INVESTIGATION INTO THE EFFECTS OF IL-17 AND LAURIC ACID ON FARNESOID X RECEPTOR (FXR) EXPRESSION IN HUMAN HEPG2 CELLS

By

KHOO YIE WOON

A project submitted to the Department of Biomedical Science
Faculty of Science
Universiti Tunku Abdul Rahman
in partial fulfilment of the requirements for the degree of
Bachelor of Science (Hons) Biomedical Science

May 2017
INVESTIGATION INTO THE EFFECTS OF IL-17 AND LAURIC ACID ON FARNESOID X RECEPTOR (FXR) EXPRESSION IN HUMAN HEPG2 CELLS

KHOO YIE WOON

Farnesoid X receptor (FXR) acts as a ligand-modulated transcription factor and is a member of nuclear receptor family. FXR highly expressed in liver, kidney, intestine and adipose tissue. It is involved in bile acid metabolism, lipid metabolism and glucose metabolism. The involvement of FXR in various metabolisms makes it a promising candidate as a therapeutic target. IL-17 is a proinflammatory cytokine which promotes inflammatory response in mammalian immune system. While lauric acid, a saturated medium-chain fatty acid, is shown to have anti-inflammatory properties. This study was designed to investigate the effect of IL-17 and lauric acid in FXR expression in human HepG2 cells. Different concentrations of IL-17 at 1 ng/mL, 10 ng/mL and 100 ng/mL were used to treat HepG2 cells. The FXR mRNA expression was evaluated using qRT-PCR. IL-17 alone was able to repress the FXR mRNA expression in dose-response manner to 0.40-fold in 10 ng/mL of IL-17. Hence, 10 ng/mL of IL-17 was selected for subsequent treatment with lauric acid. HepG2 cells were co-treated with IL-17 and
different concentrations of lauric acid to evaluate if lauric acid displayed anti-
inflammatory properties. Surprisingly, the FXR mRNA expression was further
repressed to 0.07-fold, 0.19-fold and 0.30-fold with the addition of 5 µM, 10 µM
and 20 µM of lauric acid respectively. However, the FXR mRNA expression was
abrogated in lauric acid dose-responsive manner in 24-hour incubation. Protein
analysis of FXR expression using western blot showed discrepancies between
FXR mRNA and protein, indicating the possibilities of post-transcriptional or
post-translational modification. In conclusion, this present study shows that IL-17
and lauric acid act synergistically in repressing FXR mRNA expression but lauric
acid in higher concentration is able to augment IL-17 repressed FXR mRNA
expression in a dose-dependent manner.
ACKNOWLEDGEMENTS

I am blessed to be given this chance to express my gratefulness to the person who I appreciate well. First and foremost, I would like to convey my deepest gratitude to my supervisor, Dr. Chew Choy Hoong. Her guidance, advice and knowledge are the one which helped me the most during the research as well as the thesis writing. This thesis would not have been possible without her persistent guidance.

In addition, I also like to thank senior master student, Ms. Cheong Hui Ting, Ms. Melissa Ong Hui Ling and Mr Wong Hong Kin for their kind assistance and guidance. Not to forget the UTAR’s laboratory officers, Mr. Tie Shin Wei, Mr. Gee Siew Meng and Mr. Saravanan a/l Sivasangaran who provide a lot of helps and recommendations.

Besides, I would also like to express my deepest appreciation to my research mate, Mr. Ng Hin Fung, who helped and supported me throughout the project. Last but not least, sincere thankfulness and appreciation to my family members for their spiritual support and love. Encouragement and emotional support given by my friends are appreciated as well.
DECLARATION

I hereby declare that the project is based on my original work except for quotations and citations which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at UTAR or other institutions.

Khoo Yie Woon
APPROVAL SHEET

The project report entitled “INVESTIGATION INTO THE EFFECTS OF IL-17 AND LAURIC ACID ON FARNESOID X RECEPTOR (FXR) EXPRESSION IN HUMAN HEPG2 CELLS” was prepared by KHOO YIE WOON and submitted as partial fulfilment of the requirements for the degree of Bachelor of Science (Hons) Biomedical Science at Universiti Tunku Abdul Rahman.

