18, 1.62, 0.89, 0.87, 3.17, 2.71 1.00, 2.10 9.21, 8.79, -0.21, 10.92, 10.72, -0.22	11.76, 13.04 7.08, 6.29, -0.19, 14.92, 15.09, -0.22 5, 20, 1.45, 0.98, 0.96, 3.14, 2.68 1.10, 2.01 9.21, 8.79, -0.21, 10.92, 10.72, -0.22
1.5 2.0	11.50, 12.84 7.08, 6.29, -0.19, 14.13, 14.23, -0.22 5, 18, 1.62, 0.89, 0.87, 3.17, 2.71 1.00, 2.10 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 8, 11, 2.98, 0.44, 0.43, 2.98, 2.90	11.76, 13.04 7.08, 6.29, -0.19, 14.92, 15.09, -0.22 5, 20, 1.45, 0.98, 0.96, 3.14, 2.68 1.10, 2.01 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 8, 11, 2.80, 0.44, 0.43, 2.99, 2.89
1.5 2.0	11.50, 12.84 7.08, 6.29, -0.19, 14.13, 14.23, -0.22 5, 18, 1.62, 0.89, 0.87, 3.17, 2.71 1.00, 2.10 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 8, 11, 2.98, 0.44, 0.43, 2.98, 2.90 0.09, 1.53	11.76, 13.04 7.08, 6.29, -0.19, 14.92, 15.09, -0.22 5, 20, 1.45, 0.98, 0.96, 3.14, 2.68 1.10, 2.01 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 8, 11, 2.80, 0.44, 0.43, 2.99, 2.89 0.14, 1.41
1.5 2.0 τ	$\begin{array}{c} 11.50, 12.84 \\ 7.08, 6.29, -0.19, 14.13, 14.23, -0.22 \\ 5, 18, 1.62, 0.89, 0.87, 3.17, 2.71 \\ 1.00, 2.10 \\ 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 \\ 8, 11, 2.98, 0.44, 0.43, 2.98, 2.90 \\ 0.09, 1.53 \\ \hline n_0 = \end{array}$	11.76, 13.04 7.08, 6.29, -0.19, 14.92, 15.09, -0.22 5, 20, 1.45, 0.98, 0.96, 3.14, 2.68 1.10, 2.01 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 8, 11, 2.80, 0.44, 0.43, 2.99, 2.89 0.14, 1.41
1.5 2.0 τ	$\frac{11.50, 12.84}{7.08, 6.29, -0.19, 14.13, 14.23, -0.22} \\ 5, 18, 1.62, 0.89, 0.87, 3.17, 2.71 \\ 1.00, 2.10 \\ 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 \\ 8, 11, 2.98, 0.44, 0.43, 2.98, 2.90 \\ 0.09, 1.53 \\ \hline \hline \begin{array}{c} n_0 = \\ n_0 = \\ \hline h_{\rm S} = 0.01 \end{array}$	$11.76, 13.04$ $7.08, 6.29, -0.19, 14.92, 15.09, -0.22$ $5, 20, 1.45, 0.98, 0.96, 3.14, 2.68$ $1.10, 2.01$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.80, 0.44, 0.43, 2.99, 2.89$ $0.14, 1.41$ 15 $h_{\rm S} = 0.10$
1.5 2.0 	$11.50, 12.84$ 7.08, 6.29, -0.19, 14.13, 14.23, -0.22 5, 18, 1.62, 0.89, 0.87, 3.17, 2.71 1.00, 2.10 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 8, 11, 2.98, 0.44, 0.43, 2.98, 2.90 0.09, 1.53 $n_0 = \frac{n_0 = \frac{n_0 = 1}{h_8 = 0.01}}{5.16, 3.87, -0.14, 18.69, 19.11, -0.23}$	$\begin{array}{r} 11.76, 13.04 \\ 7.08, 6.29, -0.19, 14.92, 15.09, -0.22 \\ 5, 20, 1.45, 0.98, 0.96, 3.14, 2.68 \\ 1.10, 2.01 \\ 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 \\ 8, 11, 2.80, 0.44, 0.43, 2.99, 2.89 \\ 0.14, 1.41 \\ \hline \\ \hline \hline \begin{array}{r} h_{\rm S} = 0.10 \\ \hline 5.16, 3.87, -0.14, 18.69, 19.11, -0.23 \end{array}$
1.5 2.0 τ 1.1	$11.50, 12.84$ $7.08, 6.29, -0.19, 14.13, 14.23, -0.22$ $5, 18, 1.62, 0.89, 0.87, 3.17, 2.71$ $1.00, 2.10$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.98, 0.44, 0.43, 2.98, 2.90$ $0.09, 1.53$ $n_0 = \frac{n_0 = \frac{n_0 = 1}{1000}}{\frac{10000}{1000}}$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.74, 0.83, 0.79, 3.51, 2.72$	$11.76, 13.04$ $7.08, 6.29, -0.19, 14.92, 15.09, -0.22$ $5, 20, 1.45, 0.98, 0.96, 3.14, 2.68$ $1.10, 2.01$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.80, 0.44, 0.43, 2.99, 2.89$ $0.14, 1.41$ 15 $h_{\rm s} = 0.10$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.68, 0.83, 0.79, 3.51, 2.72$
1.5 2.0 τ 1.1	$\begin{array}{c} 11.50, 12.84 \\ 7.08, 6.29, -0.19, 14.13, 14.23, -0.22 \\ 5, 18, 1.62, 0.89, 0.87, 3.17, 2.71 \\ 1.00, 2.10 \\ 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 \\ 8, 11, 2.98, 0.44, 0.43, 2.98, 2.90 \\ 0.09, 1.53 \\ \hline \hline \\ \hline $	$11.76, 13.04$ $7.08, 6.29, -0.19, 14.92, 15.09, -0.22$ $5, 20, 1.45, 0.98, 0.96, 3.14, 2.68$ $1.10, 2.01$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.80, 0.44, 0.43, 2.99, 2.89$ $0.14, 1.41$ 15 $h_{s} = 0.10$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.68, 0.83, 0.79, 3.51, 2.72$ $55.16, 56.71$
1.5 2.0 7 1.1 1.2	$\begin{array}{c} 11.50, 12.84 \\ 7.08, 6.29, -0.19, 14.13, 14.23, -0.22 \\ 5, 18, 1.62, 0.89, 0.87, 3.17, 2.71 \\ 1.00, 2.10 \\ 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 \\ 8, 11, 2.98, 0.44, 0.43, 2.98, 2.90 \\ 0.09, 1.53 \\ \hline \hline \\ \hline $	$11.76, 13.04$ $7.08, 6.29, -0.19, 14.92, 15.09, -0.22$ $5, 20, 1.45, 0.98, 0.96, 3.14, 2.68$ $1.10, 2.01$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.80, 0.44, 0.43, 2.99, 2.89$ $0.14, 1.41$ 15 $h_{s} = 0.10$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.68, 0.83, 0.79, 3.51, 2.72$ $55.16, 56.71$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$
1.5 2.0 7 1.1 1.2	$11.50, 12.84$ $7.08, 6.29, -0.19, 14.13, 14.23, -0.22$ $5, 18, 1.62, 0.89, 0.87, 3.17, 2.71$ $1.00, 2.10$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.98, 0.44, 0.43, 2.98, 2.90$ $0.09, 1.53$ $n_0 = \frac{n_0 = \frac{n_0 = 1}{100000000000000000000000000000000000$	$11.76, 13.04$ $7.08, 6.29, -0.19, 14.92, 15.09, -0.22$ $5, 20, 1.45, 0.98, 0.96, 3.14, 2.68$ $1.10, 2.01$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.80, 0.44, 0.43, 2.99, 2.89$ $0.14, 1.41$ 15 $h_{\rm s} = 0.10$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.68, 0.83, 0.79, 3.51, 2.72$ $55.16, 56.71$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.68, 0.83, 0.79, 3.67, 2.72$
1.5 2.0 7 1.1 1.2	$11.50, 12.84$ $7.08, 6.29, -0.19, 14.13, 14.23, -0.22$ $5, 18, 1.62, 0.89, 0.87, 3.17, 2.71$ $1.00, 2.10$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.98, 0.44, 0.43, 2.98, 2.90$ $0.09, 1.53$ $n_0 = \frac{n_0 = \frac{n_0 = 1}{100000000000000000000000000000000000$	$11.76, 13.04$ $7.08, 6.29, -0.19, 14.92, 15.09, -0.22$ $5, 20, 1.45, 0.98, 0.96, 3.14, 2.68$ $1.10, 2.01$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.80, 0.44, 0.43, 2.99, 2.89$ $0.14, 1.41$ 15 $h_{\rm s} = 0.10$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.68, 0.83, 0.79, 3.51, 2.72$ $55.16, 56.71$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.68, 0.83, 0.79, 3.67, 2.72$ $8.34, 9.72$
1.5 2.0 τ 1.1 1.2 1.5	$11.50, 12.84$ $7.08, 6.29, -0.19, 14.13, 14.23, -0.22$ $5, 18, 1.62, 0.89, 0.87, 3.17, 2.71$ $1.00, 2.10$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.98, 0.44, 0.43, 2.98, 2.90$ $0.09, 1.53$ $n_0 = \frac{n_0 = \frac{n_0 = 1}{100000000000000000000000000000000000$	$11.76, 13.04$ $7.08, 6.29, -0.19, 14.92, 15.09, -0.22$ $5, 20, 1.45, 0.98, 0.96, 3.14, 2.68$ $1.10, 2.01$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.80, 0.44, 0.43, 2.99, 2.89$ $0.14, 1.41$ 15 $h_{\rm s} = 0.10$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.68, 0.83, 0.79, 3.51, 2.72$ $55.16, 56.71$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.68, 0.83, 0.79, 3.67, 2.72$ $8.34, 9.72$ $9.81, 9.48, -0.21, 15.68, 15.90, -0.23$
$ \begin{array}{r} 1.5\\ 2.0\\ \hline \tau\\ 1.1\\ 1.2\\ 1.5\\ \end{array} $	$11.50, 12.84$ $7.08, 6.29, -0.19, 14.13, 14.23, -0.22$ $5, 18, 1.62, 0.89, 0.87, 3.17, 2.71$ $1.00, 2.10$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.98, 0.44, 0.43, 2.98, 2.90$ $0.09, 1.53$ $n_0 = \frac{n_0 = \frac{n_0 = 1}{100000000000000000000000000000000000$	$\begin{array}{c} 11.76, 13.04\\ 7.08, 6.29, -0.19, 14.92, 15.09, -0.22\\ 5, 20, 1.45, 0.98, 0.96, 3.14, 2.68\\ 1.10, 2.01\\ 9.21, 8.79, -0.21, 10.92, 10.72, -0.22\\ 8, 11, 2.80, 0.44, 0.43, 2.99, 2.89\\ 0.14, 1.41\\ \hline \\ \hline$
1.5 2.0 $\overline{\tau}$ 1.1 1.2 1.5 2.0	$11.50, 12.84$ $7.08, 6.29, -0.19, 14.13, 14.23, -0.22$ $5, 18, 1.62, 0.89, 0.87, 3.17, 2.71$ $1.00, 2.10$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.98, 0.44, 0.43, 2.98, 2.90$ $0.09, 1.53$ $n_0 = \frac{n_0 = \frac{n_0 = 1}{100000000000000000000000000000000000$	$11.76, 13.04$ $7.08, 6.29, -0.19, 14.92, 15.09, -0.22$ $5, 20, 1.45, 0.98, 0.96, 3.14, 2.68$ $1.10, 2.01$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.80, 0.44, 0.43, 2.99, 2.89$ $0.14, 1.41$ 15 $h_{\rm s} = 0.10$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.68, 0.83, 0.79, 3.51, 2.72$ $55.16, 56.71$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.68, 0.83, 0.79, 3.67, 2.72$ $8.34, 9.72$ $9.81, 9.48, -0.21, 15.68, 15.90, -0.23$ $9, 22, 1.77, 0.74, 0.73, 3.24, 2.79$ $0.53, 1.48$
$ 1.5 2.0 \hline \tau 1.1 $	$11.50, 12.84$ $7.08, 6.29, -0.19, 14.13, 14.23, -0.22$ $5, 18, 1.62, 0.89, 0.87, 3.17, 2.71$ $1.00, 2.10$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.98, 0.44, 0.43, 2.98, 2.90$ $0.09, 1.53$ $n_0 = \frac{n_0 = \frac{n_0 = 0}{1}}{\frac{1}{5.16}, 3.87, -0.14, 18.69, 19.11, -0.23}$ $3, 31, 1.74, 0.83, 0.79, 3.51, 2.72$ $54.45, 56.17$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.74, 0.83, 0.79, 3.67, 2.72$ $7.99, 9.58$ $9.81, 9.48, -0.21, 14.92, 15.09, -0.22$ $9, 20, 2.19, 0.61, 0.60, 3.26, 2.82$ $0.43, 1.68$ $11.93, 11.83, -0.22, 13.30, 13.33, -0.22$ $13.16, 208, 0.43, 0.43, 2.96, 2.95$	$\begin{array}{c} 11.76, 13.04 \\ 7.08, 6.29, -0.19, 14.92, 15.09, -0.22 \\ 5, 20, 1.45, 0.98, 0.96, 3.14, 2.68 \\ 1.10, 2.01 \\ 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 \\ 8, 11, 2.80, 0.44, 0.43, 2.99, 2.89 \\ 0.14, 1.41 \\ \hline \\ $
$ 1.5 2.0 \overline{r} 1.1 1.2 1.5 2.0 $	$11.50, 12.84$ $7.08, 6.29, -0.19, 14.13, 14.23, -0.22$ $5, 18, 1.62, 0.89, 0.87, 3.17, 2.71$ $1.00, 2.10$ $9.21, 8.79, -0.21, 10.92, 10.72, -0.22$ $8, 11, 2.98, 0.44, 0.43, 2.98, 2.90$ $0.09, 1.53$ $\boxed{n_0 = \frac{n_0 = 0}{1}}$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.74, 0.83, 0.79, 3.51, 2.72$ $54.45, 56.17$ $5.16, 3.87, -0.14, 18.69, 19.11, -0.23$ $3, 31, 1.74, 0.83, 0.79, 3.67, 2.72$ $7.99, 9.58$ $9.81, 9.48, -0.21, 14.92, 15.09, -0.22$ $9, 20, 2.19, 0.61, 0.60, 3.26, 2.82$ $0.43, 1.68$ $11.93, 11.83, -0.22, 13.30, 13.33, -0.22$ $13, 16, 2.98, 0.43, 0.43, 2.96, 2.95$ $0.02, 1.42$	$\begin{array}{c} 11.76, 13.04 \\ 7.08, 6.29, -0.19, 14.92, 15.09, -0.22 \\ 5, 20, 1.45, 0.98, 0.96, 3.14, 2.68 \\ 1.10, 2.01 \\ 9.21, 8.79, -0.21, 10.92, 10.72, -0.22 \\ 8, 11, 2.80, 0.44, 0.43, 2.99, 2.89 \\ 0.14, 1.41 \\ \hline \\ $

Table 4.4: Values of $(a_S, b_S, c_S, a_L, b_L, c_L)$, optimal chart parameters $(n_S, n_L, h_L, W_L, W_S, K_L, K_S)$ and the corresponding out-of-control *ATS*₁ and *SDTS*₁ of the VP- γ chart when $\gamma_0 = 0.20$, $n_0 = \{5, 7, 10, 15\}$, $h_S \in \{0.01, 0.10\}$ and $\tau \in \{1.1, 1.2, 1.5, 2.0\}$.

		-
τ		$n_0 = 5$
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
1.1	3.09, 2.07, -0.09, 13.43, 17.05, -0.26	3.09, 2.07, -0.09, 13.43, 17.05, -0.26
	2, 31, 1.11, 1.63, 1.53, 2.99, 2.25	2, 31, 1.10, 1.63, 1.53, 2.99, 2.25
	88.90, 90.21	89.14, 90.35
1.2	3.09, 2.07, -0.09, 13.43, 17.05, -0.26	3.09, 2.07, -0.09, 13.43, 17.05, -0.26
	2, 31, 1.11, 1.63, 1.53, 3.09, 2.24	2, 31, 1.10, 1.63, 1.53, 3.08, 2.24
	22.43.23.62	22.58.23.67
15	3 98 3 65 -0 17 10 19 12 75 -0 25	3 98 3 65 -0 17 10 19 12 75 -0 25
10	3 18 1 15 1 52 1 45 2 97 2 42	3 18 1 14 1 52 1 45 2 97 2 42
	3 26 1 13	3 36 1 12
2.0	2 09 2 65 0 17 6 26 7 22 0 24	3.50, 4.12
2.0	3.96, 5.03, -0.17, 0.20, 7.32, -0.24	3.96, 3.05, -0.17, 0.20, 7.52, -0.24
	5, 7, 1.99, 0.70, 0.08, 2.80, 2.77	5, 7, 1.90, 0.71, 0.08, 2.80, 2.77
	0.68, 1.90	0.76, 1.83
τ		$n_0 = 7$
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
1.1	3.09, 2.07, -0.09, 13.43, 17.05, -0.26	3.09, 2.07, -0.09, 13.43, 17.05, -0.26
	2, 31, 1.21, 1.44, 1.33, 3.12, 2.42	2, 31, 1.19, 1.44, 1.33, 3.12, 2.42
	77.12, 78.54	77.45, 78.76
1.2	3.09, 2.07, -0.09, 13.43, 17.05, -0.26	3.09, 2.07, -0.09, 13.43, 17.05, -0.26
	2, 31, 1, 21, 1, 44, 1, 33, 3, 24, 2, 42	2, 31, 1, 19, 1, 44, 1, 33, 3, 23, 2, 42
	16.65, 17.95	16.84, 18.02
15	3 98 3 65 -0 17 9 90 12 36 -0 25	4 66 4 83 -0 20 10 47 13 13 -0 25
1.5	3 17 1 40 1 11 1 06 3 10 2 62	4 19 1 23 1 30 1 26 3 05 2 55
	1 04 3 04	2 05 2 84
2.0	5 25 5 70 0 22 6 71 7 08 0 24	5 25 5 70 0 22 7 12 8 58 0 24
2.0	5 8 2 08 0 44 0 42 2 00 2 85	5 0 1 00 0 60 0 69 2 09 2 91
	5, 6, 2.96, 0.44, 0.45, 2.99, 2.65	5, 9, 1.90, 0.09, 0.08, 2.98, 2.81
	0.30, 1.81	0.38, 1.35
τ	1 0.01	$h_0 = 10$
1.1	$n_{\rm S} = 0.01$	$n_{\rm S} = 0.10$
1.1	3.09, 2.07, -0.09, 13.43, 17.05, -0.20	3.09, 2.07, -0.09, 13.43, 17.05, -0.26
	2, 31, 1.38, 1.20, 1.08, 3.27, 2.58	2, 31, 1.34, 1.20, 1.08, 3.27, 2.58
	66.44, 67.98	66.92, 68.33
1.2	3.09, 2.07, -0.09, 13.43, 17.05, -0.26	3.09, 2.07, -0.09, 13.43, 17.05, -0.26
	2, 31, 1.38, 1.20 1.08, 3.40, 2.58	2, 31, 1.34, 1.20, 1.08, 3.40, 2.58
	12.14, 13.58	12.41, 13.69
1.5	5.25, 5.79, -0.22, 10.47, 13.13, -0.25	5.25, 5.79, -0.22, 10.75, 13.50, -0.25
	5, 19, 1.55, 0.94, 0.92, 3.20, 2.70	5, 20, 1.45, 0.98, 0.96, 3.18, 2.66
	1.07, 2.14	1.17, 2.08
2.0	6.71, 7.98, -0.24, 7.91, 9.67, -0.25	6.71, 7.98, -0.24, 7.91, 9.67, -0.25
	8, 11, 2.98, 0.43, 0.43, 3.02, 2.90	8, 11, 2.80, 0.43, 0.43, 3.02, 2.90
	0.11, 1.55	0.15, 1.43
τ		$n_0 = 15$
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
1.1	3.98, 3.65, -0.17, 13.43, 17.05, -0.26	3.98, 3.65, -0.17, 13.43, 17.05, -0.26
	3, 31, 1,74, 0,83, 0,79, 3,59, 2,72	3, 31, 1,68, 0,83, 0,79, 3,59, 2,72
	56 57, 58 28	57.28.58.83
12	3 98 3 65 -0 17 13 43 17 05 -0 26	3 98 3 65 -0 17 13 43 17 05 -0 26
1.2	3 31 1 74 0 83 0 70 3 78 2 72	3 31 1 68 0 83 0 70 3 78 2 72
	2, 51, 1.77, 0.03, 0.79, 5.70, 2.72 8 52 10 11	2, 51, 1.00, 0.05, 0.77, 5.70, 2.72 8 88 10 27
15	7 12 9 59 0 24 11 02 12 96 0 25	7.12, 9.59, 0.24, 11.55, 14.56, 0.26
1.5	1.15, 0.30, -0.24, 11.02, 15.80, -0.25	1.15, 0.50, -0.24, 11.55, 14.50, -0.20
	9, 21, 1.99, 0.68, 0.67, 3.29, 2.80	9, 25, 1.08, 0.80, 0.79, 5.26, 2.77
• •	0.47, 1.64	0.57, 1.48
2.0	8.28, 10.17, -0.25, 9.59, 11.95, -0.25	8.63, 10.64, -0.25, 9.59, 11.95, -0.25
	12, 16, 3.97, 0.32, 0.32, 2.97, 2.96	13, 16, 2.80, 0.43, 0.43, 2.97, 2.96
	12, 16, 3.97, 0.32, 0.32, 2.97, 2.96 0.02, 1.75	13, 16, 2.80, 0.43, 0.43, 2.97, 2.96 0.05, 1.31

