

STUDIES TO IMPROVE THE PROCESS OF DECODING RATELESS

ERASURE CODE WITH HIGHLY-PARALLEL GPU ARCHITECTURE

By

CHONG SIN RAN

A dissertation submitted to the Department of Electrical and Electronic Engineering,

Lee Kong Chian Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,

in partial fulfilment of the requirements for the degree of

Master of Engineering Science

April 2018

ii

ABSTRACT

STUDIES TO IMPROVE THE PROCESS OF DECODING RATELESS

ERASURE CODE WITH HIGHLY-PARALLEL GPU ARCHITECTURE

 CHONG SIN RAN

 Rateless Erasure Code (REC) is a type of forward error correcting code for

erasure channel. Such code is often used to improve networking throughput

performance. While the backbone of the REC is made up of linear equations, Gaussian

elimination (GE) with the entry complexity of 𝑂(𝑘3) is the general solver / decoder

for REC. Thus, the decoding phase of REC is the performance bottleneck. Even with

our current central processing unit (CPU) technology that can easily reach the

processing speed of 4GHz, solving thousands of 𝑘 linear equations using Gaussian

elimination in a CPU is still a time-consuming process. In response, this thesis will

show how the state-of-the-art graphic processing unit (GPU) can replace the

predominant CPU in decoding REC. Furthermore, by utilising parallel processing

technology embedded in the GPU, our study will show that the decoding of REC riding

on the state-of-the-art of the GPU, are capable of performing significantly better than

CPU during the REC’s decoding under certain circumstances. Apart from the typical

GE decoding, we also propose a new decoding algorithm, namely Gaussian

elimination method with matrix multiplication (GEMM) that comes with two degrees

of parallelisation in the GPU. In the first degree of parallelisation, the GEMM will

show its ability of decoding REC of one file 2x faster than GE that is computed in

CPU, while the second degree of parallelisation of GEMM will prove the idea of

iii

decoding thousands of distinct files at once can perform more than 10x faster compared

to a CPU decoding thousands of distinct files.

iv

ACKNOWLEDGEMENT

I would like to express my sincere appreciations to my supervisor Dr. Lai An

Chow, co-supervisor Dr. Tay Yong Haur and mentor Dr. Chong Zan Kai for their

precious guidance throughout my Master’s study. Thank you for their invaluable

knowledge and willingness to steer me in the right direction whenever I needed it.

Besides, I would also like to thank those who have been part of my master study and

also my friends as well as colleagues.

 Finally, special thanks to my family members for their unfailing support and

continuous encouragement throughout my years of study.

v

DECLARATION

I hereby declare that the dissertation is based on my original work except for quotations

and citations which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at UTAR or other

institutions.

Name ____________________________

Date _____________________________

vi

APPROVAL SHEET

This dissertation/thesis entitled “STUDIES TO IMPROVE THE PROCESS OF

DECODING RATELESS ERASURE CODE WITH HIGHLY-PARALLEL

GPU ARCHITECTURE” was prepared by CHONG SIN RAN and submitted as

partial fulfilment of the requirements for the degree of Master of Engineering Science

at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Lai An Chow) Date:…………………..

Supervisor

Department of Electrical and Electronic Engineering

Faculty of Engineering & Science

Universiti Tunku Abdul Rahman

(Dr. Tay Yong Haur) Date:…………………..

Co-supervisor

Department of Internet Engineering and Computer Science

Faculty of Engineering & Science

Universiti Tunku Abdul Rahman

.

vii

LIST OF TABLES

 TABLE TITLE PAGE

Table 2.1: The PCD for Random code of 𝑘= 10. 23

Table 2.2: GF(2) addition table 24

Table 2.3: GF(256) addition table 25

Table 3.1: Time for GE with Redimension decoding of Random

Code in different 𝑘 at 𝑙 = 8192 𝑏𝑖𝑡𝑠, and 𝛾 = 2 50

Table 3.2: Threads allocation for parallelisation in MM 71

Table 3.3: Threads allocation for parallelisation in MM 78

Table 4.1: Overall PCD of GEMM and GE 80

Table 5.1: Overall speedup performance of GEMM and GE 100

viii

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 1.1: Average throughput performance of various TCP 1

Figure 1.2: Transmission flow diagram 2

Figure 1.3: The encoding and decoding of rateless erasure code 3

Figure 1.4: Comparison in Between CPU and GPU. 3

Figure 1.5: TCP vs REC Flow Diagram 6

Figure 2.1: Gaussian elimination decoding time, 𝑠 vs. message size,

𝑘 28

Figure 2.2: CPU vs. GPU architecture comparison 31

Figure 3.1: Effects of message size k towards the decoding speed. 45

Figure 3.3: Pivoting Search 56

Figure 3.4: Row Swap 56

Figure 3.5: Threads allocation for Swap Row 57

Figure 3.6: XOR operations 58

Figure 3.7: Threads allocation for XOR operation 58

Figure 3.8: Offset of threads distribution. 61

Figure 3.9: Timeline of GPU decoding vs the first and second-

degree parallelisation. 75

Figure 4.1: Complexity of GE in Time used to solve GE vs. 𝑘. 82

Figure 4.2: Speedup of GEparallel and GEMM after parallelisation

with GEserial as the base case. 82

ix

Figure 4.3: Complexity of GE in Time used to solve GE vs. the

variation in 𝑙. 84

Figure 4.4: Speedup of GEparallel and GEMM after parallelisation

with GEserial as the base case in the variation of 𝑙. 84

Figure 4.5 Sensitivity of threads allocated toward the speedup

of GEparallel. 85

Figure 4.6: Sensitivity of threads allocated toward the speedup

of INVparallel. 86

Figure 4.7: Sensitivity of threads allocated toward the speedup

of MMparallel. 87

Figure 4.8: The CPU execution timeline 89

Figure 4.9: The GPU execution timeline 89

Figure 4.10: Structure of GEparallel in Nvidia Profiler 90

Figure 4.11: Structure of GEMM in Nvidia Profiler 92

Figure 4.12: Breakdown of the profiled INVparallel &

GEparallel in summary. 93

Figure 4.13: Breakdown of the profiled MMparallel &

GEparallel in summary. 94

Figure 4.14: Time used to decode α files using GEserial. 97

Figure 4.15: Speedup of Bulk decoding 𝐺𝐸𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 and 𝐺𝐸𝑀𝑀

as compared to GEserial. 98

x

LIST OF SYMBOLS / ABBREVIATIONS

BEC Binary erasure channel

BP Belief Propagation

BPGE Belief Propagation Gaussian Elimination

CPU Central processing unit

CUDA Compute Unified Device Architecture

GE Gaussian elimination

GEMM Gaussian elimination with matrix multiplication

GPU Graphical Processing Unit

IDGE Inactivation Decoding Gaussian Elimination

IoT Internet of Things

LDPC Low-Density-Parity-Check Code

MTU Maximum Transmission Unit

PCD Probability of complete decoding

TCP Transmission control protocol

WSN Wireless Sensor Network

𝑘 Amount of message symbols

𝑛 Numbers of received packets

𝑙 Encoded symbol length

ϵ Overhead constant

xi

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGEMENT iv

DECLARATION v

APPROVAL SHEET vi

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS / ABBREVIATIONS x

LIST OF APPENDICES Error! Bookmark not defined.

TABLE OF CONTENTS xi

CHAPTER

1 INTRODUCTION 1

1.1 Background 5

1.1.1 Impact of Rateless Erasure Code to Network 6

1.1.2 Rateless Erasure Code Riding on GPU 7

1.2 Research Problem 8

1.3 Objective 9

1.4 Outline 9

2 LITERATURE REVIEW 12

2.1 Rateless Erasure Code Variant 12

2.1.1 LT Code 14

2.1.2 Raptor Code 17

2.1.3 Random Code 18

2.2 REC Applications 21

2.2.1 REC in Wireless Sensor Network 21

2.2.2 REC in Distributed Data Storage/ Cloud storage 21

xii

2.3 Bottlenecks in Rateless Erasure Code 22

2.3.1 Overhead 22

2.3.2 Performance Speed 26

2.4 Gaussian Elimination 27

2.5 Belief Propagation 28

2.6 Inactivation decoding Gaussian Elimination 29

2.7 Parallel Processing for Rateless Erasure Code 30

2.8 Relationship of 𝒌 and 𝒍 32

3 GAUSSIAN ELIMINATION IN RATELESS ERASURE CODE

 34

3.1 Encoding 34

3.2 Decoding 34

3.2.1 Probability of Complete Decoding (PCD) 35

3.2.2 Decoding Using Gaussian Elimination 39

3.2.3 Operational count for Gaussian Elimination 43

3.3 Redimensioning 45

3.3.1 Encoding of Redimensioning 46

3.3.2 Decoding of Redimensioning 47

3.4 First Degree Parallel Processing 51

3.4.1 Implementation of GPU Unit for Gaussian

Elimination 51

3.4.2 Ideal vs. Practical Parallelisation 54

3.4.3 Parallelisation of Gaussian Elimination 55

3.4.4 Construction of 𝐆𝐄𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥 in CUDA 59

3.5 Gaussian Elimination with Matrix Multiplication (GEMM) 63

3.5.1 Inversion, INV 64

3.5.2 Matrix Multiplication, MM 70

3.6 Second Degree Parallelisation 74

3.6.1 Bulk Decoding 74

4 RESULT AND DISCUSSION 79

4.1 Experiment Platforms 79

xiii

4.2 Overhead test in GE and GEMM 80

4.3 First Degree Parallelisation - 𝐆𝐄𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥 V.S. 𝐆𝐄𝐌𝐌 81

4.3.1 𝒌 Variation 81

4.3.2 𝒍 Variation 83

4.3.3 𝐓𝐡𝐫𝐞𝐚𝐝𝐬 𝐚𝐥𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧 Variation 85

4.4 Analysis and Discussion 88

4.4.1 GEMM vs 𝐆𝐄𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥 95

4.5 Second Degree Parallelisation - Single File Parallelisation vs

Bulk Decoding Parallelisation 96

4.5.1 Experimental Result 96

5 CONCLUSION AND RECOMMENDATIONS 99

5.1 Future Work 100

5.1.1 Hardware Variety 101

5.1.2 Machine Learning 101

5.1.3 Protocol Design 101

1

1 INTRODUCTION

The communication network is a fast-growing technology that bridges the

information in physical and cyber domains. Generally, most of the internet-connected

devices are using the wireless channel and they are susceptible to the environmental

interference. Furthermore, the ever-growing number of internet-connected devices

continuously generate traffic that forms exponential and can potentially increase the

frequencies of packet losses; hence, significantly decreasing the Internet throughput.

Figure 1.1: Average throughput performance of various TCP

Figure 1.1 demonstrate the effects of packet loss towards the throughput of

various implementation of TCP. Other than FECTCP (Alqahtani, et al., 2016) which

implements a TCP-like transport protocol by using Rateless Erasure Code, the other

TCP variants show their high sensitivity towards packet loss. In other words, REC can

play an important role in solving the packet loss problem in TCP/IP by encoding a

message of 𝑘 symbols into theoretically an infinite number of encoded symbols. In

2

general, rateless erasure code (REC) is a type of error correcting code for the

communication system that promises to achieve efficient erasure mitigation over lossy

transmission channels and to improve bandwidth utilization of our communication

networks. If the channel is lossy, the message is still recoverable given that sufficient

encoded symbols (i.e. 𝑛 ≥ 𝑘) are received.

Figure 1.2: Transmission flow diagram

Figure 1.2 demonstrates briefly the transmission process of the communication

network. Before a message is sent, it will first be subdivided into 𝑘 amount of message

symbols (M), then M will be encoded into several encoded symbols (X) for error

handling mechanism according to the standards set by the particular protocol, and

forms packets that are ready to be sent. A packet in a networking is often called a

datagram, and it is a self-contained independent data carrier that carries the partial

knowledge of the encoded information as well as the address of its sender and receiver

etc. After all the relevant packets are received at the destination, the original message

will be reconstructed according to that protocol’s specific decoding process.

M M M M X packets M packets M
M

X
X

packets
Packets

packets
Packets

M
M

Transmission

channel

Sender Receiver

Encode Decode

Message

Symbols

Encoded

Symbols

Decoded Message
Symbols

3

Figure 1.3: The encoding and decoding of rateless erasure code

Figure 1.3 demonstrates briefly the encoding and decoding process of REC.

First, 𝑘 amount of message symbols from the original message will arbitrarily generate

a theoretically limitless number of encoded packets, and any subset of the 𝑛 encoded

packets that is slightly more than 𝑘, can be used to recover the original message at the

receiver side. Such transmission allows the packets to be decode regardless of its

sequences and subsequently minimise the needs for retransmission. However, one of

the aspects that affect the applicability of REC is the high computational resources

required by the decoding of REC.

Figure 1.4: Comparison in Between CPU and GPU.

4

The gain from the REC is therefore paid for by the price of high computational

resources in the decoding process (Chong, et al., 2016). To address this issue, we

propose to speed up the decoding process using graphical processing unit (GPU) – a

computer peripheral that is capable of processing massive amount of data in parallel.

Generally, GPU consists of thousands of cores as compared to CPU but the former

runs at a relatively lower clock speed (See Figure 1.4). Such computational

architecture advancement challenges the proper design of parallel algorithms in

utilising the full potential of GPU to reach the theoretical speed limit.

This chapter introduces the relationship between Gaussian Elimination and

REC’s impact to our networking system. It also explains the contribution of this project

to the coding theory field particularly on enhancing Gaussian Elimination performance

speed by using GPU.

In this thesis, we will briefly explain how to maximize the performance of REC

by utilizing the state of art of GPU. GPU consists of thousands of computing cores that

it run independently, each of GPU’s core has lesser complexity than the core in CPU.

Furthermore, GPU’s operation requires certain computational overheads, hence we

will study and analyze whether the GPU can help in improving the decoding

performance of REC. Other than that, one more reason to study on GPU is due to its

relatively low cost compared to mainstream CPUs. For example by using the

information that we have as the reference, the price of GPU-NVIDIA QUADRO

K620 WORKSTATION GRAPHICS CARD is retailed at RM900 (July, 2017) while

https://www.lelong.com.my/leadtek-nvidia-quadro-k620-workstation-graphics-hubbyhoneyworld-I2472334-2007-01-Sale-I.htm
https://www.lelong.com.my/leadtek-nvidia-quadro-k620-workstation-graphics-hubbyhoneyworld-I2472334-2007-01-Sale-I.htm

5

CPU-HP Xeon E3 Z240 Tower Workstation (HP-V1Z90PA) is retailing at a higher

cost of RM4500 (July, 2017).

1.1 Background

Data transmission is a process of transmitting certain numbers of relevant

packets from sender to receiver and this transmission is mediated by a communication

protocol. TCP/IP is one of the most widely used communication protocol to ensure the

reliability and the quality of packets during data transmission.

In general, before a message file is being transmitted, it will be encoded and

subdivide into packets by following the TCP/IP standards. These packets will then

travel individually to the receiver, and TCP/IP will “remounts” the packets in order to

assemble the packets back into the original file, If for instance a packet is lost on the

receiving side for reasons such as bit error, timeout, packets drop on network

congestion and even wrong packets sequence, TCP/IP at the receiving side will

feedback a signal to the sender, asking it to re-send the particular missing packets until

all the packets have reached the destination.

However, due to the properties of TCP/IP that requires an acknowledgment for

every received or lost packets, the transmission process would be very inefficient and

can easily clutter the network. Furthermore, our communication system is being

increasingly used for wireless communication, where a slight error could possibly lead

to significant throughput degradation. For a long time, many researchers have claimed

6

that TCP is inefficient in the high-speed internet. (Salyers, et al., 2008), (Kim & Lee,

2004).

1.1.1 Impact of Rateless Erasure Code to Network

In the past decades, REC has been proposed as the solution for such issue, with

the properties mentioned previously, where “A REC encoded file can be retrieved from

any subsets of the encoded symbols disregarding of it sequences”.

The mechanism in TCP that requires acknowledgement for every lost and

received packets to ensures data transmission reliability, is therefore less important in

REC as data transmission by using REC doesn’t require acknowledgement for every

received or lost packets, and the only important thing in REC is that the receiver side

received sufficient 𝑛 (𝑛 > 𝑘) amount of encoded symbol for complete decoding.

Figure 1.5: TCP vs REC Flow Diagram

0

5

10

15

0 5 10 15 20 25 30 35

T
ra

n
sm

is
si

o
n
 R

at
e,

 M
b

p
s

Time

Flow Diagram of TCP vs REC

TCP REC

Loss packet Loss packet

7

Figure 1.5 demonstrates the transmission rate of TCP and REC during packets

loss. For TCP, whenever a packet is sent successfully (sender receives an

acknowledgement of the received packet), the transmission rate of TCP will increase

exponentially until a packet loss is detected (sender received a failed to transmit signal

or fail to receive acknowledgement signal). At this point, the transmission rate will be

halved, and the process will continue until all the packets are delivered successfully

(Mathis, et al., 1997). While for REC, the transmission rate is at its near maximum rate

from the beginning until the end of the transmission regardless of packet loss (Yuan,

et al., 2010). Since REC can transmit the packets at near the maximum transmission

rate at all time, more bandwidth is utilised in transmitting the packets instead of

wasting them on the acknowledgment mechanism of lost and received packets.

1.1.2 Rateless Erasure Code Riding on GPU

Ever since REC appears a few decades ago, many variants of REC have been

proposed, i.e. Random code (Chong, et al., 2015), Lt code (Luby, 2002), and Raptor

code (Shokrollahi, 2006) etc, in order to solve the REC’s common issues such as the

decoding speed or overhead problems.

All RECs are usually viewed as the linear codes over Galois fields, and are

built on top of the linear algebra system that generally makes them optimally decodable

using an algorithm namely Gaussian elimination (GE) (Anghel, et al., 2011). In

contrast, such method of decoding linear system would be very computationally

intensive. To address this issue, the most promising solution seems to be the

implementation of parallel processing using GPU.

