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ABSTRACT 

 

 

STUDIES TO IMPROVE THE PROCESS OF DECODING RATELESS 

ERASURE CODE WITH HIGHLY-PARALLEL GPU ARCHITECTURE 

 

 

 CHONG SIN RAN  

 

 

 

 Rateless Erasure Code (REC) is a type of forward error correcting code for 

erasure channel. Such code is often used to improve networking throughput 

performance. While the backbone of the REC is made up of linear equations, Gaussian 

elimination (GE) with the entry complexity of 𝑂(𝑘3) is the general solver / decoder 

for REC. Thus, the decoding phase of REC is the performance bottleneck. Even with 

our current central processing unit (CPU) technology that can easily reach the 

processing speed of 4GHz, solving thousands of 𝑘 linear equations using Gaussian 

elimination in a CPU is still a time-consuming process. In response, this thesis will 

show how the state-of-the-art graphic processing unit (GPU) can replace the 

predominant CPU in decoding REC. Furthermore, by utilising parallel processing 

technology embedded in the GPU, our study will show that the decoding of REC riding 

on the state-of-the-art of the GPU, are capable of performing significantly better than 

CPU during the REC’s decoding under certain circumstances. Apart from the typical 

GE decoding, we also propose a new decoding algorithm, namely Gaussian 

elimination method with matrix multiplication (GEMM) that comes with two degrees 

of parallelisation in the GPU. In the first degree of parallelisation, the GEMM will 

show its ability of decoding REC of one file 2x faster than GE that is computed in 

CPU, while the second degree of parallelisation of GEMM will prove the idea of 
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decoding thousands of distinct files at once can perform more than 10x faster compared 

to a CPU decoding thousands of distinct files. 
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1 INTRODUCTION 

 

 

The communication network is a fast-growing technology that bridges the 

information in physical and cyber domains. Generally, most of the internet-connected 

devices are using the wireless channel and they are susceptible to the environmental 

interference. Furthermore, the ever-growing number of internet-connected devices 

continuously generate traffic that forms exponential and can potentially increase the 

frequencies of packet losses; hence, significantly decreasing the Internet throughput.  

 

Figure 1.1: Average throughput performance of various TCP 

 

Figure 1.1 demonstrate the effects of packet loss towards the throughput of 

various implementation of TCP. Other than FECTCP (Alqahtani, et al., 2016) which 

implements a TCP-like transport protocol by using Rateless Erasure Code, the other 

TCP variants show their high sensitivity towards packet loss. In other words, REC can 

play an important role in solving the packet loss problem in TCP/IP by encoding a 

message of 𝑘 symbols into theoretically an infinite number of encoded symbols. In 
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general, rateless erasure code (REC) is a type of error correcting code for the 

communication system that promises to achieve efficient erasure mitigation over lossy 

transmission channels and to improve bandwidth utilization of our communication 

networks. If the channel is lossy, the message is still recoverable given that sufficient 

encoded symbols (i.e. 𝑛 ≥ 𝑘) are received. 

 

                             

 

 

 

Figure 1.2: Transmission flow diagram 

 

 

Figure 1.2 demonstrates briefly the transmission process of the communication 

network. Before a message is sent, it will first be subdivided into 𝑘 amount of message 

symbols (M), then M will be encoded into several encoded symbols (X) for error 

handling mechanism according to the standards set by the particular protocol, and 

forms packets that are ready to be sent. A packet in a networking is often called a 

datagram, and it is a self-contained independent data carrier that carries the partial 

knowledge of the encoded information as well as the address of its sender and receiver 

etc. After all the relevant packets are received at the destination, the original message 

will be reconstructed according to that protocol’s specific decoding process.  

 

M M M M X packets M packets M 
M 

X 
X 

packets 
Packets 

packets 
Packets 

M 
M 

 

Transmission 

channel 

Sender Receiver 

Encode Decode 

Message  

Symbols 

Encoded 

Symbols 

Decoded Message  
Symbols 



 

3 

 

 

Figure 1.3: The encoding and decoding of rateless erasure code 

 

Figure 1.3 demonstrates briefly the encoding and decoding process of REC. 

First, 𝑘 amount of message symbols from the original message will arbitrarily generate 

a theoretically limitless number of encoded packets, and any subset of the 𝑛 encoded 

packets that is slightly more than 𝑘, can be used to recover the original message at the 

receiver side. Such transmission allows the packets to be decode regardless of its 

sequences and subsequently minimise the needs for retransmission. However, one of 

the aspects that affect the applicability of REC is the high computational resources 

required by the decoding of REC.  

 

Figure 1.4: Comparison in Between CPU and GPU. 
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The gain from the REC is therefore paid for by the price of high computational 

resources in the decoding process (Chong, et al., 2016). To address this issue, we 

propose to speed up the decoding process using graphical processing unit (GPU) – a 

computer peripheral that is capable of processing massive amount of data in parallel. 

Generally, GPU consists of thousands of cores as compared to CPU but the former 

runs at a relatively lower clock speed (See Figure 1.4). Such computational 

architecture advancement challenges the proper design of parallel algorithms in 

utilising the full potential of GPU to reach the theoretical speed limit. 

 

This chapter introduces the relationship between Gaussian Elimination and 

REC’s impact to our networking system. It also explains the contribution of this project 

to the coding theory field particularly on enhancing Gaussian Elimination performance 

speed by using GPU. 

 

In this thesis, we will briefly explain how to maximize the performance of REC 

by utilizing the state of art of GPU. GPU consists of thousands of computing cores that 

it run independently, each of GPU’s core has lesser complexity than the core in CPU. 

Furthermore, GPU’s operation requires certain computational overheads, hence we 

will study and analyze whether the GPU can help in improving the decoding 

performance of REC. Other than that, one more reason to study on GPU is due to its 

relatively low cost compared to mainstream CPUs. For example by using the 

information that we have as the reference, the price of GPU-NVIDIA QUADRO 

K620 WORKSTATION GRAPHICS CARD is retailed at RM900 (July, 2017) while 

https://www.lelong.com.my/leadtek-nvidia-quadro-k620-workstation-graphics-hubbyhoneyworld-I2472334-2007-01-Sale-I.htm
https://www.lelong.com.my/leadtek-nvidia-quadro-k620-workstation-graphics-hubbyhoneyworld-I2472334-2007-01-Sale-I.htm
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CPU-HP Xeon E3 Z240 Tower Workstation (HP-V1Z90PA) is retailing at a higher 

cost of RM4500 (July, 2017). 

 

 

1.1 Background 

Data transmission is a process of transmitting certain numbers of relevant 

packets from sender to receiver and this transmission is mediated by a communication 

protocol. TCP/IP is one of the most widely used communication protocol to ensure the 

reliability and the quality of packets during data transmission. 

 

In general, before a message file is being transmitted, it will be encoded and 

subdivide into packets by following the TCP/IP standards. These packets will then 

travel individually to the receiver, and TCP/IP will “remounts” the packets in order to 

assemble the packets back into the original file, If for instance a packet is lost on the 

receiving side for reasons such as bit error, timeout, packets drop on network 

congestion and even wrong packets sequence, TCP/IP at the receiving side will 

feedback a signal to the sender, asking it to re-send the particular missing packets until 

all the packets have reached the destination.  

 

However, due to the properties of TCP/IP that requires an acknowledgment for 

every received or lost packets, the transmission process would be very inefficient and 

can easily clutter the network. Furthermore, our communication system is being 

increasingly used for wireless communication, where a slight error could possibly lead 

to significant throughput degradation. For a long time, many researchers have claimed 
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that TCP is inefficient in the high-speed internet.  (Salyers, et al., 2008), (Kim & Lee, 

2004). 

 

 

1.1.1 Impact of Rateless Erasure Code to Network 

In the past decades, REC has been proposed as the solution for such issue, with 

the properties mentioned previously, where “A REC encoded file can be retrieved from 

any subsets of the encoded symbols disregarding of it sequences”.  

 

The mechanism in TCP that requires acknowledgement for every lost and 

received packets to ensures data transmission reliability, is therefore less important in 

REC as data transmission by using REC doesn’t require acknowledgement for every 

received or lost packets, and the only important thing in REC is that the receiver side 

received sufficient 𝑛 (𝑛 > 𝑘) amount of encoded symbol for complete decoding. 

 

 

Figure 1.5: TCP vs REC Flow Diagram 
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Figure 1.5 demonstrates the transmission rate of TCP and REC during packets 

loss. For TCP, whenever a packet is sent successfully (sender receives an 

acknowledgement of the received packet), the transmission rate of TCP will increase 

exponentially until a packet loss is detected (sender received a failed to transmit signal 

or fail to receive acknowledgement signal). At this point, the transmission rate will be 

halved, and the process will continue until all the packets are delivered successfully 

(Mathis, et al., 1997). While for REC, the transmission rate is at its near maximum rate 

from the beginning until the end of the transmission regardless of packet loss (Yuan, 

et al., 2010). Since REC can transmit the packets at near the maximum transmission 

rate at all time, more bandwidth is utilised in transmitting the packets instead of 

wasting them on the acknowledgment mechanism of lost and received packets.  

 

 

1.1.2 Rateless Erasure Code Riding on GPU 

Ever since REC appears a few decades ago, many variants of REC have been 

proposed, i.e. Random code (Chong, et al., 2015), Lt code (Luby, 2002), and Raptor 

code (Shokrollahi, 2006) etc, in order to solve the REC’s common issues such as the 

decoding speed or overhead problems.  

 

All RECs are usually viewed as the linear codes over Galois fields, and are 

built on top of the linear algebra system that generally makes them optimally decodable 

using an algorithm namely Gaussian elimination (GE) (Anghel, et al., 2011). In 

contrast, such method of decoding linear system would be very computationally 

intensive. To address this issue, the most promising solution seems to be the 

implementation of parallel processing using GPU. 
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The exceptional GPU computing power is very attractive to general-purpose 

system development. However, the critical challenge during coding for GPU is the 

smaller degree of parallelization in the REC’s decoding process. GE requires the 

decoding of each step to start only after the decoding of the previous step is finished. 

This implies that the parallel decoding process will be limited by GE’s independencies. 

 

Since GPU requires a certain large amount of threads to reach peak 

performance, a lesser parallelization degree will limit the performance gain by parallel 

processing. In addition, this research will be testing on the parallelization granularity 

of GPU-based decoding schemes and their performance for the different granularity 

setup. The details of the parallelization schemes will be presents in this thesis later. 

 

Recently, Applications that harness the massive parallelism of GPU to speed 

up computational task have become increasingly common. In this research, we propose 

a new parallel decoding algorithm namely the Gaussian Elimination with Matrix 

Multiplication (GEMM) as matrix multiplication is known to be highly parallelizable. 

The goal of this study is to research on how to effectively offload parallel computations 

to the graphics card, and analyses the impact of GPU toward REC. 

 

1.2 Research Problem 

In previous research papers (Anghel, et al., 2010), (Chong, et al., 2015), 

(Chong, et al., 2016), it was shown that REC can lead to more scalable and robust 

protocols with better utilization of the available bandwidth at poor network condition. 
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However, to date, we have not observed any commercial application or protocol taking 

advantage of the power of REC. We believe that the main cause of this observation is 

due to the high complexity of the decoding algorithm- Gaussian elimination, employed 

in REC. Currently, Gaussian elimination is always the main component in REC’s 

decoding schemes, as such it is crucial to speed up the performance of Gaussian 

Elimination by utilising modern state-of-the-art of computer accelerator – GPU. In this 

dissertation, the research problem is defined as the following: 

“How to design a scalable and robust Rateless Erasure Code decoding algorithm 

that can utilise the resources in GPU” 

 

1.3 Objective 

Associate with the research problem, the objectives in this research will be: 

• To study the state-of-art of REC that uses GE as the core in the decoding 

process. 

• To propose a new parallel algorithm to speed up GE components with REC 

constraints 

• To evaluate the scalability of the proposed algorithm. 

• To analyse the proposed algorithm experimentally.  

 

 

1.4 Outline 

In this chapter, the issue on the traditional communication network are 

discussed, and the deployment of REC to improve the performance of the current 



 

10 

 

communication network. Nonetheless, REC is not widely deployed due to the high 

complexity of encoding and decoding processes. 

 

In Chapter 2, a few REC will be review to highlight the research problem. Since 

most of the REC are linear codes, they are decodable by many different mathematical 

approaches. Their advantages and disadvantages will be discussed from different 

aspects. 

 

 Chapter 3 introduces the core decoding method for REC, i.e., Gaussian 

Elimination, whose time complexity is 𝑂(𝑘3). Basically, the chapter will cover the 

state of art of Gaussian elimination and propose a new parallel algorithm called 

GEMM to improve the performance of REC with any input 𝑘, using re-dimensioning 

techniques. Such parallel algorithms will be implemented and compared on GPU 

platforms. Furthermore, due to the inefficiency of parallelisation in Gaussian 

Elimination, this research proposes GEMM with two degrees of parallelisation. In 

short, the first-degree parallelisation will be performed on single file, and we will see 

significant improvement on the GPU decoding performance compared to CPU while 

the second-degree parallelisation of GEMM will be performed on multiple files, e.g., 

we propose to decode 1000 files in parallel while each file will be parallel processed 

at the same time as well. 

 

Chapter 4 will demonstrate the result and comparison of convention Gaussian 

elimination (base case) with our proposed double degree parallelised GEMM, where 

GPU resources can be potentially exploited. In this chapter, analysis according to the 

experimental result will be done to prove the workability of our proposed algorithm, 
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we will also discuss the performance of the proposed algorithm from a different aspect 

with different parameters to show its scalability. Finally, we will draw a conclusion 

and discuss the potential future work in Chapter 5.  
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2 LITERATURE REVIEW 

 

 

Rateless erasure codes (also called the Fountain codes) are a family of error 

correcting codes where the rate of transmitting coded packet can be adjusted on the fly. 

Such an approach is termed Digital Fountain (DF), as the transmitter is used as a 

fountain that emits coded packets that are continuously sent until the receiver has 

received the number of packets required for 100% probability of complete decoding 

(PCD)  (Lu, et al., 2012). However, the deployment of rateless erasure code is limited, 

primarily due to the added computational complexity associated with linear coding-

based encoding and decoding.  

 

2.1 Rateless Erasure Code Variant 

Variant of REC comes in as improvement to fit into different situation, e.g., 

the REC that has lower overheads will be used in lossy situation (deep space 

communication, long-distance communication, etc.) where a packet suffers high loss 

rate during transmission (Ren, et al., 2014); REC with high encoding and decoding 

speed performance are more suitable for daily communications (wireless 

communication etc.) with lower packet loss rate (Assefa, et al., 2016). In general, all 

the REC’s are encoded in a way where: 

𝐺∞×𝑘 ×𝑀𝑘×𝑙 = 𝑋∞×𝑙     (2.1) 
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𝐺 = Generated information for encoding 

𝑀 = Message symbols 

𝑋 = Encoded symbols 

𝑘 = Numbers of message symbols 

𝑙 = Length of one message symbols 

 

The method of generating 𝐺 determines the properties of the particular REC; 

different REC will possess different 𝐺 for the encoding process, as long as the 𝐺 can 

still be generated according to the particular REC’s standard, the message can be 

theoretically encoded into an infinite number of encoded symbols.  

 

Then the encoded symbols will be augmented together with its generating 

information to form packets in the form of 𝐺𝑦|𝑋𝑦 ,𝑦=0,1,2,3…∞ , These packets will be 

transmitted to the receiver side for decoding since the packet 𝐺|𝑋 are generated with 

linear algebra, they are basically decodable using Gaussian elimination (Bioglio, et al., 

2009), as long as sufficient 𝑛 numbers of packets are received. The equations will be 

explained in detail in Chapter 3. In this section, we will briefly introduce and review 

several existing REC. 
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𝑙 

𝑘 

2.1.1 LT Code 

LT codes (Luby, 2002), are the first practical realization of the digital fountain 

approach, also called universal erasure codes. The main advantages of LT codes are: 

1. The number of packets that can be generated from the message file is 

potentially infinite, or researchers call it on-the-fly (the encoded packets will 

be generated whenever it is needed). 

2. Low complexity for both encoding and decoding processes (fast). 

 

According to the linear equation for REC where  𝐺 × 𝑀 = 𝑋 , LT code 

generates G by using fine tune random degree distribution (Cheong & Fan, 2016), 

(Luby, 2002), i.e., the ideal Soliton distribution and the robust Soliton distribution for 

the optimal encoding and decoding performance (Zhu, et al., 2008). 

 

2.1.1.1 Encoding 

For the encoding of LT code (Luby, 2002): 

1. Divide the message into equal length 𝑙 bits, resulting in 𝑘 numbers of messages 

symbols as shown; one row in the matrix will represent one message symbol. 