only concern the upward shifts. This is because an adaptive type chart is not a chart to monitor the downward shift in the CV (Castogliola, et al., 2013b). Tables 4.1 to Table 4.4 show the values of $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$ in the first row of each cell, followed by the optimal parameters $(n_{\rm S}, n_{\rm L}, h_{\rm L}, W_{\rm L}, W_{\rm S}, K_{\rm L}, K_{\rm S})$ in the second row of each cell while the corresponding $(ATS_1, SDTS_1)$ values are shown in the third row of each cell. Table 4.1 shows the $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$, optimal parameters of the VP CV chart (n_S , n_L , h_L , W_L , W_S , K_L , K_S) that minimize the ATS₁ when $\gamma_0 = 0.05$ and $h_S \in \{0.01, 0.10\}$. For instances, the (a_S , $b_{\rm S}$, $c_{\rm S}$, $a_{\rm L}$, $b_{\rm L}$, $c_{\rm L}$) = (6.27, 2.21, -0.02, 43.22, 22.23, -0.09) and optimal parameters ($n_{\rm S}$, $n_{\rm L}$, $h_{\rm L}$, $W_{\rm L}$, $W_{\rm S}$, $K_{\rm L}$, $K_{\rm S}$) = (2, 31, 1.11, 1.63, 1.53, 2.86, 2.24) are used to minimize the ATS₁ when the τ , n_0 , h_s , γ_0 are 1.1, 5, 0.01 and 0.05 respectively. Table 4.2 shows the $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$, optimal parameters of the VP CV chart ($n_{\rm S}$, $n_{\rm L}$, $h_{\rm L}$, $W_{\rm L}$, $W_{\rm S}$, $K_{\rm L}$, $K_{\rm S}$) that minimize the ATS₁ when $\gamma_0=0.10$ and $h_S \in \{0.01, 0.10\}$. Table 4.3 shows the $(a_S, b_S, c_S, a_L, b_L, c_L)$, optimal parameters of the VP CV chart (n_S , n_L , h_L , W_L , W_S , K_L , K_S) that minimize the ATS₁ when $\gamma_0=0.15$ and $h_S \in \{0.01, 0.10\}$. Table 4.4 shows the $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$, optimal parameters of the VP CV chart $(n_{\rm S}, n_{\rm L}, h_{\rm L}, W_{\rm L})$, $W_{\rm S}$, $K_{\rm L}$, $K_{\rm S}$) that minimize the ATS₁ when $\gamma_0 = 0.20$ and $h_{\rm S} \in \{0.01, 0.10\}$. The optimal parameters obtained from Scicoslab optimization program are based on the steps mentioned in Chapter 3. Practitioners can refer to the tables of optimal charting parameters provided in this section to implement the VP CV chart, thereby facilitating a quick implementation of the proposed chart by practitioners. For ease of implementation, this project also provides the values of $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$, which are the parameters required to obtain the transformed statistics T_i and are defined by Equations (8a) to (8c). Note that (a_s , b_s , c_s) are adopted for n_s , while (a_L , b_L , c_L) are adopted for n_L .

From the Table 4.1 to Table 4.4, the value of ATS_1 and $SDTS_1$ increase when the τ approaches 1. As noticed that the $\tau = 1$ represents an in-control process. Thus, the VP CV chart will likely to take more time to detect the out-of-control sample when the shift size is smaller. Furthermore, a smaller value of $SDTS_1$ also shows that the variability in the time to signal decreases as τ becomes larger. Thus, the further τ is from 1, the larger the shift and the shift can be detected faster. Since larger values of τ are easier to be detected, the difference between n_S and n_L becomes smaller as τ increases. Apart from that, there is a slightly different in term of ATS_1 when the $h_S = 0.01$ and $h_S = 0.10$. From the table shown, $h_S = 0.01$ has smaller ATS_1 value compare to the $h_S =$ 0.10 when the γ_0 remain constant. Different values of γ_0 have small impact on the ATS_1 and $SDTS_1$ values of the VP CV chart.

In overall, the larger the difference between $h_{\rm S}$ and $h_{\rm L}$, the smaller the ATS_1 value. This is because the $W_{\rm S}$ and $W_{\rm L}$ decrease when the difference between $h_{\rm S}$ and $h_{\rm L}$ is increased. From that, the warning region tends to cover a large portion compare to the central region in the control interval. Therefore, this situation will improve the statistical properties of the VP CV chart due to the higher chance of tightened sampling. As expected, there is a decrease in the values of ATS_1 and $SDTS_1$ with an increase in the sample size (n_0) . Therefore, it is recommended to use a larger sample size, since a larger sample size not only

results in less time to detect an out-of-control condition but also results in a smaller variability in the time to signal.

Apart from that, the VP CV chart is evaluated in term of *EATS*₁ value. Firstly, the optimal chart's parameters ($n_{\rm S}$, $n_{\rm L}$, $h_{\rm L}$, $W_{\rm L}$, $W_{\rm S}$, $K_{\rm L}$, $K_{\rm S}$) are obtained to minimize the $EATS_1$, subject to the constraints $ATS_0 = 370.4$, $ASI_0 = 1$ and the $ASS_0 = n_0$. Then, $EATS_1$ values are computed according their corresponding optimal parameters as shown in Table 4.5. From the table 4.5, the values of $(a_s,$ $b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L}$) and the values of the VP CV chart's optimal parameter ($n_{\rm S}, n_{\rm L}$, $h_{\rm L}$, $W_{\rm L}$, $W_{\rm S}$, $K_{\rm L}$, $K_{\rm S}$) in the first and second rows of each cell that minimize the *EATS*₁ are shown when $\gamma_0 \in \{0.05, 0.10, 0.15, 0.20\}, n_0 \in \{5, 7, 10, 15\}$ and h_S $\in \{0.01, 0.10\}$ for $(\tau_{\min}, \tau_{\max}) = (1.00, 2.00)$. For example, the optimal parameters are $(n_{\rm S}, n_{\rm L}, h_{\rm L}, W_{\rm L}, W_{\rm S}, K_{\rm L}, K_{\rm S}) = (2, 31, 1.11, 1.63, 1.54, 2.79, 2.26)$ when the $\gamma_0 = 0.05$, $h_{\rm S} = 0.01$, $n_0 = 5$, $(\tau_{\rm min}, \tau_{\rm max}) = (1.00, 2.00)$ and $(a_{\rm S}, b_{\rm S}, c_{\rm S}, c_{\rm S})$ $a_{\rm L}, b_{\rm L}, c_{\rm L}$) = (6.27, 2.21, -0.02, 43.22, 22.23, -0.09) to minimize the *EATS*₁. The Scicoslab optimization program is used to calculate the EATS₁ value from optimal parameters combination. Table 4.6 shows the values of $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L})$ $b_{\rm L}$, $c_{\rm L}$) and the optimal parameters of the VP CV chart ($n_{\rm S}$, $n_{\rm L}$, $h_{\rm L}$, $W_{\rm L}$, $W_{\rm S}$, $K_{\rm L}$, *K*_S) that minimize the *EATS*₁ when $\gamma_0 \in \{0.05, 0.10, 0.15, 0.20\}, n_0 \in \{5, 7, 10, 0.15, 0.20\}$ 15}, $h_{\rm S} \in \{0.01, 0.10\}$ and $(\tau_{\rm min}, \tau_{\rm max}) = (1.25, 2.00)$. Table 4.7 shows the values of $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$ and the optimal parameters of the VP CV chart $(n_{\rm S}, n_{\rm L}, h_{\rm L}, W_{\rm L}, W_{\rm S}, K_{\rm L}, K_{\rm S})$ that minimize the *EATS*₁ when $\gamma_0 \in \{0.05, 0.10,$ $(0.15, 0.20), n_0 \in \{5, 7, 10, 15\}, h_S \in \{0.01, 0.10\} \text{ and } (\tau_{\min}, \tau_{\max}) = (1.50, 2.00).$

Table 4.5: Values of $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$, optimal chart parameters $(n_{\rm S}, n_{\rm L}, h_{\rm L}, W_{\rm L}, W_{\rm S}, K_{\rm L}, K_{\rm S})$ and the corresponding *EATS*₁ for the VP CV chart when $(\tau_{\rm min}, \tau_{\rm max}) = (1.00, 2.00), \gamma_0 \in \{0.05, 0.10, 0.15, 0.20\}, n_0 \in \{5, 7, 10, 15\}$ and $h_{\rm S} \in \{0.01, 0.10\}$.

	no	5
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
$\gamma_0 = 0.05$	6.27, 2.21, -0.02, 43.22, 22.23, -0.09	6.27, 2.21, -0.02, 43.22, 22.23, -0.09
,.	2, 31, 1.11, 1.63, 1.54, 2.79, 2.26	2, 31, 1.10, 1.63, 1.54, 2.79, 2.26
	19.80	19.88
<i>γ</i> ₀ =0.10	4.70, 2.18, -0.05, 27.30, 20.94, -0.17	4.70, 2.18, -0.05, 27.30, 20.94, -0.17
	2, 31, 1.11, 1.63, 1.54, 2.81, 2.26	2, 31, 1.10, 1.63, 1.54, 2.81, 2.26
	19.97	20.06
$\gamma_0 = 0.15$	3.76, 2.13, -0.07, 18.69, 19.11, -0.23	3.76, 2.13, -0.07, 18.69, 19.11, -0.23
	2, 31, 1.11, 1.63, 1.54, 2.85, 2.26	2, 31, 1.10, 1.63, 1.54, 2.85, 2.26
	20.26	20.34
$\gamma_0 = 0.20$	3.09, 2.07, -0.09, 13.43, 17.05, -0.26	3.09, 2.07, -0.09, 13.43, 17.05, -0.26
	2, 31, 1.11, 1.63, 1.54, 2.91, 2.27	2, 31, 1.10, 1.63, 1.54, 2.91, 2.27
	20.65	20.74
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
$\gamma_0 = 0.05$	9.86, 4.14, -0.05, 43.22, 22.23, -0.09	9.86, 4.14, -0.05, 43.22, 22.23, -0.09
	3, 31, 1.17, 1.49, 1.42, 3.01, 2.39	3, 31, 1.15, 1.49, 1.42, 3.00, 2.39
0.10	16.72	
$\gamma_0 = 0.10$	0.89, 4.04, -0.10, 27.30, 20.94, -0.17	0.89, 4.04, -0.10, 27.30, 20.94, -0.17
	5, 51, 1.17, 1.49, 1.42, 5.02, 2.39 16 90	3, 31, 1.15, 1.49, 1.42, 5.02, 2.39 17.00
	10.89	17.00 5 16 2 97 0 14 19 60 10 11 0 22
$\gamma_0 = 0.15$	3.10, 3.87, -0.14, 18.09, 19.11, -0.25	3.10, 3.67, -0.14, 16.09, 19.11, -0.25
	5, 51, 1.17, 1.49, 1.42, 5.05, 2.40 17 18	5, 51, 1.15, 1.49, 1.42, 5.05, 2.40 17 20
<i>∗</i> −0 20	17.10 3.08 3.65 0.17 13.43 17.05 0.26	17.27 3 08 3 65 0 17 13 /3 17 05 0 26
10-0.20	3 31 1 17 1 48 1 42 3 10 2 40	3 31 1 15 1 48 1 42 3 09 2 40
	17 59	17 70
	11.35	= 10
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
$y_0 = 0.05$	12.63, 5.69, -0.06, 43.22, 22.23, -0.09	12.63, 5.69, -0.06, 43.22, 22.23, -0.09
/0 0100	4, 31, 1.28, 1.24, 1.20, 3.10, 2.54	4, 31, 1.26, 1.24, 1.20, 3.10, 2.54
	14.27	14.40
$\gamma_0 = 0.10$	8.54, 5.50, -0.12, 27.30, 20.94, -0.17	8.54, 5.50, -0.12, 27.30, 20.94, -0.17
, -	4, 31, 1.28, 1.24, 1.20, 3.11, 2.54	4, 31, 1.26, 1.24, 1.20, 3.11, 2.54
	14.44	14.57
γ ₀ =0.15	6.21, 5.20, -0.17, 18.69, 19.11, -0.23	6.21, 5.20, -0.17, 18.69, 19.11, -0.23
	4, 31, 1.28, 1.24, 1.20, 3.14, 2.55	4, 31, 1.26, 1.24, 1.20, 3.14, 2.55
	14.71	14.85
$\gamma_0 = 0.20$	4.66, 4.83, -0.20, 13.43, 17.05, -0.26	4.66, 4.83, -0.20, 13.43, 17.05, -0.26
	4, 31, 1.28, 1.24, 1.20, 3.17, 2.55	4, 31, 1.26, 1.24, 1.20, 3.17, 2.55
	15.10	15.24
	<u></u>	= 15
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
$\gamma_0 = 0.05$	14.92, 6.98, -0.07, 43.22, 22.23, -0.09	14.92, 6.98, -0.07, 43.22, 22.23, -0.09
	5, 31, 1.62, 0.89, 0.86, 3.26, 2.70	5, 51, 1.56, 0.89, 0.86, 3.26, 2.70
0.10		
$\gamma_0 = 0.10$	9.91, 6.70, -0.14, 27.30, 20.94, -0.17	9.91, 6.70, -0.14, 27.30, 20.94, -0.17
	5, 51, 1.02, 0.89, 0.80, 5.27, 2.70	5, 51, 1.50, 0.89, 0.80, 5.27, 2.70
0.15		
$\gamma_0 = 0.15$	7.08, 0.29, -0.19, 18.09, 19.11, -0.25	7.08, 0.29, -0.19, 18.09, 19.11, -0.25
	<i>3</i> , <i>5</i> 1, 1.02, 0.09, 0.80, <i>5</i> .29, 2.70	5, 51, 1.30, 0.69, 0.80, 5.28, 2.71, 12.78
w -0.20	12.01 5 25 5 70 0 22 12 42 17 05 0 24	5 25 5 70 0 22 12 42 17 05 0 26
$\gamma_0 = 0.20$	5.23, 5.77, -0.22, 15.45, 17.03, -0.20 5.31, 1.62, 0.88, 0.86, 2.31, 2.71	5 31 1 56 0 88 0 86 3 31 2 71
	12 Q7	13 15
	12.71	13.13

Table 4.6: Values of $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$, optimal chart parameters $(n_{\rm S}, n_{\rm L}, h_{\rm L}, W_{\rm L}, W_{\rm S}, K_{\rm L}, K_{\rm S})$ and the corresponding *EATS*₁ for the VP CV chart when $(\tau_{\rm min}, \tau_{\rm max}) = (1.25, 2.00), \gamma_0 \in \{0.05, 0.10, 0.15, 0.20\}, n_0 \in \{5, 7, 10, 15\}$ and $h_{\rm S} \in \{0.01, 0.10\}$.