Approved by:

__
(Assoc. Prof. Dr Chew Choy Hoong) Date:_____________________
Supervisor

Department of Biomedical Science

Faculty of Science

Universiti Tunku Abdul Rahman
PERMISSION SHEET

It is hereby certified that **KHOO YIE WOON** (ID No: **13ADB04398**) has completed this final year project entitled **“INVESTIGATION INTO THE EFFECTS OF IL-17 AND LAURIC ACID ON FARNESOID X RECEPTOR (FXR) EXPRESSION IN HUMAN HEPG2 CELLS”** under the supervision of Dr. Chew Choy Hoong from the department of Biomedical Science, Faculty of Science.

I hereby give permission to the University to upload the softcopy of my final year project in pdf format into the UTAR Institutional Repository, which may be made accessible to the UTAR community and public.

Yours truly,

(KHOO YIE WOON)
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Nuclear receptor superfamily</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Farnesoid X receptor (FXR)</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Structure of FXR</td>
<td>6</td>
</tr>
<tr>
<td>2.2.2</td>
<td>FXR and bile acids homeostasis</td>
<td>7</td>
</tr>
<tr>
<td>2.2.3</td>
<td>FXR and lipid metabolism</td>
<td>10</td>
</tr>
<tr>
<td>2.2.4</td>
<td>FXR and glucose metabolism</td>
<td>12</td>
</tr>
<tr>
<td>2.2.5</td>
<td>FXR and liver regeneration</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Interleukin-17 (IL-17)</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Structure, receptors and biosynthesis of IL-17</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2</td>
<td>IL-17 signalling and tissue inflammation</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Lauric acid</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>MATERIALS AND METHODS</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Cell culture media</td>
<td>21</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Minimum Essential Medium (MEM)</td>
<td>21</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Phosphate buffer saline (PBS)</td>
<td>22</td>
</tr>
</tbody>
</table>
3.2 Stock solution 22
3.3 Glassware and plasticware preparation 24
3.4 Cell culture techniques 25
 3.4.1 Maintenance of cell culture 25
 3.4.2 Subculture of cell culture 25
3.5 Cell treatment 26
 3.5.1 IL-17 dose response test 26
 3.5.2 Treatment of HepG2 cells with IL-17 and lauric acid 26
3.6 RNA associated techniques 27
 3.6.1 Extraction of total cellular RNA using Tri-Reagent® LS 27
 3.6.2 Bleach agarose gel electrophoresis of extracted total cellular RNA 29
 3.6.3 Spectrophotometric measurement of RNA purity and concentration 29
 3.6.4 DNase treatment of RNA 30
 3.6.5 Primers used in qRT-PCR 30
 3.6.6 Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 31
 3.6.7 Statistical analysis 33
3.7 Western blot analysis 33
 3.7.1 Extraction of total cellular protein using Tri-Reagent® LS 33
 3.7.2 Bio-Rad Dc protein assay 34
 3.7.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 35
 3.7.4 Western blot 37
 3.7.5 Probing of blotted PVDF membrane 38
 3.7.6 Chemiluminescence detection of membrane bound antigen-antibody complexes 39
3.7.7 Stripping of antibody blotted PVDF membrane