 

 

𝑀 = 01000100111000100100 → (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

)

𝑘×𝑙
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Certain packet 

Certain packet 

2. Randomly choose the degree (𝑑 ) from fined tuned degree distribution for 

generating the 𝐺, e.g., let  𝑑 = 3 (A row in 𝐺 will be randomly allocated with 

a maximum of 3 ‘1’s) 

 

𝐺 =

(

 
 
 
 
 

1 0 1 0
1 0 0 0
0 0 1 0
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
0 0 1 1)

 
 
 
 
 

∞×𝑘

 

3. Matrix multiply 𝐺  and 𝑀  to form  𝑋 , and the corresponding  𝐺  will be 

augmented with 𝑋 to form 𝐺|𝑋 packet for transmission.   

 

𝐺 ×𝑀 =

(

 
 
 
 
 

1 0 1 0
1 0 0 0
0 0 1 0
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
0 0 1 1)

 
 
 
 
 

× (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

) =

(

 
 
 
 
 

1 1 0 0 1
0 1 0 0 0
1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
0 1 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 0 1 0 1)

 
 
 
 
 

 

 

𝐺|𝑋 =

(

 
 
 
 
 

1 0 1 0
1 0 0 0
0 0 1 0
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
0 0 1 1

|

|

1 1 0 0 1
0 1 0 0 0
1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
0 1 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 0 1 0 1)

 
 
 
 
 

 

 

By encoding the file in LT code method, the encoded packets are either 

completely certain (only a ‘1’ in 𝐺) or uncertain (more than a ‘1’ in 𝐺). By using the 

method called belief propagation(BP) which can be only used in LT code decoding, 
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Certain packet 

the certain encoded packet will be used to eliminate all the uncertain packets back to 

certain packets during the decoding. 

 

2.1.1.2 Decoding 

The fastest way to decode LT code packets is to use the propagation method stated 

previously namely belief propagation (BP) (Chen, et al., 2013). As already mentioned, 

the packets consist of certain and uncertain packets. With this condition, the BP 

decoding will be demonstrated as shown: 

1.  Find any one row that contains certain packet. (only a ‘1’ in G) 

𝐺|𝑋 =

(

 
 
 
 
 

1 0 1 0
1 0 0 0
0 0 1 0
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
0 0 1 1

|

|

1 1 0 0 1
0 1 0 0 0
1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
0 1 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 0 1 0 1)

 
 
 
 
 

 

 

2. Propagate one of the certain packets in step one to all the related uncertain 

packets (uncertain packets that contain ‘1’ in the same column with the certain 

packet), by adding them with the value of the “certain packet”. 

 

𝐺|𝑋 =

(

 
 
 
 
 

0 0 1 0
1 0 0 0
0 0 1 0
0 1 0 1
0 1 0 0
0 1 1 0
⋮ ⋮ ⋮ ⋮
0 0 1 1

|

|

1 0 0 0 1
0 1 0 0 0
1 0 0 0 1
1 0 1 1 1
1 0 0 1 1
0 0 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 0 1 0 1)
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Decoded 

message 
Identity matrix 

3. Iterate the first two step until all uncertain packets are eliminated (left side of 

matrix becomes identity matrix), and the 𝑋 on the right will convert back into 

𝑀. 

 

𝐺|𝑋 =

(

 
 
 
 
 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
⋮ ⋮ ⋮ ⋮
0 0 0 0

|

|

0 1 0 0 0
1 0 0 1 1
1 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0)

 
 
 
 
 

 

 

According to LT code (Luby, 2002), the LT codes overheads is calculated based on the 

soliton distribution; the overheads required in LT code will decrease as the 𝑘 increase. 

 

2.1.2 Raptor Code 

The Raptor code is an extension of LT code (Shokrollahi, 2006), whereby a 

pre-coding stage (usually low-density-parity code (LDPC) code, a simple error 

correcting code with parity check) is used to extend the message symbols.  

 

2.1.2.1 Encoding 

The encoding of Raptor code is as shown: 

1. Encode the message symbols by using LDPC code to get the optimal numbers 

of encoded symbols for degree distribution in the next step. 

2. Then these pre-coded symbols will be encoded with LT encoding method in 

the previous section. 
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2.1.2.2 Decoding 

After that, the received raptor code’s packets will be decoded using BP which 

applies the same method as that for the decoding of LT code. 

 

In general, the pre-coding stage that extends the numbers of message symbols 

are used to reach the optimal message number that is suitable for degree distribution 

in LT code, because if the numbers of message symbols are fewer than a certain value, 

it will not have an optimal degree distribution, and also have a higher chance to fail 

during decoding  (Li, et al., 2014).    

 

2.1.3 Random Code 

Random code is another variant of REC that has lower overheads, compared 

to LT and Raptor codes that have optimally 𝜀 = 0.03𝑘  overheads only at large 𝑘 , 

Random code only needs  𝜀 = 10 overheads for 99.99% PCD. (Chong, et al., 2015), 

(Chong, et al., 2016)  

 

2.1.3.1 Encoding 

Just like standard REC encoding, Random code follows the general encoding 

where: 

 

𝐺 ×𝑀 = 𝑋. 
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𝑙 

𝑘 

The encoding of Random code is demonstrated below: 

 

1. Divide the message into equal length 𝑙  bits which results in  𝑘  numbers of 

messages symbols as shown. One row in the matrix will represent one message 

symbol. 

 

𝑀 = 01000100111000100100 → (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

)

𝑘×𝑙

 

 

2. Randomly generate the 𝐺. Unlike LT code, the Random code can generate its 

𝐺  without following the degree distribution. The 0 to 1 ratio in the whole 

generated matrix should be 1:1. 

𝐺 =

(

 
 
 
 
 

1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
1 0 1 1)

 
 
 
 
 

∞×𝑘

 

 

3. Matrix multiply 𝐺  and 𝑀  to form 𝑋 , and the corresponding  𝐺  will be 

augmented with 𝑋 to form 𝐺|𝑋 packet for transmission. 

(

 
 
 
 
 

1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
1 0 1 1)

 
 
 
 
 

× (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

) =

(

 
 
 
 
 

1 1 0 0 1
1 1 0 1 1
1 0 1 0 1
1 0 1 1 1
1 0 0 1 1
0 1 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 1 1 0 0)
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𝐺|𝑋 =

(

 
 
 
 
 

1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1
0 1 0 0
1 1 1 0
⋮ ⋮ ⋮ ⋮
1 0 1 1

|

|

1 1 0 0 1
1 1 0 1 1
1 0 1 0 1
1 0 1 1 1
1 0 0 1 1
0 1 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 1 1 0 0)

 
 
 
 
 

 

 

By encoding the message using the random code way, every encoded packet is 

uncertain, where all the encoded packets are made up of an average 𝑘/2 number of 

messages symbols by probability. 

 

2.1.3.2 Decoding 

In this case, when GE is used for the decoding, the 𝑛 should be 𝑘 + 10 for 99.99% 

PCD according to Kolchin’s theorem (Chong, et al., 2015), and the decoding process 

is shown below: 

1. When 𝑛 numbers of packets in the form of 𝐺|𝑋 are received, GE decoding 

commence. 

2. GE in general convert 𝐺|𝑋 →  𝐼|𝑀 during decoding. The detail process of GE 

will be discussed in the next chapter. 

Since the decoding algorithm for Random code is GE that has an entry complexity of 

𝑂(𝑘3), the decoding process is generally slower than LT and Raptor Code that uses 

fast decoding algorithm namely belief propagation (BP). 
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2.2 REC Applications 

REC is a technique of applying linear algebra to all sorts of digital 

communication; it includes the data transmission in a lossy environment such as deep 

space communication (Ren, et al., 2014) and wireless communications (Kim & Lee, 

2004) that we had mentioned earlier. Other than that, the REC often found in the real-

life applications are the wireless sensor network (Hagedorn, et al., 2008) and 

distributed data storage (Anghel, et al., 2011). 

  

2.2.1 REC in Wireless Sensor Network  

Over the years, the application of REC in wireless sensor network (WSN) has 

always been a popular topic (Hagedorn, et al., 2008), whether in reducing power 

consumption where managing power consumption of thousand sensors can be very 

tedious and impractical and also environment of sensor where transmission is 

susceptible to interference. Numerical results from the paper  (Jamshid, et al., 2011), 

show that the implementation of Raptor coded in their WSN network model is more 

energy efficient and robust than those normal un-coded WSN. 

 

2.2.2 REC in Distributed Data Storage/ Cloud storage 

Another interesting application of REC will be the distributed storage system 

or cloud storage (Anghel, et al., 2011). Recently, the ever-increasing amount of data 

generated from our daily internet usage are the main reason why servers (often simple 

commodity devices/machines) suffers from frequent hardware failures (Kevin, 2015), 

and the most typical method used to solve such issue is by replication, where a set of 

data will be duplicated and stored into 3 distinct storage systems, even when one side 

of data is corrupted or potentially gone missing, the same data from another storage is 

able to cater the corrupted or missing part (Julia & Thinn, 2011).  
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However, due to the poor 33% inefficiency of such replication method, 

researchers at Facebook, Microsoft, and Qualcomm etc. implemented the REC for the 

use in their distributed storage systems (Kevin, 2015). Such approach potentially 

reduces 60% of the storage space overhead, with the properties of REC that able to 

recover to some extent data that was corrupted or missing. 

 

2.3 Bottlenecks in Rateless Erasure Code 

In general, the development of REC usually faces common issues such as: 

• Overhead 

• Performance Speed  

And these issues are the reasons why REC consist of many others variations. e.g., 

Raptor code, Lt code, and Random code. 

 

2.3.1 Overhead 

The overhead of rateless erasure codes such as LT code and Raptor code is 

only asymptotically optimal (Yeqing, et al., 2013), e.g., in real-time applications. 

Where the input k is small, the overhead could become larger than 10%. On the other 

hand, some rateless codes such as Random code can maintain its small overhead even 

for small values of 𝑘, at the cost of increasing its computational decoding complexity. 

Trade-off between overhead and complexity is the key point in the consideration of 

design phase of a rateless erasure scheme (Li, et al., 2014). 

 

As mentioned previously, when 𝑘 message symbols are encoded with REC, the 

symbols will be granted the ability to be sent out in random order and also have certain 

immunity towards packet loss. However, in order to successfully decode the received 
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REC packets, 𝑛 (slightly more than 𝑘) numbers of packets are required for a successful 

complete decoding (a complete decoding indicates the matrices form of the packets 

are able to reach full rank, else more overheads packets have to be received) which is 

indicated by: 

𝑛 = 𝑘 + 𝜀    (2.2) 

 

where 

𝑛 = number of received packets 

𝑘 = amount of messages symbols 

𝜀 = overheads 

 

In general, 𝑛 is usually slightly larger than the 𝑘 value, and different REC will 

have different 𝑛 for a high probability of complete decoding (PCD). Packets received 

in matrix form will reach full rank at 99.99% when 𝑛 numbers of packets are received.  

 

In the research on Random code’s PCD (Chong, et al., 2015), it is shown that: 

 

Table 2.1: The PCD for Random code of 𝑘= 10. 

𝑛 PCD 𝑛 PCD 

𝑘 28.66% 𝑘 + 7 99.22% 

𝑘 + 1 57.76% 𝑘 + 8 99.45% 

𝑘 + 2 78.01% 𝑘 + 9 99.81% 

𝑘 + 3 89.02% 𝑘 + 10 99.9996% 

𝑘 + 4 93.88% 𝑘 + 11 99.99999% 
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𝑘 + 5 96.91% 𝑘 + 12 99.999999% 

𝑘 + 6 98.45% 𝑘 + 13 99.99999999% 

 

Results in Table 2.1 show the PCD of a variant of REC namely Random code, 

where such code has the capability to reach a 99.99% PCD whenever 𝑛 = 𝑘 + 10 

number of packets are received. 

Over the years several methods were proposed to reduce the overhead in REC, 

whereby sender can optimally adjust its Galois field (Hu, et al., 2012), e.g., 

GF(2) Raptor code might consist of 𝜀 = 0.03𝑘  at  𝑘 > 2000  for 99.99% PCD, but 

implementation of GF(256) Raptor code (RaptorQ) will only require 𝜀 = 1 for 99.99% 

PCD. However, increasing the Galois field “degree” also signified the increases in 

decoding complexity because, from the perspectives of computer architecture (Lidl & 

Niederreiter, 1997), Galois field indicates a new set of self-defined operations, For 

example, 

 

Table 2.2: 𝐆𝐅(𝟐)  addition table 

+ 0 1 

0 0 1 

1 1 0 

 

𝐺𝐹2 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝑡𝑎𝑏𝑙𝑒 
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in GF(2), we are able to utilise computation of XOR operation to replace the GF(2) 

addition because they are the same. e.g. 1 + 1 in GF(2) is 0 while 1 XOR with 1 also 

zero. 

 

 

 

Table 2.3: 𝐆𝐅(𝟐𝟓𝟔) addition table 

 

But for GF(256), there are no computation operation to replace GF(256) addition  

addition as shown in Table 2.3. In this case a self-defined library would be needed. In 

another word, the time used in reading the value from the self-defined library in this 

GF(256) addition will be far slower than GF(2) addition that can be replaced by XOR 

operation, (Mladenov, et al., 2012). Hence in this thesis, the REC will be constructed 

under GF(2) for optimized performance purpose. 

 

 

 

Table 2.3: 𝐆𝐅(𝟐𝟓𝟔) addition table 
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2.3.2 Performance Speed 

Apart from overheads, the performance speed is also one of the issues arising 

from the implementation of REC (Bioglio, et al., 2009). Note that the performing speed 

here is not referring to the throughput performance but the speed of encoding and 

decoding, specifically the delay of the transmission due to the decoding of the packets. 

It is a common issue for implementation of rateless erasure code. While this is 

compared with the classical communication network systems, a packet is usually 

directly “decodable”, which means that packets sent will not require any further work 

or require the least effort to be read or decoded. The packet only need to be received 

in correct order and not lost for reliability, e.g. the TCP/IP mechanism that prioritize 

acknowledgement for all lost and received packets. (Salyers, et al., 2008) 

 

 Conversely, when a message is implemented with REC, the need of such 

acknowledgment for all lost and received packets is minimized, which means that 

more bandwidth can be utilized for transmission instead of being wasted on 

acknowledging the lost and received packets (Chong, et al., 2016). In exchange, extra 

work has to be done on the encoding and decoding phase. Especially at the decoding 

phase, to decode and reconstruct the REC’s received packets back into original 

message, it requires a high complexity decoding algorithm namely Gaussian 

elimination (GE) (Chong, et al., 2016). 

 

For being the most popular variants of REC, LT code (Luby, 2002) and Raptor 

code (Shokrollahi, 2006) advocate the idea of linear decoding speed; Instead of 

decoding using GE, LT and Raptor code can decode with their own decoding algorithm 
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namely Belief Propagation (BP) with a low entry complexity of near 𝑂(𝑘) while the 

complexity will rise to 𝑂(𝑘3) if they are decoded by using GE (Chen, et al., 2013). 

However, BP had a relatively lower PCD compared to GE which will be explained in 

the later section. 

 

 

 

 

 

2.4 Gaussian Elimination 

Gaussian elimination (GE) is a method widely used in many applications, it is 

implemented in application such as the wireless sensor network (Rossi, et al., 2010), 

linear coding (Li, et al., 2014), network coding  (Hagedorn, et al., 2008) , and even 

encryption as well as scheduling algorithm.  

In this research, where GE is used for the decoding algorithm for REC, study 

has shown that the complexity of GE is 𝑂(𝑘3) (Bioglio, et al., 2009), which means 

that the time to decode a 𝑘  size matrix would have increased exponentially as 𝑘 

increases as shown in the graph. 

 



 

28 

 

 

Figure 2.1: Gaussian elimination decoding time, 𝑠 vs. message size, 𝑘 

 

 

2.5 Belief Propagation 

Belief Propagation (BP) is proposed while the decoding of REC is slow due to 

GE, researchers had come out with other variation of REC such as the LT code and 

Raptor code that allows for faster-decoding speed. This two codes have their own 

unique decoding method namely BP that has a decoding complexity of 𝑂(𝑘 ln 𝑘) and 

approximately 𝑂(𝑘) respectively, this also indicates that they can perform faster than 

GE in term of lesser complexity. (Shokrollahi & Luby, 2011) The steps of BP are 

explained in details in section 2.1.1.2 and 2.1.2.2. 