		$h_0 = 5$
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
$\gamma_0 = 0.05$	9.86, 4.14, -0.05, 34.24, 17.46, -0.09	9.86, 4.14, -0.05, 35.15, 17.95, -0.09
	3, 20, 1.13, 1.57, 1.50, 2.96, 2.33	3, 21, 1.11, 1.60, 1.52, 2.94, 2.32
	3.33	3.41
16 - 0.10	6 89 4 04 -0 10 22 29 16 94 -0 17	6 89 4 04 -0 10 22 29 16 94 -0 17
10-0.10	2 21 112 160 152 207 222	2 21 1 11 1 60 1 52 206 2 22
	5, 21, 1.12, 1.00, 1.52, 2.97, 2.52	5, 21, 1.11, 1.00, 1.52, 2.90, 2.52
	3.39	3.47
<i>γ</i> ₀ =0.15	5.16, 3.87, -0.14, 15.30, 15.50, -0.22	5.16, 3.87, -0.14, 15.68, 15.90, -0.23
	3, 21, 1.12, 1.60, 1.52, 3.01, 2.32	3, 22, 1.11, 1.62, 1.54, 2.99, 2.30
	3.49	3.56
$\frac{1}{2}$ -0.20	3 98 3 65 -0 17 11 29 14 21 -0 26	3 98 3 65 -0 17 11 55 14 56 -0 26
70-0.20	2 22 1 12 1 62 1 54 2 05 2 20	2 22 1 10 1 64 1 56 2 04 2 20
	3, 22, 1.12, 1.02, 1.34, 5.03, 2.30	3, 23, 1.10, 1.04, 1.30, 3.04, 2.29
	3.03	3.70
	i	$n_0 = 7$
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
w = 0.05	12.63.5.690.06.36.04.18.420.09	12.63.5.690.06.36.90.18.880.09
70 - 0.05		A 23 1 17 1 A3 1 37 3 05 2 AA
	4, 22, 1.20, 1.40, 1.55, 5.00, 2.45	4, 25, 1.17, 1.45, 1.57, 5.05, 2.44
	2.03	2.15
$\gamma_0 = 0.10$	8.54, 5.50, -0.12, 22.84, 17.38, -0.17	8.54, 5.50, -0.12, 23.38, 17.81, -0.17
	4, 22, 1.20, 1.40, 1.35, 3.10, 2.45	4, 23, 1.17, 1.43, 1.37, 3.07, 2.44
	2.10	2.18
$\gamma_0 = 0.15$	6.21, 5.20, -0.17, 16.04, 16.28, -0.23	6.21, 5.20, -0.17, 16.39, 16.66, -0.23
70 0000	4 23 1 19 1 43 1 37 3 12 2 43	4 24 1 16 1 45 1 40 3 09 2 42
	-, 23, 1.19, 1.43, 1.37, 3.12, 2.43 0 17	2 25
0.00		
$\gamma_0 = 0.20$	4.66, 4.85, -0.20, 11.80, 14.89, -0.26	4.00, 4.83, -0.20, 12.04, 15.22, -0.26
	4, 24, 1.17, 1.45, 1.40, 3.16, 2.42	4, 25, 1.15, 1.47, 1.42, 3.13, 2.41
	2.28	2.36
	ň	$n_0 = 10$
	$\frac{h_{\rm s}}{h_{\rm s}=0.01}$	$h_0 = 10$ $h_0 = 0.10$
<i>w</i> = 0.05	$\frac{h_{\rm S}=0.01}{16.01, 8.08, 0.08, 38, 58, 19.77, 0.09}$	$\frac{h_0 = 10}{h_S = 0.10}$
$\gamma_0 = 0.05$	$\frac{h_{\rm S}=0.01}{16.91, 8.08, -0.08, 38.58, 19.77, -0.09}$	$\frac{h_0 = 10}{16.91, 8.08, -0.08, 39.39, 20.20, -0.09}$
<i>𝔅</i> = 0.05	$\begin{array}{r} \hline h_{\rm S} = 0.01 \\ \hline 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ 6, 25, 1.26, 1.23, 3.27, 2.51 \\ \hline \end{array}$	$\frac{h_0 = 10}{\begin{array}{c} h_{\rm S} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ \hline 1.25, 1.25, 1.25, 1.26, 3.23, 2.51 \\ \hline 1.25, 1.2$
$\gamma_0 = 0.05$		$\frac{h_0 = 10}{16.91, 8.08, -0.08, 39.39, 20.20, -0.09}$ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 1.26
γ ₀ = 0.05 γ ₀ =0.10		$ \begin{array}{r} h_{8} = 0.10 \\ \hline \\ \hline \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \end{array} $
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$		$\begin{array}{r} h_{0} = 10 \\ \hline $h_{5} = 0.10$ \\ \hline $16.91, 8.08, -0.08, 39.39, 20.20, -0.09$ \\ $6, 26, 1.23, 1.29, 1.26, 3.23, 2.51$ \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17$ \\ $6, 26, 1.23, 1.29, 1.26, 3.24, 2.51$ \\ \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$		$\begin{array}{r} h_{0} = 10 \\ \hline $h_{\mathrm{S}} = 0.10$ \\ \hline $16.91, 8.08, -0.08, 39.39, 20.20, -0.09$ \\ $6, 26, 1.23, 1.29, 1.26, 3.23, 2.51$ \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17$ \\ $6, 26, 1.23, 1.29, 1.26, 3.24, 2.51$ \\ 1.29 \\ \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$		$\begin{array}{r} h_0 = 10 \\ \hline $h_{\rm S} = 0.10$ \\ \hline $16.91, 8.08, -0.08, 39.39, 20.20, -0.09$ \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51$ \\ 1.26$ \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17$ \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51$ \\ 1.29$ \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ \end{array}$
γ ₀ = 0.05 γ ₀ =0.10 γ ₀ =0.15	$ \begin{array}{c} \hline h_{\rm S} = 0.01 \\ \hline \\ \hline \\ 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ 6, 25, 1.26, 1.26, 1.23, 3.27, 2.51 \\ 1.18 \\ 11.11, 7.73, -0.14, 24.42, 18.64, -0.17 \\ 6, 25, 1.26, 1.26, 1.23, 3.28, 2.51 \\ 1.22 \\ 7.86, 7.22, -0.20, 17.08, 17.40, -0.23 \\ 6, 26, 1.25, 1.29, 1.26, 3.30, 2.50 \\ \end{array} $	$ \begin{array}{r} h_{0} = 10 \\ \hline h_{S} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ \end{array} $
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$		$ \begin{array}{r} h_{8} = 0.10 \\ \hline h_{8} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ \hline 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.25 \\ \hline \end{array} $
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$	$\begin{array}{c} \hline h_{8}=0.01 \\ \hline \\ \hline \\ 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ 6, 25, 1.26, 1.26, 1.23, 3.27, 2.51 \\ 1.18 \\ 11.11, 7.73, -0.14, 24.42, 18.64, -0.17 \\ 6, 25, 1.26, 1.26, 1.23, 3.28, 2.51 \\ 1.22 \\ 7.86, 7.22, -0.20, 17.08, 17.40, -0.23 \\ 6, 26, 1.25, 1.29, 1.26, 3.30, 2.50 \\ 1.27 \\ \hline \\ 1.27 \\ \hline \\ 1.20 \\ 1.27 \\ 1.20 \\ 1.20 \\ 1.27 \\ 1.20 $	$ \begin{array}{r} h_{8} = 0.10 \\ \hline h_{8} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 1.29 \\ 1.25 \\ 1$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} h_{8} = 0.10 \\ \hline h_{8} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$		$\begin{array}{r} h_{8}=0.10\\ \hline h_{8}=0.10\\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09\\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51\\ 1.26\\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17\\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51\\ 1.29\\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23\\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49\\ 1.35\\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26\\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55\\ \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$	$\begin{array}{r} \hline h_{\rm S} = 0.01 \\ \hline h_{\rm S} = 0.01 \\ \hline 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ 6, 25, 1.26, 1.26, 1.23, 3.27, 2.51 \\ 1.18 \\ 11.11, 7.73, -0.14, 24.42, 18.64, -0.17 \\ 6, 25, 1.26, 1.26, 1.23, 3.28, 2.51 \\ 1.22 \\ 7.86, 7.22, -0.20, 17.08, 17.40, -0.23 \\ 6, 26, 1.25, 1.29, 1.26, 3.30, 2.50 \\ 1.27 \\ 5.25, 5.79, -0.22, 12.04, 15.22, -0.26 \\ 5, 25, 1.33, 1.16, 1.13, 3.31, 2.57 \\ 1.35 \\ \end{array}$	$\begin{array}{r} h_{8}=0.10\\ \hline h_{8}=0.10\\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09\\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51\\ 1.26\\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17\\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51\\ 1.29\\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23\\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49\\ 1.35\\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26\\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55\\ 1.43\\ \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$	$\begin{array}{c} \hline h_8 = 0.01 \\ \hline h_8 = 0.01 \\ \hline 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ 6, 25, 1.26, 1.26, 1.23, 3.27, 2.51 \\ 1.18 \\ 11.11, 7.73, -0.14, 24.42, 18.64, -0.17 \\ 6, 25, 1.26, 1.26, 1.23, 3.28, 2.51 \\ 1.22 \\ 7.86, 7.22, -0.20, 17.08, 17.40, -0.23 \\ 6, 26, 1.25, 1.29, 1.26, 3.30, 2.50 \\ 1.27 \\ 5.25, 5.79, -0.22, 12.04, 15.22, -0.26 \\ 5, 25, 1.33, 1.16, 1.13, 3.31, 2.57 \\ 1.35 \\ \end{array}$	$\begin{array}{c} h_{5} = 0.10 \\ \hline h_{5} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ \hline h = 15 \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$	$\begin{array}{c} & h_{\rm S} = 0.01 \\ \hline h_{\rm S} = 0.01 \\ \hline 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ 6, 25, 1.26, 1.26, 1.23, 3.27, 2.51 \\ 1.18 \\ 11.11, 7.73, -0.14, 24.42, 18.64, -0.17 \\ 6, 25, 1.26, 1.26, 1.23, 3.28, 2.51 \\ 1.22 \\ 7.86, 7.22, -0.20, 17.08, 17.40, -0.23 \\ 6, 26, 1.25, 1.29, 1.26, 3.30, 2.50 \\ 1.27 \\ 5.25, 5.79, -0.22, 12.04, 15.22, -0.26 \\ 5, 25, 1.33, 1.16, 1.13, 3.31, 2.57 \\ 1.35 \\ \hline h_{\rm S} = 0.01 \\ \end{array}$	$\begin{array}{r} h_{\rm S} = 0.10 \\ \hline h_{\rm S} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ \hline h_0 = 15 \\ \hline h_0 = 0.10 \\ \hline \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$	$\begin{array}{c} & h_{\rm S} = 0.01 \\ \hline h_{\rm S} = 0.01 \\ \hline 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ 6, 25, 1.26, 1.26, 1.23, 3.27, 2.51 \\ 1.18 \\ 11.11, 7.73, -0.14, 24.42, 18.64, -0.17 \\ 6, 25, 1.26, 1.26, 1.23, 3.28, 2.51 \\ 1.22 \\ 7.86, 7.22, -0.20, 17.08, 17.40, -0.23 \\ 6, 26, 1.25, 1.29, 1.26, 3.30, 2.50 \\ 1.27 \\ 5.25, 5.79, -0.22, 12.04, 15.22, -0.26 \\ 5, 25, 1.33, 1.16, 1.13, 3.31, 2.57 \\ 1.35 \\ \hline h_{\rm S} = 0.01 \\ \hline \end{array}$	$\begin{array}{r} h_{\rm S}=0.10 \\ \hline h_{\rm S}=0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ \hline h_{\rm S}=0.10 \\ \hline 100000000000000000000000000000000$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$	$\begin{array}{r} & h_{\rm S}=0.01 \\ \hline h_{\rm S}=0.01 \\ \hline 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ 6, 25, 1.26, 1.26, 1.23, 3.27, 2.51 \\ 1.18 \\ 11.11, 7.73, -0.14, 24.42, 18.64, -0.17 \\ 6, 25, 1.26, 1.26, 1.23, 3.28, 2.51 \\ 1.22 \\ 7.86, 7.22, -0.20, 17.08, 17.40, -0.23 \\ 6, 26, 1.25, 1.29, 1.26, 3.30, 2.50 \\ 1.27 \\ 5.25, 5.79, -0.22, 12.04, 15.22, -0.26 \\ 5, 25, 1.33, 1.16, 1.13, 3.31, 2.57 \\ 1.35 \\ \hline h_{\rm S}=0.01 \\ \hline 21.81, 10.78, -0.08, 40.97, 21.03, -0.09 \\ \hline 20.51, 1.21, 10.78, -0.02, 0.01, 0.01 \\ \hline \end{array}$	$ \begin{array}{r} h_{\rm S} = 0.10 \\ \hline h_{\rm S} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ \hline h_{\rm S} = 0.10 \\ \hline 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ \hline \begin{array}{c} h_{\rm S} = 0.10 \\ 0.08, 0.04, 0.04, 0.04 \\ 0.08, 0.04, 0.04, 0.04 \\ 0.04, 0.04, 0.04 \\ 0.04, 0.04, 0.04 \\ 0.04, 0.04, 0.04 \\ 0.0$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$	$\begin{array}{r} & h_{\rm S}=0.01 \\ \hline h_{\rm S}=0.01 \\ \hline 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ 6, 25, 1.26, 1.26, 1.23, 3.27, 2.51 \\ 1.18 \\ 11.11, 7.73, -0.14, 24.42, 18.64, -0.17 \\ 6, 25, 1.26, 1.26, 1.23, 3.28, 2.51 \\ 1.22 \\ 7.86, 7.22, -0.20, 17.08, 17.40, -0.23 \\ 6, 26, 1.25, 1.29, 1.26, 3.30, 2.50 \\ 1.27 \\ 5.25, 5.79, -0.22, 12.04, 15.22, -0.26 \\ 5, 25, 1.33, 1.16, 1.13, 3.31, 2.57 \\ 1.35 \\ \hline h_{\rm S}=0.01 \\ \hline 21.81, 10.78, -0.08, 40.97, 21.03, -0.09 \\ 9, 28, 1.46, 1.01, 0.99, 3.41, 2.64 \\ \end{array}$	$\begin{array}{r} h_{8} = 0.10 \\ \hline h_{8} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ \hline h_{6} = 15 \\ \hline h_{8} = 0.10 \\ \hline 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ 9, 30, 1.36, 1.08, 1.06, 3.31, 2.63 \\ \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$	$\begin{array}{r} & h_{8}=0.01 \\ \hline & h_{8}=0.01 \\ \hline & 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ & 6, 25, 1.26, 1.26, 1.23, 3.27, 2.51 \\ & 1.18 \\ \hline & 11.11, 7.73, -0.14, 24.42, 18.64, -0.17 \\ & 6, 25, 1.26, 1.26, 1.23, 3.28, 2.51 \\ & 1.22 \\ \hline & 7.86, 7.22, -0.20, 17.08, 17.40, -0.23 \\ & 6, 26, 1.25, 1.29, 1.26, 3.30, 2.50 \\ & 1.27 \\ \hline & 5.25, 5.79, -0.22, 12.04, 15.22, -0.26 \\ & 5, 25, 1.33, 1.16, 1.13, 3.31, 2.57 \\ \hline & h_{8}=0.01 \\ \hline & h_{8}=0.01 \\ \hline & 21.81, 10.78, -0.08, 40.97, 21.03, -0.09 \\ & 9, 28, 1.46, 1.01, 0.99, 3.41, 2.64 \\ \hline & 0.58 \\ \hline \end{array}$	$\begin{array}{r} h_{8} = 0.10 \\ \hline h_{8} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ \hline h_{8} = 0.10 \\ \hline 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ 9, 30, 1.36, 1.08, 1.06, 3.31, 2.63 \\ 0.65 \\ \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$ $\gamma_0 = 0.10$		$\begin{array}{r} h_{\rm S} = 0.10 \\ \hline h_{\rm S} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ h_0 = 15 \\ \hline h_{\rm S} = 0.10 \\ \hline 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ 9, 30, 1.36, 1.08, 1.06, 3.31, 2.63 \\ 0.65 \\ 14.08, 10.25, -0.16, 26.84, 20.58, -0.17 \\ \hline \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$ $\gamma_0 = 0.10$	$\begin{array}{r} \hline h_{\rm S} = 0.01 \\ \hline h_{\rm S} = 0.01 \\ \hline 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ 6, 25, 1.26, 1.26, 1.23, 3.27, 2.51 \\ 1.18 \\ 11.11, 7.73, -0.14, 24.42, 18.64, -0.17 \\ 6, 25, 1.26, 1.26, 1.23, 3.28, 2.51 \\ 1.22 \\ 7.86, 7.22, -0.20, 17.08, 17.40, -0.23 \\ 6, 26, 1.25, 1.29, 1.26, 3.30, 2.50 \\ 1.27 \\ 5.25, 5.79, -0.22, 12.04, 15.22, -0.26 \\ 5, 25, 1.33, 1.16, 1.13, 3.31, 2.57 \\ 1.35 \\ \hline h_{\rm S} = 0.01 \\ \hline 21.81, 10.78, -0.08, 40.97, 21.03, -0.09 \\ 9, 28, 1.46, 1.01, 0.99, 3.41, 2.64 \\ 0.58 \\ 14.08, 10.25, -0.16, 25.90, 19.83, -0.17 \\ 9, 28, 1.46, 1.01, 0.99, 3.42, 2.64 \\ \hline \end{array}$	$\begin{array}{r} h_{\rm S}=0.10 \\ \hline h_{\rm S}=0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ \hline h_{\rm S}=0.10 \\ \hline 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ 9, 30, 1.36, 1.08, 1.06, 3.31, 2.63 \\ 0.65 \\ 14.08, 10.25, -0.16, 26.84, 20.58, -0.17 \\ 9, 30, 1.36, 1.07, 1.06, 3.32, 2.63 \\ \hline \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$ $\gamma_0 = 0.10$	$\begin{array}{r} & h_{\rm S} = 0.01 \\ \hline h_{\rm S} = 0.01 \\ \hline 16.91, 8.08, -0.08, 38.58, 19.77, -0.09 \\ 6, 25, 1.26, 1.26, 1.23, 3.27, 2.51 \\ 1.18 \\ 11.11, 7.73, -0.14, 24.42, 18.64, -0.17 \\ 6, 25, 1.26, 1.26, 1.23, 3.28, 2.51 \\ 1.22 \\ 7.86, 7.22, -0.20, 17.08, 17.40, -0.23 \\ 6, 26, 1.25, 1.29, 1.26, 3.30, 2.50 \\ 1.27 \\ 5.25, 5.79, -0.22, 12.04, 15.22, -0.26 \\ 5, 25, 1.33, 1.16, 1.13, 3.31, 2.57 \\ 1.35 \\ \hline h_{\rm S} = 0.01 \\ \hline 21.81, 10.78, -0.08, 40.97, 21.03, -0.09 \\ 9, 28, 1.46, 1.01, 0.99, 3.41, 2.64 \\ 0.58 \\ 14.08, 10.25, -0.16, 25.90, 19.83, -0.17 \\ 9, 28, 1.46, 1.01, 0.99, 3.42, 2.64 \\ 0.60 \\ \hline \end{array}$	$\begin{array}{r} h_8 = 0.10 \\ \hline h_8 = 0.10 \\ \hline \\ 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ \hline \\ h_6 = 15 \\ \hline \\ h_8 = 0.10 \\ \hline \\ 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ 9, 30, 1.36, 1.08, 1.06, 3.31, 2.63 \\ 0.65 \\ 14.08, 10.25, -0.16, 26.84, 20.58, -0.17 \\ 9, 30, 1.36, 1.07, 1.06, 3.32, 2.63 \\ 0.67 \\ \hline \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$ $\gamma_0 = 0.10$		$\begin{array}{r} h_{8} = 0.10 \\ \hline h_{8} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ h_{0} = 15 \\ \hline h_{8} = 0.10 \\ \hline 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ 9, 30, 1.36, 1.08, 1.06, 3.31, 2.63 \\ 0.65 \\ 14.08, 10.25, -0.16, 26.84, 20.58, -0.17 \\ 9, 30, 1.36, 1.07, 1.06, 3.32, 2.63 \\ 0.67 \\ 0.81, 0.49, 0.21, 19.60, 10.11, 0.22 \\ \hline \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$		$\begin{array}{r} h_{0} = 10 \\ \hline h_{8} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ h_{0} = 15 \\ \hline h_{8} = 0.10 \\ \hline 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ 9, 30, 1.36, 1.08, 1.06, 3.31, 2.63 \\ 0.65 \\ 14.08, 10.25, -0.16, 26.84, 20.58, -0.17 \\ 9, 30, 1.36, 1.07, 1.06, 3.32, 2.63 \\ 0.67 \\ 9.81, 9.48, -0.21, 18.69, 19.11, -0.23 \\ 0.948, 0.21, 18.69, 19.11, -0.23 \\ \hline \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$		$\begin{array}{r} h_{0} = 10 \\ \hline h_{S} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ h_{0} = 15 \\ \hline h_{S} = 0.10 \\ \hline 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ 9, 30, 1.36, 1.08, 1.06, 3.31, 2.63 \\ 0.65 \\ 14.08, 10.25, -0.16, 26.84, 20.58, -0.17 \\ 9, 30, 1.36, 1.07, 1.06, 3.32, 2.63 \\ 0.67 \\ 9.81, 9.48, -0.21, 18.69, 19.11, -0.23 \\ 9, 31, 1.34, 1.10, 1.08, 3.34, 2.62 \\ \hline \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$		$\begin{array}{r} h_{0} = 10 \\ \hline $h_{S} = 0.10$ \\ \hline $16.91, 8.08, -0.08, 39.39, 20.20, -0.09$ \\ $6, 26, 1.23, 1.29, 1.26, 3.23, 2.51$ \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17$ \\ $6, 26, 1.23, 1.29, 1.26, 3.24, 2.51$ \\ 1.29 \\ $7.86, 7.22, -0.20, 17.41, 17.75, -0.23$ \\ $6, 27, 1.21, 1.32, 1.28, 3.26, 2.49$ \\ 1.35 \\ $5.25, 5.79, -0.22, 12.52, 15.85, -0.26$ \\ $5, 27, 1.26, 1.22, 1.19, 3.26, 2.55$ \\ 1.43 \\ \hline $h_{S} = 0.10$ \\ \hline $21.81, 10.78, -0.08, 42.48, 21.84, -0.09$ \\ $9, 30, 1.36, 1.08, 1.06, 3.31, 2.63$ \\ 0.65 \\ $14.08, 10.25, -0.16, 26.84, 20.58, -0.17$ \\ $9, 30, 1.36, 1.07, 1.06, 3.32, 2.63$ \\ 0.67 \\ $9.81, 9.48, -0.21, 18.69, 19.11, -0.23$ \\ $9, 31, 1.34, 1.10, 1.08, 3.34, 2.62$ \\ \hline 0.70 \\ \hline \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$		$\begin{array}{r} h_{0} = 10 \\ \hline h_{S} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ \hline h_{S} = 0.10 \\ \hline 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ 9, 30, 1.36, 1.08, 1.06, 3.31, 2.63 \\ 0.65 \\ 14.08, 10.25, -0.16, 26.84, 20.58, -0.17 \\ 9, 30, 1.36, 1.07, 1.06, 3.32, 2.63 \\ 0.67 \\ 9.81, 9.48, -0.21, 18.69, 19.11, -0.23 \\ 9, 31, 1.34, 1.10, 1.08, 3.34, 2.62 \\ 0.70 \\ 7.13, 8.58, -0.24, 13.43, 17.05, -0.26 \\ \hline \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$		$\begin{array}{r} h_{0} = 10 \\ \hline h_{8} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ \hline h_{0} = 15 \\ \hline h_{8} = 0.10 \\ \hline 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ 9, 30, 1.36, 1.08, 1.06, 3.31, 2.63 \\ 0.65 \\ 14.08, 10.25, -0.16, 26.84, 20.58, -0.17 \\ 9, 30, 1.36, 1.07, 1.06, 3.32, 2.63 \\ 0.67 \\ 9.81, 9.48, -0.21, 18.69, 19.11, -0.23 \\ 9, 31, 1.34, 1.10, 1.08, 3.34, 2.62 \\ 0.70 \\ 7.13, 8.58, -0.24, 13.43, 17.05, -0.26 \\ 9, 31, 1.34, 1.10, 1.08, 3.38, 2.61 \\ \hline \end{array}$
$\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$ $\gamma_0 = 0.05$ $\gamma_0 = 0.10$ $\gamma_0 = 0.15$ $\gamma_0 = 0.20$		$\begin{array}{r} h_{0} = 10 \\ \hline h_{S} = 0.10 \\ \hline 16.91, 8.08, -0.08, 39.39, 20.20, -0.09 \\ 6, 26, 1.23, 1.29, 1.26, 3.23, 2.51 \\ 1.26 \\ 11.11, 7.73, -0.14, 24.92, 19.04, -0.17 \\ 6, 26, 1.23, 1.29, 1.26, 3.24, 2.51 \\ 1.29 \\ 7.86, 7.22, -0.20, 17.41, 17.75, -0.23 \\ 6, 27, 1.21, 1.32, 1.28, 3.26, 2.49 \\ 1.35 \\ 5.25, 5.79, -0.22, 12.52, 15.85, -0.26 \\ 5, 27, 1.26, 1.22, 1.19, 3.26, 2.55 \\ 1.43 \\ \hline h_{S} = 0.10 \\ \hline 21.81, 10.78, -0.08, 42.48, 21.84, -0.09 \\ 9, 30, 1.36, 1.08, 1.06, 3.31, 2.63 \\ 0.65 \\ 14.08, 10.25, -0.16, 26.84, 20.58, -0.17 \\ 9, 30, 1.36, 1.07, 1.06, 3.32, 2.63 \\ 0.67 \\ 9.81, 9.48, -0.21, 18.69, 19.11, -0.23 \\ 9, 31, 1.34, 1.10, 1.08, 3.34, 2.62 \\ 0.70 \\ 7.13, 8.58, -0.24, 13.43, 17.05, -0.26 \\ 9, 31, 1.34, 1.10, 1.08, 3.38, 2.61 \\ 0.75 \\ \hline \end{array}$

