STUDIES TO IMPROVE THE PROCESS OF DECODING RATELESS
ERASURE CODE WITH HIGHLY-PARALLEL GPU ARCHITECTURE

By

CHONG SIN RAN

A dissertation submitted to the Department of Electrical and Electronic Engineering,
Lee Kong Chian Faculty of Engineering and Science,
Universiti Tunku Abdul Rahman,
in partial fulfilment of the requirements for the degree of
Master of Engineering Science
April 2018

ABSTRACT

STUDIES TO IMPROVE THE PROCESS OF DECODING RATELESS
ERASURE CODE WITH HIGHLY-PARALLEL GPU ARCHITECTURE

CHONG SIN RAN

Rateless Erasure Code (REC) is a type of forward error correcting code for
erasure channel. Such code is often used to improve networking throughput
performance. While the backbone of the REC is made up of linear equations, Gaussian
elimination (GE) with the entry complexity of 0(k?) is the general solver / decoder
for REC. Thus, the decoding phase of REC is the performance bottleneck. Even with
our current central processing unit (CPU) technology that can easily reach the
processing speed of 4GHz, solving thousands of k linear equations using Gaussian
elimination in a CPU is still a time-consuming process. In response, this thesis will
show how the state-of-the-art graphic processing unit (GPU) can replace the
predominant CPU in decoding REC. Furthermore, by utilising parallel processing
technology embedded in the GPU, our study will show that the decoding of REC riding
on the state-of-the-art of the GPU, are capable of performing significantly better than
CPU during the REC’s decoding under certain circumstances. Apart from the typical
GE decoding, we also propose a new decoding algorithm, namely Gaussian
elimination method with matrix multiplication (GEMM) that comes with two degrees
of parallelisation in the GPU. In the first degree of parallelisation, the GEMM will
show its ability of decoding REC of one file 2x faster than GE that is computed in

CPU, while the second degree of parallelisation of GEMM will prove the idea of

decoding thousands of distinct files at once can perform more than 10x faster compared

to a CPU decoding thousands of distinct files.

ACKNOWLEDGEMENT

I would like to express my sincere appreciations to my supervisor Dr. Lai An
Chow, co-supervisor Dr. Tay Yong Haur and mentor Dr. Chong Zan Kai for their
precious guidance throughout my Master’s study. Thank you for their invaluable
knowledge and willingness to steer me in the right direction whenever | needed it.
Besides, | would also like to thank those who have been part of my master study and
also my friends as well as colleagues.

Finally, special thanks to my family members for their unfailing support and

continuous encouragement throughout my years of study.

DECLARATION

| hereby declare that the dissertation is based on my original work except for quotations
and citations which have been duly acknowledged. | also declare that it has not been
previously or concurrently submitted for any other degree at UTAR or other
institutions.

Name

Date

APPROVAL SHEET

This dissertation/thesis entitled “STUDIES TO IMPROVE THE PROCESS OF
DECODING RATELESS ERASURE CODE WITH HIGHLY-PARALLEL
GPU ARCHITECTURE” was prepared by CHONG SIN RAN and submitted as
partial fulfilment of the requirements for the degree of Master of Engineering Science
at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Lai An Chow) Date:.......cooevvinn.l
Supervisor

Department of Electrical and Electronic Engineering

Faculty of Engineering & Science

Universiti Tunku Abdul Rahman

(Dr. Tay Yong Haur) Date:.......covevinnn...
Co-supervisor

Department of Internet Engineering and Computer Science

Faculty of Engineering & Science

Universiti Tunku Abdul Rahman

Vi

LIST OF TABLES

TABLE TITLE PAGE
Table 2.1: The PCD for Random code of k= 10. 23
Table 2.2: GF(2) addition table 24
Table 2.3: GF(256) addition table 25
Table 3.1: Time for GE with Redimension decoding of Random

Code in different k at [= 8192 bits, and y = 2 50
Table 3.2: Threads allocation for parallelisation in MM 71
Table 3.3: Threads allocation for parallelisation in MM 78
Table 4.1: Overall PCD of GEMM and GE 80
Table 5.1: Overall speedup performance of GEMM and GE 100

vii

FIGURE

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:

Figure 1.5:

LIST OF FIGURES

TITLE

Average throughput performance of various TCP
Transmission flow diagram

The encoding and decoding of rateless erasure code
Comparison in Between CPU and GPU.

TCP vs REC Flow Diagram

Figure 2.1: Gaussian elimination decoding time, s vs. message size,

Figure 2.2:
Figure 3.1:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:

Figure 3.8:

Figure 3.9:

Figure 4.1:

Figure 4.2:

k
CPU vs. GPU architecture comparison
Effects of message size k towards the decoding speed.
Pivoting Search
Row Swap
Threads allocation for Swap Row
XOR operations
Threads allocation for XOR operation
Offset of threads distribution.

Timeline of GPU decoding vs the first and second-
degree parallelisation.

Complexity of GE in Time used to solve GE vs. k.

Speedup of GEparallel and GEMM after parallelisation
with GEserial as the base case.

viii

PAGE

28

31

45

56

56

57

58

58

61

75

82

82

Figure 4.3: Complexity of GE in Time used to solve GE vs. the
variation in L.

Figure 4.4: Speedup of GEparallel and GEMM after parallelisation
with GEserial as the base case in the variation of [.

Figure 4.5 Sensitivity of threads allocated toward the speedup
of GEparallel.

Figure 4.6: Sensitivity of threads allocated toward the speedup
of INVparallel.

Figure 4.7: Sensitivity of threads allocated toward the speedup
of MMparallel.

Figure 4.8: The CPU execution timeline

Figure 4.9: The GPU execution timeline

Figure 4.10: Structure of GEparallel in Nvidia Profiler
Figure 4.11: Structure of GEMM in Nvidia Profiler

Figure 4.12: Breakdown of the profiled INVparallel &
GEparallel in summary.

Figure 4.13: Breakdown of the profiled MMparallel &
GEparallel in summary.

Figure 4.14: Time used to decode a files using GEserial.

Figure 4.15: Speedup of Bulk decoding GEparallel and GEMM
as compared to GEserial.

84

84

85

86

87

89

89

90

92

93

94

97

98

BEC

BP

BPGE

CPU

CUDA

GE

GEMM

GPU

IDGE

loT

LDPC

MTU

PCD

TCP

WSN

LIST OF SYMBOLS / ABBREVIATIONS

Binary erasure channel

Belief Propagation

Belief Propagation Gaussian Elimination
Central processing unit

Compute Unified Device Architecture
Gaussian elimination

Gaussian elimination with matrix multiplication
Graphical Processing Unit

Inactivation Decoding Gaussian Elimination
Internet of Things
Low-Density-Parity-Check Code

Maximum Transmission Unit

Probability of complete decoding
Transmission control protocol

Wireless Sensor Network

Amount of message symbols
Numbers of received packets
Encoded symbol length

Overhead constant

TABLE OF CONTENTS

ABSTRACT i

ACKNOWLEDGEMENT \Y

DECLARATION %

APPROVAL SHEET Vi

LIST OF TABLES Vil

LIST OF FIGURES viil

LIST OF SYMBOLS / ABBREVIATIONS X

LIST OF APPENDICES Error! Bookmark not defined.

TABLE OF CONTENTS Xi
CHAPTER

1 INTRODUCTION 1

1.1 Background 5

1.1.1 Impact of Rateless Erasure Code to Network 6

1.1.2 Rateless Erasure Code Riding on GPU 7

1.2 Research Problem 8

1.3 Objective 9

1.4 Outline 9

2 LITERATURE REVIEW 12

2.1 Rateless Erasure Code Variant 12

2.1.1 LT Code 14

2.1.2 Raptor Code 17

2.1.3 Random Code 18

2.2 REC Applications 21

2.2.1 REC in Wireless Sensor Network 21

2.2.2 REC in Distributed Data Storage/ Cloud storage 21
Xi

2.3

2.4
2.5
2.6
2.7
2.8

Bottlenecks in Rateless Erasure Code 22

2.3.1 Overhead 22
2.3.2 Performance Speed 26
Gaussian Elimination 27
Belief Propagation 28
Inactivation decoding Gaussian Elimination 29
Parallel Processing for Rateless Erasure Code 30
Relationship of k and 1 32

GAUSSIAN ELIMINATION IN RATELESS ERASURE CODE

34
3.1 Encoding 34
3.2 Decoding 34
3.2.1 Probability of Complete Decoding (PCD) 35
3.2.2 Decoding Using Gaussian Elimination 39
3.2.3 Operational count for Gaussian Elimination 43
3.3 Redimensioning 45
3.3.1 Encoding of Redimensioning 46
3.3.2 Decoding of Redimensioning 47
34 First Degree Parallel Processing 51
3.4.1 Implementation of GPU Unit for Gaussian
Elimination 51
3.4.2 ldeal vs. Practical Parallelisation 54
3.4.3 Parallelisation of Gaussian Elimination 55
3.4.4 Construction of GEparallel in CUDA 59
3.5 Gaussian Elimination with Matrix Multiplication (GEMM) 63
3.5.1 Inversion, INV 64
3.5.2 Matrix Multiplication, MM 70
3.6 Second Degree Parallelisation 74
3.6.1 Bulk Decoding 74
RESULT AND DISCUSSION 79
4.1 Experiment Platforms 79

X1

4.2 Overhead test in GE and GEMM 80
4.3 First Degree Parallelisation - GEparallel V.S. GEMM 81

4.3.1 k Variation 81
4.3.2 lVariation 83
4.3.3 Threads allocation Variation 85
4.4 Analysis and Discussion 88
441 GEMM vs GEparallel 95
4.5 Second Degree Parallelisation - Single File Parallelisation vs
Bulk Decoding Parallelisation 96
45.1 Experimental Result 96
CONCLUSION AND RECOMMENDATIONS 99
51 Future Work 100
5.1.1 Hardware Variety 101
5.1.2 Machine Learning 101
5.1.3 Protocol Design 101

Xiii

CHAPTER 1

INTRODUCTION

The communication network is a fast-growing technology that bridges the
information in physical and cyber domains. Generally, most of the internet-connected
devices are using the wireless channel and they are susceptible to the environmental
interference. Furthermore, the ever-growing number of internet-connected devices
continuously generate traffic that forms exponential and can potentially increase the

frequencies of packet losses; hence, significantly decreasing the Internet throughput.

Average throughput

140
fry —e— TCP Reno
§'1zn TCP Vegas+SACK
= —— TCP SACK
g 100 -#- FECTCP
o
5 80+
-
2 60+
=
=
g 20
£
a 20
Ed

0 | 1

| I
0 5 10 15 20 25
Segment loss rate [%]

Figure 1.1: Average throughput performance of various TCP

Figure 1.1 demonstrate the effects of packet loss towards the throughput of
various implementation of TCP. Other than FECTCP (Algahtani, et al., 2016) which
implements a TCP-like transport protocol by using Rateless Erasure Code, the other
TCP variants show their high sensitivity towards packet loss. In other words, REC can
play an important role in solving the packet loss problem in TCP/IP by encoding a

message of k symbols into theoretically an infinite number of encoded symbols. In

1

general, rateless erasure code (REC) is a type of error correcting code for the
communication system that promises to achieve efficient erasure mitigation over lossy
transmission channels and to improve bandwidth utilization of our communication
networks. If the channel is lossy, the message is still recoverable given that sufficient

encoded symbols (i.e. n > k) are received.

Encode Transmission Decode
channel
[I [[I
| A | AV4 J | naclsate J | A JJ
M U_> X Packets Packets M
Message Encoded Sender Receiver Decoded Message
Symbols Symbols Symbols

Figure 1.2: Transmission flow diagram

Figure 1.2 demonstrates briefly the transmission process of the communication
network. Before a message is sent, it will first be subdivided into kK amount of message
symbols (M), then M will be encoded into several encoded symbols (X) for error
handling mechanism according to the standards set by the particular protocol, and
forms packets that are ready to be sent. A packet in a networking is often called a
datagram, and it is a self-contained independent data carrier that carries the partial
knowledge of the encoded information as well as the address of its sender and receiver
etc. After all the relevant packets are received at the destination, the original message

will be reconstructed according to that protocol’s specific decoding process.

Original Message Q O O O

Encoder

CodedSymbols D) D C) Q) === ==

Erasure Channel l l i l l

Rec;iy\-'liilx(';’lgded % @ % @

1

; o —
Mo OO QOO

Figure 1.3: The encoding and decoding of rateless erasure code

Figure 1.3 demonstrates briefly the encoding and decoding process of REC.
First, k amount of message symbols from the original message will arbitrarily generate
a theoretically limitless number of encoded packets, and any subset of the n encoded
packets that is slightly more than k, can be used to recover the original message at the
receiver side. Such transmission allows the packets to be decode regardless of its
sequences and subsequently minimise the needs for retransmission. However, one of
the aspects that affect the applicability of REC is the high computational resources

required by the decoding of REC.

CPU/GPU Architecture Comparison

CPU

Corel Core2
Cored Cored

Figure 1.4: Comparison in Between CPU and GPU.

The gain from the REC is therefore paid for by the price of high computational
resources in the decoding process (Chong, et al., 2016). To address this issue, we
propose to speed up the decoding process using graphical processing unit (GPU) —a
computer peripheral that is capable of processing massive amount of data in parallel.
Generally, GPU consists of thousands of cores as compared to CPU but the former
runs at a relatively lower clock speed (See Figure 1.4). Such computational
architecture advancement challenges the proper design of parallel algorithms in

utilising the full potential of GPU to reach the theoretical speed limit.

This chapter introduces the relationship between Gaussian Elimination and
REC’s impact to our networking system. It also explains the contribution of this project
to the coding theory field particularly on enhancing Gaussian Elimination performance

speed by using GPU.

In this thesis, we will briefly explain how to maximize the performance of REC
by utilizing the state of art of GPU. GPU consists of thousands of computing cores that
it run independently, each of GPU’s core has lesser complexity than the core in CPU.
Furthermore, GPU’s operation requires certain computational overheads, hence we
will study and analyze whether the GPU can help in improving the decoding
performance of REC. Other than that, one more reason to study on GPU is due to its
relatively low cost compared to mainstream CPUs. For example by using the
information that we have as the reference, the price of GPU-NVIDIA QUADRO

K620 WORKSTATION GRAPHICS CARD is retailed at RM900 (July, 2017) while

https://www.lelong.com.my/leadtek-nvidia-quadro-k620-workstation-graphics-hubbyhoneyworld-I2472334-2007-01-Sale-I.htm
https://www.lelong.com.my/leadtek-nvidia-quadro-k620-workstation-graphics-hubbyhoneyworld-I2472334-2007-01-Sale-I.htm

CPU-HP Xeon E3 Z240 Tower Workstation (HP-V1Z90PA) is retailing at a higher

cost of RM4500 (July, 2017).

1.1 Background

Data transmission is a process of transmitting certain numbers of relevant
packets from sender to receiver and this transmission is mediated by a communication
protocol. TCP/IP is one of the most widely used communication protocol to ensure the

reliability and the quality of packets during data transmission.

In general, before a message file is being transmitted, it will be encoded and
subdivide into packets by following the TCP/IP standards. These packets will then
travel individually to the receiver, and TCP/IP will “remounts” the packets in order to
assemble the packets back into the original file, If for instance a packet is lost on the
receiving side for reasons such as bit error, timeout, packets drop on network
congestion and even wrong packets sequence, TCP/IP at the receiving side will
feedback a signal to the sender, asking it to re-send the particular missing packets until

all the packets have reached the destination.