 

Although decoding using BP is fast, it is found that decoding using GE has an 

advantage in terms of successful decoding rate. When the received packets are 

decodable using GE, it is not necessarily decodable using the BP (Hu, et al., 2012), 

(Bioglio, et al., 2009). 
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2.6 Inactivation decoding Gaussian Elimination 

Inactive decoding Gaussian elimination (IDGE) also known as the Belief 

propagation Gaussian elimination (BPGE), is one of the improvised decoding methods 

used particularly for the Raptor and LT code (Hu, et al., 2012) & (Mladenov, et al., 

2012), this method imposes a higher decoding complexity compared to BP algorithm 

while less complex than Gaussian elimination. At the same time, IDGE is capable of 

having a high PCD like Gaussian elimination when it is compared to BP decoding.   

 

This method combines the decoding method of belief propagation (BP) in LT 

code and the decoding with Gaussian elimination and is denoted by BP-GE or IDGE 

(M & S, 2006). In this case, several steps are needed to be performed when the packets 

are received. 

 

 First, all the received packets will be processed with Belief propagation that 

converts most of the uncertain packets by using the certain packet. In this case, there 

will be chances that some uncertain packets are leftover, this forms a new entry of 

packets that are not decodable using BP since all the certain packets are used. Then 

these remaining new entries of uncertain packet will be processed by Gaussian 

elimination for a complete decoding. 

 

 The advantage of this method will be, since most of the packets are already 

decoded by BP, the leftover packets that are not decodable using BP even if it is linearly 

independent will be relatively smaller in 𝑘  size when it is processed by Gaussian 

elimination, which will dynamically reduce the decoding time as GE is sensitive to the 



 

30 

 

𝑘  size with the entry complexity of 𝑂(𝑘3) . However, such a method is uniquely 

applicable only for Raptor and LT code, and there is no other REC variant can use this 

method. Other than that, by profiling IDGE, it is seen that more than 90% of the 

decoding time is still consumed at the GE part (Yeqing, et al., 2013), hence enhancing 

the performance of GE is an essential thing to do to improve the decoding speed of 

REC. 

 

 

2.7 Parallel Processing for Rateless Erasure Code 

Due to the fact that GE is the optimal solution for linear independent matrices 

compare to other solvers (Bioglio, et al., 2009), (Hu, et al., 2012), many researchers 

have come out with several ways to speed up GE, and the most promising one appears 

to be the parallel processing of GE, (Hu, et al., 2013), (Chong, et al., 2016) 

 

On the other hand, GPU is by far the most popular device for parallel 

processing. In the study of Raptor GF(2) (Hu, et al., 2012), it is shown that the 

implementation of GE into GPU outperforms the other decoding method (BP and 

IDGE) in terms of parallelization, which concludes that GE is by far the most suitable 

decoding method for parallelization (Hu, et al., 2013). Most importantly, the 

workspace of GPU is independent of CPU in executing a task, this means that when 

GPU is performing a task, CPU is able to handle another task at the same time. 

 

Recently, more and more applications traditionally run on the CPU are being 

re-implemented to run on the GPU. A decade ago, when Nvidia offered programming 

interfaces such as CUDA  (CUDA, 2017)  for making parallel processing accessible 
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to all programmers, it has removed the limitation of GPU that was initially designed 

for computer graphics. In this thesis, CUDA will be the main platform for the 

parallelisation process.  

 

Figure 2.2: CPU vs. GPU architecture comparison 

 

GPUs are a multithreaded stream processor that usually contain thousands of 

cores more than a CPU. In general, the parallelisation in CUDA is composed of two 

parts:  

• Host (CPU) code that makes kernel calls,  

• Device (GPU) code that actually implements the kernel. 

The host is generally made up of serial C++ program, and device is where we 

perform parallel processing to harness the resources of the GPU. The fundamental of 

GPU is the streaming multiprocessors (SMs); Each SM will consist of a few blocks to 

hundreds of blocks depending on the architectures of the GPU and each block will 

contain 32 threads that can simultaneously execute the same instruction. The kernel 

that mentioned previously is executed by these threads on the GPU.  
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𝑙 = 5 

𝑘=4 

20𝐛𝐢𝐭𝐬 

On the other hand, GPU still need to undergo a scheduling process before 

parallel processing, and the main scheduling unit in CUDA is a warp, which is made 

up of a group of 32 threads from the same block, and execution of an arithmetic 

instruction for the whole warp takes 4 clock cycles. The number of these warps is 

important in tolerating global memory access latency that will discuss later. 

 

2.8 Relationship of 𝒌 and 𝒍 

In the research of REC, 𝑘  that genuinely indicates the number of message 

symbols and 𝑙 that indicates the length of the message symbols, are the key elements 

to develop a REC. 

 

 

The 𝑘 is generally calculated by dividing the stream of binary message with a 

self-defined 𝑙. 

 

𝑀 = 01000100111000100100 → (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

)

𝑘×𝑙

 

 

In our case of study, maximum transmission unit (MTU) will be the standard 

that used to determine the 𝑙. Since REC are implemented to utilize the bandwidth of 

data transmission, throughput degradation will happen when a non-efficient 𝑙 is used. 

 

In the paper of MTU (Molnar, et al., 2014) & (Guo, et al., 2016), it is stated 

that the most efficient 𝑙 for our current transmission will range from 400-500 bytes, 
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and also 1000-1500 bytes maximum. Furthermore, based on future MTU (Shaneel & 

Paula-Rayond, 2013), when the up/downlink of transmission that reaches the speed 

of >1Gbps are generalised, the new MTU will increases to 𝑙 = 9kb  instead. This 

means that, during the transmission, more information can be transmitted efficiently 

using this length of 𝑙.  Hence in our study will be using1𝑘𝑏 ≤ 𝑙 ≤ 9𝑘𝑏.  

 

The parameter value of 𝑘 should be 𝑘 ≤ 512, due to the fact that, according to 

the study of networking traffic (Brownlee & Claffy, 2002), the transmissions that are 

lesser than few hundred kilobytes appear to be the main contributor to 80% of 

networking traffics. Furthermore, in Chapter 3.3, an idea of decoding REC’s large file 

(𝑘 > 512) will be showed in a nearly linear speed by mathematics and experimental 

evidence.  
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3 GAUSSIAN ELIMINATION IN RATELESS ERASURE CODE 

 

 

In this section, details of GE will be illustrated, followed by a few new 

proposals to improve the performance of REC. Note that all the mathematical 

operation in this thesis will be in GF(2). e.g. 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0. 

 

3.1 Encoding  

The general encoding method of most of the REC is built on top of the linear 

algebra system in the form of eq. 2.1 where: 

 

𝐺∞×𝑘 ×𝑀𝑘×𝑙 = 𝑋∞×𝑘 

 

As for random code, the message will generally divide equally into 𝑘 amounts 

of symbols that contain 𝑙 bits each. In this case, the value of 𝑙 and 𝑘 are essential for 

the development of better performance REC. In the encoding process, 𝑘 number of 

equally divided message symbols 𝑀 will be encoded by matrix multiplying 𝑀 with the 

randomly generated 𝐺.  

 

3.2 Decoding  

In Chapter 1.1, we have mentioned that encoded symbols will be generated and 

sent in the form of packets of 𝐺|𝑋, but for the decoding part, not all symbols are needed 
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before the REC can be decoded. In fact, only 𝑛 (slightly more than 𝑘) numbers of 

packets are required for a 99.99% of PCD. 

 

3.2.1 Probability of Complete Decoding (PCD) 

The overhead in the random code, 𝜀, is equal to 10 and the total received 

packets, 𝑛, is denoted by eq. 2.2 where: 

𝑛 = 𝑘 + 𝜀 

𝑛 = 𝑘 + 10 (𝑓𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑑𝑒) 

Every time when 𝑛 number of packets are received, the PCD of random code 

decoding is guaranteed to be 99.99% according to Kolchin’s theorem (Chong, et al., 

2015), which means that matrices formed from the 𝑛 numbers of received packets will 

be a linearly independent with probability of 99.99%. 

 

Example 3.2.1.a: 

At 𝑛 = 𝑘 + 10, 𝑘 = 3, 𝑙 = 1 

let 𝑀3×1 = (

𝑀1,1
𝑀2,1
𝑀3,1

) = (
1
1
1
) , 𝐺13×3 =

(

 
 
 
 
 
 
 
 
 
 
 
 

𝐺1,1 𝐺1,2 𝐺1,3
𝐺2,1 𝐺2,2 𝐺2,3
𝐺3,1 𝐺3,3 𝐺3,4
𝐺4,1 𝐺4,2 𝐺4,3
𝐺5,1 𝐺5,2 𝐺5,3
𝐺6,1 𝐺6,2 𝐺6,3
𝐺7,1 𝐺7,2 𝐺7,3
𝐺8,1 𝐺8,2 𝐺8,3
𝐺9,1 𝐺9,2 𝐺9,3
𝐺10,1 𝐺10,2 𝐺10,3
𝐺11,1 𝐺11,2 𝐺11,3
𝐺12,1 𝐺12,2 𝐺12,3
𝐺13,1 𝐺13,2 𝐺13,3)

 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 

1 0 0
1 0 1
0 0 1
1 0 1
0 1 1
1 1 1
1 0 0
1 0 0
0 1 0
0 1 1
1 0 0
1 0 1
0 0 1)
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Encoding: 

𝐺 ×𝑀 =

(

 
 
 
 
 
 
 
 
 
 
 
 

𝑋1,1
𝑋2,1
𝑋3,1
𝑋4,1
𝑋5,1
𝑋6,1
𝑋7,1
𝑋8,1
𝑋9,1
𝑋10,1
𝑋11,1
𝑋12,1
𝑋13,1)

 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 

1
0
1
0
0
1
1
1
1
0
1
0
1)

 
 
 
 
 
 
 
 
 

 

 

When it is send as a packet it will forms a matrix of: 

 

𝐺|𝑋 =

(

 
 
 
 
 
 
 
 
 
 
 
 

𝐺1,1 𝐺1,2 𝐺1,3
𝐺2,1 𝐺2,2 𝐺2,3
𝐺3,1 𝐺3,3 𝐺3,4
𝐺4,1 𝐺4,2 𝐺4,3
𝐺5,1 𝐺5,2 𝐺5,3
𝐺6,1 𝐺6,2 𝐺6,3
𝐺7,1 𝐺7,2 𝐺7,3
𝐺8,1 𝐺8,2 𝐺8,3
𝐺9,1 𝐺9,2 𝐺9,3
𝐺10,1 𝐺10,2 𝐺10,3
𝐺11,1 𝐺11,2 𝐺11,3
𝐺12,1 𝐺12,2 𝐺12,3
𝐺13,1 𝐺13,2 𝐺13,3

|

|

|

|

𝑋1,1
𝑋2,1
𝑋3,1
𝑋4,1
𝑋5,1
𝑋6,1
𝑋7,1
𝑋8,1
𝑋9,1
𝑋10,1
𝑋11,1
𝑋12,1
𝑋13,1)

 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 

1 0 0
1 0 1
0 0 1
1 0 1
0 1 1
1 1 1
1 0 0
1 0 0
0 1 0
0 1 1
1 0 0
1 0 1
0 0 1

|

|

|

|

𝟏
𝟎
𝟏
𝟎
𝟎
𝟏
𝟏
𝟏
𝟏
𝟎
𝟏
𝟎
𝟏)
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Or in linear algebra equivalent, one packet is equivalent to one equation as shown: 

 

1𝑀1,1 + 0𝑀2,1 + 0𝑀3,1 = 𝑋1 = 1 

1𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋2 = 0 

0𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋3 = 1 

1𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋4 = 0 

0𝑀1,1 + 1𝑀2,1 + 1𝑀3,1 = 𝑋5 = 0 

1𝑀1,1 + 1𝑀2,1 + 1𝑀3,1 = 𝑋6 = 1 

1𝑀1,1 + 0𝑀2,1 + 0𝑀3,1 = 𝑋7 = 1 

1𝑀1,1 + 0𝑀2,1 + 0𝑀3,1 = 𝑋8 = 1 

0𝑀1,1 + 1𝑀2,1 + 0𝑀3,1 = 𝑋9 = 1 

0𝑀1,1 + 1𝑀2,1 + 1𝑀3,1 = 𝑋10 = 0 

1𝑀1,1 + 0𝑀2,1 + 0𝑀3,1 = 𝑋11 = 1 

1𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋12 = 0 

0𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋13 = 1 

 

 

In example 3.2.1.a, by solving all these packets using the simple substitution 

method, 𝑀1,1 = 1,𝑀2,1 = 1, 𝑀3,1 = 1 and the original message is retrieved. 

 

In the next example, we will prove the importance of overheads, for instance, 

we will eliminate all the overheads in example 3.2.1.a to conduct the next example. 
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Example 3.2.1.b: 

 At 𝑛 = 𝑘, 𝑘 = 3, 𝑙 = 1 

Let 𝑀3×1 = (

𝑀1,1
𝑀2,1
𝑀3,1

) = (
1
1
1
) , 𝐺3×3 = (

𝐺1,1 𝐺1,2 𝐺1,3
𝐺2,1 𝐺2,2 𝐺2,3
𝐺3,1 𝐺3,1 𝐺3,1

) = (
1 0 0
1 0 1
0 0 1

)  

Encoding: 

𝐺 ×𝑀 = 𝑋 = (

𝑋1,1
𝑋2,1
𝑋3,1

) = (
1
0
1
) 

 

After receiving G and X from the sender the receiver can form G|X as following: 

𝐺|𝑋 = (

𝐺1,1 𝐺1,2 𝐺1,3
𝐺2,1 𝐺2,2 𝐺2,3
𝐺3,1 𝐺3,1 𝐺3,1

|

𝑋1,1
𝑋2,1
𝑋3,1

) = (
1 0 0
1 0 1
0 0 1

|
1
0
1
) 

 

Or in linear algebra equivalent: 

1𝑀1,1 + 0𝑀2,1 + 0𝑀3,1 = 𝑋1 = 1 

1𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋2 = 0 

0𝑀1,1 + 0𝑀2,1 + 1𝑀3,1 = 𝑋3 = 1 

 

By performing typical substitution method assuming all these packets are 

received, such equation cannot be solved completely because the 3 equation in the 

example are not linearly independent (𝐺1,2𝑀2,1 = 0, 𝐺2,2𝑀2,1 = 0, 𝐺3,2𝑀2,1 = 0, and 

is a sign that the equation carries no information on 𝑀2,1), hence more information 

(packets) have to be received in order to complete the linear solving process.  
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For the PCD in this 𝑛 = 𝑘 case, the PCD will be at 26.66% according to studies 

in Kolchin’s theorem shown in Chapter 2.3. e.g. if there are 𝑛 = 𝑘 amount of received 

packet, the matrix that forms from the received packets will have a chance of 26.66% 

to be linearly independent (solvable). When more packets 𝑛  are received, PCD 

increases where the matrix that forms from the 𝑛  received packets will have a higher 

chance being linearly independent. In accomplice with Random code and Kolchin’s 

theorem, the overall parameters set in this thesis will be: 

𝑛 = 𝑘 + 10 

𝑘 < 512 

1kb < l < 9kb 

 

3.2.2 Decoding Using Gaussian Elimination 

With all the essential parameters such as 𝑛 = 𝑘 + 10, 𝑘 < 512, and 1kb < l <

9kb, the decoding method using Gaussian elimination can be proceeded further. In 

Example 2, the method of substitution can be used to solve 𝑘 = 3  linear equations, 

but when it comes to 𝑘 > 4, a systematic method such as Gaussian elimination is 

needed to solve the issue. The Gaussian elimination consist of 3 major steps: 

1. Searching for pivot; 

2. Swap row; 

3. XOR row operations 

These 3 steps need to iterate 𝑘 amount of time until all the packets are completely 

decoded, and first step have to be done before second step can start; while third step 

can only start after second step ends its operation. 
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𝑘 𝑙 

𝑛 

Example 3.2.2.a: 

The packets that consist of information in the form of 𝐺|𝑋, will be combined 

whereby the first row of the matrix is formed by the first received packets and goes on 

until the nth packet is received and form the last line of the 𝑛 × 𝑘 matrix as shown:  

𝑘 = 4, 𝑙 = 8192, 𝑛 = 𝑘 + 10 

 

 

  0 0 0 1 0 0 … 1    

  0 1 0 0 0 1 … 0    

  0 0 1 0 0 0 … 0    

  0 0 0 1 0 0 … 1    

  1 1 0 1 1 1 … 1    

  0 0 0 0 0 0 … 0    

  1 0 1 1 1 0 … 1    

𝐺|𝑋 = 0 1 1 0 0 1 … 0    

  0 0 1 0 0 0 … 0    

  1 0 0 1 1 0 … 1    

  0 1 0 1 0 1 … 1    

  0 1 0 0 0 1 … 0    

  1 0 1 1 1 0 … 1    

  1 1 0 0 1 1 … 0    

 

 

 

 

 

 

 

 

  Generated Matrix, 𝐺 

   

