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ABSTRACT 

 

 

DEVELOPMENT OF A COMBINED CLASSIFICATION DECISION 

TREE AND ARTIFICIAL NEURAL NETWORK RAINFALL 

GENERATOR FOR LANGAT RIVER BASIN 
 

 

 Lian Chau Yuan  

 

 

 

 

 

 

Climate change is the most concerned global issue as its consequences 

bring the significant impacts toward the environment and livelihood in the world. 

Thus, the development of statistical downscaling models has become crucial for 

climate change impact studies due to their ability in downscaling the future 

climate data. This study aimed to select a suitable two-stage rainfall generator 

for the Langat River Basin based on its performance in simulating the observed 

rainfall series for the period of 1976–2005. Therefore, the first challenge of this 

study is to model the observed rainfall occurrence using generalized linear model 

(GLM), non-homogeneous hidden Markov models (NHMM) and bootstrap 

aggregated classification tree (BACT) model. Overall, the BACT model 

exhibited good prediction ability in simulating the rainfall persistence and spell 

lengths distribution. Besides, the BACT model outperformed the GLM and 

NHMM with its higher probability of detection and critical success index in the 

range of 0.51–0.65 and 0.29–0.44, respectively. The BACT model also exhibited 

reasonably good prediction with indices of Pierce skill score and Heidke skill 

score greater than 0.15 at every station. Hence, the BACT model was selected as 

the suitable rainfall occurrence model and combined with artificial neural 

network (ANN) to form a rainfall generator. The second challenge is the 
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adoption of data pre-processing approach to improve the performance of 

traditional ANN model. The combined BACT-ANN model not only produced 

the root mean square errors smaller than ANN and NHMM, but also achieved 

the acceptability index greater than 91% in passing most of the Kolmogorov-

Smirnov, Mann-Whitney U and squared-rank tests. Furthermore, they are 

capable of producing the monthly rainfall series significantly correlated to the 

observed series, resulting in 100% acceptability index for both Kendall’s tau-b 

and Spearman’s rho correlations. In conclusion, the combined BACT-ANN 

model is the recommended rainfall generator for the Langat River Basin.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

 

1.1 Background 

 

Langat River Basin is one of the most urbanized river basins in Malaysia 

with an approximately 2,200 km2 basin area, which cover the southern region 

of Selangor state. Langat River originates from the Titiwangsa Range and flows 

in a south-western direction into the Malacca Strait. Langat River Basin is the 

major source of raw water and other facilities to approximately 1.2 million 

people, which cover the important metropolises, such as Bangi, Cheras, Kajang, 

Putrajaya and Sepang. Furthermore, there are two main reservoirs within the 

basin and eight water treatment plants to serve the clean and safe water for the 

populations. 

 

In recent decades, the surrounding areas of the basin are undergoing a 

high degree of urbanization; especially the land-use along the river basin has 

been converted from agricultural to industrial (Memarian et al., 2014; Saudi et 

al., 2015). The rapid urban development and population growth definitely 

increase the rate of surface runoff, which resulting in the rivers become shallow 

and triggering the occurrence of floods. This may lead to the destruction of 

physical structures and affecting the lives of residents, more so when more than 
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two thirds of the Selangor population reside in floodplain area (Juahir et al., 

2011). 

 

Global warming is one of the consequences of climate change, which 

has been and still is the critical issue for the past two decades, as it brings great 

impacts to the environment and livelihood in the world. Climate change is 

strongly believed to have a strong connection with human activities. As the 

technologies are getting more advanced over the years, the energy demand also 

increases with the population growth. This situation resulted in the rising 

combustion of fossil fuel and a continually rising level of carbon dioxide 

trapped in the atmosphere, thus the global warming condition is getting more 

severe over time. There is a high probability for the global surface temperature 

to be increased for more than 1.5°C at the end of the 21st century, if the condition 

of global warming still remain the same or is getting more severe over the time. 

 

The main reason for the development of statistical downscaling models 

is due to the rising interest in future weather simulation on the climate change 

studies. According to the Fifth Assessment Report (AR5), which is the latest 

report of the Intergovernmental Panel on Climate Change (IPCC), there are four 

emission scenarios provided through experiment protocol of CIMP5 according 

to the representative concentration pathways (RCPs), namely RCP 2.6, RCP 4.5, 

RCP 6 and RCP 8.5. All of them were named according to the consideration of 

different greenhouse gases concentration in every emission scenario. The 

ultimate aim of a statistical downscaling model is to establish a statistical 

relationship between the large-scale atmospheric variables and local climate 
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variables, then simulate the future local climate variables under different 

emission scenarios. 

 

Rainfall contributes a significant role in the hydrological data for 

generating a weather generator to predict and analyse the future climate change. 

Malaysia is a tropical rainforest country and it experiences a type of tropical 

climate with no dry season. Malaysia has no winter or summer, and is typical 

hot or humid throughout the year. Hence, the simulation of future rainfall using 

a statistical downscaling model is relatively important for future needs, 

especially where the study areas located at those flood prone areas, are subjected 

to heavy rainfall and used as storage of reservoir for supplying the raw water 

for domestic usage or for recreational purposes.  

 

 

1.2 Problem Statement 

 

The demand and pressure on water resources are increasing 

tremendously over the years due to the population growth, urbanization, 

industrialization and the intensive expansion of agriculture. Since 1980s, the 

economics of Malaysia has been developed extensively, which resulted in the 

high water demands in commercial and developed areas. Being a foremost 

industrial state, Selangor is expected to have rapid population growth in 21st 

century, and one major issue is that the current demand of raw water has 

exceeded the availability of water. The Langat River Basin has been supplying 
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the raw water to approximate half of the population of Selangor for the past 40 

years (Memarian, et al., 2012).  

 

Based on the historical data, Malaysia experienced some cases of flood, 

which brought severe damages to lives and properties, especially the recent 

flood cases in Kelantan, Pahang and Terengganu during years 2014 and 2015. 

There was a huge number of victims and properties losses involved in that 

incident. Those impacts directly influenced the economic growth of country due 

to the high recovery cost after the occurrence of extreme events. Hence, the 

simulation and analysis of future rainfall using an efficient rainfall generator is 

a good precautionary measure, which can reduce the consequences brought by 

the unpredictable huge amount of rainfall intensity, especially at the flood prone 

areas if the prediction can be made on time and to allow sufficient time for 

disaster response efforts. The Langat River Basin is one of the flood prone areas 

in Malaysia that receives a huge amount and high frequency of rainfall during 

the monsoon periods. Other than water supply, the two main reservoirs within 

the basin also play an important role in mitigating the floods as the risk of flood 

is classified as high level in this basin.  

 

There are numerous weather generators that have been developed and 

implemented for the analysis of future hydrological events in the climatology 

studies, but the majority of them focused on the countries with four seasons. 

However, an effective and reliable rainfall generator for the tropical climate 

countries still needs to be explored and developed based on the local tropical 

climate for effective simulation of future rainfall. In recent studies, the 
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inefficient performance of traditional individual rainfall generators have 

become a concerned issue to be overcome by improving their limitations. The 

two-stage approach, which combine two models to form a hybrid rainfall 

generator, has become an effective solution for this issue lately. However, the 

selection of a suitable model to be combined with the traditional model has 

become another challenge for the researchers. 

 

 

1.3 Aim and Objectives 

 

The ultimate aim of this research is to develop a combined bootstrap 

aggregated classification tree and artificial neural network rainfall generator for 

the Langat River Basin. Several specific objectives are: 

(i) To develop, evaluate and compare the rainfall occurrence models, 

namely generalized linear model, non-homogenous hidden Markov 

model and bootstrap aggregated classification tree; 

(ii) To develop and generate the rainfall series using an artificial intelligence 

feed forward back propagation network rainfall amount model; and 

(iii) To enhance the performance of rainfall amount model using data pre-

processing approach. 
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1.4 Significance of Study 

 

The developed combined rainfall generator in this study can be 

proceeded further to downscale the future rainfall occurrence and amount series 

under different emission scenarios, using the output form global circulation 

models (GCMs). These downscaled data are useful for hydrologists, engineers 

and researchers when designing or improving the hydrological structures. 

Besides, the high accuracy of generated rainfall series from the developed 

rainfall generator is relatively important for an effective planning and 

management of water resources, to ensure the water is supplied sufficiently for 

the usage in domestic, industrial and agricultural sectors. Therefore, the 

developed combined rainfall generator can be used for further study on the 

changes of future rainfall. This can help to establish a benchmark for making 

the better policy decision with regards to water projects in the Langat River 

Basin. 

 

As part of the much needed comprehension on the future climate change, 

the future rainfall data produced by a reliable rainfall generator is important for 

the users to continue their further investigation. Besides, this study can provide 

a new finding in the development of rainfall generator for the tropical climate 

regions since the development of statistical downscaling models under the 

tropical climate is still lacking. The selected rainfall occurrence model in this 

study can also be an alternative model to determine its suitability for combining 

with the traditional individual model in other studies. Besides, the development 

of combined rainfall generator in this study may provide some ideas for the 
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future researches to combine two similar or different approaches as a whole 

model to improve the limitations and performance of a traditional individual 

model.  

 

 

1.5 Scope of Work 

 

This study only focus on four selected rainfall stations within the Langat 

River Basin, with the study period from years 1976 to 2005. The potential 

atmospheric variables are screened with the observed rainfall series in order to 

obtain the suitable set of variables for each station. The Generalized Linear 

Model (GLM) and Bootstrap Aggregated Classification Tree (BACT) model are 

developed in the Matlab R2015a platform to model the rainfall occurrence. 

Thereafter, the Artificial Neural Network (ANN) is also developed in the 

Matlab R2015a platform to model the rainfall amount. The Non-homogenous 

Hidden Markov Model (NHMM) is developed in a MVNHMM software toolkit 

to model the rainfall occurrence and rainfall amount. 

 

The performance of rainfall occurrence models will be examined and 

compared in terms of their rainfall persistence, spell lengths distribution and 

matching. For rainfall amount models, parametric and non-parametric tests will 

be used to evaluate and compare their performance. At the end, a suitable 

rainfall generator is selected for Langat River Basin based on their overall 

performance. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

 

2.1 Climate Change 

 

According to the Intergovernmental Panel on Climate Change (IPCC) 

Fourth Assessment Report (AR4), the climate change was defined as an 

identifiable change in the state of climate, and remains for a long period of time, 

which is measured in terms of decades or longer. The changes can be recognized 

through the mean or the variability of its properties in a statistical sense. 

Basically, these changes are either caused by the impact of human activities or 

the natural variabilities. There is another definition from the United Nations 

Framework Convention on Climate Change (UNFCCC). The composition of 

the global atmosphere is changed directly or indirectly by human activities or 

the natural climate variabilities over equivalent time periods are the situation of 

climate change. In short, the climate change can be simplified as the changing 

of climatic variables (precipitation, temperature, wind patterns, etc.) under a 

long time period. 

 

Climate change, a resultant of rising of greenhouse gas (GHG) 

concentration retained at atmosphere, has been and still is, the main important 

concerned global issue for the world to tackle and be in terms with it. Climate 

change is believed to have a strong interdependence bond connected with the 
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human activities, but it would be much difficult in recognizing the impacts on 

climate caused by human activities. The identification on the flexibility of the 

projected rates of climate change on those impacts are also another challenging 

task. The connection between the human activity and climate change is strong 

and unbreakable since the early century, even until now the human activity still 

dominate the major cause on the change of climate state. However, the impacts 

of human activities on climate change can be mitigated by some remedy actions, 

and are already undertaken once the human realized the severity of the impact 

brought by the their activities on climate change, but still, there are no 

substantial reduction of impacts showed in the results. Thus, the improvement 

on the remedy action should be encouraged for coming decades with the 

minimum requirement of targeted maximum level of reduction to be realized. 

 

The anthropogenic emissions of greenhouse gases from recent data 

showed the upmost among the historical data in the IPCC’s Fifth Assessment 

Report (AR5). The influences caused by human activities on the climate change, 

bring the impacts toward the human life and natural systems, which are very 

clear and widespread. The globally averaged greenhouse gas concentration from 

1850 to 2000, as shown in Figure 2.1, can be used to prove that the uptrend on 

the emission of greenhouse gases over the years, especially a rapid growth is 

achieved from years 1950 to 2000. The main reason for the sudden rapid growth 

of carbon dioxide (CO2) during the period of 1950 to 2000, as shown in Figure 

2.2, is due to the burning of carbon based fossil fuels, cement production and 

flaring were increased tremendously. As the technologies are getting more 

advanced over years, the energy demand also increase with the population 
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growth. In order to ensure that the energy is supplied sufficiently, the extended 

construction of power plants was resulted in the rising combustion of fossil fuel. 

As there is a continually rising level of the emitted carbon dioxide trapped in 

the atmosphere, the global warming condition would only get more severe over 

time. 

 

 

Figure 2.1: Globally averaged greenhouse gases concentration (IPCC, 2014) 

 

 

Figure 2.2: Globally anthropogenic CO2 emissions (IPCC, 2014) 
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Figure 2.3 shows the average surface temperature with the combination 

of land and ocean in global scale, where the black line represents the abnormal 

surface temperature of land, orange colour represents the abnormal surface 

temperature of ocean, and blue line represents the average between both black 

and orange colours. The trend of temperature for land and ocean in Figure 2.3 

is similar with the trend as shown in Figure 2.1, with an increasing trend from 

1850 until 2000, especially the sudden rise during the period of 1950 to 2000. 

Besides the warming due to past anthropogenic emissions, the effect of future 

anthropogenic emission and natural climatic variable also play a significant role 

in influencing the future climate condition. 

 

According to the projected changes done by IPCC (2014) on climate 

system corresponding to 1850-1900, the global surface temperature is deemed 

to be increased beyond the value of 1.5°C with high confidence at the end of the 

21st century. While, the temperature may reach up to 4.8°C in the worst 

projected scenario in relative to 1986-2005. In fact, most of the land areas would 

experience more frequent hot and fewer cold temperature extremes as the 

increasing of global surface temperature, no matter in daily or seasonal 

timescale. 
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Figure 2.3: Globally average combined land and ocean surface 

temperature anomaly (IPCC, 2014) 

 

The impacts of climate change on the natural systems have been proven 

by many evidences, which are strong and comprehensive. Other than the 

increasing of global surface temperature as stated at above, the melting of 

glaciers and the rising of global mean sea level due to ice melting are also 

indicating the scenarios of climate change. Due to climate change, the 

hydrological systems are altered by the changing of rainfall pattern or the 

melting of ice and snow in several regions. The quality and quantity of water 

resources are affected too. As the global surface temperature is increasing over 

the years, the living organisms on earth are facing the problem of adapting to 

the changed living environment. They might need to migrate to another place 

for surviving due to the destruction of their habitat caused by human activities. 

Even some rare species of plants might face the extinction because they can 

only survive in a certain area with specific temperature and humidity. 
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Generally, the climate change is triggered by two main factors, which 

are natural factors and human activities. Natural factors can be explained in 

terms of solar radiation and volcanic eruption. The reason of solar radiation 

contributes to climate change is because the incoming energy radiated from Sun 

has the influence on the greenhouse effect. The greenhouse gases in atmosphere 

are capable of absorbing and emitting the infrared radiation from the surface of 

earth, then part of the energy will be radiated out to outer space but some will 

be reflected back to earth surface. Thus, the heat is trapped by the greenhouse 

gases in the atmosphere, which cause the temperature of earth also increase.  

 

There is a substantial emission of particles during the eruption of a 

volcano, which including the aerosol, and those particles are tend to be released 

and trapped in the atmosphere, be a part of the causes that contribute climate 

change. However, the occurrence of eruption is irregular and unpredictable. 

Thus, its effect may not be notable as it only bring a short term effect on climate 

change. 

 

Human activities is one of the primary factors contribute to the climate 

change and its impact has a strong influence on climate. During the era of pre-

industry, the concentration of gases (CO2, methane and nitrous oxide) in 

atmosphere have been increased largely due to the emissions of anthropogenic 

greenhouse gases. The main driving forces that trigger those emissions are the 

economic and population growth. During the Industrial Revolution in 18th 

century, the energy demand was getting higher due to the rapid growth of 

population and economic, which resulting in the development of advanced 
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technologies for harvesting the natural resources. Therefore, the burning of 

fossil fuels for supplying the energy to industries and domestic purposes 

increased tremendously. At the end, the severe global warming effect was 

triggered by the greenhouse gases released from the combustion, thus increasing 

the average surface temperature of land and ocean. 

 

The evidences for the impacts of human activity on climate system has 

been brought to attention since the IPCC Fourth Assessment Report (AR4), 

where the increasing of observed global average surface temperature was 

mainly caused by the concentrations of anthropogenic greenhouse gases and 

other anthropogenic forcing together.  Besides, there are several consequences 

of the anthropogenic influences, such as the retreat of glaciers, surface melting 

of Greenland ice sheet, loss of Arctic sea-ice, increasing of the upper ocean heat 

content and mean sea level in global scale, and the imbalance of global water 

cycle. The consequences of climate change on the physical and biological 

systems in the Earth are expected to extend on the timescales from upcoming 

decade to the century (Sullivan and Huntingford, 2009) 

 

Generally, precipitation can be explained as rainfall, snowfall and other 

form of water falling from the clouds. The occurrence of precipitation is 

strongly depending on the temperature and weather situation. First is the 

condensation of the precipitation in the form of water vapour, normally in the 

rising air that expands and thus cools. The warm air rising over the cooler water, 

colder air pushing under warmer air, convection take places from the local 

heating of surface, or other weather and cloud systems (Trenberth, 2011). When 
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the temperature of air is higher than freezing point, the precipitation turns into 

rain. This is the reason of why global circulation in terms of precipitation is an 

important element to the Earth’s system, as it transports the heat from tropics to 

the higher latitudes.   