3.7.8 Densitometry analysis of western blotting results

4 RESULTS

4.1 Culture of HepG2 cells

4.2 Extraction of total cellular RNA

4.3 Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

4.3.1 PCR amplification of GAPDH and FXR

4.3.2 Melt curve analysis

4.3.3 FXR mRNA expression in IL-17 dose response test

4.3.4 Effect of lauric acid and IL-17 on FXR mRNA expression in HepG2 cells

4.4 Protein analysis

4.4.1 Concentration of extracted total cellular protein

4.4.2 Western blot analysis of FXR protein expression in dose response test

4.4.3 Western blot analysis of FXR protein expression in co-treatment of lauric acid and IL-17 in HepG2 cells

5 DISCUSSION

5.1 Overview

5.2 HepG2 cell lines as the study model

5.3 Extraction of total cellular RNA and protein

5.3.1 RNA integrity and purity
5.4 Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)
5.4.1 Principles of qRT-PCR 64
5.4.2 SYBR Green chemistry used in qRT-PCR 65
5.4.3 PCR amplification chart 65
5.4.4 Melt curve analysis 66
5.5 IL-17 dose response test on FXR mRNA expression in HepG2 cells 67
5.6 Effects of lauric acid and IL-17 on FXR mRNA expression in HepG2 cells 70
5.7 Correlation between FXR mRNA and protein expression in dose response test and lauric acid treatment 77
5.8 Future studies 79

6 CONCLUSION 81

REFERENCES 82

APPENDIX 99
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Composition of MEM (per litre)</td>
<td>21</td>
</tr>
<tr>
<td>3.2 Stock solution for RNA gel electrophoresis</td>
<td>22</td>
</tr>
<tr>
<td>3.3 Stock solution for protein extraction</td>
<td>22</td>
</tr>
<tr>
<td>3.4 Stock solution for Sodium Dodecyl Sulfate – Polyacrylamide Gel Electrophoresis (SDS-PAGE)</td>
<td>23</td>
</tr>
<tr>
<td>3.5 Stock solution for western blot analysis</td>
<td>24</td>
</tr>
<tr>
<td>3.6 Primers used in qRT-PCR</td>
<td>30</td>
</tr>
<tr>
<td>3.7 Components of qRT-PCR mastermix solution</td>
<td>31</td>
</tr>
<tr>
<td>3.8 Cycling condition of qRT-PCR</td>
<td>32</td>
</tr>
<tr>
<td>3.9 Composition of SDS-PAGE resolving and stacking gel</td>
<td>36</td>
</tr>
<tr>
<td>4.1 Concentration and A_{260}/A_{280} ratio of the extracted RNA from HepG2 cells treated with different concentrations of lauric acid with 10 ng/ml of IL-17</td>
<td>43</td>
</tr>
<tr>
<td>4.2 Concentration and A_{260}/A_{280} ratio of the extracted RNA from HepG2 cells treated with different concentrations of lauric acid with 10 ng/ml of IL-17</td>
<td>44</td>
</tr>
<tr>
<td>4.3 Concentration of total cellular protein extracted from HepG2 cells in IL-17 dose response test.</td>
<td>53</td>
</tr>
<tr>
<td>4.4 Concentration of total cellular protein extracted from HepG2 cells treated in different concentrations of lauric acid and 10 ng/ml of IL-17</td>
<td>54</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic representation of FXR structure</td>
</tr>
<tr>
<td>2.2</td>
<td>Regulatory role of FXR on bile acid homeostasis in liver and intestine</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram showing the FXR regulatory pathway in both triglyceride and glucose metabolism</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic illustration of IL-17 cytokines, receptors and signalling</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical structure of lauric acid</td>
</tr>
<tr>
<td>4.1</td>
<td>HepG2 cell cultured in 25 cm² tissue culture flask (100× magnification)</td>
</tr>
<tr>
<td>4.2</td>
<td>Integrity assessment of total cellular RNA extracted using 2% (v/v) bleach with 1% (w/v) agarose gel electrophoresis</td>
</tr>
<tr>
<td>4.3</td>
<td>Graphical representation of qRT-PCR amplification curve of (a), GAPDH and (b) FXR</td>
</tr>
<tr>
<td>4.4</td>
<td>Graphical representation of melt curve analysis (a) GAPDH and (b) FXR</td>
</tr>
<tr>
<td>4.5</td>
<td>Graphical representation of FXR mRNA expression profile in HepG2 cells treated with different dosage of IL-17</td>
</tr>
<tr>
<td>4.6</td>
<td>Graphical representation of FXR mRNA expression profile in HepG2 cells treated with IL-17 and different concentration of lauric acid</td>
</tr>
<tr>
<td>4.7</td>
<td>The immunoblotted protein expression of GAPDH and FXR on PVDF membrane under chemiluminescence detection for IL-17 dose response test</td>
</tr>
<tr>
<td>4.8</td>
<td>Graphical representation of FXR protein fold-expression in HepG2 cells without or with treatment of different doses of IL-17</td>
</tr>
<tr>
<td>4.9</td>
<td>The immunoblotted protein expression of GAPDH and FXR on PVDF membrane under chemiluminescence detection for HepG2 cells co-treated with different concentration of lauric acid and IL-17 simultaneously</td>
</tr>
</tbody>
</table>
4.10 Graphical representation of FXR protein expression in HepG2 cells co-treated with different concentration of lauric acid and IL-17