  Encoded Matrix, 𝐸 

   

  Pivot Point 

   

  Pivot Row 

   

  Pivot Column 

   

←  Pivot Column contains “1” 
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Step 1: Pivot         Step 2: Swap Row Step 3: XOR  

First iteration: 

0 0 0 1 0 0 … 1  1 1 0 1 1 1 … 1  1 1 0 1 1 1 … 1  

0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  

1 1 0 1 1 1 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  

0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  

1 0 1 1 1 0 … 1  1 0 1 1 1 0 … 1  0 1 1 0 0 1 … 0 ← 

0 1 1 0 0 1 … 0 → 0 1 1 0 0 1 … 0 → 0 1 1 0 0 1 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  

1 0 0 1 1 0 … 1  1 0 0 1 1 0 … 1  0 1 0 0 0 1 … 0 ← 

0 1 0 1 0 1 … 1  0 1 0 1 0 1 … 1  0 1 0 1 0 1 … 1  

0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  

1 0 1 1 1 0 … 1  1 0 1 1 1 0 … 1  0 1 1 0 0 1 … 0 ← 

1 1 0 0 1 1 … 0  1 1 0 0 1 1 … 0  0 0 0 1 0 0 … 1 ← 

 

 

Second iteration: 

Step 1: Pivot         Step 2: Swap Row Step 3: XOR  

1 1 0 1 1 1 … 1  1 1 0 1 1 1 … 1  1 0 0 1 1 0 … 1 ← 

0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  

0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  

0 1 1 0 0 1 … 0  0 1 1 0 0 1 … 0  0 0 1 0 0 0 … 0 ← 

0 1 1 0 0 1 … 0 → 0 1 1 0 0 1 … 0 → 0 0 1 0 0 0 … 0 ← 

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  

0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  0 0 0 0 0 0 … 0 ← 

0 1 0 1 0 1 … 1  0 1 0 1 0 1 … 1  0 0 0 1 0 0 … 1 ← 

0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  0 0 0 0 0 0 … 0 ← 

0 1 1 0 0 1 … 0  0 1 1 0 0 1 … 0  0 0 1 0 0 0 … 0 ← 

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  
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Third iteration: 

1 0 0 1 1 0 … 1  1 0 0 1 1 0 … 1  1 0 0 1 1 0 … 1  

0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  

0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0 ← 

0 0 1 0 0 0 … 0 → 0 0 1 0 0 0 … 0 → 0 0 1 0 0 0 … 0 ← 

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0 ← 

0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  

0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0 ← 

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  

 

Fourth (last) iteration: 

1 0 0 1 1 0 … 1  1 0 0 1 1 0 … 1  1 0 0 1 1 0 … 0 ← 

0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 0 ← 

0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  

0 0 1 0 0 0 … 0 → 0 0 1 0 0 0 … 0 → 0 0 1 0 0 0 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  

0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 0 ← 

0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 0 ← 

 

During the first iteration, pivoting point will be allocated at first row first 

column, then the first packet that contain “1” in the pivoting column will be searched 

and swap to the pivoting row, and then the other packets that contain “1” in the pivoting 

column will be eliminated by XOR operating them with the bitwise value (𝐺|𝑋) of the 
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pivoting row (highlighted in grey). In all the 𝑘  iterations, different pivoting point 

(𝑝𝑖𝑣𝑜𝑡 = 1,2,3…𝑘) will be used in ascending order systematically to repeat the 3 

steps for the completion of the GE process. 

 

In the old days, even if GE is systematic, it imposed an entry time complexity 

of 𝑂(𝑘3), Without a computer, it will take more than 10 pages of A4 papers that are 

full of equations to solve a  𝑘 = 100 linear systems; for REC case, although GE is able 

to be used for decoding in most of the known REC, the decoding time complexity of 

REC is still 𝑂(𝑘3). For instance, the operation count for GE will be demonstrated next 

to determine the time complexity. 

 

3.2.3 Operational count for Gaussian Elimination 

For a set of 𝑛 packets matrix in Random code, the total operational count of 

pivoting search is: 

Total pivot search in GE = ∑ τpivot

k

pivot=1

 

The process of pivoting search is just as simple as iterate through the main 

diagonal of the 𝐺 in the received packets (𝐺|𝑋). 

Total row swap in GE = ∑ ∑ τswap

k+l

swap=1

k

pivot=1

 

After the pivoting is searched, it will be swapped to the pivoting row. This 

process will basically consist 𝑘 + 𝑙 swapping operations in each pivot iteration. 

Total XOR operation in GE = ∑ ∑ ∑ τXOR

k+l

XOR=1

n−1

total row=1

k

pivot=1
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Then the XOR operation will be performed on all the 𝑛 rows that have a ‘1’ in 

the pivoting column except the pivoting row. This required 𝑛 − 1 operation counts that 

consist of 𝑘 + 𝑙 XOR operations each because each packet will require 𝑘 + 𝑙 XOR 

operations. 

 

Total operation count in GE

= ∑ τpivot

k

pivot=1

+ ∑ ∑ τswap

k+l

swap=1

k

pivot=1

+ ∑ ∑ ∑ τXOR

k+l

XOR=1

n−1

total row=1

k

pivot=1

= ∑ (τpivot + ∑ τswap

k+l

swap=1

+ ∑ ∑ τXOR

k+l

XOR=1

n−1

total row=1

)

k

pivot=1

= 𝑘 (τpivot + (𝑘 + 𝑙)(τswap) + (𝑛 − 1)(𝑘 + 𝑙)(τXOR)) 

≈ 𝑘(𝑛)(𝑘 + 𝑙)τXOR           (3.1) 

 

Hence for the whole Gaussian elimination operational count, it can be seen that 

the XOR operations parts are actually the dominating part, where the profiling in GE 

shows that 99% of the operation is performed in the XOR operations, while the other 

1% is from the swap and pivot search, hence the swap and pivot operation is generally 

negligible. 

 

The table and graph below show the effects of the entries message size 𝑘 

imposed by GE. The GE is constructed based on the typical REC decoder shown in 
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the study of RaptorQ (Hu, et al., 2012), and further modifications with our best effort 

from several papers that emphasize on GE optimisation are done in this research. 

 

At 4GHz workstation XEON E3 computer configuration: 

 

 

Figure 3.1: Effects of message size k towards the decoding speed. 

 

In Figure 3.1, it can be seen that even at a 4GHz workstation XEON E3 

computer, the time consumed in decoding (Gaussian Elimination) the larger 𝑘 

messages increase exponentially. 

 

3.3 Redimensioning 

When we study into the decoding complexity of GE, which is 𝑂(𝑘3) (Bioglio, 

et al., 2009), the large data size could yield a very large complexity. The decoding 

time of a very large file can be made unreasonable long. Even with the aids of GPU 
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𝑙 

𝑘 

𝑀
 
𝑘
𝛾
×𝑙 

1  

𝑀
 
𝑘

𝛾
×𝑙

2   

2 × 5 

2 × 5 

parallel processing, the decoding time will still increase exponentially as the file 

size gets bigger due to the hardware limitation.   

 

By addressing such issue, we propose a technique called redimensioning which 

is applicable to almost all the REC; it is a process of partitioning one big file into 𝛾 

numbers of fixed-size subsets and decode each subset in a less complex manner. In 

this case, the speed of GE decoding process can be enhanced significantly. 

 

3.3.1 Encoding of Redimensioning 

The basic procedure for redimensioning starts with: 

1.) Before the encoding, the stream of a message will be first divided into 𝛾 

numbers of equal size subsets. 

Example 3.3.1a: 

𝑘 = 4, 𝑙 = 5, 𝛾 = 2 

 

𝑀 = 01000100111000100100 → (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

)

𝑘×𝑙

 

 

If 𝛾 = 2, message, 𝑀 will be partition into 2 equal size subsets (𝑀1 & 𝑀2) with 

the dimension of  
𝑘

𝛾
× 𝑙 as shown:  

𝑘 = 4, 𝑙 = 5, 𝛾 = 2 

 

=  (

0 1 0 0 0
1 0 0 1 1
1
0
0
0
0
1
0
0
1
0

)  
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2.) The 𝛾 subsets of the 𝑀 will be encoded separately with random generated 𝐺 to 

form respective encoded symbols. 

𝑮𝟏, 𝑮𝟐. . 𝑮𝛾 𝒊𝒔 𝒕𝒉𝒆 𝒔𝒖𝒃𝒔𝒆𝒕 𝒐𝒇 𝑮 𝒂𝒇𝒕𝒆𝒓 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏 

𝑴𝟏, 𝑴𝟐. .𝑴𝛾 𝒊𝒔 𝒕𝒉𝒆 𝒔𝒖𝒃𝒔𝒆𝒕 𝒐𝒇 𝑴 𝒂𝒇𝒕𝒆𝒓 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏  

𝑿𝟏, 𝑿𝟐. . 𝑿𝛾 𝒊𝒔 𝒕𝒉𝒆 𝒔𝒖𝒃𝒔𝒆𝒕 𝒐𝒇 𝑿 𝒂𝒇𝒕𝒆𝒓 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏  

 

Example 3.3.1b: 

 

𝑮
 𝒏×

𝑘
𝛾

𝟏 ×𝑴𝑘
𝛾
×𝑙

𝟏 = 𝑿𝒏×𝑙
1  

𝑮
 𝒏×

𝑘
𝛾

𝟐 ×𝑴𝑘
𝛾
×𝑙

𝟐 = 𝑿𝒏×𝑙
2  

In packet form (𝑮|𝑿): 

 

(𝑮
𝒏×
𝑘
𝛾

𝟏 |𝑿𝒏×𝑙
𝟏 )   𝒂𝒏𝒅 (𝑮

𝒏×
𝑘
𝛾

𝟐 |𝑿𝒏×𝑙
𝟐 ) 

 

 

3.3.2 Decoding of Redimensioning 

After receiving sufficient packets to decode all 𝛾  redimensioned packets 

(𝐺1|𝑋1, 𝐺2|𝑋2…𝐺𝛾|𝑋𝛾) back into original messages (𝑀1, 𝑀2…𝑀𝛾), new message 

will have a new size 𝑘′  which is equivalent to  
𝑘

𝛾
 , and also new  𝑛′  for each 

redimensioned matrix that requires 𝑘′ + ɛ for a 99.99% PCD, the total overhead for 

redimensioned matrix will become: 
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𝑀1 → 𝑛′ = 𝑘′ + ɛ 

𝑀2 → 𝑛′ = 𝑘′ + ɛ 

⋮ 

𝑀𝛾 → 𝑛′ = 𝑘′ + ɛ 

 

 

 

Example 3.3.2a: 

𝑘′ =
𝑘

𝛾
, 𝑛′ = 𝑘′ + 10,   

Received packets: 

(𝑮𝒏′×𝒌′
𝟏 |𝑿𝒏′×𝑙

𝟏 )  𝒂𝒏𝒅 (𝑮𝒏′×𝑘′
𝟐 |𝑿𝒏′×𝑙

𝟐 ) 

 

(𝑮𝒏′×𝒌′
𝟏 |𝑿𝒏′×𝑙

𝟏 )
𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 𝒆𝒍𝒊𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏
→                 (

𝑰𝒌′×𝒌′
𝒁𝟏𝟎×𝒌′

|
𝑴𝒌′×𝑙
𝟏

𝒁𝟏𝟎×𝒍
)   

(𝑮𝒏′×𝒌′
𝟐 |𝑿𝒏′×𝑙

𝟐 )
𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 𝒆𝒍𝒊𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏
→                 (

𝑰𝒌′×𝒌′
𝒁𝟏𝟎×𝒌′

|
𝑴𝒌′×𝑙
𝟐

𝒁𝟏𝟎×𝒍
)   

𝑴𝒌′×𝒍
𝟏

𝑴𝒌′×𝒍
𝟐 → 𝑴𝒌×𝒍 

 

𝐼 = identity matrix 

𝑍 = zero matrix 

 

As calculated earlier in section 3.2, the operational count of decoding using GE without 

redimension is: 
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GE operational count = 𝑘(𝑛)(𝑘 + 𝑙)τXOR 

 

For the operational count of GE after redimension: 

M1 GE operational count = 𝑘′(𝑛′)(𝑘′ + 𝑙)τXOR 

M2 GE operational count = 𝑘′(𝑛′)(𝑘′ + 𝑙)τXOR 

⋮ 

Mγ  GE operational count = 𝑘′(𝑛′)(𝑘′ + 𝑙)τXOR 

 

Total redimension operation count = 𝑀1 +𝑀2 +⋯𝑀𝛾 

= 𝛾(𝑘′(𝑛′)(𝑘′ + 𝑙)τXOR)         (3.2) 

 

To compare the speed up of redimensioning towards the normal GE decoding: 

Speedupredimension =
GE

Redimension GE
=

𝑘(𝑛)(𝑘 + 𝑙)τXOR
𝛾(𝑘′(𝑛′)(𝑘′ + 𝑙)τXOR)

 

 

Since 𝑙 ≫ 𝑘 and 𝑙 ≫ 𝑘′: 

𝑘 + 𝑙 ≈ 𝑙, 𝑘′ + 𝑙 ≈ 𝑙 

𝑛

𝑛′
=
𝑘 + 10

𝑘
𝛾 + 10

≈
𝑘

𝑘
𝛾

≈  𝛾  

 

Speedupredimension =
𝑘𝛾(𝑙)τXOR

𝛾
𝑘

𝛾
(𝑙)τXOR

≈ 𝛾   (3.3) 
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From eq. 3.3, it can be seen that the redimension technique can speed up the 

decoding process by a factor of  𝛾, and it is proven experimentally by using CPU in 

the table below. 

 

Table 3.1: Time for GE with Redimension decoding of Random Code in 

different 𝒌 at 𝒍 = 𝟖𝟏𝟗𝟐 𝒃𝒊𝒕𝒔, and  𝜸 = 𝟐 

𝑘 Time to decode 

REC using G𝐸 

Time to decode REC using G𝐸 

with redimensioning, 𝛾 = 2 

Speedup 

GE

GE redimensioned
 

32 0.004992 0.003828 1.3040 

64 0.013208 0.009801 1.347 

128 0.039508 0.0264 1.4965 

256 0.126859 0.08012 1.5833 

512 0.526941 0.2731 1.9295 

1024 2.056845 1.0610 1.9386 

. 

From Table 3.1, at 𝑘 = 32 and 𝛾 = 2 , the speedup is different from the eq 3.3 

Where it is supposed to reach a speedup of 2. This is because based on the assumption 

that made in the formation of eq.3.3, the 𝑘 is large. Where 10 becomes negligible when 

𝑘  is large, at small 𝑘  the 10 had a certain weightage that contributes to a slower 

decoding time, and it is proven when 𝑘 ≥ 512, the speed up converges back to 𝛾. 

 

With this technique, the large file (𝑘 > 512) with high time complexity is no 

longer a large issue for decoding, and the only things to focus is to enhance the 

performance for decoding a smaller file of size 𝑘 ≤ 512. 
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3.4 First Degree Parallel Processing  

As mentioned, GE would impose an entry time complexity of  𝑂(𝑘3) during 

the REC decoding; this means that the process of GE computation will eventually go 

slower as the  𝑘  (message size) increases. Although the improvements over CPU 

implementations have previously been achieved for GE in terms of raw speed (using 

faster computer) and the redimensioning technique (mathematical technique), however 

the utilization of the underlying available computational resources was still low, for 

instance parallel processing that can be done in almost all modern computers that 

contain the GPU.  

  In this section, the propose method to solve the complexity issue by using the 

state of art of GPU will be discussed.   

 

3.4.1 Implementation of GPU Unit for Gaussian Elimination  

Gaussian elimination (GE) decoding algorithms have triple nested loops 

computationally which led to an entry complexity of 𝑂(𝑘3). Such complexity has led 

researchers to approach them in a parallel processing manner. 