 

According to the explanation from Intergovernmental Panel on Climate 

Change (IPCC), the hydrological cycle, which include the changes in 

precipitation, is influenced greatly by the increasing average global 

temperatures. The changes in the circulation patterns of atmosphere and the 

rising of water vapour and evaporation associated with warmer temperature, are 

the main factors to have direct impact on the precipitation. The changes in 

precipitation are in terms of amount, intensity, frequency and type of 

precipitation. Therefore, the current condition of global warming in this world 

causes an overall increase in precipitation with an unsure magnitude. This is 

because the increased heating of global temperature leads to the greater 

evaporation rate and causes the drying of surface, hence the intensity and 

duration of drought are increased. However, the atmospheric water vapour is 

also increased with the water holding capacity of air rises by about 7% per 1°C 

warming, due to the increasing of global temperature.  

 

The occurrence of extreme precipitation event takes place due to any 

type of storm supplied with increased moisture, thereby increasing the risk of 

flooding. Furthermore, the changes in precipitation amount have the direct 

influence to the corresponding regional changes in runoff, so the management 

of water supply also get affected, especially for the runoff and river flows in 
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semi-arid regions are sensitive and will be most susceptible to the changes in 

precipitation. Groundwater also is one of the sources in supplying water, while 

the recharge rates of groundwater are affected directly by the rainfall rate, so 

the changes in average rainfall is potentially impacting the water supply.   

 

The changes of precipitation are expected to be different in every region, 

as some regions may become wetter or dryer when compared to previous 

conditions, and the probability for the region to remain unchanged is very low.  

However, according to the results obtained from most models, they showed that 

the most high-latitude regions will experience the increasing of precipitation, 

while the most subtropical areas will experience reducing of precipitation. For 

Equatorial regions, the prediction on the changes in precipitation contains a high 

level of uncertainty. According to the research of O’Gorman (2015), the 

projections of 21st century climate change with GCM, showed the intensity of 

extreme precipitation is generally increasing in most of the regions except for 

some regions in the subtropics.   

 

The countries in Southeast Asian, which include the Myanmar, Thailand, 

Vietnam, Laos, Malaysia, Singapore, Indonesia and etc. Those countries are 

affected by the monsoon which can be defined as a great scale seasonal reversals 

of the wind regime. The northeast and southwest monsoons are the two main 

monsoons, which is occurring from November to March and from May to 

September, respectively, while the transition month from southwest to northeast 

monsoon is October. Hence, the monsoonal areas will receive the maximum of 

summer rainfall and the most of double rainfall maximum (Loo, et al., 2015). 
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Besides, the temperature is predicted to be increased in the late 21st century and 

early 22nd century, which will affect the frequency of changes and influence the 

monsoon precipitation. The precipitation during the monsoon periods can be up 

to 70% below normal levels (Schewe and Levermann, 2012), which is resulting 

the Indian summer monsoon and the onset monsoon over the Southeast Asia 

postponed up to 15 days.  

 

Floods can be defined as the accumulation of precipitation in a huge 

amount until the surface of land is submerged, and they are occurring at a high 

frequency in Asian countries, especially Southeast Asian countries. Recently, 

the precipitation patterns have changed globally due to the climate change. The 

increasing of monsoon rainfall intensities become the major factor of triggering 

the occurrence of flood and landslide events in Malaysia and some Southeast 

Asia countries. The loss of lives and damage of properties are the consequences 

of the monsoon flooding in Southeast Asia countries. In the mid of December 

2014, most regions of Malaysia had experienced the heavy seasonal rains and 

strong winds, this situation were continued until the early January 2015. 

Therefore, a severe flooding was triggered by the accumulation of this heavy 

rain in East Coast, and the affected areas covered the state of Terengganu, 

Pahang and Kelantan. Other than that, heavy rainfalls also impacted the four 

states in Peninsular Malaysia (Johor, Perak, Perlis and Selangor) and one state 

in East Malaysia (Sabah) to have the occurrence of floods.  
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According to ABC NEWS (26 December 2014), there were more than 

100, 000 people evacuated, as the North-eastern of Peninsular Malaysia had 

been hit hard by the northeast monsoon. The number of evacuation rose sharply 

from 100,000 to 160,000 in one day (Reuters, 27 December 2014). On 31 

December 2014, more than 21 people were killed and around a quarter of a 

million people were displaced because of the floods in Malaysia. However, the 

state that had the worst condition was Kelantan, with 14 deaths and at least 158, 

000 people displaced (AFP, 31 December 2014). The total damage to property 

and infrastructure in all affected states were calculated as close to 1 billion 

ringgit. The occurrence of these severe floods had great impacts to Malaysia in 

the aspects of healthcare, education, economy and the lives of residents.  

 

2.2 Homogeneity Tests 

 

The detection on the variability of collected rainfall data in terms of 

homogeneity is an important issue to ensure its reliability before it is used as an 

input in any hydrologic analysis model. Since 1990s, many studies had 

employed various statistical tests in detecting the non-homogeneity of 

precipitation and temperature series. There are two types of homogeneity tests 

for the time series data, which are the absolute method and the relative method. 

Both methods are applied under different conditions. The absolute method is 

used to check the time series data of each station, while the relative method is 

applied for the time series data of a station with respect to its neighbouring 

stations. The relative tests are deemed to be more effective than absolute method, 

especially for the time series data of two highly correlated stations (Wijngaard 
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et al, 2003). However, the absolute method is more appropriate for the area with 

less dense station network because of the location of stations are sparsely 

distributed, and the time series of each stations are hardly to be correlated with 

each other. 

 

Four commonly employed tests in several studies (Costa and Soares, 

2009; Sahin and Cigizoglu, 2010; Talaee, Kouchakzadeh and Some’e, 2014), 

are the standard normal homogeneity test, the Buishand range test, the Pettitt 

test, and the von Neumann ratio test. Wijngaard et al. (2003) was the first 

researcher applied these four tests all at once in their studies, to evaluate the 

non-homogeneity of daily temperature and precipitation series. These tests 

could be grouped as absolute tests, with the ability of handling the simultaneous 

changes in observational network as their advantage. In their study, a two-step 

approach was applied in evaluating the homogeneity of both series for the 

period of 1901 – 1999 and the sub-period of 1946 – 1999. The application of 

these four tests on the dataset of European Climate Assessment (ECA) project 

was the first step, followed by an overall evaluation of all tests under the 

significant level of 1%. The homogeneity of data series of individual station is 

classified into: ‘useful’, represent the null hypothesis was rejected by one or 

none test; ‘doubtful’, represent the null hypothesis was rejected by any two tests; 

and ‘suspect’, represent the null hypothesis was rejected by more than two tests. 

 

Based on the study of Wijngaard et al. (2003), the number of 

temperature series under the class of ‘suspect’ were up to 92% and 54% for the 

periods of 1901 – 1999 and  1946 – 1999, respectively. Compared to 
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temperature series, the condition of precipitation series is much better with the 

number of precipitation series greater than 70% under the class of ‘useful’ for 

both periods. They explained that the repositioning of station or instruments, 

and the altering of observing and measuring methods, are the main reasons of 

causing the breaks in the temperature series. Besides, the breaks caused by 

climate variations in temperature series are less preferable to be detected by 

absolute tests. However, the absolute tests is more sensitive than relative tests 

in detecting the breaks in precipitation series, which are frequently caused by 

the simultaneous changes in observational routines. In considering the sparse 

distribution of station network, the absolute tests were preferred to be applied 

in their study, but the relative tests could become gradually useful when more 

station series are included in the ECA dataset.   

 

Basically, there are no specific rules in selecting the best methods for 

detecting the non-homogeneity of time series in Malaysia, but the two-step 

approach proposed by Wijngaard et al. (2003) have been widely applied by 

many researchers in their studies (Suhaila et al., 2008; Kang and Yusof, 2012; 

Ahmad and Deni, 2013; Ng et al., 2015). According to the study of Suhaila et 

al. (2008), the two-step approach was applied to assess the non-homogeneity of 

daily rainfall series of 50 stations in Peninsular Malaysia from years 1975 to 

2004. The annual amount series and annual number of wet days with the 

threshold value of 0.1 mm and 1 mm, were the two variables checked by all four 

homogeneity tests. They found that the results of both threshold values were 

similar and the majority of rainfall stations were classified under the class of 

‘useful’, but the number of wet day series suspected to be non-homogeneous 
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was more than the rainfall amount series. In addition, they highlighted the non-

homogeneous series should be rejected from any further trend analysis, by 

taking the consideration on the historical metadata was not included in this study 

to assess the detected break and make correction in non-homogeneous series. 

 

However, different testing variables were used in the study of Kang and 

Yusof (2012), which include the mean, maximum and  median of daily rainfall 

series in annual scale and under the significant level of 5%. The daily rainfall 

data with the relatively small percentage of missing data (< 10%) from 33 

stations in Damansara, Johor and Kelantan were obtained in the years of 1998–

2007, 1996–2005, and 1998–2007, respectively. In comparison to all 

homogeneous series of annual mean and annual maximum, the number of 

stations under the class of ‘doubtful’ and ‘suspect’ were one and four, 

respectively, in respect to annual mean. In addition, they found that the missing 

values had no influences on the results of homogeneity. According to the study 

of Ahmad and Deni (2013), same testing variables as in the study of  Suhaila et 

al. (2008) with the threshold value of 1mm, were checked using these four 

homogeneity tests under the significant level of 1%. The results showed that the 

rainfall data from 17 out of 83 stations were detected to be non-homogeneous, 

so those stations were rejected for further analysis, since there was no correction 

approach involved in their study. 

 

The absolute homogeneity tests in the study of Ng et al. (2015), were 

applied to the rainfall data in monthly, yearly and seasonal scale, due to the 

sparse density of rainfall stations in their study area. The collected daily rainfall 
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data form 10 stations were transformed into 120 monthly series, 10 yearly series 

and 40 seasonal series, and those series were tested using four homogeneity tests 

under the significant level of 5%. They found that the number of monthly series 

classified as ‘doubtful’ and ‘suspect’ were six and one, respectively, but there 

were no yearly and seasonal series suspected to be non-homogeneous.  At the 

end, they concluded that nearly all the tested series were homogeneous, but still 

need to be examined properly especially for those non-homogeneous series 

before they were used for further analysis.  

 

In conclusion, the two-step approach proposed by Wijngaard et al. (2003) 

in assessing the non-homogeneity of time series, have been widely used by 

many researchers in Malaysia. According to their studies, the absolute methods 

were applied to their collected rainfall amount series, rather than using relative 

methods. The main reason is due to the sparsely distributed location of rainfall 

gauge stations in Malaysia at different regions, so the surrounding area and 

weather condition of each station may not be the same. Therefore, using the 

relative tests in respect to the series of neighbouring station might not be as 

powerful as using absolute tests, which test the variables of each station 

separately. 

 

2.3 Downscaling Approaches 

 

The General Circulation Models (GCMs), also known as global climate 

models, are the useful devices in expressing the physical processes in the 

atmosphere, land surface and ocean. The global climate system in response to 
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the raising of the greenhouse gases concentration, is able to be simulated by 

these GCMs. Hence, they have been widely used to project the future climate 

under different scenarios and these results may deliver the qualitative and 

quantitative information regarding to the issue of future climate change. 

However, GCMs are a three dimensional model, in which their resolution is 

considered to be too coarse if compared to the dimension of units revealed in 

the majority of impact assessments. These GCMs cover the horizontal 

resolution between 250 to 600 km, and 10 to 20 vertical layers in the atmosphere, 

but sometimes may achieve 20 layers in the oceans (Olsson et al., 2013). Thus, 

the variables produced from GCMs may not be identical to those found in 

observed data.  

 

The downscaling approaches have been developed to act as a bridge for 

reducing the discrepancy and acquiring the prerequisite regional/local climatic 

variables. These downscaling approaches can be classified into two types, 

which are dynamical and statistical downscaling techniques. Dynamical 

downscaling is a technique of operating a climate model to produce higher 

resolution of time-varying atmospheric boundary conditions with the help of 

GCMs. Regional climate model (RCM) is the climate model, which can resolve 

the atmospheric features into regional scale by applying this technique. 

However, other than the forcings at regional scale, the biases from the running 

of GCM is another key of affecting the accuracy of model. The statistical 

downscaling is a technique of transforming the climate variable from coarse to 

local scale, by establishing a relationship between the climate at two different 
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spatial resolutions. The advantages and disadvantages of using these two 

downscaling techniques have been summarized in Table 2.1 and Table 2.2. 

 

Table 2.1: Advantages and disadvantages of dynamical downscaling 

technique (Fowler et al., 2007) 

Advantages Disadvantages 

 Provide responses based on 

existing physically processes 

 Provide higher resolution 

information from GCM-scale 

output, which can resolve 

atmospheric processes on a finer 

scale 

 Computationally intensive 

 Restricted  number of scenario 

ensembles 

 Depend strongly on GCM 

boundary  

 

Table 2.2: Advantages and disadvantages of statistical downscaling 

technique (Fowler et al., 2007) 

Advantages Disadvantages 

 Comparative inexpensive and 

computationally efficient 

 Present point-scale climatic 

variables from GCM-scale 

outputs 

 Able to derive the variables not 

available in RCMs 

 Easily transferable to other 

regions 

 Application of standard and 

accepted statistical procedures 

 Observations can be combined 

into method directly 

 Require long and reliable 

observed data for training 

 Dependent on the choice of 

predictors 

 Relationship between predictor 

and predictand is non-stationary 

 Responses of climate system are 

not included 

 Dependent on GCM boundary 

forcing 

 Downscaling accuracy is 

affected by domain size, climatic 

region and season   
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2.4 Statistical Downscaling 

 

Statistical downscaling is a technique generally used to predict the local 

climate variables through a robust relationship established between large scale 

atmospheric (predictors) and local climate (predictand) variables. The 

prediction of future climate variables is obtained using the future predictors 

projected by GCMs. The statistical downscaling method is currently deemed to 

be more preferable than dynamical downscaling, due to the high demand 

conditions of low cost and rapid impact assessments of local climate change. 

Another reason is the ability of this method to produce the climate projections 

at certain location, if compared to the spatial resolution of RCMs, which are 

computationally restricted to 20–50 km. However, there are two critical 

assumption made in statistical downscaling method (Fowler, et al, 2007). Firstly, 

the predictor variables should be physically significant and able to mirror the 

variability of climate in various timescales. Second, the relationship between 

predictor and predictand is assumed to be time-invariant, so it still remain 

constant under the climate change conditions (Yarnal et al., 2001). There are 

many developed statistical downscaling methods with various application and 

complexity, and they can be categorized into three types, namely the regression-

based techniques, the weather pattern classification and the weather generators. 

However, the implementation of these methods are still considered to be simple 

as long as an adequate amount and high quality of observed data are given. 
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2.4.1 Regression-based Techniques 

 

Regression-based models are commonly used for downscaling purpose 

by establishing a linear or nonlinear relationship between predictors and 

predictand. The development of multiple linear regression models using the 

atmospheric variables in grid cells as predictors for local climatic variables 

(precipitation, temperature, etc.), are the easiest method, if compared to those 

more complex methods include the application of artificial neural network 

(Snell al., 2000; Schoof and Pryor, 2001), canonical correlation analysis 

(Busuioc, et al., 2008; Lutz et al., 2012) and singular value decomposition 

(Widmann et al., 2003; Liu and Fan, 2013). However, other than those methods, 

generalized linear models with the application of logistic regression are one of 

the recent innovated regression-based method which have been used for 

downscaling in the studies of Buishand et al. (2004) and Kenabatho et al. (2012). 

 

Statistical downscaling model (SDSM) is a model with the combination 

of weather generators and regression models. SDSM employs these robust 

statistical downscaling methods to act as a decision support tool during the 

impacts assessment of climate change and to generate the multiple ensembles 

of synthetic daily weather sequences. Besides, SDSM facilitates the rapid 

development of low-cost scenarios of daily weather variables at single and 

multiple sites under the regional climate forcing of current and future using the 

simulations of GCMs. There were over 170 published studies contributed by 

employing SDSM, since the toolbox of this model was released in the year of 

2001(Wilby and Dawson, 2012). In the study of Souvignet et al. (2010), the 
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performance and ability of SDSM in simulating the extreme events in Upper-

Elqui sub-basin were examined and thereafter, it was used to downscale the 

future temperature and precipitation under scenarios of A2a and B2a from Third 

Generation of Hadley Centre Coupled Model (HadCM3). The results showed 

the SDSM capable to simulate the maximum and minimum temperatures, and 

the extreme events accurately. However, the simulation results of precipitation 

were not as good as temperature, which concluded that the SDSM was not 

robust in simulating the extreme rainfall events.  

 

Hassan et al. (2014) compared the SDSM and LARS-WG in simulating 

and downscaling the rainfall and temperature under emission scenarios of A2 

and B2 in Peninsular Malaysia. They found that the SDSM exhibited better 

performance than LARS-WG in downscaling the daily and monthly time series 

of rainfall and temperature data. However, LARS-WG showed the better ability 

in simulating the dry- and wet-spell lengths of rainfall, when compared to 

SDSM, which under-predicted the wet spell length. In terms of maximum and 

minimum temperature, SDSM performed slightly better than LARS-WG. 

