INVESTIGATION INTO THE EFFECTS OF INTERLEUKIN-17 AND LAURIC ACID ON PPAR γ EXPRESSION IN HUMAN HEPG2 CELLS

By

NG HIN FUNG

A project report submitted to the Department of Biomedical Science

Faculty of Science

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements for the degree of

Bachelor of Science (Hons) Biomedical Science

May 2017

ABSTRACT

INVESTIGATION INTO THE EFFECTS OF INTERLEUKIN-17 AND LAURIC ACID ON PPAR γ EXPRESSION IN HUMAN HEPG2 CELLS

NG HIN FUNG

Peroxisome proliferator-activated receptors gamma (PPAR γ) is a transcription factor with pivotal role in the regulation of inflammatory response. Lauric acid is a 12-carbon saturated fatty acid and a major constituent in coconut oil that has demonstrated anti-inflammatory properties. Interleukin-17 (IL-17) is a proinflammatory cytokine that promotes inflammation. The objective of the study was to determine the effects of lauric acid on PPAR γ gene expression in human HepG2 cells co-treated with IL-17. The HepG2 cells were treated with different concentrations of IL-17 and lauric acid for 24 hours. Total cellular RNA and protein were extracted from the treated HepG2 cells using Tri-Reagent[®] LS. The integrity and purity of RNA samples were assessed using 2% (v/v) bleach 1% (v/v) agarose gel electrophoresis and spectrophotometric measurement, respectively. Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to quantify the mRNA expression of PPAR γ by normalising to the expression of the housekeeping gene, glyceraldehyde-3phosphate dehydrogenase (GAPDH). The concentrations of protein samples were measured using Bio-Rad DC protein assay and the protein was separated according to size using sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) and subjected to Western blot analysis. Both qRT-PCR and Western blot analysis showed that IL-17 suppressed PPAR γ expression in dose-dependent manner, with 100 ng/mL IL-17 showed the strongest suppression on PPAR γ gene expression. Subsequent co-treatment of IL-17 with increasing concentrations of lauric acid showed dose-dependent up-regulation of PPAR γ expression in HepG2 cells. The PPAR γ gene expression was significantly up-regulated in HepG2 cells treated with 20 μ M lauric acid and 10 ng/mL IL-17. These findings suggest that lauric acid displayed anti-inflammatory properties and it is able to abolish the pro-inflammatory effect of IL-17 on HepG2 cells. Both PPAR γ mRNA and protein expression showed similar patterns with each other.

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude and thanks to my supervisor, Dr Chew Choy Hoong, for providing me the opportunity to be a part of her research team. She has been a tremendous mentor and I appreciate her effort, encouragement, guidance, immense knowledge and patience throughout my study.

I gratefully acknowledge the contributions of time, knowledge and help from Dr Chew Choy Hoong's postgraduate students, Cheong Hui Ting, Melissa Ong Hui Ling and Kenneth Wong Hong Kin during the course of this project. In addition, I would also like to acknowledge and thank the laboratory personnel, particularly Mr Tie Shin Wei, Mr Gee Siew Meng and Mr Saravanan a/l Sivasangaran for their assistance and sharing of experience. I would like to dedicate a special thanks to my beloved lab mate, Khoo Yie Woon, for her teamwork and spirited support in this research.

Last but not least, I would like to express appreciation to my supportive and loving family. Words fail to describe my warmest gratitude to them.

DECLARATION

I hereby declare that the project report is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTAR or other institutions.

NG HIN FUNG

APPROVAL SHEET

The project report entitled "INVESTIGATION INTO THE EFFECTS OF INTERLEUKIN-17 AND LAURIC ACID ON PPAR₇ EXPRESSION IN HUMAN HEPG2 CELLS" was prepared by NG HIN FUNG and submitted as partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons) Biomedical Science at Universiti Tunku Abdul Rahman.

Approved by:

(Assoc. Prof. Dr CHEW CHOY HOONG)

DATE:

Supervisor

Department of Biomedical Science

Faculty of Science

Universiti Tunku Abdul Rahman

FACULTY OF SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: _____

PERMISSION SHEET

It is hereby certified that <u>NG HIN FUNG</u> (ID No: <u>14ADB01628</u>) has completed this final year project entitled "INVESTIGATION INTO THE EFFECTS OF INTERLEUKIN-17 AND LAURIC ACID ON PPARγ EXPRESSION IN HUMAN HEPG2 CELLS" under the supervision of Dr Chew Choy Hoong from the Department of Biomedical Science, Faculty of Science.