 

3.4.1.1 Parallelising Code in CUDA 

CUDA is a parallelisation platform developed by NVIDIA. It is designed in 

such a way that applications of parallel programming can be executed on both CPU 

and GPU. For parallelisation, the CPU which is the host, will initialize the data to be 

transferred and executed in the GPU device and the GPU will allocate the pre-defined 

threads in the <<<blocks, threads>>> bracket to invoke the GPU kernel.  
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After GPU completes its calculation in parallel by using the allocated threads, 

the program in device is now considered completed, and the output data will be copied 

back to the host before the device can release the storage space in GPU and get ready 

for the next task. The process is shown in the following example: 

 

Example 3.4.1.1.a: 

1. //CPU CODE  
2. main(){      //Host function 
3.   int x[i];     //Declare Variable 
4.   for (int i=0;i<3;i++){   //3 for Loops {0,1,2} 
5.    x[i]=i+i; 
6.   } 
7.    
8.   for (int i=0;i<3;i++){   //print the output 
9.    cout<<x[i]<<endl;   //end line after printing 

                      one value 
10.   } 
11. } 

 

Output:  

0 

2 

4 

 

From the CPU code as shown in example 3.4.1.1.a, the additional operation 

(line 5) in the algorithm is independent of each other, even though the loops of these 

addition operations are not arranged in sequence, the output will be the same, and this 

is how parallel processing come into play, because rather than computing these 

additions sequentially, multiple of them can be concurrently executed and still yield 

the same outputs. 
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Parallelised addition operation in GPU: 

1. //GPU CODE 
2. __global__ CallGPUkernel(int *x){   //GPU kernel 
3.   i=threadid.x;     //identify what 
          thread to use 
4.   If(i<3){ 
5.    x[i]=i+i;     //simple addition 
6.   } 
7. } 
8.  
9. main(){      //Host function 

10.   int x[i];     //Declare Host variable 
11.  int*dev_x;     //Declare Device variable 
12.  
13.  cudaMemcpy(dev_x,x,3*sizeof(int),cudaMemcpyHostToDevice);    

     //memory copy from host to device to perform parallelisation  
     //(device variable, host variable, size of variable, memory 
    from host to device) 

14.  
15.  CallGPUkernel<<<1,3>>>(dev_x);      

     //invoke GPU kernel with <<< blocks amount, threads amount>>>  
  (input variable) 

16.  
17.  cudaMemcpy(x,dev_x,3*sizeof(int),cudaMemcpyDeviceToHost);  

     //memory copy from device to host to perform       
  //(host variable, device variable, size of variable, memory 
    from device to host) 

18.   
19.   cudaFree (dev_x);    //free the device memory 
20.  
21.   
22.  for(int i=0;i<3;i++){   //print output 
23.    cout << x[i]<<endl; 
24.   }  
25. } 
26.    

Output:  

0 

2 

4 
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3.4.2 Ideal vs. Practical Parallelisation 

The idea of parallelisation is to simultaneously perform multiple independent 

operations at once, hence reducing the overall operational time. In an ideal case, 

parallelisation equation will be represented below: 

𝑇parallel = ⌈
𝑦×𝜏operation 

threads allocated
⌉    (3.4) 

 

𝑇parallel = Time taken to complete all operations after parallelisation 

𝑦 = Amount of independent operation 

𝜏operation = Time taken to complete one operation 

threads allocated = Threads used in parallelisation  

 

However, for a parallelisation to perform practically, parallel overheads such 

as physical limitation, data reuse, memory dependency, kernel call delay, threads 

allocation, etc., should be considered in a GPU device. In this thesis, they are all 

categorized under parallel overheads 𝑝operation.Hence practically, the parallelisation 

equation is represented as below: 

𝑇parallel = ⌈
𝑦×𝜏operation 

threads allocated
⌉ + 𝑝operation   (3.5) 

 

𝑇parallel = Time taken to complete all operations after parallelisation 

𝑦 = Amount of independent operation 

𝜏operation = Time taken to complete one operation 

threads allocated = Threads used in parallelisation  

 𝑝operation = parallel overhead 
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3.4.3 Parallelisation of Gaussian Elimination 

The parallelization of GE algorithms is a challenging process. The number of 

threads and block allocation must be decided carefully. Attention should be paid to the 

synchronization part to get accurate results, because a slight desynchronize value 

might end up ruining the results. 

 

 To start the parallel processing in GEparallel , the steps that used is the same as 

the steps for GEserial in Chapter 3.2 and most importantly it yields the same result like 

GEserial does: 

1. Searching for pivot; 

2. Swap pivoting rows to the right position; 

3. XOR row operation. 

 

3.4.3.1 Pivoting Search 

The pivoting search step is represented in the outer most nested loop of the code in 

appendix. During this step, the parallelisation is not required because it is as simple as 

searching the right condition (if pivoting row and column not “1”) to progress to step 

2- Row swap. 
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Figure 3.2: Pivoting Search 

3.4.3.2 Row Swap 

If the pivoting search in the first step meets the condition to proceed with row 

swapping, which is represented in the second nested loop, the row swapping will be 

executed. 

Step 1: Pivoting Search         Step 2: Row Swap  

0 0 0 1 0 0 … 1    1 1 0 1 1 1 … 1 ←          

0 1 0 0 0 1 … 0    0 1 0 0 0 1 … 0  Row swap         

0 0 1 0 0 0 … 0    0 0 1 0 0 0 … 0           

0 0 0 1 0 0 … 1    0 0 0 1 0 0 … 1           

1 1 0 1 1 1 … 1 ←   0 0 0 1 0 0 … 1           

0 0 0 0 0 0 … 0    0 0 0 0 0 0 … 0           

1 0 1 1 1 0 … 1    1 0 1 1 1 0 … 1           

0 1 1 0 0 1 … 0   → 0 1 1 0 0 1 … 0           

0 0 1 0 0 0 … 0    0 0 1 0 0 0 … 0           

1 0 0 1 1 0 … 1    1 0 0 1 1 0 … 1           

0 1 0 1 0 1 … 1    0 1 0 1 0 1 … 1           

0 1 0 0 0 1 … 0    0 1 0 0 0 1 … 0           

1 0 1 1 1 0 … 1    1 0 1 1 1 0 … 1           

1 1 0 0 1 1 … 0    1 1 0 0 1 1 … 0           

Figure 3.3: Row Swap 

0 0 0 1 0 0 … 1 

0 1 0 0 0 1 … 0 

0 0 1 0 0 0 … 0 

0 0 0 1 0 0 … 1 

1 1 0 1 1 1 … 1 

0 0 0 0 0 0 … 0 

1 0 1 1 1 0 … 1 

0 1 1 0 0 1 … 0 

0 0 1 0 0 0 … 0 

1 0 0 1 1 0 … 1 

0 1 0 1 0 1 … 1 

0 1 0 0 0 1 … 0 

1 0 1 1 1 0 … 1 

1 1 0 0 1 1 … 0 

  Generated Matrix, 𝐺 

   

  Encoded Matrix, 𝐸 

   

  Pivot Point 

   

  Pivot Row 

   

  Pivot Column 

   

←  Pivot Column contains “1” 
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Figure 3.4: Threads allocation for Swap Row 

For example, in Figure 3.3, when the row swapping process is executed, two 

rows will generally switch their positions with each other. Another example shown in 

Figure 3.4 is that, in a CPU case, the row swapping process will undergo 6 iterations 

to swap the corresponding elements in all the 6 columns. For parallelisation, the 6 

iterations can be reduced to one iteration in terms of processing time by performing 

parallelisation of 6 XOR operation columns with 6 GPU’s threads simultaneously as 

shown in Figure 3.4. 

 

3.4.3.3 XOR Operation 

After the row swap step is done, here comes the step 3- XOR operation where 

the others row that have a “1” in pivoting column will perform XOR operation with 

the pivoting row as shown in Figure 3.5.  

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 1 0 0 1 
… 

1 1 0 1 1 1 1 … 

1 1 0 1 1 1 1 

… 0 0 0 1 0 0 1 

… 1st row 

5th row 

Threads performing “Row Swap” in parallel. 



 

58 

 

⊕ 

 

Step 1: Pivoting Search       Step 2: Row Swap Step 3: XOR  

 

  

Figure 3.5: XOR operations 

 

   𝑛 = 1𝑠𝑡  row (Pivoting Row) 

 

 

 

 

 

Figure 3.6: Threads allocation for XOR operation 

 

For example, in Figure 3.6, the XOR operation is performed on the row that 

consists of ‘1’ (in red square) in their respective pivoting column, in this case, other 

than pivoting row, the pivoting column that contains “1” in other rows will be basically 

eliminated. In a GEserial  case, the XOR operation will iterate from 

0 0 0 1 0 0 … 1  1 1 0 1 1 1 … 1  1 1 0 1 1 1 … 1  

0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  

0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  

1 1 0 1 1 1 … 1  0 0 0 1 0 0 … 1  0 0 0 1 0 0 … 1  

0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  0 0 0 0 0 0 … 0  

1 0 1 1 1 0 … 1  1 0 1 1 1 0 … 1  0 1 1 0 0 1 … 0 ← 

0 1 1 0 0 1 … 0 → 0 1 1 0 0 1 … 0 → 0 1 1 0 0 1 … 0  

0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  0 0 1 0 0 0 … 0  

1 0 0 1 1 0 … 1  1 0 0 1 1 0 … 1  0 1 0 0 0 1 … 0 ← 

0 1 0 1 0 1 … 1  0 1 0 1 0 1 … 1  0 1 0 1 0 1 … 1  

0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  0 1 0 0 0 1 … 0  

1 0 1 1 1 0 … 1  1 0 1 1 1 0 … 1  0 1 1 0 0 1 … 0 ← 

1 1 0 0 1 1 … 0  1 1 0 0 1 1 … 0  0 0 0 1 0 0 … 1 ← 

1 1 0 1 1 1 1 … 

1 0 1 1 1 0 1 
… 1 0 0 1 1 0 1 

… 1 1 0 0 1 1 0 … … 

0 1 1 0 0 1 0 
… 0 1 0 0 0 1 0 

… 0 0 0 1 0 0 1 
… … 

𝑛 = 7𝑡ℎ row (Pivoting Row) 𝑛 = 10𝑡ℎ row (Pivoting Row) 𝑛 = 14𝑡ℎ row (Pivoting Row) 
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2nd row, 1st column = 2nd row, 1st column⊕ pivoting row, 1st column  to 

10th row, 6th column = 10th row, 6th column⊕ pivoting row, 6th column, which 

is a total of 10 × 6 steps XOR operations to iterate through. 

 

While for GEparallel, the 10 × 6 steps of XOR operation will be allocated with 

10 × 6 threads each for parallel processing, which means that the 60 steps of XOR 

operation in serial CPU operation can be reduced to complete in one step ideally.  

 

3.4.4 Construction of 𝐆𝐄𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥 in CUDA 

 

Gaussian Elimination in Parallel 

1. 𝑡ℎ𝑟𝑒𝑎𝑑𝑋 =  𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑. 𝑋 ×  𝑡ℎ𝑟𝑒𝑎𝑑𝑋 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑   //mapping Threads X 
2. 𝑡ℎ𝑟𝑒𝑎𝑑𝑌 =  𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑. 𝑌 ×  𝑡ℎ𝑟𝑒𝑎𝑑𝑌 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑    //mapping Threads 

Y 
3.   
4. //GPU kernel 
5. define Swap_Row (G|X[n][k+l], pivot)    //Swap row kernel 
6.     for row = pivot to n-1 do     //check all n rows 
7.         if (G|X[pivot][pivot]≠1&& G|X[row][pivot]==1) then //if pivot point is zero

         while another row had
         pivot column of 1  

8.   
9.             for offset=0 to threadY workload do  //mapping Threads Y 
10.                 col=threadY + offset    //allocating workload 
11.                 Swap G|X[row][col] to G|X[pivot][col]  //Swap between rows  
12.              End for 
13.          End if 
14.          BREAK       //Break the whole swap 
         operation when one row
         swap is done 

15.       End for 
16.   
17.  define Pivot_check (G|X[n][k+l], check[n], pivot)  //Check pivot in GPU 
18.      for offset=0 to thread X workload do   //one thread will handle
         how many workload/rows 

19.          row= threadX+offset 
20.          if (row < n) then     //thread allocate cannot
         more than 𝑛 

21.              check[row]=G|X[row][pivot]   //allocate pivot point
             value into the check  
         array 

22.           End if 
23.       End for 
24.  
25.  define XOR (G|X[n][k+l], check[n], pivot)   //the XOR kernel in GPU 
26.      for offset=0 to thread X workload do   //one thread will handle
         how many workload/rows 
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27.  
28.          row= threadX+offset      
29.          if(G|X[row][pivot]==1 && row ≠ pivot) then 
30.              for offsetY=0 to thread Y workload do 
31.                  col=threadY + offsetY   //one thread will handle
               how many workload/columns 

32.  
33.                  G|X[row][col]= G|X[row][col] ⊕ G|X[pivot][col]//XOR between rows 
34.               End for 
35.           End if 
36.       End for 
37.   
38.  Host to Device memory copy 
39.   
40.  For pivot=0 to k-1 do     //iterates through all k 
         pivot point 

41.      Swap_Row <<<blocks, threads >>> (G|X[n][k+l], pivot)   //Swap Row 
42.      Pivot_check <<<blocks, threads >>> (G|X[n][k+l], check[n], pivot)  
43.      XOR <<<blocks, threads >>> (G|X[n][k+l], check[n], pivot)  //XOR 
44.  End for 
45.   
46.  Host to Device memory copy 

 

In GPU, threads are the key element for parallelisation, hence they will be identified 

into threadX and threadY for handling the row and column of the matrix G|X. 

 

All the GPU call function kernel will be constructed following the 3 steps in 

GE, so when the G|X matrix is received with the dimension of 𝑛 × (𝑘 + 𝑙), the code 

can fully decode G|X back into the original messages. 

 

First will be the pivoting search, since this step is just iterating through the GE 

process, it will be handled by the for-loop in line 40.   

 

Next, the swap row GPU kernel is constructed in line 4-14, and called in line 

41, the kernel is called to execute the row swapping step with 𝐺|𝑋 as the input, and 

𝑝𝑖𝑣 represents the pivoting point location and <<< 𝑡ℎ𝑟𝑒𝑎𝑑𝑠, 𝑏𝑙𝑜𝑐𝑘𝑠 >>> brackets 

show the threads and block amount that are needed to be allocated for the kernel.  
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After this, pivoting value will be recorded in a new set of the array for checking 

purpose as shown in line 17-23, and call this a new set of array -  𝑐ℎ𝑒𝑐𝑘[𝑛] where 𝑛 

represents the size of this array. 

 

Then come to the last step, which is the XOR operation step, such GPU code 

is constructed in line 25-36, where the input data from 𝐺|𝑋 will be used to perform 

XOR operations in between rows. 

 

From the pseudocode, there are offsets in line 9 and line 18 etc. In general, 

such offsets are used to map the GPU threads into the right positions to handle a certain 

amount of threads. 

  

Figure 3.7: Offset of threads distribution. 
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If there are 4 workloads that is represented in A, B, C and D as shown in Figure 

3.7, full parallelisation will be allocating maximum 4 threads by distributing one thread 

into every workload.  

 

However, to study the effects of threads towards the speedup of such workload, 

1 thread will be allocated to handle all A, B, C and D workload and this will be called 

a “base case”, and the time to execute all the workload 

by using one thread will be called timebase case. Other than this, when there are 2 

threads allocated to the 4 workloads, these threads will be mapped accordingly to 

handle the distributed workload, e.g. first thread will handle workload A and B while 

the second thread will handle C and D, and the time to execute all the workload by 

threads mapping will be timework.  

Speed Up =  
timebase

timework 
   (3.6) 

 

According to the pseudo-code, the operational count of  GEparallel  will be 

formulated later and apply on the GEserial  operational count in eq 3.1, and further 

elaborate it on the  GEparallel : 

 

𝑘((𝑛)(𝑘 + 𝑙)τXOR)
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
→           𝑘 (⌈

(𝑛)(𝑘+𝑙)

threads allocated
⌉ τXOR + 𝑝𝐺𝐸)   (3.7) 

 

𝑘 =  loops in line 40 

𝑛 = loops that goes through all the rows 

𝑘 + 𝑙 = loops that goes through all the columns 

threads allocated = threads for parallelisation (1,2,3… (𝑛) × (𝑘 + 𝑙)) 

𝜏𝑋𝑂𝑅 = operation constant in line 33  
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𝑝𝐺𝐸 = overal parallel overhead  

 

Assuming that maximum threads, 𝑘(𝑘 + 𝑙), will be allocated: 

GEoperational count = 𝑘(1τXOR + 𝑝𝐺𝐸)  (3.8) 

 

Parameters added in this GEparallel operational count is the “threads allocated” 

and the “𝑝𝐺𝐸 ”; but, a thread is not capable of allocating more than its workload 

((𝑛) × (𝑘 + 𝑙) in this case). Other than that 𝑝𝐺𝐸  is a general idea of the parallel 

overheads in every parallelisation, for example, in ideal case, N amount of workload 

executed in parallel should yield ideal N times faster than N amount of workload 

executed in series, however this parallel overheads will practically inhibit the 

performance of such parallelisation, and yield probably only 0.5N speedup,  such 

parallelisation overhead will be visualised in the Result chapter where the performance 

of GE will be demonstrated to show how parallel overhead will affect its performance. 