8

The exceptional GPU computing power is very attractive to general-purpose

system development. However, the critical challenge during coding for GPU is the

smaller degree of parallelization in the REC’s decoding process. GE requires the

decoding of each step to start only after the decoding of the previous step is finished.

This implies that the parallel decoding process will be limited by GE’s independencies.

Since GPU requires a certain large amount of threads to reach peak

performance, a lesser parallelization degree will limit the performance gain by parallel

processing. In addition, this research will be testing on the parallelization granularity

of GPU-based decoding schemes and their performance for the different granularity

setup. The details of the parallelization schemes will be presents in this thesis later.

Recently, Applications that harness the massive parallelism of GPU to speed

up computational task have become increasingly common. In this research, we propose

a new parallel decoding algorithm namely the Gaussian Elimination with Matrix

Multiplication (GEMM) as matrix multiplication is known to be highly parallelizable.

The goal of this study is to research on how to effectively offload parallel computations

to the graphics card, and analyses the impact of GPU toward REC.

1.2 Research Problem

In previous research papers (Anghel, et al., 2010), (Chong, et al., 2015),

(Chong, et al., 2016), it was shown that REC can lead to more scalable and robust

protocols with better utilization of the available bandwidth at poor network condition.

9

However, to date, we have not observed any commercial application or protocol taking

advantage of the power of REC. We believe that the main cause of this observation is

due to the high complexity of the decoding algorithm- Gaussian elimination, employed

in REC. Currently, Gaussian elimination is always the main component in REC’s

decoding schemes, as such it is crucial to speed up the performance of Gaussian

Elimination by utilising modern state-of-the-art of computer accelerator – GPU. In this

dissertation, the research problem is defined as the following:

“How to design a scalable and robust Rateless Erasure Code decoding algorithm

that can utilise the resources in GPU”

1.3 Objective

Associate with the research problem, the objectives in this research will be:

• To study the state-of-art of REC that uses GE as the core in the decoding

process.

• To propose a new parallel algorithm to speed up GE components with REC

constraints

• To evaluate the scalability of the proposed algorithm.

• To analyse the proposed algorithm experimentally.

1.4 Outline

In this chapter, the issue on the traditional communication network are

discussed, and the deployment of REC to improve the performance of the current

10

communication network. Nonetheless, REC is not widely deployed due to the high

complexity of encoding and decoding processes.

In Chapter 2, a few REC will be review to highlight the research problem. Since

most of the REC are linear codes, they are decodable by many different mathematical

approaches. Their advantages and disadvantages will be discussed from different

aspects.

 Chapter 3 introduces the core decoding method for REC, i.e., Gaussian

Elimination, whose time complexity is 𝑂(𝑘3). Basically, the chapter will cover the

state of art of Gaussian elimination and propose a new parallel algorithm called

GEMM to improve the performance of REC with any input 𝑘, using re-dimensioning

techniques. Such parallel algorithms will be implemented and compared on GPU

platforms. Furthermore, due to the inefficiency of parallelisation in Gaussian

Elimination, this research proposes GEMM with two degrees of parallelisation. In

short, the first-degree parallelisation will be performed on single file, and we will see

significant improvement on the GPU decoding performance compared to CPU while

the second-degree parallelisation of GEMM will be performed on multiple files, e.g.,

we propose to decode 1000 files in parallel while each file will be parallel processed

at the same time as well.

Chapter 4 will demonstrate the result and comparison of convention Gaussian

elimination (base case) with our proposed double degree parallelised GEMM, where

GPU resources can be potentially exploited. In this chapter, analysis according to the

experimental result will be done to prove the workability of our proposed algorithm,

11

we will also discuss the performance of the proposed algorithm from a different aspect

with different parameters to show its scalability. Finally, we will draw a conclusion

and discuss the potential future work in Chapter 5.

12

2 LITERATURE REVIEW

Rateless erasure codes (also called the Fountain codes) are a family of error

correcting codes where the rate of transmitting coded packet can be adjusted on the fly.

Such an approach is termed Digital Fountain (DF), as the transmitter is used as a

fountain that emits coded packets that are continuously sent until the receiver has

received the number of packets required for 100% probability of complete decoding

(PCD) (Lu, et al., 2012). However, the deployment of rateless erasure code is limited,

primarily due to the added computational complexity associated with linear coding-

based encoding and decoding.

2.1 Rateless Erasure Code Variant

Variant of REC comes in as improvement to fit into different situation, e.g.,

the REC that has lower overheads will be used in lossy situation (deep space

communication, long-distance communication, etc.) where a packet suffers high loss

rate during transmission (Ren, et al., 2014); REC with high encoding and decoding

speed performance are more suitable for daily communications (wireless

communication etc.) with lower packet loss rate (Assefa, et al., 2016). In general, all

the REC’s are encoded in a way where:

𝐺∞×𝑘 ×𝑀𝑘×𝑙 = 𝑋∞×𝑙 (2.1)

13

𝐺 = Generated information for encoding

𝑀 = Message symbols

𝑋 = Encoded symbols

𝑘 = Numbers of message symbols

𝑙 = Length of one message symbols

The method of generating 𝐺 determines the properties of the particular REC;

different REC will possess different 𝐺 for the encoding process, as long as the 𝐺 can

still be generated according to the particular REC’s standard, the message can be

theoretically encoded into an infinite number of encoded symbols.

Then the encoded symbols will be augmented together with its generating

information to form packets in the form of 𝐺𝑦|𝑋𝑦 ,𝑦=0,1,2,3…∞ , These packets will be

transmitted to the receiver side for decoding since the packet 𝐺|𝑋 are generated with

linear algebra, they are basically decodable using Gaussian elimination (Bioglio, et al.,

2009), as long as sufficient 𝑛 numbers of packets are received. The equations will be

explained in detail in Chapter 3. In this section, we will briefly introduce and review

several existing REC.

14

𝑙

𝑘

2.1.1 LT Code

LT codes (Luby, 2002), are the first practical realization of the digital fountain

approach, also called universal erasure codes. The main advantages of LT codes are:

1. The number of packets that can be generated from the message file is

potentially infinite, or researchers call it on-the-fly (the encoded packets will

be generated whenever it is needed).

2. Low complexity for both encoding and decoding processes (fast).

According to the linear equation for REC where 𝐺 × 𝑀 = 𝑋 , LT code

generates G by using fine tune random degree distribution (Cheong & Fan, 2016),

(Luby, 2002), i.e., the ideal Soliton distribution and the robust Soliton distribution for

the optimal encoding and decoding performance (Zhu, et al., 2008).

2.1.1.1 Encoding

For the encoding of LT code (Luby, 2002):

1. Divide the message into equal length 𝑙 bits, resulting in 𝑘 numbers of messages

symbols as shown; one row in the matrix will represent one message symbol.

𝑀 = 01000100111000100100 → (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

)

𝑘×𝑙

15

Certain packet

Certain packet

2. Randomly choose the degree (𝑑) from fined tuned degree distribution for

generating the 𝐺, e.g., let 𝑑 = 3 (A row in 𝐺 will be randomly allocated with

a maximum of 3 ‘1’s)

𝐺 =

(

1 0 1 0
1 0 0 0
0 0 1 0
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
0 0 1 1)

∞×𝑘

3. Matrix multiply 𝐺 and 𝑀 to form 𝑋 , and the corresponding 𝐺 will be

augmented with 𝑋 to form 𝐺|𝑋 packet for transmission.

𝐺 ×𝑀 =

(

1 0 1 0
1 0 0 0
0 0 1 0
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
0 0 1 1)

× (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

) =

(

1 1 0 0 1
0 1 0 0 0
1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
0 1 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 0 1 0 1)

𝐺|𝑋 =

(

1 0 1 0
1 0 0 0
0 0 1 0
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
0 0 1 1

|

|

1 1 0 0 1
0 1 0 0 0
1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
0 1 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 0 1 0 1)

By encoding the file in LT code method, the encoded packets are either

completely certain (only a ‘1’ in 𝐺) or uncertain (more than a ‘1’ in 𝐺). By using the

method called belief propagation(BP) which can be only used in LT code decoding,

16

Certain packet

the certain encoded packet will be used to eliminate all the uncertain packets back to

certain packets during the decoding.

2.1.1.2 Decoding

The fastest way to decode LT code packets is to use the propagation method stated

previously namely belief propagation (BP) (Chen, et al., 2013). As already mentioned,

the packets consist of certain and uncertain packets. With this condition, the BP

decoding will be demonstrated as shown:

1. Find any one row that contains certain packet. (only a ‘1’ in G)

𝐺|𝑋 =

(

1 0 1 0
1 0 0 0
0 0 1 0
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
0 0 1 1

|

|

1 1 0 0 1
0 1 0 0 0
1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
0 1 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 0 1 0 1)

2. Propagate one of the certain packets in step one to all the related uncertain

packets (uncertain packets that contain ‘1’ in the same column with the certain

packet), by adding them with the value of the “certain packet”.

𝐺|𝑋 =

(

0 0 1 0
1 0 0 0
0 0 1 0
0 1 0 1
0 1 0 0
0 1 1 0
⋮ ⋮ ⋮ ⋮
0 0 1 1

|

|

1 0 0 0 1
0 1 0 0 0
1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
0 0 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 0 1 0 1)

17

Decoded

message
Identity matrix

3. Iterate the first two step until all uncertain packets are eliminated (left side of

matrix becomes identity matrix), and the 𝑋 on the right will convert back into

𝑀.

𝐺|𝑋 =

(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
⋮ ⋮ ⋮ ⋮
0 0 0 0

|

|

0 1 0 0 0
1 0 0 1 1
1 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0)

According to LT code (Luby, 2002), the LT codes overheads is calculated based on the

soliton distribution; the overheads required in LT code will decrease as the 𝑘 increase.

2.1.2 Raptor Code

The Raptor code is an extension of LT code (Shokrollahi, 2006), whereby a

pre-coding stage (usually low-density-parity code (LDPC) code, a simple error

correcting code with parity check) is used to extend the message symbols.

2.1.2.1 Encoding

The encoding of Raptor code is as shown:

1. Encode the message symbols by using LDPC code to get the optimal numbers

of encoded symbols for degree distribution in the next step.

2. Then these pre-coded symbols will be encoded with LT encoding method in

the previous section.

18

2.1.2.2 Decoding

After that, the received raptor code’s packets will be decoded using BP which

applies the same method as that for the decoding of LT code.

In general, the pre-coding stage that extends the numbers of message symbols

are used to reach the optimal message number that is suitable for degree distribution

in LT code, because if the numbers of message symbols are fewer than a certain value,

it will not have an optimal degree distribution, and also have a higher chance to fail

during decoding (Li, et al., 2014).

2.1.3 Random Code

Random code is another variant of REC that has lower overheads, compared

to LT and Raptor codes that have optimally 𝜀 = 0.03𝑘 overheads only at large 𝑘 ,

Random code only needs 𝜀 = 10 overheads for 99.99% PCD. (Chong, et al., 2015),

(Chong, et al., 2016)

2.1.3.1 Encoding

Just like standard REC encoding, Random code follows the general encoding

where:

𝐺 ×𝑀 = 𝑋.

19

𝑙

𝑘

The encoding of Random code is demonstrated below:

1. Divide the message into equal length 𝑙 bits which results in 𝑘 numbers of

messages symbols as shown. One row in the matrix will represent one message

symbol.

𝑀 = 01000100111000100100 → (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

)

𝑘×𝑙

2. Randomly generate the 𝐺. Unlike LT code, the Random code can generate its

𝐺 without following the degree distribution. The 0 to 1 ratio in the whole

generated matrix should be 1:1.

𝐺 =

(

1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
1 0 1 1)

∞×𝑘

3. Matrix multiply 𝐺 and 𝑀 to form 𝑋 , and the corresponding 𝐺 will be

augmented with 𝑋 to form 𝐺|𝑋 packet for transmission.

(

1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
1 0 1 1)

× (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

) =

(

1 1 0 0 1
1 1 0 1 1
1 0 1 0 1
1 0 1 1 1
1 0 0 1 1
0 1 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 1 1 0 0)

20

𝐺|𝑋 =

(

1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
1 0 1 1

|

|

1 1 0 0 1
1 1 0 1 1
1 0 1 0 1
1 0 1 1 1
1 0 0 1 1
0 1 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 1 1 0 0)

By encoding the message using the random code way, every encoded packet is

uncertain, where all the encoded packets are made up of an average 𝑘/2 number of

messages symbols by probability.

2.1.3.2 Decoding

In this case, when GE is used for the decoding, the 𝑛 should be 𝑘 + 10 for 99.99%

PCD according to Kolchin’s theorem (Chong, et al., 2015), and the decoding process

is shown below:

1. When 𝑛 numbers of packets in the form of 𝐺|𝑋 are received, GE decoding

commence.

2. GE in general convert 𝐺|𝑋 → 𝐼|𝑀 during decoding. The detail process of GE

will be discussed in the next chapter.

Since the decoding algorithm for Random code is GE that has an entry complexity of

𝑂(𝑘3), the decoding process is generally slower than LT and Raptor Code that uses

fast decoding algorithm namely belief propagation (BP).

21

2.2 REC Applications

REC is a technique of applying linear algebra to all sorts of digital

communication; it includes the data transmission in a lossy environment such as deep

space communication (Ren, et al., 2014) and wireless communications (Kim & Lee,

2004) that we had mentioned earlier. Other than that, the REC often found in the real-

life applications are the wireless sensor network (Hagedorn, et al., 2008) and

distributed data storage (Anghel, et al., 2011).

2.2.1 REC in Wireless Sensor Network

Over the years, the application of REC in wireless sensor network (WSN) has

always been a popular topic (Hagedorn, et al., 2008), whether in reducing power

consumption where managing power consumption of thousand sensors can be very

tedious and impractical and also environment of sensor where transmission is

susceptible to interference. Numerical results from the paper (Jamshid, et al., 2011),

show that the implementation of Raptor coded in their WSN network model is more

energy efficient and robust than those normal un-coded WSN.

2.2.2 REC in Distributed Data Storage/ Cloud storage

Another interesting application of REC will be the distributed storage system

or cloud storage (Anghel, et al., 2011). Recently, the ever-increasing amount of data

generated from our daily internet usage are the main reason why servers (often simple

commodity devices/machines) suffers from frequent hardware failures (Kevin, 2015),

and the most typical method used to solve such issue is by replication, where a set of

data will be duplicated and stored into 3 distinct storage systems, even when one side

of data is corrupted or potentially gone missing, the same data from another storage is

able to cater the corrupted or missing part (Julia & Thinn, 2011).

22

However, due to the poor 33% inefficiency of such replication method,

researchers at Facebook, Microsoft, and Qualcomm etc. implemented the REC for the

use in their distributed storage systems (Kevin, 2015). Such approach potentially

reduces 60% of the storage space overhead, with the properties of REC that able to

recover to some extent data that was corrupted or missing.

2.3 Bottlenecks in Rateless Erasure Code

In general, the development of REC usually faces common issues such as:

• Overhead

• Performance Speed

And these issues are the reasons why REC consist of many others variations. e.g.,

Raptor code, Lt code, and Random code.

2.3.1 Overhead

The overhead of rateless erasure codes such as LT code and Raptor code is

only asymptotically optimal (Yeqing, et al., 2013), e.g., in real-time applications.

Where the input k is small, the overhead could become larger than 10%. On the other

hand, some rateless codes such as Random code can maintain its small overhead even

for small values of 𝑘, at the cost of increasing its computational decoding complexity.

Trade-off between overhead and complexity is the key point in the consideration of

design phase of a rateless erasure scheme (Li, et al., 2014).

As mentioned previously, when 𝑘 message symbols are encoded with REC, the

symbols will be granted the ability to be sent out in random order and also have certain

immunity towards packet loss. However, in order to successfully decode the received

23

REC packets, 𝑛 (slightly more than 𝑘) numbers of packets are required for a successful

complete decoding (a complete decoding indicates the matrices form of the packets

are able to reach full rank, else more overheads packets have to be received) which is

indicated by:

𝑛 = 𝑘 + 𝜀 (2.2)

where

𝑛 = number of received packets

𝑘 = amount of messages symbols

𝜀 = overheads

In general, 𝑛 is usually slightly larger than the 𝑘 value, and different REC will

have different 𝑛 for a high probability of complete decoding (PCD). Packets received

in matrix form will reach full rank at 99.99% when 𝑛 numbers of packets are received.

In the research on Random code’s PCD (Chong, et al., 2015), it is shown that:

Table 2.1: The PCD for Random code of 𝑘= 10.

𝑛 PCD 𝑛 PCD

𝑘 28.66% 𝑘 + 7 99.22%

𝑘 + 1 57.76% 𝑘 + 8 99.45%

𝑘 + 2 78.01% 𝑘 + 9 99.81%

𝑘 + 3 89.02% 𝑘 + 10 99.9996%

𝑘 + 4 93.88% 𝑘 + 11 99.99999%

24

𝑘 + 5 96.91% 𝑘 + 12 99.999999%

𝑘 + 6 98.45% 𝑘 + 13 99.99999999%

Results in Table 2.1 show the PCD of a variant of REC namely Random code,

where such code has the capability to reach a 99.99% PCD whenever 𝑛 = 𝑘 + 10

number of packets are received.

Over the years several methods were proposed to reduce the overhead in REC,

whereby sender can optimally adjust its Galois field (Hu, et al., 2012), e.g.,

GF(2) Raptor code might consist of 𝜀 = 0.03𝑘 at 𝑘 > 2000 for 99.99% PCD, but

implementation of GF(256) Raptor code (RaptorQ) will only require 𝜀 = 1 for 99.99%

PCD. However, increasing the Galois field “degree” also signified the increases in

decoding complexity because, from the perspectives of computer architecture (Lidl &

Niederreiter, 1997), Galois field indicates a new set of self-defined operations, For

example,

Table 2.2: 𝐆𝐅(𝟐) addition table

+ 0 1

0 0 1

1 1 0

𝐺𝐹2 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝑡𝑎𝑏𝑙𝑒

25

in GF(2), we are able to utilise computation of XOR operation to replace the GF(2)

addition because they are the same. e.g. 1 + 1 in GF(2) is 0 while 1 XOR with 1 also

zero.