However, due to the properties of TCP/IP that requires an acknowledgment for
every received or lost packets, the transmission process would be very inefficient and
can easily clutter the network. Furthermore, our communication system is being
increasingly used for wireless communication, where a slight error could possibly lead

to significant throughput degradation. For a long time, many researchers have claimed

that TCP is inefficient in the high-speed internet. (Salyers, et al., 2008), (Kim & Lee,

2004).

1.1.1 Impact of Rateless Erasure Code to Network
In the past decades, REC has been proposed as the solution for such issue, with
the properties mentioned previously, where “A REC encoded file can be retrieved from

any subsets of the encoded symbols disregarding of it sequences”.

The mechanism in TCP that requires acknowledgement for every lost and
received packets to ensures data transmission reliability, is therefore less important in
REC as data transmission by using REC doesn’t require acknowledgement for every
received or lost packets, and the only important thing in REC is that the receiver side

received sufficient n (n > k) amount of encoded symbol for complete decoding.

Flow Diagram of TCP vs REC
=Loss packet = Loss packet

20 25 30 35

10 15

Transmission Rate, Mbps

Time

—e—TCP —@—REC

Figure 1.5: TCP vs REC Flow Diagram

Figure 1.5 demonstrates the transmission rate of TCP and REC during packets
loss. For TCP, whenever a packet is sent successfully (sender receives an
acknowledgement of the received packet), the transmission rate of TCP will increase
exponentially until a packet loss is detected (sender received a failed to transmit signal
or fail to receive acknowledgement signal). At this point, the transmission rate will be
halved, and the process will continue until all the packets are delivered successfully
(Mathis, etal., 1997). While for REC, the transmission rate is at its near maximum rate
from the beginning until the end of the transmission regardless of packet loss (Yuan,
et al., 2010). Since REC can transmit the packets at near the maximum transmission
rate at all time, more bandwidth is utilised in transmitting the packets instead of

wasting them on the acknowledgment mechanism of lost and received packets.

1.1.2 Rateless Erasure Code Riding on GPU

Ever since REC appears a few decades ago, many variants of REC have been
proposed, i.e. Random code (Chong, et al., 2015), Lt code (Luby, 2002), and Raptor
code (Shokrollahi, 2006) etc, in order to solve the REC’s common issues such as the

decoding speed or overhead problems.

All RECs are usually viewed as the linear codes over Galois fields, and are
built on top of the linear algebra system that generally makes them optimally decodable
using an algorithm namely Gaussian elimination (GE) (Anghel, et al., 2011). In
contrast, such method of decoding linear system would be very computationally
intensive. To address this issue, the most promising solution seems to be the

implementation of parallel processing using GPU.

7

The exceptional GPU computing power is very attractive to general-purpose
system development. However, the critical challenge during coding for GPU is the
smaller degree of parallelization in the REC’s decoding process. GE requires the
decoding of each step to start only after the decoding of the previous step is finished.

This implies that the parallel decoding process will be limited by GE’s independencies.

Since GPU requires a certain large amount of threads to reach peak
performance, a lesser parallelization degree will limit the performance gain by parallel
processing. In addition, this research will be testing on the parallelization granularity
of GPU-based decoding schemes and their performance for the different granularity

setup. The details of the parallelization schemes will be presents in this thesis later.

Recently, Applications that harness the massive parallelism of GPU to speed
up computational task have become increasingly common. In this research, we propose
a new parallel decoding algorithm namely the Gaussian Elimination with Matrix
Multiplication (GEMM) as matrix multiplication is known to be highly parallelizable.
The goal of this study is to research on how to effectively offload parallel computations

to the graphics card, and analyses the impact of GPU toward REC.

1.2 Research Problem

In previous research papers (Anghel, et al., 2010), (Chong, et al., 2015),
(Chong, et al., 2016), it was shown that REC can lead to more scalable and robust
protocols with better utilization of the available bandwidth at poor network condition.

8

However, to date, we have not observed any commercial application or protocol taking
advantage of the power of REC. We believe that the main cause of this observation is
due to the high complexity of the decoding algorithm- Gaussian elimination, employed
in REC. Currently, Gaussian elimination is always the main component in REC’s
decoding schemes, as such it is crucial to speed up the performance of Gaussian
Elimination by utilising modern state-of-the-art of computer accelerator — GPU. In this

dissertation, the research problem is defined as the following:

“How to design a scalable and robust Rateless Erasure Code decoding algorithm

that can utilise the resources in GPU”

1.3 Objective

Associate with the research problem, the objectives in this research will be:

To study the state-of-art of REC that uses GE as the core in the decoding

process.

e To propose a new parallel algorithm to speed up GE components with REC

constraints
e To evaluate the scalability of the proposed algorithm.

e To analyse the proposed algorithm experimentally.

1.4 Outline

In this chapter, the issue on the traditional communication network are

discussed, and the deployment of REC to improve the performance of the current

communication network. Nonetheless, REC is not widely deployed due to the high

complexity of encoding and decoding processes.

In Chapter 2, a few REC will be review to highlight the research problem. Since
most of the REC are linear codes, they are decodable by many different mathematical
approaches. Their advantages and disadvantages will be discussed from different

aspects.

Chapter 3 introduces the core decoding method for REC, i.e., Gaussian
Elimination, whose time complexity is 0(k3). Basically, the chapter will cover the
state of art of Gaussian elimination and propose a new parallel algorithm called
GEMM to improve the performance of REC with any input k, using re-dimensioning
techniques. Such parallel algorithms will be implemented and compared on GPU
platforms. Furthermore, due to the inefficiency of parallelisation in Gaussian
Elimination, this research proposes GEMM with two degrees of parallelisation. In
short, the first-degree parallelisation will be performed on single file, and we will see
significant improvement on the GPU decoding performance compared to CPU while
the second-degree parallelisation of GEMM will be performed on multiple files, e.g.,
we propose to decode 1000 files in parallel while each file will be parallel processed

at the same time as well.

Chapter 4 will demonstrate the result and comparison of convention Gaussian
elimination (base case) with our proposed double degree parallelised GEMM, where
GPU resources can be potentially exploited. In this chapter, analysis according to the

experimental result will be done to prove the workability of our proposed algorithm,

10

we will also discuss the performance of the proposed algorithm from a different aspect
with different parameters to show its scalability. Finally, we will draw a conclusion

and discuss the potential future work in Chapter 5.

11

CHAPTER 2

LITERATURE REVIEW

Rateless erasure codes (also called the Fountain codes) are a family of error
correcting codes where the rate of transmitting coded packet can be adjusted on the fly.
Such an approach is termed Digital Fountain (DF), as the transmitter is used as a
fountain that emits coded packets that are continuously sent until the receiver has
received the number of packets required for 100% probability of complete decoding
(PCD) (Lu, etal., 2012). However, the deployment of rateless erasure code is limited,
primarily due to the added computational complexity associated with linear coding-

based encoding and decoding.

2.1 Rateless Erasure Code Variant

Variant of REC comes in as improvement to fit into different situation, e.g.,
the REC that has lower overheads will be used in lossy situation (deep space
communication, long-distance communication, etc.) where a packet suffers high loss
rate during transmission (Ren, et al., 2014); REC with high encoding and decoding
speed performance are more suitable for daily communications (wireless
communication etc.) with lower packet loss rate (Assefa, et al., 2016). In general, all
the REC’s are encoded in a way where:

Gooxk X Myx; = Xooxi (2-1)

12

G = Generated information for encoding
M = Message symbols

X = Encoded symbols

k = Numbers of message symbols

[= Length of one message symbols

The method of generating G determines the properties of the particular REC;
different REC will possess different G for the encoding process, as long as the G can
still be generated according to the particular REC’s standard, the message can be

theoretically encoded into an infinite number of encoded symbols.

Then the encoded symbols will be augmented together with its generating
information to form packets in the form of G, |X,, ,5=0,1,2;3..0 » These packets will be
transmitted to the receiver side for decoding since the packet G|X are generated with
linear algebra, they are basically decodable using Gaussian elimination (Bioglio, et al.,
2009), as long as sufficient n numbers of packets are received. The equations will be
explained in detail in Chapter 3. In this section, we will briefly introduce and review

several existing REC.

13

2.1.1 LT Code
LT codes (Luby, 2002), are the first practical realization of the digital fountain
approach, also called universal erasure codes. The main advantages of LT codes are:
1. The number of packets that can be generated from the message file is
potentially infinite, or researchers call it on-the-fly (the encoded packets will
be generated whenever it is needed).

2. Low complexity for both encoding and decoding processes (fast).

According to the linear equation for REC where ¢ X M = X, LT code
generates G by using fine tune random degree distribution (Cheong & Fan, 2016),
(Luby, 2002), i.e., the ideal Soliton distribution and the robust Soliton distribution for

the optimal encoding and decoding performance (Zhu, et al., 2008).

2.1.1.1 Encoding
For the encoding of LT code (Luby, 2002):
1. Divide the message into equal length [bits, resulting in k numbers of messages

symbols as shown; one row in the matrix will represent one message symbol.

0 1.0 0O
B 10 0 1 1
M = 01000100111000100100 — 10 0 0 1 k
0 01 0 0/

14

2. Randomly choose the degree (d) from fined tuned degree distribution for

generating the G, e.g., let d = 3 (A row in G will be randomly allocated with

|
J

0 0 1 17 oxk

a maximum of 3 “1°s)

BN e R == Y
R R ROOO
R O OR O R
ToOOoORO OO

—

3. Matrix multiply ¢ and M to form X, and the corresponding G will be

augmented with X to form G |X packet for transmission.

T
o -

—_

o

—_

S OO K
oo O
oS OoOr O
(=3 e =)

R R ROOCO
Srhrro

R O OO R
R O OR OR
TrTOORO OO
NN~
X
O R R R O
R OO0 R -
L.LOoOoOoORrRrROo OO
e R R RO OO
TCTO R R R O

T ——
o -

—_

=

NN

Certain packet
Certain packet

GIX =

R olop P~
R RrlRP P o
o olopb -
o olRrp p o
<= = ==
R ook k-~
Loolrp b o
R RRPE P o
o Rr|RRk PR

By encoding the file in LT code method, the encoded packets are either
completely certain (only a ‘1’ in) or uncertain (more than a ‘1’ in G). By using the

method called belief propagation(BP) which can be only used in LT code decoding,
15

the certain encoded packet will be used to eliminate all the uncertain packets back to

certain packets during the decoding.

2.1.1.2 Decoding

The fastest way to decode LT code packets is to use the propagation method stated
previously namely belief propagation (BP) (Chen, et al., 2013). As already mentioned,
the packets consist of certain and uncertain packets. With this condition, the BP
decoding will be demonstrated as shown:

1. Find any one row that contains certain packet. (only a ‘1’ in G)

/
[

i
G|X=|

A\

Certain packet

S Y R [FEY
Rk R R ololo
ek © O RO
o o R o|lo|lo
=T e =
RN = Y = [S (U
L.ooRrololo
SRS) f=] [=]
O R R Rol-

0 01 11 0 1 0 1
2. Propagate one of the certain packets in step one to all the related uncertain

packets (uncertain packets that contain ‘1’ in the same column with the certain

packet), by adding them with the value of the “certain packet”.

GIX =

coo00cOo R O
R R RO OO
R O OR O R
Too RO OO
SR RPRFROR
TcoOo00O0 RO
LoOo0oRrRoOCO
R R PO OO
O R RROPR

16

3. [Iterate the first two step until all uncertain packets are eliminated (left side of
matrix becomes identity matrix), and the X on the right will convert back into

M.

Decoded

Identity matrix message

G|X =

O OOk Kk O
v OO O O

LO Ok O OO

O OO0 O K
O OO0 Rk O
SO Ol R O
ToOoOIORr R, O

According to LT code (Luby, 2002), the LT codes overheads is calculated based on the

soliton distribution; the overheads required in LT code will decrease as the k increase.

2.1.2 Raptor Code
The Raptor code is an extension of LT code (Shokrollahi, 2006), whereby a
pre-coding stage (usually low-density-parity code (LDPC) code, a simple error

correcting code with parity check) is used to extend the message symbols.

2.1.2.1 Encoding
The encoding of Raptor code is as shown:
1. Encode the message symbols by using LDPC code to get the optimal numbers
of encoded symbols for degree distribution in the next step.
2. Then these pre-coded symbols will be encoded with LT encoding method in

the previous section.

17

2.1.2.2 Decoding
After that, the received raptor code’s packets will be decoded using BP which

applies the same method as that for the decoding of LT code.

In general, the pre-coding stage that extends the numbers of message symbols
are used to reach the optimal message number that is suitable for degree distribution
in LT code, because if the numbers of message symbols are fewer than a certain value,
it will not have an optimal degree distribution, and also have a higher chance to fail

during decoding (Li, et al., 2014).

2.1.3 Random Code

Random code is another variant of REC that has lower overheads, compared
to LT and Raptor codes that have optimally e = 0.03k overheads only at large k,
Random code only needs & = 10 overheads for 99.99% PCD. (Chong, et al., 2015),

(Chong, et al., 2016)

2.1.3.1 Encoding
Just like standard REC encoding, Random code follows the general encoding

where:

GXM=X.

18

The encoding of Random code is demonstrated below:

1. Divide the message into equal length I bits which results in k numbers of
messages symbols as shown. One row in the matrix will represent one message

symbol.

[o~

M = 01000100111000100100 —

=N N =
S OO -
oo O
oS O O
SO RrFERk O |
=

X

==

2. Randomly generate the G. Unlike LT code, the Random code can generate its
G without following the degree distribution. The 0 to 1 ratio in the whole

generated matrix should be 1:1.

./

PR OO R Rk
R R RO RO

e O O PP O K
O O Rk OO

Uiy
o -
—_
—_

coxXk

3. Matrix multiply ¢ and M to form X, and the corresponding G will be

augmented with X to form G |X packet for transmission.

O OO K
_ OO O
cooRrR o
O R R O
OR RR R PR

Y e = = =)
SRRk O

R O OO R
e OO R O
TO O RE OO
e R O OO R R
WO O RRFR OO
R R RO RO
TO R R R PR

—_
(e}
[
[
[
[
o
o

19

S =l e RS G SN
R R RO RO
R OOR O R
O O Rk OO
O R R R R
PR OO R R
OO RR OO
R R RO RO

O R R R R R
_____/

- S oo
o -
—_
—_
—_
—_
—_
(e}
o

By encoding the message using the random code way, every encoded packet is
uncertain, where all the encoded packets are made up of an average k/2 number of

messages symbols by probability.

2.1.3.2 Decoding
In this case, when GE is used for the decoding, the n should be k + 10 for 99.99%
PCD according to Kolchin’s theorem (Chong, et al., 2015), and the decoding process
is shown below:
1. When n numbers of packets in the form of G|X are received, GE decoding
commence.
2. GE in general convert G|X — I|M during decoding. The detail process of GE
will be discussed in the next chapter.
Since the decoding algorithm for Random code is GE that has an entry complexity of
0(k?), the decoding process is generally slower than LT and Raptor Code that uses

fast decoding algorithm namely belief propagation (BP).

20

2.2 REC Applications
REC is a technique of applying linear algebra to all sorts of digital

communication; it includes the data transmission in a lossy environment such as deep
space communication (Ren, et al., 2014) and wireless communications (Kim & Lee,
2004) that we had mentioned earlier. Other than that, the REC often found in the real-
life applications are the wireless sensor network (Hagedorn, et al., 2008) and

distributed data storage (Anghel, et al., 2011).