I hereby give permission to the University to upload the softcopy of my final year project thesis in pdf format into the UTAR Institutional Repository, which may be made accessible to the UTAR community and public.

Yours truly,

(NG HIN FUNG)

TABLE OF CONTENTS

Page

ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
DECLARATION	v
APPROVAL SHEET	vi
PERMISSION SHEET	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvi

CHAPTER

1	INT	RODUCTION	1
2	LIT	ERATURE REVIEW	4
	2.1	Nuclear Receptor Superfamily	4
	2.2	Peroxisome Proliferator-Activated Receptors (PPARs)	6
		2.2.1 Structure of PPARs	7
		2.2.2 Transcriptional Activities of PPARs	9
	2.3	Peroxisome Proliferator–Activated Receptors Gamma (PPARy)	11
		2.3.1 PPARγ Ligands	11
	2.4	Physiological Functions of PPARy	12
		2.4.1 Adipogenesis	12
		2.4.2 Glucose Homeostasis	13
		2.4.3 Inflammatory and Immune Response	15
	2.5	Interleukin-17 (IL-17)	16
	2.6	Lauric Acid	18

3	MA	TERIALS AND METHODS	20
	3.1	Preparation of Glassware and Plasticware	20
	3.2	Cell Culture Media and Treatment Reagents	20
		3.2.1 Preparation of Minimum Essential Medium	20
		3.2.2 Preparation of Phosphate Buffered Saline	21
		3.2.3 Preparation of Interleukin-17	21
		3.2.4 Preparation of Lauric Acid	22
		3.2.5 Preparation of Resveratrol	22
	3.3	Cell Culture Methodology	22
		3.3.1 Maintenance of Cell Line	22
		3.3.2 Subculturing of Cells	23
	3.4	Cell Treatments	24
		3.4.1 Dose Response Test	24
		3.4.2 Treatment of Cells with Lauric Acid	24
	3.5	RNA-Associated Techniques	25
		3.5.1 Stock Solution for RNA Analysis	25
		3.5.2 Isolation of Total Cellular RNA Using Tri-Reagent® LS	25
		3.5.3 Spectrophotometric Measurement of Total Cellular RNA	27
		3.5.4 Bleach Agarose Gel Electrophoresis for RNA Samples	27
		3.5.5 RNase-free DNase Treatment of RNA Samples	28
		3.5.6 Quantitative Reverse Transcription-Polymerase Chain	
		Reaction (qRT-PCR)	28
		3.5.6.1 Primer Selection	28
		3.5.6.2 qRT-PCR Protocol	29
	3.6	Protein-Associated Technique	32
	3.6.1 Stock Solution for Protein Extraction		
		3.6.2 Protein Isolation Using Tri-Reagent® LS	34
		3.6.3 Measurement of Protein Concentration Using Bio-Rad DC	
		Protein Assay	35
		3.6.4Sodium Dodecyl Sulphate–Polyacrylamide Gel	
		Electrophoresis (SDS-PAGE)	36

ix

		3.6.5 Electrophoretic Transfer of Proteins from Gel to Membrane	38
		3.6.6 Western Blot and Chemiluminescent Detection	39
		3.6.7 Stripping of PVDF Membrane	40
		3.6.8 Densitometry Analysis of Western Blot Results	40
4	RES	ULTS	41
	4.1	HepG2 Cell Culture	41
	4.2	Isolation of Total Cellular RNA	42
		4.2.1 The Concentration and Purity of Extracted Cellular RNA	42
		4.2.2 The Integrity of Extracted Cellular RNA	44
	4.3	qRT-PCR	46
		4.3.1 PCR Amplification Curve of Treated HepG2 Cells	46
		4.3.2 Melting Curve Analysis for mRNA Expression of PPAR γ	
		and GAPDH	49
		4.3.3 PPARγ mRNA Expression in Treated HepG2 Cells	52
	4.4	Protein Analysis	56
		4.4.1 The Concentration of Total Cellular Protein Extracted	56
		4.4.2 Western Blot Analysis	57
		4.4.3 Comparison between PPAR γ mRNA and Protein Expression	61
5	DIS	CUSSION	65
	5.1	HepG2 Cells as the Study Model	65
	5.2	RNA and Protein Isolation	65
	5.3	RNA Purity and Integrity	67
	5.4	Quantitative Reverse Transcription - Polymerase Chain Reaction	
		(qRT-PCR)	68
	5.5	Interpretation of PPAR γ mRNA and Protein Expression Results	69
		5.5.1 Comparison between mRNA and Protein Expression of	
		ΡΡΑRγ	69