Table 2.3: 𝐆𝐅(𝟐𝟓𝟔) addition table

But for GF(256), there are no computation operation to replace GF(256) addition

addition as shown in Table 2.3. In this case a self-defined library would be needed. In

another word, the time used in reading the value from the self-defined library in this

GF(256) addition will be far slower than GF(2) addition that can be replaced by XOR

operation, (Mladenov, et al., 2012). Hence in this thesis, the REC will be constructed

under GF(2) for optimized performance purpose.

Table 2.3: 𝐆𝐅(𝟐𝟓𝟔) addition table

26

2.3.2 Performance Speed

Apart from overheads, the performance speed is also one of the issues arising

from the implementation of REC (Bioglio, et al., 2009). Note that the performing speed

here is not referring to the throughput performance but the speed of encoding and

decoding, specifically the delay of the transmission due to the decoding of the packets.

It is a common issue for implementation of rateless erasure code. While this is

compared with the classical communication network systems, a packet is usually

directly “decodable”, which means that packets sent will not require any further work

or require the least effort to be read or decoded. The packet only need to be received

in correct order and not lost for reliability, e.g. the TCP/IP mechanism that prioritize

acknowledgement for all lost and received packets. (Salyers, et al., 2008)

 Conversely, when a message is implemented with REC, the need of such

acknowledgment for all lost and received packets is minimized, which means that

more bandwidth can be utilized for transmission instead of being wasted on

acknowledging the lost and received packets (Chong, et al., 2016). In exchange, extra

work has to be done on the encoding and decoding phase. Especially at the decoding

phase, to decode and reconstruct the REC’s received packets back into original

message, it requires a high complexity decoding algorithm namely Gaussian

elimination (GE) (Chong, et al., 2016).

For being the most popular variants of REC, LT code (Luby, 2002) and Raptor

code (Shokrollahi, 2006) advocate the idea of linear decoding speed; Instead of

decoding using GE, LT and Raptor code can decode with their own decoding algorithm

27

namely Belief Propagation (BP) with a low entry complexity of near 𝑂(𝑘) while the

complexity will rise to 𝑂(𝑘3) if they are decoded by using GE (Chen, et al., 2013).

However, BP had a relatively lower PCD compared to GE which will be explained in

the later section.

2.4 Gaussian Elimination

Gaussian elimination (GE) is a method widely used in many applications, it is

implemented in application such as the wireless sensor network (Rossi, et al., 2010),

linear coding (Li, et al., 2014), network coding (Hagedorn, et al., 2008) , and even

encryption as well as scheduling algorithm.

In this research, where GE is used for the decoding algorithm for REC, study

has shown that the complexity of GE is 𝑂(𝑘3) (Bioglio, et al., 2009), which means

that the time to decode a 𝑘 size matrix would have increased exponentially as 𝑘

increases as shown in the graph.

28

Figure 2.1: Gaussian elimination decoding time, 𝑠 vs. message size, 𝑘

2.5 Belief Propagation

Belief Propagation (BP) is proposed while the decoding of REC is slow due to

GE, researchers had come out with other variation of REC such as the LT code and

Raptor code that allows for faster-decoding speed. This two codes have their own

unique decoding method namely BP that has a decoding complexity of 𝑂(𝑘 ln 𝑘) and

approximately 𝑂(𝑘) respectively, this also indicates that they can perform faster than

GE in term of lesser complexity. (Shokrollahi & Luby, 2011) The steps of BP are

explained in details in section 2.1.1.2 and 2.1.2.2.

Although decoding using BP is fast, it is found that decoding using GE has an

advantage in terms of successful decoding rate. When the received packets are

decodable using GE, it is not necessarily decodable using the BP (Hu, et al., 2012),

(Bioglio, et al., 2009).

0

0.5

1

1.5

2

2.5

0 256 512 768 1024

T
im

e,
 s

message size, k

Time to decode REC of different message size
using GE

29

2.6 Inactivation decoding Gaussian Elimination

Inactive decoding Gaussian elimination (IDGE) also known as the Belief

propagation Gaussian elimination (BPGE), is one of the improvised decoding methods

used particularly for the Raptor and LT code (Hu, et al., 2012) & (Mladenov, et al.,

2012), this method imposes a higher decoding complexity compared to BP algorithm

while less complex than Gaussian elimination. At the same time, IDGE is capable of

having a high PCD like Gaussian elimination when it is compared to BP decoding.

This method combines the decoding method of belief propagation (BP) in LT

code and the decoding with Gaussian elimination and is denoted by BP-GE or IDGE

(M & S, 2006). In this case, several steps are needed to be performed when the packets

are received.

 First, all the received packets will be processed with Belief propagation that

converts most of the uncertain packets by using the certain packet. In this case, there

will be chances that some uncertain packets are leftover, this forms a new entry of

packets that are not decodable using BP since all the certain packets are used. Then

these remaining new entries of uncertain packet will be processed by Gaussian

elimination for a complete decoding.

 The advantage of this method will be, since most of the packets are already

decoded by BP, the leftover packets that are not decodable using BP even if it is linearly

independent will be relatively smaller in 𝑘 size when it is processed by Gaussian

elimination, which will dynamically reduce the decoding time as GE is sensitive to the

30

𝑘 size with the entry complexity of 𝑂(𝑘3) . However, such a method is uniquely

applicable only for Raptor and LT code, and there is no other REC variant can use this

method. Other than that, by profiling IDGE, it is seen that more than 90% of the

decoding time is still consumed at the GE part (Yeqing, et al., 2013), hence enhancing

the performance of GE is an essential thing to do to improve the decoding speed of

REC.

2.7 Parallel Processing for Rateless Erasure Code

Due to the fact that GE is the optimal solution for linear independent matrices

compare to other solvers (Bioglio, et al., 2009), (Hu, et al., 2012), many researchers

have come out with several ways to speed up GE, and the most promising one appears

to be the parallel processing of GE, (Hu, et al., 2013), (Chong, et al., 2016)

On the other hand, GPU is by far the most popular device for parallel

processing. In the study of Raptor GF(2) (Hu, et al., 2012), it is shown that the

implementation of GE into GPU outperforms the other decoding method (BP and

IDGE) in terms of parallelization, which concludes that GE is by far the most suitable

decoding method for parallelization (Hu, et al., 2013). Most importantly, the

workspace of GPU is independent of CPU in executing a task, this means that when

GPU is performing a task, CPU is able to handle another task at the same time.

Recently, more and more applications traditionally run on the CPU are being

re-implemented to run on the GPU. A decade ago, when Nvidia offered programming

interfaces such as CUDA (CUDA, 2017) for making parallel processing accessible

31

to all programmers, it has removed the limitation of GPU that was initially designed

for computer graphics. In this thesis, CUDA will be the main platform for the

parallelisation process.

Figure 2.2: CPU vs. GPU architecture comparison

GPUs are a multithreaded stream processor that usually contain thousands of

cores more than a CPU. In general, the parallelisation in CUDA is composed of two

parts:

• Host (CPU) code that makes kernel calls,

• Device (GPU) code that actually implements the kernel.

The host is generally made up of serial C++ program, and device is where we

perform parallel processing to harness the resources of the GPU. The fundamental of

GPU is the streaming multiprocessors (SMs); Each SM will consist of a few blocks to

hundreds of blocks depending on the architectures of the GPU and each block will

contain 32 threads that can simultaneously execute the same instruction. The kernel

that mentioned previously is executed by these threads on the GPU.

32

𝑙 = 5

𝑘=4

20𝐛𝐢𝐭𝐬

On the other hand, GPU still need to undergo a scheduling process before

parallel processing, and the main scheduling unit in CUDA is a warp, which is made

up of a group of 32 threads from the same block, and execution of an arithmetic

instruction for the whole warp takes 4 clock cycles. The number of these warps is

important in tolerating global memory access latency that will discuss later.

2.8 Relationship of 𝒌 and 𝒍

In the research of REC, 𝑘 that genuinely indicates the number of message

symbols and 𝑙 that indicates the length of the message symbols, are the key elements

to develop a REC.

The 𝑘 is generally calculated by dividing the stream of binary message with a

self-defined 𝑙.

𝑀 = 01000100111000100100 → (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

)

𝑘×𝑙

In our case of study, maximum transmission unit (MTU) will be the standard

that used to determine the 𝑙. Since REC are implemented to utilize the bandwidth of

data transmission, throughput degradation will happen when a non-efficient 𝑙 is used.

In the paper of MTU (Molnar, et al., 2014) & (Guo, et al., 2016), it is stated

that the most efficient 𝑙 for our current transmission will range from 400-500 bytes,

33

and also 1000-1500 bytes maximum. Furthermore, based on future MTU (Shaneel &

Paula-Rayond, 2013), when the up/downlink of transmission that reaches the speed

of >1Gbps are generalised, the new MTU will increases to 𝑙 = 9kb instead. This

means that, during the transmission, more information can be transmitted efficiently

using this length of 𝑙. Hence in our study will be using1𝑘𝑏 ≤ 𝑙 ≤ 9𝑘𝑏.

The parameter value of 𝑘 should be 𝑘 ≤ 512, due to the fact that, according to

the study of networking traffic (Brownlee & Claffy, 2002), the transmissions that are

lesser than few hundred kilobytes appear to be the main contributor to 80% of

networking traffics. Furthermore, in Chapter 3.3, an idea of decoding REC’s large file

(𝑘 > 512) will be showed in a nearly linear speed by mathematics and experimental

evidence.

34

3 GAUSSIAN ELIMINATION IN RATELESS ERASURE CODE

In this section, details of GE will be illustrated, followed by a few new

proposals to improve the performance of REC. Note that all the mathematical

operation in this thesis will be in GF(2). e.g. 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0.

3.1 Encoding

The general encoding method of most of the REC is built on top of the linear

algebra system in the form of eq. 2.1 where:

𝐺∞×𝑘 ×𝑀𝑘×𝑙 = 𝑋∞×𝑘

As for random code, the message will generally divide equally into 𝑘 amounts

of symbols that contain 𝑙 bits each. In this case, the value of 𝑙 and 𝑘 are essential for

the development of better performance REC. In the encoding process, 𝑘 number of

equally divided message symbols 𝑀 will be encoded by matrix multiplying 𝑀 with the

randomly generated 𝐺.

3.2 Decoding

In Chapter 1.1, we have mentioned that encoded symbols will be generated and

sent in the form of packets of 𝐺|𝑋, but for the decoding part, not all symbols are needed

35

before the REC can be decoded. In fact, only 𝑛 (slightly more than 𝑘) numbers of

packets are required for a 99.99% of PCD.

3.2.1 Probability of Complete Decoding (PCD)

The overhead in the random code, 𝜀, is equal to 10 and the total received

packets, 𝑛, is denoted by eq. 2.2 where:

𝑛 = 𝑘 + 𝜀

𝑛 = 𝑘 + 10 (𝑓𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑑𝑒)

Every time when 𝑛 number of packets are received, the PCD of random code

decoding is guaranteed to be 99.99% according to Kolchin’s theorem (Chong, et al.,

2015), which means that matrices formed from the 𝑛 numbers of received packets will

be a linearly independent with probability of 99.99%.

Example 3.2.1.a:

At 𝑛 = 𝑘 + 10, 𝑘 = 3, 𝑙 = 1

let 𝑀3×1 = (

𝑀1,1
𝑀2,1
𝑀3,1

) = (
1
1
1
) , 𝐺13×3 =

(

𝐺1,1 𝐺1,2 𝐺1,3
𝐺2,1 𝐺2,2 𝐺2,3
𝐺3,1 𝐺3,3 𝐺3,4
𝐺4,1 𝐺4,2 𝐺4,3
𝐺5,1 𝐺5,2 𝐺5,3
𝐺6,1 𝐺6,2 𝐺6,3
𝐺7,1 𝐺7,2 𝐺7,3
𝐺8,1 𝐺8,2 𝐺8,3
𝐺9,1 𝐺9,2 𝐺9,3
𝐺10,1 𝐺10,2 𝐺10,3
𝐺11,1 𝐺11,2 𝐺11,3
𝐺12,1 𝐺12,2 𝐺12,3
𝐺13,1 𝐺13,2 𝐺13,3)

=

(

1 0 0
1 0 1
0 0 1
1 0 1
0 1 1
1 1 1
1 0 0
1 0 0
0 1 0
0 1 1
1 0 0
1 0 1
0 0 1)

36

Encoding:

𝐺 ×𝑀 =

(

𝑋1,1
𝑋2,1
𝑋3,1
𝑋4,1
𝑋5,1
𝑋6,1
𝑋7,1
𝑋8,1
𝑋9,1
𝑋10,1
𝑋11,1
𝑋12,1
𝑋13,1)

=

(

1
0
1
0
0
1
1
1
1
0
1
0
1)

When it is send as a packet it will forms a matrix of:

𝐺|𝑋 =

(

𝐺1,1 𝐺1,2 𝐺1,3
𝐺2,1 𝐺2,2 𝐺2,3
𝐺3,1 𝐺3,3 𝐺3,4
𝐺4,1 𝐺4,2 𝐺4,3
𝐺5,1 𝐺5,2 𝐺5,3
𝐺6,1 𝐺6,2 𝐺6,3
𝐺7,1 𝐺7,2 𝐺7,3
𝐺8,1 𝐺8,2 𝐺8,3
𝐺9,1 𝐺9,2 𝐺9,3
𝐺10,1 𝐺10,2 𝐺10,3
𝐺11,1 𝐺11,2 𝐺11,3
𝐺12,1 𝐺12,2 𝐺12,3
𝐺13,1 𝐺13,2 𝐺13,3

|

|

|

|

𝑋1,1
𝑋2,1
𝑋3,1
𝑋4,1
𝑋5,1
𝑋6,1
𝑋7,1
𝑋8,1
𝑋9,1
𝑋10,1
𝑋11,1
𝑋12,1
𝑋13,1)

=

(

1 0 0
1 0 1
0 0 1
1 0 1
0 1 1
1 1 1
1 0 0
1 0 0
0 1 0
0 1 1
1 0 0
1 0 1
0 0 1

|

|

|

|

𝟏
𝟎
𝟏
𝟎
𝟎
𝟏
𝟏
𝟏
𝟏
𝟎
𝟏
𝟎
𝟏)

37

Or in linear algebra equivalent, one packet is equivalent to one equation as shown:

1𝑀1,1 + 0𝑀2,1 + 0𝑀3,1 = 𝑋1 = 1

1𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋2 = 0

0𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋3 = 1

1𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋4 = 0

0𝑀1,1 + 1𝑀2,1 + 1𝑀3,1 = 𝑋5 = 0

1𝑀1,1 + 1𝑀2,1 + 1𝑀3,1 = 𝑋6 = 1

1𝑀1,1 + 0𝑀2,1 + 0𝑀3,1 = 𝑋7 = 1

1𝑀1,1 + 0𝑀2,1 + 0𝑀3,1 = 𝑋8 = 1

0𝑀1,1 + 1𝑀2,1 + 0𝑀3,1 = 𝑋9 = 1

0𝑀1,1 + 1𝑀2,1 + 1𝑀3,1 = 𝑋10 = 0

1𝑀1,1 + 0𝑀2,1 + 0𝑀3,1 = 𝑋11 = 1

1𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋12 = 0

0𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋13 = 1

In example 3.2.1.a, by solving all these packets using the simple substitution

method, 𝑀1,1 = 1,𝑀2,1 = 1, 𝑀3,1 = 1 and the original message is retrieved.

In the next example, we will prove the importance of overheads, for instance,

we will eliminate all the overheads in example 3.2.1.a to conduct the next example.

38

Example 3.2.1.b:

 At 𝑛 = 𝑘, 𝑘 = 3, 𝑙 = 1

Let 𝑀3×1 = (

𝑀1,1
𝑀2,1
𝑀3,1

) = (
1
1
1
) , 𝐺3×3 = (

𝐺1,1 𝐺1,2 𝐺1,3
𝐺2,1 𝐺2,2 𝐺2,3
𝐺3,1 𝐺3,1 𝐺3,1

) = (
1 0 0
1 0 1
0 0 1

)

Encoding:

𝐺 ×𝑀 = 𝑋 = (

𝑋1,1
𝑋2,1
𝑋3,1

) = (
1
0
1
)

After receiving G and X from the sender the receiver can form G|X as following:

𝐺|𝑋 = (

𝐺1,1 𝐺1,2 𝐺1,3
𝐺2,1 𝐺2,2 𝐺2,3
𝐺3,1 𝐺3,1 𝐺3,1

|

𝑋1,1
𝑋2,1
𝑋3,1

) = (
1 0 0
1 0 1
0 0 1

|
1
0
1
)

Or in linear algebra equivalent:

1𝑀1,1 + 0𝑀2,1 + 0𝑀3,1 = 𝑋1 = 1

1𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋2 = 0

0𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋3 = 1

By performing typical substitution method assuming all these packets are

received, such equation cannot be solved completely because the 3 equation in the

example are not linearly independent (𝐺1,2𝑀2,1 = 0, 𝐺2,2𝑀2,1 = 0, 𝐺3,2𝑀2,1 = 0, and

is a sign that the equation carries no information on 𝑀2,1), hence more information

(packets) have to be received in order to complete the linear solving process.