221 REC in Wireless Sensor Network

Over the years, the application of REC in wireless sensor network (WSN) has
always been a popular topic (Hagedorn, et al., 2008), whether in reducing power
consumption where managing power consumption of thousand sensors can be very
tedious and impractical and also environment of sensor where transmission is
susceptible to interference. Numerical results from the paper (Jamshid, et al., 2011),
show that the implementation of Raptor coded in their WSN network model is more

energy efficient and robust than those normal un-coded WSN.

2.2.2 REC in Distributed Data Storage/ Cloud storage

Another interesting application of REC will be the distributed storage system
or cloud storage (Anghel, et al., 2011). Recently, the ever-increasing amount of data
generated from our daily internet usage are the main reason why servers (often simple
commodity devices/machines) suffers from frequent hardware failures (Kevin, 2015),
and the most typical method used to solve such issue is by replication, where a set of
data will be duplicated and stored into 3 distinct storage systems, even when one side
of data is corrupted or potentially gone missing, the same data from another storage is

able to cater the corrupted or missing part (Julia & Thinn, 2011).
21

However, due to the poor 33% inefficiency of such replication method,
researchers at Facebook, Microsoft, and Qualcomm etc. implemented the REC for the
use in their distributed storage systems (Kevin, 2015). Such approach potentially
reduces 60% of the storage space overhead, with the properties of REC that able to

recover to some extent data that was corrupted or missing.

2.3 Bottlenecks in Rateless Erasure Code
In general, the development of REC usually faces common issues such as:
e Overhead
e Performance Speed
And these issues are the reasons why REC consist of many others variations. e.g.,

Raptor code, Lt code, and Random code.

2.3.1 Overhead

The overhead of rateless erasure codes such as LT code and Raptor code is
only asymptotically optimal (Yeqing, et al., 2013), e.g., in real-time applications.
Where the input k is small, the overhead could become larger than 10%. On the other
hand, some rateless codes such as Random code can maintain its small overhead even
for small values of k, at the cost of increasing its computational decoding complexity.
Trade-off between overhead and complexity is the key point in the consideration of

design phase of a rateless erasure scheme (Li, et al., 2014).

As mentioned previously, when k message symbols are encoded with REC, the
symbols will be granted the ability to be sent out in random order and also have certain

immunity towards packet loss. However, in order to successfully decode the received
22

REC packets, n (slightly more than k) numbers of packets are required for a successful
complete decoding (a complete decoding indicates the matrices form of the packets
are able to reach full rank, else more overheads packets have to be received) which is

indicated by:

n=k+e (2.2)

where
n = number of received packets
k = amount of messages symbols

& = overheads

In general, n is usually slightly larger than the k value, and different REC will
have different n for a high probability of complete decoding (PCD). Packets received

in matrix form will reach full rank at 99.99% when n numbers of packets are received.

In the research on Random code’s PCD (Chong, et al., 2015), it is shown that:

Table 2.1: The PCD for Random code of k= 10.

n PCD n PCD

k 28.66% k+7 99.22%
k+1 57.76% k+8 99.45%
k+2 78.01% k+9 99.81%
k+3 89.02% k+10 99.9996%
k+4 93.88% k+11 99.99999%

23

k+5 96.91% k+12 99.999999%

k+6 98.45% k+13 99.99999999%

Results in Table 2.1 show the PCD of a variant of REC namely Random code,
where such code has the capability to reach a 99.99% PCD whenever n = k + 10

number of packets are received.

Over the years several methods were proposed to reduce the overhead in REC,
whereby sender can optimally adjust its Galois field (Hu, et al.,, 2012), e.g.,
GF(2) Raptor code might consist of ¢ = 0.03k at k > 2000 for 99.99% PCD, but
implementation of GF(256) Raptor code (RaptorQ) will only require ¢ = 1 for 99.99%
PCD. However, increasing the Galois field “degree” also signified the increases in
decoding complexity because, from the perspectives of computer architecture (Lidl &
Niederreiter, 1997), Galois field indicates a new set of self-defined operations, For

example,

Table 2.2: GF(2) addition table

+ 0 1
0 0 1
1 1 0

GF2 addition table

24

in GF(2), we are able to utilise computation of XOR operation to replace the GF(2)
addition because they are the same. e.g. 1 + 1 in GF(2) is 0 while 1 XOR with 1 also

ZEro.

Table 2.3: GF(256) addition table

0 1 2 3 4 5 6 7 8 9 A B 6 D E F
63 [7C | 77 | 7B [F2 | 6B | 6F | C5 | 30 | 01 | 67 | 2B | FE | D7 | AB | 76
CA |8 |CO|77D |FA | 5 | 47 | FO |AD | D4 | A2 | AF | 9C | A4 | 72 | CO
B7 | FD | 93 [26 | 36 | 3F | F7 [CC | 34 | A5 | E5 | F1 | 71 | D8 | 31 15
04 |C7 |23 [C3 |18 |9 | 05| 9A (07 [12 | 80 | E2 | EB | 27 | B2 | 75
09 | 8 |2C [IA| 1B | 6E | 5A | AO | 52 [3B | D6 | B3 | 29 | E3 | 2F | 84
53 (D1 | 00 [ED [20 | FC | Bl | 5B | 6A | CB | BE | 39 | 4A | 4C | 58 | CF
DO | EF | AA | FB | 43 | 4D | 33 [8 | 45 | F9 | 02 | 7F | 50 | 3C | 9F | A8
51 | A3 | 40 [8F | 92 | 9D | 38 | F5 | BC | B6 | DA | 21 10 | FF | F3 | D2
CD|(OC | 13 |EC|5F |97 | 44 | 17 |C4 | A7 | 7E | 3D | 64 | 5D | 19 | 73
60 [81 | 4F [DC | 22 | 2A | 90 | 8 | 46 | EE | B8 | 14 | DE | 5E | OB | DB
EO | 32 | 3A | 0A | 49 | 06 [24 [5C | C2 | D3 | AC | 62 [91 | 95 [E4 | 79
E7 [C8 | 37 | 6D | 8D | D5 | 4E | A9 | 6C | 56 | F4 [EA | 65 | 7A | AE | 08
BA| 78 | 25 | 2E | IC | A6 | B4 | C6 | E8 | DD | 74 | IF | 4B | BD | 8B | 8A
70 | 3E | B5 | 66 | 48 | 03 | F6 | OE | 61 [35 | 57 | B9 [8 [C1 | 1D | 9E
El | F8 [98 | 11 [69 [D9 | E | 94 [9B | 1IE | 87 | E9 | CE | 55 | 28 | DF
8C | A1 | 8 | 0OD |BF | E6 | 42 | 68 | 41 | 99 | 2D | OF | BO | 54 | BB | 16

sl Hesl Rwl K@) Rl o V=) o] B 1 K=Y K E N 2N S i K =)

But for GF(256), there are no computation operation to replace GF(256) addition

addition as shown in Table 2.3. In this case a self-defined library would be needed. In
another word, the time used in reading the value from the self-defined library in this
GF(256) addition will be far slower than GF(2) addition that can be replaced by XOR
operation, (Mladenov, et al., 2012). Hence in this thesis, the REC will be constructed

under GF(2) for optimized performance purpose.

Table 2.3: GF(256) addition table

25

2.3.2 Performance Speed

Apart from overheads, the performance speed is also one of the issues arising
from the implementation of REC (Bioglio, et al., 2009). Note that the performing speed
here is not referring to the throughput performance but the speed of encoding and
decoding, specifically the delay of the transmission due to the decoding of the packets.
It is a common issue for implementation of rateless erasure code. While this is
compared with the classical communication network systems, a packet is usually
directly “decodable”, which means that packets sent will not require any further work
or require the least effort to be read or decoded. The packet only need to be received
in correct order and not lost for reliability, e.g. the TCP/IP mechanism that prioritize

acknowledgement for all lost and received packets. (Salyers, et al., 2008)

Conversely, when a message is implemented with REC, the need of such
acknowledgment for all lost and received packets is minimized, which means that
more bandwidth can be utilized for transmission instead of being wasted on
acknowledging the lost and received packets (Chong, et al., 2016). In exchange, extra
work has to be done on the encoding and decoding phase. Especially at the decoding
phase, to decode and reconstruct the REC’s received packets back into original
message, it requires a high complexity decoding algorithm namely Gaussian

elimination (GE) (Chong, et al., 2016).

For being the most popular variants of REC, LT code (Luby, 2002) and Raptor
code (Shokrollahi, 2006) advocate the idea of linear decoding speed; Instead of

decoding using GE, LT and Raptor code can decode with their own decoding algorithm

26

namely Belief Propagation (BP) with a low entry complexity of near O (k) while the
complexity will rise to 0(k?) if they are decoded by using GE (Chen, et al., 2013).
However, BP had a relatively lower PCD compared to GE which will be explained in

the later section.

2.4 Gaussian Elimination

Gaussian elimination (GE) is a method widely used in many applications, it is
implemented in application such as the wireless sensor network (Rossi, et al., 2010),
linear coding (Li, et al., 2014), network coding (Hagedorn, et al., 2008) , and even
encryption as well as scheduling algorithm.

In this research, where GE is used for the decoding algorithm for REC, study
has shown that the complexity of GE is 0(k?) (Bioglio, et al., 2009), which means
that the time to decode a k size matrix would have increased exponentially as k

increases as shown in the graph.

27

Time to decode REC of different message size

using GE

2.5

2

® 15
]
£

= 1

0.5

0

0 256 512 768 1024

message size, k

Figure 2.1: Gaussian elimination decoding time, s vs. message size, k

2.5 Belief Propagation
Belief Propagation (BP) is proposed while the decoding of REC is slow due to

GE, researchers had come out with other variation of REC such as the LT code and
Raptor code that allows for faster-decoding speed. This two codes have their own
unique decoding method namely BP that has a decoding complexity of O(kIn k) and
approximately O (k) respectively, this also indicates that they can perform faster than
GE in term of lesser complexity. (Shokrollahi & Luby, 2011) The steps of BP are

explained in details in section 2.1.1.2 and 2.1.2.2.

Although decoding using BP is fast, it is found that decoding using GE has an
advantage in terms of successful decoding rate. When the received packets are
decodable using GE, it is not necessarily decodable using the BP (Hu, et al., 2012),

(Bioglio, et al., 2009).

28

2.6 Inactivation decoding Gaussian Elimination

Inactive decoding Gaussian elimination (IDGE) also known as the Belief
propagation Gaussian elimination (BPGE), is one of the improvised decoding methods
used particularly for the Raptor and LT code (Hu, et al., 2012) & (Mladenov, et al.,
2012), this method imposes a higher decoding complexity compared to BP algorithm
while less complex than Gaussian elimination. At the same time, IDGE is capable of

having a high PCD like Gaussian elimination when it is compared to BP decoding.

This method combines the decoding method of belief propagation (BP) in LT
code and the decoding with Gaussian elimination and is denoted by BP-GE or IDGE
(M & S, 2006). In this case, several steps are needed to be performed when the packets

are received.

First, all the received packets will be processed with Belief propagation that
converts most of the uncertain packets by using the certain packet. In this case, there
will be chances that some uncertain packets are leftover, this forms a new entry of
packets that are not decodable using BP since all the certain packets are used. Then
these remaining new entries of uncertain packet will be processed by Gaussian

elimination for a complete decoding.

The advantage of this method will be, since most of the packets are already
decoded by BP, the leftover packets that are not decodable using BP even if it is linearly
independent will be relatively smaller in k size when it is processed by Gaussian

elimination, which will dynamically reduce the decoding time as GE is sensitive to the

29

k size with the entry complexity of O(k®). However, such a method is uniquely
applicable only for Raptor and LT code, and there is no other REC variant can use this
method. Other than that, by profiling IDGE, it is seen that more than 90% of the
decoding time is still consumed at the GE part (Yeqing, et al., 2013), hence enhancing
the performance of GE is an essential thing to do to improve the decoding speed of

REC.

2.7 Parallel Processing for Rateless Erasure Code

Due to the fact that GE is the optimal solution for linear independent matrices
compare to other solvers (Bioglio, et al., 2009), (Hu, et al., 2012), many researchers
have come out with several ways to speed up GE, and the most promising one appears

to be the parallel processing of GE, (Hu, et al., 2013), (Chong, et al., 2016)

On the other hand, GPU is by far the most popular device for parallel
processing. In the study of Raptor GF(2) (Hu, et al., 2012), it is shown that the
implementation of GE into GPU outperforms the other decoding method (BP and
IDGE) in terms of parallelization, which concludes that GE is by far the most suitable
decoding method for parallelization (Hu, et al., 2013). Most importantly, the
workspace of GPU is independent of CPU in executing a task, this means that when

GPU is performing a task, CPU is able to handle another task at the same time.

Recently, more and more applications traditionally run on the CPU are being
re-implemented to run on the GPU. A decade ago, when Nvidia offered programming

interfaces such as CUDA (CUDA, 2017) for making parallel processing accessible
30

to all programmers, it has removed the limitation of GPU that was initially designed
for computer graphics. In this thesis, CUDA will be the main platform for the

parallelisation process.

CPU/GPU Architecture Comparison
CPU

Figure 2.2: CPU vs. GPU architecture comparison

GPU

Multiprocessor 1 Multiprocessor 2
- - b -

11
1T

- -
- -

b - -

Multiprocessor 3 Multiprocessor 4
- - -
H | | ST
- 4 -
Multi grucessor 13 Muﬂigmﬁe@sor 14

1

11

11

GPUs are a multithreaded stream processor that usually contain thousands of
cores more than a CPU. In general, the parallelisation in CUDA is composed of two
parts:

e Host (CPU) code that makes kernel calls,
e Device (GPU) code that actually implements the kernel.

The host is generally made up of serial C++ program, and device is where we
perform parallel processing to harness the resources of the GPU. The fundamental of
GPU is the streaming multiprocessors (SMs); Each SM will consist of a few blocks to
hundreds of blocks depending on the architectures of the GPU and each block will
contain 32 threads that can simultaneously execute the same instruction. The kernel

that mentioned previously is executed by these threads on the GPU.

31

On the other hand, GPU still need to undergo a scheduling process before
parallel processing, and the main scheduling unit in CUDA is a warp, which is made
up of a group of 32 threads from the same block, and execution of an arithmetic
instruction for the whole warp takes 4 clock cycles. The number of these warps is

important in tolerating global memory access latency that will discuss later.

2.8 Relationship of k and [
In the research of REC, k that genuinely indicates the number of message
symbols and [that indicates the length of the message symbols, are the key elements

to develop a REC.

The k is generally calculated by dividing the stream of binary message with a

self-defined I.

[=5
0100 0
- 100 1 1) k=4
M =01000100111000100100 > o o o 1
20bits 00 1 0 0/

In our case of study, maximum transmission unit (MTU) will be the standard
that used to determine the I. Since REC are implemented to utilize the bandwidth of

data transmission, throughput degradation will happen when a non-efficient [is used.

In the paper of MTU (Molnar, et al., 2014) & (Guo, et al., 2016), it is stated

that the most efficient [for our current transmission will range from 400-500 bytes,

32

and also 1000-1500 bytes maximum. Furthermore, based on future MTU (Shaneel &
Paula-Rayond, 2013), when the up/downlink of transmission that reaches the speed
of >1Gbps are generalised, the new MTU will increases to [= 9kb instead. This
means that, during the transmission, more information can be transmitted efficiently

using this length of . Hence in our study will be usinglkb <l < 9kb.

The parameter value of k should be k < 512, due to the fact that, according to
the study of networking traffic (Brownlee & Claffy, 2002), the transmissions that are
lesser than few hundred kilobytes appear to be the main contributor to 80% of
networking traffics. Furthermore, in Chapter 3.3, an idea of decoding REC’s large file
(k > 512) will be showed in a nearly linear speed by mathematics and experimental

evidence.