5.1 Schematic representation proposed summary of repression of FXR expression by NF-κB stimulated by IL-17 and toll-like receptor 4 (TLR-4)

5.2 Schematic representation proposed summary of activation of FXR expression by its coactivator, PGC-1α
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF-1</td>
<td>Activation function 1</td>
</tr>
<tr>
<td>AhR</td>
<td>Aryl hydrocarbon receptor</td>
</tr>
<tr>
<td>ApoAI</td>
<td>Apolipoprotein A1</td>
</tr>
<tr>
<td>ApoC-III</td>
<td>Apolipoprotein C3</td>
</tr>
<tr>
<td>apoC-II</td>
<td>Apolipoprotein C2</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium Persulfate</td>
</tr>
<tr>
<td>Asbt</td>
<td>Apical sodium dependent bile acid transporter</td>
</tr>
<tr>
<td>BCP</td>
<td>1-Bromo-3-Chloropropane</td>
</tr>
<tr>
<td>BSEP</td>
<td>Bile acid export pump</td>
</tr>
<tr>
<td>C/EBP</td>
<td>CCAAT-enhancer-binding protein</td>
</tr>
<tr>
<td>CA</td>
<td>Cholic acid</td>
</tr>
<tr>
<td>CDCA</td>
<td>Chenodeoxycholic acid</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>Cₗ</td>
<td>Threshold cycle</td>
</tr>
<tr>
<td>CYP7A1</td>
<td>7α-hydroxylase cytochrome P-450</td>
</tr>
<tr>
<td>-d (RFU)/dT</td>
<td>Rate of change of relative fluorescent units with time</td>
</tr>
<tr>
<td>DBD</td>
<td>DNA binding domain</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNase</td>
<td>Deoxyribonuclease</td>
</tr>
<tr>
<td>ED50</td>
<td>Half maximal effective dose</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EG</td>
<td>Ethanol: Glycerol</td>
</tr>
</tbody>
</table>
EMSA Electrophoretic mobility shift assay
FBS Fetal bovine serum
FGF-15 Fibroblast growth factor-15
FoxO1 Forkhead box O1
FXR Farnesoid X receptor
g Acceleration of gravity ($\sim 9.8 \text{ m/s}^2$)
G6Pase Glucose-6-phosphatase
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
GEG Guanidine hydrochloride: Ethanol Glycerol
GPBAR1 G protein–coupled bile acid receptor 1
GPR84 G protein-coupled receptor 84
GST Glutathione-S-transferase
HDL High-density lipoprotein
HNF4α Hepatocyte nuclear receptor 4 alpha
HRP Horseradish peroxidase
hsp90 Heat shock protein 90
IBD Inflammatory bowel disease
IC50 Half maximal inhibitory concentration
IFNγ Interferon gamma
IκB Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor
IKKi Inducible IκB kinase
IKKα Inhibitor of nuclear factor kappa-B kinase subunit alpha
IKKβ Inhibitor of nuclear factor kappa-B kinase subunit beta
IL-17 Interleukin-17
IL-1β Interleukin-1 beta
IL-6 Interleukin-6
IκB Inhibitory kappa B
JAK-STAT Janus kinase-signal transducer and activators of transcription
JNK c-Jun N-terminal kinases
LBD Ligand binding domain
LPL Lipoprotein lipase
MAPK Mitogen-activated protein kinase
MCFA Medium-chain fatty acid
MEF Mouse embryonic fibroblast
MEM Minimum Essential Medium
MMP Matrix metalloproteinase
NCoR Nuclear corepressor
NEMO NF-κB essential modifier
NF-κB Nuclear factor kappa B
NHR Nuclear hormone receptors
NK cell Natural killer cell
NR Nuclear receptor
NTCP Na⁺-taurocholate cotransporting polypeptide
Ost-α organic solute transporter-alpha
PBS Phosphate buffer saline
PEPCK Phosphoenol-pyruvate carboxykinase
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGC-1α</td>
<td>Peroxisome Proliferator-activated Receptor-γ Coactivator 1α</td>
</tr>
<tr>
<td>PH</td>
<td>Partial hepatectomy</td>
</tr>
<tr>
<td>PPARα</td>
<td>Peroxisome Proliferator-activated receptor-alpha</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>Quantitative reverse transcription-polymerase chain reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>RORα</td>
<td>RAR-related orphan receptor alpha</td>
</tr>
<tr>
<td>RORγτ</td>
<td>Retinoid-related orphan receptor gamma</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>SHP</td>
<td>Small heterodimer partner</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small interfering ribonucleic acid</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td>SREBP-1c</td>
<td>Sterol regulatory element-binding protein 1-c</td>
</tr>
<tr>
<td>STAT3</td>
<td>Signal transducer and activator of transcription 3</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borate-EDTA</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetraethylmethylene diamine</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Tumour growth factor-beta</td>
</tr>
<tr>
<td>Th17 cell</td>
<td>T helper 17 cell</td>
</tr>
<tr>
<td>TLR4</td>