 

 

3.5 Gaussian Elimination with Matrix Multiplication (GEMM) 

In this thesis, the new decoding algorithm that propose is the Gaussian 

Elimination with Matrix Multiplication (GEMM). As we had explained previously, 

GE is an iterative algorithm different from matrix multiplication (MM), a widely-

recognized candidate for a fast GPU implementation, which does not suffer from the 

premature saturation of GPU bandwidth resources as GE does. Hence, the idea of 

GEMM advocates the combination of GE and MM to perform the REC decoding.  
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𝐑𝐞𝐜𝐞𝐢𝐯𝐞𝐝 𝐩𝐚𝐜𝐤𝐞𝐭𝐬 − 𝐺𝑛×𝑘|𝑋𝑛×𝑙  

𝐺𝑛×𝑘|
𝐼𝑘×𝑘
𝑍10×𝑘

Gaussan Elimination
→               

𝐼𝑘×𝑘
𝑍10×𝑘

|
𝐺𝑘×𝑘
−1

𝑍10×𝑘
   (3.9) 

𝐺𝑘×𝑘
−1 × 𝑋𝑘×𝑙 = 𝑀𝑘×𝑙    (3.10) 

 

When the packets are received in the form of 𝐺|𝑋 , the basic idea of GEMM is 

to first inverse the 𝐺 → 𝐺−1 by using GE, and the 𝐺−1 will be used to matrix multiply 

with 𝑋 to retrieve the original message 𝑀. 

 

3.5.1 Inversion, INV 

Since the Gaussian Elimination can be used for inversion (𝐺|𝐼 → 𝐼|𝐺−1) as 

well as the direct decoding previously (𝐺|𝑋 → 𝐼|𝑀), the inversion using Gaussian 

elimination will be called INV while the direct decoding in Section 3.2 using Gaussian 

Elimination remains as GE. 

 

During the decoding of the received packets in the form of 𝐺|𝑋 using GEMM, 

INV is the first phase of GEMM which is the eq 3.8 where:  

 

𝐺𝑛×𝑘|
𝐼𝑘×𝑘
𝑍10×𝑘

Gaussan Elimination
→               

𝐼𝑘×𝑘
𝑍10×𝑘

|
𝐺𝑘×𝑘
−1

𝑍10×𝑘
 

 

𝐺 will be used to perform INV, It will be augmented with a set of value that is made 

up of 𝐺𝑛×𝑘|
𝐼𝑘×𝑘
𝑍10×𝑘

, however, due to the non-square matrix formed from the packets, 

the  𝐼  needs to be dynamically allocated to the correct position to align with the “useful” 

information, (useful information will slowly shift to first 𝑘 rows. The idea is quite 

similar to GE algorithm with certain additional steps as shown below: 
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1.) 𝐺 will be first augmented with a set of zero matrix, 𝑍 as shown in example 

3.5.1.a. 

Example 3.5.1.a: 

𝑘 = 3, 𝑙 = 8192, 𝑛 = 𝑘 + 10 

𝐺3×13 |𝑋13×𝑙 =

(

  
 

0 0 1
0 1 0
0 1 1
1 1 0

⋮
1 1 1

|

|

𝑥1
𝑥2
𝑥3
𝑥4
⋮
𝑥13)

  
 

 

 

 

𝐺3×13 =

(

  
 

0 0 1
0 1 0
0 1 1
1 1 0

⋮
1 1 1)

  
 
 𝑋13×𝑙 =

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
⋮
𝑥13)

 
 
 𝐺3×13 |𝑍3×13 =

(

  
 

0 0 1
0 1 0
0 1 1
1 1 0

⋮
1 1 1

|

|

0 0 0
0 0 0
0 0 0
0 0 0

⋮
0 0 0)

  
 

 

 

 

2.) After this, 𝐺|𝑍 will be inversed by using Gaussian Elimination that starts from 

first step GE- pivoting search; the first row that contains ‘1’ (red 1) in pivoting 

column in example 4.2.1.b. 

 

Example 3.5.1.b: 

Pivoting (row, column) = (1, 1) 

 

𝐺3×13 |𝑍3×13 =

(

  
 

0 0 1
0 1 0
0 1 1
1 1 0

⋮
1 1 1

|

|

0 0 0
0 0 0
0 0 0
0 0 0

⋮
0 0 0)
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3.) Then, the first row of 𝐺 that contains ‘1’ in pivoting column will be swapped 

to the pivoting row. (row in red will swap with row in blue in example 4.2.1.c) 

in this case the “useful” information will be swapped to the correct position 

including the 𝑋. 

 

Example 3.5.1.c: 

Pivoting (row, column) = (1, 1) 

 

𝐺3×13 |𝑍3×13 =

(

  
 

1 1 0
0 1 0
0 1 1
0 0 1

⋮
1 1 1

|

|

0 0 0
0 0 0
0 0 0
0 0 0

⋮
0 0 0)

  
 

 𝑋13×𝑙 =

(

 
 

𝑥4
𝑥2
𝑥3
𝑥1
⋮
𝑥13)

 
 

 

 

4.) Now, we can confirm that the first row will contain useful information, then in 

the pivoting row (red in example 3.5.1.c), a dynamically allocate Identity 

matrix, 𝐼 will be added to align with the pivoting row of 𝐺|𝑍  to form 

𝐺𝑛×𝑘|
𝐼𝑘×𝑘
𝑍10×𝑘

. 

 

 

Example 3.5.1.d: 

Pivoting (row, column) = (1, 1) 

 

𝐺3×13 |𝑍3×13 =

(

  
 

1 1 0
0 1 0
0 1 1
0 0 1

⋮
1 1 1

|

|

0 0 0
0 0 0
0 0 0
0 0 0

⋮
0 0 0)

  
 

 𝐼 = (
1 0 0
0 1 0
0 0 1

) 
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Useful information 

𝐺13×3|
𝐼1×3
𝑍12×3

=

(

  
 

1 1 0
0 1 0
0 1 1
0 0 1

⋮
1 1 1

|

|

1 0 0
0 0 0
0 0 0
0 0 0

⋮
0 0 0)

  
 

 

 

5.) Then come to the Step 3 XOR operation part, the pivoting row(red) will be 

XOR-ed with all other rows that contain ‘1’ in their respective pivoting 

columns. 

 

Example 3.5.1.e: 

Pivoting (row, column) = (1, 1) 

 

𝐺13×3|
𝐼1×3
𝑍12×3

=

(

  
 

1 1 0
0 1 0
0 1 1
0 0 1

⋮
0 0 1

|

|

1 0 0
0 0 0
0 0 0
0 0 0

⋮
1 0 0)

  
 

 

 

6.) Repeats step 1 to 5 by moving to next pivoting point in ascending order. At the 

end, it will result in inversing the 𝐺 →  𝐺−1(in purple) . 

Example 3.5.1.f: 

𝐺𝑘×𝑛 |𝑍𝑘×𝑛 → 𝐺𝑛×𝑘|
𝐼𝑘×𝑘
𝑍10×𝑘

Gaussan Elimination
→               

𝐼𝑘×𝑘
𝑍10×𝑘

|
𝐺𝑘×𝑘
−1

𝑍10×𝑘
 

 

 

𝐼3×3
𝑍10×3

|
𝐺3×3
−1

𝑍10×3
=

(

  
 

1 0 0
0 1 0
0 0 1
0 0 0

⋮
0 0 0

|

|

1 1 0
0 1 0
0 1 1
0 0 0

⋮
0 0 0)

  
 

 𝑋13×𝑙 =

(

 
 

𝑥4
𝑥2
𝑥3
𝑥1
⋮
𝑥13)
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In the end of this phase, 𝐺−1 will be found and encoded symbol 𝑋 will be in 

the correct position aligned with the useful information (in first 𝑘 rows). In this case 

the others non-useful information will not be used in the next phase-MM, where they 

can be eliminated.  

 

3.5.1.1 Constructing INV in CUDA 

INV in Parallel 

1. 𝑡ℎ𝑟𝑒𝑎𝑑𝑋 =  𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑. 𝑋 ×  𝑡ℎ𝑟𝑒𝑎𝑑𝑋 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑   //mapping Threads X 
2. 𝑡ℎ𝑟𝑒𝑎𝑑𝑌 =  𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑. 𝑌 ×  𝑡ℎ𝑟𝑒𝑎𝑑𝑌 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑   //mapping Threads Y 
3.   
4. //GPU kernel 
5. define Swap_Row (G[n][k], X[n][l], 𝐺𝑖[n][k], pivot)  //Swap row kernel 
6.     for row = pivot to n-1 do     //check all n rows 
7.         if (G[pivot][pivot]≠1&& G[row][pivot]==1) then   

 //if pivot point is zero while another row had pivot column of 1  
8.   
9.             for offset=0 to threadY workload do  //mapping Threads Y 
10.                 col=threadY + offset    //allocating workload 
11.                 If col<k then 
12.                     Swap G [row][col] to G [pivot][col]  //Swap between rows  
13.                     Swap 𝐺𝑖[row][col] to 𝐺𝑖 [pivot][col] 
14.                  End if 
15.  
16.                  If col<l then 
17.                     Swap X [row][col] to X [pivot][col]  //Swap between rows  
18.                      
19.                  End if 
20.  
21.              End for 
22.          End if 
23.          BREAK       //Break the whole swap 

        operation when one row
        swap is done 

24.       End for 
25.   
26.  define Pivot_check (G [n][k], 𝐺𝑖[n][k], check[n], pivot) //Check pivot 
27.      If threadX==0 then 
28.          𝐺𝑖[pivot][pivot]= 𝐺𝑖[pivot][pivot] ⊕1  //inverse the 𝐺𝑖  pivoting point 
29.  
30.      for offset=0 to thread X workload do   //one thread will handle

         how many workload/rows 
31.          row= threadX+offset 
32.          if (row < n) then 
33.              check[row]=G[row][pivot] 
34.           End if 
35.       End for 
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36.  
37.  define XOR (G[n][k], 𝐺𝑖[n][k], check[n], pivot) 
38.      for offset=0 to thread X workload do   //one thread will handle

         how many workload/rows 
39.  
40.          row= threadX+offset 
41.          If (G [row][pivot]==1 && row ≠ pivot) then 
42.              for offsetY=0 to thread Y workload do 
43.                  col=threadY + offsetY   //one thread will handle

              how many workload/columns 
44.                  G [row][col]= G [row][col] ⊕ G [pivot][col]  //XOR between rows 
45.                  𝐺𝑖 [row][col]= 𝐺𝑖 [row][col] ⊕ 𝐺𝑖 [pivot][col]//XOR between rows 
46.               End for 
47.           End if 
48.       End for 
49.   
50.  Host to Device memory copy 
51.   
52.  For pivot=0 to k-1 do   //iterates through all k pivot point 
53.      Swap_Row <<<blocks, threads >>> (G[n][k], 𝐺𝑖[n][k], X[n][l], pivot)  
54.      Pivot_check <<<blocks, threads >>> (G [n][k], 𝐺𝑖[n][k], check[n], pivot) 
55.      XOR <<<blocks, threads >>> (G [n][k], 𝐺𝑖[n][k], check[n], pivot) 
56.  End for 
57.  MM(𝐺𝑖[n][k], X[n][l], M[n][l])  //Matrix multiplication to retrieve  

      message 
58.   
59.  Host to Device memory copy 
60.   

 

During The first stage of INV, the coding process is 90% the same 

with GEparallel. The different thing in INV and GEparallel is, the input data 𝐺|𝑋 in GE 

is replaced with 𝐺 & 𝐺𝑖 in INV as shown in line 12, where 𝐺𝑖 is originally a zero matrix 

that will be transformed into the inverse of 𝐺  after INV. Other than this, minor 

modifications are done to ensure the useful information is swapped to the right position. 

Such modification is done on line 12 and 17 to eliminate the unwanted information 

after INV, so that workload in MM later, can be reduced. 

 

 Furthermore, the placing of rows of identity matrix in Gi is done as in line 28. 

In this case, rows of Identity matrix will be allocated to each row in each iteration to 

the useful information position. After this, the 𝐺𝑖 which is the inverse of 𝐺 will be used 

to perform the MM in the later section. As for such pseudocode, it can be formulated 

that the operational count of INV can be obtained as shown: 
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Since INV approximately the same with GEparallel, equation of GEparallel is applicable 

to INV with modification of 𝑙 → 𝑘: 

 

INVoperational count = 𝑘 (⌈
(𝑛)(𝑘+𝑘)

threads allocated
⌉ τXOR + 𝑝𝐼𝑁𝑉)  (3.11) 

𝑝𝐼𝑁𝑉 = for visual purpose, parallel overhead in MM is identified as 𝑝𝐼𝑁𝑉. 

 

3.5.2 Matrix Multiplication, MM 

After all the non-useful information are eliminated, 𝐺−1   is extracted to 

perform matrix multiplication with the encoded symbols 𝑋. By extracting the value 

from example 3.5.2.g: 

 

Example 3.5.2.g: 

 

𝐺3×3
−1 = (

1 1 0
0 1 0
0 1 1

) 𝑋13×𝑙 = (

𝑥4
𝑥2
𝑥3
) 

 

𝐺𝑘×𝑘
−1 × 𝑋𝑘×𝑙 = 𝑀𝑘×𝑙 

 

𝑀𝑘×𝑙 = (
1 1 0
0 1 0
0 1 1

) × (

𝑥4
𝑥2
𝑥3
) = (

𝑥4⊕𝑥2
𝑥2

𝑥2⊕𝑥3

) 

 

The product of 𝐺𝑘×𝑘
−1 × 𝑋𝑘×𝑙 will become the decoded value. 
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3.5.2.1 Parallelisation of MM 

To parallelise Matrix multiplication is a simple and efficient process, as 

mentioned in (Lee, et al., 2015), matrix multiplication is a good suite algorithm that 

fits naturally in GPU parallelisation. 

 

Example 3.5.2.1.a: 

(
1 1 0
0 1 0
0 1 1

) × (

𝑥4
𝑥2
𝑥3
) = (

𝑥4⊕𝑥2
𝑥2

𝑥2⊕𝑥3

) 

 

To parallelise the MM above. The MM process will be separated into a series 

version for better visualisation. 

 

In series (typical CPU implementation) 𝑥4⊕𝑥2 will be done first, and then 

continue with 𝑥2 and lastly 𝑥2⊕𝑥3, and there will be these 3 steps for this case. One 

thing we know here is that all the steps here are independent of each other, which 

means that all of them can be simultaneously performed together unlike the 3 steps in 

GE, where third step must wait for the second step to complete. MM will just have to 

parallel process the 3 MM steps by allocating them with sufficient threads: 

Table 3.2: Threads allocation for parallelisation in MM 

Threads Operation Answer 

➔ 1 1𝑥4⊕1𝑥2⊕0𝑥3 𝑥4⊕𝑥2 

➔ 2 0𝑥4⊕1𝑥2⊕0𝑥3 𝑥2 

➔ 3 0𝑥4⊕1𝑥2⊕1𝑥3 𝑥2⊕𝑥3 
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In Table 3.2, since 3 threads are allocated to the three operations to perform 

parallelisation, the original time taken to complete the 3 MM operation will be reduced 

to one MM operation time if the parallelisation performs ideally.  

 

3.5.2.2 Constructing MM in CUDA 

Matrix Multiplication in Parallel 

1. threadX = threaded.X × threadX workload   //mapping Threads X 
2. threadY = threaded.Y × threadY workload   //mapping Threads Y 
3.  
4. Define MM (𝐺𝑖[n][k], X[k][l], M[k][l])   //matrix multiplication
           kernel  
5.     for offset=0 to thread X workload do 
6.         for offset=0 to thread Y workload do    
7.             row=threadX+offset    //one thread will handle
                 certain workload/rows 
8.             col=thread+offset     //one thread will handle
                 certain workload/columns 
9.             if(row<k && col<l) then 

10.                for z=0 to k-1 do 
11.                     𝑀[𝑟𝑜𝑤][𝑐𝑜𝑙] = 𝑋[𝑟𝑜𝑤][𝑐𝑜𝑙] ⊕ (𝐺𝑖[𝑟𝑜𝑤][𝑧] ∗ 𝑋[𝑧][𝑐𝑜𝑙]) //𝐺𝑖 × 𝑋 = 𝑀 
12.                 End for 
13.              End if 
14.          End for 
15.      End for     
16.         

 

After the INV produce the output 𝐺𝑖, it will be brought over to matrix multiply 

with the 𝑋. The output of this will be the decoded message.  

 

As for the operational count for MM according to the pseudocode: 

MMoperational count = 𝑘(𝑙 × 𝑘)
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
→           ⌈

𝑙 × 𝑘

threads allocated
⌉ 𝑘τMM + 𝑝𝑀𝑀 

𝑙 × 𝑘 = line 5 − 6 loops 

𝑘τMM = line 11 matrix multiplication core operations constant , that consist of  𝑘 

numbers of loops. 