33

CHAPTER 3

GAUSSIAN ELIMINATION IN RATELESS ERASURE CODE

In this section, details of GE will be illustrated, followed by a few new
proposals to improve the performance of REC. Note that all the mathematical

operation in this thesis will be in GF(2).¢.2.0+0=0,0+1=1,1+1=0.

3.1 Encoding
The general encoding method of most of the REC is built on top of the linear

algebra system in the form of eq. 2.1 where:

Gooxk X Myx; = Xooxk

As for random code, the message will generally divide equally into k amounts
of symbols that contain [bits each. In this case, the value of [and k are essential for
the development of better performance REC. In the encoding process, k number of
equally divided message symbols M will be encoded by matrix multiplying M with the

randomly generated G.

3.2 Decoding
In Chapter 1.1, we have mentioned that encoded symbols will be generated and

sent in the form of packets of G|X, but for the decoding part, not all symbols are needed

34

before the REC can be decoded. In fact, only n (slightly more than k) numbers of

packets are required for a 99.99% of PCD.

3.2.1 Probability of Complete Decoding (PCD)

The overhead in the random code, ¢, is equal to 10 and the total received
packets, n, is denoted by eq. 2.2 where:

n=k+e¢
n =k + 10 (for random code)

Every time when n number of packets are received, the PCD of random code
decoding is guaranteed to be 99.99% according to Kolchin’s theorem (Chong, et al.,
2015), which means that matrices formed from the n numbers of received packets will

be a linearly independent with probability of 99.99%.

Example 3.2.1.a:

Atn=k+10,k=3,1=1

Gi1 Gip Gi3

Gy, Gpp Ga3 1 0 O

G31 G333 Ggy 1.0 1

Ga1 Gap Gaz 0 01

1 0 1

Gs1 Gsz Gsg 0 1 1

M 1,1 1 G6,1 G6,2 G6,3 1 1 1

let Mgy = | M3y | = <1> , Gi3xs = G71 Gr2 Gy =11 0 0

M3 4 1 Ggr Ggp Gggs é (1) 8
Go1 Goz Gog

0 1 1

Gio1 Gioz Giogs 1 0 0

G11,1 G11,2 G11,3 1 0 1

G121 G122 G123 0 0 1

613,1 013,2 013,3

35

Encoding:

GXM=

Gi1 Gy
Gz1 Gy
G31 G33
Gy1 Gap
Gs1 Gs;
Ge1 Ge2
GlX=| Gs1 Gy,
Gg1 Ggy
Go1 Gop
G101 Giop2
G111 G112
G121 G122

36

_ O RO R, RERE OO RO R

O R RPROOR RPRR ORO R R

SO OR RPRPROOR RPRPROO OO

R R OR OO OR RRR R, O
O RO REREE OO RO R

Or in linear algebra equivalent, one packet is equivalent to one equation as shown:

1My, +OMy, +0Ms; = X, = 1
1M1+ OM,; +1M5; = X, =0
OM; 1 +OM,; + 1Ms; = X5 = 1
1M1+ OMy; +1M5; = X, =0
OM; 1 + 1My, + 1My = X5 = 0
IMy 1+ 1My, + 1M, = X = 1
1M1+ OMy; +OMs, = X, =1
1M1+ OM,; + OMs, = Xg = 1
OM; 1 + 1My, + OMs; = Xo = 1
OM; 1 + 1My, + 1Ms; = X, =0
1My 1 +0Myq + OMs; = X33 = 1
1M, 4 +0My, 4+ 1Ms; = X, = 0

0M1'1 + 0M2'1 + 1M3'1 = X13 = 1

In example 3.2.1.a, by solving all these packets using the simple substitution

method, M; ; = 1,M,; = 1, M3, = 1 and the original message is retrieved.

In the next example, we will prove the importance of overheads, for instance,

we will eliminate all the overheads in example 3.2.1.a to conduct the next example.

37

Example 3.2.1.b:
Atn=k,k=3,1=1
M1 1 Gi1 Gz Gy 1 0 0
Let M3y = M21 | = <1> ,Gaxz =| G271 Gz Ga3 | = (1 0 1)
M3,1 1 63,1 63,1 G3,1
Encoding:

X1,1 1
GXM:X: X2,1 :(0)

X31 1

After receiving G and X from the sender the receiver can form G|X as following:
1

GIX =|Gz1 Gz2 Gp3]|X21 1 0 1 O)
1

G117 Gi2 Gi3|Xi1 (1 0 0
G31 G31 G31|X31 0 0 1

Or in linear algebra equivalent:
1M1,1 + OMZ,l + OM3,1 == Xl = 1
1M1,1 + 0M2,1 + 1M3’1 = Xz = O

0M1,1 + 0M2,1 + 1M3’1 = X3 = 1

By performing typical substitution method assuming all these packets are
received, such equation cannot be solved completely because the 3 equation in the
example are not linearly independent (G, ,M,, = 0,G,,M, 1 = 0,G3,M,, = 0, and
is a sign that the equation carries no information on M, ;), hence more information

(packets) have to be received in order to complete the linear solving process.

38

For the PCD in this n = k case, the PCD will be at 26.66% according to studies
in Kolchin’s theorem shown in Chapter 2.3. e.g. if there are n = k amount of received
packet, the matrix that forms from the received packets will have a chance of 26.66%
to be linearly independent (solvable). When more packets n are received, PCD
increases where the matrix that forms from the n received packets will have a higher
chance being linearly independent. In accomplice with Random code and Kolchin’s
theorem, the overall parameters set in this thesis will be:

n=k+10
k <512

1kb <1 < 9kb

3.2.2 Decoding Using Gaussian Elimination

With all the essential parameters such asn =k + 10, k < 512, and 1kb <1<
9kb, the decoding method using Gaussian elimination can be proceeded further. In
Example 2, the method of substitution can be used to solve k = 3 linear equations,
but when it comes to k > 4, a systematic method such as Gaussian elimination is
needed to solve the issue. The Gaussian elimination consist of 3 major steps:

1. Searching for pivot;

2. Swap row;

3. XOR row operations
These 3 steps need to iterate k amount of time until all the packets are completely
decoded, and first step have to be done before second step can start; while third step

can only start after second step ends its operation.

39

Example 3.2.2.a:

The packets that consist of information in the form of G|X, will be combined
whereby the first row of the matrix is formed by the first received packets and goes on
until the n™ packet is received and form the last line of the n x k matrix as shown:

k=4,1=8192,n=k+ 10

ofo 1
of 1 0
ofo 0
ofo 1
1] 1 1
o0 .. 0 - Generated Matrix, G
1[0 1
GIX = of 1] .. o| [Encoded Matrix, E
n
‘ ol o 0
‘ 1[0 .. |1 - Pivot Point
‘ 0|1 1
ﬂ o1 ... o Pivot Row
1 1[0 1
11l 0 Pivot Column

“— Pivot Column contains “1”

40

Step 1: Pivot Step 2: Swap Row Step 3: XOR

First iteration:

0] o 1 11
0] 1 0 o[1
0|0 0 ol o
0|0 1 o[o
11 1 o[o
0|0 0 o[o
10 1 o[1
0] 1 0| — o[1
0|0 0 ol o
10 1 of 1
0] 1 1 of 1
0| 1 0 o[1
10 1 o[1
11 0 ol o
Second iteration:

Step 1: Pivot Step 2: Swap Row Step 3: XOR
‘ 1[0
of 1
.i o[o
o‘ o o
o‘ o[o
o‘ o[o
o‘ o[o
o‘ oo
o‘ oo
o‘ oo
o‘ o o
o‘ o[o
o‘ o[o
o‘ oo

41

Third iteration:

Fourth (last) iteration:

0

o — o o o o o o o o o o o o
— o o o o o o o o o o o o o
— o o — o o o o o — o o —
o o o o o o o o o
©o «+4 o [EEoco o©o o o o o o o o o
.............

1
— o o - — o o o o o — o o i
o — o o o o o o o o o o o o
— o o o o o o o o o o o o o
— o o — o o o o o — o o —
o o o o o o o o o
©o «H o [©o o o o o o o o o
IIIIIIIIIIIII

T
— o o — — o o o o o — o o —

RN 1| 1| O ...

llllllllllll

lllllllllllll

During the first iteration, pivoting point will be allocated at first row first

column, then the first packet that contain “1” in the pivoting column will be searched

and swap to the pivoting row, and then the other packets that contain “1” in the pivoting

column will be eliminated by XOR operating them with the bitwise value (G |X) of the
42

pivoting row (highlighted in grey). In all the k iterations, different pivoting point
(pivot = 1,2,3 ... k) will be used in ascending order systematically to repeat the 3

steps for the completion of the GE process.

In the old days, even if GE is systematic, it imposed an entry time complexity
of 0(k3), Without a computer, it will take more than 10 pages of A4 papers that are
full of equations to solve a k = 100 linear systems; for REC case, although GE is able
to be used for decoding in most of the known REC, the decoding time complexity of
REC is still 0(k®). For instance, the operation count for GE will be demonstrated next

to determine the time complexity.

3.2.3 Operational count for Gaussian Elimination
For a set of n packets matrix in Random code, the total operational count of

pivoting search is:

k

Total pivot search in GE = z Tpivot
pivot=1

The process of pivoting search is just as simple as iterate through the main

diagonal of the G in the received packets (G|X).

K k+1
Total row swap in GE = Z z Tswap

pivot=1swap=1
After the pivoting is searched, it will be swapped to the pivoting row. This

process will basically consist k + [swapping operations in each pivot iteration.

k n-1 K+l
Total XOR operation in GE = Z Z Z TXOR

pivot=1 total row=1 XOR=1

43

Then the XOR operation will be performed on all the n rows that have a ‘1’ in
the pivoting column except the pivoting row. This required n — 1 operation counts that
consist of k + [XOR operations each because each packet will require k + [XOR

operations.

Total operation count in GE

k k k+1
= z Tpivot T z Z Tswap
pivot=1 pivot=1swap=1

n—-1 k+1

YOS S

pivot=1 total row=1 XOR=1

k k+l1 n-1 k+1
= z Tpivot T z Tswap T Z Z TXOR
pivot=1 swap=1 total row=1 XOR=1

=k (Tpivot + (k + l)(Tswap) + (Tl - 1)(k + l)(TXOR))

~ k(n)(k + Dtxor 3.1)

Hence for the whole Gaussian elimination operational count, it can be seen that
the XOR operations parts are actually the dominating part, where the profiling in GE
shows that 99% of the operation is performed in the XOR operations, while the other
1% is from the swap and pivot search, hence the swap and pivot operation is generally

negligible.

The table and graph below show the effects of the entries message size k

imposed by GE. The GE is constructed based on the typical REC decoder shown in

44

the study of RaptorQ (Hu, et al., 2012), and further modifications with our best effort

from several papers that emphasize on GE optimisation are done in this research.

At 4GHz workstation XEON E3 computer configuration:

Time to decode REC of different message size

using GE

2.5

2

“ 15
]
£

= 1

0.5

0

0 256 512 768 1024

message size, k

Figure 3.1: Effects of message size k towards the decoding speed.

In Figure 3.1, it can be seen that even at a 4GHz workstation XEON E3
computer, the time consumed in decoding (Gaussian Elimination) the larger k

messages increase exponentially.

3.3 Redimensioning
When we study into the decoding complexity of GE, which is 0(k?) (Bioglio,
et al., 2009), the large data size could yield a very large complexity. The decoding

time of a very large file can be made unreasonable long. Even with the aids of GPU

45

parallel processing, the decoding time will still increase exponentially as the file

size gets bigger due to the hardware limitation.

By addressing such issue, we propose a technique called redimensioning which
is applicable to almost all the REC; it is a process of partitioning one big file into y
numbers of fixed-size subsets and decode each subset in a less complex manner. In

this case, the speed of GE decoding process can be enhanced significantly.

3.3.1 Encoding of Redimensioning
The basic procedure for redimensioning starts with:
1.) Before the encoding, the stream of a message will be first divided into y
numbers of equal size subsets.

Example 3.3.1a:

e~

01 0 0 0
= 1 0 0 1 11}
M =01000100111000100100 — 1000 1
000 1 0 07

If y = 2, message, M will be partition into 2 equal size subsets (M* & M?) with

the dimension of s X [as shown:

1 01 0 0 O

ba o _ 1.0 0 1 1) 2x5
MZ 1 0 0 0 1

%xl 0 01 0 O 2%5

2.) The y subsets of the M will be encoded separately with random generated G to
form respective encoded symbols.
G1,G%..G is the subset of G after partition
M, M?. .M is the subset of M after partition

X1, X%, X" is the subset of X after partition

Example 3.3.1b:
Gl
n

XM l=X111><l

X
<=
<|mR

X

2 2 _ y2
G kXkal_anl
¥ ¥

In packet form (G|X):

nX)—/

X},XZ> and <G2 K

X2)

nxl
x_

vy

3.3.2 Decoding of Redimensioning
After receiving sufficient packets to decode all ¥y redimensioned packets
(G'|X1,G?|X?% ...G"|X?) back into original messages (M?, M? ... MY), new message

. k
will have a new size k' which is equivalent to S and also new n' for each

redimensioned matrix that requires k' + € for a 99.99% PCD, the total overhead for

redimensioned matrix will become:

47

M'->n' =k'+¢

M*->n'=k'+¢

MY ->n' =k'+¢

Example 3.3.2a:

k' =—, n' =k'"+ 10,

Received packets:

(Grll’xk’lxrlz’xl) and (GZ |X$z’xl)

n'xk’
1
(L (M ’xl)
Gaussian elimination Z10><k’ Zlel

(Grll’xk’ |X111’><l)

(Gi’xk’lxi’xl)

2
Ik’><k’ Mk’xl
Gaussian elimination \ Z . ./ Ziox1

I = identity matrix

/Z = zero matrix

As calculated earlier in section 3.2, the operational count of decoding using GE without

redimension is:

48

GE operational count = k(n)(k + [)txor

For the operational count of GE after redimension:

M! GE operational count = k'(n") (k' + [)txor

M? GE operational count = k'(n") (k' + Dtxor
MY GE operational count = k'(n") (k" + Dtxor

Total redimension operation count = M* + M? + ... MY

=yk'(n") (k" + Dtxor) (3.2)

To compare the speed up of redimensioning towards the normal GE decoding:
GE k(n) (k + Z)TXOR

~ Redimension GE y(k'(n") (k" + Dtxor)

Speedupredimension

Sincel>» kandl > k':

k+1l=] kK'+1l=1
n k+10 k
7= rToRY
n k k
-—4+10 =
)4 Y
__ ky(Dtxor ~y (3.3)

Speedupredimension — Tk
Y;(DTXOR

49

From eq. 3.3, it can be seen that the redimension technique can speed up the
decoding process by a factor of y, and it is proven experimentally by using CPU in

the table below.

Table 3.1: Time for GE with Redimension decoding of Random Code in

different k at I = 8192 bits,and y = 2

k Time to decode | Time to decode REC using GE Speedup
REC using GE with redimensioning, y = 2 " rediiinsioned

32 0.004992 0.003828 1.3040

64 0.013208 0.009801 1.347

128 0.039508 0.0264 1.4965
256 0.126859 0.08012 1.5833
512 0.526941 0.2731 1.9295
1024 2.056845 1.0610 1.9386

From Table 3.1, at k = 32 and y = 2, the speedup is different from the eq 3.3
Where it is supposed to reach a speedup of 2. This is because based on the assumption
that made in the formation of eq.3.3, the k is large. Where 10 becomes negligible when
k is large, at small k the 10 had a certain weightage that contributes to a slower

decoding time, and it is proven when k > 512, the speed up converges back to y.