39

For the PCD in this 𝑛 = 𝑘 case, the PCD will be at 26.66% according to studies

in Kolchin’s theorem shown in Chapter 2.3. e.g. if there are 𝑛 = 𝑘 amount of received

packet, the matrix that forms from the received packets will have a chance of 26.66%

to be linearly independent (solvable). When more packets 𝑛 are received, PCD

increases where the matrix that forms from the 𝑛 received packets will have a higher

chance being linearly independent. In accomplice with Random code and Kolchin’s

theorem, the overall parameters set in this thesis will be:

𝑛 = 𝑘 + 10

𝑘 < 512

1kb < l < 9kb

3.2.2 Decoding Using Gaussian Elimination

With all the essential parameters such as 𝑛 = 𝑘 + 10, 𝑘 < 512, and 1kb < l <

9kb, the decoding method using Gaussian elimination can be proceeded further. In

Example 2, the method of substitution can be used to solve 𝑘 = 3 linear equations,

but when it comes to 𝑘 > 4, a systematic method such as Gaussian elimination is

needed to solve the issue. The Gaussian elimination consist of 3 major steps:

1. Searching for pivot;

2. Swap row;

3. XOR row operations

These 3 steps need to iterate 𝑘 amount of time until all the packets are completely

decoded, and first step have to be done before second step can start; while third step

can only start after second step ends its operation.

40

𝑘 𝑙

𝑛

Example 3.2.2.a:

The packets that consist of information in the form of 𝐺|𝑋, will be combined

whereby the first row of the matrix is formed by the first received packets and goes on

until the nth packet is received and form the last line of the 𝑛 × 𝑘 matrix as shown:

𝑘 = 4, 𝑙 = 8192, 𝑛 = 𝑘 + 10

 0 0 0 1 0 0 … 1

 0 1 0 0 0 1 … 0

 0 0 1 0 0 0 … 0

 0 0 0 1 0 0 … 1

 1 1 0 1 1 1 … 1

 0 0 0 0 0 0 … 0

 1 0 1 1 1 0 … 1

𝐺|𝑋 = 0 1 1 0 0 1 … 0

 0 0 1 0 0 0 … 0

 1 0 0 1 1 0 … 1

 0 1 0 1 0 1 … 1

 0 1 0 0 0 1 … 0

 1 0 1 1 1 0 … 1

 1 1 0 0 1 1 … 0

 Generated Matrix, 𝐺

 Encoded Matrix, 𝐸

 Pivot Point

 Pivot Row

 Pivot Column

← Pivot Column contains “1”

41

Step 1: Pivot Step 2: Swap Row Step 3: XOR

First iteration:

0 0 0 1 0 0 … 1 1 1 0 1 1 1 … 1 1 1 0 1 1 1 … 1

0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

1 1 0 1 1 1 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0

1 0 1 1 1 0 … 1 1 0 1 1 1 0 … 1 0 1 1 0 0 1 … 0 ←

0 1 1 0 0 1 … 0 → 0 1 1 0 0 1 … 0 → 0 1 1 0 0 1 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

1 0 0 1 1 0 … 1 1 0 0 1 1 0 … 1 0 1 0 0 0 1 … 0 ←

0 1 0 1 0 1 … 1 0 1 0 1 0 1 … 1 0 1 0 1 0 1 … 1

0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0

1 0 1 1 1 0 … 1 1 0 1 1 1 0 … 1 0 1 1 0 0 1 … 0 ←

1 1 0 0 1 1 … 0 1 1 0 0 1 1 … 0 0 0 0 1 0 0 … 1 ←

Second iteration:

Step 1: Pivot Step 2: Swap Row Step 3: XOR

1 1 0 1 1 1 … 1 1 1 0 1 1 1 … 1 1 0 0 1 1 0 … 1 ←

0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0

0 1 1 0 0 1 … 0 0 1 1 0 0 1 … 0 0 0 1 0 0 0 … 0 ←

0 1 1 0 0 1 … 0 → 0 1 1 0 0 1 … 0 → 0 0 1 0 0 0 … 0 ←

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0 0 0 0 0 0 0 … 0 ←

0 1 0 1 0 1 … 1 0 1 0 1 0 1 … 1 0 0 0 1 0 0 … 1 ←

0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0 0 0 0 0 0 0 … 0 ←

0 1 1 0 0 1 … 0 0 1 1 0 0 1 … 0 0 0 1 0 0 0 … 0 ←

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

42

Third iteration:

1 0 0 1 1 0 … 1 1 0 0 1 1 0 … 1 1 0 0 1 1 0 … 1

0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 ←

0 0 1 0 0 0 … 0 → 0 0 1 0 0 0 … 0 → 0 0 1 0 0 0 … 0 ←

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 ←

0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 ←

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

Fourth (last) iteration:

1 0 0 1 1 0 … 1 1 0 0 1 1 0 … 1 1 0 0 1 1 0 … 0 ←

0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 0 ←

0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

0 0 1 0 0 0 … 0 → 0 0 1 0 0 0 … 0 → 0 0 1 0 0 0 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 0 ←

0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 0 ←

During the first iteration, pivoting point will be allocated at first row first

column, then the first packet that contain “1” in the pivoting column will be searched

and swap to the pivoting row, and then the other packets that contain “1” in the pivoting

column will be eliminated by XOR operating them with the bitwise value (𝐺|𝑋) of the

43

pivoting row (highlighted in grey). In all the 𝑘 iterations, different pivoting point

(𝑝𝑖𝑣𝑜𝑡 = 1,2,3…𝑘) will be used in ascending order systematically to repeat the 3

steps for the completion of the GE process.

In the old days, even if GE is systematic, it imposed an entry time complexity

of 𝑂(𝑘3), Without a computer, it will take more than 10 pages of A4 papers that are

full of equations to solve a 𝑘 = 100 linear systems; for REC case, although GE is able

to be used for decoding in most of the known REC, the decoding time complexity of

REC is still 𝑂(𝑘3). For instance, the operation count for GE will be demonstrated next

to determine the time complexity.

3.2.3 Operational count for Gaussian Elimination

For a set of 𝑛 packets matrix in Random code, the total operational count of

pivoting search is:

Total pivot search in GE = ∑ τpivot

k

pivot=1

The process of pivoting search is just as simple as iterate through the main

diagonal of the 𝐺 in the received packets (𝐺|𝑋).

Total row swap in GE = ∑ ∑ τswap

k+l

swap=1

k

pivot=1

After the pivoting is searched, it will be swapped to the pivoting row. This

process will basically consist 𝑘 + 𝑙 swapping operations in each pivot iteration.

Total XOR operation in GE = ∑ ∑ ∑ τXOR

k+l

XOR=1

n−1

total row=1

k

pivot=1

44

Then the XOR operation will be performed on all the 𝑛 rows that have a ‘1’ in

the pivoting column except the pivoting row. This required 𝑛 − 1 operation counts that

consist of 𝑘 + 𝑙 XOR operations each because each packet will require 𝑘 + 𝑙 XOR

operations.

Total operation count in GE

= ∑ τpivot

k

pivot=1

+ ∑ ∑ τswap

k+l

swap=1

k

pivot=1

+ ∑ ∑ ∑ τXOR

k+l

XOR=1

n−1

total row=1

k

pivot=1

= ∑ (τpivot + ∑ τswap

k+l

swap=1

+ ∑ ∑ τXOR

k+l

XOR=1

n−1

total row=1

)

k

pivot=1

= 𝑘 (τpivot + (𝑘 + 𝑙)(τswap) + (𝑛 − 1)(𝑘 + 𝑙)(τXOR))

≈ 𝑘(𝑛)(𝑘 + 𝑙)τXOR (3.1)

Hence for the whole Gaussian elimination operational count, it can be seen that

the XOR operations parts are actually the dominating part, where the profiling in GE

shows that 99% of the operation is performed in the XOR operations, while the other

1% is from the swap and pivot search, hence the swap and pivot operation is generally

negligible.

The table and graph below show the effects of the entries message size 𝑘

imposed by GE. The GE is constructed based on the typical REC decoder shown in

45

the study of RaptorQ (Hu, et al., 2012), and further modifications with our best effort

from several papers that emphasize on GE optimisation are done in this research.

At 4GHz workstation XEON E3 computer configuration:

Figure 3.1: Effects of message size k towards the decoding speed.

In Figure 3.1, it can be seen that even at a 4GHz workstation XEON E3

computer, the time consumed in decoding (Gaussian Elimination) the larger 𝑘

messages increase exponentially.

3.3 Redimensioning

When we study into the decoding complexity of GE, which is 𝑂(𝑘3) (Bioglio,

et al., 2009), the large data size could yield a very large complexity. The decoding

time of a very large file can be made unreasonable long. Even with the aids of GPU

0

0.5

1

1.5

2

2.5

0 256 512 768 1024

T
im

e,
 s

message size, k

Time to decode REC of different message size
using GE

46

𝑙

𝑘

𝑀

𝑘
𝛾
×𝑙

1

𝑀

𝑘

𝛾
×𝑙

2

2 × 5

2 × 5

parallel processing, the decoding time will still increase exponentially as the file

size gets bigger due to the hardware limitation.

By addressing such issue, we propose a technique called redimensioning which

is applicable to almost all the REC; it is a process of partitioning one big file into 𝛾

numbers of fixed-size subsets and decode each subset in a less complex manner. In

this case, the speed of GE decoding process can be enhanced significantly.

3.3.1 Encoding of Redimensioning

The basic procedure for redimensioning starts with:

1.) Before the encoding, the stream of a message will be first divided into 𝛾

numbers of equal size subsets.

Example 3.3.1a:

𝑘 = 4, 𝑙 = 5, 𝛾 = 2

𝑀 = 01000100111000100100 → (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

)

𝑘×𝑙

If 𝛾 = 2, message, 𝑀 will be partition into 2 equal size subsets (𝑀1 & 𝑀2) with

the dimension of
𝑘

𝛾
× 𝑙 as shown:

𝑘 = 4, 𝑙 = 5, 𝛾 = 2

= (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

)

47

2.) The 𝛾 subsets of the 𝑀 will be encoded separately with random generated 𝐺 to

form respective encoded symbols.

𝑮𝟏, 𝑮𝟐. . 𝑮𝛾 𝒊𝒔 𝒕𝒉𝒆 𝒔𝒖𝒃𝒔𝒆𝒕 𝒐𝒇 𝑮 𝒂𝒇𝒕𝒆𝒓 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏

𝑴𝟏, 𝑴𝟐. .𝑴𝛾 𝒊𝒔 𝒕𝒉𝒆 𝒔𝒖𝒃𝒔𝒆𝒕 𝒐𝒇 𝑴 𝒂𝒇𝒕𝒆𝒓 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏

𝑿𝟏, 𝑿𝟐. . 𝑿𝛾 𝒊𝒔 𝒕𝒉𝒆 𝒔𝒖𝒃𝒔𝒆𝒕 𝒐𝒇 𝑿 𝒂𝒇𝒕𝒆𝒓 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏

Example 3.3.1b:

𝑮
 𝒏×

𝑘
𝛾

𝟏 ×𝑴𝑘
𝛾
×𝑙

𝟏 = 𝑿𝒏×𝑙
1

𝑮
 𝒏×

𝑘
𝛾

𝟐 ×𝑴𝑘
𝛾
×𝑙

𝟐 = 𝑿𝒏×𝑙
2

In packet form (𝑮|𝑿):

(𝑮
𝒏×
𝑘
𝛾

𝟏 |𝑿𝒏×𝑙
𝟏) 𝒂𝒏𝒅 (𝑮

𝒏×
𝑘
𝛾

𝟐 |𝑿𝒏×𝑙
𝟐)

3.3.2 Decoding of Redimensioning

After receiving sufficient packets to decode all 𝛾 redimensioned packets

(𝐺1|𝑋1, 𝐺2|𝑋2…𝐺𝛾|𝑋𝛾) back into original messages (𝑀1, 𝑀2…𝑀𝛾), new message

will have a new size 𝑘′ which is equivalent to
𝑘

𝛾
 , and also new 𝑛′ for each

redimensioned matrix that requires 𝑘′ + ɛ for a 99.99% PCD, the total overhead for

redimensioned matrix will become:

48

𝑀1 → 𝑛′ = 𝑘′ + ɛ

𝑀2 → 𝑛′ = 𝑘′ + ɛ

⋮

𝑀𝛾 → 𝑛′ = 𝑘′ + ɛ

Example 3.3.2a:

𝑘′ =
𝑘

𝛾
, 𝑛′ = 𝑘′ + 10,

Received packets:

(𝑮𝒏′×𝒌′
𝟏 |𝑿𝒏′×𝑙

𝟏) 𝒂𝒏𝒅 (𝑮𝒏′×𝑘′
𝟐 |𝑿𝒏′×𝑙

𝟐)

(𝑮𝒏′×𝒌′
𝟏 |𝑿𝒏′×𝑙

𝟏)
𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 𝒆𝒍𝒊𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏
→ (

𝑰𝒌′×𝒌′
𝒁𝟏𝟎×𝒌′

|
𝑴𝒌′×𝑙
𝟏

𝒁𝟏𝟎×𝒍
)

(𝑮𝒏′×𝒌′
𝟐 |𝑿𝒏′×𝑙

𝟐)
𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 𝒆𝒍𝒊𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏
→ (

𝑰𝒌′×𝒌′
𝒁𝟏𝟎×𝒌′

|
𝑴𝒌′×𝑙
𝟐

𝒁𝟏𝟎×𝒍
)

𝑴𝒌′×𝒍
𝟏

𝑴𝒌′×𝒍
𝟐 → 𝑴𝒌×𝒍

𝐼 = identity matrix

𝑍 = zero matrix

As calculated earlier in section 3.2, the operational count of decoding using GE without

redimension is:

49

GE operational count = 𝑘(𝑛)(𝑘 + 𝑙)τXOR

For the operational count of GE after redimension:

M1 GE operational count = 𝑘′(𝑛′)(𝑘′ + 𝑙)τXOR

M2 GE operational count = 𝑘′(𝑛′)(𝑘′ + 𝑙)τXOR

⋮

Mγ GE operational count = 𝑘′(𝑛′)(𝑘′ + 𝑙)τXOR

Total redimension operation count = 𝑀1 +𝑀2 +⋯𝑀𝛾

= 𝛾(𝑘′(𝑛′)(𝑘′ + 𝑙)τXOR) (3.2)

To compare the speed up of redimensioning towards the normal GE decoding:

Speedupredimension =
GE

Redimension GE
=

𝑘(𝑛)(𝑘 + 𝑙)τXOR
𝛾(𝑘′(𝑛′)(𝑘′ + 𝑙)τXOR)

Since 𝑙 ≫ 𝑘 and 𝑙 ≫ 𝑘′:

𝑘 + 𝑙 ≈ 𝑙, 𝑘′ + 𝑙 ≈ 𝑙

𝑛

𝑛′
=
𝑘 + 10

𝑘
𝛾 + 10

≈
𝑘

𝑘
𝛾

≈ 𝛾

Speedupredimension =
𝑘𝛾(𝑙)τXOR

𝛾
𝑘

𝛾
(𝑙)τXOR

≈ 𝛾 (3.3)

50

From eq. 3.3, it can be seen that the redimension technique can speed up the

decoding process by a factor of 𝛾, and it is proven experimentally by using CPU in

the table below.

Table 3.1: Time for GE with Redimension decoding of Random Code in

different 𝒌 at 𝒍 = 𝟖𝟏𝟗𝟐 𝒃𝒊𝒕𝒔, and 𝜸 = 𝟐

𝑘 Time to decode

REC using G𝐸

Time to decode REC using G𝐸

with redimensioning, 𝛾 = 2

Speedup

GE

GE redimensioned

32 0.004992 0.003828 1.3040

64 0.013208 0.009801 1.347

128 0.039508 0.0264 1.4965

256 0.126859 0.08012 1.5833

512 0.526941 0.2731 1.9295

1024 2.056845 1.0610 1.9386

.

From Table 3.1, at 𝑘 = 32 and 𝛾 = 2 , the speedup is different from the eq 3.3

Where it is supposed to reach a speedup of 2. This is because based on the assumption

that made in the formation of eq.3.3, the 𝑘 is large. Where 10 becomes negligible when

𝑘 is large, at small 𝑘 the 10 had a certain weightage that contributes to a slower

decoding time, and it is proven when 𝑘 ≥ 512, the speed up converges back to 𝛾.

With this technique, the large file (𝑘 > 512) with high time complexity is no

longer a large issue for decoding, and the only things to focus is to enhance the

performance for decoding a smaller file of size 𝑘 ≤ 512.

51

3.4 First Degree Parallel Processing

As mentioned, GE would impose an entry time complexity of 𝑂(𝑘3) during

the REC decoding; this means that the process of GE computation will eventually go

slower as the 𝑘 (message size) increases. Although the improvements over CPU

implementations have previously been achieved for GE in terms of raw speed (using

faster computer) and the redimensioning technique (mathematical technique), however

the utilization of the underlying available computational resources was still low, for

instance parallel processing that can be done in almost all modern computers that

contain the GPU.

 In this section, the propose method to solve the complexity issue by using the

state of art of GPU will be discussed.

3.4.1 Implementation of GPU Unit for Gaussian Elimination

Gaussian elimination (GE) decoding algorithms have triple nested loops

computationally which led to an entry complexity of 𝑂(𝑘3). Such complexity has led

researchers to approach them in a parallel processing manner.

3.4.1.1 Parallelising Code in CUDA

CUDA is a parallelisation platform developed by NVIDIA. It is designed in

such a way that applications of parallel programming can be executed on both CPU

and GPU. For parallelisation, the CPU which is the host, will initialize the data to be

transferred and executed in the GPU device and the GPU will allocate the pre-defined

threads in the <<<blocks, threads>>> bracket to invoke the GPU kernel.