		5.5.2	Effect of Interleukin-17 (IL-17) on PPARy mRNA and	
			Protein Expression in Dose Response Test	71
		5.5.3	Effect of Lauric Acid and Resveratrol on PPAR γ mRNA and	
			Protein Expression in HepG2 Cells co-incubated with IL-17	73
	5.6	Future	Studies	76
6	CON	ICLUS	ION	78
RE	FERI	ENCES		79
AF	PEN	DICES		97

LIST OF TABLES

Table		Page
3.1	Composition of MEM	21
3.2	Composition of solution used in 2% (v/v) bleach 1% (w/v)	
	agarose gel.	25
3.3	Sequences of primers used in qRT-PCR	29
3.4	Components of qRT-PCR	30
3.5	Parameter of qRT-PCR	31
3.6	Composition of solution used in protein extraction	32
3.7	Composition of solution used in SDS-PAGE and electrophoretic	
	transfer of proteins	33
3.8	Composition of solution used in Western Blot analysis	33
3.9	Composition of stacking and resolving gels used in SDS-PAGE	36
4.1	The concentration and $A_{260}\!/A_{280}$ ratio of total cellular RNA	
	extracted from HepG2 cells treated with different concentrations	
	of IL-17 in dose response test	43
4.2	The concentration and $A_{260}\!/A_{280}$ ratio of total cellular RNA	
	extracted from HepG2 cells treated with IL-17, resveratrol and	
	different concentrations of lauric acid	44
4.3	Concentration of total cellular protein extracted from samples	
	treated with different concentrations of IL-17 in dose response	
	test	56

xii

4.4 Concentration of total cellular protein extracted from samples treated with IL-17, resveratrol and different concentrations of lauric acid

57

LIST OF FIGURES

Figure		Page
2.1	Domain structure of PPARs	8
2.2	Transcriptional activities of PPARs	10
4.1	The morphology of HepG2 cells	42
4.2	Two % (v/v) bleach 1% (w/v) agarose gel electrophoresis of	
	total cellular RNA extracted from HepG2 cells in (a) dose	
	response test treated with different concentrations of IL-17	
	and (b) treatment with IL-17, resveratrol and different	
	concentrations of lauric acid	45
4.3	qRT-PCR amplification curves of (a) GAPDH and (b) PPAR-	
	γ in dose response test	47
4.4	qRT-PCR amplification curves of (a) GAPDH and (b) PPAR-	
	γ in treatment with IL-17, resveratrol and different	
	concentrations of lauric acid	48
4.5	Melting curve analysis for (a) GAPDH and (b) PPAR- γ in	
	dose response test	50
4.6	Melting curve analysis for (a) GAPDH and (b) PPAR- γ in	
	HepG2 cells treated with IL-17, resveratrol and different	
	concentrations of lauric acid	51
4.7	PPARy mRNA expression of HepG2 cells treated with	
	different concentrations of IL-17	54

4.8	PPARγ mRNA expression of dose response test using IL-17,	
	resveratrol and different concentrations of lauric acid	55
4.9	Western blot analysis of GAPDH and PPAR γ protein	
	extracted from HepG2 cells treated with (a) different	
	concentrations of IL-17 and (b) IL-17, resveratrol and	
	different concentrations of lauric acid	59
4.10	The percentage of PPAR γ protein expression in HepG2 cells	
	treated with different concentrations of IL-17	60
4.11	The percentage of PPAR γ protein expression in HepG2 cells	
	treated with IL-17, resveratrol and different concentrations of	
	lauric acid	61
4.12	Comparison between PPARy mRNA and protein expression	
	in HepG2 cells treated with different concentrations of IL-17	63
4.13	Comparison between PPAR γ mRNA and protein expression	
	in HepG2 cells treated with IL-17, resveratrol and different	
	concentrations of lauric acid	64