With this technique, the large file (k > 512) with high time complexity is no
longer a large issue for decoding, and the only things to focus is to enhance the

performance for decoding a smaller file of size k < 512.

50

34 First Degree Parallel Processing

As mentioned, GE would impose an entry time complexity of 0 (k) during
the REC decoding; this means that the process of GE computation will eventually go
slower as the k (message size) increases. Although the improvements over CPU
implementations have previously been achieved for GE in terms of raw speed (using
faster computer) and the redimensioning technique (mathematical technique), however
the utilization of the underlying available computational resources was still low, for
instance parallel processing that can be done in almost all modern computers that
contain the GPU.

In this section, the propose method to solve the complexity issue by using the

state of art of GPU will be discussed.

3.4.1 Implementation of GPU Unit for Gaussian Elimination
Gaussian elimination (GE) decoding algorithms have triple nested loops
computationally which led to an entry complexity of 0(k?). Such complexity has led

researchers to approach them in a parallel processing manner.

3.4.1.1 Parallelising Code in CUDA

CUDA s a parallelisation platform developed by NVIDIA. It is designed in
such a way that applications of parallel programming can be executed on both CPU
and GPU. For parallelisation, the CPU which is the host, will initialize the data to be
transferred and executed in the GPU device and the GPU will allocate the pre-defined

threads in the <<<blocks, threads>>> bracket to invoke the GPU kernel.

51

10.
11.

LCoNOTUVTE, WNBR

After GPU completes its calculation in parallel by using the allocated threads,

the program in device is now considered completed, and the output data will be copied

back to the host before the device can release the storage space in GPU and get ready

for the next task. The process is shown in the following example:

Example 3.4.1.1.a:

//CPU CODE
. main(){
int x[1i];
for (int i=0;i<3;i++){
x[i]=1+1i;
}
for (int i=0;i<3;i++){
cout<<x[i]<<endl;
}
}
Output:
0
2
4

//Host function
//Declare Variable
//3 for Loops {0,1,2}

//print the output
//end line after printing
one value

From the CPU code as shown in example 3.4.1.1.a, the additional operation

(line 5) in the algorithm is independent of each other, even though the loops of these

addition operations are not arranged in sequence, the output will be the same, and this

is how parallel processing come into play, because rather than computing these

additions sequentially, multiple of them can be concurrently executed and still yield

the same outputs.

52

Parallelised addition operation in GPU:

1.//GPU CODE

2. _global__ CallGPUkernel(int *x){ //GPU kernel

3. i=threadid.x; //identify what
thread to use

4. If(i<3){

5. x[1i]=1+1; //simple addition

6. }

7.}

8.

9. main(){ //Host function

10. int x[1i]; //Declare Host variable

11. int*dev_x; //Declare Device variable

12.

13. cudaMemcpy (dev_x,x,3*sizeof(int), cudaMemcpyHostToDevice);
//memory copy from host to device to perform parallelisation
//(device variable, host variable, size of variable, memory

from host to device)

14.

15. CallGPUkernel<<<1,3>>>(dev_x);

//invoke GPU kernel with <<< blocks amount, threads amount>>>
(input variable)

16.

17. cudaMemcpy (x,dev_x,3*sizeof(int), cudaMemcpyDeviceToHost);
//memory copy from device to host to perform
//(host variable, device variable, size of variable, memory

from device to host)

18.

19. cudaFree (dev_x); //free the device memory

20.

21.

22. for(int i=0;i<3;i++){ //print output

23. cout << x[i]«<endl;

24, }

25. }

26.

Output:
0
2
4

53

3.4.2 ldeal vs. Practical Parallelisation
The idea of parallelisation is to simultaneously perform multiple independent
operations at once, hence reducing the overall operational time. In an ideal case,

parallelisation equation will be represented below:

_ YXToperation]
Tparallel - [threads allocated (34)

Tparanel = Time taken to complete all operations after parallelisation

y = Amount of independent operation

Toperation = lime taken to complete one operation

threads allocated = Threads used in parallelisation

However, for a parallelisation to perform practically, parallel overheads such
as physical limitation, data reuse, memory dependency, kernel call delay, threads
allocation, etc., should be considered in a GPU device. In this thesis, they are all

categorized under parallel overheads poperation-Hence practically, the parallelisation

equation is represented as below:

_ YXToperation
Tparallel - [] + Poperation (35)

threads allocated

T,

parallel = Time taken to complete all operations after parallelisation

y = Amount of independent operation

Toperation = 1ime taken to complete one operation
threads allocated = Threads used in parallelisation

Poperation = parallel overhead

54

3.4.3 Parallelisation of Gaussian Elimination

The parallelization of GE algorithms is a challenging process. The number of
threads and block allocation must be decided carefully. Attention should be paid to the
synchronization part to get accurate results, because a slight desynchronize value

might end up ruining the results.

To start the parallel processing in GEaranel , the steps that used is the same as

the steps for GE.,j4 in Chapter 3.2 and most importantly it yields the same result like
GEgeriq does:

1. Searching for pivot;

2. Swap pivoting rows to the right position;

3. XOR row operation.

3.4.3.1 Pivoting Search

The pivoting search step is represented in the outer most nested loop of the code in
appendix. During this step, the parallelisation is not required because it is as simple as
searching the right condition (if pivoting row and column not “1”’) to progress to step

2- Row swap.

55

0 1
‘ 1 0
(0] 0 0
Generated Matrix, G
1 ‘ 0 1
1 ‘ 1 1
—O‘ 0 o Encoded Matrix, E
T‘ 0 1
T)‘ 1 0 - Pivot Point
0 ‘ 0 0
1 ‘ 0 1 Pivot Row
1 ‘ 1 1
0| 1 0 .
Pivot Column
1 0 1
(0] 1 0
— Pivot Column contains “1”

Figure 3.2: Pivoting Search
3.4.3.2 Row Swap
If the pivoting search in the first step meets the condition to proceed with row

swapping, which is represented in the second nested loop, the row swapping will be

executed.
Step 1: Pivoting Search Step 2: Row Swap
0 1 1(1 1|4
1 0 0| 1 0 Row swap
0 0 0|0 0
0 1 0f 0 1
1 1| 0f 0 1
0 0 0|0 0
0 1 110 1
1 0 — 0|1 0
0 0 0|0 0
0 1 110 1
1 1 o1 1
1 0 0|1 0
0 1 110 1
1 0 [N 1| 1 0

Figure 3.3: Row Swap

56

srow L[]

»
»

shrow [o[o[:J o[o] [1]

¢ Threads performing “Row Swap” in parallel.

Figure 3.4: Threads allocation for Swap Row
For example, in Figure 3.3, when the row swapping process is executed, two
rows will generally switch their positions with each other. Another example shown in
Figure 3.4 is that, in a CPU case, the row swapping process will undergo 6 iterations
to swap the corresponding elements in all the 6 columns. For parallelisation, the 6
iterations can be reduced to one iteration in terms of processing time by performing
parallelisation of 6 XOR operation columns with 6 GPU’s threads simultaneously as

shown in Figure 3.4.

3.4.3.3 XOR Operation
After the row swap step is done, here comes the step 3- XOR operation where
the others row that have a “1” in pivoting column will perform XOR operation with

the pivoting row as shown in Figure 3.5.

57

Step 1: Pivoting Search Step 2: Row Swap Step 3: XOR

Figure 3.5: XOR operations

n = 15¢ row (Pivoting Row)

) 2) 2
COCL [GO [- G- [

n = 7" row (Pivoting Row) n = 10" row (Pivoting Row) n = 14" row (Pivoting Row)

Figure 3.6: 1+ hreads allocation for XOR operation

For example, in Figure 3.6, the XOR operation is performed on the row that
consists of ‘1’ (in red square) in their respective pivoting column, in this case, other
than pivoting row, the pivoting column that contains “1” in other rows will be basically

eliminated. In a GEg, case, the XOR operation will iterate from

58

N

N O U1 A w

10.
11.
12.
13.
14.

15.
16.
17.
18.

19.
20.

21.

22.
23.
24.
25.
26.

214 row, 15t column = 24 row, 15t column @ pivoting row, 15t column to

10 row, 6 column = 10™ row, 6 column @ pivoting row, 6™ column, which

is a total of 10 x 6 steps XOR operations to iterate through.

While for GEparanel; the 10 X 6 steps of XOR operation will be allocated with

10 X 6 threads each for parallel processing, which means that the 60 steps of XOR

operation in serial CPU operation can be reduced to complete in one step ideally.

3.4.4 Construction of GEp,raper in CUDA

Gaussian Elimination in Parallel

threadX = threaded.X X threadX workload //mapping Threads X
threadY = threaded.Y X threadY workload //mapping Threads
Y

//GPU kernel
define Swap Row (G[X[n][k+L], pivot) //Swap row kernel
for row = pivot to n-1 do //check all n rows
if (G[/X[pivot][pivot]#1&& G[X[row][pivot]==1) then//if pivot point is zero
while another row had
pivot column of 1

for offset=0 to threadY workload do //mapping Threads Y
col=threadY + offset //allocating workload
Swap G[X[row][col] to G|X[pivot][col] //Swap between rows
End for
End if
BREAK //Break the whole swap

operation when one row
swap is done

End for
define Pivot_check (G|X[n][k+L], check[n], pivot) //Check pivot in GPU
for offset=0 to thread X workload do //one thread will handle

how many workload/rows
row= threadX+offset

if (row < n) then //thread allocate cannot
more than n
check[row]=G[X[row][pivot] //allocate pivot point
value into the check
array
End if
End for
define XOR (G[X[n][k+L], check[n], pivot) //the XOR kernel in GPU
for offset=0 to thread X workload do //one thread will handle

how many workload/rows

59

27.
28.
29.
30.
31.

32.
33.
34.
35.
36.
37.
38.
39.
40.

41.
42.
43.
44,
45.
46.

row= threadX+offset
if(G[/X[row][pivot]==1 & row # pivot) then
for offsetY=0 to thread Y workload do
col=threadY + offsetY //one thread will handle
how many workload/columns

G[/X[row][col]= G|X[row][col] @® G|X[pivot][col]//XOR between rows
End for
End if
End for

Host to Device memory copy

For pivot=0 to k-1 do //iterates through all k
pivot point
Swap_Row <<<blocks, threads >>> (G[X[n][k+L], pivot) //Swap Row
Pivot_check <<<blocks, threads >>> (G|X[n][k+L], check[n], pivot)
XOR <<<blocks, threads >>> (G|X[n][k+L], check[n], pivot) //XOR
End for

Host to Device memory copy

In GPU, threads are the key element for parallelisation, hence they will be identified

into threadX and threadY for handling the row and column of the matrix G|X.

All the GPU call function kernel will be constructed following the 3 steps in
GE, so when the G|X matrix is received with the dimension of n x (k + [), the code

can fully decode G|X back into the original messages.

First will be the pivoting search, since this step is just iterating through the GE

process, it will be handled by the for-loop in line 40.

Next, the swap row GPU kernel is constructed in line 4-14, and called in line
41, the kernel is called to execute the row swapping step with G|X as the input, and
piv represents the pivoting point location and <<< threads, blocks >>> brackets

show the threads and block amount that are needed to be allocated for the kernel.

60

After this, pivoting value will be recorded in a new set of the array for checking
purpose as shown in line 17-23, and call this a new set of array - check[n] where n

represents the size of this array.

Then come to the last step, which is the XOR operation step, such GPU code
Is constructed in line 25-36, where the input data from G|X will be used to perform

XOR operations in between rows.
From the pseudocode, there are offsets in line 9 and line 18 etc. In general,

such offsets are used to map the GPU threads into the right positions to handle a certain

amount of threads.

1* thread

4 threads 2" thread
(Fully parallel) 3™ thread

4™ thread

1 threads | ANIEI GO 1 thread

1* thread
2™ thread

Xtime__ Ytime tme,_ . time

Figure 3.7: Offset of threads distribution.

61

If there are 4 workloads that is represented in A, B, C and D as shown in Figure
3.7, full parallelisation will be allocating maximum 4 threads by distributing one thread

into every workload.

However, to study the effects of threads towards the speedup of such workload,
1 thread will be allocated to handle all A, B, C and D workload and this will be called
a “base case”, and the time to execute all the workload
by using one thread will be called timep,ge case- Other than this, when there are 2
threads allocated to the 4 workloads, these threads will be mapped accordingly to
handle the distributed workload, e.g. first thread will handle workload A and B while
the second thread will handle C and D, and the time to execute all the workload by

threads mapping will be time, k-

Speed Up = Hmepase (3.6)

timeyork

According to the pseudo-code, the operational count of GEp,raner Will be

formulated later and apply on the GEg..i, Operational count in eq 3.1, and further

elaborate it on the GEp,ralter

parallelisation ([() (k+1)
threads allocated

k((n)(k + Dtxor)]TXOR + PGE) (3.7)

k = loops in line 40

n = loops that goes through all the rows

k + | = loops that goes through all the columns

threads allocated = threads for parallelisation (1,2,3 ... (n) X (k + 1))

Txor = Operation constant in line 33
62

pge = overal parallel overhead

Assuming that maximum threads, k(k + 1), will be allocated:

GEoperational count = k(]-TXOR + DgE) (3.8)

Parameters added in this GEp,ra11e1 Operational count is the “threads allocated”
and the “pgp”; but, a thread is not capable of allocating more than its workload
((n) x (k + 1) in this case). Other than that p;g is a general idea of the parallel
overheads in every parallelisation, for example, in ideal case, N amount of workload
executed in parallel should yield ideal N times faster than N amount of workload
executed in series, however this parallel overheads will practically inhibit the
performance of such parallelisation, and yield probably only 0.5N speedup, such
parallelisation overhead will be visualised in the Result chapter where the performance

of GE will be demonstrated to show how parallel overhead will affect its performance.

35 Gaussian Elimination with Matrix Multiplication (GEMM)

In this thesis, the new decoding algorithm that propose is the Gaussian
Elimination with Matrix Multiplication (GEMM). As we had explained previously,
GE is an iterative algorithm different from matrix multiplication (MM), a widely-
recognized candidate for a fast GPU implementation, which does not suffer from the
premature saturation of GPU bandwidth resources as GE does. Hence, the idea of

GEMM advocates the combination of GE and MM to perform the REC decoding.

63

Received packets — G, x| Xnx:

I,y Gaussan Elimination [, .. Gk_>}k
anklz 7 7
10Xk 10xk 10xk

Groxre X Xiext = My (3.10)

(3.9)

When the packets are received in the form of G|X , the basic idea of GEMM is
to first inverse the G -» G~ by using GE, and the G~ will be used to matrix multiply

with X to retrieve the original message M.

3.5.1 Inversion, INV

Since the Gaussian Elimination can be used for inversion (G|I - I|G™1) as
well as the direct decoding previously (G|X — I|M), the inversion using Gaussian
elimination will be called INV while the direct decoding in Section 3.2 using Gaussian

Elimination remains as GE.

During the decoding of the received packets in the form of G|X using GEMM,

INV is the first phase of GEMM which is the eq 3.8 where:

P : -1
G Ikxk Gaussan Elimination Ikxk kak

nxkl, Zioxk 'Z
10xk 10xk 410xk

G will be used to perform INV, It will be augmented with a set of value that is made
1 .

up of Gkl Z"Xk , however, due to the non-square matrix formed from the packets,
10xk

the I needs to be dynamically allocated to the correct position to align with the “useful”
information, (useful information will slowly shift to first kK rows. The idea is quite

similar to GE algorithm with certain additional steps as shown below:
64

1.) G will be first augmented with a set of zero matrix, Z as shown in example
35.1a.
Example 3.5.1.a:

k=3,1=8192,n=k+ 10

(en)

[)
e R R RO

G3x13 | X13%1 = \

1 1 1xi3

0 0 1 X1 0 0 10 0 O

/0 1 O\ X2 /O 1 00 O 0\

! | x |

G3x13 = kg % (1)/| Xizxi = xi | Gsx131Z3x13 = k(l) % (1) 8 8 8/'
111 Y13 11 1o 0 o

2.) After this, G|Z will be inversed by using Gaussian Elimination that starts from
first step GE- pivoting search; the first row that contains ‘1’ (red 1) in pivoting

column in example 4.2.1.b.