Table 4.7: Values of $(a_{\rm S}, b_{\rm S}, c_{\rm S}, a_{\rm L}, b_{\rm L}, c_{\rm L})$, optimal chart parameters $(n_{\rm S}, n_{\rm L}, h_{\rm L}, W_{\rm L}, W_{\rm S}, K_{\rm L}, K_{\rm S})$ and the corresponding *EATS*₁ for the VP CV chart when $(\tau_{\rm min}, \tau_{\rm max}) = (1.50, 2.00), \gamma_0 \in \{0.05, 0.10, 0.15, 0.20\}, n_0 \in \{5, 7, 10, 15\}$ and $h_{\rm S} \in \{0.01, 0.10\}$.

	n_0	= 5
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
w = 0.05	9.86, 4.14, -0.05, 23.22, 11.54, -0.09	9.86, 4.14, -0.05, . 24,55, 12,26, -0.09
70 - 0.05	3, 10, 1.40, 1.11, 1.06, 2.86, 2.63	3, 11, 1.30, 1.19, 1.14, 2.85, 2.60
	1 40	1.49
16 - 0.10	6.89, 4.04, -0.10, 14.94, 10.96, -0.16	6.89, 4.04, -0.10, 15,75, 11,63, -0.16
/0=0.10	3 10 1 40 1 11 1 06 2 88 2 63	3 11 1 30 1 19 1 14 2 86 2 61
	1 14	1 53
16 - 0.15	5 16 3 87 -0 14 10 92 10 72 -0 22	5 16 3 87 -0 14 10 92 10 72 -0 22
/0-0.15	3.10, 5.07, -0.14, 10.52, 10.72, -0.22	2 11 1 20 1 10 1 14 2 00 2 60
	1 50	1 50
		1.37
$\gamma_0 = 0.20$	3.96, 3.03, -0.17, 7.91, 9.07, -0.23	3.96, 3.03, -0.17, 8.26, 10.17, -0.23
	5, 11, 1.55, 1.19, 1.14, 2.95, 2.01	5, 12, 1.20, 1.25, 1.21, 2.95, 2.59
	1.38	1.0/
	<u> </u>	= /
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
$\gamma_0 = 0.05$	12.63, 5.69, -0.06, 24.55, 12.26, -0.09	12.63, 5.69, -0.06, 25.80, 12.94, -0.09
	4, 11, 1.74, 0.82, 0.79, 2.95, 2.74	4, 12, 1.54, 0.91, 0.89, 2.93, 2.72
	0.75	0.83
$\gamma_0 = 0.10$	8.54, 5.50, -0.12, 15.75, 11.63, -0.16	8.54, 5.50, -0.12, 16.52, 12.27, -0.16
	4, 11, 1.74, 0.82, 0.79, 2.97, 2.74	4, 12, 1.54, 0.91, 0.89, 2.95, 2.72
	0.77	0.86
$\gamma_0 = 0.15$	6.21, 5.20, -0.17, 10.92, 10.72, -0.22	6.21, 5.20, -0.17, 11.44, 11.29, -0.22
	4, 11, 1.74, 0.82, 0.79, 3.00, 2.74	4, 12, 1.54, 0.91, 0.89, 2.98, 2.72
	0.81	0.90
$\gamma_0 = 0.20$	4.66, 4.83, -0.20, 8.28, 10.17, -0.25	4.66, 4.83, -0.20, 8.63, 10.64, -0.25
	4, 12, 1.59, 0.91, 0.88, 3.03, 2.72	4, 13, 1.45, 0.99, 0.96, 3.00, 2.70
	0.87	0.96
	<i>n</i> _=	= 10
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
$\gamma_0 = 0.05$	18.69, 9.07, -0.08, 25.80, 12.94, -0.09	18.69, 9.07, -0.08, 28.15, 14.21, -0.09
	7, 12, 2.49, 0.53, 0.53, 3.13, 2.82	7, 14, 1.68, 0.80, 0.79, 3.09, 2.77
	0.34	0.41
$\gamma_0 = 0.10$	12.18, 8.65, -0.15, 16.52, 12.27, -0.16	12.18, 8.65, -0.15, 17.97, 13.45, -0.17
	7, 12, 2.49, 0.53, 0.53, 3.14, 2.83	7, 14, 1.68, 0.80, 0.79, 3.10, 2.77
	0.35	0.43
$\gamma_0 = 0.15$	7.86, 7.22, -0.20, 11.93, 11.83, -0.22	8.56, 8.04, -0.20, 12.40, 12.35, -0.22
70	6, 13, 2.32, 0.58, 0.57, 3.15, 2.82	7, 14, 1.68, 0.80, 0.79, 3.12, 2.77
	0.38	0.46
$\nu_0 = 0.20$	5.78, 6.60, -0.23, 8.63, 10.64, -0.25	5.78, 6.60, -0.23, 9.28, 11,53, -0.25
70	6, 13, 2,32, 0,57, 0,57, 3,18, 2,83	6, 15, 1.72, 0.77, 0.76, 3.14, 2.78
	0.42	0.50
	n_0	= 15
	$h_{\rm S} = 0.01$	$h_{\rm S} = 0.10$
w = 0.05	24 55 12 26 -0.09 30 31 15 37 -0.09	25 80 12 94 -0.09 30 31 15 37 -0.09
70 - 0.05	11 16 4 96 0 26 0 25 3 13 2 92	
	0.10	0.16
-0.10	15 75 11 63 0 16 19 30 14 53 0 17	15 75 11 63 0 16 10 04 15 04 0 17
/0-0.10		15.75, 11.05, -0.10, 17.74, 15.04, -0.17
	11 16 4 96 0 26 0 25 3 14 2 92	11 17 280 043 043 310 289
	11, 16, 4.96, 0.26, 0.25, 3.14, 2.92	11, 17, 2.80, 0.43, 0.43, 3.10, 2.89
w -0.15	11, 16, 4.96, 0.26, 0.25, 3.14, 2.92 0.11	11, 17, 2.80, 0.43, 0.43, 3.10, 2.89 0.16
γ ₀ =0.15	11, 16, 4.96, 0.26, 0.25, 3.14, 2.92 0.11 10.92, 10.72, -0.22, 13.30, 13.33, -0.22 11, 16, 4.96, 0.26, 0.25, 3.16, 2.92	11, 17, 2.80, 0.43, 0.43, 3.10, 2.89 0.16 10.92, 10.72, -0.22, 13.72, 13.79, -0.22 11, 17, 2.80, 0.43, 0.43, 3.12, 2.90
_{1/2} =0.15	11, 16, 4.96, 0.26, 0.25, 3.14, 2.92 0.11 10.92, 10.72, -0.22, 13.30, 13.33, -0.22 11, 16, 4.96, 0.26, 0.25, 3.16, 2.92	11, 17, 2.80, 0.43, 0.43, 3.10, 2.89 0.16 10.92, 10.72, -0.22, 13.72, 13.79, -0.22 11, 17, 2.80, 0.43, 0.43, 3.12, 2.90 0.18
$\gamma_0 = 0.15$	11, 16, 4.96, 0.26, 0.25, 3.14, 2.92 0.11 10.92, 10.72, -0.22, 13.30, 13.33, -0.22 11, 16, 4.96, 0.26, 0.25, 3.16, 2.92 0.12	11, 17, 2.80, 0.43, 0.43, 3.10, 2.89 0.16 10.92, 10.72, -0.22, 13.72, 13.79, -0.22 11, 17, 2.80, 0.43, 0.43, 3.12, 2.90 0.18 7.01, 0.67, 0.25, 0.00, 12.26, 0.25
γ₀=0.15 γ₀=0.20	11, 16, 4.96, 0.26, 0.25, 3.14, 2.92 0.11 10.92, 10.72, -0.22, 13.30, 13.33, -0.22 11, 16, 4.96, 0.26, 0.25, 3.16, 2.92 0.12 7.91, 9.67, -0.25, 9.59, 11.95, -0.25	11, 17, 2.80, 0.43, 0.43, 3.10, 2.89 0.16 10.92, 10.72, -0.22, 13.72, 13.79, -0.22 11, 17, 2.80, 0.43, 0.43, 3.12, 2.90 0.18 7.91, 9.67, -0.25, 9.90, 12.36, -0.25
γ₀=0.15 γ₀=0.20	11, 16, 4.96, 0.26, 0.25, 3.14, 2.92 0.11 10.92, 10.72, -0.22, 13.30, 13.33, -0.22 11, 16, 4.96, 0.26, 0.25, 3.16, 2.92 0.12 7.91, 9.67, -0.25, 9.59, 11.95, -0.25 11, 16, 4.96, 0.25, 0.25, 3.19, 2.92	$\begin{array}{c} 11, 17, 2.80, 0.43, 0.43, 3.10, 2.89\\ 0.16\\ 10.92, 10.72, -0.22, 13.72, 13.79, -0.22\\ 11, 17, 2.80, 0.43, 0.43, 3.12, 2.90\\ 0.18\\ 7.91, 9.67, -0.25, 9.90, 12.36, -0.25\\ 11, 17, 2.80, 0.43, 0.43, 3.15, 2.90\\ 0.226\\ 0.226\\ 0.18\\ 0.226\\$

From the Table 4.5 to Table 4.7, the higher the gap between τ_{\min} and τ_{\max} , the larger the *EATS*₁ value. The higher the gap, the higher chance for the smaller τ value can be considered. From the three different ranges of the shifts, the τ_{\min} is varying such as 1.00, 1.25 and 1.50 where the τ_{\max} remain the same which is 2.0. When the τ_{\min} is small like 1.00, it will generate larger *EATS*₁ value compare to other. By taking the example with $n_0 = 5$, $h_S = 0.01$ and $\gamma_0 = 0.05$ from the Table 4.5 and Table 4.6, for the $(\tau_{\min}, \tau_{\max}) = (1.00, 2.00)$, the *EATS*₁ value is 19.80, whereas the *EATS*₁ for $(\tau_{\min}, \tau_{\max}) = (1.25, 2.00)$ is 3.33.

Besides that, when $(\tau_{\min}, \tau_{\max})$ is chosen as (1.50, 2.00), the difference between n_s^* and n_L^* is the smallest, followed by $(\tau_{\min}, \tau_{\max}) = (1.25, 2.00)$ and $(\tau_{\min}, \tau_{\max}) = (1.00, 2.00)$. This shows that when $(\tau_{\min}, \tau_{\max})$ is more concentrated towards larger values of τ , the difference between n_s^* and n_L^* becomes smaller. Apart from that, there is a slightly different in term of *EATS*₁ when the $h_s = 0.01$ and $h_s = 0.10$. From the Table 4.5 to Table 4.7, $h_s = 0.01$ has smaller *EATS*₁ value compare to the $h_s = 0.10$ when the γ_0 remain constant. Different value of γ_0 have small impact on the *EATS*₁ values of the VP CV chart. Moreover, the bigger the n_0 value, the smaller the *EATS*₁ values.

4.2 Numerical comparisons

In this section, the VP CV chart is compared with the competitor charts, which are the Shewhart CV chart, VSS CV chart, VSI CV chart, VSSI CV chart, Synthetic CV control chart and EWMA CV^2 chart in term of performance measures. There are three criteria used to make a comparison. Firstly, we are looking at the ATS_1 performance of the various charts. Secondly, the charts are compared based on the $SDTS_1$. Thirdly, the charts are compared based on the $EATS_1$. As mentioned before, the ATS_1 value is computed with the specify shift size, whereas, there is no need predefine specify shift size for computing the $EATS_1$ value. Both performance measures need to satisfy the constraints $ATS_0 =$ 370.4, $ASI_0 = 1$ and $ASS_0 = n_0$. For the fair comparison, a control chart is reflected better than other competitor charts when it has smaller ATS_1 value or smaller $EATS_1$ value. Readers are suggested to refer to Khaw, et al. (2016), Castagliola, et al. (2013b), Castagliola, et al. (2015a), Castagliola, Celano, and Psarakis (2011), Calzada and Scariano (2013) and Kang, et al. (2007) for the designs of the VSSI CV, VSI CV, VSS CV, EWMA CV², Synthetic CV and Shewhart CV charts, respectively. The comparisons made in this section are important as it allows practitioners to identify the charts which took the least amount of time to detect a shift (through smaller values of ATS_1 and $EATS_1$) and to identify the charts which show least variability in the time to signal (through smaller values of $SDTS_1$).

4.2.1 ATS

Table 4.8 shows ATS_1 s of the VP CV chart, the Shewhart CV chart, VSS CV chart, VSI CV chart, VSSI CV chart, Synthetic CV control chart and EWMA CV^2 chart. The Table 4.8 presents the different charts ATS_1 value for the $\tau \in \{1.1, 1.2, 1.5, 2.0\}, n_0 \in \{5, 7, 10, 15\}, \gamma_0=0.05$ and $h_S = 0.10$. Table 4.8 also shows the percentage of increase in the ATS_1 value for the six competitor charts compared with the ATS_1 value for the VP CV chart. For instance, the VSSI CV

Table 4.8: A comparison of the out-of-control ATS_1 values of the VP CV chart and competing charts when $\tau \in \{1.1, 1.2, 1.5, 2.0\}, \gamma_0 = 0.05, n_0 \in \{5, 7, 10, 15\}$ and $h_S = 0.10$.

							r	$n_0 = 5$						
		VP CV	VS	SICV	V	'SI CV	V	VSS CV	EW	VMA CV ²	Syn	thetic CV	She	whart CV
		ATS_1	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase
τ	1.1	84.40	96.58	14.43	103.10	22.16	98.80	17.06	51.03	-39.54	115.42	36.75	159.86	89.41
	1.2	20.77	25.16	21.14	38.90	87.29	27.20	30.96	20.38	-1.88	37.67	81.37	64.69	211.46
	1.5	3.05	4.07	33.44	6.10	100.00	5.20	70.49	5.76	88.85	5.76	88.85	10.57	246.56
	2.0	0.65	1.65	153.85	1.50	130.77	2.30	253.85	2.36	263.08	1.97	203.08	2.34	260.00
							r	$u_0 = 7$						
		VP CV	VS	SICV	V	'SI CV	V	VSS CV	EW	VMA CV ²	Syn	thetic CV	She	whart CV
		ATS_1	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase
τ	1.1	72.25	82.89	14.73	87.60	21.25	84.50	16.96	39.32	-45.58	97.69	35.21	141.22	95.46
	1.2	15.04	18.62	23.80	29.60	96.81	20.70	37.63	15.44	2.66	27.65	83.84	50.26	234.18
	1.5	1.82	2.89	58.79	4.00	119.78	4.00	119.78	4.26	134.07	3.95	117.03	7.21	296.15
	2.0	0.30	1.30	333.33	1.00	233.33	1.80	500.00	1.80	500.00	1.51	403.33	2.05	583.33
							n	$_{0} = 10$						
		VP CV	VS	SICV	V	'SI CV	VSS CV		EW	VMA CV ²	Synthetic CV		Shewhart CV	
		ATS_1	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase
τ	1.1	62.15	71.19	14.55	73.50	18.26	72.40	16.49	30.09	-51.58	78.87	26.90	120.27	93.52
	1.2	11.02	13.72	24.50	21.70	96.91	16.20	47.01	11.60	5.26	19.24	74.59	37.09	236.57
	1.5	1.02	2.02	98.04	2.40	135.29	3.10	203.92	3.16	209.80	2.71	165.69	4.78	368.63
	2.0	0.11	1.11	909.09	0.60	445.45	1.50	1263.64	1.41	1181.82	1.22	1009.09	1.52	1281.82
							n	$_{0} = 15$						
		VP CV	VS	SICV	V	'SI CV	V	VSS CV	EW	/MA CV ²	Syn	thetic CV	She	whart CV
		ATS_1	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase	ATS_1	% increase
τ	1.1	52.74	59.61	13.03	59.70	13.20	62.80	19.07	22.46	-57.41	58.48	10.88	95.85	81.74
	1.2	7.74	9.71	25.45	14.80	91.21	13.20	70.54	8.43	8.91	12.24	58.14	25.03	223.39
	1.5	0.48	1.47	206.25	1.40	191.67	2.40	400.00	2.30	379.17	1.86	287.50	3.02	529.17
	2.0	0.03	1.03	3333.33	0.40	1233.33	1.20	3900.00	1.15	3733.33	1.07	3466.67	1.19	3866.67

chart's ATS_1 value shows an increase of 14.43% compared to the ATS_1 value of the VP CV chart for $n_0 = 5$ and $\tau = 1.1$. There are some competitor charts with constant sampling interval like the VSS CV chart, the Shewhart CV chart, the Synthetic CV control chart and the EWMA CV^2 chart. Those charts have fixed the sampling interval, h = 1 are assumed. From that, the *ATS* and *ARL* values are the same since $ATS = h \times ARL$.