LARS-WG model is just a stochastic weather generator, which could not extract 

the outputs of GCM directly. However, SDSM can be applied together with 

GCM’s outputs under different scenarios for downscaling. They concluded that 

SDSM under scenarios of HadCM3 A2 and B2, was found able to reproduce 

the observed monthly rainfall and temperature series. Therefore, these two 

scenarios are also assumed to be useful for the prediction under future climate 

period. 
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Linear and nonlinear regression methods have been used broadly in 

downscaling the rainfall with different capabilities of each method. The 

generalized linear model (GLM) can be defined as a flexible generalization of 

the ordinary linear regression. The use of maximum likelihood methods is one 

of the most important characteristics in GLM, which allow the response 

variables and error terms from the fitted models to have different types of 

distributions other than normal distribution. A GLM is typically consists of 

three components, first is the random component, which stating the distribution 

of response variable conditional on the predictor variables. The probability 

distribution of response variable come from the exponential family, which 

include normal, binomial, Poison, gamma and negative binomial. Second is the 

systematic component, which represents the continuous or categorical 

predictors in the model. These predictors must be interrelated with each other. 

Last is the link function, such as identity link, log link and logit link, which act 

as a bridge to connect the random and systematic components. 

 

Logit link is the common link function to be used in hydrological models, 

because it is applicable to binary data and logistic regression. In the study of 

Prasad, et al. (2010), the logistic regression was required due to the nature of 

response variable is in binary form, and the logit transformation ensures the 

generated probability lies between zero and one. They employed a multi-

predictor logistic regression model to prediction the monthly rainfall and the 

model performed well in predicting the extreme rainfall years and the total 

rainfall in corresponding to such years. However, they pointed out two 

limitations of their developed empirical model, which are the model still 
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remains connected with the biases of GCMs in simulating the atmospheric 

variables and the non-stationary statistical relationship between predictors and 

predictand. Lee et al. (2011) also employed a multiple stepwise logistic 

regression to develop the downscaling models for rainfall occurrence prediction 

in Hong Kong. The occurrence of wet and dry days can be represented by the 

binary sequence, where one represents the wet day and zero represent the dry 

day (Beckmann and Buishand, 2002). Hence, the GLM with logistic regression 

are suitable in rainfall occurrence modelling. There are few studies that 

employed the GLM for rainfall occurrence modelling conditional on a range of 

large-scale atmospheric variables (Buishand et al., 2004; Hasan and Dunn, 2012; 

Abdellatif et al., 2013) and they showed the good performance in predicting the 

occurrence of rainfall at their study areas. After the rainfall occurrence model 

was developed, the rainfall amount was calculated by fitting the gamma 

distribution conditional on modelled wet days (Chandler and Wheater, 2002; 

Yang et al., 2005; Beecham et al., 2014).  

 

In the study of Fealy and Sweeney (2007), they employed a two-step 

generalized linear modelling approach to downscale the precipitation in Ireland. 

First, the rainfall occurrence model was modelled using the logistic regression, 

then followed by the modelling of rainfall amount using a log link function and 

a gamma distribution. Based on the simulation results of their study, they 

showed the derived models were considerably better than the reference 

prediction with the Heidke skill score greater than zero and capable to predict 

the interannual variability of precipitation. The derived models were then used 

to simulate the future changes in precipitation based on three different GCMs. 
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They realized that the application of different GCMs may arise the emission 

uncertainties, especially the magnitude and direction of changes are varied 

between the GCMs. Kenabatho et al. (2012) also employed the logistic 

regression and gamma distribution to simulate the rainfall occurrence and 

amount, respectively, in the Limpopo basin, Botswana. The simulation results 

showed the properties of observed rainfall were generally well predicted by the 

models, especially the interannual variability, after the involvement of external 

atmospheric variables. They concluded that the GLM is possible to be applied 

in other regions and climate change studies due to its good performance in 

simulating the multi-site rainfall. 

 

Artificial neural network (ANN) is one of the artificial intelligence, 

which has been widely used for the development of model with downscaling 

technique. ANN can be simplified as a computational model similar to the 

structure and functions of biological neural networks. The arrangement of ANN 

is influenced by the flowing of information through the network, because the 

neural network is changed or learned into a different form based on the complex 

relationship between the inputs and outputs or the patterns are founds. Therefore, 

ANN can be treated as a flexible nonlinear statistical data modelling tool, which 

resemble the properties of biological neural system. The reason that makes 

ANN so well-known is its ability of identifying the complex pattern for creating 

a linkage between input and output data. Besides, ANN is able to generate an 

optimum solution through the learning and generalization process, even when 

there are some missing or errors in input data. Therefore, the accurate prediction 

can still be achieved as long as the model is trained with relevant data. 
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Basically, ANNs are structured by a network of three layers, for instance 

input layer, hidden layer and output layer. They are connected to each other with 

many simple processing units. Multilayer perceptron (MLP) is the typical 

architecture of ANN, as illustrated in Figure 2.4. The function of input layer is 

to receive the information of inserted data, while the output layer is used to 

generate the output information. The parameters in input and output layers are 

the independent and dependent variables, respectively. The number of hidden 

layers to be constructed is depending on the user, but more hidden layers may 

reduce the training speed without any improvement on the efficiency of network 

due to the increment of parameters to be estimated.  

 

The weights wij and wjk, as shown in Figure 2.4, are used to transfer the 

information from input layer to output layer via the connection of nodes within 

different layers. The advantage of using ANN is that the desired output can be 

obtained for specific input by adjusting the weights of nodes. There might be a 

difficult and complicated task to calculate all the weights when the network 

consists of hundreds or thousands of nodes, therefore the implementation of 

various algorithms can help to improve this limitation.  
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Figure 2.4: Typical architecture of ANN (Abdulkadir et al., 2012) 

 

The MLP neural network has been used for weather prediction 

(Deshpande, 2012; Kumar and Jha, 2013) due to its flexibility and simplest 

structure of ANN. Besides, there are some recent studies that employed the 

ANN to establish a relationship between atmospheric variables and local 

climate variables for downscaling purpose (Cannon, 2008; Ahmed et al., 2015). 

In the study of Goyal and Ojha (2012), they employed the linear multiple 

regression (LMR) and ANNs to downscale the surface temperature of Pichola 

lake catchment in India. Other than the monthly maximum and minimum 

temperatures, the National Centers for Environmental Prediction and National 

Center for Atmospheric Research (NCEP&NCAR) reanalysis dataset were used 

to train both model, thereafter, they were used to downscale the simulation of 

Third Generation Coupled Global Climate Model (CGCM3) under the emission 

scenarios of A1B, A2, B1 and COMMIT. The ANNs performed better than 

LMR-based model in simulating the observed maximum and minimum 

temperatures. The downscaled results showed the increasing trend for both 
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maximum and minimum temperatures under A1B, A2 and B1 scenarios, but no 

trend is detected under COMMIT scenario. 

 

Mendes et al. (2014) developed ANN in their study to downscale the 

precipitation for the trend analysis of extreme rainfall in Amazon Basin. ANNs 

were found able to simulate the observed precipitation with the high correlations 

of approximate 88.9% and 91.3% in the cities of Belém and Manaus, 

respectively. Besides, ANNs also showed the high similarity of spatial 

distribution with observed data in the correction process. Campozano et al. 

(2016) compared the performance of SDSM, ANNs and the least squares 

support vector machines (LS-SVM) approaches in downscaling the monthly 

rainfall in Paute River Basin. They utilized the neural toolbox of Matlab with 

the algorithm of Levenberg-Marquardt to optimize the neural network. Both 

ANN and LS-SVM models showed the overall better performance than SDSM, 

even though the SDSM performed better in certain months. They suggested the 

selection of synoptic predictors for certain months or season for further analysis 

and the combination of dynamical and statistical downscaling to obtain the 

characteristics, which might not able to be signified by GCMs.  

 

The use of feed forward back propagation in ANN was demonstrated in 

the study of Vu et al. (2016), to simulate the observed daily precipitation in 

Bangkok using the reanalysis data. Then, they downscaled the future 

precipitation using Fifth Generation of European Centre Hamburg Model 

(ECHAM5), Third Generation of Community Climate System Model 

(CCSM3.0) and Model for Interdisciplinary Research on Climate-Earth System 
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Model (MIROC-ESM) under CIMP3 scenario A1B, and Max Planck Institute-

Earth System Model (MPI-ESM) under CIMP5 RCP 4.5. The results proved the 

ANN is capable to reproduce trend of observed long term precipitation with the 

correlation coefficient and Nash-Sutcliffe efficiency of 0.8 and 0.65, 

respectively. The future trend of precipitation was detected to be increasing, 

especially the extreme rainfall intensity until the end of twenty-first century.  

 

2.4.2 Weather Pattern Classification 

 

The approach of weather typing/classification is to group the local 

variables into different classes of large-scale atmospheric variables or “states”, 

in respect to their similarity in synoptic weather pattern. The future outputs 

simulated by GCMs, which are corresponding to their most similar historical 

atmospheric pattern, are used to predict the values of local variables in response 

to the future climate change (Boé, et al., 2006). An important assumption is 

made in this approach, and that is the characteristics of the classes will still 

remain the same even in future (Brinkmann, 2000). Therefore, this method is 

appropriate for downscaling the non-normal distributed daily rainfall (Moron et 

al., 2008). However, the classification of possible weather patterns require a 

substantial amount of observed data, which is considered to be more 

computationally demanding than linear models. 

 

There are several models employing the approach of weather pattern 

classification to predict and downscale the rainfall, for example the hidden 

Markov models (HMMs) (Mares et al., 2014) are able to reproduce the 



 

35 

 

characteristics of wet and dry spells by classifying the spatial rainfall patterns 

and inferring the corresponding weather pattern to predict the rainfall 

occurrence. While, the spatial and temporal variability are able to be predicted 

by non-homogeneous hidden Markov models (NHMMs) (Kioutsioukiset al., 

2008) through the recognition of noticeable patterns in the multi-station and 

persistence in weather state, respectively. The NHMM is defined as a kind of 

double stochastic finite state machine. The reason to make the NHMM different 

from a regular Markov chain model is that the ‘hidden’ means the states in 

NHMM are not directly observed (Greene et al., 2011). After the predictors are 

incorporated into the NHMM, the transition probabilities no longer remain the 

same in between the hidden states, and they change in time along with the large 

scale exogenous atmospheric variables (Mehrotra et al., 2006; Fu et al., 2013).  

 

There are few researches had employed the NHMM as downscaling 

model and they showed the good prediction ability in simulating the rainfall 

occurrence and amount (Bellone et al., 2000; Robertson et al., 2006; Greene et 

al., 2011). In addition, the NHMM has been proven in the study of Robertson et 

al. (2004);  it is capable of simulating the characteristic of rainfall occurrence in 

the field of spell lengths distribution and deliver the majority interannual 

simulation skill of GCMs into daily rainfall sequences. Robertson et al. (2009) 

employed NHMM as a downscaling technique in their study to obtain the daily 

rainfall sequences at Indramayu, Indonesia, which was conditional on a set of 

seasonal predictions from ECHAM4.5. However, the results showed NHMM 

exhibited the highest and lowest performance in simulating the rainfall 

frequency and mean rainfall intensity, respectively. According to the study of 
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Verbist et al. (2010), the NHMM was found capable to simulate the daily 

rainfall sequences in central Northern Chile, based on the evaluation of seasonal 

amount, daily rainfall frequency and mean daily amount on wet days. The 

downscaled results were then adapted to drought prediction, by calculating the 

standardize precipitation index (SPI). The SPI was quite well predicted by 

NHMM with the high hit rates.  

 

In China, Liu et al. (2011) evaluated the performance of NHMM and 

SDSM in simulating the daily precipitation at Tarim river basin. Both models 

showed the good prediction ability and stability with slight difference in 

simulating the wet- and dry-spell lengths. NHMM outperformed the SDSM in 

simulating the amount of wet day precipitation and monthly precipitation. The 

SDSM was inferior in predicting the extreme value of wet day precipitation 

amount and monthly precipitation for certain months. Furthermore, similar 

good simulation results of NHMM, were obtained by  Liu et al., (2013) when 

they compared with another two multi-site statistical downscaling models, 

namely conditional resampling SDSM and generalized linear model for daily 

climate series (GLIMCLIM), in North China Plain. 

  

In the study of Mares et al. (2014), they employed the Baum-Welch 

algorithm to acquire a set of parameters, which achieve the greatest conditional 

probability of the observed data in terms of likelihood. Seven hidden states were 

fitted into hidden Markov model (HMM), where the optimum hidden state 

number was determined based on the mean values of Bayesian Information 

Criterion (BIC). Thereafter, the NHMM was applied with the introduction of 
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atmospheric predictors. The performance of NHMM using four predictors to 

simulate the spring precipitation were evaluated separately. They concluded the 

daily sea level pressure and geopotential at 850 hPa were the suitable predictors, 

which can improve the performance of NHMM in simulating the precipitation 

at Danube Basin. 

 

2.4.3 Weather Generator 

 

Weather generators (WGs) are basically referred as stochastic weather 

generators, which are the tool used to produce numerous realizations of the same 

data or reproduce the missing data. The major application of stochastic weather 

generator is to produce a long time series of plausible weather data, according 

to the characteristics of observed weather data and random number of sampling. 

A typical stochastic weather generator is developed using a two-step process, 

with the modelling of precipitation occurrence through the Markov chain 

processes, then followed by the modelling of climate variables of interest 

conditional on precipitation occurrence. However, the major drawbacks of WGs 

are the requirement of long daily data sequences and sensitivity to missing or 

erroneous data in training set. Despite of that, the WGs have been adapted to 

perform the statistical downscaling of local climate variables by conditioning 

their parameters on the large-scale atmospheric variables. There are several 

WGs have been developed and widely used for downscaling purposes, namely 

Long Ashton Research Station-Weather Generator (LARS) (Hassan et al, 2014), 
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Weather Generator of Ecole de Technologies Superieure (WeaGETS) (Caron et 

al., 2008) and Climate Generator (CLIGEN) (Chen et al., 2011). 

 

In the study of Khan et al. (2006), they employed three statistical 

downscaling models, such as SDSM, LARS and ANN to downscale the 

precipitation, maximum and minimum temperatures in daily scale. Their 

performances were evaluated and compared based on the assessments of 

different uncertainty analysis with the confidence intervals of 95%. However, 

the SDSM exhibited the better performance in reproducing the statistical 

characteristics of observed, followed by LARS-WG and ANN. Hassan and  

Harun (2013) utilized the LARS-WG to downscale the future rainfall data at 

Kerian, Malaysia and under the emission scenario of HadCM3 A2. They 

commented the direct selection of the GCM-variables in LARS-WG make it 

become less complicated than SDSM. However, the results showed the poor 

performance of LARS-WG in simulating observed data with small R value. 

 

According to the study of Zhang et al. (2004), the CLIGEN was used to 

downscale the monthly predictions projected by GCM HadCM3 to daily 

weather series, and the potential impacts of future climate change on soil erosion 

and wheat production were examined. The results showed the CLIGEN is 

capable to reproduce the variance ratios of maximum temperature, but slightly 

over-prediction for minimum temperature. In addition, the variance of monthly 

precipitation was found to be over-predictioned by CLIGEN, because more 

events with larger or smaller precipitation were produced due to the increase of 
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daily variance. However, the summation of larger and smaller values in monthly 

total would help to reduce the monthly variance. 

 

In general, the low operation cost and rapid assessment of local climate 

change are the main advantages of statistical downscaling methods, which make 

them become preferable than dynamical downscaling in practical uses. A 

statistical downscaling methods can be categorized into three main types. 

Regression-based models are the most common method used for downscaling 

purpose by establishing a linear or nonlinear relationship between large scale 

atmospheric variables and local climate variables. Weather pattern 

classification is a method of developing relationship between large scale 

atmospheric variables and local climate variables according to the provided 

weather pattern schemes. The approach of weather generators utilizes the 

parameters conditional on the large scale atmospheric variables to simulate the 

local climate variables.  

 

2.5 Classification and Regression Trees 

 

In machine learning, classification is one of the supervised techniques, 

which can acquire an algorithm learned from training data. The main task of this 

technique is to predict the value from any input data after learning the 

relationship between pairs of input and target output data. Therefore, this 

technique is suitable for the use of statistical downscaling method due to the 

involvement of both local and atmospheric variables. CART is a model that 

refers to both classification and regression trees, which has been widely used in 
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predicting the rainfall occurrences and amounts, respectively, as a function of 

the coarse resolution atmospheric variables. There are several advantages of 

using CART model (Kannan and Ghosh, 2011; Mandal et al., 2016): 

(i) No prior statistical distribution assumption on predictor variables is 

made or followed; 

(ii) Predictor variables can be a combination of discrete, continuous and 

categorical; 

(iii) Good in recognizing and revealing the interactions in the dataset; 

(iv) Flexible and efficient with high dimensional data. 