Example 3.5.1.b:

Pivoting (row, column) = (1, 1)

o

1,0
010

1]0
010

(

OO O O
o o
——

)

G3x13 |Z3%13 =

o
Y = =)

—_
[

110

o
()

65

3.) Then, the first row of G that contains ‘1’ in pivoting column will be swapped

to the pivoting row. (row in red will swap with row in blue in example 4.2.1.c)

in this case the “useful” information will be swapped to the correct position

including the X.

Example 3.5.1.c:

Pivoting (row, column) = (1, 1)

S =

oo
O R
—_

o

G3x13 |Z3x13 = k

1 1 1lo

OO O O

4.) Now, we can confirm that the first row will contain useful information, then in

the pivoting row (red in example 3.5.1.c), a dynamically allocate lIdentity

matrix, I will be added to align with the pivoting row of G|Z to form

Example 3.5.1.d:

Pivoting (row, column) = (1, 1)

S -

(

G3x13 |Z3x13 =

SO

COR R
_m o O
=X=N=K=

—_
[E
[E
(e}

SO O© O

1 1 0j;1 0 O

/0 1 0j0 O 0\
G13x3] s =| 0 111000
Z 0 0 1j0 0 O

5.) Then come to the Step 3 XOR operation part, the pivoting row(red) will be
XOR-ed with all other rows that contain ‘1’ in their respective pivoting

columns.

Example 3.5.1.e:

Pivoting (row, column) = (1, 1)

11 011 0 0
/010000\
6133|11X3_'0 1 10 0 0|
x31Z koomoo)
00 111 0 o

6.) Repeats step 1 to 5 by moving to next pivoting point in ascending order. At the
end, it will result in inversing the G —» G~!(in purple) .
Example 3.5.1.f:

I, «) Gaussan Elimination [, Glzik

kan |Zk><n - ankl
Z1oxk Zioxk Zioxk

— > Useful information

T 0 01 1 0 X4
» 0 1 0j0 1 0\ /xz\
I3x3 Gaxs3 _ 10 0 1[0 1 1| X 4] % |
Ziox3 Zioxz [0 O o‘o 0 o/' 13 \M/
0o 0 olo 0 o X13

24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.

In the end of this phase, G~* will be found and encoded symbol X will be in

the correct position aligned with the useful information (in first k rows). In this case

the others non-useful information will not be used in the next phase-MM, where they

can be eliminated.

3.5.1.1 Constructing INV in CUDA

INV in Parallel

threadX = threaded.X X threadX workload
threadY = threaded.Y X threadY workload

//GPU Rernel

define Swap Row (G[n][R], X[n][l], G;[n][k], pivot)
for row = pivot to n-1 do
if (G[pivot][pivot]#1&& G[row][pivot]==1) then

//mapping Threads X
//mapping Threads Y

//Swap row kernel
//check all n rows

//if pivot point is zero while another row had pivot column of 1

for offset=0 to threadY workload do
col=threadY + offset
If col<k then
Swap G [row][col] to G [pivot][col]
Swap G;[row][col] to G; [pivot][col]

End if

If col<L then
Swap X [row][col] to X [pivot][col]

End if
End for

End if
BREAK

End for

define Pivot_check (G [n][R], G;[n][R], check[n], pivot)

If threadX==0 then

G;[pivot][pivot]=G;[pivot][pivot] D1

for offset=0 to thread X workload do

row= threadX+offset

if (row < n) then

check[row]=G[row][pivot]

End if
End for

68

//mapping Threads Y
//allocating workload

//Swap between rows

//Swap between rows

//Break the whole swap
operation when one row
swap is done

//Check pivot
//inverse the G; pivoting point

//one thread will handle
how many workload/rows

36.
37.
38.

39.
40.
41.
42.
43.

44,
45.
46.
a47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

58.
59.
60.

define XOR (G[n][k], G;[n][R], check[n], pivot)
for offset=0 to thread X workload do //one thread will handle
how many workload/rows
row= threadX+offset
If (G [row][pivot]==1 && row # pivot) then
for offsetY=0 to thread Y workload do
col=threadY + offsetY //one thread will handle
how many workload/columns
G [row][col]= G [row][col] @ G [pivot][col] //XOR between rows
G; [row][col]= G; [row][col] & G; [pivot][col]//XOR between rows
End for
End if
End for
Host to Device memory copy
For pivot=0 to k-1 do //iterates through all k pivot point
Swap_Row <<<blocks, threads >>> (G[n][R], G;[n][R], X[n][L], pivot)
Pivot_check <<<blocks, threads >>> (G [n][kR], G;[n][kR], check[n], pivot)
XOR <<<blocks, threads >>> (G [n][R], G;[n][kR], check[n], pivot)
End for
MM(G;[n][k], X[n][1], M[n][1]) //Matrix multiplication to retrieve
message

Host to Device memory copy

During The first stage of INV, the coding process is 90% the same
with GEparaniel- The different thing in INV and GEparane iS, the input data ¢|X in GE
is replaced with G & G; in INV as shown in line 12, where G; is originally a zero matrix
that will be transformed into the inverse of G after INV. Other than this, minor
modifications are done to ensure the useful information is swapped to the right position.
Such modification is done on line 12 and 17 to eliminate the unwanted information

after INV, so that workload in MM later, can be reduced.

Furthermore, the placing of rows of identity matrix in G; is done as in line 28.
In this case, rows of Identity matrix will be allocated to each row in each iteration to
the useful information position. After this, the G; which is the inverse of G will be used
to perform the MM in the later section. As for such pseudocode, it can be formulated
that the operational count of INV can be obtained as shown:

69

Since INV approximately the same with GEarapiel, €quation of GE 4 ray61 IS applicable

to INV with modification of [— k:

(n)(k+k)
threads allocated

] Txor T pINV) (3.11)

pivv = for visual purpose, parallel overhead in MM is identified as p;yy .

INVOperational count — k ([

3.5.2 Matrix Multiplication, MM
After all the non-useful information are eliminated, G™! is extracted to
perform matrix multiplication with the encoded symbols X. By extracting the value

from example 3.5.2.9:

Example 3.5.2.g:

The product of G, X Xy, Will become the decoded value.

70

3.5.2.1 Parallelisation of MM
To parallelise Matrix multiplication is a simple and efficient process, as
mentioned in (Lee, et al., 2015), matrix multiplication is a good suite algorithm that

fits naturally in GPU parallelisation.

Example 3.5.2.1.a:

To parallelise the MM above. The MM process will be separated into a series

version for better visualisation.

In series (typical CPU implementation) x, @ x, will be done first, and then
continue with x, and lastly x, @ x5, and there will be these 3 steps for this case. One
thing we know here is that all the steps here are independent of each other, which
means that all of them can be simultaneously performed together unlike the 3 steps in
GE, where third step must wait for the second step to complete. MM will just have to
parallel process the 3 MM steps by allocating them with sufficient threads:

Table 3.2: Threads allocation for parallelisation in MM

Threads Operation Answer
2> 1 1x, D 1x, B 0x; X4 D xy
> 2 0x, D 1x, P 0x3 X,
= 3 0x, D 1x, D 1x3 Xy @ x3

71

1.
2.

3

5.
6.
7.
8.

9.

1e.

11.
12.
13.
14.
15.
16.

4.

In Table 3.2, since 3 threads are allocated to the three operations to perform
parallelisation, the original time taken to complete the 3 MM operation will be reduced

to one MM operation time if the parallelisation performs ideally.

3.5.2.2 Constructing MM in CUDA

Matrix Multiplication in Parallel

threadX = threaded.X x threadX workload //mapping Threads X

threadY = threaded.Y x threadY workload //mapping Threads Y

Define MM (G;[n][R], X[R][L], M[R][L]) //matrix multiplication
kernel

for offset=0 to thread X workload do
for offset=0 to thread Y workload do

row=threadX+offset //one thread will handle
certain workload/rows
col=thread+offset //one thread will handle

certain workload/columns
if(row<k && col<l) then
for z=0 to k-1 do
M[row][col] = X[row][col] @ (G;[row][z] = X[z][col]) //G; x X =M
End for
End if
End for
End for

After the INV produce the output G;, it will be brought over to matrix multiply

with the X. The output of this will be the decoded message.

As for the operational count for MM according to the pseudocode:

parallelisation I xk

MMoperational count = k(I X k) ktvm + Pum

threads allocated
[X k =line 5 — 6 loops

ktym = line 11 matrix multiplication core operations constant , that consist of k
numbers of loops.

pum = Parallel overhead in MM is identified as pyy

72

Hence in general, GEMM:

GEMMoperational count = INvoperational count T MMoperational count

(n)(k+k)
threads allocated

GEMMoperational count = (k ([]TXOR + pINV)> *

(|| Fetam + P (3.12)

threads allocated

Assuming that if all of them are fully parallelised, where threads allocated is at
maximum, there are (n)(k + k) and [x k numbers of threads respectively for INV

and MM.

GEMMoperational count = (k(TXOR + pINV)) + (ktvm + Pum) (3.13)

To compare the speed between GEMM and GE, their operational count will be

used as the reference:
hd GEoperational count = K(1Txor + PgE)

b GEMMoperational count — (k(TXOR + pINV)) + (ktvmm + Pum)

The parallel overhead increases proportionally to the operating matrix size:
Size of GE is approximately same with MM, where (n) X (k + 1) =~ k X [assuming
Lisverylarge (I » k in REC case), while INV has the smallest parallel overhead for
having smallest operating matrix size of (n) x (k + k).
filling approximation here will be:

M) xk+1D) l
Pum = Pge = mpmv ~ EpINV

Hence:
l
GEoperational count = K (TXOR + EpINV)

73

l
GEMM,perational count = (k(txor + Pivv)) + (kTMM + EPINV>

IfI>k:

GEoperational count = Txork + Ipiny = lpiny (3.14)

k2+1 l
GEMMperational count = (Txor + Tum)k + ——pinvv = P (3.15)

From these equations, it can deduce that if [>> k GEMM will perform faster
than GE, which suit the properties of REC where [isusually 100 —
1000 times bigger than k. Hence in theory, it is proven that GEMM can perform

faster decoding speed than GEp,rajiel-

3.6 Second Degree Parallelisation

Previously, the decoding algorithms were designed based on one assumption
where the device only decodes one file at a time; a file that is k < 512 in message size.
But thousands of packets from distinct sources could be received in bulk, there is an
opportunity where it can further exploit the power of parallel GPUs and this will be

studied in the following section.

3.6.1 Bulk Decoding

In a high-speed networking link, thousands of packets are being transferred at
once. In this case, the traditional way of CPU handling the received data often suffers
from congestion issue, resulting in poor performance because the CPU can only handle

the received data streams one by one in series.

74

GE decoding

A8 | Cc | D
First degree
parallelisation - A Hn

GEMM
Second degree

parallelisation -
GEMM

>0 | O |w

»
»

Time

Figure 3.8: Timeline of GPU decoding vs the first and second-degree parallelisation.

Figure 3.8 show a new bulk decoding method by handling all the distinct files (A,
B, C, D) in parallel. For example, upon receiving a stream of packets that consist of
distinct files- A, B, C and D, we propose a second degree of parallelisation on top of
GEMM explained previously. Instead of decoding the files using GEMM in ascending
order from A to B to C then to D like the traditional decoding method, the receiver will
perform GEMM decoding of all the 4 files all at once in parallel. Below are the steps

to perform the bulk decoding:

1.) The bulky amount of received packets will be categorized into distinct files and

an example is illustrated below:

Example 3.6.1.a:

4 files (A, B, C, D), each file contains: k = 2,1 = 1,n = 12

75

11 000 11 1
4=t 1 05100100, 100,
1 0 1 111 111 111

2.) The rearranged files will be augmented as shown in example 4.3.1.b and will

be bulk decoded later.

Example 3.6.1.b:

Ga1X,
Gp(Xp 1 1 1

GelXe 0 0 0
GplXp 1 0 0

OOl x>

3.) All the G in the distinct file will be inversed into G~ all at once. Three major
steps of INV which had already demonstrated in the previous chapter will be

applied in all the distinct file in parallel.

76

Example 3.6.1.c:

G|l —— I1|G™1

Inverse

GA IA /IA G_lA\
GB IB IB G_lB
GC I(; Inverse IC G_lc
GD ID \ID G_lD
All the ¢~ will be used to matrix multiply with their respective X in parallel for

the bulk decoding and below is the example.

Example 3.6.1.d:

4 files (A, B, C, D), each file contains: k = 2,1 = 1,n = 12

G lxX=M
G—l
A XA MA
G_lB XXB MB
G_lc XC MC
G™1p Xp Mp

GiaGsd y ~ Gia-X1a© Gs4-Xo
GoaGia x,, Gaa-X1a® Gyg-Xoa
~—] 2 T — —

61316331 Xig Gig-X15 D G3Bl'XZB M
GioGig _ Xop G- Xip® Gog-Xop M
6id6t ” Xic Gt Xie @ Gt Xy Me
GGt Xec G372 Xye @ Gt Xoe (M
GipGsp P Gip.Xip D G3p.Xap
GGy 0 G35 Xip @ Gip . Xop

And the assignment of workload to the threads is shown in Table 3.3 by properly
mapping the threads into different MM operations for bulk decoding to be performed

in parallel.

77

Table 3.3: Threads allocation for parallelisation in MM

Threads Operation
2>1 Gia-X14 © G34- X4
22 Goa-X1a ® Gif X4
23 Gig-Xip @ G35 Xap
>4 Gop-X18 © Gip - X5
25 Gic-Xic @ G3¢ - Xac
> 6 G- Xic @ Gac - Xac
>7 Gip-X1p @ Gip-Xzp
>3 Gop-X1p D Gip-Xop

78

CHAPTER 4

RESULT AND DISCUSSION

4.1 Experiment Platforms

Both the proposed GEMM and GE are implemented on the GPU using CUDA and
these two algorithms are used to compare with the base case (an optimised and
vectorised GE according to one that is used from the paper (Hu, et al., 2012). All our

experimental CUDA code and serial C++ code are available in the appendix.

The serial and parallel version of GE implementation used the code given in
the paper of Raptor GF(2). Such GE has been previously employed in paper (Hu, et
al., 2012) to prove the applicability of GPU on decoding and found to be more effective
than CPU decoding. However, as stated previously, there will be parallel overhead in
GPU that prevents the GE parallelisation from getting linear speedup. Hence in this
chapter, the algorithms will be tested from different aspects to compare their decoding

speeds.

For our experimental platforms, the GPU code ran on a Nvidia Quadro K620
with CUDA 8.0 and a workstation XEON E3 CPU. The Nvidia Quadro K620 has 2GB
GDDRAMS3, a core clock of 1000MHz, and CPU-to-GPU bandwidth of 29 GB/s. It

consists of 3 SMs, each containing 128 cores, making up a total of 384 cores. For

79

comparison, the base case is the serial execution of the decoding code on XEON E3 4

GHz with 16 GB RAM.