52

After GPU completes its calculation in parallel by using the allocated threads,

the program in device is now considered completed, and the output data will be copied

back to the host before the device can release the storage space in GPU and get ready

for the next task. The process is shown in the following example:

Example 3.4.1.1.a:

1. //CPU CODE
2. main(){ //Host function
3. int x[i]; //Declare Variable
4. for (int i=0;i<3;i++){ //3 for Loops {0,1,2}
5. x[i]=i+i;
6. }
7.
8. for (int i=0;i<3;i++){ //print the output
9. cout<<x[i]<<endl; //end line after printing

 one value
10. }
11. }

Output:

0

2

4

From the CPU code as shown in example 3.4.1.1.a, the additional operation

(line 5) in the algorithm is independent of each other, even though the loops of these

addition operations are not arranged in sequence, the output will be the same, and this

is how parallel processing come into play, because rather than computing these

additions sequentially, multiple of them can be concurrently executed and still yield

the same outputs.

53

Parallelised addition operation in GPU:

1. //GPU CODE
2. __global__ CallGPUkernel(int *x){ //GPU kernel
3. i=threadid.x; //identify what
 thread to use
4. If(i<3){
5. x[i]=i+i; //simple addition
6. }
7. }
8.
9. main(){ //Host function

10. int x[i]; //Declare Host variable
11. int*dev_x; //Declare Device variable
12.
13. cudaMemcpy(dev_x,x,3*sizeof(int),cudaMemcpyHostToDevice);

 //memory copy from host to device to perform parallelisation
 //(device variable, host variable, size of variable, memory
 from host to device)

14.
15. CallGPUkernel<<<1,3>>>(dev_x);

 //invoke GPU kernel with <<< blocks amount, threads amount>>>
 (input variable)

16.
17. cudaMemcpy(x,dev_x,3*sizeof(int),cudaMemcpyDeviceToHost);

 //memory copy from device to host to perform
 //(host variable, device variable, size of variable, memory
 from device to host)

18.
19. cudaFree (dev_x); //free the device memory
20.
21.
22. for(int i=0;i<3;i++){ //print output
23. cout << x[i]<<endl;
24. }
25. }
26.

Output:

0

2

4

54

3.4.2 Ideal vs. Practical Parallelisation

The idea of parallelisation is to simultaneously perform multiple independent

operations at once, hence reducing the overall operational time. In an ideal case,

parallelisation equation will be represented below:

𝑇parallel = ⌈
𝑦×𝜏operation

threads allocated
⌉ (3.4)

𝑇parallel = Time taken to complete all operations after parallelisation

𝑦 = Amount of independent operation

𝜏operation = Time taken to complete one operation

threads allocated = Threads used in parallelisation

However, for a parallelisation to perform practically, parallel overheads such

as physical limitation, data reuse, memory dependency, kernel call delay, threads

allocation, etc., should be considered in a GPU device. In this thesis, they are all

categorized under parallel overheads 𝑝operation.Hence practically, the parallelisation

equation is represented as below:

𝑇parallel = ⌈
𝑦×𝜏operation

threads allocated
⌉ + 𝑝operation (3.5)

𝑇parallel = Time taken to complete all operations after parallelisation

𝑦 = Amount of independent operation

𝜏operation = Time taken to complete one operation

threads allocated = Threads used in parallelisation

 𝑝operation = parallel overhead

55

3.4.3 Parallelisation of Gaussian Elimination

The parallelization of GE algorithms is a challenging process. The number of

threads and block allocation must be decided carefully. Attention should be paid to the

synchronization part to get accurate results, because a slight desynchronize value

might end up ruining the results.

 To start the parallel processing in GEparallel , the steps that used is the same as

the steps for GEserial in Chapter 3.2 and most importantly it yields the same result like

GEserial does:

1. Searching for pivot;

2. Swap pivoting rows to the right position;

3. XOR row operation.

3.4.3.1 Pivoting Search

The pivoting search step is represented in the outer most nested loop of the code in

appendix. During this step, the parallelisation is not required because it is as simple as

searching the right condition (if pivoting row and column not “1”) to progress to step

2- Row swap.

56

Figure 3.2: Pivoting Search

3.4.3.2 Row Swap

If the pivoting search in the first step meets the condition to proceed with row

swapping, which is represented in the second nested loop, the row swapping will be

executed.

Step 1: Pivoting Search Step 2: Row Swap

0 0 0 1 0 0 … 1 1 1 0 1 1 1 … 1 ←

0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0 Row swap

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

1 1 0 1 1 1 … 1 ← 0 0 0 1 0 0 … 1

0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0

1 0 1 1 1 0 … 1 1 0 1 1 1 0 … 1

0 1 1 0 0 1 … 0 → 0 1 1 0 0 1 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

1 0 0 1 1 0 … 1 1 0 0 1 1 0 … 1

0 1 0 1 0 1 … 1 0 1 0 1 0 1 … 1

0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0

1 0 1 1 1 0 … 1 1 0 1 1 1 0 … 1

1 1 0 0 1 1 … 0 1 1 0 0 1 1 … 0

Figure 3.3: Row Swap

0 0 0 1 0 0 … 1

0 1 0 0 0 1 … 0

0 0 1 0 0 0 … 0

0 0 0 1 0 0 … 1

1 1 0 1 1 1 … 1

0 0 0 0 0 0 … 0

1 0 1 1 1 0 … 1

0 1 1 0 0 1 … 0

0 0 1 0 0 0 … 0

1 0 0 1 1 0 … 1

0 1 0 1 0 1 … 1

0 1 0 0 0 1 … 0

1 0 1 1 1 0 … 1

1 1 0 0 1 1 … 0

 Generated Matrix, 𝐺

 Encoded Matrix, 𝐸

 Pivot Point

 Pivot Row

 Pivot Column

← Pivot Column contains “1”

57

Figure 3.4: Threads allocation for Swap Row

For example, in Figure 3.3, when the row swapping process is executed, two

rows will generally switch their positions with each other. Another example shown in

Figure 3.4 is that, in a CPU case, the row swapping process will undergo 6 iterations

to swap the corresponding elements in all the 6 columns. For parallelisation, the 6

iterations can be reduced to one iteration in terms of processing time by performing

parallelisation of 6 XOR operation columns with 6 GPU’s threads simultaneously as

shown in Figure 3.4.

3.4.3.3 XOR Operation

After the row swap step is done, here comes the step 3- XOR operation where

the others row that have a “1” in pivoting column will perform XOR operation with

the pivoting row as shown in Figure 3.5.

0 0 0 1 0 0 1
…

1 1 0 1 1 1 1 …

1 1 0 1 1 1 1

… 0 0 0 1 0 0 1

… 1st row

5th row

Threads performing “Row Swap” in parallel.

58

⊕

Step 1: Pivoting Search Step 2: Row Swap Step 3: XOR

Figure 3.5: XOR operations

 𝑛 = 1𝑠𝑡 row (Pivoting Row)

Figure 3.6: Threads allocation for XOR operation

For example, in Figure 3.6, the XOR operation is performed on the row that

consists of ‘1’ (in red square) in their respective pivoting column, in this case, other

than pivoting row, the pivoting column that contains “1” in other rows will be basically

eliminated. In a GEserial case, the XOR operation will iterate from

0 0 0 1 0 0 … 1 1 1 0 1 1 1 … 1 1 1 0 1 1 1 … 1

0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

1 1 0 1 1 1 … 1 0 0 0 1 0 0 … 1 0 0 0 1 0 0 … 1

0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 … 0

1 0 1 1 1 0 … 1 1 0 1 1 1 0 … 1 0 1 1 0 0 1 … 0 ←

0 1 1 0 0 1 … 0 → 0 1 1 0 0 1 … 0 → 0 1 1 0 0 1 … 0

0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 … 0

1 0 0 1 1 0 … 1 1 0 0 1 1 0 … 1 0 1 0 0 0 1 … 0 ←

0 1 0 1 0 1 … 1 0 1 0 1 0 1 … 1 0 1 0 1 0 1 … 1

0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0 0 1 0 0 0 1 … 0

1 0 1 1 1 0 … 1 1 0 1 1 1 0 … 1 0 1 1 0 0 1 … 0 ←

1 1 0 0 1 1 … 0 1 1 0 0 1 1 … 0 0 0 0 1 0 0 … 1 ←

1 1 0 1 1 1 1 …

1 0 1 1 1 0 1
… 1 0 0 1 1 0 1

… 1 1 0 0 1 1 0 … …

0 1 1 0 0 1 0
… 0 1 0 0 0 1 0

… 0 0 0 1 0 0 1
… …

𝑛 = 7𝑡ℎ row (Pivoting Row) 𝑛 = 10𝑡ℎ row (Pivoting Row) 𝑛 = 14𝑡ℎ row (Pivoting Row)

59

2nd row, 1st column = 2nd row, 1st column⊕ pivoting row, 1st column to

10th row, 6th column = 10th row, 6th column⊕ pivoting row, 6th column, which

is a total of 10 × 6 steps XOR operations to iterate through.

While for GEparallel, the 10 × 6 steps of XOR operation will be allocated with

10 × 6 threads each for parallel processing, which means that the 60 steps of XOR

operation in serial CPU operation can be reduced to complete in one step ideally.

3.4.4 Construction of 𝐆𝐄𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥 in CUDA

Gaussian Elimination in Parallel

1. 𝑡ℎ𝑟𝑒𝑎𝑑𝑋 = 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑. 𝑋 × 𝑡ℎ𝑟𝑒𝑎𝑑𝑋 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 //mapping Threads X
2. 𝑡ℎ𝑟𝑒𝑎𝑑𝑌 = 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑. 𝑌 × 𝑡ℎ𝑟𝑒𝑎𝑑𝑌 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 //mapping Threads

Y
3.
4. //GPU kernel
5. define Swap_Row (G|X[n][k+l], pivot) //Swap row kernel
6. for row = pivot to n-1 do //check all n rows
7. if (G|X[pivot][pivot]≠1&& G|X[row][pivot]==1) then //if pivot point is zero

 while another row had
 pivot column of 1

8.
9. for offset=0 to threadY workload do //mapping Threads Y
10. col=threadY + offset //allocating workload
11. Swap G|X[row][col] to G|X[pivot][col] //Swap between rows
12. End for
13. End if
14. BREAK //Break the whole swap
 operation when one row
 swap is done

15. End for
16.
17. define Pivot_check (G|X[n][k+l], check[n], pivot) //Check pivot in GPU
18. for offset=0 to thread X workload do //one thread will handle
 how many workload/rows

19. row= threadX+offset
20. if (row < n) then //thread allocate cannot
 more than 𝑛

21. check[row]=G|X[row][pivot] //allocate pivot point
 value into the check
 array

22. End if
23. End for
24.
25. define XOR (G|X[n][k+l], check[n], pivot) //the XOR kernel in GPU
26. for offset=0 to thread X workload do //one thread will handle
 how many workload/rows

60

27.
28. row= threadX+offset
29. if(G|X[row][pivot]==1 && row ≠ pivot) then
30. for offsetY=0 to thread Y workload do
31. col=threadY + offsetY //one thread will handle
 how many workload/columns

32.
33. G|X[row][col]= G|X[row][col] ⊕ G|X[pivot][col]//XOR between rows
34. End for
35. End if
36. End for
37.
38. Host to Device memory copy
39.
40. For pivot=0 to k-1 do //iterates through all k
 pivot point

41. Swap_Row <<<blocks, threads >>> (G|X[n][k+l], pivot) //Swap Row
42. Pivot_check <<<blocks, threads >>> (G|X[n][k+l], check[n], pivot)
43. XOR <<<blocks, threads >>> (G|X[n][k+l], check[n], pivot) //XOR
44. End for
45.
46. Host to Device memory copy

In GPU, threads are the key element for parallelisation, hence they will be identified

into threadX and threadY for handling the row and column of the matrix G|X.

All the GPU call function kernel will be constructed following the 3 steps in

GE, so when the G|X matrix is received with the dimension of 𝑛 × (𝑘 + 𝑙), the code

can fully decode G|X back into the original messages.

First will be the pivoting search, since this step is just iterating through the GE

process, it will be handled by the for-loop in line 40.

Next, the swap row GPU kernel is constructed in line 4-14, and called in line

41, the kernel is called to execute the row swapping step with 𝐺|𝑋 as the input, and

𝑝𝑖𝑣 represents the pivoting point location and <<< 𝑡ℎ𝑟𝑒𝑎𝑑𝑠, 𝑏𝑙𝑜𝑐𝑘𝑠 >>> brackets

show the threads and block amount that are needed to be allocated for the kernel.

61

After this, pivoting value will be recorded in a new set of the array for checking

purpose as shown in line 17-23, and call this a new set of array - 𝑐ℎ𝑒𝑐𝑘[𝑛] where 𝑛

represents the size of this array.

Then come to the last step, which is the XOR operation step, such GPU code

is constructed in line 25-36, where the input data from 𝐺|𝑋 will be used to perform

XOR operations in between rows.

From the pseudocode, there are offsets in line 9 and line 18 etc. In general,

such offsets are used to map the GPU threads into the right positions to handle a certain

amount of threads.

Figure 3.7: Offset of threads distribution.

62

If there are 4 workloads that is represented in A, B, C and D as shown in Figure

3.7, full parallelisation will be allocating maximum 4 threads by distributing one thread

into every workload.

However, to study the effects of threads towards the speedup of such workload,

1 thread will be allocated to handle all A, B, C and D workload and this will be called

a “base case”, and the time to execute all the workload

by using one thread will be called timebase case. Other than this, when there are 2

threads allocated to the 4 workloads, these threads will be mapped accordingly to

handle the distributed workload, e.g. first thread will handle workload A and B while

the second thread will handle C and D, and the time to execute all the workload by

threads mapping will be timework.

Speed Up =
timebase

timework
 (3.6)

According to the pseudo-code, the operational count of GEparallel will be

formulated later and apply on the GEserial operational count in eq 3.1, and further

elaborate it on the GEparallel :

𝑘((𝑛)(𝑘 + 𝑙)τXOR)
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
→ 𝑘 (⌈

(𝑛)(𝑘+𝑙)

threads allocated
⌉ τXOR + 𝑝𝐺𝐸) (3.7)

𝑘 = loops in line 40

𝑛 = loops that goes through all the rows

𝑘 + 𝑙 = loops that goes through all the columns

threads allocated = threads for parallelisation (1,2,3… (𝑛) × (𝑘 + 𝑙))

𝜏𝑋𝑂𝑅 = operation constant in line 33

63

𝑝𝐺𝐸 = overal parallel overhead

Assuming that maximum threads, 𝑘(𝑘 + 𝑙), will be allocated:

GEoperational count = 𝑘(1τXOR + 𝑝𝐺𝐸) (3.8)

Parameters added in this GEparallel operational count is the “threads allocated”

and the “𝑝𝐺𝐸 ”; but, a thread is not capable of allocating more than its workload

((𝑛) × (𝑘 + 𝑙) in this case). Other than that 𝑝𝐺𝐸 is a general idea of the parallel

overheads in every parallelisation, for example, in ideal case, N amount of workload

executed in parallel should yield ideal N times faster than N amount of workload

executed in series, however this parallel overheads will practically inhibit the

performance of such parallelisation, and yield probably only 0.5N speedup, such

parallelisation overhead will be visualised in the Result chapter where the performance

of GE will be demonstrated to show how parallel overhead will affect its performance.

3.5 Gaussian Elimination with Matrix Multiplication (GEMM)

In this thesis, the new decoding algorithm that propose is the Gaussian

Elimination with Matrix Multiplication (GEMM). As we had explained previously,

GE is an iterative algorithm different from matrix multiplication (MM), a widely-

recognized candidate for a fast GPU implementation, which does not suffer from the

premature saturation of GPU bandwidth resources as GE does. Hence, the idea of

GEMM advocates the combination of GE and MM to perform the REC decoding.

64

𝐑𝐞𝐜𝐞𝐢𝐯𝐞𝐝 𝐩𝐚𝐜𝐤𝐞𝐭𝐬 − 𝐺𝑛×𝑘|𝑋𝑛×𝑙

𝐺𝑛×𝑘|
𝐼𝑘×𝑘
𝑍10×𝑘

Gaussan Elimination
→

𝐼𝑘×𝑘
𝑍10×𝑘

|
𝐺𝑘×𝑘
−1

𝑍10×𝑘
 (3.9)

𝐺𝑘×𝑘
−1 × 𝑋𝑘×𝑙 = 𝑀𝑘×𝑙 (3.10)

When the packets are received in the form of 𝐺|𝑋 , the basic idea of GEMM is

to first inverse the 𝐺 → 𝐺−1 by using GE, and the 𝐺−1 will be used to matrix multiply

with 𝑋 to retrieve the original message 𝑀.

3.5.1 Inversion, INV

Since the Gaussian Elimination can be used for inversion (𝐺|𝐼 → 𝐼|𝐺−1) as

well as the direct decoding previously (𝐺|𝑋 → 𝐼|𝑀), the inversion using Gaussian

elimination will be called INV while the direct decoding in Section 3.2 using Gaussian

Elimination remains as GE.

During the decoding of the received packets in the form of 𝐺|𝑋 using GEMM,

INV is the first phase of GEMM which is the eq 3.8 where:

𝐺𝑛×𝑘|
𝐼𝑘×𝑘
𝑍10×𝑘

Gaussan Elimination
→

𝐼𝑘×𝑘
𝑍10×𝑘

|
𝐺𝑘×𝑘
−1

𝑍10×𝑘

𝐺 will be used to perform INV, It will be augmented with a set of value that is made

up of 𝐺𝑛×𝑘|
𝐼𝑘×𝑘
𝑍10×𝑘

, however, due to the non-square matrix formed from the packets,

the 𝐼 needs to be dynamically allocated to the correct position to align with the “useful”

information, (useful information will slowly shift to first 𝑘 rows. The idea is quite

similar to GE algorithm with certain additional steps as shown below:

65

1.) 𝐺 will be first augmented with a set of zero matrix, 𝑍 as shown in example

3.5.1.a.