(v) Invariant under monotonic transformation of independent variables; 

 

Based on the present studies, the occurrence of daily rainfall state was 

first generated using a classification technique, such as K-means clustering, 

coupled with the CART model. Then the generation of daily rainfall amount 

conditioned on rainfall state was done using a nonparametric kernel regression 

model (Kannan and Ghosh, 2013) and a beta regression model (Mandal et al, 

2016). Both models showed the good abilities in predicting the spatial and 

temporal variability of rainfall by establishing a statistical relationship between 

the atmospheric variables and the observed rainfall. Ingsrisawang et al. (2008) 

applied the decision tree in comparison with the ANN and SVM, to prediction 

the short term rainfall in the northeastern part of Thailand. Firstly, the rainfall 

occurrence was classified by a C4.5 decision-tree induction model and achieved 

up to 94.41% accuracy in overall during the cross validations. Thereafter, the 

model was used to classify the rainfall amount into three classes, and compared 

the performance with ANN and Support Vector Machine (SVM). The overall 
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accuracy of decision tree, ANN and SVM were 62.5%, 68.15% and 69.10%, 

respectively. Both ANN and SVM exhibited the better performance in 

classifying the rainfall amount, while the decision tree performed well in 

classifying the occurrence of rainfall. Tsai, et al. (2012) also combined the 

CART and ANN techniques to predict the water stages during typhoons in 

Tanshui river basin, Taiwan. The combined CART-ANN model consisted of 

two-step process, which the CART model was used to classify the river stages 

into three levels, followed by the ANN model to predict the water stages  

 

Nevertheless, bagging and boosting are two popular ensemble machine 

learning techniques designed to overcome the problems of weak prediction, 

done by single decision tree. Bagging is also known as bootstrap aggregating, 

which is the method is proposed by Breiman (1996) to reduce the prediction 

error of learning machines. In the study of Gaitan, et al. (2014), bagging of 

classification trees (tree ensemble) were employed to model the rainfall 

occurrences in southern Ontario and Quebec. The tree ensembles outperformed 

other models in simulating rainfall occurrence with the highest Pierce skill score 

(PSS). The results also showed the application of bagging on classification tree 

to improve the performance of a single classification tree. In addition, the study 

of Li et al. (2010) proved the use of bagging on the SVM based downscale 

model solved the uncertainties of model estimation and reduced the variance of 

prediction based on just one set of parameters. There were only 100 times of 

bootstrap resampling adopted in their study instead of using 500 samples which 

did not remarkably reduced the variance given the validation period only ten 

years long.  
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Boosting is a sophisticated version of bagging by producing a linear 

combinations out of many models for supervised learning and each model is 

dependent on the preceding models (Elith et al., 2008). The similarity of both 

methods is to combine the outputs from different predictors, but the permutation 

of training data and the combination of predictions are the ways to differentiate 

them. Aggregated boosted trees are the extension of boosted tress, which consist 

of a collection of boosted tress generated on a cross-validation subset, able to 

reduce the prediction error corresponding to a single boosted tree (De’ath, 2007). 

Tisseuil et al. (2010) employed three nonlinear and one linear statistical 

downscaling models to downscale the streamflow data of 51 stations in the 

southwest of France. The simulation results of fortnightly flow showed the 

nonlinear models performed better than linear model. However, the aggregated 

boosted trees showed the higher stability with less variables and higher R2 

values among the nonlinear models in downscaling the hydrological variability.  

 

Random forests (RF) are a non-parametric and ensemble learning 

algorithm with the combination of tree predictors in the way that each tree is 

depending on the values of a randomly chosen subset of input variable sampled 

independently. Breiman (2001) also emphasized the distribution of all trees in 

RF are similar. Besides, in considering the ability of RF in providing the high 

prediction accuracy and robust against the overfitting problem, it has been 

increasingly used in the studies of ecological, climatic and many other fields 

(Chan and Paelinckx, 2008; Ibarra-Berastegi et al., 2011; Stumpf and Kerle, 

2011; Vincenzi et al., 2011; Bucklin et al., 2013). RF is generated based on the 

CART technique and deemed as an improvement over the bagged trees. Jing et 
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al. (2016) downscaled the monthly precipitation over north China using k-

nearest neighbour (k-NN), SVM, CART and RF in their study. They found that 

SVM- and RF-based models performed the highest accuracy results, followed 

by CART and k-NN models, but the good performance of SVM-based model 

was exhibited after the application of residual correction. Besides, the errors 

obtained from downscaling were found to be increased with the monthly total 

precipitation, but RF-based model showed itself to be less affected by this 

proportional relationship.  

 

In the recent studies, RF models have been employed to perform the 

spatial downscaling of monthly precipitation and land surface temperatures 

(Hutengs and Vohland, 2016). According to the study of Shi and Song (2015), 

they employed a non-parametric regression model with random forest algorithm 

to downscale the fine-spatial resolution precipitation at Tibetan Plateau. The 

proposed model exhibited the good performance with the R2 value of 0.98 in 

simulating the observed precipitation. Besides, they realized that the 

implementation of disaggregation method with calibration, showed no obvious 

improvement on the simulation of monthly precipitation, but able to reduce the 

bias and mean absolute error for major seasons. He et al. (2016) proposed an 

adaptable random forests model to downscale the precipitation, by establishing 

a nonlinear relationship between local variable and large-scale/fine resolution 

predictors. They used 50 individual decision trees in their study for the purpose 

of enhancing the computational efficiency and stability of prediction, due to no 

further reduction of out-of-bag errors was detected after 20 trees and the 

involvement of additional trees was deemed to be unnecessary. However, the 
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poor performance of proposed model in under-predicting the spatial variability 

and temporal dependence, and the frequency of extreme rainfall rates, were due 

to the weaknesses of methodology and the insufficient predictors used to 

downscale the local variable. 

 

2.6 Hybrid Models 

 

Nowadays, the development and application of hybrid models have been 

arisen as a hydrological model to predict or downscale the rainfall due to 

inefficiency or poor performance of traditional individual models. Therefore, 

the hybrid models tend to overcome the problem through the combination with 

another model, which can overcome the limitation of conventional model. The 

statistical downscaling model (SDSM) is the best example of existed hybrid 

models, because this model is frequently used in downscaling application due 

to its good performance and low cost usage. SDSM unify the statistical 

downscaling methods, namely stochastic weather generator and multiple linear 

regression techniques in downscaling the climate variables. There are few 

studies in Malaysia showed that the performance of ANN was degraded when 

it was compared with other statistical downscaling models, such as SDSM 

(Amirabadizadeh et al., 2016) and genetic programming-based logistic 

regression model. 

 

 In the study of  Amirabadizadeh et al. (2016), SDSM and ANN model 

were used to downscale and project the local climate variables under the 

emission scenario of A2 from CGCM3.1. Based on the results, both models 
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showed more ability in simulating the temperatures, when compared to their 

reasonably poor performance in predicting the variability of precipitation. 

However, the SDSM exhibited the better performance in reproducing the 

observed local climate variables with smaller errors than ANN model. In terms 

of precipitation, the ANN model over-predicted the wet-spell length and 

average monthly precipitation, while SDSM is capable of predicting the wet- 

and dry-spell lengths. Hence, the SDSM was then used to project the future 

temperature and precipitation over the Langat River Basin, Malaysia.  

 

Harpham and Wilby (2005) used SDSM to generate the daily 

precipitation series for a single site and then extended to a multi-site simulation 

of precipitation through a conditional resampling approach. The performance of 

SDSM was compared with another two statistical downscaling models, namely 

radial basis function (RBF) ANN and multilayer perceptron (MLP) ANN, in 

downscaling the heavy precipitation occurrence and amounts. Another hybrid 

downscaling model was developed by Jeong et al. (2013) to downscale the daily 

precipitation using the global scale of GCM precipitation outputs in their study. 

The proposed hybrid model was a multi-site statistical downscaling model 

(MSDM), combining the first-order Markov chain and probability mapping 

approaches to reproduce the precipitation occurrences and amount, respectively. 

The single-site results analysis showed the MSDM sufficiently reproduced the 

precipitation occurrence lag-1 autocorrelation and the standard deviation of wet-

day precipitation amounts. Besides, the MSDM was also capable of reproducing 

the daily precipitation occurrence and amount series. 
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SVM is a machine learning technique, which is similar to ANN, and able 

to describe the highly nonlinear relationship between global atmospheric 

variables and local climate variables. SVM exhibits better performance than the 

conventional linear regression-based downscaling model, but the overtraining 

of data is still one of the weaknesses of SVM. Ghosh (2010) proposed a hybrid 

model, using SVM combined with a probabilistic search technique, namely 

Probabilistic Global Search Algorithm (PGSL) for parameter selection, in order 

to minimize the overtraining to possible level. The proposed model achieved 

the Nash-Sutcliffe coefficient of 0.65, which was acceptable. However, they 

pointed out the major weakness of SVM is that their outputs are point estimate, 

which was unable to develop the conditional distribution of predicted variables 

with the given inputs. 

 

There was a hybrid WNN model developed using the wavelet technique 

to combine with ANN for monthly rainfall prediction (Venkata Ramana et al., 

2013). The proposed WNN model outperformed the ANN model with higher 

efficiency index. In the application of weather downscaling, wavelet transform 

is usually combined with weather generator to pre-process the input data for the 

purpose of improving the performance of model. For example, the wavelet 

transform and support vector machine hybrid model is developed for reservoir 

inflow prediction under GCM scenario, by decomposing the NCEP & NCAR 

reanalysis predictors (Halik et al., 2015). According to the study of Rashid et al. 

(2016), the continuous wavelet transform is applied to decompose and 

reconstruct the rainfall and NCEP reanalysis data before feeding into a 

downscaling model. The results from both examples showed the hybrid models 
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exhibited better performance in simulating the observed rainfall data, when 

compared to the original models without wavelet transformation. 

 

There is another study of combining the Generalized Linear Model 

(GLM) and ANN to simulate the future precipitation in North Western England. 

The main reason that Abdellatif et al. (2013) proposed the application of GLM 

was to enhance the performance of traditional ANN model using a resampling 

scheme. The development of this hybrid GLM-ANN was consisted of two stage 

processes, where the GLM was used to model the rainfall occurrence, followed 

by ANN model used to downscale the rainfall amount with a Levenberg-

Marquardt approach. The resampling scheme was applied on the observed 

rainfall data based on the rainfall occurrence model, to form a resampled 

observed rainfall series. Based on the results, the hybrid GLM-ANN exhibited 

the better simulation performance than the traditional ANN model due to the 

inclusion of additional rainfall occurrence model. Besides, Osman and 

Abdellatif (2016) declared that the approach of combining the prediction from 

different statistical downscaled models into ANN, not only outperformed the 

SDSM, but also improved the performance of traditional ANN in reproducing 

the observed rainfall. 

 

2.7 Summary  

 

The frequent occurrences of extreme hydrological events are one of the 

consequences triggered by climate change, which can bring the significant 

impacts on the productivity of crops, occurrence of floods and droughts, and the 
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supply of water resources and a host of calamities around the world. Therefore, 

the future climate change studies have become relatively important among the 

researchers to understand and minimize the impacts. The statistical downscaling 

models have been developed and utilized extensively in downscaling the future 

climate data, using the future variables projected by GCMs. There are two main 

reservoirs within the Langat River Basin supply the water resources in Selangor 

state. The level of floods in Langat River Basin is classified as high risk and 

more than two thirds of populations in Selangor state live in those flood prone 

areas. The simulation performance of a statistical downscaling model is very 

important, because this may directly affect the reliability of downscaled future 

data. To have full control of the future water resources and consider climate 

change vagaries, it is important that the prediction of temporal and magnitude 

as well as spatial parameters of the precipitation is accurate.  
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CHAPTER 3 

 

3 METHODOLOGY 

 

 

3.1 Study Area 

 

Langat River Basin, the chosen study area for this research, is situated 

at the south of Klang Valley. The exact coordinates of this river basin are the 

latitudes from 2° 40’ 152” N to 3° 16’ 15”N and the longitudes from 101° 19’ 

20”E to 102° 1’ 10”E. The whole catchment area of Langat River Basin covers 

approximate 2,282km2. Langat River is the main stream, which flows from the 

main range (Banjaran Titiwangsa) in south-western direction into the Malacca 

Strait. Langat River consists of several tributaries, with the Beranang River, 

Labu River and Semenyir River being the main one. The Langat River Basin is 

the important and most urbanized catchment area in Malaysia, with an 

approximate 1.2 million population. 

 

There are two main reservoirs within the basin, namely the Langat 

Reservoir and the Semenyih Reservoir. The Semenyih Reservoir was 

constructed in year 1982, right after the construction of the Langat Reservoir in 

year 1981, with catchment area with 41 km2 and 54 km2, respectively. The main 

fuction of both reservoirs is supplying the water for industrial and domestic uses, 

and the areas covered include Cheras, Hulu Langat, Kuala Langat, Petaling, 

Putrajaya and Sepang. Both reservoirs are also important in controlling the flood 
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discharges, particulary at the downstream of Langat River. The Langat 

Reservoir also serves to supply a hydro power plant, supplying the power with 

moderate capacity for the population within Langat Valley.  

 

The climate condition in Langat River Basin is characterized as 

equatorial monsoon. An equatorial climate can be defined as a climate condition 

with the characteristics of high rainfall, high average and uniform annual 

temperature, and high humidity. There are two major types of monsoon in 

Peninsular Malaysia, which are the Southwest monsoon and the Northeast 

monsoon. Generally, Langat River Basin experiences two major monsoon 

seasons (May to September and November to March) and two inter-monsoon 

seasons (April and October) every year. The climate of this area is strongly 

depending on the Southwest monsoon as the wind blows across the Straits of 

Malacca. Therefore, this area can be a flood prone area during the period of that 

monsoon as it receives huge amount and high frequency of rainfall.  
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Figure 3.1: Langat River Basin in Peninsular Malaysia  
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3.2 Workflow of Study 

 

The flowchart of work in this study is presented in Figure 3.2.   

 

Figure 3.2: Flowchart of work  
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3.3 Data Collection 

 

The NCEP & NCAR reanalysis dataset and the observed rainfall series, 

are the data required in this study for modelling. Both data are in global- and 

local-scales, respectively. 

 

3.3.1 Observed Rainfall Series 

 

The observed rainfall series of selected stations within the Langat River 

Basin were acquired from the Malaysian Meteorological Department (MMD) 

and the Department of Irrigation and Drainage Malaysia (DID). In order to 

achieve the accurate and reliable downscaling results, the minimum requirement 

for the duration of observed rainfall series is 30 years. Four rainfall stations 

(numbered as 2815001 2913001, 2917001 and 3118102) with the collected 

rainfall series from years 1975–2012, were selected in this study for further 

investigation and their location within Langat River Basin are presented in 

Figure 3.3. The details of selected rainfall stations with their station name, 

coordinates and the periods of collected rainfall series, were tabulated in Table 

3.1. 
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Figure 3.3: Location of selected rainfall stations at the Langat River Basin, 

Malaysia 

 

Table 3.1: List of station code, name, coordinate and study period 

Station 

code 
Station name Longitude  Latitude 

Study period 

(years) 

2815001 Pejabat JPS Sg. Manggis 101°32’E 2°49’N 1975-2012 (38) 

2913001 P/KWLN/S Telok Gong 101°23’E 2°55’N 1975-2012 (38) 

2917001 RTM Kajang 101°47’E 2°59’N 1975-2012 (38) 

3118102 Sek. Keb. Kg. Sg. Lui 101°52’E 3°10’N 1975-2012 (38) 
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3.3.2 NCEP & NCAR Reanalysis Dataset  

 

Another type of large scale data required in this study, is the National 

Centers for Environmental Prediction and National Center for Atmospheric 

Research (NCEP & NCAR) reanalysis dataset. The NCEP & NCAR reanalysis 

dataset was acquired according to the location of selected stations based on the 

grids box showed on the map of Peninsular Malaysia. This reanalysis dataset 

represents the condition of the atmosphere, hence the purpose of obtaining this 

dataset is to establish a relationship between the large scale atmospheric 

variables and local rainfall series using a statistical downscaling model. These 

potential predictors are the daily values of twenty-six variables from years 1961–

2005. Aside from the circulation variables (i.e. geopotential height and wind 

component), they also comprise of the temperature, precipitation and moisture 

variables (specific humidity).  

 

The description of potential predictor variables from NCEP & NCAR 

reanalysis dataset are presented in Table 3.2. For consistency between the 

observed rainfall series and the reanalysis dataset, their daily data from years 

1976–2005 were extracted out from their respective raw dataset for modelling. 

Based on the study of Amirabadizadeh et al. (2016), they showed the lagged 

predictors improved their correlations with the observed daily rainfall data in 

Langat River Basin. Therefore, each variable had undergone the lag-

transformation process (from lag -9 to lag 9) for the purpose of selecting the 

suitable variables, which are highly correlated with the observed rainfall series, 

for each station. 
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Table 3.2: Description of predictor variables from NCEP & NCAR dataset 

No Predictor Variables Description 

1 mslpgl Mean sea level pressure 

2 p1_fgl Geostrophic airflow velocity at 1000hPa 

3 p1_ugl Zonal velocity components at 1000hPa 

4 p1_vgl Meridional velocity componets at 1000hPa 

5 p1_zgl Vorticity at 1000hPa 

6 p1thgl Wind direction at 1000hPa 

7 p1zhgl Divergence at 1000hPa 

8 p500gl Geopotential heigh at 500hPa 

9 p5_fgl Geostrophic airflow velocity at 500hPa 

10 p5_ugl Zonal velocity components at 500hPa 

11 p5_vgl Meridional velocity componets at 500hPa 

12 p5_zgl Vorticity at 500hPa 

13 p5thgl Wind direction at 500hPa 

14 p5zhgl Divergence at 500hPa 

15 p850gl Geopotential heigh at 850hPa 

16 p8_fgl Geostrophic airflow velocity at 850hPa 

17 p8_ugl Zonal velocity components at 850hPa 

18 p8_vgl Meridional velocity componets at 850hPa 

19 p8_zgl Vorticity at 850hPa 

20 p8thgl Wind direction at 850hPa 

21 p1zhgl Divergence at 850hPa 

22 prcpgl Accumulated precipitation 

23 s500gl Specific humidity at 500hPa 

24 s850gl Specific humidity at 850hPa 

25 shumgl Near surface humidity 

26 tempgl Mean temperature at 2m 

 

3.4 Normality Tests 

 

There are few tests can be adopted for checking the normality of data.  