From the Table 4.8, when the shift size, $\tau \in \{1.1, 1.2\}$ with $n_0 = 5$ and $\gamma_0 = 0.05$, it is clearly noticed that the best performance is the EWMA CV² chart. The second best performance chart is VP CV chart when the shift size, $\tau \in \{1.1, 1.2\}$ with $n_0 = 5$ and $\gamma_0 = 0.05$. However, when the shift size, $\tau \in \{1.5, 2.0\}$ with $n_0 = 5$, the best performance chart is the VP CV chart.

For the $n_0 \in \{7, 10, 15\}$ and $\gamma_0 = 0.05$, the EWMA CV^2 chart showed smallest ATS_1 value compared with other competing charts when $\tau = 1.1$. However, for the shift size, $\tau \in \{1.2, 1.5, 2.0\}$, the VP CV chart has showed best performance.

In general, except for the EWMA CV^2 chart, the VP CV chart shows lower ATS_1 values compared to the other existing CV charts when the smaller shift size is used. Next, the percentage of an increase for the six competing charts is considered high. Note that a positive percentage shows that the VP CV chart shows better performance than the competing chart, while a negative one shows that the competing chart shows better performance than the VP CV chart. The six competitor chart's percentage increase shows an increasing trend for the $\tau \in \{1.1, 1.2, 1.5, 2.0\}$. From that, a conclusion can be made which is the

VP CV chart performs well for the large shift size based on the percentage increase. For instance, for $\tau = 2.0$ and $n_0 = 15$, the percentage increase based on the *ATS*₁ of the VSSI CV, the VSI CV, the VSS CV, the EWMA CV², the Synthetic CV and the Shewhart CV charts are 3333.33%, 1233.33%, 3900.00%, 3733.33%, 3466.67% and 3866.67% respectively. Thus, the VP CV chart is compared to the other charts as there is a large improvement in term of *ATS*₁.

4.2.2 SDTS

Next, the *SDTS*₁ of the VP CV chart is compared with the *SDTS*₁ of the VSSI CV, VSI CV, VSS CV, EWMA CV^2 , Synthetic CV and Shewhart CV charts. Table 4.9 shows the *SDTS*₁ of these charts for $n_0 \in \{5, 7, 10, 15\}$, $\tau \in \{1.1, 1.2, 1.5, 2.0\}$ and $\gamma_0 = 0.05$. A smaller value of *SDTS*₁ indicates less variability in the time to signal. Table 4.9 also shows the percentage of an increase in the *SDTS*₁ value for the six competing charts compared with the *SDTS*₁ value for the VP CV chart. As in Table 4.9, a positive percentage shows that the VP CV chart shows a smaller *SDTS*₁ value. From Table 4.9, the VP CV chart generally shows smaller values of *SDTS*₁ compared to the VSSI, VSI, VSS, Synthetic and Shewhart CV charts for small and moderate shifts, while the *SDTS*₁ value of the VP CV chart is larger for large shifts. The *SDTS*₁ value of the VP CV chart is generally larger than the *SDTS*₁ value of the EWMA CV² chart in most cases.

							$n_0 = 5$							
_	VP CV	VS	SSI CV	V	SICV	V	SS CV	EW	$MA CV^2$	Syntl	hetic CV	Shew	/hart CV	
ι	$SDTS_1$	$SDTS_1$	% increase	$SDTS_1$	% increase	$SDTS_1$	% increase							
1.1	85.62	96.55	12.77	102.60	19.83	97.70	14.11	41.33	-51.73	151.46	76.90	159.36	86.12	
1.2	21.85	25.15	15.10	38.50	76.20	25.70	17.62	13.96	-36.11	48.35	121.28	64.19	193.78	
1.5	3.82	3.57	-6.54	5.90	54.45	3.90	2.09	3.68	-3.66	6.29	64.66	10.06	163.35	
2.0	1.73	1.27	-26.59	1.40	-19.08	1.30	-24.86	1.54	-10.98	1.56	-9.83	2.34	35.26	
	$n_0 = 7$													
	VP CV	VS	SSI CV	V	SICV	V	SS CV	EW	MA CV ²	Syntl	hetic CV	Shew	hart CV	
τ	$SDTS_1$	$SDTS_1$	% increase	$SDTS_1$	% increase	$SDTS_1$	% increase							
1.1	73.68	83.02	12.68	87.20	18.35	83.30	13.06	29.74	-59.64	128.09	73.85	140.71	90.97	
1.2	16.35	18.74	14.62	29.20	78.59	19.2	17.43	10.23	-37.43	35.13	114.86	49.76	204.34	
1.5	2.62	2.66	1.53	3.80	45.04	2.70	3.05	2.77	5.73	4.12	57.25	6.69	155.34	
2.0	1.62	1.62	0.00	0.90	-44.44	0.90	-44.44	1.07	-33.95	0.95	-41.36	1.48	-8.64	
							$n_0 = 10$							
τ -	VP CV	VS	SSI CV	V	SICV	V	SS CV	EW	MA CV ²	Syntl	hetic CV	Shew	/hart CV	
	$SDTS_1$	$SDTS_1$	% increase	$SDTS_1$	% increase	$SDTS_1$	% increase							
1.1	63.56	71.49	12.48	73.10	15.01	71.00	11.71	20.93	-67.07	103.22	62.40	119.77	88.44	
1.2	12.21	13.98	14.50	21.40	75.27	14.50	18.76	7.44	-39.07	24.11	97.46	36.59	199.67	
1.5	1.84	1.67	-9.24	2.30	25.00	1.80	-2.17	1.98	7.61	2.54	38.04	4.25	130.98	
2.0	1.39	0.42	-69.78	0.60	-56.83	0.70	-49.64	0.72	-48.20	0.56	-59.71	0.89	-35.97	
							$n_0 = 15$							
_	VP CV	VS	SSI CV	V	SI CV	V	SS CV	EW	MA CV ²	Syntl	hetic CV	Shev	/hart CV	
τ	$SDTS_1$	$SDTS_1$	% increase	$SDTS_1$	% increase	$SDTS_1$	% increase							
1.1	54.29	60.00	10.52	59.40	9.41	61.40	13.10	14.75	-72.83	76.27	40.49	95.35	75.63	
1.2	9.12	10.06	10.31	14.50	58.99	11.60	27.19	5.20	-42.98	14.95	63.93	24.53	168.97	
1.5	1.49	1.74	16.78	1.30	-12.75	1.40	-6.04	1.37	-8.05	1.47	-1.34	2.47	65.77	
2.0	1.30	0.20	-84.62	0.50	-61.54	0.40	-69.23	0.42	-67.69	0.29	-77.69	0.48	-63.08	

Table 4.9: *SDTS*₁ of the VP CV chart and the corresponding *SDTS*₁ of the VSSI CV, VSI CV, VSS CV, EWMA CV², Synthetic CV and Shewhart CV charts, for $n_0 \in \{5, 7, 10, 15\}, \tau \in \{1.1, 1.2, 1.5, 2.0\}$ and $\gamma_0 = 0.05$.

4.2.3 *EATS*

Table 4.10 to Table 4.12 show the EATS₁s of the optimal VP CV, the Shewhart CV chart, VSS CV chart, VSI CV chart, VSSI CV chart, Synthetic CV control chart and EWMA CV^2 chart. Table 4.10 presents the different charts $EATS_1$ value for the $(\tau_{\min}, \tau_{\max}) = (1, 2), n_0 \in \{5, 7, 10, 15\}, \gamma_0 = 0.05$ and $h_s = 0.10$. Table 4.11 presents the different charts *EATS*₁ value for the $(\tau_{\min}, \tau_{\max}) = (1.25,$ 2), $n_0 \in \{5, 7, 10, 15\}$, $\gamma_0 = 0.05$ and $h_S = 0.10$. Table 4.12 presents the different charts' *EATS*₁ values for the $(\tau_{\min}, \tau_{\max}) = (1.50, 2), n_0 \in \{5, 7, 10, 15\}, \gamma_0$ =0.05 and $h_{\rm S}$ = 0.10. Table 4.10 to Table 4.12 also show the percentage of an increase in the $EATS_1$ value for the six competitor charts compared with the $EATS_1$ value for the VP CV chart. From Table 4.10, the $EATS_1$ value of the VSSI CV chart shows an increase of 12.58% compared to the EATS₁ value of the VP CV chart for $n_0 = 5$ and $\gamma_0 = 0.05$. The *EATS*₀ is fixed as 370.4 for all the charts under comparison. As in Table 4.10 to Table 4.12, a positive percentage shows that the VP CV chart shows better performance than the competing chart, while a negative one shows that the competing chart shows better performance than the VP CV chart.

The best performance chart is the EWMA CV^2 chart when the $n_0 \in \{5, 7, 10, 15\}$, $\gamma_0 = 0.05$, $h_S = 0.10$ and $(\tau_{\min}, \tau_{\max}) = (1, 2)$. The second best performance chart is the VP CV chart compared with other charts. From the Table 4.11 and Table 4.12, the VP CV chart basically superior over all the charts. From that, noticed that the smaller the gap between the τ_{\min} and τ_{\max} , the VP CV chart performs better than EWMA CV^2 chart. Apart from that, the percentage

	VP VSSI CV		VSI CV		VS	VSS CV		EWMA CV^2		Synthetic CV		Shewhart CV	
			%		%		%		%		%		%
n_0	$EATS_1$	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase
5	19.88	22.38	12.58	24.75	24.50	23.25	16.95	15.72	-20.93	27.18	36.72	38.06	91.45
7	16.83	19.24	14.32	20.33	20.80	20.32	20.74	12.52	-25.61	22.76	35.23	32.12	90.85
10	14.40	16.56	15.00	16.67	15.76	17.86	24.03	9.89	-31.32	18.70	29.86	26.66	85.14
15	12.37	14.19	14.71	13.44	8.65	15.82	27.89	7.60	-38.56	14.73	19.08	21.30	72.19

Table 4.10: *EATS*₁ values of the VP CV chart and competing charts when $(\tau_{\min}, \tau_{\max}) = (1.00, 2.00), n_0 \in \{5, 7, 10, 15\}, \gamma_0 = 0.05, \text{ and } h_S = 0.10.$

Table 4.11: *EATS*₁ values of the VP CV chart and competing charts when $(\tau_{\min}, \tau_{\max}) = (1.25, 2.00), n_0 \in \{5, 7, 10, 15\}, \gamma_0 = 0.05, \text{ and } h_S = 0.10.$

	VP	VSSI CV		VSI CV		VS	VSS CV		EWMA CV^2		Synthetic CV		hart CV
	CV												
			%		%		%		%		%		%
n_0	$EATS_1$	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase
5	3.41	4.63	35.78	6.28	84.16	5.28	54.84	5.53	62.17	6.16	80.65	10.82	217.30
7	2.13	3.30	54.93	4.22	98.12	3.98	86.85	4.15	94.84	4.31	102.35	7.60	256.81
10	1.26	2.37	88.10	2.73	116.67	3.09	145.24	3.12	147.62	2.99	137.30	5.19	311.90
15	0.65	1.70	161.54	1.61	147.69	2.44	275.38	2.30	253.85	2.05	215.38	3.36	416.92

		VP CV	VP VSSI CV CV		VSI CV		VSS CV		EWMA CV^2		Synthetic CV		Shewhart CV	
				%		%		%		%		%		%
i	n_0	$EATS_1$	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase	$EATS_1$	increase
	5	1.49	2.53	69.80	2.98	100.00	3.22	116.11	3.58	140.27	3.20	114.77	5.33	257.72
	7	0.83	1.85	122.89	1.89	127.71	2.49	200.00	2.68	222.89	2.28	174.70	3.66	340.96
	10	0.41	1.43	248.78	1.15	180.49	1.97	380.49	2.03	395.12	1.68	309.76	2.51	512.20
	15	0.16	1.16	625.00	0.66	312.50	1.54	862.50	1.53	856.25	1.30	712.50	1.72	975.00

Table 4.12: *EATS*₁ values of the VP CV chart and competing charts when $(\tau_{\min}, \tau_{\max}) = (1.50, 2.00), n_0 \in \{5, 7, 10, 15\}, \gamma_0 = 0.05, \text{ and } h_S = 0.10.$

increase for six competing charts show an increasing trend except for the $(\tau_{\min}, \tau_{\max}) = (1, 2)$. For example, for the $(\tau_{\min}, \tau_{\max}) = (1.50, 2)$, $\gamma_0 = 0.05$, $n_0 = 15$, the percentage increase for the VSSI CV, the VSI CV, the VSS CV, the EWMA CV², the Synthetic CV and the Shewhart CV chart compared to the VP CV chart are 625.00%, 312.50%, 862.50%, 856.25%, 712.50% and 975.00% respectively. Practitioner is advised to use smaller gaps between the τ_{\min} and τ_{\max} as the VP CV chart shows better result based on the numeric comparison above.

4.3 Illustrative example

By using torque measurement in manufacturing car radios from Khaw, et al. (2016), the VP CV chart based on the case is established. The following steps shown are adopted to demonstrate the proposed chart.

- (1) There are m = 20 samples with n = 5 sizes in the Phase-I data.
- (2) For each of the samples, the summary statistic \overline{X}_i , S_i and $\hat{\gamma}_i$ are computed. The summary statistics of the Phase I data are listed in Table 4.13 (left side).
- (3) From the analysis of the Phase I data, $\hat{\gamma}_0 = 0.005645$ is obtained by

using formula,
$$\hat{\gamma}_0 = \frac{\sum_{i=1}^{20} \gamma_i}{20}$$
.

(4) By using the Shewhart CV chart, the Phase I data is in-control from the Khaw, et al. (2016). By referring the Khaw, et al. (2016), all the Phase I samples fall between LCL_{CV} and UCL_{CV}. The LCL_{CV} and UCL_{CV} are obtained based on $\alpha_0 = 0.0027$.

- (5) For this industrial example, $n_0 = 5$ and $\hat{\gamma}_0 = 0.005645$ are assumed, the coefficients *a*, *b* and *c* needed to compute the transformed sample coefficient of variation, T_i by using the formula stated in Chapter 3. The coefficients *a*, *b* and *c* are 30.4614, 7.0694 and -0.0083 respectively. The T_i value is computed in Table 4.13 (left side).
- (6) After that, assume the n_0 , h_0 , ATS_0 and τ with 5, 1 hour, 370.5 and 1.1 respectively. The optimal parameter of the VP CV chart, n_s , n_L , h_s , h_L , W_L , W_s , K_L , K_s are 2, 31, 0.1 hour, 1.1038 hour, 1.6339, 1.5334, 2.8500 and 2.2440 respectively for detecting a shift from $\hat{\gamma}_0 = 0.005645$ to $\hat{\gamma}_1 = \hat{\gamma}_0 \times 1.1 = 0.0062095$ by using the Scicoslab optimization program.
- (7) The 20 new samples from the Phase II process are collected. The initial sample size, the initial sampling interval, the initial warning limit and the initial control limit are taken as $n_{\rm L}$, $h_{\rm S}$, $W_{\rm S}$ and $K_{\rm S}$. The summary statistics \overline{X}_i , S_i and $\hat{\gamma}_i$ are computed. The summary statistics are shown in Table 4.13 (right side).
- (8) For the Phase-II data, the coefficients *a*, *b*, and *c* needs to be computed based on the small sample size and large sample size. For the small sample size is taken, $a_{\rm S} = 11.1248$, $b_{\rm S} = 2.2151$ and $c_{\rm S} = -0.0028$ are used to calculate the T_i . Whereas $a_{\rm L} = 93.1005$, $b_{\rm L} = 22.6584$ and $c_{\rm L} = -$ 0.0108 are used to compute the T_i for the large sample size is taken. For example, the first sample is large sample size, so $a_{\rm L} = 93.1005$, $b_{\rm L} =$ 22.6584 and $c_{\rm L} = -0.0108$ are used to compute the T_i .

In order to compute the T_i statistic, the formula is used as follow:
Phase-I								Phase	-II				
;	$\overline{\mathbf{v}}$	c.	8	7	T	;	$\overline{\mathbf{v}}$	c		I.	8	1	Т
$\frac{\iota}{1}$	$\frac{X_i}{49.83}$	$\frac{s_i}{0.46}$	$\frac{\gamma_i}{0.0093}$	0.005561	$\frac{I_i}{1.8732}$	1	$\frac{X_i}{50.86}$	$\frac{3_i}{0.21}$	$\frac{n_i}{31}$	$\frac{n_i}{0.1}$	$\frac{\gamma_i}{0.0041}$	0.005231	-2.0988
2	50.95	0.49	0.0096	0.005823	2.0192	2	50.18	0.148	31	0.1	0.0029	0.005083	-3.9581
3	49.3	0.31	0.0063	0.005853	0.5640	3	50.05	0.191	31	0.1	0.0038	0.005002	-2.5771
4	50.19	0.26	0.0052	0.005811	0.0153	4	50.06	0.101	31	0.1	0.0020	0.004809	-5.5429
5	49.84	0.55	0.0110	0.006146	2.5437	5	50.21	0.321	31	0.1	0.0064	0.004911	1.0919
6	51.38	0.33	0.0065	0.006167	0.6571	6	50.22	0.302	2	1.1038	0.0060	0.004982	0.6396
7	50.07	0.26	0.0051	0.006098	-0.0413	7	50.86	0.245	2	1.1038	0.0048	0.004972	0.3158
8	50.33	0.25	0.0050	0.006025	-0.1080	8	50.64	0.829	2	1.1038	0.0164	0.005708	2.3634
9	49.32	0.42	0.0085	0.006186	1.5701	9	50.19	0.161	31	0.1	0.0032	0.005546	-3.5375
10	50.03	0.28	0.0055	0.006143	0.1793	10	49.86	0.091	31	0.1	0.0018	0.005306	-5.8845
11	50.64	0.42	0.0082	0.006278	1.4508	11	50.39	0.404	31	0.1	0.0080	0.005481	3.1324
12	50.74	0.19	0.0038	0.006115	-0.7812	12	50.43	0.715	31	0.1	0.0142	0.006042	9.5365
13	50.02	0.15	0.0031	0.005919	-1.1955	13	49.84	0.211	31	0.1	0.0042	0.005926	-1.9411
14	50.03	0.16	0.0031	0.005739	-1.1711	14	50.12	0.173	31	0.1	0.0035	0.005766	-3.1476
15	50.4	0.18	0.0037	0.005604	-0.8481	15	51.09	0.2	31	0.1	0.0039	0.005646	-2.4255
16	50.51	0.16	0.0032	0.005452	-1.0916	16	50.23	0.239	31	0.1	0.0048	0.005589	-1.1662
17	50.03	0.17	0.0034	0.005320	-0.9875	17	50.43	0.213	2	1.1038	0.0042	0.005501	0.1356
18	49.93	0.18	0.0035	0.005204	-0.9231	18	50.34	0.513	2	1.1038	0.0102	0.005804	1.5004
19	50.23	0.21	0.0042	0.005140	-0.5295	19	50.02	0.417	2	1.1038	0.0083	0.005967	1.1588
20	50.31	0.23	0.0047	0.005108	-0.2788	20	50.43	0.362	2	1.1038	0.0072	0.006045	0.9151

 Table 4.13: Phase-I and Phase-II datasets.