Example 3.5.1.a:

𝑘 = 3, 𝑙 = 8192, 𝑛 = 𝑘 + 10

𝐺3×13 |𝑋13×𝑙 =

(

0 0 1
0 1 0
0 1 1
1 1 0

⋮
1 1 1

|

|

𝑥1
𝑥2
𝑥3
𝑥4
⋮
𝑥13)

𝐺3×13 =

(

0 0 1
0 1 0
0 1 1
1 1 0

⋮
1 1 1)

 𝑋13×𝑙 =

(

𝑥1
𝑥2
𝑥3
𝑥4
⋮
𝑥13)

 𝐺3×13 |𝑍3×13 =

(

0 0 1
0 1 0
0 1 1
1 1 0

⋮
1 1 1

|

|

0 0 0
0 0 0
0 0 0
0 0 0

⋮
0 0 0)

2.) After this, 𝐺|𝑍 will be inversed by using Gaussian Elimination that starts from

first step GE- pivoting search; the first row that contains ‘1’ (red 1) in pivoting

column in example 4.2.1.b.

Example 3.5.1.b:

Pivoting (row, column) = (1, 1)

𝐺3×13 |𝑍3×13 =

(

0 0 1
0 1 0
0 1 1
1 1 0

⋮
1 1 1

|

|

0 0 0
0 0 0
0 0 0
0 0 0

⋮
0 0 0)

66

3.) Then, the first row of 𝐺 that contains ‘1’ in pivoting column will be swapped

to the pivoting row. (row in red will swap with row in blue in example 4.2.1.c)

in this case the “useful” information will be swapped to the correct position

including the 𝑋.

Example 3.5.1.c:

Pivoting (row, column) = (1, 1)

𝐺3×13 |𝑍3×13 =

(

1 1 0
0 1 0
0 1 1
0 0 1

⋮
1 1 1

|

|

0 0 0
0 0 0
0 0 0
0 0 0

⋮
0 0 0)

 𝑋13×𝑙 =

(

𝑥4
𝑥2
𝑥3
𝑥1
⋮
𝑥13)

4.) Now, we can confirm that the first row will contain useful information, then in

the pivoting row (red in example 3.5.1.c), a dynamically allocate Identity

matrix, 𝐼 will be added to align with the pivoting row of 𝐺|𝑍 to form

𝐺𝑛×𝑘|
𝐼𝑘×𝑘
𝑍10×𝑘

.

Example 3.5.1.d:

Pivoting (row, column) = (1, 1)

𝐺3×13 |𝑍3×13 =

(

1 1 0
0 1 0
0 1 1
0 0 1

⋮
1 1 1

|

|

0 0 0
0 0 0
0 0 0
0 0 0

⋮
0 0 0)

 𝐼 = (
1 0 0
0 1 0
0 0 1

)

67

Useful information

𝐺13×3|
𝐼1×3
𝑍12×3

=

(

1 1 0
0 1 0
0 1 1
0 0 1

⋮
1 1 1

|

|

1 0 0
0 0 0
0 0 0
0 0 0

⋮
0 0 0)

5.) Then come to the Step 3 XOR operation part, the pivoting row(red) will be

XOR-ed with all other rows that contain ‘1’ in their respective pivoting

columns.

Example 3.5.1.e:

Pivoting (row, column) = (1, 1)

𝐺13×3|
𝐼1×3
𝑍12×3

=

(

1 1 0
0 1 0
0 1 1
0 0 1

⋮
0 0 1

|

|

1 0 0
0 0 0
0 0 0
0 0 0

⋮
1 0 0)

6.) Repeats step 1 to 5 by moving to next pivoting point in ascending order. At the

end, it will result in inversing the 𝐺 → 𝐺−1(in purple) .

Example 3.5.1.f:

𝐺𝑘×𝑛 |𝑍𝑘×𝑛 → 𝐺𝑛×𝑘|
𝐼𝑘×𝑘
𝑍10×𝑘

Gaussan Elimination
→

𝐼𝑘×𝑘
𝑍10×𝑘

|
𝐺𝑘×𝑘
−1

𝑍10×𝑘

𝐼3×3
𝑍10×3

|
𝐺3×3
−1

𝑍10×3
=

(

1 0 0
0 1 0
0 0 1
0 0 0

⋮
0 0 0

|

|

1 1 0
0 1 0
0 1 1
0 0 0

⋮
0 0 0)

 𝑋13×𝑙 =

(

𝑥4
𝑥2
𝑥3
𝑥1
⋮
𝑥13)

68

In the end of this phase, 𝐺−1 will be found and encoded symbol 𝑋 will be in

the correct position aligned with the useful information (in first 𝑘 rows). In this case

the others non-useful information will not be used in the next phase-MM, where they

can be eliminated.

3.5.1.1 Constructing INV in CUDA

INV in Parallel

1. 𝑡ℎ𝑟𝑒𝑎𝑑𝑋 = 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑. 𝑋 × 𝑡ℎ𝑟𝑒𝑎𝑑𝑋 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 //mapping Threads X
2. 𝑡ℎ𝑟𝑒𝑎𝑑𝑌 = 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑. 𝑌 × 𝑡ℎ𝑟𝑒𝑎𝑑𝑌 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 //mapping Threads Y
3.
4. //GPU kernel
5. define Swap_Row (G[n][k], X[n][l], 𝐺𝑖[n][k], pivot) //Swap row kernel
6. for row = pivot to n-1 do //check all n rows
7. if (G[pivot][pivot]≠1&& G[row][pivot]==1) then

 //if pivot point is zero while another row had pivot column of 1
8.
9. for offset=0 to threadY workload do //mapping Threads Y
10. col=threadY + offset //allocating workload
11. If col<k then
12. Swap G [row][col] to G [pivot][col] //Swap between rows
13. Swap 𝐺𝑖[row][col] to 𝐺𝑖 [pivot][col]
14. End if
15.
16. If col<l then
17. Swap X [row][col] to X [pivot][col] //Swap between rows
18.
19. End if
20.
21. End for
22. End if
23. BREAK //Break the whole swap

 operation when one row
 swap is done

24. End for
25.
26. define Pivot_check (G [n][k], 𝐺𝑖[n][k], check[n], pivot) //Check pivot
27. If threadX==0 then
28. 𝐺𝑖[pivot][pivot]= 𝐺𝑖[pivot][pivot] ⊕1 //inverse the 𝐺𝑖 pivoting point
29.
30. for offset=0 to thread X workload do //one thread will handle

 how many workload/rows
31. row= threadX+offset
32. if (row < n) then
33. check[row]=G[row][pivot]
34. End if
35. End for

69

36.
37. define XOR (G[n][k], 𝐺𝑖[n][k], check[n], pivot)
38. for offset=0 to thread X workload do //one thread will handle

 how many workload/rows
39.
40. row= threadX+offset
41. If (G [row][pivot]==1 && row ≠ pivot) then
42. for offsetY=0 to thread Y workload do
43. col=threadY + offsetY //one thread will handle

 how many workload/columns
44. G [row][col]= G [row][col] ⊕ G [pivot][col] //XOR between rows
45. 𝐺𝑖 [row][col]= 𝐺𝑖 [row][col] ⊕ 𝐺𝑖 [pivot][col]//XOR between rows
46. End for
47. End if
48. End for
49.
50. Host to Device memory copy
51.
52. For pivot=0 to k-1 do //iterates through all k pivot point
53. Swap_Row <<<blocks, threads >>> (G[n][k], 𝐺𝑖[n][k], X[n][l], pivot)
54. Pivot_check <<<blocks, threads >>> (G [n][k], 𝐺𝑖[n][k], check[n], pivot)
55. XOR <<<blocks, threads >>> (G [n][k], 𝐺𝑖[n][k], check[n], pivot)
56. End for
57. MM(𝐺𝑖[n][k], X[n][l], M[n][l]) //Matrix multiplication to retrieve

 message
58.
59. Host to Device memory copy
60.

During The first stage of INV, the coding process is 90% the same

with GEparallel. The different thing in INV and GEparallel is, the input data 𝐺|𝑋 in GE

is replaced with 𝐺 & 𝐺𝑖 in INV as shown in line 12, where 𝐺𝑖 is originally a zero matrix

that will be transformed into the inverse of 𝐺 after INV. Other than this, minor

modifications are done to ensure the useful information is swapped to the right position.

Such modification is done on line 12 and 17 to eliminate the unwanted information

after INV, so that workload in MM later, can be reduced.

 Furthermore, the placing of rows of identity matrix in Gi is done as in line 28.

In this case, rows of Identity matrix will be allocated to each row in each iteration to

the useful information position. After this, the 𝐺𝑖 which is the inverse of 𝐺 will be used

to perform the MM in the later section. As for such pseudocode, it can be formulated

that the operational count of INV can be obtained as shown:

70

Since INV approximately the same with GEparallel, equation of GEparallel is applicable

to INV with modification of 𝑙 → 𝑘:

INVoperational count = 𝑘 (⌈
(𝑛)(𝑘+𝑘)

threads allocated
⌉ τXOR + 𝑝𝐼𝑁𝑉) (3.11)

𝑝𝐼𝑁𝑉 = for visual purpose, parallel overhead in MM is identified as 𝑝𝐼𝑁𝑉.

3.5.2 Matrix Multiplication, MM

After all the non-useful information are eliminated, 𝐺−1 is extracted to

perform matrix multiplication with the encoded symbols 𝑋. By extracting the value

from example 3.5.2.g:

Example 3.5.2.g:

𝐺3×3
−1 = (

1 1 0
0 1 0
0 1 1

) 𝑋13×𝑙 = (

𝑥4
𝑥2
𝑥3
)

𝐺𝑘×𝑘
−1 × 𝑋𝑘×𝑙 = 𝑀𝑘×𝑙

𝑀𝑘×𝑙 = (
1 1 0
0 1 0
0 1 1

) × (

𝑥4
𝑥2
𝑥3
) = (

𝑥4⊕𝑥2
𝑥2

𝑥2⊕𝑥3

)

The product of 𝐺𝑘×𝑘
−1 × 𝑋𝑘×𝑙 will become the decoded value.

71

3.5.2.1 Parallelisation of MM

To parallelise Matrix multiplication is a simple and efficient process, as

mentioned in (Lee, et al., 2015), matrix multiplication is a good suite algorithm that

fits naturally in GPU parallelisation.

Example 3.5.2.1.a:

(
1 1 0
0 1 0
0 1 1

) × (

𝑥4
𝑥2
𝑥3
) = (

𝑥4⊕𝑥2
𝑥2

𝑥2⊕𝑥3

)

To parallelise the MM above. The MM process will be separated into a series

version for better visualisation.

In series (typical CPU implementation) 𝑥4⊕𝑥2 will be done first, and then

continue with 𝑥2 and lastly 𝑥2⊕𝑥3, and there will be these 3 steps for this case. One

thing we know here is that all the steps here are independent of each other, which

means that all of them can be simultaneously performed together unlike the 3 steps in

GE, where third step must wait for the second step to complete. MM will just have to

parallel process the 3 MM steps by allocating them with sufficient threads:

Table 3.2: Threads allocation for parallelisation in MM

Threads Operation Answer

➔ 1 1𝑥4⊕1𝑥2⊕0𝑥3 𝑥4⊕𝑥2

➔ 2 0𝑥4⊕1𝑥2⊕0𝑥3 𝑥2

➔ 3 0𝑥4⊕1𝑥2⊕1𝑥3 𝑥2⊕𝑥3

72

In Table 3.2, since 3 threads are allocated to the three operations to perform

parallelisation, the original time taken to complete the 3 MM operation will be reduced

to one MM operation time if the parallelisation performs ideally.

3.5.2.2 Constructing MM in CUDA

Matrix Multiplication in Parallel

1. threadX = threaded.X × threadX workload //mapping Threads X
2. threadY = threaded.Y × threadY workload //mapping Threads Y
3.
4. Define MM (𝐺𝑖[n][k], X[k][l], M[k][l]) //matrix multiplication
 kernel
5. for offset=0 to thread X workload do
6. for offset=0 to thread Y workload do
7. row=threadX+offset //one thread will handle
 certain workload/rows
8. col=thread+offset //one thread will handle
 certain workload/columns
9. if(row<k && col<l) then

10. for z=0 to k-1 do
11. 𝑀[𝑟𝑜𝑤][𝑐𝑜𝑙] = 𝑋[𝑟𝑜𝑤][𝑐𝑜𝑙] ⊕ (𝐺𝑖[𝑟𝑜𝑤][𝑧] ∗ 𝑋[𝑧][𝑐𝑜𝑙]) //𝐺𝑖 × 𝑋 = 𝑀
12. End for
13. End if
14. End for
15. End for
16.

After the INV produce the output 𝐺𝑖, it will be brought over to matrix multiply

with the 𝑋. The output of this will be the decoded message.

As for the operational count for MM according to the pseudocode:

MMoperational count = 𝑘(𝑙 × 𝑘)
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
→ ⌈

𝑙 × 𝑘

threads allocated
⌉ 𝑘τMM + 𝑝𝑀𝑀

𝑙 × 𝑘 = line 5 − 6 loops

𝑘τMM = line 11 matrix multiplication core operations constant , that consist of 𝑘

numbers of loops.

𝑝𝑀𝑀 = Parallel overhead in MM is identified as 𝑝𝑀𝑀

73

Hence in general, GEMM:

GEMMoperational count = INVoperational count + MM𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑢𝑛𝑡

GEMMoperational count = (𝑘 (⌈
(𝑛)(𝑘+𝑘)

threads allocated
⌉ τXOR + 𝑝𝐼𝑁𝑉)) +

(⌈
𝑙×𝑘

threads allocated
⌉ 𝑘τMM + 𝑝𝑀𝑀) (3.12)

Assuming that if all of them are fully parallelised, where threads allocated is at

maximum, there are (𝑛)(𝑘 + 𝑘) and 𝑙 × 𝑘 numbers of threads respectively for INV

and MM.

GEMMoperational count = (𝑘(τXOR + 𝑝𝐼𝑁𝑉)) + (𝑘τMM + 𝑝𝑀𝑀) (3.13)

To compare the speed between GEMM and GE, their operational count will be

used as the reference:

• GEoperational count = 𝑘(1τXOR + 𝑝𝐺𝐸)

• GEMMoperational count = (𝑘(τXOR + 𝑝𝐼𝑁𝑉)) + (𝑘τMM + 𝑝𝑀𝑀)

The parallel overhead increases proportionally to the operating matrix size:

Size of GE is approximately same with MM, where (𝑛) × (𝑘 + 𝑙) ≈ 𝑘 × 𝑙 assuming

𝑙 is very large (𝑙 ≫ 𝑘 𝑖𝑛 𝑅𝐸𝐶 𝑐𝑎𝑠𝑒), while INV has the smallest parallel overhead for

having smallest operating matrix size of (𝑛) × (𝑘 + 𝑘).

filling approximation here will be:

𝑝𝑀𝑀 ≈ 𝑝𝐺𝐸 ≈
(𝑛) × (𝑘 + 𝑙)

(𝑛) × (𝑘 + 𝑘)
𝑝𝐼𝑁𝑉 ≈

𝑙

𝑘
𝑝𝐼𝑁𝑉

Hence:

GEoperational count = 𝑘 (τXOR +
𝑙

𝑘
𝑝INV)

74

GEMMoperational count = (𝑘(τXOR + 𝑝INV)) + (𝑘τMM +
𝑙

𝑘
𝑝INV)

If 𝑙 ≫ 𝑘:

GEoperational count = τXOR𝑘 + 𝑙𝑝INV ≈ 𝑙𝑝INV (3.14)

GEMMoperational count = (τXOR + τMM)𝑘 +
𝑘2+𝑙

𝑘
𝑝INV ≈

𝑙

𝑘
pINV (3.15)

From these equations, it can deduce that if 𝑙 >> 𝑘 GEMM will perform faster

than GE, which suit the properties of REC where 𝑙 is usually 100 −

1000 times bigger than 𝑘. Hence in theory, it is proven that GEMM can perform

faster decoding speed than GEparallel.

3.6 Second Degree Parallelisation

Previously, the decoding algorithms were designed based on one assumption

where the device only decodes one file at a time; a file that is 𝑘 < 512 in message size.

But thousands of packets from distinct sources could be received in bulk, there is an

opportunity where it can further exploit the power of parallel GPUs and this will be

studied in the following section.

3.6.1 Bulk Decoding

In a high-speed networking link, thousands of packets are being transferred at

once. In this case, the traditional way of CPU handling the received data often suffers

from congestion issue, resulting in poor performance because the CPU can only handle

the received data streams one by one in series.

75

Figure 3.8: Timeline of GPU decoding vs the first and second-degree parallelisation.

Figure 3.8 show a new bulk decoding method by handling all the distinct files (A,

B, C, D) in parallel. For example, upon receiving a stream of packets that consist of

distinct files- A, B, C and D, we propose a second degree of parallelisation on top of

GEMM explained previously. Instead of decoding the files using GEMM in ascending

order from A to B to C then to D like the traditional decoding method, the receiver will

perform GEMM decoding of all the 4 files all at once in parallel. Below are the steps

to perform the bulk decoding:

1.) The bulky amount of received packets will be categorized into distinct files and

an example is illustrated below:

Example 3.6.1.a:

 4 files (A, B, C, D), each file contains: 𝑘 = 2, 𝑙 = 1, 𝑛 = 12

A B C D

B

C

D

A

Time

A B C D

GE decoding

First degree

parallelisation -

GEMM

Second degree

parallelisation -

GEMM

76

 𝑘 𝑙

𝐴 =

0 1 1
1 1 0

1
⋮
0 1

 𝐵 =

1 1 1
1 0 0

1
⋮
1 1

 𝐶 =

0 0 0
1 0 0

1
⋮
1 1

 𝐷 =

1 1 1
1 0 0

1
⋮
1 1

2.) The rearranged files will be augmented as shown in example 4.3.1.b and will

be bulk decoded later.