<td>Toll-like receptor 4</td>
</tr>
<tr>
<td>Tm</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour necrosis factor-alpha</td>
</tr>
<tr>
<td>TRAF6</td>
<td>Tumor necrosis factor receptor associated factor 6</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low-density lipoprotein</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>γδT</td>
<td>Gamma delta T cell</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Farnesoid X receptor (FXR), with the gene symbol of NR1H4 is a member of nuclear receptor superfamily and acts as a ligand-modulated transcription factor. FXR was first discovered in year 1995, and is found abundantly in human liver, kidney, intestine and adrenals (Forman, et al., 1995; Li and Guo, 2015). Bile acids are the ligand which bind to FXR and leads to the activation of FXR. Hydrophobic bile acids chenodeoxycholic acid (CDCA) and cholic acids (CA) are the primary bile acids which bind to FXR most effectively (Wang, et al., 1999). The major function of FXR is to regulate the production of bile acids, in other word, FXR acts as the bile acids sensor in enterohepatic tissue. Bile acids level must be regulated as they are toxic and accumulation of bile acid will lead to hepatotoxicity (Fiorucci, et al., 2007). Besides bile acids homeostasis, activation of FXR will lead to other outcomes such as maintenance of cholesterol level by regulating its transport protein and biosynthesis enzymes (Watanabe, et al., 2004). Triglycerides and glucose metabolism are also affected by the regulatory mechanism of FXR. FXR is also responsible for liver regeneration, cholestasis, hepatic inflammation and hepatic fibrosis. FXR is studied extensively as it may be the therapeutic target in treating cholestasis, dyslipidemic disorders and insulin resistance patients. (Claudel, Staels and Kuipers, 2005; Fiorucci, et al., 2007; Wang, et al., 2008; Li, et al., 2010).
Interleukin-17 (IL-17) is a proinflammatory cytokine which is responsible for promoting host inflammatory response, auto-immunity, allergic and host defense. There are six members in this IL-17 family: IL-17A, IL-17B, IL-17C, IL-17D, IL-17E and IL-17F. Six of them are structurally similar. Among these six IL-17 members, IL-17A and IL-17F are the most common one as they have the highest degree of homology and they can form heterodimers or homodimer respectively (Wright, et al., 2007; Salvatore, et al., 2015). IL-17 is produced by different cells, mostly immune cells like natural killer cells, neutrophils, lymphoid-tissue inducer cells, gamma delta T cells, macrophages and dendritic cells (Cella, et al., 2009; Korn, et al., 2009; Takatori, et al., 2009; Passos, et al., 2010). IL-17 induces inflammatory response by triggering various pathways such as nuclear factor κB (NF-κB), mitogen-activated protein kinases (MAPKs) and CCAAT-enhancer-binding protein (C/EBP) cascades. Following these pathways, proinflammatory molecules will be synthesised. Cytokines like tumour necrosis factor- α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) produced from different cells will further enhance the inflammatory response. IL-17 will lead to the production of chemokines, recruiting immune cells to the site of injury. Besides cytokines and chemokines, matrix metalloproteinases (MMP), prostaglandin E2 will also be produced to degrade the extracellular matrix and induce vasodilation. All these combined to boost the inflammatory response induce by IL-17 (Chabaud, et al., 2000; Park, et al., 2005; Shen and Gaffen, 2008; Zhu and Qian, 2012; Song and Qian, 2013).
Lauric acid is a saturated medium chain fatty acid with the molecular formula of C₁₂H₂₄O₂. It makes up 45%-53% of the entire fatty acid composition of coconut oil, and is said to be the effective compound in virgin coconut oil (Dayrit, 2015). In addition to coconut oil, palm kernel oil and laurel oil also contain lauric acid (Fife, 2013). Lauric acid has bactericidal activity and it can influence the host immune response (Martingez, Vahjen and Zentek, 2016). Lauric acid also has strong anti-microbial and anti-inflammatory activities against *Propionibacterium acnes* (Nakatsuji, et al., 2009). Combining all the findings above, it is therefore hypothesised that lauric acid can relieve the inflammatory effects induced by IL-17, leading to the up-regulation of FXR mRNA expression in HepG2 cells.