Note: ${}^{1}Z_{i} = (1 - \lambda)Z_{i-1} + \lambda \hat{\gamma}_{i}$ is used for the EWMA CV chart.

$$T_i = a + b \ln\left(\hat{\gamma} - c\right)$$

For example, the first T_i statistic obtained by:

$$T_1 = 93.1005 + 22.6584 \ln\left(\frac{0.210}{50.86} - (-0.0108)\right)$$

For the sample 6, this sample is small sample size, so $a_{\rm S} = 11.1248$, $b_{\rm S} = 2.2151$ and $c_{\rm S} = -0.0028$ are used to calculate the T_i .

(9) As T_i is approximate normal distribution, so we define the fixed and symmetric warning limits

$$UWL = +W,$$
$$LWL = -W$$

and fixed and symmetric control limits.

UCL = +K,LCL = -K

When the T_i falls in the interval LWL $< T_i <$ UWL, the next small sample size is taken, the sampling interval, the warning limit and the control limit are 1.1038 hour, 1.6339 and 2.8500. When the T_i falls into the warning region, the next large sample size is taken, the sampling interval, the warning limit and the control limit are 0.1 hour, 1.5334 and 2.2440. For example, from the Table 4.13 (right side), the first sample is taken after 0.1 hour. As the sample 1 falls in the warning region of the VP CV chart, the sample 2 is large sample size after the short sampling interval is taken with using small control limit coefficient and small warning limit coefficient. Then as the sample 2 falls in the out-ofcontrol region of the VP CV chart, the process is out-of control. The bold faced values in Table 4.13 are the out-of-control sample detected by the VP CV chart. For comparison, the VSSI CV chart, the VSI CV chart, the VSS CV chart, the EWMA CV chart, the Synthetic CV chart and the Shewhart CV chart are plotted in Figure 4.1. The reason of the EMWA CV chart is used instead of the EWMA CV^2 chart for the comparison is because other competitor charts are two-sided control chart and choose EWMA CV chart is for fair comparison purpose.

For the VP CV chart (Figure 4.1a), the left control limit coefficient and the warning limit coefficient are used when the next small sample size and the long sampling interval are considered. Whereas, the right control limit coefficient and the warning limit coefficient are used when the next large sample size and the short sampling interval are considered. The VP CV chart plotted detects several out-of control samples, which are at the 2nd, 3rd, 4th, 9th, 10th, 11th, 12th, 14th and 15th samples. The cumulative time for detecting first out-of-control sample is 0.2 hours (see Table 4.13). The process engineer should investigate possible cause(s). To ensure the process back to the in-control process after these out-of-control samples, process modifications are required.

For the VSSI CV chart, the optimal chart's parameters, $n_{\rm S}$, $n_{\rm L}$, $h_{\rm S}$, $h_{\rm L}$, W, K are 2, 31, 0.1 hour, 1.1038 hour, 1.6299 and 2.5160 from Scicoslab optimization program. The initial sample size and the initial sampling interval are taken as $n_{\rm L}$ and $h_{\rm S}$. Based on Khaw *et al.* (2016), the $\mu_0(\hat{\gamma}) = 0.0053$ and the $\sigma_0(\hat{\gamma}) = 0.0019$ are substituted into LCL, LWL, UCL and UWL's formula as:

Figure 4.1: (a) VP CV, (b) VSSI CV, (c) VSI CV, (d) VSS CV, (e) EWMA CV, (f) Synthetic CV and (g) Shewhart CV charts are applied to the industrial example (Phase-II with the shift size, $\tau = 1.1$).

$$LCL = 0.0053 - 2.5160(0.0019) = 0.0005$$
$$UCL = 0.0053 + 2.5160(0.0019) = 0.0101$$
$$LWL = 0.0053 - 1.6299(0.0019) = 0.0022$$
$$UWL = 0.0053 + 1.6299(0.0019) = 0.0084$$

From the chart plotted (Figure 4.1b), the VSSI CV chart detects the 8th, 12th and 18th samples are the out-of-control samples. The cumulative time for detecting first out-of-control sample is 6.8231 hours (see Appendix B (i)).

For the VSI CV chart, the short and the long sampling interval are fixed as $(h_S, h_L) = (0.1, 1.1)$. The optimal chart's parameters, *W*, *K* are 1.6097, 3.1527 respectively. The LCL, LWL, UCL and UWL are -0.0008, 0.0022, 0.0084 and 0.0114 respectively. The value of LCL will be rounded up to 0 as the CV is a positively defined statistic. From the Figure 4.1(c), the 8th and 12th samples are the out-of-control samples. The cumulative time for detecting first out-of-control sample is 6.8 hours (see Appendix B (ii)).

For the VSS CV chart, the optimal chart's parameters, $n_{\rm S}$, $n_{\rm L}$, W, K are 2, 31, 1.6299 and 2.5160 from Scicoslab optimization program. From the Figure 4.1(d), the VSS CV chart detects the 2nd, 3rd, 4th, 9th, 10th, 11th, 12th and 14th samples are the out-of-control samples. The cumulative time for detecting first out-of-control sample is 2 hours (see Appendix B (iii)).

For the EWMA CV chart, the optimal chart's parameters, λ and *K* are 0.0645559 and 2.6980157 respectively. Based on the equation to compute the

UCL and LCL from the Hong, et al. (2008), the UCL is 0.0062561 and the LCL is 0.0043573. From the Figure 4.1(e), the EWMA CV chart fails to detect any out-of-control condition (see Appendix B (iv)).

For the Synthetic CV chart, the optimal chart's parameters, L, LCL and UCL are 73, 0.0012 and 0.0112 respectively. From the Figure 4.1(f), the 8th and 12th samples are falling outside the control limit and only treated as non-conforming samples. When the number of samples between two successive non-conforming samples which include the ending non-conforming sample, this is known as the conforming run length, *CRL*. The Synthetic CV chart only signals an out-of-control when the conforming run length is less than or equal to a threshold L. In order to give the Synthetic CV chart a head start, the sample at time t = 0 known as a non-conforming sample. For this case, there are two conforming run length which are $CRL_1 = 8$ and $CRL_2 = 4$. As CRL_1 and CRL_2 are less than L = 73, the 8th and 12th samples are the out-of-control samples. The cumulative time for detecting first out-of-control sample is 8 hours (see Appendix B (v)).

For the Shewhart CV chart, the optimal chart's parameters, LCL_{CV} and UCL_{CV} are 0.0009 and 0.0119 respectively. From the Figure 4.1(g), the 8th and 12th samples are the out-of-control samples. The cumulative time for detecting first out-of-control sample is 8 hours (see Appendix B (v)).

Among seven control charts, the VP CV chart performs better than the competitor charts based on this industrial example. The VP CV chart needs shortest time to detect the out-of-control sample compare to other charts.

From the Figure 4.1, the charts are plotted with the optimal parameters based on objective to minimize the ATS_1 . Anyhow, τ needs to be known in order to obtain these optimal chart's parameters. However, practitioners could not specify the shift size in reality. From that, the Phase II data also monitored based on the optimal parameters that to minimize the EATS₁, because the EATS do not need to specify the shift size. The procedures to design the VP CV chart which minimize the $EATS_1$ are similar to the procedure to design the VP CV chart which minimize the ATS_1 . The only exception is in Step 6. The optimal parameters, $n_{\rm S}$, $n_{\rm L}$, $h_{\rm S}$, $h_{\rm L}$, $W_{\rm L}$, $W_{\rm S}$, $K_{\rm L}$, $K_{\rm S}$, to minimize the EATS₁ for the $(\tau_{\min}, \tau_{\max}) = (1, 2)$ is computed rather than the optimal parameters, $n_{\rm S}$, $n_{\rm L}$, $h_{\rm S}$, $h_{\rm L}$, $W_{\rm L}$, $W_{\rm S}$, $K_{\rm L}$, $K_{\rm S}$, to minimize the ATS₁. Based on the formula stated in Chapter 3, the optimal parameters, $n_{\rm S}$, $n_{\rm L}$, $h_{\rm S}$, $h_{\rm L}$, $W_{\rm L}$, $W_{\rm S}$, $K_{\rm L}$, $K_{\rm S}$ of the VP CV chart when the $n_0 = 5$ are 2, 31, 0.1, 1.1038, 1.6336, 1.5374, 2.78 and 2.2614 respectively. For the VP CV chart (Figure 4.2a), the left control limit coefficient and the warning limit coefficient is used when the next small sample size and the long sampling interval is taken, whereas, the right control limit coefficient and the warning limit coefficient is used when the next short sampling interval and the large sample size is taken. The VP CV chart plotted detects several out-of control samples, which are at the 2nd, 3rd, 4th, 9th, 10th, 11th, 12th, 14th and 15th samples. The cumulative time for detecting first out-ofcontrol sample is 0.2 hours (see Table 4.12).

Figure 4.2: (a) VP CV, (b) VSSI CV, (c) VSI CV, (d) VSS CV, (e) EWMA CV, (f) Synthetic CV and (g) Shewhart CV charts are applied to the industrial example (Phase-II with an unknown shift size).

In order to have a fair comparison, the range of shift size, $(\tau_{\min}, \tau_{\max}) = (1, 2)$ is assumed for all the competitor charts. For the VSSI CV chart, the VSI CV chart, the VSS CV chart and the Shewhart CV chart, the optimal chart's parameters to minimize the $EATS_1$ is same with the optimal chart's parameters to minimize the ATS_1 . Thus, the result of the out-of-control samples and the time needed to detect the out-of-control is the same. For instance, the VSSI CV chart detects the 8th, 12th and 18th samples are the out-of-control samples from the chart plotted (Figure 4.2b). The cumulative time for detecting first out-ofcontrol sample is 6.8231 hours (see Appendix B (i)). From the Figure 4.2(c), the VSI CV chart detects the 8th and 12th samples is the out-of-control samples. The VSI CV chart needs take 6.8 hours for detecting first out-of-control sample (see Appendix B (ii)). From the Figure 4.2(d), the VSS CV chart detects the 2^{nd} , 3rd, 4th, 9th, 10th, 11th, 12th and 14th samples are the out-of-control samples. The time required for the VSS CV chart to detect the first out-of-control sample is 2 hours (see Appendix B (iii)). From the Figure 4.2(g), the Shewhart CV chart detect the 8th and 12th samples are the out-of-control samples. The cumulative time for detecting first out-of-control sample is 8 hours (see Appendix B (v)).

For the EWMA CV chart, the optimal chart's parameters, λ and *K* are 0.2 and 2.882758 respectively to minimize the *EATS*₁. Based on the equation to compute the UCL from the Hong, et al. (2008), the UCL is 0.0071582 and the LCL is 0.0034552. From the Figure 4.2(e), the EWMA CV chart detects the 12th sample are the out-of-control sample. The cumulative time for detecting first out-of-control sample is 12 hours (see Appendix B (vi)).

For the Synthetic CV chart, the optimal chart's parameters, L, LCL and UCL are 40, 0.0012 and 0.0110 respectively. From the Figure 4.2(f), the 8th and 12th samples are falling outside the control limit and only treated as non-conforming samples. For this case, there are two conforming run length which are $CRL_1 = 8$ and $CRL_2 = 4$. As CRL_1 and CRL_2 are less than L = 40, the 8th and 12th samples are the out-of-control samples. The Synthetic CV chart takes 8 hours for detecting first out-of-control sample (see Appendix B (v)).

From the Figure 4.1 and Figure 4.2, the VP CV chart outperforms the VSSI CV chart, the VSI CV chart, the VSS CV chart, the EWMA CV chart, the Synthetic CV chart and the Shewhart CV chart in detecting the out-of-control sample. From this industrial example, we can adopt the VP CV chart to monitor the process.

CHAPTER 5 CONCLUSION

5.1 Conclusion

In the context of the Statistical Process Control, monitoring the CV plays an important role in real life. There are many situations where the traditional control chart may not work like the mean is inconstant or variance is the function of the mean. By referring the past reviews, the VP chart showed better performance compare to other charts.

In this project, the VP CV chart is introduced. The VP CV chart varies four parameters which are the sample size, the sampling interval, the warning limits and the control limits. To the best of our knowledge, there is no one using VP strategy to monitor the CV, so the VP CV chart can be known as a valuable contribution to any fields. The T_i statistic is used instead of using the CV for the implementation of the VP CV chart, because the T_i statistic approximately follows a normal distribution. The VP CV chart is demonstrated with one-sided upward chart. The operation of the VP CV chart strategy is demonstrated too. The formula for compute the small control limit coefficient (K_S), the small warning limit coefficient (W_S), large warning limit coefficient (W_L), ATS_1 and the $EATS_1$ values are discussed in this project. To compute the ATS_1 Markov chain approach is used. Apart from that, the Gauss-Legendre quadrature is used to approximate $EATS_1$ values. The optimization algorithms which minimize the ATS_1 and the $EATS_1$ values subject to constraints are proposed. In order to build implementation VP the of CV chart. the optimal parameters $(n_{s}^{*}, n_{L}^{*}, h_{s}^{*}, h_{L}^{*}, W_{s}^{*}, W_{L}^{*}, K_{s}^{*}, K_{L}^{*})$ are obtained by minimizing ATS_{1} and the *EATS*₁ values. All the optimization procedure is written by using the Scicoslab software.

The value of ATS_1 and $SDTS_1$ decrease when the sample size increases. Next, there is a slightly different in term of ATS_1 when the $h_S = 0.01$ and $h_S = 0.10$. Different value of γ_0 have small impact on the ATS₁ and SDTS₁ values of the VP CV chart. In terms of the variability of the time to signal, the VP CV chart generally shows smaller variability than the VSSI, VSI, VSS, Synthetic and Shewhart CV charts for small and moderate shifts, while the variability in the time to signal of the VP CV chart is larger than that of the VSSI, VSI, VSS, Synthetic and Shewhart CV charts for large shifts. Compared to the EWMA CV^2 chart, the VP CV chart generally shows larger variability. For the EATS₁ value, there is a slightly different in term of $EATS_1$ when the $h_S = 0.01$ and $h_S =$ 0.10. By comparing the different charts based on the $EATS_1$, when the shift size is small, the EWMA CV^2 chart performs better than the VP CV chart. For the $EATS_1$ comparison, the VP CV chart shows had the smallest $EATS_1$ value for $(\tau_{\min}, \tau_{\max}) = (1.25, 2.00)$ and $(\tau_{\min}, \tau_{\max}) = (1.50, 2.00)$. However, the EWMA CV^2 chart outperforms the other existing CV charts for $(\tau_{\min}, \tau_{\max}) = (1.00, \tau_{\min}, \tau_{\max})$ 2.00) and the second better performance chart is VP CV chart. By referring to the result showed in the Table 4.11 and Table 4.12, the VP CV chart performs better than other charts when the different between the shift size is small.

The VP CV chart is then demonstrated through an illustrative example. The VP CV types of charts with the fixed sampling rate (i.e. VSS CV chart, Shewhart

CV chart, EWMA CV chart and Synthetic CV control) are compared to the variable sampling rate types of charts (i.e. VSI CV chart and VSSI CV chart). We found that VP CV chart surpasses all the competitor charts since the VP CV chart consumes the shortest time to detect the out-of-control sample than the competitor charts.

5.2 **Recommendations for Future Research**

Last but not least, the VP strategy can be extended to other charts to improve the performance like EWMA CV chart. Next, the T_i statistic is recommended rather than use the CV to implement the chart. The T_i statistic can be incorporated with other charts such as VSSI CV, EWMA CV. Apart from that, if the practitioner is willing to vary the sample size and/or sampling interval, it is recommended that the practitioner also varies the warning and control limits, since it does not incur any additional cost to vary these limits. Instead, it results in a faster detection of an out-of-control condition. Hence, faster corrective actions can be taken and this will result in cost savings, as less defective products are produced.

REFERENCES

Amin, R.W. and Miller, R.W., 1993. A robustness study of \overline{X} charts with variable sampling intervals. *Journal of Quality Technology*, 25(2), pp. 36-44.

Amiri, A., Nedaie, A. and Alikhani, M., 2014. A New Adaptive Variable Sample Size Approach in EWMA Control Chart. *Communications in Statistics* - *Simulation and Computation*, 43(4), pp. 804-812.

Annadi, H.P., Keats, J.B., Runger, G.C. and Montgomery, D.C., 1995. An Adaptive Sample Size CUSUM Control Chart. *International Journal of Production Research*, 33(6), pp. 1605-1616.

Aparisi, F., 1996. Hotelling's T^2 control chart with adaptive sample sizes. International Journal of Production Research, 34(10), pp. 2853-2862.

Arnold, J.C. and Reynolds Jr, M.R., 2001. CUSUM control charts with variable sample sizes and sampling intervals. *Journal of Quality Technology*, 33(1), pp. 66-81.

Aslam, M., Arif, O.H. and Jun, C.H., 2016. A new variable sample size control chart using MDS sampling. *Journal of Statistical Computation and Simulation*, 86(18), pp.3620-3628.

Caldaza, M.E. and Scariano, S.M., 2013. A synthetic control chart for the coefficient of variation. *Journal of Statistical Computation and Simulation*, 83(5), pp. 853-867.

Castagliola, P., Achouri, A., Taleb, H., Celano, G. and Psarakis, S., 2013a. Monitoring the coefficient of variation using control charts with runs rules. *Quality Technology & Quantitative* Management, 10(1), pp. 75-94.

Castagliola, P., Achouri, A., Taleb, H., Celano, G. and Psarakis, S., 2013b. Monitoring the coefficient of variation using a variable sampling interval control chart. *Quality and Reliability Engineering International*, 29(8), pp. 1135-1149.

Castagliola, P., Achouri, A., Taleb, H., Celano, G. and Psarakis, S., 2015a. Monitoring the coefficient of variation using a variable sample size control chart. *The International Journal of Advanced Manufacturing Technology*, 80(9), pp. 1561-1576.