However, the Kolmogorov-Smirnov test is rejected in this study due to its high 

sensitivity to extreme values. Besides, the Shapiro-Wilk test was not 

recommended in this study, as this test is more appropriate for the samples less 

than 5,000 observations. Three common normality tests were adopted in this 

study, namely the Anderson-Darling test, the Lilliefors test and the Jarque-Bera 
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test. These normality tests were applied on the observed rainfall series under the 

significance level of 0.05, for the purpose of checking whether they are normally 

distributed at each station. The null hypothesis of these tests, which the sample 

follows a normal distribution, was accepted when the computed p-value is 

greater than 0.05. Otherwise, the null hypothesis can be rejected to indicate that 

the sample does not follow a normal distribution pattern. 

 

3.4.1 The Anderson-Darling Test 

 

The Anderson-Darling test is one of the normality tests, which can be 

considered as a modified version of the Kolmogorov-Smirnov test and is 

applicable to numerous distributions, such as normal, uniform, lognormal, 

exponential, Weibull and logistic distributions, under the condition of the 

parameters are not known and have to be estimated (Pettitt, 1997; Engmann and 

Cousineau, 2013). Besides, the Anderson-Darling test is a powerful and sensitive 

test, as it utilizes the specific distribution to compute the critical values, which 

can be expressed as: 

𝐴𝐷 = −𝑛 −
1

𝑛
∑ (2𝑖 − 1)[ln 𝐹(𝑥𝑖) + ln(1 − 𝐹(𝑥𝑛−𝑖+1))]𝑛

𝑖=1  (3.1) 

The 𝑛 represents the sample size and 𝐹 represents the cumulative distribution 

function. While, the 𝑥𝑖 denotes the 𝑖th sample arranged in ascending order. 
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3.4.2 The Lilliefors Test 

 

The Lilliefors test is another improvement version of the Kolmogorov-

Smirnov test to test for normality according to the mean and standard deviation 

of sample. Generally, there are few steps to conduct the Lilliefors test as follows: 

1) Calculation of sample mean 

 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  (3.2) 

and standard deviation 

 𝑠 = √
1

𝑛−1
∑ 𝑥𝑖 − 𝑥̅𝑛

𝑖=1  (3.3) 

2) Calculation of normalized sample values, 𝑍𝑖 

 𝑍𝑖 =
𝑥𝑖−𝑥̅

𝑠
 , 𝑖 = 1,2, … … , 𝑛  (3.4) 

3) Calculation of test statistic 

 𝑇 = 𝑠𝑢𝑝|𝐹∗(𝑥) − 𝑆(𝑥)|  (3.5) 

where, 𝑇 denotes the supremum of the absolute difference between the 𝐹∗(𝑥) 

and 𝑆(𝑥), while 𝐹∗(𝑥) denotes the cumulative distribution function of a normal 

distribution, where the 𝑥̅ = 0  and the 𝑠 = 1 . 𝑆(𝑥) represents the empirical 

distribution function of 𝑍𝑖. 
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3.4.3 The Jarque-Bera Test 

 

Instead of comparing the differences between empirical distribution 

function and theoretical normal cumulative distribution function, the Jarque-

Bera test prefers to test the normality based on the skewness and kurtosis of 

sample to match a normal distribution. The test statistic of Jarque-Bera test can 

be defined as: 

 𝐽𝐵 =
𝑁

6
(𝑆2 +

(𝐾−3)2

4
  (3.6) 

where, 𝑁  represents the sample size, and 𝑆  represents the sample skewness. 

While, 𝐾 is denoting the sample kurtosis. 

 

3.5 Homogeneity Tests 

 

The detection on the variability of collected data in terms of homogeneity 

is an important issue to ensure its reliability before they are used as an input in 

the hydrologic analysis models. Generally, the instruments and environments are 

two main keys to ensure the data to be homogenous, as the measurements of data 

must be taken at a time with the constant instruments and environments. 

However, the changes in the techniques of measurement and the observational 

procedures, characteristic and structures of environment, and location of stations 

always are the main problems in affecting the homogeneity of observed rainfall 

data, which make the task of obtaining a set of rainfall data with good quality 

become more challenging. Hence, prior to the use of the collected data in any 
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hydrologic modelling process, homogeneity test is an essential step need to be 

carried out for ensuring the reliability of observed data.  

 

There are several homogeneities tests have been used to detect the non-

homogeneity of data, such as bivariate test, non-parametric Mann-Kendall test, 

non-parametric multi-response permutation procedure and others. In Malaysia, 

the application of homogeneity tests is an inevitable step in analysing the rainfall 

series. The checking on homogeneity of data have been done in the majority of 

studies using the tests proposed by Wijngaad et al. (2003). In this study, the 

observed monthly rainfall series were checked using four homogeneity tests, 

such as the standard normal homogeneity test (SNHT), the Buishand range test 

(BR), the Pettitt test (PET) and the Von Neumann ratio test (VNR). These tests 

were highly recommended in this study rather than using the relative test 

(Peterson-Easterling test), which require the strong correlation between the 

stations, due to the consideration of the sparse distribution of station network 

within the Langat River Basin. Besides, absolute tests is more sensitive than 

relative tests in detecting the breaks in rainfall series, which are frequently 

caused by the simultaneous changes in observational routines. So, all four 

homogeneity tests were utilized separately on the observed monthly rainfall data.  

 

Under the null hypothesis created in these four tests, the data series are 

determined to be homogenous when the annual values of testing variables are 

independent and distributed equivalently. At the same time, the alternative 

hypothesis indicates the data series is non-homogeneous with the presence of 

break in the data. After the application of homogeneity tests, the criteria used to 
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evaluate the results of homogeneity tests in this study are modified from the 

study of Wijngaad et al. (2003) under the significance level of 0.05, as shown in 

Table 3.3. 

 

Table 3.3: Classification of homogeneity tests’ results 

Category Class Condition Remarks 

Class 1 Useful 
The null hypothesis is rejected 

by none or one test 

Absence of non-

homogeneity 

Class 2 Doubtful 
The null hypothesis is rejected 

by two tests 

Presence of non-

homogeneity 

Class 3 Suspect 
The null hypothesis is rejected 

by three or four tests 

Presence of non-

homogeneity 

 

3.5.1 The Standard Normal Homogeneity Test (SNHT) 

 

As mentioned in above, SNHT presumes the presence of a step-wise shift 

in the mean under the alternative hypothesis, however the breaks happened near 

the beginning and at the end of a series is more preferred to be detected by SNHT. 

The normal distribution of annual values of the testing variable is the assumption 

made in this test. The comparison between the mean of first 𝑦 years and of last 

(𝑛 − 𝑦) years was made in the statistic equation: 

 𝑇𝑦 = 𝑦𝑧1 + (𝑛 − 𝑦)𝑧2 , 𝑦 = 1,2, … … , 𝑛 (3.7) 

where 

 𝑧1 =
1

𝑦
∑

(𝑌𝑖−𝑌)

𝑠

𝑛
𝑖=1  𝑎𝑛𝑑 𝑧2 =

1

𝑛−𝑦
∑

(𝑌𝑖−𝑌)

𝑠

𝑛
𝑖=𝑦+1  (3.8) 

The 𝑌𝑖  denotes the annual value of testing variable, and 𝑖  denotes the 

number of years from 1 to 𝑛, while 𝑌 and s indicate the mean and standard 
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deviation, respectively. When the break is detected to be present in the year of 𝑦, 

the maximum value of 𝑇𝑦 will be obtained, where the statistic is expressed as: 

 

 𝑇0 =  max 𝑇𝑦 (3.9) 

However, SNHT was applied under the significance level of 0.05 in this 

study. The null hypothesis is accepted when the computed p-value is greater than 

0.05, which indicate the rainfall series is homogeneous. While, the null 

hypothesis is rejected when the computed p-value smaller than 0.05 and the 

rainfall series is treated as non-homogeneous. 

 

3.5.2 The Buishand Range Test (BR) 

 

The assumption of null hypothesis, alternative hypothesis and the normal 

distribution of annual values under the Buishand range test (BR) are similar to 

the SHNT. However, the only difference between both of them is the sensitivity 

in detecting the break, where the BR test is more efficient on the middle of a 

series, instead of either near beginning or at the end of a series. The adjusted 

partial sum under this test is explained as: 

 𝑆0
∗ = 0 and 𝑆𝑦

∗ = ∑ (𝑌𝑖 − 𝑌
𝑦
𝑖=1 ), 𝑦 =  1,2, … … , 𝑛 (3.10) 

The homogeneity of series is determined according to the value of 𝑆𝑦
∗, 

where the series is treated as homogenous when the value obtained by 𝑆𝑦
∗ is at 

the range close to zero. In contrast, the value is achieved at a maximum (negative 

shift) or minimum (positive shift), when there is a break in year 𝑦. After a break 
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in year  𝑦  is detected, then rescaled adjusted range, R is applied in order to 

compute the difference between maximum and minimum value of the 

rescaled 𝑆𝑦
∗. 

 𝑅 =
max

0≤𝑦≤𝑛
𝑆𝑦

∗ − min
0≤𝑦≤𝑛

𝑆𝑦
∗ )

𝑠
 (3.11) 

Similar to SNHT, the null hypothesis is accepted when the computed p-

value is greater than 0.05, which indicate the rainfall series is homogeneous. 

While, the null hypothesis is rejected when the computed p-value smaller than 

0.05 and the rainfall series is treated as non-homogeneous. 

 

3.5.3 The Pettitt Test (PET) 

 

The computation of Pettitt test (PET) is based on the ranking order of 

data time series instead of making assumption on the normally distribution of 

annual values, which make this test differs from SNHT and BR tests. The 

sensitivity of PET in detecting the break in a time series is similar to BR test, 

which has the satisfactory results in detecting the break happened at the centre 

of time series. The less sensitivity to the outliers is the disadvantage of this test, 

when compared to other tests. The calculation of PET is expressed as: 

 𝑋𝑦 = 2 ∑ 𝑟𝑖
𝑦
𝑖=1 − 𝑦(𝑛 + 1), 𝑦 = 1,2, … , 𝑛 (3.12) 

The 𝑟𝑖 is denoting the rank of 𝑖th observation of the testing variable. When the 

value of 𝑋𝑦 achieves the maximum or the minimum value, then the break is 

determined at the year of k, which can be explained by following equation: 
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 𝑋𝑘 = max
1≤𝑦≤𝑛

|𝑋𝑦| (3.13) 

The rejection of null hypothesis of this test also depends on its computed p-value 

under the significance level of 0.05. 

 

3.5.4 The Von Neumann Ratio Test (VNR) 

 

Unlike the three homogeneity tests discussed in above, the Von Neumann 

ratio test (VNR) has the tendency to determine the random distribution of the 

series, rather than detect the breaks in the series. This test can be explained as 

the mean square successive difference divided by the variance, which can be 

expressed as: 

 𝑁 =
∑ (𝑌𝑖−𝑌𝑖+1)2𝑛−1

𝑖=1

∑ (𝑌𝑖−𝑌̅)2𝑛
𝑖=1

 (3.14) 

Theoretically, the series is treated as homogeneous when the computed 

N value is two. However, the series is non-homogeneous and a break is detected 

when the computed N value smaller than two. The rapid variation is existed in 

the mean of series when the computed N value greater than two. In this study, 

the determination of series to be homogeneous is depending on the computed p-

value in this PET test to accept or reject the null hypothesis. 
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3.6 Screening of Predictors 

 

A complete set of the twenty-six potential predictors contains plenty of 

information and almost all of them are mutually correlated, but still part of them 

may be treated as excessive information since they can’t provide any significant 

effect in the downscaling process. The selection of predictor variable(s) is one 

of the most challenging steps in developing a statistical downscaling model 

because the characteristics of the downscaled scenario are directly influenced by 

this decision. In order to prevent the problem of overfitting, the selected 

predictors should not be highly correlated, which has been proved by Liu et al. 

(2011) as the performance of model was generally enhanced when different 

types of variables were included. They found that the same type of variables with 

high inter-correlations were most likely to be selected if the selection criterion 

only focused on the explained variance of rainfall. 

 

Thus, the selection criteria used in this study were the explained variance 

and the partial correlation analysis. The explained variance described the 

correlations between rainfall and potential predictors, while the partial 

correlation analysis not only represented the correlations between rainfall and 

predictors without the influence of other predictors, but also showed the 

associations between predictors themselves in term of p-value. Each variable and 

their lag-transformed variables (from lag -9 to lag 9) were screened with the 

observed daily rainfall series for selecting the most suitable set of predictors for 

each station. Firstly, the predictors were selected based on their correlations with 

the rainfall. Then, the selected predictors were proceeded to the partial 
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correlation analysis. The association among themselves was measured in term 

of p-value. In addition, the significance level was set to 0.05 in this study to 

explain the association between the variables. The higher correlation values 

indicate the higher degree of association, while the smaller p-values imply that 

associations are less likely to happen by chance. 

 

3.7 Rainfall Occurrence Models 

 

There were two rainfall occurrence models developed in this study, 

namely the generalized linear model (GLM) and the bootstrap aggregated 

classification tree (BACT) model. All the models were calibrated and validated 

using the required data in 20 years and 10 years, respectively. 

 

3.7.1 Generalized Linear Model (GLM) 

 

Logistic regression is an example of a generalized linear model, which 

has been extensively used in statistical downscaling studies for modelling the 

rainfall occurrence series using a set of suitable atmospheric predictors. The 

occurrence of wet and dry days in a series can be denoted as a binary series, 

which consists of the value of zero and one only.  

 

In this study, the value of zero represents the dry days with rainfall 

amount equal to or smaller than 0.1 mm, while the value of one indicates the wet 

days with the rainfall amount greater than 0.1 mm. Then, the logistic regression 
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was utilized for the modelling of the probability of rainfall occurrence series. 

The probability 𝑃, which used to imply a day being a wet day, is the significant 

parameter in a logistic model. Let 𝑃𝑖  indicates the probability of 𝑖 th day 

conditional on a vector 𝑋′𝑖, which could be expressed as: 

  ln (
𝑃𝑖

1 − 𝑃𝑖
) = 𝑋′𝑖𝛽 (3.15) 

This can be revised in another form as below: 

  (
𝑃𝑖

1 − 𝑃𝑖
) =  𝑒𝑋′𝑖𝛽 (3.16) 

where, 𝑒 denotes the base of natural logarithms, while 𝛽 denotes the estimated 

coefficients. 

 

In this study, the GLM were developed in the Matlab platform using the 

code of 𝑔𝑙𝑚𝑓𝑖𝑡(𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙) and 𝑔𝑙𝑚𝑣𝑎𝑙(𝑙𝑜𝑔𝑖𝑡). There are several distribution 

parameters can be chosen for the development of GLM, such as normal, gamma, 

poisson and binomial distributions. However, the binomial distribution is 

adopted as the suitable distribution in this study due to the response variable 

(observed rainfall occurrence series) is in binary form. The normal distribution 

is suitable for the response variable with any real number and the gamma 

distribution for the response variable with any positive number. While, the 

poisson distribution is suitable for the response variable with any non-negative 

integer.  
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Both selected predictors and observed daily binary rainfall series at each 

station were fitted into GLM to model the occurrence of rainfall. The maximum 

likelihood estimation was used to select the parameters within logistic regression 

instead of using least squares estimation. Besides, there are several link function 

can be chosen to map between the mean and the linear predictors, namely 

identity (default for normal distribution), log (default for poisson distribution), 

logit (default for binomial distribution), probit and reciprocal (default for gamma 

distribution) links. The application of logit link was adopted in this study as it 

ensures the predicted value lies in the interval between zero and one, which is 

more interpretable and can be explained as the probability of a day to represent 

wet day. Since the predicted value is the probability of a day being wet day, the 

threshold value for the probability was set as 0.5 in this study. In other words, 

the day with the probability equal to or smaller than 0.5 was marked as zero to 

represent dry day, while the day with the probability greater than 0.5 was marked 

as one to represent wet day. The flowchart of development of GLM is presented 

in Figure 3.5. 

 

3.7.2 Bootstrap Aggregated Classification Tree Model (BACT) 

 

A decision tree is formed using a binary recursive partitioning algorithm, 

which is an iterative data splitting process, to split the data into child nodes with 

certain condition and repeat itself until certain rule is met or no further splitting 

is possible (Kannan and Ghosh, 2011). In this study, the classification decision 

tree was selected to model the rainfall occurrence instead of using regression 
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decision tree, as the rainfall occurrence state could be treated as a classification 

type problem, with the condition of predicting the value of response variable 

(rainfall state) from a combination of predictor variables.  