XV

LIST OF ABBREVIATIONS

-d(RFU)/dT	Rate of change in fluorescence unit with time
9-HODE	9-hydroxy-10, 12-octadecaienoic acid
12C	12-carbon
13-HODE	13-hydroxy-9, 11-octadecadienoic acid
15d-PGJ2	15-deoxy- Δ 12, 14-prostaglandin J2
A ₂₆₀	Absorbance read at 260 nm
A ₂₈₀	Absorbance read at 280 nm
Acetyl-CoA	Acetyl coenzyme A
AF	Activation function
aP	Adipocyte protein
AP	Activator protein
APS	Ammonium persulphate
ATCC	American Type Culture Collection
BCP	1-bromo-3-chloropropane
bp	Base pair
BSA	Bovine serum albumin
CBP	CREB-binding protein
CCL	Chemokine (C-C motif) ligand
CD	Fatty acid translocase
cDNA	Complementary deoxyribonucleic acid

C/EBP	CCAAT enhancer binding protein
CO ₂	Carbon dioxide
COX	Cyclooxygenase
Cq	Quantification cycle
DBD	DNA binding domain
DEPC	Diethyl pyrocarbonate
DHA	Docosahexaenoic acid
DNase	Deoxyribonuclease
EBF	Early B-cell factor
ECL	Enhanced chemiluminescence
EDTA	Ethylenediaminetetraacetic acid
EG	Ethanol: Glycerol
EPA	Eicosapentaenoic acid
ERK	Extracellular signal-regulated kinase
FBS	Foetal Bovine Serum
FFA	Free fatty acid
GAPDH	glyceraldehyde-3-phosphate dehydrogenase
GATA	GATA binding protein
GEG	Guanidine hydrochloride: Ethanol: Glycerol
GLUT	Glucose transporter
HDL	High density lipoprotein
HepG2	Hepatocarcinoma cell line
HETE	Hydroxyeicosatetraenoic acid

HRP	Horseradish peroxidase
ICAM	Intercellular adhesion molecule
IFN	Interferon
ІкВ	Inhibitor of ĸB
IL	Interleukin
IL-17R	IL-17 receptor
iNOS	Inducible nitric oxide synthase
IRS	Insulin receptor substrate
JNK	c-Jun N-terminal kinase
kDA	Kilodalton
KLF	Krüppel-like factor
Krox20	Early growth response-2
LBD	Ligand binding domain
LDL	Low density lipoprotein
LOX	Lipoxygenase
LPL	Lipoprotein lipase
Lys	Lysine
МАРК	Mitogen-activated protein kinase
MCFA	Medium-chain fatty acid
MEM	Minimum essential medium
mRNA	Messenger ribonucleic acid
NCoR	Nuclear co-repressor
NF-ĸB	Nuclear factor-kappa B

Nods protein	Nucleotide-binding oligomerisation domain-containing
	(Nods) protein
NR	Nuclear receptor
PBS	Phosphate buffered saline
PEPCK	Phosphoenolpyruvate carboxykinase
RXR	Retinoid X receptor
РІЗК	Phosphatidylinositol 3-kinase
PPARγ	Peroxisome proliferator-activated receptors gamma
PPRE	PPAR response element
PUFA	Polyunsaturated fatty acid
PVDF	Polyvinylidene fluoride
qRT-PCR	quantitative reverse transcription-polymerase chain
	reaction
RNA	Ribonucleic acid
RNase	Ribonuclease
RORγt	retinoic orphan receptor yt
RFU	Relative fluorescence unit
rRNA	Ribosomal ribonucleic acid
SDS-PAGE	Sodium dodecyl sulphate-polyacrylamide gel
	electrophoresis
Ser	Serine
siRNA	Small (or short) interfering RNA

SIRT1	Silencing information regulator-1 or Sirtuin 1
SMRT	Silencing mediator for retinoic acid and thyroid hormone
	receptors
SREBP-1c	Sterol regulatory element-binding protein 1c
STAT	Signal transducer and activator of transcription
T2DM	Type 2 diabetes mellitus
TBE	Tris/Borate/EDTA
TBST	Tris buffer saline-Tween® 20
TEMED	N,N,N',N'-Tetramethylethylenediamine
TGF-β	Transforming growth factor-beta
Th cells	T helper cells
TLR	Toll-like receptor
Tm	Melting temperature
ΤΝFα	Tumour necrosis factor alpha
TZD	Thiazolidinedione
v/v	Volume per volume
VCAM	Vascular cell adhesion molecule
w/v	Weight per volume