Therefore, the objectives of this study are:

i. To determine the dose response of IL-17 on FXR mRNA expression in HepG2 cells.

ii. To investigate the co-treatment of lauric acid and IL-17 on FXR mRNA expression in HepG2 cells using quantitative reverse transcription-polymerase chain reaction (qRT-PCR).

iii. To investigate if the FXR mRNA results are translated into its protein expression for both IL-17 dose response test and cell treatment with lauric acid and IL-17 using western blot.
2.1 Nuclear Receptor Superfamily

Nuclear receptors (NRs) encompass a superfamily of proteins which is regulated by ligands. These NRs will regulate the expression of certain genes as they are one of the biggest groups of transcription factor in human body. The first NR was first discovered in 1960s by Elwood Jenson and his collaborators (Jensen, 1962). The actions of nuclear receptors contribute to development, physiology, metabolic homeostasis, reproduction, and diseases (Fattori, et al., 2014; McEwan, 2016).

Nuclear receptor family can be classified into nuclear hormone receptors (NHRs) and orphan nuclear receptors. NHRs are the nuclear receptor with its ligands already known. The ligands of the known-ligand nuclear receptor are mostly small lipophilic molecules such as fatty acids, hormones and steroids. The ligands of orphan receptors however, are still unidentified (Olefsky, 2001; Fattori, et al., 2014). All NRs share the common structure including the DNA binding domain and ligand binding domain. DNA binding domain recognises and binds to specific DNA sequences, it is linked to ligand binding domain by a hinge. Ligand binding

McCarty, M.F. and DiNicolantonio, J.J., 2016. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and many have limited pathogenicity. *Open Heart*, 3(2), e000467.

Zhang, F.P., Meng, G.X. and Strober, W., 2008. Interaction among the transcription factors Runx1, ROR gamma t and Foxp3 regulate the differentiation of interleukin 17-producing cells. *Nature Immunology*, 9(11), pp. 1297-1306.

Graph above shows the standard curve of bovine serum albumin (BSA) standards with concentration of 0.2 mg/mL, 0.5 mg/mL, 0.8 mg/mL, 1.1 mg/mL and 1.4 mg/mL. The concentration of extracted protein was calculated based on the graph.