 

Classification decision trees are a learning technique that splits the data 

from the combinations of predictors, which may be categorical and/or 

continuous, repeatedly into more homogeneous groups, to clarify the variations 

of a single response variable. Each group represents a typical value of the 

response variable, which is defined by the number of observations and the values 

of predictors (Tisseuil et al., 2010). The approach of this technique to perform 

accurate classification or prediction is based on the if-then logical conditions. A 

simple example of structural layout of a single classification decision tree used 

to predict the binary response, is given in Figure 3.4. The response variable (zero 

or one) is predicted follows the decisions made in the tree from the root node 

(beginning) down to another root node, until meet a leaf node, which contains 

the response. 
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Figure 3.4: Structural layout of a single classification decision tree 

 

However, the bootstrap aggregation (bagging) of classification tree was 

employed in this study to reduce the problem of overfitting and improve the 

generalization of an individual classification decision tree, with the classification 

results determined by the majority votes. The bootstrap aggregated classification 

tree models were developed in Matlab platform using the function code 

of  𝑇𝑟𝑒𝑒𝐵𝑎𝑔𝑔𝑒𝑟 , where each tree in the ensemble is produced on an 

independently drawn bootstrap imitation of input data. During the process of 

bootstrap aggregation, the number of predictor variables to be selected randomly 

for each node (′𝑁𝑉𝑎𝑟𝑇𝑜𝑆𝑎𝑚𝑝𝑙𝑒′) was set to ‘𝑎𝑙𝑙’ in function code to invoke the 

random forest algorithm, which can provide high prediction accuracy and high 

stability performance. 
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Basically, the random forest is similar to bagging with an additional 

randomness during the splitting of nodes (Breiman, 2001) and its algorithm can 

be defined as follows (Liaw and Wiener, 2002): 

 

(i) The ntree (number of trees) samples are randomly drawn from the 

original training sample with replacement. 

(ii) For each bootstrap sample, an unpruned classification tree is grown with 

the modification that splitting process of each node is based on the best 

among a subset of predictors randomly selected at that node, instead of 

using the best split among all variables. 

(iii) Prediction of new sample was made by taking the majority votes from all 

the individual classification trees. 

 

In this study, there were a few parameters set in the process of building 

the model. For instance, the ′𝑂𝑂𝐵𝑝𝑟𝑒𝑑′ was set to ′𝑜𝑛′  for determining the 

optimum number of trees grown in the BACT model. This can be achieved based 

on the classification error generated by out-of-bag (OOB) sample, which are the 

data not included in bootstrap sample. The OOB sample was predicted at each 

bootstrap iteration, using the tree grown with the bootstrap sample. Thereafter, 

the predictions of OOB sample were aggregated to compute the classification 

error. Therefore, the BACT model would be trained using the predetermined 

number of trees rather than using a larger number of tree, which may cause the 

intensive computation time. In addition, the prior probabilities for each class 

(′𝑝𝑟𝑖𝑜𝑟′) was set to ′𝑢𝑛𝑖𝑓𝑜𝑟𝑚′, where all class probabilities are equal. The nodes 
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were split (′𝑠𝑝𝑙𝑖𝑡𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛′)  based on their impurity using the formula of 

′𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒′ for maximum deviance reduction:   

  𝐷 = − ∑ 𝑝(𝑖) log 𝑝(𝑖)

𝑖

 (3.17) 

Where, 𝑝(𝑖) denotes the observed fraction of classes with the class 𝑖 arrive at the 

node. Theoretically, a pure node has the deviance value equal to zero, or else, 

the value is positive.  

 

Both selected predictors and observed daily binary rainfall series were 

fitted into the BACT model and trained with different positive integer value 

of  ′𝑚𝑖𝑛𝑙𝑒𝑎𝑓′ , which can be defined as the minimum number of leaf node 

observation. Using the results of single classification tree as the references, the 

BACT model with the higher number of simulated wet days match with the 

observed, would be stored for further analysis. Thereafter, the well-trained 

BACT model were selected based on the measures of matching among the stored 

models during calibration (20 years) and validation (10 years) periods. The 

development of BACT model is presented in Figure 3.5. 

 

3.7.3 Non-Homogeneous Hidden Markov Model (NHMM) 

 

In this study, the NHMM was developed to simulate the observed rainfall 

amount series and the details of their development are explained in section 3.8. 

The final outputs obtained from the NHMM are the rainfall amount series, in 

which they are generated based on the type of fitted rainfall distribution and 
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conditioned on the states modelled by first-order Markov chain model and the 

selected predictors. In order to have further comparison on the performance of 

GLM and BACT model, the rainfall occurrence series of NHMM was visualized 

based on its simulated rainfall amount series. The days with rainfall values were 

marked as one to represent the wet days. Hence, the NHMM becomes third 

rainfall occurrence model for this study, as shown in Figure 3.5. 
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Figure 3.5: Flow chart of rainfall occurrence models 
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3.7.4 Goodness of Fit 

 

In this study, the accuracy of GLM and BACT model were evaluated in 

terms of rainfall persistence, wet- and dry-spell length distribution, by 

comparing their simulated rainfall occurrence series with observed series. Both 

models were compared together with the performance measures of NHMM, 

which its rainfall occurrence series were visualized based on its simulated 

rainfall amount series. However, for a typical two-state rainfall generator, the 

generation of rainfall amount is conditional on the simulated wet days. Other 

than rainfall occurrence series, the development of these models in this study 

involved another set of predictors. The predictors corresponded to simulated wet 

days which would be extracted and further used in the modelling of rainfall 

amount model. Therefore, the matching between both simulated and observed 

wet days is very important, in order to extract the predictors correctly on the 

exacted wet days. The performance of these models were further evaluated and 

compared based on their matching between observed and simulated rainfall 

occurrence series. 

 

3.7.4.1 Rainfall Persistence (RP) 

 

Rainfall persistence (RP) can be simplified as the number of pair of 

consecutive rainy days divided by the total number of rainy days. In addition, 

the absolute differences between the observed and simulated rainfall persistence 

were computed to measure the accuracy of models during calibration (years 
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1976–1995) and validation periods (years 1996–2005). The advantage of this 

measure is to identify the ability of model in simulating the pair of observed 

consecutive rainy day. The smaller the absolute difference, the better is the 

simulation performance of a model.  

  𝑅𝑃 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑟𝑎𝑖𝑛𝑦 𝑑𝑎𝑦𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑖𝑛𝑦 𝑑𝑎𝑦𝑠
 (3.18)) 

 

  
𝐴𝑏𝑜𝑠𝑢𝑙𝑡𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = |𝑅𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑅𝑃𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑| (3.19)) 

 

3.7.4.2 Spell Lengths Distribution 

 

The distribution of spell length is one of the common performance 

measures, which is very useful in evaluating the ability of a model in simulating 

the observed rainfall occurrence at a specific location. Wet-spell length can be 

explained as the number of consecutive rainy days, which can be used to examine 

the potential of flood occurrence. While, the dry-spell length is the number of 

consecutive non-rainy days and its distribution is the parameter specifically 

significant to the field of agriculture. 

 

3.7.4.3 Matching 

 

In this study, the performance of rainfall occurrence models were further 

evaluated in terms of the probability of detection (POD), false alarm rate (FAR), 

critical success index (CSI), Heidke Skill score (HSS) and Peirce Skill score 
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(PSS) indices. These indices were obtained from a 2x2 contingency table, with 

the following equations: 

  𝑃𝑂𝐷 =
𝑎

𝑎 + 𝑐
 (3.20)) 

The range of POD index is from 0 to 1, and one represents perfect score. POD is 

sensitive to hits, but ignore the false alarms. 

  𝐹𝐴𝑅 =
𝑏

𝑎 + 𝑏
 (3.21)) 

The range of FAR index is from 0 to 1, and one represents perfect score. FAR is 

sensitive to false alarms, but ignore the misses. 

  𝐶𝑆𝐼 =
𝑎

𝑎 + 𝑏 + 𝑐
 (3.22)) 

The range of CSI index is from 0 for no wet days predictions are correct to 1 for 

all wet days predictions are correct. CSI sensitive to hits and penalizes both 

misses and false alarms. 

  𝐻𝑆𝑆 =
2(𝑎𝑑 − 𝑏𝑐)

(𝑎 + 𝑐)(𝑐 + 𝑑) + (𝑎 + 𝑏)(𝑏 + 𝑑)
 (3.23)) 

The range of HSS is from -1 to 1, with the HSS = 1 indicates the perfect 

prediction and HSS = 0 indicates the prediction is random prediction. The 

prediction is worse and standard prediction is more accurate than prediction, 

when HSS < 1.  

  𝑃𝑆𝑆 =
𝑎𝑑 − 𝑏𝑐

(𝑎 + 𝑐)(𝑏 + 𝑑)
 (3.24)) 
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The range of PSS is from -1 to 1. When PSS > 0, which mean the number of hits 

surpasses the false alarms and the prediction is good, and PSS ≤ 0 indicates the 

prediction is random. 

 

3.8 Rainfall Amount Models 

 

Three rainfall amount models were developed in this study, a traditional 

ANN, the combine bootstrap aggregated classification tree-artificial neural 

network (BACT-ANN) model and the NHMM. 

 

 

3.8.1 Artificial Neural Network (ANN) 

 

The Multi-layered perceptron (MLP) is a widely used feed-forward 

neural network, which consists of one or more hidden layers between the input 

and output neurons. The number of neurons in input and output layers are 

strongly depending on the number of input and output data to be fitted into 

network. The function of input layer is to receive the input data and transfer them 

for further processing process in network. However, a nonlinear relationship 

existed between the data in input and output layers, so the neuron in hidden layer 

acts as a bridge to link both layers and connect them.   

 

In this study, the ANN with feed-forward backpropagation algorithm was 

used to develop a relationship between selected predictors (NCEP & NCAR 

reanalysis dataset) and predictand (observed rainfall series). Theoretically, the 
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mechanism of backpropagation algorithm can be simplified as two flows. First 

flow is the forward pass, where the information of input data at input layer 

propagates through the network layer by layer, then a set of output data is 

produced and used as the actual respond of the network. During this flow, all the 

weights used between the layers are fixed with a random number. Then, the 

second flow is the backward pass. The main purpose of this flow is to adjust the 

weights used in previous flow in corresponding to the rule of error correction. 

An error signal is generated based on the difference between the actual response 

of network and the desired response.  After that, the error signal is propagated in 

the direction opposite to the linked connection of network, to make the 

adjustments on the weights, therefore the actual respond of network can become 

even closer to its desired response. 

 

Compared to the scaled conjugate gradient algorithm (trainscg), The 

Levenberg-Marquardt backpropagation algorithm (trainlm) was preferred as the 

training algorithm of neural network in this study, as it is designed to speed up 

the training process. This algorithm is also considered to be more efficient and 

skilful than the training algorithm of gradient decent (traingd). The gradient 

descent suffers from various convergence problems. Besides, the log-sigmoid 

transfer function was not recommended to be used in hidden layer as it constrains 

the output of a network in the range of 0 to 1, which is suitable for the pattern 

recognition problems. For a multilayer network, the suitable notation is that the 

tan-sigmoid transfer function (tansig) and linear transfer function (purelin) to be 

used in the hidden layer and output layer, respectively. This multilayer network 

able to approximate any function with a finite number of discontinuities 
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arbitrarily well, which is suitable for linking the predictors and predictand 

together.   

 

Another critical task in training the ANN is to determine the number of 

hidden layer and neurons in hidden layer. Basically, the determination of most 

suitable number of hidden neurons is problem dependent, and there is no 

systematic method to be used in this process. Based on the previous studies 

(Goyal and Ojha , 2012; Mendes et al., 2014; Campozano et al., 2016) , the 

number of hidden neurons in a successful ANN model was determined using the 

method of trial and error, therefore the model will be tested with different 

number of hidden neurons until a satisfactory result to be obtained. Theoretically, 

the complex problem with numerous data sets and variables can be solved by 

increasing the number of hidden layers to establish a relationship between input 

and output layers, but the major disadvantage of using higher number of hidden 

layers is time consuming in running the ANN model. However, any measureable 

functional relationship between input and output can still be approximated 

accurately by only one hidden layer, as long as sufficient large number of 

neurons are given in the hidden layer.  

 

In this study, one hidden layer was used in ANN for the purpose of 

minimizing the complexity of network, which can also reduce the time for 

running the network. Since the number of hidden layer was fixed, the only 

variable need to be determined was the number hidden neurons using the method 

of trial and error. The training of neural network was started with five hidden 

neurons. Once the results exhibited by neural networks were repeated or did not 
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improved, the number was increased with one hidden neurons for further training. 

Every neural network with a certain number of hidden neuron would be retrained 

about 100 times for the purpose of minimizing the effect of random weights on 

the training process of network, since the weights are randomly initialized for 

every time of network training. Using the results of the linear regression model 

as reference, the neural networks exhibited the smaller RMSE would be stored 

for further investigation. At the end, the neural network which exhibited the 

lowest RMSE among the stored neural networks in monthly rainfall series, was 

selected as the well-trained ANN in this study. The flowchart of ANN in this 

study is presented in Figure 3.6.  
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Figure 3.6: Flow chart of ANN  



 

83 

 

3.8.2 Combined BACT-ANN model 

 

In this study, the approach of  combining BACT and ANN was inspired 

by the studies of Abdellatif, et al. (2013) and Osman and Abdellatif (2016), to 

improve the performance of traditional ANN model. The excellent performance 

of the combining approach model is promising to be applied to improve the 

single model in downscaling the rainfall at a single site. Firstly, the bootstrap 

aggregated classification tree (BACT) used to model the rainfall occurrence, 

then combined with the ANN to model the rainfall amount condition on the 

simulated wet days. In addition, the approach of data-pre-processing was 

employed in this study to extract the selected predictors corresponding to the wet 

days simulated by BACT model and to ensure the ANN model the rainfall 

amount conditional on those wet days. Before the rainfall series was fitted into 

the ANN, it was pre-processed using the developed BACT model. Some of them 

may become zero amount even though the original rainfall series indicate them 

are wet days in reality. Thereafter, the whole wet days series (years 1976–2005) 

and their corresponding predictors were fitted into ANN model with the same 

steps as described in the development of a traditional ANN model, as shown in 

Figure 3.7. A well-trained combined BACT-ANN model was also selected based 

on the model which exhibited the lowest RMSE among the stored models in 

monthly rainfall series. 
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Figure 3.7: Flow chart of combined BACT-ANN model 
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3.8.3 Non-Homogeneous Hidden Markov Model (NHMM) 

 

In this study, the NHMM was developed using the available software 

toolkit, namely the multivariate non-homogeneous hidden Markov model 

(MVNHMM). This software toolkit can be downloaded at 

http://www.stat.purdue.edu/~skirshne/MVNHMM/. The development of 

NHMM for this study, is present in Figure 3.8. Basically, the NHMM is the 

modification of hidden Markov model (HMM) by introducing the exogenous 

atmospheric predictors to simulate the rainfall. Firstly, the observed daily rainfall 

occurrence series were fitted into NHMM for the purpose of determining the 

optimum number of hidden state, which can adequately describe the observed 

rainfall state. The rainfall distribution type was set to independent and Bernoulli 

in advanced options, due to the rainfall at each station is independent of other 

station and the data used is binary data. 

 

Theoretically, there are two conditional independence assumptions made 

in the model. First is the multivariate rainfall data 𝑅𝑡 at day 𝑡, are unrelated to 

all other variables, but conditional on the weather state 𝑆𝑡 at day 𝑡, which can be 

expressed as: 

  𝑃(𝑅𝑡|𝑆1:𝑡, 𝑅1:𝑡−1) = 𝑃(𝑅𝑡|𝑆𝑡) (3.25)) 

The next assumption is the application of first-order Markov chain model in 

NHMM to model the hidden state process, 𝑆1:𝑡, which can be defined as: 

  𝑃(𝑆𝑡|𝑆1:𝑡−1) = 𝑃(𝑆𝑡|𝑆𝑡−1) (3.26)) 
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Besides, the transition probabilities between the states in this process do not 

change with time, which mean they are homogeneous in time. The optimum 

number of hidden states was determined by fitting the NHMM with 1 – 7 hidden 

states. 

 

After the number of optimum hidden state is determined, the selected 

predictors and observed daily rainfall series were introduced into NHMM for 

rainfall amount modelling. With the 𝑋𝑡 denotes a column vector of predictors at 

day  𝑡 , and 𝑋1:𝑇  denotes the sequence of  𝑋1 , …, 𝑋𝑇 . The Eq. (3.26) is then 

replaced by: 

  𝑃(𝑆𝑡|𝑆1:𝑡−1, 𝑋1:𝑇) = 𝑃(𝑆𝑡|𝑆𝑡−1, 𝑋𝑡) (3.27)) 

Therefore, the hidden state on the day 𝑡 not only conditional on the predictor 

vector 𝑋𝑡 at day 𝑡, but also on the hidden state 𝑆𝑡−1 at day 𝑡 − 1. Since the 𝑋𝑡 

changes with time, the transition probabilities also no longer remain 

homogenous in between the hidden state due to the changes in 𝑋, hence this 

model is called as non-homogeneous model. 

In this study, the iterative expectation maximization (EM) algorithm also 

known as Baum-Welch algorithm, was used to estimate the parameter of NHMM 

in terms of maximum likelihood. However, the limitation of EM algorithm is 

that it can be trapped at local maxima and consequently fails to reach the global 

maxima. To avoid the high possibility of EM algorithm converge to local 

maxima, this algorithm was initialized 10 times with the generated randomly 

starting point. There was a numerical test using a larger number of random 

starting points and it showed the use of 10 initializations provide a good 
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settlement between the computation time and the estimation of global maximum 

value in the log-likelihood (Pineda and Willems, 2016). For each starting point, 

the EM was proceeded to convergence and the parameters achieved the highest 

log-likelihood over all 10 runs was selected as the best estimate of the global 

maximum in terms of the log-likelihood (Robertson et al., 2004; Robertson et al., 

2006).  

 

Furthermore, the NHMM were fitted with different rainfall distribution 

types during the rainfall amount modelling, namely the delta-gamma, the delta-

exponential with one component and the delta-exponential with two-component. 

The log-likelihood value, Bayesian information criterion (BIC) and Akaike 

information criterion (AIC) scores were used as the guidelines in both selection 

of the optimum number of hidden state and the suitable rainfall distribution for 

rainfall amount modelling.  