4.2 Overhead test in GE and GEMM

As a solution to solve the decoding speed issue, GEMM, should perform faster
than GE without increasing the overheads. Also, data received that is decodable using
GE will be decodable using GEMM. Those packets that are non-decodable in GE will

not be decodable using GEMM.

It had been mentioned that the Random code requires n = k + 10 amount of
received packets for 99.99% of PCD using GE (Chong, et al., 2015), hence in GEMM,
it is also required to have n = k 4+ 10 amount of received packets to achieve 99.99%
PCD. In this experiment, 10000 samples of distinct packets are used for decoding by
GE and GEMM where:

n=k+¢gk=321=8192,¢<10

Table 4.1: Overall PCD of GEMM and GE

Number of packets PCD of GE PCD of GEMM
received, n

k 26.76% 26.76%
k+1 57.78% 57.78%
k+2 79.21% 79.21%
k+3 89.02% 89.02%
k+ 4 94.88% 94.88%
k+5 96.71% 96.71%
k+6 98.45% 98.45%
k+7 99.22% 99.22%
k +8 99.45% 99.45%
k+9 99.81% 99.81%
k+10 99.99% 99.99%

80

It is shown in Table 4.1 that the PCD of GE and GEMM are the same, will not even
the slightest change in PCD found in the comparison between the GE and GEMM.
Furthermore, at k + 10 case, when both GE and GEMM are decoding the same 10000
packets, both algorithms are unable to decode sample no. 4831, which also means that

overheads of GE and GEMM are the same.

4.3 First Degree Parallelisation - GEparapel V.S. GEMM

To compare the parallel performance of GE and GEMM, the pseudocode used is
available in the paper (Hu, et al., 2012) as the base case for GE. In addition, the same
experimental model will be reworked and made comparison between:

o GE. i Using XEON E3 Workstation CPU (base case)

® GEp,paer Using Quadro K620 GPU

e GEMM using Quadro K620 GPU

4.3.1 k Variation

In this section, the effects of complexity of GE will be shown, especially when

the file size k gets bigger. In this case, the speedup is calculated based on:

GEseria
Speedup of GEparalllel = m (4.1)
Speedup of GEMM = % (4.2)

81

Figure 4.1 demonstrates the time complexity (graph of 0 (k3) with respect to the size

k for the base case GE:

Relationship of Gaussian Elimination and its

Entry Complexity k
2.5
2 <o
“ 1.5
E
- 1
0.5 &
0 OO—% 2
0 200 400 600 800 1000 1200
k
Figure 4.1: Complexity of GE in Time used to solve GE vs. k.
32 <k <1024, | = 8192, threads allocated = 100000
The Speed up of GPU and CPU REC's Decoder in
20 different &
25
a 20
§ 15 2
& 10 C | O t
0
5
0
0 256 512 K 768 1024 1280
0 GE parallel GEMM

Figure 4.2: Speedup of GEp,raner and GEMM after parallelisation with GEgeriq) as

the base case.

82

From the graph in Figure 4.2, GEparanel OUtperforms GEgerig in terms of
decoding time, whereby the speed up of GEp,raner is significantly higher when k
increases. Furthermore, the algorithm GEMM that this research emphasized have a
significantly better speedup compared to GEp,ranier, Which makes GEMM the fastest

and most efficient parallelised REC decoder.

The parallelised algorithm GEMM and GEaraner Will eventually reach a

speedup of 26 and 13 respectively. From this experiment, the GPU is better in

handling larger size workload as the speed up can reach higher as k grows bigger.

4.3.2 I Variation

In chapter 2.6, the [is considered a very important element that affects the
decoding speed of GE, in this section variations of [will be tested:
o GEgg i Using XEON E3 Workstation CPU

® GEp,raner Using Quadro K620 GPU

e GEMM using Quadro K620 GPU

The result in Figure 4.4 shows that GEMM can perform better parallelisation as [
increase. As [is getting larger than k the speedup of GEMM is better than GE; this
proves that the equation forms in section 3.5 is practically true.

k = 256, l ={256,8192,73728}, threads allocated = 100000

83

GEserial

time taken
o o o =
~ [e)) o] = N
X
\
\
A

o
N
\

o

0 10000 20000 30000 40000 50000 60000 70000 80000
1

Figure 4.3: Complexity of GE in Time used to solve GE vs. the variation in [.

Speedup of GEparallel and GEMM compared
to GEserial when / Varies

100
80 O
E? 60
3
= 40
20 O
el o
007
0 10000 20000 30000 40000 50000 60000 70000 80000

1

<©O— GE parallel 00— GEMM

Figure 4.4: Speedup of GEp,ranel and GEMM after parallelisation with GEgei4) as

the base case in the variation of [.

84

4.3.3 Threads allocation Variation

From the previous result (k and [variation), the GPU can decode better than CPU,
where GEparaiiel and GEMM outperform the GEgeriq) €Xperimentally.

In this section variations of threads allocation will be tested in:

® GEp,raner Uses Quadro K620 GPU (base case in this section: implemented

using one thread one block for the execution, at k = 256,10 = 8192 and the
time to execute the base case here is 1.472s. Other than that, the packets

received n=k+10, which is according to the random code standard.)

e GEMM uses Quadro K620 GPU

k = 256, [=8192, 0 < threads allocated < 100000, n=k+10

GEparalle1(in 1 thread)
GEparallel (multiple threads)

(4.3)

Speedup of GEparallel =

Speed Up of GEparallelvs Threads Allocated

140
O O o]
120 @0
- X
100 X x ©—total threads nx1
o X
= 80 &* total threads nx2
-g. 60 O total threads nx4
)
40 X total threads nx16
% —total threads nx64
20 X S °
g—° O total threads nx256
0
0 100 200 300
threads allocated, n

Figure 4.5 Sensitivity of threads allocated toward the speedup of GEparaiiel-

85

Figure 4.5 shows that the speed up of GEparaner Using multiple threads as
compared to GEp,ra11¢1 USING ONe thread (base case) reaches a saturation speedup of

129 times when 8 x 256 threads are allocated for GEparapiel-

As discussed earlier in chapter 4, the GEMM is separated into 2 parts:
1. Inverse (INV) - A variant of GE that is used for inversion of matrix in Chapter
3.5.1.

2. Matrix Multiplication (MM) - Refer to Chapter 3.5.2.

In this section, GEMM (INV+MM) will be analysed on how it can perform
faster than GE. First, we will look into the sensitivity of threads allocation towards the

speedup of INV:

GEparalle1(in 1 thread)

fIN = 4.4
Speedup o Vparallel INVparallel (multiple threads) (4.4)
Speed Up of INVparallelvs Threads Allocated
350
300
250
=
= 200 ©—total threads nx1
2 150 total threads nx2
v
100 > total threads nx4
o total threads nx16
50 g
0 &
0 50 100 150 200 250 300

threadsallcoated, n

Figure 4.6: Sensitivity of threads allocated toward the speedup of INVparaiiel-

86

Figure 4.6 demonstrates the speed up of INV when different number of threads

are allocated for parallelisation. When it is compared to the speed of GEp,ranier, Which
is the base case where GEp,raner Uses only one thread, INV can reach a speedup of
approximately 300 times at the maximum performance of the GPU, where 256 x 16

threads are allocated for INVp,rajjer-

GEparallel (in 1 thread)

Speedup of MMparallel = MMparallel (multiple threads) (4'5)
Speed Up of MMparallel vs Threads Allocated
1400
o) 0]
1200 O
1000 X ©—total threads nx1
e O
= 800 total threads nx2
-g_ 600 ¥ total threads nx4
)
400 o total threads nx16
X
0 ¥ —total threads nx64
200 > 3
& O—total threads nx256
0 g o - e 4
0 50 100 150 200 250 300
threadsallocated, n

Figure 4.7: Sensitivity of threads allocated toward the speedup of MMp,pajier-
Figure 4.7 shows that the performance sensitivity of allocating more threads
for MM as compared to the GEparaner- The saturation point of MM speedup can be
seen when 64 x 256 threads are allocated for parallelisation; the speedup of MM as

compared to the GEp,ranel €an reach a factor of 1300 times faster.

However, for all the previous results, we realise that the speedup achieved in

these experiments can be further improved; for instance there are only 10 times

87

speedup instead of 100 times speedup for 100 threads used in parallelisation, e.g.
parallelisation of GE from Figure 4.7 can only reach the speed up of 130x by providing
it with maximum GPU resources (few thousands of threads allocated), whereas Figure
4.6 demonstrated the maximum INV speed up at 300x. Furthermore, the speedup of

MM in Figure 5.7 is able to reach the speedup of 1300x as compared to the GEaraiiel-

Such inefficiency in speedup proves the existence of parallel overheads, p

which is discussed earlier in Chapter 3.

4.4 Analysis and Discussion

As mentioned in Chapter 3, the parallel overheads is the reason that concludes the
major cause of the parallelisation inefficiency (CUDA, 2015) in GE or GEMM, it
includes:

e Matrix size

e Algorithm nature
When it comes to parallelisation, size and the algorithm nature matters the most. The

first issue to tackle is the input matrix size for GE decoding.

From Figure 4.5 and Figure 4.7, the saturation curves indicate the hardware
limitation of GPU has been reached; there will be no further speedup even though more
threads are added to the execution of the algorithm. Hence the bigger the workload
size the easier the limitation is hit, where the speed up of parallel processing will

saturate eventually.

88

Other than GPU’s hardware limitation, the threads allocation delay will also be
affected by the input matrix size. In GPU’s architecture, threads are required to be
scheduled before parallelisation start and this will be the threads allocation stage; for

example:

Example 4.4.a:
If there are A, B and C workloads to be executed, CPU will serially execute from A to
C one by one.

CPU execution:

-]

Workloads

time
Figure 4.8: The CPU execution timeline

In GPU workload A, B and C will be parallel process and execute simultaneously.

GPU execution (ideal): GPU execution(practical):

I
ey

Scheduling unit

Workloads

time

Figure 4.9: The GPU execution timeline

v

Ideally in Figure 4.9, GPU should execute all the workload at once. However,
in practice, threads need to be scheduled and distributed before performing their
specific tasks (in this case tasks represented by A, B and C will all work on same
operation), e.g., a thread is needed to be tagged along with a thread identity {0, 1, 2,
3....} and allocated to the right position before parallelisation. Once the first threads
are scheduled (scheduled duration are represented by blue box in example 4.4.a), the
workload will be executed immediately as shown example 4.4.a. Using the Nvidia
profiler of CUDA, the details of parallel process of GE and GEMM timeline can be
seen clearly.

CUDA NVIDIA profiler result for GEp,raiel:

1955 0185 02s 02025 02055 0.2085
[=l Process "test” (4100)
=/ Thread 3304789824

- Driver API

- Profiling Overhead

= [0] Quadro K620

= Context 1 (CUDA)
57 MemCpy (HtoD)
¥ MemCpy (DtoH)
[+| Compute
[Streams

19525 ms 1953 ms 19535 ms 1954 ms 195.% 195.5 ms 195.55ms 195.6 ms 195.65 ms

=l Process "test” (4100)

= Thread 3304789824

* Runtime API

- Driver API
“ Profiling Overhead
= [0] Quadro K620
=] Context 1 (CUDA)
57 MemCpy (HtoD)
¥ MemCpy (DtoH)

%) Compute [} xortunsia.. | [f xor(unsi... | [N xor(u... |l xor(unsi. | {] xor(un.. JIfxOr(un}
[#] streams
195.24 ms 195.25ms 195.26 ms 195.27 ms 195.28 ms 19528 ms 1953 ms 19531 ms 19532 ms
[=| Process "test” (4100)
= Thread 3304789824
|

- Runtime API 117 e N 1)
- Driver API
- profiling Overhead

| =10l Quadre K620

| =l Context 1 (CUDA)
5P MemCpy (HtoD)
¥ MemCpy (DtoH)
¥ Compute Il

[#] streams

Figure 4.10: Structure of GEp,raner in Nvidia Profiler

90

The brown row in Figure 4.10 indicates the flow of Runtime API, columns of
purple represents the swap row operations duration while pink column represents the
pivoting check duration and finally the blue column indicates the XOR operations
duration, which means all the scheduling flow and threads allocation, as well as call

kernel duration mentioned earlier, are visualised.

From the result of profiling of the GE, XOR operation (blue columns) are the
dominating one that occupied more than 80% even after parallelisation. Furthermore,
the call kernel time occupied approximately 10% of the execution duration. In other
words, to optimise a parallelised algorithm, one of the key element is to reduce the
amount of calling kernel. However, the iterative nature in GE requires the execution
to keep invoking the kernels at least k amount of times to complete the decoding and
such accumulated delay of calling kernel will drastically reduce the speed of executing

GE in parallel.

91

GEMM:

0.101s 0.102s 0.103s 0.104s 01055 01065 0.107 s 0.108s 0.1

L udasetupargume...| —cuds..._cudabevicesynchr...| |
1

L1
(T e i mlkernelunsign.

101.775 ms

| | LI W cenirver B | I [geninver.|

55 ms 101.76 ms 101.765 ms 101.77 ms 101.775ms 101.785 ms 101.79 ms

LIIIN_cudataunch _J]]]I]]]][] cudataunch]|}y 1] cudataunch JTHITI] e

geninverse(unsigned int*, unsigned int*,".. [}

ILIS ms 107.5ms 107.75 ms 108 ms 108.25 ms 108.5ms 108.75 ms 103 ms

cudaDeviceSynchronize cudaDeviceSynchronize cudamem... [cuda... |

1 mulkernel(unsigned int*, unsigned int*, unsigned int*)

Figure 4.11: Structure of GEMM in Nvidia Profiler

GEMM consist of INV and MM and Figure 4.11 shows that the calling kernel time of

the MM algorithm is much less as compared to GEp,raliel-

92

Ideal case Practical case

thread 1

77777 - 3 GE
thread 1 | | parallel

thread 2
thread 3

. Parallel overheads INVyarallel
; ba ;
thread 1J ﬁl'_' Workload ;

thread 1 |

time |

Figure 4.12: Breakdown of the profiled INVyaratie1 & GEparaiier in SUMmary.
Figure 4.12 shows the summary of the profiling result of GEparaner and INVparajiel,
when they are compared under ideal parallel condition where there are no parallel
overheads such as the threads allocation delay, calling kernel delay, etc. They yield the
same execution speed, but practically GEparaner that had a bigger matrix size of
n X (k +), will be executed slower than INVp, ¢ that had a smaller matrix size of
n X (k + k), and the block in red colour indicates the initialisation of GPU before
parallelisation start. In this thesis, this thing will be considered under the coverage of

parallel overheads.

Such an idea can be easily visualised. Larger matrix size has a larger workload

to deal with and that means more memory access time, more loops and more threads
93

are needed to be allocated to perform parallelisation. However, due to the limited
resources in GPU, larger matrix will hit its performing saturation point earlier as
compared to a smaller matrix as shown in “b” of Figure 4.12, while “a” indicates the

calling kernel time. Since both GEpararer and INVy4ra1161 SUffer from the same calling

kernel time and also same number of iterations, as explained in Chapter 3.2, the main

reason Why GEparariel 1S slower than INV,, 4511 due to the limited resources in GPU

in handling a larger matrix.

Ideal case Practical case

thread 1
thread 2
thread 3 - GEparallel
thread 1
thread 2

thread 3 B

thread 1
thread 2
thread 3 .

thread 1 - I-
thread 2 - I- lv[Mparallel
iread s S s

time g
Figure 4.13: Breakdown of the profiled MM ajiel & GEparatier in SUMmary.