𝑝𝑀𝑀 = Parallel overhead in MM is identified as 𝑝𝑀𝑀 
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Hence in general, GEMM: 

GEMMoperational count = INVoperational count  +  MM𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 

GEMMoperational count = (𝑘 (⌈
(𝑛)(𝑘+𝑘)

threads allocated
⌉ τXOR + 𝑝𝐼𝑁𝑉)) +

(⌈
𝑙×𝑘

threads allocated
⌉ 𝑘τMM + 𝑝𝑀𝑀)    (3.12)   

 

Assuming that if all of them are fully parallelised, where threads allocated is at 

maximum, there are (𝑛)(𝑘 + 𝑘) and 𝑙 × 𝑘 numbers of threads respectively for INV 

and MM. 

GEMMoperational count = (𝑘(τXOR + 𝑝𝐼𝑁𝑉)) + (𝑘τMM + 𝑝𝑀𝑀)  (3.13) 

 

To compare the speed between GEMM and GE, their operational count will be 

used as the reference: 

• GEoperational count = 𝑘(1τXOR + 𝑝𝐺𝐸) 

• GEMMoperational count = (𝑘(τXOR + 𝑝𝐼𝑁𝑉)) + (𝑘τMM + 𝑝𝑀𝑀) 

 

The parallel overhead increases proportionally to the operating matrix size: 

Size of GE is approximately same with MM, where (𝑛) × (𝑘 + 𝑙) ≈ 𝑘 × 𝑙  assuming 

𝑙 is very large  (𝑙 ≫ 𝑘 𝑖𝑛 𝑅𝐸𝐶 𝑐𝑎𝑠𝑒), while INV has the smallest parallel overhead for 

having smallest operating matrix size of (𝑛) × (𝑘 + 𝑘). 

filling approximation here will be: 

𝑝𝑀𝑀 ≈ 𝑝𝐺𝐸 ≈
(𝑛) × (𝑘 + 𝑙)

(𝑛) × (𝑘 + 𝑘)
𝑝𝐼𝑁𝑉 ≈

𝑙

𝑘
𝑝𝐼𝑁𝑉 

Hence: 

GEoperational count = 𝑘 (τXOR +
𝑙

𝑘
𝑝INV) 
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GEMMoperational count = (𝑘(τXOR + 𝑝INV)) + (𝑘τMM +
𝑙

𝑘
𝑝INV) 

 

If 𝑙 ≫ 𝑘: 

GEoperational count = τXOR𝑘 + 𝑙𝑝INV ≈ 𝑙𝑝INV  (3.14) 

GEMMoperational count = (τXOR + τMM)𝑘 +
𝑘2+𝑙

𝑘
𝑝INV ≈

𝑙

𝑘
pINV  (3.15) 

   

 

From these equations, it can deduce that if 𝑙 >> 𝑘 GEMM will perform faster 

than GE, which suit the properties of REC where  𝑙 is usually 100 −

1000 times bigger than 𝑘. Hence in theory, it is proven that GEMM can perform 

faster decoding speed than GEparallel. 

 

3.6 Second Degree Parallelisation 

Previously, the decoding algorithms were designed based on one assumption 

where the device only decodes one file at a time; a file that is 𝑘 < 512 in message size. 

But thousands of packets from distinct sources could be received in bulk, there is an 

opportunity where it can further exploit the power of parallel GPUs and this will be 

studied in the following section. 

 

3.6.1 Bulk Decoding 

In a high-speed networking link, thousands of packets are being transferred at 

once. In this case, the traditional way of CPU handling the received data often suffers 

from congestion issue, resulting in poor performance because the CPU can only handle 

the received data streams one by one in series. 
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Figure 3.8: Timeline of GPU decoding vs the first and second-degree parallelisation.  

 

Figure 3.8 show a new bulk decoding method by handling all the distinct files (A, 

B, C, D) in parallel. For example, upon receiving a stream of packets that consist of 

distinct files- A, B, C and D, we propose a second degree of parallelisation on top of 

GEMM explained previously. Instead of decoding the files using GEMM in ascending 

order from A to B to C then to D like the traditional decoding method, the receiver will 

perform GEMM decoding of all the 4 files all at once in parallel. Below are the steps 

to perform the bulk decoding: 

 

1.) The bulky amount of received packets will be categorized into distinct files and 

an example is illustrated below: 

 

 

Example 3.6.1.a: 

 4 files (A, B, C, D), each file contains: 𝑘 = 2, 𝑙 = 1, 𝑛 = 12 

A B C D 

B 

C 

D 

A 

Time 

A B C D 

GE decoding 

First degree 

parallelisation - 

GEMM 

Second degree 

parallelisation - 

GEMM 
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          𝑘       𝑙 

𝐴 =

0 1 1
1 1 0

1
⋮
0 1

  𝐵 =

1 1 1
1 0 0

1
⋮
1 1

  𝐶 =

0 0 0
1 0 0

1
⋮
1 1

  𝐷 =

1 1 1
1 0 0

1
⋮
1 1

 

 

2.)  The rearranged files will be augmented as shown in example 4.3.1.b and will 

be bulk decoded later. 

 

Example 3.6.1.b: 

𝐴
𝐵
𝐶
𝐷

= (

𝐺𝐴
𝐺𝐵
𝐺𝐶
𝐺𝐷

|

𝑋𝐴
𝑋𝐵
𝑋𝐶
𝑋𝐷

) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 1
1 1 0

1
⋮
0 1

1 1 1
1 0 0

1
⋮
1 1

0 0 0
1 0 0

1

⋮
1 1

1 1 1
1 0 0

1
⋮
1 1)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.) All the 𝐺 in the distinct file will be inversed into 𝐺−1 all at once. Three major 

steps of INV which had already demonstrated in the previous chapter will be 

applied in all the distinct file in parallel. 

 

 

 

 

 

𝑛 
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Example 3.6.1.c: 

𝐺|𝐼
𝐼𝑛𝑣𝑒𝑟𝑠𝑒
→     𝐼|𝐺−1 

 

(

𝐺𝐴
𝐺𝐵
𝐺𝐶
𝐺𝐷

|

𝐼𝐴
𝐼𝐵
𝐼𝐶
𝐼𝐷

)
𝐼𝑛𝑣𝑒𝑟𝑠𝑒
→     

(

 
 
𝐼𝐴
𝐼𝐵
𝐼𝐶
𝐼𝐷

||

𝐺−1𝐴
𝐺−1𝐵
𝐺−1𝐶
𝐺−1𝐷)

 
 

 

All the 𝐺−1 will be used to matrix multiply with their respective 𝑋 in parallel for 

the bulk decoding and below is the example. 

 

Example 3.6.1.d:  

4 files (A, B, C, D), each file contains: 𝑘 = 2, 𝑙 = 1, 𝑛 = 12 

𝐺−1 × 𝑋 = 𝑀 

𝐺−1𝐴
𝐺−1𝐵
𝐺−1𝐶
𝐺−1𝐷

×

𝑋𝐴
𝑋𝐵
𝑋𝐶
𝑋𝐷

=

𝑀𝐴
𝑀𝐵
𝑀𝐶
𝑀𝐷

 

𝐺1𝐴
−1

𝐺2𝐴
−1

𝐺1𝐵
−1

𝐺2𝐵
−1

𝐺1𝐶
−1

𝐺2𝐶
−1

𝐺1𝐷
−1

𝐺2𝐷
−1

𝐺3𝐴
−1

𝐺4𝐴
−1

𝐺3𝐵
−1

𝐺4𝐵
−1

𝐺3𝐶
−1

𝐺4𝐶
−1

𝐺3𝐷
−1

𝐺4𝐷
−1

×

𝑋1𝐴
𝑋2𝐴
𝑋1𝐵
𝑋2𝐵
𝑋1𝐶
𝑋2𝐶
𝑋1𝐷
𝑋2𝐷

=

𝐺1𝐴
−1. 𝑋1𝐴⊕𝐺3𝐴

−1. 𝑋2𝐴
𝐺2𝐴
−1. 𝑋1𝐴⊕𝐺4𝐴

−1. 𝑋2𝐴
𝐺1𝐵
−1. 𝑋1𝐵⊕𝐺3𝐵

−1. 𝑋2𝐵
𝐺2𝐵
−1. 𝑋1𝐵⊕𝐺4𝐵

−1. 𝑋2𝐵
𝐺1𝐶
−1. 𝑋1𝐶⊕𝐺3𝐶

−1. 𝑋2𝐶
𝐺2𝐶
−1. 𝑋1𝐶⊕𝐺4𝐶

−1. 𝑋2𝐶
𝐺1𝐷
−1. 𝑋1𝐷⊕𝐺3𝐷

−1. 𝑋2𝐷
𝐺2𝐷
−1. 𝑋1𝐷⊕𝐺4𝐷

−1. 𝑋2𝐷

=

𝑀𝐴
𝑀𝐵
𝑀𝐶
𝑀𝐷

 

 

And the assignment of workload to the threads is shown in Table 3.3 by properly 

mapping the threads into different MM operations for bulk decoding to be performed 

in parallel. 
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Table 3.3: Threads allocation for parallelisation in MM 

Threads Operation 

➔ 1 𝐺1𝐴
−1. 𝑋1𝐴⊕𝐺3𝐴

−1. 𝑋2𝐴 

➔ 2 𝐺2𝐴
−1. 𝑋1𝐴⊕𝐺4𝐴

−1. 𝑋2𝐴 

➔ 3 𝐺1𝐵
−1. 𝑋1𝐵⊕𝐺3𝐵

−1. 𝑋2𝐵 

➔ 4 𝐺2𝐵
−1. 𝑋1𝐵⊕𝐺4𝐵

−1. 𝑋2𝐵 

➔ 5 𝐺1𝐶
−1. 𝑋1𝐶⊕𝐺3𝐶

−1. 𝑋2𝐶 

➔ 6 𝐺2𝐶
−1. 𝑋1𝐶⊕𝐺4𝐶

−1. 𝑋2𝐶 

➔ 7 𝐺1𝐷
−1. 𝑋1𝐷⊕𝐺3𝐷

−1. 𝑋2𝐷 

➔ 8 𝐺2𝐷
−1. 𝑋1𝐷⊕𝐺4𝐷

−1. 𝑋2𝐷 
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4 RESULT AND DISCUSSION 

 

 

4.1 Experiment Platforms 

 

Both the proposed GEMM and GE are implemented on the GPU using CUDA and 

these two algorithms are used to compare with the base case (an optimised and 

vectorised GE according to one that is used from the paper (Hu, et al., 2012). All our 

experimental CUDA code and serial C++ code are available in the appendix.  

 

The serial and parallel version of GE implementation used the code given in 

the paper of Raptor GF(2). Such GE has been previously employed in paper (Hu, et 

al., 2012) to prove the applicability of GPU on decoding and found to be more effective 

than CPU decoding. However, as stated previously, there will be parallel overhead in 

GPU that prevents the GE parallelisation from getting linear speedup. Hence in this 

chapter, the algorithms will be tested from different aspects to compare their decoding 

speeds. 

 

For our experimental platforms, the GPU code ran on a Nvidia Quadro K620 

with CUDA 8.0 and a workstation XEON E3 CPU. The Nvidia Quadro K620 has 2GB 

GDDRAM3, a core clock of 1000MHz, and CPU-to-GPU bandwidth of 29 GB/s. It 

consists of 3 SMs, each containing 128 cores, making up a total of 384 cores. For 
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comparison, the base case is the serial execution of the decoding code on XEON E3 4 

GHz with 16 GB RAM.  

 

4.2 Overhead test in GE and GEMM 

 

As a solution to solve the decoding speed issue, GEMM, should perform faster 

than GE without increasing the overheads. Also, data received that is decodable using 

GE will be decodable using GEMM. Those packets that are non-decodable in GE will 

not be decodable using GEMM.  

 

It had been mentioned that the Random code requires 𝑛 = 𝑘 + 10 amount of 

received packets for 99.99% of PCD using GE (Chong, et al., 2015), hence in GEMM, 

it is also required to have 𝑛 = 𝑘 + 10 amount of received packets to achieve 99.99% 

PCD. In this experiment, 10000 samples of distinct packets are used for decoding by 

GE and GEMM where: 

𝑛 = 𝑘 + ɛ, 𝑘 = 32, 𝑙 = 8192, ɛ ≤ 10 

Table 4.1: Overall PCD of GEMM and 𝐆𝐄 

Number of packets 

received, 𝑛 

PCD of GE PCD of GEMM 

𝑘 26.76% 26.76% 

𝑘 + 1 57.78% 57.78% 

𝑘 + 2 79.21% 79.21% 

𝑘 + 3 89.02% 89.02% 

𝑘 + 4 94.88% 94.88% 

𝑘 + 5 96.71% 96.71% 

𝑘 + 6 98.45% 98.45% 

𝑘 + 7 99.22% 99.22% 

𝑘 + 8 99.45% 99.45% 

𝑘 + 9 99.81% 99.81% 

𝑘 + 10 99.99% 99.99% 
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It is shown in Table 4.1 that the PCD of GE and GEMM are the same, will not even 

the slightest change in PCD found in the comparison between the GE and GEMM. 

Furthermore, at 𝑘 + 10 case, when both GE and GEMM are decoding the same 10000 

packets, both algorithms are unable to decode sample no. 4831, which also means that 

overheads of GE and GEMM are the same.   

 

4.3 First Degree Parallelisation - 𝐆𝐄𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥 V.S. 𝐆𝐄𝐌𝐌 

 

To compare the parallel performance of GE and GEMM, the pseudocode used is 

available in the paper (Hu, et al., 2012) as the base case for GE. In addition, the same 

experimental model will be reworked and made comparison between: 

• 𝐆𝐄𝐬𝐞𝐫𝐢𝐚𝐥 using XEON E3 Workstation CPU (base case) 

• 𝐆𝐄parallel using Quadro K620 GPU 

• 𝐆𝐄𝐌𝐌 using Quadro K620 GPU 

 

4.3.1 𝒌 Variation 

 

In this section, the effects of complexity of GE will be shown, especially when 

the file size 𝑘 gets bigger. In this case, the speedup is calculated based on: 

 

Speedup of GEparalllel =
GEserial

GEparallel
    (4.1) 

Speedup of GEMM =
GEserial

GEMM
    (4.2) 
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Figure 4.1 demonstrates the time complexity (graph of 𝑂(𝑘3) with respect to the size 

𝑘 for the base case GE: 

 

Figure 4.1: Complexity of GE in Time used to solve GE vs. 𝑘.  

 

 

32 < 𝑘 ≤ 1024, 𝑙 =  8192,      𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = 100000 

 

Figure 4.2: Speedup of GEparallel and GEMM after parallelisation with GEserial as 

the base case.  
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From the graph in Figure 4.2, GEparallel  outperforms  GEserial  in terms of 

decoding time, whereby the speed up of GEparallel  is significantly higher when 𝑘 

increases. Furthermore, the algorithm GEMM that this research emphasized have a 

significantly better speedup compared to GEparallel, which makes GEMM the fastest 

and most efficient parallelised REC decoder.  

 

The parallelised algorithm GEMM and GEparallel  will eventually reach a 

speedup of  26  and  13  respectively. From this experiment, the GPU is better in 

handling larger size workload as the speed up can reach higher as 𝑘 grows bigger. 

 

4.3.2 𝒍 Variation 

 

In chapter 2.6, the  𝑙  is considered a very important element that affects the 

decoding speed of GE, in this section variations of 𝑙 will be tested: 

• 𝐆𝐄𝐬𝐞𝐫𝐢𝐚𝐥 using XEON E3 Workstation CPU  

• 𝐆𝐄parallel using Quadro K620 GPU 

• 𝐆𝐄𝐌𝐌 using Quadro K620 GPU 

 

The result in Figure 4.4 shows that GEMM can perform better parallelisation as 𝑙 

increase. As 𝑙 is getting larger than 𝑘 the speedup of GEMM is better than GE; this 

proves that the equation forms in section 3.5 is practically true. 

𝑘 = 256, 𝑙 = {256, 8192, 73728},      𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = 100000 
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Figure 4.3: Complexity of GE in Time used to solve GE vs. the variation in  𝑙.  

 

 

Figure 4.4: Speedup of GEparallel and GEMM after parallelisation with GEserial as 

the base case in the variation of 𝑙.  
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4.3.3 𝐓𝐡𝐫𝐞𝐚𝐝𝐬 𝐚𝐥𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧 Variation 

 

From the previous result (𝑘 and 𝑙 variation), the GPU can decode better than CPU, 

where  GEparallel and GEMM outperform the GEserial experimentally. 