Castagliola, P., Amdouni, A., Taleb, H. and Celano G., 2015b. One-sided Shewhart-type charts for monitoring the coefficient of variation in short production runs. *Quality Technology and Quantitative Management*, 12(1), pp. 53-67. Castagliola, P., Celano, G. and Fichera, S., 2006. Evaluation of the statistical performance of a variable sampling interval *R* EWMA control chart. *Quality Technology and Quantitative Management*, 3(3), pp. 307-323.

Castagliola, P., Celano, G., Fichera, S. and Giuffrida, F., 2007. A variable sampling interval *S*²-EWMA Control chart for monitoring the process variance. *International Journal of Technology Management*, 37(1-2), pp. 125-146.

Castagliola, P., Celano, G. and Psarakis, S., 2011. Monitoring the coefficient of variation using EWMA charts. *Journal of Quality Technology*, 43(3), pp. 249-265.

Celano, G., Costa, A. and Fichera, S., 2006. Statistical design of variable sample size and sampling interval \overline{X} control charts with runs rules. *The International Journal of Advanced Manufacturing Technology*, 28(9-10), pp. 966-977.

Chen, Y.K. and Chang, H.H., 2008. Economic design of variable parameters \overline{X} control charts for processes with fuzzy mean shift. *Journal of the Operational Research Society*, 59(8), pp. 1128-1135.

Chen, Y.K., Hsieh, K.L. and Chang, C.C., 2007. Economic design of VSSI \bar{X} control charts for correlated data. *International Journal of Production Economics*, 107(2), pp. 528-539.

Cheng, Y.T., Yang, C.C. and Wu, S.C., 2013. Optimal variable sample size and sampling interval MSE based on improved square root transformation. *Communications in Statistics-Simulation and Computation*, 42(3), pp. 534-551.

Chengalur, I.N., Arnold, J.C. and Reynolds Jr, M.R., 1989. Variable sampling intervals for multiparameter Shewhart charts. *Communications in Statistics-Theory and Methods*, 18(5), pp. 1769-1792.

Costa, A.F.B., 1997. \overline{X} charts with variable sample size and sampling intervals. Journal of Quality Technology, 29(2), pp. 197-204.

Costa, A.F.B., 1998a. VSSI \overline{X} charts with sampling at fixed times. Communications in Statistics - Theory and Methods, 27(11), pp. 2853-2869.

Costa, A.F.B., 1998b. Joint \overline{X} and R Charts with Variable Parameters. *IIE Transactions*, 30(6), pp. 505-514.

Costa, A.F.B., 1999. \overline{X} Charts with Variable Parameters. *Journal of Quality Technology*, 31(4), pp. 408-416.

Costa, A.F.B. and Machado, M.A.G., 2016. A side-sensitive synthetic chart combined with a VSS \overline{X} chart. *Computers and Industrial Engineering*, 91, pp. 205-214.

De Magalhães, M.S. and Von Doellinger, R.O.S., 2016. Monitoring linear profiles using an adaptive control chart. *The International Journal of Advanced Manufacturing Technology*, 82(5), pp. 1433-1445.

Deheshvar, A., Shams, H., Jamali, F. and Movahedmanesh, Z., 2013. A Novel Adaptive Control Chart with Variable Sample Size, Sampling Interval and Control Limits: A three Stage Variable Parameters (TSVP). *International Journal of Business and Management*, 8(2), pp. 38-49.

Guo, B. and Wang, B.X., 2015. The variable sampling interval S^2 chart with known or unknown in-control variance. *International Journal of Production Research*, 54(11), pp. 3365-3379.

Hashemian, S.M., Noorossana, R., Keyvandarian, A. and Shekary A, M., 2016. Performance of adaptive *np*-chart with estimated parameter. *International Journal of Quality & Reliability Management*, 33(6), pp. 769-791.

Hong, E.P., Kang, C.W., Baek, J.W. and Kang, H.W., 2008. Development of CV control chart using EWMA technique. *Journal of the Society of Korea Industrial and Systems Engineering*, 31(4), pp. 114-120.

Iglewicz, B., Myers, R.H. and Howe, R.B., 1968. On the percentage points of the sample coefficient of variation. *Biometrika*, 55(3), pp. 580-581.

Jensen, W.A., Bryce, G.R. and Reynolds Jr, M.R., 2008. Design issues for adaptive control charts. *Quality and Reliability Engineering International*, 24(4), pp. 429-445.

Kang, C.W., Lee, M.S., Seong, Y.J. and Hawkins, D.M., 2007. A control chart for the coefficient of variation. *Journal of Quality Technology*, 39(2), pp. 151-158.

Kazemzadeh, R.B., Karbasian, M. and Babakhani, M.A., 2013. An EWMA *t* chart with variable sampling intervals for monitoring the process mean. *The International Journal of Advanced Manufacturing Technology*, 66(1), pp. 125-139.

Khaw, K.W., Khoo, M.B.C., Yeong, W.C. and Wu, Z., 2016. Monitoring the coefficient of variation using a variable sample size and sampling interval control chart. *Communications in Statistics-Simulation and Computation*, published on-line. DOI: 10.1080/03610918.2016.1177074.

Lee, M.H. and Khoo, M.B.C., 2015. Multivariate Synthetic |S| Control Chart with Variable Sampling Interval. *Communications in Statistics-Simulation and Computation*, 44(4), pp. 924-942.

Lee, P.H., 2011. Adaptive *R* charts with variable parameters. *Computational Statistics & Data Analysis*, 55(5), pp. 2003-2010.

Lin, Y.C., 2009. The Variable Parameters Control Chart for Monitoring Autocorrelated Processess. *Communication in Statistics-Simulation and Computation*, 38(4), pp. 729-749.

Lin, Y.C. and Chou, C.Y., 2005. On the design of variable sample size and sampling intervals \overline{X} charts under non-normality. *International Journal of Production Economics*, 96(2), pp. 249-261.

Lin, Y.C. and Chou, C.Y., 2007. Non-normality and the variable parameters \overline{X} control charts. *European Journal of Operational Research*, 176(1), pp. 361-373.

Mahadik, S.B., 2013a. Variable sample size and sampling interval \overline{X} charts with runs rules for switching between sample sizes and sampling interval lengths. *Quality and Reliability Engineering International*, 29(1), pp. 63-76.

Mahadik, S.B., 2013b. \overline{X} charts with variable sample size, sampling interval, and warning limits. *Quality and Reliability Engineering International*, 29(4), pp. 535-544.

Mahadik, S.B. and Shirke, D.T., 2009. A special variable sample size and sampling interval \overline{X} chart. *Communications in Statistics-Theory and Methods*, 38(8), pp. 1284-1299.

Noorossana, R., Shekary A, M. and Deheshvar, A., 2015. Combined Variable Sample Size, Sampling Interval, and Double Sampling (CVSSIDS) Adaptive Control Charts. *Communications in Statistics-Theory and Methods*, 44(6), pp. 1255-1269.

Panthong, C. and Pongpullponsak, A., 2016. Non-Normality and the Fuzzy Theory for Variable Parameters \overline{X} Control Charts. *Thai Journal of Mathematics*, 14(1), pp. 203-213.

Prabhu, S.S., Montgomery, D.C. and Runger, G.C., 1994. A combined adaptive sample size and sampling interval \overline{X} control scheme. *Journal of Quality Technology*, 26(3), pp. 164-176.

Prabhu, S.S., Runger, G.C. and Keats, J.B., 1993. \overline{X} Chart with Adaptive Sample Sizes. *International Journal of Production Research*, 31(12), pp. 2895-2909.

Reynolds Jr, M.R., 1996. Shewhart and EWMA variable sampling interval control charts with sampling at fixed times. *Journal of Quality Technology*, 28(2), pp. 199-212.

Reynolds Jr, M.R., Amin, R.W. and Arnold, J.C., 1990. CUSUM charts with variable sampling intervals. *Technometrics*, 32(4), pp. 371-384.

Reynolds Jr, M.R., Amin, R.W., Arnold, J.C. and Nachlas, J.A., 1988. \overline{X} charts with variable sampling intervals. *Technometric*, 30(2), pp. 181-192.

Reynolds Jr, M.R. and Arnold, J.C., 1989. Optimal one-sided Shewhart charts with variable sampling intervals. *Sequential Analysis*, 8(1), pp. 51-77.

Reynolds Jr, M.R., and Arnold, J.C., 2001. EWMA control charts with variable sample sizes and variable sampling intervals. *IIE Transactions*, 33(6), pp. 511-530.

Runger, G.C. and Pignatiello, J.J., 1991. Adaptive sampling for process control. *Journal of Quality Technology*, 23(2), pp. 135-155.

Saccucci, M.S., Amin, R.W. and Lucas, J.M., 1992. Exponentially weighted moving average control schemes with variable sampling intervals. *Communications in Statistics-Simulation and Computation*, 21(3), pp. 627-657.

Shamma, S.E., Amin, R.W and Shamma, A.K., 1991. A double exponentially weighted moving average control procedure with variable sampling intervals. *Communications in Statistics-Simulation and Computation*, 20(2-3), pp. 511-528.

Wu, Z., Tian, Y. and Zhang, S., 2005. Adjusted-loss-function charts with variable sample sizes and sampling intervals. *Journal of Applied Statistics*, 32(3), pp. 221-242.

Wu, Z., Zhang, S. and Wang, P., 2007. A CUSUM scheme with variable sample sizes and sampling intervals for monitoring the process mean and variance. *Quality and Reliability Engineering International*, 23(2), pp. 157-170.

Yang, C.C. and Yang, S.F., 2013. Optimal variable sample size and sampling interval 'mean squared error' chart. *The Service Industries Journal*, 33(6), pp. 652-665.

Yeong, W.C., Khoo, M.B.C., Lim, S.L. and Lee, M.H., 2015. A direct procedure for monitoring the coefficient of variation using a variable sample size scheme. *Communications in Statistics-Simulation and Computation*, published on-line. DOI: 10.1080/03610918.2015.1109659.

Yeong, W.C., Khoo, M.B.C., Teoh, W.L. and Castagliola P., 2016. A control chart for the multivariate coefficient of variation. *Quality and Reliability Engineering International*, 32(3), pp. 1213-1225.

You, H.W., Khoo, M.B.C., Castagliola, P. and Haq, A., 2015. Monitoring the coefficient of variation using the side sensitive group runs chart. *Quality and Reliability Engineering International*, 32(5), pp. 1913-1927.

Zhang, J., Li, Z., Chen. B. and Wang, Z., 2014. A new exponentially weighted moving average control chart for monitoring the coefficient of variation. *Computers & Industrial Engineering*, 78, pp. 205-212.

Zimmer, L.S., Montgomery, D.C. and Runger, G.C., 1998. Evaluation of the Three-State Adaptive Sample Size \overline{X} Control Chart. *International Journal of Production Research*, 36(3), pp. 733-743.

APPENDICES

APPENDIX A

EQUATION DERIVATION

To show
$$F_{\tilde{\gamma}}(x | n, \gamma) = 1 - F_i \left(\frac{\sqrt{n}}{x} | n - 1, \frac{\sqrt{n}}{\gamma} \right)$$

 $\tilde{\gamma} = \frac{S}{\overline{X}}$, where $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$
 $\overline{X} = N\left(\mu, \frac{\sigma^2}{n}\right)$
 $(n-1) \frac{S^2}{\sigma^2} \sim \chi^2 (n-1)$
Thus, $\frac{\overline{X} / \frac{\sigma}{\sqrt{S^2}}}{\sqrt{S^2 / \sigma^2}} = \sqrt{n} \frac{\overline{X}}{S}$
 $= \frac{\sqrt{n}}{\overline{\gamma}}$ will follow a noncentral *t* distribution with $(n-1)$ degree of freedom and
non-centrality parameter $E\left[\frac{\overline{X}}{\sigma/\sqrt{n}}\right] = \frac{\sqrt{n}}{\sigma} E\left[\overline{X}\right]$
 $= \sqrt{n} \frac{\mu}{\sigma}$
 $= \frac{\sqrt{n}}{\gamma}$, where $\gamma = \frac{\sigma}{\mu}$
Since $\frac{\sqrt{n}}{\overline{\gamma}} \sim$ non-central $t\left(n-1, \frac{\sqrt{n}}{\gamma}\right)$,
 $F_{\tilde{\gamma}}(x) = P(\widehat{\gamma} \leq x)$
 $= P\left(\frac{1}{\overline{\gamma}} \geq \frac{\sqrt{n}}{x}\right)$
 $= 1 - F_i\left(\frac{\sqrt{n}}{x} | n-1, \frac{\sqrt{n}}{\gamma}\right)$

To show
$$F_{\hat{\gamma}}^{-1}(\alpha \mid n, \gamma) = \frac{\sqrt{n}}{F_{\hat{\gamma}}^{-1}\left(1 - \alpha \mid n - 1, \frac{\sqrt{n}}{\gamma}\right)}$$

Let $F_{\hat{\gamma}}^{-1}(\alpha) = y$
 $F_{\hat{\gamma}}(y) = \alpha$
 $1 - F_t\left(\frac{\sqrt{n}}{y}\right) = \alpha$
 $F_t\left(\frac{\sqrt{n}}{y}\right) = 1 - \alpha$
 $\frac{\sqrt{n}}{y} = F_t^{-1}(1 - \alpha)$
 $\frac{y}{\sqrt{n}} = \frac{1}{F_t^{-1}(1 - \alpha)}$
 $y = \frac{\sqrt{n}}{F_t^{-1}(1 - \alpha)}$
Thus, $F_{\hat{\gamma}}^{-1}(\alpha \mid n, \gamma) = \frac{\sqrt{n}}{F_{\hat{\gamma}}^{-1}\left(1 - \alpha \mid n - 1, \frac{\sqrt{n}}{\gamma}\right)}$

The derivation to obtain the $K_{\rm S}$:

$$P[|T_i| > K_{\rm L}]p_0 + P[|T_i| > K_{\rm S}](1-p_0) = P[|T_i| > K_0]$$

and let $P[|T_i| > K_0] = \alpha$,

$$\begin{split} P\big[|T_i| > K_{\rm L}\big] &= P\big[T_i > K_{\rm L}\big] + P\big[T_i < -K_{\rm L}\big] \\ &= 1 - P\big[T_i < K_{\rm L}\big] + P\big[T_i < -K_{\rm L}\big] \end{split}$$

$$p_{0}\left[1-P\left[\hat{\gamma}_{i} < exp\left(\frac{K_{L}-a}{b}\right)+c \mid n_{S}, \gamma_{0}\right]+P\left[\hat{\gamma}_{i} < exp\left(\frac{-K_{L}-a}{b}\right)+c \mid n_{S}, \gamma_{0}\right]\right]$$
$$+(1-p_{0})\left[1-P\left[\hat{\gamma}_{i} < exp\left(\frac{K_{S}-a}{b}\right)+c \mid n_{L}, \gamma_{0}\right]+P\left[\hat{\gamma}_{i} < exp\left(\frac{-K_{S}-a}{b}\right)+c \mid n_{L}, \gamma_{0}\right]\right]$$
$$=\alpha$$

$$p_{0} - p_{0}F_{\hat{\gamma}}\left[exp\left(\frac{K_{L}-a}{b}\right) + c \mid n_{S}, \gamma_{0}\right] + p_{0}F_{\hat{\gamma}}\left[exp\left(\frac{-K_{L}-a}{b}\right) + c \mid n_{S}, \gamma_{0}\right] + 1$$
$$-F_{\hat{\gamma}}\left[exp\left(\frac{K_{S}-a}{b}\right) + c \mid n_{L}, \gamma_{0}\right] + F_{\hat{\gamma}}\left[exp\left(\frac{-K_{S}-a}{b}\right) + c \mid n_{L}, \gamma_{0}\right] - p_{0}$$
$$+p_{0}F_{\hat{\gamma}}\left[exp\left(\frac{K_{S}-a}{b}\right) + c \mid n_{L}, \gamma_{0}\right] - p_{0}F_{\hat{\gamma}}\left[exp\left(\frac{-K_{S}-a}{b}\right) + c \mid n_{L}, \gamma_{0}\right] = \alpha$$

$$1 - \alpha - p_0 F_{\hat{\gamma}} \left[exp\left(\frac{K_{\rm L} - a}{b}\right) + c \mid n_{\rm S}, \gamma_0 \right] + p_0 F_{\hat{\gamma}} \left[exp\left(\frac{-K_{\rm L} - a}{b}\right) + c \mid n_{\rm S}, \gamma_0 \right] + (p_0 - 1)F_{\hat{\gamma}} \left[exp\left(\frac{K_{\rm S} - a}{b}\right) + c \mid n_{\rm L}, \gamma_0 \right] + (1 - p_0)F_{\hat{\gamma}} \left[exp\left(\frac{-K_{\rm S} - a}{b}\right) + c \mid n_{\rm L}, \gamma_0 \right] = 0$$

The derivation to obtain the W_S / W_L :

$$\begin{split} p_{0} &= p \Big[|T_{i}| < W_{i} || T_{i} | < K_{i} \Big] \\ &= \frac{p \Big[|T_{i}| < W_{i} \Big]}{p \Big[|T_{i}| < K_{i} \Big]} \\ &= \frac{F_{\hat{\gamma}} \left[exp \Big(\frac{W_{i} - a}{b} \Big) + c \mid n_{i}, \gamma_{0} \right] - F_{\hat{\gamma}} \left[exp \Big(\frac{-W_{i} - a}{b} \Big) + c \mid n_{i}, \gamma_{0} \right]}{F_{\hat{\gamma}} \left[exp \Big(\frac{K_{i} - a}{b} \Big) + c \mid n_{i}, \gamma_{0} \right] - F_{\hat{\gamma}} \left[exp \Big(\frac{-K_{i} - a}{b} \Big) + c \mid n_{i}, \gamma_{0} \right]} \end{split}$$

$$F_{\hat{\gamma}}\left[exp\left(\frac{W_{i}-a}{b}\right)+c\mid n_{i},\gamma_{0}\right]-F_{\hat{\gamma}}\left[exp\left(\frac{-W_{i}-a}{b}\right)+c\mid n_{i},\gamma_{0}\right]-p_{0}\left[F_{\hat{\gamma}}\left[exp\left(\frac{K_{i}-a}{b}\right)+c\mid n_{i},\gamma_{0}\right]-F_{\hat{\gamma}}\left[exp\left(\frac{-K_{i}-a}{b}\right)+c\mid n_{i},\gamma_{0}\right]\right]=0$$

Let $p_0 = \frac{n_0 - n_{\rm L}}{n_{\rm S} - n_{\rm L}}$,

$$F_{\hat{\gamma}}\left[exp\left(\frac{W_{i}-a}{b}\right)+c\mid n_{i},\gamma_{0}\right]-F_{\hat{\gamma}}\left[exp\left(\frac{-W_{i}-a}{b}\right)+c\mid n_{i},\gamma_{0}\right]-\frac{n_{0}-n_{L}}{n_{S}-n_{L}}\left[F_{\hat{\gamma}}\left[exp\left(\frac{K_{i}-a}{b}\right)+c\mid n_{i},\gamma_{0}\right]-F_{\hat{\gamma}}\left[exp\left(\frac{-K_{i}-a}{b}\right)+c\mid n_{i},\gamma_{0}\right]\right]=0$$

APPENDIX B

PHASE-II DATASETS FOR OTHER CHARTS

	\overline{X}_i	S_i	n _i	h_i	$\widehat{\gamma}_i$
1	50.86	0.210	31	0.1	0.004129
2	50.18	0.148	2	1.103846	0.002949
3	50.05	0.191	2	1.103846	0.003816
4	50.06	0.101	2	1.103846	0.002018
5	50.21	0.321	31	0.1	0.006393
6	50.22	0.302	2	1.103846	0.006014
7	50.86	0.245	2	1.103846	0.004817
8	50.64	0.829	2	1.103846	0.01637
9	50.19	0.161	31	0.1	0.003208
10	49.86	0.091	2	1.103846	0.001825
11	50.39	0.414	31	0.1	0.008216
12	50.43	0.715	2	1.103846	0.014178
13	49.84	0.211	31	0.1	0.004234
14	50.12	0.173	2	1.103846	0.003452
15	51.09	0.200	2	1.103846	0.003915
16	50.23	0.239	2	1.103846	0.004758
17	50.43	0.213	2	1.103846	0.004224
18	50.34	0.513	2	1.103846	0.010191
19	50.02	0.417	31	0.1	0.008337
20	50.43	0.362	2	1.103846	0.007178

Table B.i: Phase-II datasets for VSSI CV chart.