  



 

88 

 

 

 

Figure 3.8: Flow chart of NHMM 
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3.8.4 Goodness of Fit 

 

The accuracy of rainfall amount models (ANN, NHMM and combined 

BACT-ANN model) were measured by comparing the observed and simulated 

monthly rainfall series. The monthly rainfall series is obtained through the 

summation of daily rainfall series. These models were evaluated and compared 

in term of their results of parametric test and non-parametric tests.  

 

 

3.8.4.1 Root Mean Square Error 

 

The most common parametric tests, which has been widely used to 

measure the differences between the actual and predicted values, is the root mean 

square error (RMSE). The equation of RMSE can be expressed as: 

  𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1

𝑛
 (3.28)) 

 where, 𝑦𝑖  denotes the observed value for 𝑖 th observation and 𝑦𝑖  denotes the 

predicted value. While, 𝑛 is the total number of sample. The value of RMSE 

ranges from zero to infinity. This measure is useful when large errors are 

particularly undesirable, as it give a relative high weight to the large error. 
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3.8.4.2 Kolmogorov-Smirnov Test 

 

The two-sample Kolmogorov-Smirnov (K-S) test is one of the non-

parametric tests used to compare the distributions of two independent samples, 

which is similar to the one-sample Kolmogorov-Smirnov test. The test statistic 

of K-S test can be expressed as: 

  𝐷 = 𝑠𝑢𝑝|𝑆(𝑥) − 𝐹𝑜(𝑥)| (3.29)) 

where, 𝐷 denotes the supremum over all 𝑥 of the absolute difference between  

𝑆(𝑥) and  𝐹𝑜(𝑥). While, 𝑆(𝑥) represents the sample distribution function and 

𝐹𝑜(𝑥) represents the observed cumulative distribution function.  

 

For a two-sided K-S test, the null hypothesis is that the two testing 

samples come from the same distribution. However, if the likelihood of samples 

being from different distributions exceeds the demanded confidence level, then 

the null hypothesis is rejected to support the alternative hypothesis, where two 

samples are from different distribution. In this study, the K-S test was performed 

using the XLSTAT statistical analysis software, in which the p-value is given 

for determining the acceptance or rejection of null hypothesis under the 

significance level of 0.05. 
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3.8.4.3 Mann-Whitney U test 

 

The Mann-Whitney U test is another form of the Wilcoxon Rank-Sum 

test, used to determine the equivalence of independent samples based on their 

ranks. Besides, this test does not assume any assumption to the distribution, so 

it is a non-parametric test (Jung et al., 1971; Zimmerman, 2014). The logic 

behind this Mann-Whitney U test is to assign the scores with their respective 

ranking from smallest to largest, for instance; the lowest score obtains a rank of 

“1”, and then next lowest score obtains a rank of “2”. Two or more scores obtain 

the average of their respective ranks under “tie” condition with identical scores 

to each other. The “U” in the Mann-Whitney U test displays the difference 

between the two rank total, which can be defined as: 

  𝑈 = 𝑁1𝑁2 + 𝑁𝑥

(𝑁𝑥 + 1)

2
− 𝑇𝑥 (3.30)) 

where, 𝑁1 and 𝑁2 denote the number of scores in the sample, while 𝑁𝑥 denotes 

the number of scores in the sample with the larger rank total, 𝑇𝑥. 

 

Similar to the K-S test, the results of Mann-Whitney U test were 

evaluated based on their computed p-values under significance level of 0.05. For 

a two-sided Mann-Whitney U test, the null hypothesis is that the difference of 

location between the samples is equal to zero, while the alternative hypothesis is 

the difference of location between samples is different from zero. 
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3.8.4.4 Squared-Rank Test 

 

The squared-rank test is another distribution free test used to examine the 

equality of variance between the independent samples. In this study, the squared-

rank tests were performed using the StatsDirect3 statistical software under the 

significance level of 0.05. The two-tailed p-values were computed and displayed 

in the test results. However, the null hypothesis is accepted when the p-value is 

greater than significance level, which indicate the samples are from identical 

distribution. Otherwise, the alternative hypothesis, which the samples are from 

different distribution, is accepted when p-value is smaller than the significance 

level. 

 

 

3.8.4.5 Kendall’s Tau-b Correlation 

 

The Kendall’s tau-b correlation is a non-parametric test used to measure 

the strength of association between two samples based on their ranks. For a two-

sided Kendall’s tau-b correlation, the null hypothesis is both samples are 

independent to each other, while the alternative hypothesis is the association 

between both samples is significantly different from zero. The range of 

Kendall’s tau-b correlation coefficient is from -1 to 1. The test statistic of this 

correlation is given by: 

  𝜏̂ =
𝑆

𝑛(𝑛 − 1)/2
 (3.31)) 
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where, 𝑆 denotes the difference between the number of concordant pairs and the 

number of discordant pairs. While, 𝑛 represents the sample size. In this study, 

the Kendall’s tau-b correlation was performed using the XLSTAT statistical 

analysis software under the significance level of 0.05.  

 

 

3.8.4.6 Spearman’s Rho Correlation 

 

The Spearman’s rho correlation is well-known non-parametric test, 

which has been widely used to compute the degree of association between two 

samples. The null hypothesis of this correlation is both samples are independent 

to each other, which is similar to Kendall’s tau-b correlation. However, the 

alternative hypothesis is that both samples are either directly or inversely related 

to each other. The test statistic of Spearman’s rho correlation is defined as: 

  𝑟𝑠 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 (3.32)) 

where 

  ∑ 𝑑𝑖
2 = ∑[𝑅(𝑋𝑖) − 𝑅(𝑌𝑖)]2

𝑛

𝑖=1

 (3.33)) 

The 𝑅(𝑋𝑖) denotes the rank of the 𝑖th values of 𝑋, which sorted from smallest to 

largest in order of magnitude. While,  𝑅(𝑌𝑖) denotes the rank of the 𝑖th values 

of 𝑌, which sorted in the similar way with𝑅(𝑋𝑖). The 𝑛 represents the sample 

size. The coefficient of Spearman’s rho correlation, 𝑟𝑠  ranges from -1 to 1. 
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Besides, the Spearman’s rho correlation also performed in XLSTAT under 

significant level of 0.05. 

 

 

3.8.4.7 Acceptability Index 

 

In this study, the acceptability index (AI) proposed by Fodor et al. (2010) 

was used to measure the efficiency of the rainfall generators according to their 

non-parametric tests results, which can be expressed as: 

  𝐴𝐼 = 100(1 −
𝑇𝑆

𝑀𝑆
) (3.34)) 

where, 𝑇𝑆 denotes the total scores computed from the statistical non-parametric 

tests, while the 𝑀𝑆 denotes the maximum score. The value of zero or one was 

assigned to indicate whether the difference between observed and the simulated 

monthly rainfall series is non-significant or significant in every test. Hence, the 

MS of each test for monthly rainfall series is 48 (4 stations x 12 months). The 

higher the AI, the better the efficiency of the rainfall generator. 
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CHAPTER 4 

 

4 RESULTS AND DICUSSION 

 

 

4.1 Normality Tests 

 

The normality of observed daily rainfall series was checked using three 

tests, namely Anderson-Darling, Lilliefors and Jarque-Bera tests, with the 

significance level of 0.05. Table 4.1 shows the results of normality tests at every 

station and evaluated in terms of p-value. The rejection of either null hypothesis 

or alternative hypothesis made in the test was determined based on the 

computed p-value. However, the computed p-value of each test at every station 

was smaller than the significance level alpha, α = 0.05, as shown in Table 4.1. 

Therefore, the null hypothesis was rejected, which indicate the observed daily 

rainfall series in Langat River Basin are not normally distributed. Instead of 

using the parametric tests, the non-parametric tests would be more appropriate 

in evaluating the performance of rainfall amount models in this study.  

 

Table 4.1: Normality tests results of observed daily rainfall series at each 

station 

Station 
p-value 

Anderson-Darling Lilliefors Jarque-Bera 

2815001 < 0.0001 < 0.0001 < 0.0001 

2913001 < 0.0001 < 0.0001 < 0.0001 

2917001 < 0.0001 < 0.0001 < 0.0001 

3118102 < 0.0001 < 0.0001 < 0.0001 

- Significance level alpha, α = 0.05. 
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The statistical characteristics (mean, standard deviation, maximum, 

skewness coefficients and kurtosis coefficients) of observed daily rainfall series 

at each station, are presented in Table 4.2. Skewness can be defined as a measure 

used to assess the asymmetry of probability distribution, while the kurtosis 

provides the information on the tails of a distribution. Based on the results in 

Table 4.2, the computed Pearson’s and Fisher’s coefficients of skewness were 

greater than zero at every station, which mean the distributions of rainfall series 

are highly skewed to the left. The high positive Pearson’s and Fisher’s kurtosis 

values also indicated the distributions have the heavier tails and a sharper peak 

than the normal distribution. The observed rainfall series at station 2913001 

obtained the highest skewness and kurtosis coefficients among all the stations 

due to the presence of highest maximum rainfall amount.  

 

Table 4.2: Statistical characteristics of observed daily rainfall series at each 

station 

Station Mean Std. dev. Max 
Skewness  Kurtosis 

Pearson Fisher Pearson Fisher 

2815001 4.18 10.30 127.20 3.93 3.93 20.44 20.45 

2913001 4.30 12.00 522.50 10.66 10.67 334.94 335.09 

2917001 5.83 13.11 194.00 3.97 3.97 24.25 24.27 

3118102 5.32 12.55 207.60 4.22 4.22 27.97 27.98 

- Std. dev. represented standard deviation; 

- Max represented maximum. 
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4.2 Homogeneity Tests 

 

The homogeneity test results of 48 monthly rainfall series using the 

Standard Normal Homogeneity Test (SNHT), the Buishand Range (BR) test, 

the Pettitt (PET) test and the Von Neumann Ratio (VNR) test are shown in Table 

4.3. Based on the evaluation criteria proposed by Wijngaard et al. (2003), 45 

out of 48 monthly rainfall series were classified as “useful”, while another two 

monthly rainfall series and another series were under the class “doubtful” and 

“suspect”, respectively. Approximate 94% of monthly rainfall series of the 

selected stations within Langat River Basin are homogeneous. 

 

Based on the results in Table 4.3, only the rainfall series at station 

2815001 and 2917001 were homogeneous for all 12 months. The “doubtful” 

rainfall series was found at station 2913001 on October and station 3118102 on 

July, while the rainfall series at station 3118102 on March was detected to be 

non-homogeneous with four homogeneity tests failed. The historical metadata 

was not included in this study to assess the detected break and make correction 

to the specific non-homogeneous series. Only one out of twelve monthly rainfall 

serious was non-homogeneous. Therefore, the homogeneity of rainfall series at 

station 3118102 was considered to be acceptable and included in this study for 

further analysis.  
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Table 4.3: Homogeneity tests results of monthly rainfall series at each 

station 

Station  Test Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2815001 

SHNT             

BR             

PET             

VNR             

2913001 

SHNT             

BR             

PET             

VNR             

2917001 

SHNT             

BR             

PET             

VNR             

3118102 

SHNT             

BR             

PET             

VNR             

- “” represented the tested series was homogenous; 

- “” represented the tested series was non-homogeneous. 

 

 

4.3 Predictor Selection 

 

The NCEP reanalysis data with and without lag transformation (lag -9 

to lag 9) were screened with the observed rainfall series, in order to select the 

suitable set of predictors for every station. Firstly, the predictors with the highest 

explained variance, which mean they exhibited the strong relationship with 

observed rainfall series, were selected. Then, those selected predictors were 

further screened among themselves using partial correlation analysis. Table 4.4 

shows the description and lag-transformation of selected predictors, which are 

suitable and highly correlated with observed rainfall series at each station. In 

this study, the observed rainfall series of selected stations were sensitive to the 
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near surface specific humidity (shumgl), and zonal velocity component at 

different geopotential heights (p5_ugl and p8_ugl), as shown in Table 4.4.  

 

The partial correlation coefficients of selected predictors were in the 

range of -0.095 to 0.059, as shown in Table 4.5. This situation indicated the 

observed rainfall series tended to be fluctuating and less predictable based on 

the large-scale predictors. According to the study of Amirabadizadeh et al. 

(2016), both temperature and precipitation of their selected stations within 

Langat River Basin were found to be sensitive to near surface specific humidity. 

Langat River Basin experience the tropical rainforest climate, which is hot and 

humid, throughout the year. Therefore, it is notable that the near surface specific 

humidity (shumgl) was still included as one of the predictors at stations 2913001 

(p value = 0.2481) and 3118102 (p value = 0.3403), even their p-values were 

greater than the significance level of 0.05.  

 

The results in Table 4.5 showed the p-value of geostrophic airflow 

velocity (p8_fgl at station 2815001 (p value = 0.0597)), zonal velocity 

component (p8_ugl at station 2913001 (p value = 0.3572)) and p5_ugl at station 

3118102 (p value = 0.2307)) and vorticity (p8_zgl at station 2913001 (p value 

= 0.1138)) also greater than 0.05. However, the exclusion of any one of these 

predictors would reduce the partial correlation coefficient and increase the p-

value of near surface specific humidity, hence those variables were selected to 

combine with near surface specific humidity as a suitable combination set of 

predictors for each station. 
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Table 4.4: Description and lag-transformation of selected predictors at 

each station 

Station Predictors Description Lag 

2815001 p8_fgl geostrophic airflow velocity at 850hPa height 2 

 p8_ugl zonal velocity component at 850hPa height 0 

 s500gl specific humidity at 500hPa height 1 

 s850gl specific humidity at 850hPa height -1 

 shumgl near surface specific humidity 0 

2913001 p8_ugl zonal velocity component at 850hPa height -2 

 p8_zgl vorticity at 850hPa height 1 

 s500gl specific humidity at 500hPa height 1 

 shumgl near surface specific humidity -1 

2917001 p1_vgl meridional velocity component 0 

 p5_ugl zonal velocity component at 500hPa height 0 

 p8_fgl geostrophic airflow velocity at 850hPa height -1 

 p8_zgl vorticity at 850hPa height 1 

 shumgl near surface specific humidity -1 

3118102 mslpgl mean sea level pressure 2 

 p5_ugl zonal velocity component at 500hPa height 0 

 p8zhgl divergence at 850hPa height 0 

 s850gl specific humidity at 850hPa height 0 

 shumgl near surface specific humidity 0 

 

Table 4.5: Partial correlation coefficient and p-value of selected predictors 

at each station 

Station Predictors Partial r  p-value 

2815001 

p8_fgl(2) 0.033 0.0597 

p8_ugl -0.074 0.0000 

s500gl(1) 0.04 0.0234 

s850gl(-1) -0.04 0.0224 

shumgl 0.059 0.0004 

2913001 

p8_ugl(-2) -0.015 0.3572 

p8_zgl(1) 0.029 0.1138 

s500gl(1) 0.046 0.0096 

shumgl(-1) 0.021 0.2481 

2917001 

p1_vgl -0.063 0.0000 

p5_ugl -0.049 0.0014 

p8_fgl(-1) -0.095 0.0000 

p8_zgl(1) 0.053 0.0006 

shumgl(-1) 0.049 0.0017 

- Bracket “(x)” denoted the optimum lag-transformation. 
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Table 4.5 continued: Partial correlation coefficient and p-value of selected 

predictors at each station 

Station Predictors Partial r  p-value 

3118102 

mslpgl(2) 0.033 0.0465 

p5_ugl -0.02 0.2307 

p8zhgl -0.037 0.0217 

s850gl 0.042 0.0087 

shumgl 0.015 0.3403 

- Bracket “(x)” denoted the optimum lag-transformation. 

 

 

4.4 Out-of-Bag Classification Error for BACT Model 

 

Out-of-bag (OOB) samples are defined as the data which are not 

included during the splitting process of each bootstrap sample. The prediction 

strength of BACT model can be measured based on the average prediction error 

generated by each OOB sample over the total grown trees in the model. 

Basically, if a sufficient large number of trees is given, the determination of 

number of trees is considered to be less critical. This is because there is no any 

further reduction of error to be achieved after reaching the optimum number of 

grown trees in the model. In this study, 1000 trees were first used to determine 

the optimum number of grown tree in BACT model based on their generated 

OOB classification error. As illustrated in Figure 4.1, the OOB classification 

error decreased with the number of grown trees. However, in considering the 

computational efficiency and stability of prediction, the number of grown trees 

was set to 150 in BACT model for every station. This is because the OOB 

classification errors is stabilized after 150 trees at all stations and adding more 

trees is unnecessary as this will only cause the intensive computational time of 

model. 
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(a) Station 2815001 

 

(b) Station 2913001 
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(c) Station 2917001 

 

(d) Station 3118102 

 

Figure 4.1: The out-of-bag classification error produced by bootstrap 

aggregated classification tree (BACT) models as a function of 

the number of grown trees at (a) station 2815001, (b) station 

2913001, (c) station 2917001, and (d) station 3118102. 
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4.5 Determination of Optimum Hidden States and Rainfall 

Distribution for NHMM 

 

The number of hidden states in NHMM is required to sufficiently 

express the rainfall state of observed rainfall series at selected station. Therefore, 

the optimum number of hidden states were determined prior to the process of 

fitting predictors into the model. The NHMM with different number of hidden 

states (from state 1 to state 7) were fitted to the training data. In this study, the 

log-likelihood values were computed to evaluate the quality of fitted models as 

a function of different number of hidden states, as shown in Table 4.6. However, 

the log-likelihood values obtained the decreasing trend with the number of 

hidden states increased from 1 to 7, as shown in Figure 4.2. This situation 

reflects that the determination of the optimum number of hidden states became 

more challenging. 