Example 3.6.1.b:

𝐴
𝐵
𝐶
𝐷

= (

𝐺𝐴
𝐺𝐵
𝐺𝐶
𝐺𝐷

|

𝑋𝐴
𝑋𝐵
𝑋𝐶
𝑋𝐷

) =

(

0 1 1
1 1 0

1
⋮
0 1

1 1 1
1 0 0

1
⋮
1 1

0 0 0
1 0 0

1

⋮
1 1

1 1 1
1 0 0

1
⋮
1 1)

3.) All the 𝐺 in the distinct file will be inversed into 𝐺−1 all at once. Three major

steps of INV which had already demonstrated in the previous chapter will be

applied in all the distinct file in parallel.

𝑛

77

Example 3.6.1.c:

𝐺|𝐼
𝐼𝑛𝑣𝑒𝑟𝑠𝑒
→ 𝐼|𝐺−1

(

𝐺𝐴
𝐺𝐵
𝐺𝐶
𝐺𝐷

|

𝐼𝐴
𝐼𝐵
𝐼𝐶
𝐼𝐷

)
𝐼𝑛𝑣𝑒𝑟𝑠𝑒
→

(

𝐼𝐴
𝐼𝐵
𝐼𝐶
𝐼𝐷

||

𝐺−1𝐴
𝐺−1𝐵
𝐺−1𝐶
𝐺−1𝐷)

All the 𝐺−1 will be used to matrix multiply with their respective 𝑋 in parallel for

the bulk decoding and below is the example.

Example 3.6.1.d:

4 files (A, B, C, D), each file contains: 𝑘 = 2, 𝑙 = 1, 𝑛 = 12

𝐺−1 × 𝑋 = 𝑀

𝐺−1𝐴
𝐺−1𝐵
𝐺−1𝐶
𝐺−1𝐷

×

𝑋𝐴
𝑋𝐵
𝑋𝐶
𝑋𝐷

=

𝑀𝐴
𝑀𝐵
𝑀𝐶
𝑀𝐷

𝐺1𝐴
−1

𝐺2𝐴
−1

𝐺1𝐵
−1

𝐺2𝐵
−1

𝐺1𝐶
−1

𝐺2𝐶
−1

𝐺1𝐷
−1

𝐺2𝐷
−1

𝐺3𝐴
−1

𝐺4𝐴
−1

𝐺3𝐵
−1

𝐺4𝐵
−1

𝐺3𝐶
−1

𝐺4𝐶
−1

𝐺3𝐷
−1

𝐺4𝐷
−1

×

𝑋1𝐴
𝑋2𝐴
𝑋1𝐵
𝑋2𝐵
𝑋1𝐶
𝑋2𝐶
𝑋1𝐷
𝑋2𝐷

=

𝐺1𝐴
−1. 𝑋1𝐴⊕𝐺3𝐴

−1. 𝑋2𝐴
𝐺2𝐴
−1. 𝑋1𝐴⊕𝐺4𝐴

−1. 𝑋2𝐴
𝐺1𝐵
−1. 𝑋1𝐵⊕𝐺3𝐵

−1. 𝑋2𝐵
𝐺2𝐵
−1. 𝑋1𝐵⊕𝐺4𝐵

−1. 𝑋2𝐵
𝐺1𝐶
−1. 𝑋1𝐶⊕𝐺3𝐶

−1. 𝑋2𝐶
𝐺2𝐶
−1. 𝑋1𝐶⊕𝐺4𝐶

−1. 𝑋2𝐶
𝐺1𝐷
−1. 𝑋1𝐷⊕𝐺3𝐷

−1. 𝑋2𝐷
𝐺2𝐷
−1. 𝑋1𝐷⊕𝐺4𝐷

−1. 𝑋2𝐷

=

𝑀𝐴
𝑀𝐵
𝑀𝐶
𝑀𝐷

And the assignment of workload to the threads is shown in Table 3.3 by properly

mapping the threads into different MM operations for bulk decoding to be performed

in parallel.

78

Table 3.3: Threads allocation for parallelisation in MM

Threads Operation

➔ 1 𝐺1𝐴
−1. 𝑋1𝐴⊕𝐺3𝐴

−1. 𝑋2𝐴

➔ 2 𝐺2𝐴
−1. 𝑋1𝐴⊕𝐺4𝐴

−1. 𝑋2𝐴

➔ 3 𝐺1𝐵
−1. 𝑋1𝐵⊕𝐺3𝐵

−1. 𝑋2𝐵

➔ 4 𝐺2𝐵
−1. 𝑋1𝐵⊕𝐺4𝐵

−1. 𝑋2𝐵

➔ 5 𝐺1𝐶
−1. 𝑋1𝐶⊕𝐺3𝐶

−1. 𝑋2𝐶

➔ 6 𝐺2𝐶
−1. 𝑋1𝐶⊕𝐺4𝐶

−1. 𝑋2𝐶

➔ 7 𝐺1𝐷
−1. 𝑋1𝐷⊕𝐺3𝐷

−1. 𝑋2𝐷

➔ 8 𝐺2𝐷
−1. 𝑋1𝐷⊕𝐺4𝐷

−1. 𝑋2𝐷

79

4 RESULT AND DISCUSSION

4.1 Experiment Platforms

Both the proposed GEMM and GE are implemented on the GPU using CUDA and

these two algorithms are used to compare with the base case (an optimised and

vectorised GE according to one that is used from the paper (Hu, et al., 2012). All our

experimental CUDA code and serial C++ code are available in the appendix.

The serial and parallel version of GE implementation used the code given in

the paper of Raptor GF(2). Such GE has been previously employed in paper (Hu, et

al., 2012) to prove the applicability of GPU on decoding and found to be more effective

than CPU decoding. However, as stated previously, there will be parallel overhead in

GPU that prevents the GE parallelisation from getting linear speedup. Hence in this

chapter, the algorithms will be tested from different aspects to compare their decoding

speeds.

For our experimental platforms, the GPU code ran on a Nvidia Quadro K620

with CUDA 8.0 and a workstation XEON E3 CPU. The Nvidia Quadro K620 has 2GB

GDDRAM3, a core clock of 1000MHz, and CPU-to-GPU bandwidth of 29 GB/s. It

consists of 3 SMs, each containing 128 cores, making up a total of 384 cores. For

80

comparison, the base case is the serial execution of the decoding code on XEON E3 4

GHz with 16 GB RAM.

4.2 Overhead test in GE and GEMM

As a solution to solve the decoding speed issue, GEMM, should perform faster

than GE without increasing the overheads. Also, data received that is decodable using

GE will be decodable using GEMM. Those packets that are non-decodable in GE will

not be decodable using GEMM.

It had been mentioned that the Random code requires 𝑛 = 𝑘 + 10 amount of

received packets for 99.99% of PCD using GE (Chong, et al., 2015), hence in GEMM,

it is also required to have 𝑛 = 𝑘 + 10 amount of received packets to achieve 99.99%

PCD. In this experiment, 10000 samples of distinct packets are used for decoding by

GE and GEMM where:

𝑛 = 𝑘 + ɛ, 𝑘 = 32, 𝑙 = 8192, ɛ ≤ 10

Table 4.1: Overall PCD of GEMM and 𝐆𝐄

Number of packets

received, 𝑛

PCD of GE PCD of GEMM

𝑘 26.76% 26.76%

𝑘 + 1 57.78% 57.78%

𝑘 + 2 79.21% 79.21%

𝑘 + 3 89.02% 89.02%

𝑘 + 4 94.88% 94.88%

𝑘 + 5 96.71% 96.71%

𝑘 + 6 98.45% 98.45%

𝑘 + 7 99.22% 99.22%

𝑘 + 8 99.45% 99.45%

𝑘 + 9 99.81% 99.81%

𝑘 + 10 99.99% 99.99%

81

It is shown in Table 4.1 that the PCD of GE and GEMM are the same, will not even

the slightest change in PCD found in the comparison between the GE and GEMM.

Furthermore, at 𝑘 + 10 case, when both GE and GEMM are decoding the same 10000

packets, both algorithms are unable to decode sample no. 4831, which also means that

overheads of GE and GEMM are the same.

4.3 First Degree Parallelisation - 𝐆𝐄𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥 V.S. 𝐆𝐄𝐌𝐌

To compare the parallel performance of GE and GEMM, the pseudocode used is

available in the paper (Hu, et al., 2012) as the base case for GE. In addition, the same

experimental model will be reworked and made comparison between:

• 𝐆𝐄𝐬𝐞𝐫𝐢𝐚𝐥 using XEON E3 Workstation CPU (base case)

• 𝐆𝐄parallel using Quadro K620 GPU

• 𝐆𝐄𝐌𝐌 using Quadro K620 GPU

4.3.1 𝒌 Variation

In this section, the effects of complexity of GE will be shown, especially when

the file size 𝑘 gets bigger. In this case, the speedup is calculated based on:

Speedup of GEparalllel =
GEserial

GEparallel
 (4.1)

Speedup of GEMM =
GEserial

GEMM
 (4.2)

82

Figure 4.1 demonstrates the time complexity (graph of 𝑂(𝑘3) with respect to the size

𝑘 for the base case GE:

Figure 4.1: Complexity of GE in Time used to solve GE vs. 𝑘.

32 < 𝑘 ≤ 1024, 𝑙 = 8192, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = 100000

Figure 4.2: Speedup of GEparallel and GEMM after parallelisation with GEserial as

the base case.

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200

Ti
m

e
, s

k

Relationship of Gaussian Elimination and its
Entry Complexity k

0 256 512 768 1024 1280

0

5

10

15

20

25

30

k

Sp
e

e
d

 u
p

The Speed up of GPU and CPU REC's Decoder in

different k

GE parallel GEMM

83

From the graph in Figure 4.2, GEparallel outperforms GEserial in terms of

decoding time, whereby the speed up of GEparallel is significantly higher when 𝑘

increases. Furthermore, the algorithm GEMM that this research emphasized have a

significantly better speedup compared to GEparallel, which makes GEMM the fastest

and most efficient parallelised REC decoder.

The parallelised algorithm GEMM and GEparallel will eventually reach a

speedup of 26 and 13 respectively. From this experiment, the GPU is better in

handling larger size workload as the speed up can reach higher as 𝑘 grows bigger.

4.3.2 𝒍 Variation

In chapter 2.6, the 𝑙 is considered a very important element that affects the

decoding speed of GE, in this section variations of 𝑙 will be tested:

• 𝐆𝐄𝐬𝐞𝐫𝐢𝐚𝐥 using XEON E3 Workstation CPU

• 𝐆𝐄parallel using Quadro K620 GPU

• 𝐆𝐄𝐌𝐌 using Quadro K620 GPU

The result in Figure 4.4 shows that GEMM can perform better parallelisation as 𝑙

increase. As 𝑙 is getting larger than 𝑘 the speedup of GEMM is better than GE; this

proves that the equation forms in section 3.5 is practically true.

𝑘 = 256, 𝑙 = {256, 8192, 73728}, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = 100000

84

Figure 4.3: Complexity of GE in Time used to solve GE vs. the variation in 𝑙.

Figure 4.4: Speedup of GEparallel and GEMM after parallelisation with GEserial as

the base case in the variation of 𝑙.

0

0.2

0.4

0.6

0.8

1

1.2

0 10000 20000 30000 40000 50000 60000 70000 80000

ti
m

e
 t

ak
e

n

l

GEserial

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000 80000

S
p

ee
d

u
p

l

Speedup of GEparallel and GEMM compared
to GEserial when l Varies

GE parallel GEMM

85

4.3.3 𝐓𝐡𝐫𝐞𝐚𝐝𝐬 𝐚𝐥𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧 Variation

From the previous result (𝑘 and 𝑙 variation), the GPU can decode better than CPU,

where GEparallel and GEMM outperform the GEserial experimentally.

In this section variations of threads allocation will be tested in:

• 𝐆𝐄parallel uses Quadro K620 GPU (base case in this section: implemented

using one thread one block for the execution, at 𝑘 = 256, 𝑙 = 8192 and the

time to execute the base case here is 1.472s. Other than that, the packets

received 𝑛=k+10, which is according to the random code standard.)

• 𝐆𝐄𝐌𝐌 uses Quadro K620 GPU

𝑘 = 256, 𝑙 = 8192, 0 < 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 < 100000, 𝑛 = 𝑘 + 10

Speedup of GEparallel =
GEparallel(in 1 thread)

GEparallel (multiple threads)
 (4.3)

Figure 4.5 Sensitivity of threads allocated toward the speedup of GEparallel.

86

 Figure 4.5 shows that the speed up of GEparallel using multiple threads as

compared to GEparallel using one thread (base case) reaches a saturation speedup of

129 times when 8 × 256 threads are allocated for GEparallel.

As discussed earlier in chapter 4, the GEMM is separated into 2 parts:

1. Inverse (INV) - A variant of GE that is used for inversion of matrix in Chapter

3.5.1.

2. Matrix Multiplication (MM) - Refer to Chapter 3.5.2.

 In this section, GEMM (INV+MM) will be analysed on how it can perform

faster than GE. First, we will look into the sensitivity of threads allocation towards the

speedup of INV:

Speedup of INVparallel =
GEparallel(in 1 thread)

INVparallel (multiple threads)
 (4.4)

Figure 4.6: Sensitivity of threads allocated toward the speedup of INVparallel.

87

 Figure 4.6 demonstrates the speed up of INV when different number of threads

are allocated for parallelisation. When it is compared to the speed of GEparallel, which

is the base case where GEparallel uses only one thread, INV can reach a speedup of

approximately 300 times at the maximum performance of the GPU, where 256 × 16

threads are allocated for INVparallel.

Speedup of MMparallel =
GEparallel(in 1 thread)

MMparallel (multiple threads)
 (4.5)

Figure 4.7: Sensitivity of threads allocated toward the speedup of MMparallel.

 Figure 4.7 shows that the performance sensitivity of allocating more threads

for MM as compared to the GEparallel. The saturation point of MM speedup can be

seen when 64 × 256 threads are allocated for parallelisation; the speedup of MM as

compared to the GEparallel can reach a factor of 1300 times faster.

 However, for all the previous results, we realise that the speedup achieved in

these experiments can be further improved; for instance there are only 10 times

88

speedup instead of 100 times speedup for 100 threads used in parallelisation, e.g.

parallelisation of GE from Figure 4.7 can only reach the speed up of 130x by providing

it with maximum GPU resources (few thousands of threads allocated), whereas Figure

4.6 demonstrated the maximum INV speed up at 300x. Furthermore, the speedup of

MM in Figure 5.7 is able to reach the speedup of 1300x as compared to the GEparallel.

 Such inefficiency in speedup proves the existence of parallel overheads, 𝑝

which is discussed earlier in Chapter 3.

4.4 Analysis and Discussion

As mentioned in Chapter 3, the parallel overheads is the reason that concludes the

major cause of the parallelisation inefficiency (CUDA, 2015) in GE or GEMM, it

includes:

• Matrix size

• Algorithm nature

When it comes to parallelisation, size and the algorithm nature matters the most. The

first issue to tackle is the input matrix size for GE decoding.

From Figure 4.5 and Figure 4.7, the saturation curves indicate the hardware

limitation of GPU has been reached; there will be no further speedup even though more

threads are added to the execution of the algorithm. Hence the bigger the workload

size the easier the limitation is hit, where the speed up of parallel processing will

saturate eventually.

89

time

time

Scheduling unit
Workloads

Workloads

Other than GPU’s hardware limitation, the threads allocation delay will also be

affected by the input matrix size. In GPU’s architecture, threads are required to be

scheduled before parallelisation start and this will be the threads allocation stage; for

example:

Example 4.4.a:

If there are A, B and C workloads to be executed, CPU will serially execute from A to

C one by one.

CPU execution:

Figure 4.8: The CPU execution timeline

In GPU workload A, B and C will be parallel process and execute simultaneously.

GPU execution (ideal): GPU execution(practical):

Figure 4.9: The GPU execution timeline

A

B

C

A

B

C

A B C

90

Ideally in Figure 4.9, GPU should execute all the workload at once. However,

in practice, threads need to be scheduled and distributed before performing their

specific tasks (in this case tasks represented by A, B and C will all work on same

operation), e.g., a thread is needed to be tagged along with a thread identity {0, 1, 2,

3….} and allocated to the right position before parallelisation. Once the first threads

are scheduled (scheduled duration are represented by blue box in example 4.4.a), the

workload will be executed immediately as shown example 4.4.a. Using the Nvidia

profiler of CUDA, the details of parallel process of GE and GEMM timeline can be

seen clearly.

CUDA NVIDIA profiler result for GEparallel:

Figure 4.10: Structure of GEparallel in Nvidia Profiler

91

The brown row in Figure 4.10 indicates the flow of Runtime API, columns of

purple represents the swap row operations duration while pink column represents the

pivoting check duration and finally the blue column indicates the XOR operations

duration, which means all the scheduling flow and threads allocation, as well as call

kernel duration mentioned earlier, are visualised.

From the result of profiling of the GE, XOR operation (blue columns) are the

dominating one that occupied more than 80% even after parallelisation. Furthermore,

the call kernel time occupied approximately 10% of the execution duration. In other

words, to optimise a parallelised algorithm, one of the key element is to reduce the

amount of calling kernel. However, the iterative nature in GE requires the execution

to keep invoking the kernels at least 𝑘 amount of times to complete the decoding and

such accumulated delay of calling kernel will drastically reduce the speed of executing

GE in parallel.

92

GEMM:

Figure 4.11: Structure of GEMM in Nvidia Profiler

GEMM consist of INV and MM and Figure 4.11 shows that the calling kernel time of

the MM algorithm is much less as compared to GEparallel.

93

Figure 4.12: Breakdown of the profiled INVparallel & GEparallel in summary.