Figure 4.13 is the comparison of GEparaiel and MMp,raner in Figure 4.11, it
can be seen that the structure of executing MM and GE is different; GEparanel has 3
iterations with each iteration having 3 tasks to be done in parallel using 3 threads, while
MM,araner has only one kernel that call 3 tasks to be done in parallel using 3 threads,
i.e., each thread will handle relatively more workload as compared to the threads

in G]E':pa'trallel-
94

Ideally GEparane1 and MMp,ranershould perform at the same execution speed,
but in practice, when parallel overheads are considered, GE,rayie1 that appears to be
the iterative algorithm in nature will perform parallelisation slower than MMy rajiel-
According to the Figure 4.13, MM only suffers from insufficient GPU resource, while

GE suffers from insufficient GPU resources and the calling kernel time that is

accumulated throughout the iterations.

44.1 GEMM vs GEp,paliel

In terms of size, INV is working on the smaller matrix size with a size
of k X 2k as MM works on k x [matrix size and GE works on k x (k + l) matrix size.
It shows that the parallel overhead also increases with the matrix size
where GEparaner > MM > INV, and it is proven in the experiment that the workload
size can inhibit the performance of GPU speedup. e.g. GE and INV are executed using
the same method with different matrix size and slight modification. Figure 4.5 shows
that the larger size GE hits the speedup limitation faster at 130x the speed of its base
case. While INV hit the speedup limitation at 300x the speed of its base case in Figure

4.6.

In terms of algorithm nature, INV and GE are both iterative structures, making
the parallelisation less efficient for the accumulated delay shown in Figure 4.12;
whereas MM in the profiler of Figure 4.13 shows a parallelisation friendly structure

that can contribute to a higher parallel efficiency, e.g., speedup of MM in Figure 4.7

95

can reach 1300x as compared to INV and GE, as shown in Figure 4.6 and Figure 4.5,

which only reach a maximum speedup of 300 and 127, respectively.

4.5 Second Degree Parallelisation - Single File Parallelisation vs Bulk
Decoding Parallelisation

10T is the trend of the future network and majority of the uplink traffic are short
messages if the experiment deploys the GEMM in the context of 10T. We are assuming
a server to process thousands of short messages that are encoded with REC in real life
applications, since the 10T server in nature are getting feedbacks from thousands of

internet devices.

Beside accelerate GE with GPU in the previous cases, the throughput will be
further accelerated by having multiple decoding session running concurrently on
different short messages. Such multitude of acceleration further leverages the speed

up to the factor of 60x at the end of this experiment.

451 Experimental Result

Two set of machines are tested in the experiment:
e Bulk decoding GEgi, Using XEON E3 CPU
e Bulk decoding GE; ¢ Using Quadro K620 GPU

¢ Bulk decoding GEMM using Quadro K620 GPU

Generally, the bulk decoding of o = 1024 unique files in the experiment with
each message size k = 32,1 = 8192 bits. Theoretically, the REC (Random code in
this study) will encode the message into a potentially infinite number of packets in the
form of G|X. The decoder will initiate the decoding algorithm, i.e., GEMM once k +

10 = 42 packets are received for complete decoding. While for bulk decoding GEMM,
96

when there is o number of files to be decoded, a x (k + 10) relevant packets are
required to be received to initiate the bulk decoding of GEMM, as to facilitate the

comparison, the speedup is measured using:

o unique message base case decoding time

Speedup of bulk decoding = (4.6)

o unique messages decoding times

The base case here is referring to the duration of CPU GE., that performs
execution of k = 32 and [= 8192 bits file, which is 0.0049s when decoding @ = 1

files.

Time to decode a unique files in GE

serial

Time
w

0 128 256 384 512 640 768 896 1024

Figure 4.14: Time used to decode o files using GEgepiar-

Experiment parameters:

k = 32, = 8192, 1< a <1024, threads allocated = 1,000,000

97

Bulk Decoding of GEparallel and GEMM
Compared to GEserial

S
2 40
2 30
& OO < < <
20 <&
10 &
O v
0 128 256 384 512 640 768 896 1024

number of unique files, a

<O— GEparallel GEMM

Figure 4.15: Speedup of Bulk decoding GE,qrquer and GEMM as compared

to GEserial-

In the configuration, the large value of allocated threads is not the actual value
of threads that will be used in parallelisation, e.g., if there are 2 tasks for parallelisation,
only maximum 2 threads will be used and the excessive threads will be eliminated by

the CUDA system automatically.

Figure 4.13 shows the speedup of GEMM on bulk decoding over various
number of files, o in parallel on different CPUs and GPUs. The best GE computational
times on Intel Xeon E3 for each value of a are taken as the base cases. The results
show that when the volume of unique messages is small (a0 < 32), both GE and GEMM
experience limited speedup. However, GEMM manifests the benefits of higher

parallelism degree reaches the speedup of a factor 60 at o = 1024.

98

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

While the trend of the future network and majority of the networking traffic
are short messages, REC is employed to improve reliable transmission and the
decoding algorithm of REC — GE, plays an important role in ensuring the high
probability of complete decoding. Hence, the component that contributes to a high
computational time of GE and accelerates the algorithm using the state of art GPU will
be analysed. However, due to the interactive properties in GE that scale inefficiently
in GPU that performs 13 times faster than the GE¢.p,;, GEMM is proposed to further
minimise the computational time with the integration of parallel matrix multiplication.
As a result, GEMM is capable of performing at approximately 26 times faster

than GEserial-

As to further accelerate the decoding speed of GE and GEMM using GPU,
multiple files will be executed in bulk by using GE and GEMM decoding method
concurrently to solve thousands of messages and able to achieve the speedup in the

factor of 28 and 60 for speedup of bulk decoding GEparanel & GEMM respectively

compared to bulk decoding of GEgeriq-

99

Table 5.1: Overall speedup performance of GEMM and GEp,raiel

Speedup:mfﬁ% first degree parallelisation | second degree
Tested speedup parallelisation speedup
algortthm (bulk decoding)
GEserial 1 1
GEparatlel 13 28
GEMM 26 60

Finally, the results have achieved all the objectives. First, GE as our main study

object is proven to be the most efficient linear code solver in terms of PCD. We

conclude this from several papers such as (Bioglio, et al., 2009), (Yeqing, et al., 2013)

etc., where these papers implements the hybrid of GE and another method to improve

the PCD in solving the linear code. Secondly, we are able to propose a new parallel

decoding algorithm- GEMM, by making use of the state-of-art GPU. Furthermore, the

algorithm undergoes test experimentally to figure out its capability toward the current

standard protocols as well as potential future implementations. In the end of the

experiment, GEMM is proven scalable towards the given resources such that, GEMM

performance can be further improved. When more GPU resources are provided, more

information can be decoded in parallel at once.

51 Future Work

In this section, the future works to further enhance on the proposed algorithm will be

briefly discussed.

100

511 Hardware Variety

Previously, GEMM is proven to be a faster decoding algorithm for REC in
parallelisation. Due to resources problem, we are only able to test it on GPU K620
Quadro GPU (low end GPU) and a CPU workstation XEON E3 (High end CPU),

hence in future we will suggest to have a range of GPU and CPU to be tested on.

5.1.2 Machine Learning

Machine learning is the computational task that processes a bunch of data to

discover a pattern that can be used to predict or categorise the new incoming data.

Lately, machine learning appears to be the attractive topic to improve the
Rateless erasure code in terms of overheads and decoding speed, i.e., it can be used to
find the perfect generated matrix G with the least overheads required for linear
independence. Other than that, decoding speed can be improved by creating its own

algorithm by studying the millions of patterns of decoding.

5.1.3 Protocol Design

In order for the Rateless Erasure Code to function appropriately (as in to utilise
the network bandwidth), typical data transmission protocols such as TCP will be
needed to be modified for fully utilisation of the characteristic of REC, e.g., the
protocols design of REC should focus on minimising or completely abolish the needs

of acknowledgment as such acknowledgment mechanism is the main reason for

101

inefficient transmission in TCP, especially when packet loss occurs, the throughput
will be reduced exponentially. Much simulation work needed to be done to find its
efficiency in terms of transmission error percentage and bandwidth utilisation. We will

leave all the detailed study in future works.

102

References

Algahtani, A. H., Sulyman, A. I. & Alsanie, A., 2016. Loss-tolerant large-scale MU-
MIMO system with rateless space time block code. s.l., s.n., pp. 342-347.

Anghel, B., Vasile, B. & Aurel, V., 2011. Study of Decoding Complexity for Decoding
Rateless Erasure Code. s.l., ACTA TECHNICA NAPOCENSIS: Electronics and

Telecommunications.

Anghel, B., Vasile, B. & Mihai P, S., 2011. Performance evaluation of rateless erasure
correcting codes for content distribution. lasi, Romania, Roedunet International
Conference (RoEduNet).

Anghel, B., Zsolt, A. P. & Zsuzsanna, I. K., 2010. FECTCP for High Packet Error.

Bucharest, Romania, |IEEE.

Assefa, T. D., Kralevska, K. & Jiang, Y., 2016. Performance analysis of LTE networks
with random linear network coding. s.l., s.n., pp. 601-606.

Bioglio, V., Grangetto, M., Gaeta, R. & Sereno, M., 2009. On the fly gaussian
elimination for LT codes. IEEE Communications Letters, December, 13(12), pp. 953-
955.

Brownlee, N. & Claffy, K. C., 2002. Understanding Internet traffic streams:
dragonflies and tortoises. IEEE Communications Magazine, Oct, 40(10), pp. 110-117.

Chen, S., Zhang, Z., Zhang, L. & Yao, C., 2013. Belief propagation with gradual edge
removal for Raptor codes over AWGN channel. s.1., s.n., pp. 380-385.

Cheong, S. T. & Fan, P., 2016. Novel degree function over finite field for LT codes.
s.l., s.n., pp. 1-5.

103

Chong, S., Lai, A. C. & Chong, Z. K., 2016. Improve the decoding process of rateless
erasure code and network coding with graphics processing unit in 10T. s.l., s.n., pp.
436-439.

Chong, Z. K. et al., 2015. Improving the probability of complete decoding of random
code by trading-off computational complexity. IET Communications, 9(18), pp. 2281-
2286.

Chong, Z. K. et al., 2016. Improving Reliable Transmission Throughput with
Systematic Random Code. s.1., s.n., pp. 539-542.

CUDA, N., 2015. Issue Efficiency, http://docs.nvidia.com/gameworks/content/
developertools/desktop/analysis/report/cudaexperiments/kernellevel/issueefficiency.h

tm: s.n.

CUDA, N., 2017. CUDA Toolkit Documentation, http://docs.nvidia.com/cuda: s.n.

Guo, Y. L., Pan, Y. & Cai, L., 2016. OPNET-based analysis of MTU impact on

application performance. s.l., s.n., pp. 1-5.

Hagedorn, A., Starobinski, D. & Trachtenberg, A., 2008. Rateless Deluge: Over-the-
Air Programming of Wireless Sensor Networks Using Random Linear Codes. s.1., s.n.,
pp. 457-466.

Hu, L., Nooshabadi, S. & Mladenov, T., 2012. Implementation and evaluation of

Raptor code on GPU. s.l., s.n., pp. 1-6.
Hu, L., Nooshabadi, S. & Mladenov, T., 2013. Forward error correction with Raptor

GF(2) and GF(256) codes on GPU. IEEE Transactions on Consumer Electronics,
February, 59(1), pp. 273-280.

104

Jamshid, A., Siavash, F. & Konstantinos, N., 2011. Raptor codes in wireless body area
networks. Toronto, ON, Canada, Personal Indoor and Mobile Radio Communications
(PIMRC).

Julia, M. & Thinn, T., 2011. Management of Data Replication For PC Cluster Based
Cloud Storage System. s.1., International Journal on Cloud Computing: Services and
Architecture(lJCCSA).

Kevin, W., 2015. Erasure Coding in Distributed Storage Systems. Zurich, Department
of Informatics, University of Zurich.

Kim, B. & Lee, J., 2004. A simple model for TCP loss recovery performance over

wireless networks. Journal of Communications and Networks, Sept, 6(3), pp. 235-244.
Lee, S. Y., Arunkumar, A. & Wu, C. J., 2015. CAWA: Coordinated warp scheduling
and Cache Prioritization for critical warp acceleration of GPGPU workloads. s.1., s.n.,
pp. 515-527.

Lidl, R. & Niederreiter, H., 1997. Finite Fields. 2 ed. s.l..Cambridge University Press.

Li, H. etal., 2014. Work in progress: A new algorithm to improve the decoding success
probability of Raptor code. s.l., s.n., pp. 271-274.

Luby, M., 2002. LT codes. s.l., s.n., pp. 271-280.
Lu, W., Lin, X,, Lin, J. & Niu, K., 2012. A novel construction method of fountain codes.
Chengdu, China, Communication Technology (ICCT), IEEE 14th International

Conference.

M, A.S. &S, L. K., 2006. Systems and processes for decoding a chain reaction. United
States of America, Patent No. US6856263B2.

105

Mathis, M., Jeffrey, S., Jamshid, M. & O.Teunis, 1997. The Macroscopic Behavior of
the TCP Congestion Avoidance Algorithm. SIGCOMM Comput. Commun. Rev., #jul#,
27(3), pp. 67-82.

Mladenov, T., Nooshabadi, S. & Kim, K., 2012. Efficient GF(256) raptor code
decoding for multimedia broadcast/multicast services and consumer terminals. IEEE

Transactions on Consumer Electronics, May, 58(2), pp. 356-363.

Molnar, S., Moczar, Z. & Sonkoly, B., 2014. How to transfer flows efficiently via the
Internet?. s.l., s.n., pp. 462-466.

Ren, Z., Wang, Z. & Guo, Q., 2014. Rateless codes based file delivery protocols in

deep space communications. s.1., s.n., pp. 1-6.

Rossi, M. et al., 2010. SYNAPSE++: Code Dissemination in Wireless Sensor
Networks Using Fountain Codes. IEEE Transactions on Mobile Computing, Dec,
9(12), pp. 1749-1765.

Salyers, D. C., Striegel, A. D. & Poellabauer, C., 2008. Wireless reliability: Rethinking
802.11 packet loss. s.l., s.n., pp. 1-4.

Shaneel, N. & Paula-Rayond, L., 2013. Network Performance Evaluation of Jumbo
Frames. s.l., 6th International Conference on Emerging Trends in Engineering and

Technology.

Shokrollahi, A., 2006. Raptor codes. IEEE Transactions on Information Theory, June,
52(6), pp. 2551-2567.

Shokrollahi, A. & Luby, M., 2011. Raptor Codes. Foundations and Trends in
Communications and Information Theory, 6(3-4), pp. 213-322.

Yeqing, W. et al., 2013. A Fast Raptor Codes Decoding Strategy for Real-Time. s.1.,

Canadian Center of Science and Education.

106

Yuan, X., Sun, R. & Ping, L., 2010. Simple capacity-achieving ensembles of rateless
erasure-correcting codes. IEEE Transactions on Communications, January, 58(1), pp.
110-117.

Zhu, H., Zhang, G. & Li, G., 2008. A novel degree distribution algorithm of LT codes.
s.l., s.n., pp. 221-224.

107

List of Publication

Ran-Chong, S., Lai, A. C. & Chong, Z. K., 2016. Improve the decoding process of
rateless erasure code and network coding with graphics processing unit in 10T. s.l.,
s.n., pp. 436-439.

Chong, Z.K., Hiroyuku, O., Bryan, N., Goi, B.M., Ewe, H.T., & Ran-Chong, 2016.

Improving Reliable Transmission Throughput with Systematic Random Code. IEEE
Local Computer Networks (LCN), 2016 IEEE 41st Conference, pp. 539-542.

108