	\overline{X}_i	S_i	h_i	$\widehat{\gamma}_i$
1	50.86	0.210	0.1	0.004129
2	50.18	0.148	1.1	0.002949
3	50.05	0.191	1.1	0.003816
4	50.06	0.101	1.1	0.002018
5	50.21	0.321	0.1	0.006393
6	50.22	0.302	1.1	0.006014
7	50.86	0.245	1.1	0.004817
8	50.64	0.829	1.1	0.016370
9	50.19	0.161	0.1	0.003208
10	49.86	0.091	1.1	0.001825
11	50.39	0.414	0.1	0.008216
12	50.43	0.715	1.1	0.014178
13	49.84	0.211	0.1	0.004234
14	50.12	0.173	1.1	0.003452
15	51.09	0.20	1.1	0.003915
16	50.23	0.239	1.1	0.004758
17	50.43	0.213	1.1	0.004224
18	50.34	0.513	1.1	0.010191
19	50.02	0.417	0.1	0.008337
20	50.43	0.362	1.1	0.007178

Table B.ii: Phase-II datasets for VSI CV chart.

	\overline{X}_i	S_i	n _i	h _i	$\widehat{\gamma}_i$	T_i
1	50.86	0.21	31	1	0.004129	-2.098782
2	50.18	0.148	31	1	0.002949	-3.958081
3	50.05	0.191	31	1	0.003816	-2.577145
4	50.06	0.101	31	1	0.002018	-5.542898
5	50.21	0.321	31	1	0.006393	1.091942
6	50.22	0.302	2	1	0.006014	0.639643
7	50.86	0.245	2	1	0.004817	0.315770
8	50.64	0.829	2	1	0.01637	2.363416
9	50.19	0.161	31	1	0.003208	-3.537492
10	49.86	0.091	31	1	0.001825	-5.884532
11	50.39	0.414	31	1	0.008216	3.132411
12	50.43	0.715	31	1	0.014178	9.536489
13	49.84	0.211	31	1	0.004234	-1.941095
14	50.12	0.173	31	1	0.003452	-3.147574
15	51.09	0.2	31	1	0.003915	-2.425452
16	50.23	0.239	31	1	0.004758	-1.166192
17	50.43	0.213	2	1	0.004224	0.135646
18	50.34	0.513	2	1	0.010191	1.500445
19	50.02	0.417	2	1	0.008337	1.158825
20	50.43	0.362	2	1	0.007178	0.915114

Table B.iii: Phase-II datasets for VSS CV chart.

	\overline{X}_i	S_i	h_i	$\widehat{\gamma}_i$	Z_i
1	50.86	0.210	1	0.0041	0.005231
2	50.18	0.148	1	0.0029	0.005083
3	50.05	0.191	1	0.0038	0.005002
4	50.06	0.101	1	0.0020	0.004809
5	50.21	0.321	1	0.0064	0.004911
6	50.22	0.302	1	0.0060	0.004982
7	50.86	0.245	1	0.0048	0.004972
8	50.64	0.829	1	0.0164	0.005708
9	50.19	0.161	1	0.0032	0.005546
10	49.86	0.091	1	0.0018	0.005306
11	50.39	0.404	1	0.0080	0.005481
12	50.43	0.715	1	0.0142	0.006042
13	49.84	0.211	1	0.0042	0.005926
14	50.12	0.173	1	0.0035	0.005766
15	51.09	0.200	1	0.0039	0.005646
16	50.23	0.239	1	0.0048	0.005589
17	50.43	0.213	1	0.0042	0.005501
18	50.34	0.513	1	0.0102	0.005804
19	50.02	0.417	1	0.0083	0.005967
20	50.43	0.362	1	0.0072	0.006045

Table B.iv: Phase-II datasets with the shift size, $\tau = 1.1$ for EWMA CV chart.

	\overline{X}_i	S_i	h _i	$\widehat{\gamma}_i$
1	50.86	0.210	1	0.004129
2	50.18	0.148	1	0.002949
3	50.05	0.191	1	0.003816
4	50.06	0.101	1	0.002018
5	50.21	0.321	1	0.006393
6	50.22	0.302	1	0.006014
7	50.86	0.245	1	0.004817
8	50.64	0.829	1	0.016370
9	50.19	0.161	1	0.003208
10	49.86	0.091	1	0.001825
11	50.39	0.414	1	0.008216
12	50.43	0.715	1	0.014178
13	49.84	0.211	1	0.004234
14	50.12	0.173	1	0.003452
15	51.09	0.20	1	0.003915
16	50.23	0.239	1	0.004758
17	50.43	0.213	1	0.004224
18	50.34	0.513	1	0.010191
19	50.02	0.417	1	0.008337
20	50.43	0.362	1	0.007178

Table B.v: Phase-II datasets for Synthetic CV chart and Shewhart chart.

	\overline{X}_i	S_i	h _i	$\widehat{\gamma}_i$	Z_i
1	50.86	0.210	1	0.0041	0.005071
2	50.18	0.148	1	0.0029	0.004647
3	50.05	0.191	1	0.0038	0.004481
4	50.06	0.101	1	0.0020	0.003988
5	50.21	0.321	1	0.0064	0.004469
6	50.22	0.302	1	0.0060	0.004778
7	50.86	0.245	1	0.0048	0.004786
8	50.64	0.829	1	0.0164	0.007103
9	50.19	0.161	1	0.0032	0.006324
10	49.86	0.091	1	0.0018	0.005424
11	50.39	0.404	1	0.0080	0.005943
12	50.43	0.715	1	0.0142	0.007590
13	49.84	0.211	1	0.0042	0.006919
14	50.12	0.173	1	0.0035	0.006225
15	51.09	0.200	1	0.0039	0.005763
16	50.23	0.239	1	0.0048	0.005562
17	50.43	0.213	1	0.0042	0.005294
18	50.34	0.513	1	0.0102	0.006274
19	50.02	0.417	1	0.0083	0.006686
20	50.43	0.362	1	0.0072	0.006785

Table B.vi: Phase-II datasets with unknown shift size for EWMA CV chart.

APPENDIX C

PROGRAM FOR VARIABLE PARAMETERS CHART

This program is used to compute the optimal chart parameters for the VP CV chart.

```
//------

function [a,b,c]=standard(n,cv0)

//------

r=0.05

x1=idfcv(r,n,cv0)//xr

x2=idfcv(0.5,n,cv0)//xmedian

x3=idfcv(1-r,n,cv0)//x1-r

b=idfnormal(r)/log((x2-x1)/(x3-x2))

a=-b*log((x2-x1)/(1-exp(idfnormal(r)/b)))

c=x2-exp(-a/b)

endfunction

//-----

function [Q,q]=qvpcv(nS,nL,WnS,WnL,KnS,KnL,delta,cv0)
```

//-----

```
cv1=delta*cv0
[a1,b3,c1]=standard(nS,cv0)
[a2,b4,c2]=standard(nL,cv0)
pSnS1=cdfcv(exp((WnS-a1)/b3)+c1,nS,cv1)-cdfcv(exp((-WnS-a1)/b3)+c1,nS,cv1))
pSnL1=cdfcv(exp((WnL-a2)/b4)+c2,nL,cv1)-cdfcv(exp((-WnL-a2)/b4)+c2,nL,cv1))
pLnS1=cdfcv(exp((KnS-a1)/b3)+c1,nS,cv1)-cdfcv(exp((WnS-a1)/b3)+c1,nS,cv1)+cdfcv(exp((-WnS-a1)/b3)+c1,nS,cv1)-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1)-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv1))-cdfcv(exp((-KnS-a1)/b
```
```
pLnL1=cdfcv(exp((KnL-a2)/b4)+c2,nL,cv1)-cdfcv(exp((WnL-
a2)/b4)+c2,nL,cv1)+cdfcv(exp((-WnL-a2)/b4)+c2,nL,cv1)-cdfcv(exp((-KnL-
a2)/b4)+c2,nL,cv1)
Q=[pSnS1,pLnS1;pSnL1,pLnL1]
pSnS=cdfcv(exp((WnS-a1)/b3)+c1,nS,cv0)-cdfcv(exp((-WnS-
a1)/b3)+c1,nS,cv0)
pK=cdfcv(exp((KnS-a1)/b3)+c1,nS,cv0)-cdfcv(exp((-KnS-a1)/b3)+c1,nS,cv0)
b1=pSnS/pK
b2=1-b1
q=[b1;b2]
endfunction
//-----
function [zt1,e1,e2]=randomfunc(Q,q,tS,tL)
//-----
[argout,argin]=argn()
if argin~=4
error("incorrect number of arguments")
end
q=q(:)'
W=inv(eye(Q)-Q)
z1=q*W
t=[tL;tS]
zt1=z1*t
e1=z1*t-q*t//modified
Dd=[tL,0;0,tS]
a1=W*t
a2=2*Dd*a1
```

a3=a2-(t.^2)

e2=q*(W*a3)

endfunction

89

//----function
[ATS,SDTS,ASS,ASI]=rlvpcv(nS,nL,tS,tL,WnS,WnL,KnS,KnL,delta,cv0)
//------

[Q,q]=qvpcv(nS,nL,WnS,WnL,KnS,KnL,delta,cv0) q1=q(1,:) q2=q(2,:) ASS=nS*q1+nL*q2 ASI=tL*q1+tS*q2

[zt1,e1,e2]=randomfunc(Q,q,tS,tL)//modified ATS=e1 SDTS=sqrt(e2-zt1^2)//modified endfunction

//----function tL=long_int(n,nS,nL,tS,t)

//-----

tL=(t*(nL-nS)-tS*(n-nS))/(nL-n) endfunction

//----function dif=optKnL(KnL,n,nS,nL,KnS,cv0)

//-----

if (KnL<=0)|(KnS<=0)|(KnL>KnS) dif=%inf else

[a0,b0,c0] = standard(n,cv0)[a1,b1,c1] = standard(nS,cv0)[a2,b2,c2] = standard(nL,cv0)p0 = (n-nL)/(nS-nL)

```
alpha=0.0027
dif=1-alpha-p0*cdfcv(exp((KnS-a1)/b1)+c1,nS,cv0)+p0*cdfcv(exp((-KnS-a1)/b1)+c1,nS,cv0)+(p0-1)*cdfcv(exp((KnL-a2)/b2)+c2,nL,cv0)+(1-
p0)*cdfcv(exp((-KnL-a2)/b2)+c2,nL,cv0)
end
endfunction
```

```
//-----
```

function dif=optWnS(WnS,n,nS,nL,KnS,cv0)

//-----

if (WnS<=0)|(KnS<=0)|(WnS>KnS)

dif=%inf

else

[a,b,c]=standard(nS,cv0)

p0=(n-nL)/(nS-nL)

dif=cdfcv(exp((WnS-a)/b)+c,nS,cv0)-cdfcv(exp((-WnS-a)/b)+c,nS,cv0)-

p0*(cdfcv(exp((KnS-a)/b)+c,nS,cv0)-cdfcv(exp((-KnS-a)/b)+c,nS,cv0))

end

endfunction

//-----

function dif=optWnL(WnL,n,nS,nL,KnL,cv0)

```
//-----
```

```
if (WnL<=0)|(KnL<=0)|(WnL>KnL)
    dif=%inf
else
    [a,b,c]=standard(nL,cv0)
    p0=(n-nL)/(nS-nL)
    dif=cdfcv(exp((WnL-a)/b)+c,nL,cv0)-cdfcv(exp((-WnL-a)/b)+c,nL,cv0)-
    p0*(cdfcv(exp((KnL-a)/b)+c,nL,cv0)-cdfcv(exp((-KnL-a)/b)+c,nL,cv0))
    end
    endfunction
```

//-----

function [KnL,WnS,WnL]=limit(n,nS,nL,KnS,cv0)

//-----

K10=1; W10=0.5; W20=0.5; KnL=simplexolve(K10,optKnL,list(n,nS,nL,KnS,cv0),tol=1e-6) WnS=simplexolve(W10,optWnS,list(n,nS,nL,KnS,cv0),tol=1e-6) WnL=simplexolve(W20,optWnL,list(n,nS,nL,KnL,cv0),tol=1e-6) endfunction

```
//-----
```

function [nS,nL,tS,tL,WnS,WnL,KnS,KnL,ASS,ASI,ATS,SDTS]=optvpcv(n,delta,cv0,i tS,t) //------ATS=%inf

```
for inS=2:n-1
for inL=n+1:31
itL=long_int(n,inS,inL,itS,t)
for KnSa=288:309
iKnS=KnSa*0.01
[KnL1,WnS1,WnL1]=limit(n,inS,inL,iKnS,cv0)
```

[ATS1,SDTS1,ASS1,ASI1]=rlvpcv(inS,inL,itS,itL,WnS1,WnL1,iKnS,KnL1,d elta,cv0)

```
if (ATS1<=ATS)
ASS=ASS1
ASI=ASI1
ATS=ATS1
SDTS=SDTS1
KnS=iKnS
KnL=KnL1
```

WnS=WnS1 WnL=WnL1 nS=inS nL=inL tS=itS tL=itL end end end end endfunction //----function EATS=eatsvpcv(n,n1,n2,h1,h2,W1,W2,K1,K2,cv0) //-----[xi,wi]=quadlegendre(15,1.25,2.0) EATS=0 for il=1:15 xil=xi(il) wil=wi(il) cv1=xil*cv0 ATS=rlvpcv(n1,n2,h1,h2,W1,W2,K1,K2,cv1/cv0,cv0) EATS=EATS+ATS.*wil end EATS=EATS/(2-1.25) endfunction

//-----

function [nS,nL,tS,tL,WnS,WnL,KnS,KnL,EATS]=opteatsvpcv(n,cv0,itS,t)

//-----

EATS=%inf for inS=2:n-1

```
for inL=n+1:31
 itL=long_int(n,inS,inL,itS,t)
 for KnSa=321:339
 iKnS=KnSa*0.01
 [KnL1,WnS1,WnL1]=limit(n,inS,inL,iKnS,cv0)
  EATS1=eatsvpcv(n, inS, inL,itS,itL,WnS1,WnL1,iKnS,KnL1,cv0)
 if (EATS1<=EATS)
  EATS=EATS1
  KnS=iKnS
  KnL=KnL1
  WnS=WnS1
  WnL=WnL1
  nS=inS
  nL=inL
  tS=itS
  tL=itL
 end
end
end
end
endfunction
//-----
function dif=optK(K,n,cv0)
//-----
```

[a,b,c]=standard(n,cv0) alpha=0.0027 dif=1-alpha-cdfcv(exp((K-a)/b)+c,n,cv0)+cdfcv(exp((-K-a)/b)+c,n,cv0) endfunction //-----

function K=limit2(n,cv0)

//-----

K0=1;

K=simplexolve(K0,optK,list(n,cv0),tol=1e-6) endfunction

APPENDIX D

ACCEPTANCE EMAIL FOR PUBLICATION IN QUALITY

ENGINEERING

fraction Home Ma	ail Search	News	Sports	Finance	Celebrity	Weather	Answers	Flickr M	obile More 🗸				
	O!	Q, All ~ 1	thomas, se	arch your ma	ailbox		Search Mail	Search V	Veb 🕈 Hon	ne 👤 thomas	s Q		
∠ Compose		▲ ≪ ⊣	Arc	hive 🚺 Mc	ove 🗸 🛱 Del	ete 😵 Spar	n ∽ ••• More	~		+1	۲×		
Inbox		Quality Engineering - Manuscript ID LQEN-2016-0254.R1											
Sent Archive	e Quality Engineering <onbehalfof+mtestik+hacettepe.edu.tr@manuscriptcentral.com> To thomas_yeong@yahoo.com</onbehalfof+mtestik+hacettepe.edu.tr@manuscriptcentral.com>									Feb 24 at 4:51 PM 🔺			
Spam Trash		24-Feb-	2017										
✓ Smart Views Important Unread	mart Views Dear Di. Teolig. Important Your manuscript entitled "Monitoring the Coefficient of Variation Using a Variable Parameters Chart" has been successfully submitted online and is presently being given full consideration for publication in Quality Engineering. Starred Your manuscript ID is LQEN-2016-0254.R1.												
Starred People											- 1		
Social Shopping Travel		We hope to complete the review process for this manuscript LQEN-2016-0254.R1 within the next 90 days. If you have any questions about your manuscript during this review process, please contact us at <u>qe.editorial@gmail.com</u> . Please also contact us if you have not received a decision within five months.											
Finance evetting	Please mention the above manuscript ID in all future correspondence or when calling the office for questions. If there are any changes in your street address or e-mail address, please log in to Manuscript Central at <u>https://mc.manuscriptcentral.com/Iqen</u> and edit your user information as appropriate.												
> Recent		You can also view the status of your manuscript at any time by checking your Author Centre after logging in to https://mc.manuscriptcentral.com/lqen.											
The Best F Antivirus Pro	Free D grams	Thank ye	ou for subm	itting your m	anuscript to Qu	uality Engineer	ing.						
spyware P sparts 4	a dest	Sincerely Quality I	<i>y,</i> Engineering	Editorial Offic	ce								

APPENDIX E

TURNITIN REPORT

Turnitin Originality Report

Monitoring the Coefficient of Variation through a Variable Parameters Chart Yang Lim

by Chuen turnitin

From FYP 2016/2017 (FYP 2016/2017)

- Processed on 01-Mar-2017 22:10 MYT
- ID: 770231930
- Word Count: 17343

Similarity Index 17% Similarity by Source

Internet Sources: 2% Publications: 16% Student Papers: 4%

sources:

1

2% match (publications)

Khaw, Khai Wah, Michael B. C. Khoo, Wai Chung Yeong, and Zhang Wu. "Monitoring the coefficient of variation using a variable sample size and sampling interval control chart", Communications in Statistics - Simulation and Computation, 2016.

2 1% match (publications)

Castagliola, Philippe, Ali Achouri, Hassen Taleb, Giovanni Celano, and Stelios Psarakis. "Monitoring the Coefficient of Variation Using a Variable Sampling Interval Control Chart : MONITORING COEFFICIENT OF VARIATION USING A VSI CHART", Quality and Reliability Engineering International, 2012.

3 1% match (publications)

<u>Yeong, Wai Chung, Michael B. C. Khoo, Sok Li Lim, and Ming Ha Lee. "A Direct Procedure for</u> <u>Monitoring the Coefficient of Variation Using a Variable Sample Size Scheme", Communications in</u> <u>Statistics - Simulation and Computation, 2015.</u>