Figure 4.12 shows the summary of the profiling result of GEparallel and INVparallel,

when they are compared under ideal parallel condition where there are no parallel

overheads such as the threads allocation delay, calling kernel delay, etc. They yield the

same execution speed, but practically GEparallel that had a bigger matrix size of

𝑛 × (𝑘 + 𝑙), will be executed slower than INVparallel that had a smaller matrix size of

𝑛 × (𝑘 + 𝑘), and the block in red colour indicates the initialisation of GPU before

parallelisation start. In this thesis, this thing will be considered under the coverage of

parallel overheads.

Such an idea can be easily visualised. Larger matrix size has a larger workload

to deal with and that means more memory access time, more loops and more threads

time

GEparallel

INVparallel

Ideal case Practical case

a

a

b thread 1

thread 2
thread 3
thread 1

thread 2

thread 3

thread 1
thread 2
thread 3

thread 1

thread 1
thread 1

Parallel overheads

Workload

Workload

94

time

are needed to be allocated to perform parallelisation. However, due to the limited

resources in GPU, larger matrix will hit its performing saturation point earlier as

compared to a smaller matrix as shown in “b” of Figure 4.12, while “a” indicates the

calling kernel time. Since both GEparallel and INVparallel suffer from the same calling

kernel time and also same number of iterations, as explained in Chapter 3.2, the main

reason why GEparallel is slower than INVparallelis due to the limited resources in GPU

in handling a larger matrix.

Figure 4.13: Breakdown of the profiled MMparallel & GEparallel in summary.

Figure 4.13 is the comparison of GEparallel and MMparallel in Figure 4.11, it

can be seen that the structure of executing MM and GE is different; GEparallel has 3

iterations with each iteration having 3 tasks to be done in parallel using 3 threads, while

MMparallel has only one kernel that call 3 tasks to be done in parallel using 3 threads,

i.e., each thread will handle relatively more workload as compared to the threads

in GEparallel.

GEparallel

MMparallel

Ideal case Practical case

thread 3

thread 1
thread 2

thread 3

thread 1
thread 2

thread 3

thread 1
thread 2

thread 3

thread 1
thread 2

95

Ideally GEparallel and MMparallelshould perform at the same execution speed,

but in practice, when parallel overheads are considered, GEparallel that appears to be

the iterative algorithm in nature will perform parallelisation slower than MMparallel.

According to the Figure 4.13, MM only suffers from insufficient GPU resource, while

GE suffers from insufficient GPU resources and the calling kernel time that is

accumulated throughout the iterations.

4.4.1 GEMM vs 𝐆𝐄𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥

In terms of size, INV is working on the smaller matrix size with a size

of 𝑘 × 2𝑘 as MM works on 𝑘 × 𝑙 matrix size and GE works on 𝑘 × (𝑘 + 𝑙) matrix size.

It shows that the parallel overhead also increases with the matrix size

where GEparallel > MM > INV, and it is proven in the experiment that the workload

size can inhibit the performance of GPU speedup. e.g. GE and INV are executed using

the same method with different matrix size and slight modification. Figure 4.5 shows

that the larger size GE hits the speedup limitation faster at 130x the speed of its base

case. While INV hit the speedup limitation at 300x the speed of its base case in Figure

4.6.

In terms of algorithm nature, INV and GE are both iterative structures, making

the parallelisation less efficient for the accumulated delay shown in Figure 4.12;

whereas MM in the profiler of Figure 4.13 shows a parallelisation friendly structure

that can contribute to a higher parallel efficiency, e.g., speedup of MM in Figure 4.7

96

can reach 1300x as compared to INV and GE, as shown in Figure 4.6 and Figure 4.5,

which only reach a maximum speedup of 300 and 127, respectively.

4.5 Second Degree Parallelisation - Single File Parallelisation vs Bulk

Decoding Parallelisation

IoT is the trend of the future network and majority of the uplink traffic are short

messages if the experiment deploys the GEMM in the context of IoT. We are assuming

a server to process thousands of short messages that are encoded with REC in real life

applications, since the IoT server in nature are getting feedbacks from thousands of

internet devices.

 Beside accelerate GE with GPU in the previous cases, the throughput will be

further accelerated by having multiple decoding session running concurrently on

different short messages. Such multitude of acceleration further leverages the speed

up to the factor of 60× at the end of this experiment.

4.5.1 Experimental Result

Two set of machines are tested in the experiment:

• Bulk decoding 𝐆𝐄serial using XEON E3 CPU

• 𝐁𝐮𝐥𝐤 𝐝𝐞𝐜𝐨𝐝𝐢𝐧𝐠 𝐆𝐄parallel using Quadro K620 GPU

• 𝐁𝐮𝐥𝐤 𝐝𝐞𝐜𝐨𝐝𝐢𝐧𝐠 𝐆𝐄𝐌𝐌 using Quadro K620 GPU

Generally, the bulk decoding of α = 1024 unique files in the experiment with

each message size 𝑘 = 32, 𝑙 = 8192 bits. Theoretically, the REC (Random code in

this study) will encode the message into a potentially infinite number of packets in the

form of G|X. The decoder will initiate the decoding algorithm, i.e., GEMM once k +

10 = 42 packets are received for complete decoding. While for bulk decoding GEMM,

97

when there is α number of files to be decoded, 𝛼 × (𝑘 + 10) relevant packets are

required to be received to initiate the bulk decoding of GEMM, as to facilitate the

comparison, the speedup is measured using:

Speedup of bulk decoding =
α unique message base case decoding time

α unique messages decoding times
 (4.6)

The base case here is referring to the duration of CPU GEserial that performs

execution of 𝑘 = 32 and 𝑙 = 8192 𝑏𝑖𝑡𝑠 file, which is 0.0049s when decoding 𝛼 = 1

files.

Figure 4.14: Time used to decode α files using GEserial.

Experiment parameters:

𝑘 = 32, 𝑙 = 8192, 𝟏 < 𝜶 < 𝟏𝟎𝟐𝟒, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = 1,000,000

0

1

2

3

4

5

6

0 128 256 384 512 640 768 896 1024

Ti
m

e

α

Time to decode α unique files in GEserial

98

Figure 4.15: Speedup of Bulk decoding 𝐺𝐸𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 and 𝐺𝐸𝑀𝑀 as compared

to GEserial.

In the configuration, the large value of allocated threads is not the actual value

of threads that will be used in parallelisation, e.g., if there are 2 tasks for parallelisation,

only maximum 2 threads will be used and the excessive threads will be eliminated by

the CUDA system automatically.

Figure 4.13 shows the speedup of GEMM on bulk decoding over various

number of files, α in parallel on different CPUs and GPUs. The best GE computational

times on Intel Xeon E3 for each value of α are taken as the base cases. The results

show that when the volume of unique messages is small (α < 32), both GE and GEMM

experience limited speedup. However, GEMM manifests the benefits of higher

parallelism degree reaches the speedup of a factor 60 at α = 1024.

0

10

20

30

40

50

60

70

0 128 256 384 512 640 768 896 1024

Sp
e

e
d

u
p

number of unique files, α

Bulk Decoding of GEparallel and GEMM
Compared to GEserial

GEparallel GEMM

99

5 CONCLUSION AND RECOMMENDATIONS

While the trend of the future network and majority of the networking traffic

are short messages, REC is employed to improve reliable transmission and the

decoding algorithm of REC – GE, plays an important role in ensuring the high

probability of complete decoding. Hence, the component that contributes to a high

computational time of GE and accelerates the algorithm using the state of art GPU will

be analysed. However, due to the interactive properties in GE that scale inefficiently

in GPU that performs 13 times faster than the GEserial, GEMM is proposed to further

minimise the computational time with the integration of parallel matrix multiplication.

As a result, GEMM is capable of performing at approximately 26 times faster

than GEserial.

As to further accelerate the decoding speed of GE and GEMM using GPU,

multiple files will be executed in bulk by using GE and GEMM decoding method

concurrently to solve thousands of messages and able to achieve the speedup in the

factor of 28 and 60 for speedup of bulk decoding GEparallel & GEMM respectively

compared to bulk decoding of GEserial.

100

Table 5.1: Overall speedup performance of GEMM and 𝐆𝐄𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥

Speedup=
GEserial

Tested algorithm

Tested

algorithm

first degree parallelisation

speedup

second degree

parallelisation speedup

(bulk decoding)

GEserial 1 1

GEparallel 13 28

GEMM 26 60

Finally, the results have achieved all the objectives. First, GE as our main study

object is proven to be the most efficient linear code solver in terms of PCD. We

conclude this from several papers such as (Bioglio, et al., 2009), (Yeqing, et al., 2013)

etc., where these papers implements the hybrid of GE and another method to improve

the PCD in solving the linear code. Secondly, we are able to propose a new parallel

decoding algorithm- GEMM, by making use of the state-of-art GPU. Furthermore, the

algorithm undergoes test experimentally to figure out its capability toward the current

standard protocols as well as potential future implementations. In the end of the

experiment, GEMM is proven scalable towards the given resources such that, GEMM

performance can be further improved. When more GPU resources are provided, more

information can be decoded in parallel at once.

5.1 Future Work

In this section, the future works to further enhance on the proposed algorithm will be

briefly discussed.

101

5.1.1 Hardware Variety

Previously, GEMM is proven to be a faster decoding algorithm for REC in

parallelisation. Due to resources problem, we are only able to test it on GPU K620

Quadro GPU (low end GPU) and a CPU workstation XEON E3 (High end CPU),

hence in future we will suggest to have a range of GPU and CPU to be tested on.

5.1.2 Machine Learning

Machine learning is the computational task that processes a bunch of data to

discover a pattern that can be used to predict or categorise the new incoming data.

Lately, machine learning appears to be the attractive topic to improve the

Rateless erasure code in terms of overheads and decoding speed, i.e., it can be used to

find the perfect generated matrix 𝐺 with the least overheads required for linear

independence. Other than that, decoding speed can be improved by creating its own

algorithm by studying the millions of patterns of decoding.

5.1.3 Protocol Design

In order for the Rateless Erasure Code to function appropriately (as in to utilise

the network bandwidth), typical data transmission protocols such as TCP will be

needed to be modified for fully utilisation of the characteristic of REC, e.g., the

protocols design of REC should focus on minimising or completely abolish the needs

of acknowledgment as such acknowledgment mechanism is the main reason for

102

inefficient transmission in TCP, especially when packet loss occurs, the throughput

will be reduced exponentially. Much simulation work needed to be done to find its

efficiency in terms of transmission error percentage and bandwidth utilisation. We will

leave all the detailed study in future works.

103

References

Alqahtani, A. H., Sulyman, A. I. & Alsanie, A., 2016. Loss-tolerant large-scale MU-

MIMO system with rateless space time block code. s.l., s.n., pp. 342-347.

Anghel, B., Vasile, B. & Aurel, V., 2011. Study of Decoding Complexity for Decoding

Rateless Erasure Code. s.l., ACTA TECHNICA NAPOCENSIS: Electronics and

Telecommunications.

Anghel, B., Vasile, B. & Mihai P, S., 2011. Performance evaluation of rateless erasure

correcting codes for content distribution. Iasi, Romania, Roedunet International

Conference (RoEduNet).

Anghel, B., Zsolt, A. P. & Zsuzsanna, I. K., 2010. FECTCP for High Packet Error.

Bucharest, Romania, IEEE.

Assefa, T. D., Kralevska, K. & Jiang, Y., 2016. Performance analysis of LTE networks

with random linear network coding. s.l., s.n., pp. 601-606.

Bioglio, V., Grangetto, M., Gaeta, R. & Sereno, M., 2009. On the fly gaussian

elimination for LT codes. IEEE Communications Letters, December, 13(12), pp. 953-

955.

Brownlee, N. & Claffy, K. C., 2002. Understanding Internet traffic streams:

dragonflies and tortoises. IEEE Communications Magazine, Oct, 40(10), pp. 110-117.

Chen, S., Zhang, Z., Zhang, L. & Yao, C., 2013. Belief propagation with gradual edge

removal for Raptor codes over AWGN channel. s.l., s.n., pp. 380-385.

Cheong, S. T. & Fan, P., 2016. Novel degree function over finite field for LT codes.

s.l., s.n., pp. 1-5.

104

Chong, S., Lai, A. C. & Chong, Z. K., 2016. Improve the decoding process of rateless

erasure code and network coding with graphics processing unit in IoT. s.l., s.n., pp.

436-439.

Chong, Z. K. et al., 2015. Improving the probability of complete decoding of random

code by trading-off computational complexity. IET Communications, 9(18), pp. 2281-

2286.

Chong, Z. K. et al., 2016. Improving Reliable Transmission Throughput with

Systematic Random Code. s.l., s.n., pp. 539-542.

CUDA, N., 2015. Issue Efficiency, http://docs.nvidia.com/gameworks/content/

developertools/desktop/analysis/report/cudaexperiments/kernellevel/issueefficiency.h

tm: s.n.

CUDA, N., 2017. CUDA Toolkit Documentation, http://docs.nvidia.com/cuda: s.n.

Guo, Y. L., Pan, Y. & Cai, L., 2016. OPNET-based analysis of MTU impact on

application performance. s.l., s.n., pp. 1-5.

Hagedorn, A., Starobinski, D. & Trachtenberg, A., 2008. Rateless Deluge: Over-the-

Air Programming of Wireless Sensor Networks Using Random Linear Codes. s.l., s.n.,

pp. 457-466.

Hu, L., Nooshabadi, S. & Mladenov, T., 2012. Implementation and evaluation of

Raptor code on GPU. s.l., s.n., pp. 1-6.

Hu, L., Nooshabadi, S. & Mladenov, T., 2013. Forward error correction with Raptor

GF(2) and GF(256) codes on GPU. IEEE Transactions on Consumer Electronics,

February, 59(1), pp. 273-280.

105

Jamshid, A., Siavash, F. & Konstantinos, N., 2011. Raptor codes in wireless body area

networks. Toronto, ON, Canada, Personal Indoor and Mobile Radio Communications

(PIMRC).

Julia, M. & Thinn, T., 2011. Management of Data Replication For PC Cluster Based

Cloud Storage System. s.l., International Journal on Cloud Computing: Services and

Architecture(IJCCSA).

Kevin, W., 2015. Erasure Coding in Distributed Storage Systems. Zurich, Department

of Informatics, University of Zurich.

Kim, B. & Lee, J., 2004. A simple model for TCP loss recovery performance over

wireless networks. Journal of Communications and Networks, Sept, 6(3), pp. 235-244.

Lee, S. Y., Arunkumar, A. & Wu, C. J., 2015. CAWA: Coordinated warp scheduling

and Cache Prioritization for critical warp acceleration of GPGPU workloads. s.l., s.n.,

pp. 515-527.

Lidl, R. & Niederreiter, H., 1997. Finite Fields. 2 ed. s.l.:Cambridge University Press.

Li, H. et al., 2014. Work in progress: A new algorithm to improve the decoding success

probability of Raptor code. s.l., s.n., pp. 271-274.

Luby, M., 2002. LT codes. s.l., s.n., pp. 271-280.

Lu, W., Lin, X., Lin, J. & Niu, K., 2012. A novel construction method of fountain codes.

Chengdu, China, Communication Technology (ICCT), IEEE 14th International

Conference.

M, A. S. & S, L. K., 2006. Systems and processes for decoding a chain reaction. United

States of America, Patent No. US6856263B2.

106

Mathis, M., Jeffrey, S., Jamshid, M. & O.Teunis, 1997. The Macroscopic Behavior of

the TCP Congestion Avoidance Algorithm. SIGCOMM Comput. Commun. Rev., #jul#,

27(3), pp. 67-82.

Mladenov, T., Nooshabadi, S. & Kim, K., 2012. Efficient GF(256) raptor code

decoding for multimedia broadcast/multicast services and consumer terminals. IEEE

Transactions on Consumer Electronics, May, 58(2), pp. 356-363.

Molnar, S., Moczar, Z. & Sonkoly, B., 2014. How to transfer flows efficiently via the

Internet?. s.l., s.n., pp. 462-466.

Ren, Z., Wang, Z. & Guo, Q., 2014. Rateless codes based file delivery protocols in

deep space communications. s.l., s.n., pp. 1-6.

Rossi, M. et al., 2010. SYNAPSE++: Code Dissemination in Wireless Sensor

Networks Using Fountain Codes. IEEE Transactions on Mobile Computing, Dec,

9(12), pp. 1749-1765.

Salyers, D. C., Striegel, A. D. & Poellabauer, C., 2008. Wireless reliability: Rethinking

802.11 packet loss. s.l., s.n., pp. 1-4.

Shaneel, N. & Paula-Rayond, L., 2013. Network Performance Evaluation of Jumbo

Frames. s.l., 6th International Conference on Emerging Trends in Engineering and

Technology.

Shokrollahi, A., 2006. Raptor codes. IEEE Transactions on Information Theory, June,

52(6), pp. 2551-2567.

Shokrollahi, A. & Luby, M., 2011. Raptor Codes. Foundations and Trends in

Communications and Information Theory, 6(3–4), pp. 213-322.

Yeqing, W. et al., 2013. A Fast Raptor Codes Decoding Strategy for Real-Time. s.l.,

Canadian Center of Science and Education.

107

Yuan, X., Sun, R. & Ping, L., 2010. Simple capacity-achieving ensembles of rateless

erasure-correcting codes. IEEE Transactions on Communications, January, 58(1), pp.

110-117.

Zhu, H., Zhang, G. & Li, G., 2008. A novel degree distribution algorithm of LT codes.

s.l., s.n., pp. 221-224.

108

List of Publication

Ran-Chong, S., Lai, A. C. & Chong, Z. K., 2016. Improve the decoding process of

rateless erasure code and network coding with graphics processing unit in IoT. s.l.,

s.n., pp. 436-439.

Chong, Z.K., Hiroyuku, O., Bryan, N., Goi, B.M., Ewe, H.T., & Ran-Chong, 2016.

Improving Reliable Transmission Throughput with Systematic Random Code. IEEE

Local Computer Networks (LCN), 2016 IEEE 41st Conference, pp. 539-542.