In this section variations of threads allocation will be tested in: 

 

• 𝐆𝐄parallel  uses Quadro K620 GPU (base case in this section: implemented 

using one thread one block for the execution, at 𝑘 = 256, 𝑙 = 8192 and the 

time to execute the base case here is 1.472s. Other than that, the packets 

received 𝑛=k+10, which is according to the random code standard.) 

• 𝐆𝐄𝐌𝐌 uses Quadro K620 GPU 

 

𝑘 = 256, 𝑙 = 8192,     0 < 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 < 100000, 𝑛 = 𝑘 + 10 

Speedup of GEparallel =
GEparallel(in 1 thread)

GEparallel (multiple threads)
     (4.3) 

 

 

Figure 4.5 Sensitivity of threads allocated toward the speedup of  GEparallel.  
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 Figure 4.5 shows that the speed up of  GEparallel  using multiple threads as 

compared to GEparallel using one thread (base case) reaches a saturation speedup of 

129 times when 8 × 256 threads are allocated for GEparallel. 

 

As discussed earlier in chapter 4, the GEMM is separated into 2 parts: 

1. Inverse (INV) - A variant of GE that is used for inversion of matrix in Chapter 

3.5.1. 

2. Matrix Multiplication (MM) - Refer to Chapter 3.5.2.  

 

 In this section, GEMM (INV+MM) will be analysed on how it can perform 

faster than GE. First, we will look into the sensitivity of threads allocation towards the 

speedup of INV: 

Speedup of INVparallel =
GEparallel(in 1 thread)

INVparallel (multiple threads)
     (4.4) 

 

 

Figure 4.6: Sensitivity of threads allocated toward the speedup of  INVparallel.  
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 Figure 4.6 demonstrates the speed up of INV when different number of threads 

are allocated for parallelisation. When it is compared to the speed of GEparallel, which 

is the base case where GEparallel uses only one thread, INV can reach a speedup of 

approximately 300 times at the maximum performance of the GPU, where 256 × 16 

threads are allocated for INVparallel.   

 

Speedup of MMparallel =
GEparallel(in 1 thread)

MMparallel (multiple threads)
    (4.5) 

 

 

Figure 4.7: Sensitivity of threads allocated toward the speedup of  MMparallel. 

 Figure 4.7 shows that the performance sensitivity of allocating more threads 

for MM as compared to the GEparallel. The saturation point of MM speedup can be 

seen when 64 × 256 threads are allocated for parallelisation; the speedup of MM as 

compared to the GEparallel can reach a factor of 1300 times faster. 

 

 However, for all the previous results, we realise that the speedup achieved in 

these experiments can be further improved; for instance there are only 10 times 
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speedup instead of 100 times speedup for 100 threads used in parallelisation, e.g. 

parallelisation of GE from Figure 4.7 can only reach the speed up of 130x by providing 

it with maximum GPU resources (few thousands of threads allocated), whereas Figure 

4.6 demonstrated the maximum INV speed up at 300x. Furthermore, the speedup of 

MM in Figure 5.7 is able to reach the speedup of 1300x as compared to the GEparallel. 

 

 Such inefficiency in speedup proves the existence of parallel overheads, 𝑝 

which is discussed earlier in Chapter 3. 

 

4.4 Analysis and Discussion  

As mentioned in Chapter 3, the parallel overheads is the reason that concludes the 

major cause of the parallelisation inefficiency (CUDA, 2015) in GE or GEMM, it 

includes: 

• Matrix size  

• Algorithm nature 

When it comes to parallelisation, size and the algorithm nature matters the most. The 

first issue to tackle is the input matrix size for GE decoding. 

 

From Figure 4.5 and Figure 4.7, the saturation curves indicate the hardware 

limitation of GPU has been reached; there will be no further speedup even though more 

threads are added to the execution of the algorithm. Hence the bigger the workload 

size the easier the limitation is hit, where the speed up of parallel processing will 

saturate eventually. 
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time 

time 

Scheduling unit 
Workloads 

Workloads 

Other than GPU’s hardware limitation, the threads allocation delay will also be 

affected by the input matrix size. In GPU’s architecture, threads are required to be 

scheduled before parallelisation start and this will be the threads allocation stage; for 

example: 

 

Example 4.4.a: 

If there are A, B and C workloads to be executed, CPU will serially execute from A to 

C one by one. 

CPU execution:  

 

 

 

Figure 4.8: The CPU execution timeline 

 

In GPU workload A, B and C will be parallel process and execute simultaneously. 

 

GPU execution (ideal):  GPU execution(practical): 

 

 

 

   

 

 

Figure 4.9: The GPU execution timeline 
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Ideally in Figure 4.9, GPU should execute all the workload at once. However, 

in practice, threads need to be scheduled and distributed before performing their 

specific tasks (in this case tasks represented by A, B and C will all work on same 

operation), e.g., a thread is needed to be tagged along with a thread identity {0, 1, 2, 

3….} and allocated to the right position before parallelisation. Once the first threads 

are scheduled (scheduled duration are represented by blue box in example 4.4.a), the 

workload will be executed immediately as shown example 4.4.a. Using the Nvidia 

profiler of CUDA, the details of parallel process of GE and GEMM timeline can be 

seen clearly. 

CUDA NVIDIA profiler result for GEparallel:  

 

 

 

Figure 4.10: Structure of GEparallel in Nvidia Profiler 
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The brown row in Figure 4.10 indicates the flow of Runtime API, columns of 

purple represents the swap row operations duration while pink column represents the 

pivoting check duration and finally the blue column indicates the XOR operations 

duration, which means all the scheduling flow and threads allocation, as well as call 

kernel duration mentioned earlier, are visualised. 

 

From the result of profiling of the GE, XOR operation (blue columns) are the 

dominating one that occupied more than 80% even after parallelisation. Furthermore, 

the call kernel time occupied approximately 10% of the execution duration. In other 

words, to optimise a parallelised algorithm, one of the key element is to reduce the 

amount of calling kernel. However, the iterative nature in GE requires the execution 

to keep invoking the kernels at least 𝑘 amount of times to complete the decoding and 

such accumulated delay of calling kernel will drastically reduce the speed of executing 

GE in parallel.  
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GEMM:  

 

 

 

 

 

 

Figure 4.11: Structure of GEMM in Nvidia Profiler 

 

GEMM consist of INV and MM and Figure 4.11 shows that the calling kernel time of 

the MM algorithm is much less as compared to GEparallel.  
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Figure 4.12: Breakdown of the profiled  INVparallel & GEparallel in summary. 

Figure 4.12 shows the summary of the profiling result of GEparallel and INVparallel, 

when they are compared under ideal parallel condition where there are no parallel 

overheads such as the threads allocation delay, calling kernel delay, etc. They yield the 

same execution speed, but practically GEparallel  that had a bigger matrix size of 

𝑛 × (𝑘 + 𝑙), will be executed slower than INVparallel that had a smaller matrix size of 

𝑛 × (𝑘 + 𝑘), and the block in red colour indicates the initialisation of GPU before 

parallelisation start. In this thesis, this thing will be considered under the coverage of 

parallel overheads. 

 

Such an idea can be easily visualised. Larger matrix size has a larger workload 

to deal with and that means more memory access time, more loops and more threads 

time 

GEparallel 

INVparallel 

Ideal case Practical case 

a 

a 

b thread 1 

thread 2 
thread 3 
thread 1 

thread 2 

thread 3 

thread 1 
thread 2 
thread 3 

thread 1 

thread 1 
thread 1 

Parallel overheads 

Workload 

Workload 



 

94 

 

time 

are needed to be allocated to perform parallelisation. However, due to the limited 

resources in GPU, larger matrix will hit its performing saturation point earlier as 

compared to a smaller matrix as shown in “b” of Figure 4.12, while “a” indicates the 

calling kernel time. Since both GEparallel and INVparallel suffer from the same calling 

kernel time and also same number of iterations, as explained in Chapter 3.2, the main 

reason why GEparallel is slower than INVparallelis due to the limited resources in GPU 

in handling a larger matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Breakdown of the profiled  MMparallel & GEparallel in summary. 

Figure 4.13 is the comparison of GEparallel and MMparallel in Figure 4.11, it 

can be seen that the structure of executing MM and GE is different; GEparallel has 3 

iterations with each iteration having 3 tasks to be done in parallel using 3 threads, while  

MMparallel has only one kernel that call 3 tasks to be done in parallel using 3 threads, 

i.e., each thread will handle relatively more workload as compared to the threads 

in GEparallel. 
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Ideally GEparallel and MMparallelshould perform at the same execution speed, 

but in practice, when parallel overheads are considered, GEparallel that appears to be 

the iterative algorithm in nature will perform parallelisation slower than MMparallel. 

According to the Figure 4.13, MM only suffers from insufficient GPU resource, while 

GE suffers from insufficient GPU resources and the calling kernel time that is 

accumulated throughout the iterations. 

 

 

4.4.1 GEMM vs 𝐆𝐄𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥 

In terms of size, INV is working on the smaller matrix size with a size 

of 𝑘 × 2𝑘 as MM works on 𝑘 × 𝑙 matrix size and GE works on 𝑘 × (𝑘 + 𝑙) matrix size. 

It shows that the parallel overhead also increases with the matrix size 

where GEparallel > MM > INV, and it is proven in the experiment that the workload 

size can inhibit the performance of GPU speedup. e.g. GE and INV are executed using 

the same method with different matrix size and slight modification. Figure 4.5 shows 

that the larger size GE hits the speedup limitation faster at 130x the speed of its base 

case. While INV hit the speedup limitation at 300x the speed of its base case in Figure 

4.6. 

 

In terms of algorithm nature, INV and GE are both iterative structures, making 

the parallelisation less efficient for the accumulated delay shown in Figure 4.12; 

whereas MM in the profiler of Figure 4.13  shows a parallelisation friendly structure 

that can contribute to a higher parallel efficiency, e.g., speedup of MM in  Figure 4.7 
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can reach 1300x as compared to INV and GE, as shown in Figure 4.6 and Figure 4.5, 

which only reach a maximum speedup of 300 and 127, respectively. 

 

4.5 Second Degree Parallelisation - Single File Parallelisation vs Bulk 

Decoding Parallelisation 

IoT is the trend of the future network and majority of the uplink traffic are short 

messages if the experiment deploys the GEMM in the context of IoT. We are assuming 

a server to process thousands of short messages that are encoded with REC in real life 

applications, since the IoT server in nature are getting feedbacks from thousands of 

internet devices. 

 

 Beside accelerate GE with GPU in the previous cases, the throughput will be 

further accelerated by having multiple decoding session running concurrently on 

different short messages. Such multitude of acceleration further leverages the speed 

up to the factor of 60× at the end of this experiment. 

 

4.5.1 Experimental Result 

 

Two set of machines are tested in the experiment: 

• Bulk decoding 𝐆𝐄serial using XEON E3 CPU 

• 𝐁𝐮𝐥𝐤 𝐝𝐞𝐜𝐨𝐝𝐢𝐧𝐠 𝐆𝐄parallel using Quadro K620 GPU 

• 𝐁𝐮𝐥𝐤 𝐝𝐞𝐜𝐨𝐝𝐢𝐧𝐠 𝐆𝐄𝐌𝐌 using Quadro K620 GPU 

 

Generally, the bulk decoding of α = 1024 unique files in the experiment with 

each message size 𝑘 =  32, 𝑙 =  8192 bits. Theoretically, the REC (Random code in 

this study) will encode the message into a potentially infinite number of packets in the 

form of G|X. The decoder will initiate the decoding algorithm, i.e., GEMM once k + 

10 = 42 packets are received for complete decoding. While for bulk decoding GEMM, 



 

97 

 

when there is α number of files to be decoded, 𝛼 × (𝑘 + 10) relevant packets are 

required to be received to initiate the bulk decoding of GEMM, as to facilitate the 

comparison, the speedup is measured using: 

 

Speedup of bulk decoding =
α unique message base case decoding time

α unique messages decoding times
     (4.6) 

 

The base case here is referring to the duration of CPU GEserial that performs 

execution of 𝑘 = 32 and 𝑙 = 8192 𝑏𝑖𝑡𝑠 file, which is 0.0049s when decoding 𝛼 = 1 

files. 

 

Figure 4.14: Time used to decode α files using GEserial. 

Experiment parameters: 

𝑘 = 32, 𝑙 =  8192,   𝟏 <  𝜶 < 𝟏𝟎𝟐𝟒,    𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = 1,000,000 
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Figure 4.15: Speedup of Bulk decoding 𝐺𝐸𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙  and 𝐺𝐸𝑀𝑀  as compared 

to GEserial. 

 

In the configuration, the large value of allocated threads is not the actual value 

of threads that will be used in parallelisation, e.g., if there are 2 tasks for parallelisation, 

only maximum 2 threads will be used and the excessive threads will be eliminated by 

the CUDA system automatically. 

 

Figure 4.13 shows the speedup of GEMM on bulk decoding over various 

number of files, α in parallel on different CPUs and GPUs. The best GE computational 

times on Intel Xeon E3 for each value of α are taken as the base cases. The results 

show that when the volume of unique messages is small (α < 32), both GE and GEMM 

experience limited speedup. However, GEMM manifests the benefits of higher 

parallelism degree reaches the speedup of a factor 60 at α = 1024.
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5 CONCLUSION AND RECOMMENDATIONS 

 

 

While the trend of the future network and majority of the networking traffic 

are short messages, REC is employed to improve reliable transmission and the 

decoding algorithm of REC – GE, plays an important role in ensuring the high 

probability of complete decoding. Hence, the component that contributes to a high 

computational time of GE and accelerates the algorithm using the state of art GPU will 

be analysed. However, due to the interactive properties in GE that scale inefficiently 

in GPU that performs 13 times faster than the GEserial, GEMM is proposed to further 

minimise the computational time with the integration of parallel matrix multiplication. 

As a result, GEMM is capable of performing at approximately 26 times faster 

than GEserial. 

 

As to further accelerate the decoding speed of GE and GEMM using GPU, 

multiple files will be executed in bulk by using GE and GEMM decoding method 

concurrently to solve thousands of messages and able to achieve the speedup in the 

factor of 28 and 60 for speedup of bulk decoding GEparallel & GEMM respectively 

compared to bulk decoding of GEserial. 
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Table 5.1: Overall speedup performance of GEMM and 𝐆𝐄𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥  

Speedup=
GEserial

Tested algorithm
 

Tested  

algorithm 

first degree parallelisation 

speedup 

second degree 

parallelisation speedup 

(bulk decoding) 

GEserial 1 1 

GEparallel 13 28 

GEMM 26 60 

 

Finally, the results have achieved all the objectives. First, GE as our main study 

object is proven to be the most efficient linear code solver in terms of PCD. We 

conclude this from several papers such as (Bioglio, et al., 2009), (Yeqing, et al., 2013) 

etc., where these papers implements the hybrid of GE and another method to improve 

the PCD in solving the linear code. Secondly, we are able to propose a new parallel 

decoding algorithm- GEMM, by making use of the state-of-art GPU. Furthermore, the 

algorithm undergoes test experimentally to figure out its capability toward the current 

standard protocols as well as potential future implementations. In the end of the 

experiment, GEMM is proven scalable towards the given resources such that, GEMM 

performance can be further improved. When more GPU resources are provided, more 

information can be decoded in parallel at once.  

 

5.1 Future Work 

 

In this section, the future works to further enhance on the proposed algorithm will be 

briefly discussed. 
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5.1.1 Hardware Variety 

 

Previously, GEMM is proven to be a faster decoding algorithm for REC in 

parallelisation. Due to resources problem, we are only able to test it on GPU K620 

Quadro GPU (low end GPU) and a CPU workstation XEON E3 (High end CPU), 

hence in future we will suggest to have a range of GPU and CPU to be tested on. 

 

5.1.2 Machine Learning 

 

Machine learning is the computational task that processes a bunch of data to 

discover a pattern that can be used to predict or categorise the new incoming data.  

 

Lately, machine learning appears to be the attractive topic to improve the 

Rateless erasure code in terms of overheads and decoding speed, i.e., it can be used to 

find the perfect generated matrix 𝐺  with the least overheads required for linear 

independence. Other than that, decoding speed can be improved by creating its own 

algorithm by studying the millions of patterns of decoding. 

 

5.1.3 Protocol Design 

 

In order for the Rateless Erasure Code to function appropriately (as in to utilise 

the network bandwidth), typical data transmission protocols such as TCP will be 

needed to be modified for fully utilisation of the characteristic of REC, e.g., the 

protocols design of REC should focus on minimising or completely abolish the needs 

of acknowledgment as such acknowledgment mechanism is the main reason for 
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inefficient transmission in TCP, especially when packet loss occurs, the throughput 

will be reduced exponentially. Much simulation work needed to be done to find its 

efficiency in terms of transmission error percentage and bandwidth utilisation. We will 

leave all the detailed study in future works. 
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