 

Therefore, the Bayesian information criterion (BIC) and the Akaike 

information criterion (AIC) scores were included in this study for the purpose 

of penalizing the complexity of fitted model, which are presented in Table 4.7 

and Table 4.8. The difficulty in the task of selecting optimum number of hidden 

state was reduced by BIC and AIC scores, because they did not show the 

decreasing trend all the way similar to log-likelihood values. As illustrated in 

Figure 4.3 and Figure 4.4, both BIC and AIC scores achieved their minimum 

points at 3 hidden states at station 2815001 and station 2913001. Besides, their 

log-likelihood values also decreased substantially from hidden states 1 to 3, then 

started to stabilize, as shown in Figure 4.2. Thus, three hidden states were 

deemed to be sufficient to predict the daily rainfall occurrence at station 
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2815001 and station 2913001. For station 2917001 and station 3118102, they 

obtained the minimum BIC and AIC scores at two hidden states, which is further 

justified by the stabilization of their log-likelihood values after a significant 

reduction from hidden states 1 to 2. 

 

Table 4.6: Log-likelihood values of NHMM as a function of different 

hidden states number at each station 

Hidden State 
Log-likelihood 

2815001 2913001 2917001 3118102 

1 -4776.25 -4779.08 -5011.54 -4958.56 

2 -4348.95 -4295.13 -4663.99 -4182.09 

3 -4292.29 -4207.34 -4659.69 -4216.22 

4 -4289.17 -4204.67 -4637.80 -4196.69 

5 -4286.82 -4204.77 -4629.95 -4157.53 

6 -4287.32 -4202.15 -4620.78 -4220.89 

7 -4286.14 -4202.94 -4629.61 -4177.27 

 

 

Figure 4.2: Log-likelihood values of NHMM as a function of different 

hidden states number at each station 
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Table 4.7: Bayesian information criterion (BIC) scores of NHMM as a 

function of different hidden states number at each station 

Hidden State 
 BIC score 

2815001 2913001 2917001 3118102 

1 9561.39 9567.06 10031.97 9926.01 

2 8742.39 8634.73 9372.46 8408.65 

3 8682.43 8512.53 9417.23 8530.30 

4 8747.36 8578.35 9444.62 8562.39 

5 8831.61 8667.51 9517.87 8573.03 

6 8939.37 8769.03 9606.28 8806.49 

7 9061.54 8895.14 9748.48 8843.79 

- Grey shaded value indicated the minimum BIC score. 

 

 

Figure 4.3: Bayesian information criterion (BIC) scores of NHMM as a 

function of different hidden states number at each station 
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Table 4.8: Akaike information criterion (AIC) scores of NHMM as a 

function of different hidden states number at each station 

Hidden State 
 AIC score 

2815001 2913001 2917001 3118102 

1 9554.49 9560.17 10025.08 9919.12 

2 8707.91 8600.25 9337.98 8374.17 

3 8606.58 8436.67 9341.38 8454.45 

4 8616.34 8447.34 9313.60 8431.38 

5 8631.64 8467.54 9317.89 8373.06 

6 8656.65 8486.30 9323.56 8523.77 

7 8682.28 8515.88 9369.22 8464.53 

- Grey shaded value indicated the minimum AIC score. 

 

 

Figure 4.4: Akaike information criterion (AIC) scores of NHMM as a 

function of different hidden states number at each station 

 

The optimum number of hidden state determined in NHMM at each 

station was fixed and further used with the introduction of predictors. There 

were three types of models used for fitting the rainfall amount. Each model 

consisted of a delta function to represent the days without rainfall amount, 

together with a gamma, a single-exponential or a two-component mixed-

exponential function to model the rainfall intensity. Similarly, the log-
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likelihood value, BIC and AIC scores were used as the criteria to determine the 

suitable rainfall distribution of each station. Based on the results in Table 4.9, 

the gamma models obtained the smaller log-likelihood value at each station, 

when compared to single-exponential and two-component mixed-exponential 

models. Besides, these results were further supported by their minimum AIC 

and BIC scores, as presented in Table 4.10 and Table 4.11. Hence, the gamma 

was selected as the suitable distribution in NHMM to model the rainfall 

intensity of selected rainfall stations within the Langat River Basin, due to its 

better performance over the single-exponential and two-component mixed-

exponential distributions. 

 

Table 4.9: Log-likelihood values of rainfall distributions (gamma, 1-

exponential and 2-exponential) as a function of different 

hidden states number at each station 

Station Hidden State 
 Log-Likelihood 

Gamma 1-Exponential 2-Exponential 

2815001 

1 -13716.41 -13796.66 -13636.24 

2 -13242.72 -13307.27 -13185.28 

3 -12177.38 -13088.82 -13134.63 

2913001 

1 -14012.54 -14096.05 -13951.30 

2 -12579.90 -13534.64 -13427.80 

3 -12270.10 -13290.27 -13274.77 

2917001 
1 -16321.10 -16438.60 -16223.60 

2 -14517.39 -15800.39 -15755.45 

3118102 
1 -16227.16 -16402.99 -16098.05 

2 -14232.77 -15546.35 -15367.08 

- Grey shaded value indicated the rainfall distribution with the smaller log-

likelihood value. 
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Table 4.10: Bayesian information criterion (BIC) score of rainfall 

distributions (gamma, 1-exponential and 2-exponential) as a 

function of different hidden states number at each station 

Station Hidden State 
BIC Score 

Gamma 1-Exponential 2-Exponential 

2815001 

1 27459.50 27611.11 27308.07 

2 26609.99 26721.29 26512.90 

3 24594.95 26391.13 26536.13 

2913001 

1 28051.76 28209.89 27938.18 

2 25275.45 27167.13 26989.04 

3 24762.60 26776.24 26798.62 

2917001 
1 32668.89 32894.99 32482.79 

2 29159.33 31707.53 31653.24 

3118102 
1 32481.01 32823.77 32231.69 

2 28590.08 31199.44 30876.49 

- Grey shaded value indicated the rainfall distribution with minimum BIC score. 

 

Table 4.11: Akaike information criterion (AIC) score of rainfall 

distributions (gamma, 1-exponential and 2-exponential) as a 

function of different hidden states number at each station 

Station Hidden State 
AIC Score 

Gamma 1-Exponential 2-Exponential 

2815001 

1 27432.82 27593.31 27272.49 

2 26485.45 26614.55 26370.57 

3 24354.77 26177.64 26269.26 

2913001 

1 28025.08 28192.10 27902.59 

2 25159.81 27069.28 26855.61 

3 24540.20 26580.53 26549.55 

2917001 
1 32642.20 32877.20 32447.20 

2 29034.79 31600.78 31510.91 

3118102 
1 32454.32 32805.98 32196.11 

2 28465.54 31092.70 30734.16 

- Grey shaded value indicated the rainfall distribution with minimum AIC score. 

 

 

 

 



 

110 

 

4.6 Goodness of Fit of Rainfall Occurrence Models 

 

Just to reiterate, the performances of rainfall occurrence models (GLM, 

NHMM and BACT model) were evaluated and compared in terms of their 

rainfall persistence, spell lengths distribution and matching. 

  

 

4.6.1 Rainfall Persistence 

 

Rainfall persistence is the probability of rainy day given the previous 

day is rainy day for a particular station. This evaluation was measured between 

the simulated and observed rainfall occurrence series during calibration and 

validation periods. Based on the results in Table 4.12, the GLM showed the 

higher absolute difference of rainfall persistence in the range of 0.09–0.22 

during validation period, when compared to NHMM and BACT model at every 

station. The total number of rainy days and of two consecutive rainy days were 

simulated well by NHMM, which resulted the smaller difference with observed 

rainfall persistence. Therefore, NHMM outperformed the GLM and BACT 

model in simulating the observed rainfall persistence with smaller difference 

(range from 0.02 to 0.07) during validation period.  

 

The main reason for the NHMM capable of simulating the observed 

rainfall persistence is because of the second assumption made during the 

development of NHMM. The transition probabilities between the hidden states 

are defined by a first-order Markov chain model, in which they are not only 
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conditional on the set of predictors on that day, but also consider the condition 

of state on previous day. However, GLM worked with the approach of logistic 

regression, while the BACT model employed the approaches of bagging and 

classification with if-then logical condition. Both models made no assumption 

on the condition of rainfall occurrence state on previous day unlike the NHMM. 

Therefore, the NHMM was able to simulate the number of two consecutive 

rainy days similar to the observed value, with the smaller difference when 

compared to GLM and BACT model at each station. 

 

Table 4.12: Performance of rainfall occurrence models in terms of their 

rainfall persistence and absolute difference with observed 

rainfall persistence during calibration (1976–1995) and 

validation (1996–2005) periods  

Station Model 

Rainfall Persistence 
Absolute Difference 

Observed Simulated 

Calib Valid Calib Valid Calib Valid 

2815001 GLM 0.56 0.51 0.71 0.73 0.15 0.22 

 NHMM 0.56 0.51 0.51 0.58 0.05 0.07 

  BACT 0.56 0.51 0.60 0.70 0.04 0.19 

2913001 GLM 0.56 0.55 0.64 0.69 0.07 0.14 

 NHMM 0.56 0.55 0.55 0.53 0.01 0.02 

  BACT 0.56 0.55 0.59 0.62 0.03 0.06 

2917001 GLM 0.59 0.62 0.77 0.81 0.19 0.19 

 NHMM 0.59 0.62 0.56 0.56 0.03 0.05 

  BACT 0.59 0.62 0.63 0.78 0.04 0.16 

3118102 GLM 0.64 0.63 0.70 0.72 0.06 0.09 

 NHMM 0.64 0.63 0.58 0.59 0.06 0.03 

  BACT 0.64 0.63 0.65 0.71 0.01 0.08 

- Calib represented calibration; 

- Valid represented validation; 

- Grey shaded value indicated the model with the smaller difference. 
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4.6.2 Spell Lengths Distributions 

 

The distributions of wet- and dry-spell lengths were used to evaluate the 

performance of rainfall occurrence models at every station during the whole 

study period (years 1976– 2005). As illustrated in Figure 4.5, both NHMM and 

BACT model exhibited overall good performance in capturing the observed 

wet- and dry-spell lengths.  The spell lengths distribution of both models 

showed the similar trend with observed by following approximately geometric 

distribution. However, NHMM tended to overestimate the wet- and dry-spell 

lengths at every station, especially a significant difference of dry spell length at 

station 2815001 (Figure 4.5(b)) and of wet spell length at station 2917001 

(Figure 4.5(e)) and station 3118102 (Figure 4.5(g)). In addition, the BACT 

model also showed the overall under-prediction of both spell lengths at every 

station, except for the slight over-prediction at station 2913001.  

 

Compared to NHMM and BACT model, the GLM also tended to follow 

the geometric distribution, but it showed the substantial under-prediction of 

frequency especially for the low spell durations at every station, as shown in 

Figure 4.5. Thus, both NHMM and BACT model showed the better prediction 

ability than GLM in simulating the observed spell lengths distribution at every 

station, by considering the huge difference obtained from GLM when compared 

to observed spell lengths distribution.  
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(a) Distribution of wet-spell length at station 2815001 

 

 

(b) Distribution of dry-spell length at station 2815001 
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(c) Distribution of wet-spell length at station 2913001 

 

 

(d) Distribution of dry-spell length at station 2913001 
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(e) Distribution of wet-spell length at station 2917001 

 

 

(f)  Distribution of dry-spell length at station 2917001 
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(g) Distribution of wet-spell length at station 3118102 

 

 

(h)  Distribution of dry-spell length at station 3118102 

 

Figure 4.5: Observed and simulated spell lengths distribution at each 

station. (a) Distribution of wet-spell length and (b) dry-spell 

length at station 2815001, (c) Distribution of wet-spell length 

and (d) dry-spell length at station 2913001, (e) Distribution of 

wet-spell length and (f) dry-spell length at station 2917001, (g) 

Distribution of wet-spell length and (h) dry-spell length at 

station 3118102 
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4.6.3 Matching 

 

The performance of rainfall occurrence models were compared and 

evaluated based on their probability of detection (POD), false alarm rate (FAR), 

critical success index (CSI), Heidke Skill score (HSS) and Peirce Skill score 

(PSS) indices. The ability of a good rainfall occurrence model is to simulate the 

observed rainfall occurrence as accurate as possible, thereafter, the rainfall 

values are generated by a rainfall prediction model conditional on the simulated 

wet days. Both indices of POD and CSI indicate how well a model simulates 

the wet days match with the number of observed wet days. The higher the index 

value, the better performance is the model.  

 

Based on the results in Table 4.13, the BACT model achieved the better 

performance than GLM and NHMM during validation period with the higher 

indices of POD and CSI in the range of 0.51–0.65 and 0.29–0.44, respectively. 

NHMM obtained the POD and CSI indices smaller than 0.5 and 0.3, 

respectively, at every station, while, the GLM are capable of obtaining the POD 

and CSI indices in the range of 0.22–0.54 and 0.18–0.40, respectively. The 

indices of CSI are smaller than those of the POD for the fact that CSI included 

the number of events, which are predicted but actually not occurred, in their 

computation.  

 

In general, FAR should be used in conjunction with POD and it is used 

to measure the probability wet day was simulated by a model, but in reality the 

rain actually did not occur on that day. Based on the results in Table 4.14, the 
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GLM exhibited the better performance with the lower FAR indices in the range 

of 0.38–0.52 during validation period, followed by BACT model and NHMM. 

The BACT model obtained the FAR indices in the range of 0.41–0.60, but the 

NHMM showed the FAR indices greater than 0.53 at every station. Hence, it 

can be concluded that BACT model possess the tendency of over-predicting the 

number of wet days, so they exhibited the better results in POD and CSI, but 

higher FAR indices when compared to GLM’s.  

 

Table 4.13: Probability of detection (POD) and critical success index (CSI) 

of rainfall occurrence models during calibration (1976–1995) 

and validation (1996–2005) periods 

Station Model 
POD CSI 

Calibration Validation Calibration Validation 

2815001 

GLM 0.28 0.35 0.23 0.25 

NHMM 0.38 0.40 0.23 0.23 

BACT 0.98 0.60 0.91 0.34 

2913001 

GLM 0.17 0.22 0.15 0.18 

NHMM 0.38 0.35 0.23 0.21 

BACT 0.97 0.51 0.87 0.29 

2917001 

GLM 0.51 0.54 0.38 0.40 

NHMM 0.48 0.44 0.31 0.29 

BACT 0.96 0.64 0.89 0.44 

3118102 

GLM 0.43 0.45 0.34 0.34 

NHMM 0.46 0.44 0.29 0.29 

BACT 0.97 0.65 0.92 0.43 

 

 

 

 

 

 

 

 



 

119 

 

Table 4.14: False alarm rate of rainfall occurrence models during 

calibration (1976–1995) and validation (1996–2005) periods 

Station Model 
FAR 

Calibration Validation 

2815001 

GLM 0.43 0.52 

NHMM 0.62 0.64 

BACT 0.07 0.56 

2913001 

GLM 0.42 0.51 

NHMM 0.63 0.66 

BACT 0.11 0.60 

2917001 

GLM 0.40 0.38 

NHMM 0.54 0.54 

BACT 0.08 0.41 

3118102 

GLM 0.40 0.41 

NHMM 0.57 0.55 

BACT 0.06 0.43 

 

Other than that, the measures of skill score is a way to summarize the 

prediction performance of a model by determine the accuracy of prediction 

compared to the reference predictions (random chance, persistence, or 

climatology). In this study, the common skill scores, such as Heidke Skill score 

(HSS) and Pierce Skill score (PSS) were used to compare and evaluate the 

prediction ability of developed rainfall occurrence models. HSS is defined as 

the ratio of correct prediction to an random prediction that are statistically 

independent from the observations, while the PSS is another measure of skill 

with the false alarm been taken into account and the reference hit rate in the 

denominator is random and more likely to be an unbiased prediction. Both 

measures of skill scores show the perfect prediction with the score of one, 

prediction equivalent to the reference prediction with the score of zero, and 

prediction worse than reference prediction with the negative score. However, a 

prediction with the HSS index greater than 0.15, can be treated as reasonably 

good prediction (Kannan and Ghosh, 2011). 
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Based on the results in Table 4.15, both HSS and PSS indices showed 

the prediction of NHMM more likely to be a random prediction as they obtained 

the scores nearly equal to zero at every station. Both GLM and BACT model 

showed the reasonably good prediction with the scores greater than 0.15 at every 

station, except for station 2913001. In spite of that, BACT model still 

outperformed the GLM with the higher scores during calibration and validation 

periods. Therefore, the results in Table 4.13 and Table 4.14 were further 

supported by the HSS and PSS indices, which suggested that BACT model 

exhibited the better prediction ability than GLM and NHMM, and provided the 

higher accuracy in matching the number of observed wet days even though they 

showed the slight over-prediction over the GLM with the higher FAR indices.  

 

Table 4.15: Heidke skill scores (HSS) and Pierce skill scores (PSS) of 

rainfall occurrence models during calibration (1976–1995) 

and validation (1996–2005) periods  

Station Model 
HSS PSS 

Calibration Validation Calibration Validation 

2815001 

GLM 0.17 0.16 0.15 0.15 

NHMM 0.00 0.02 0.00 0.02 

BACT 0.92 0.18 0.94 0.20 

2913001 

GLM 0.12 0.12 0.10 0.10 

NHMM 0.01 0.02 0.01 0.02 

BACT 0.89 0.13 0.91 0.14 

2917001 

GLM 0.25 0.25 0.24 0.25 

NHMM 0.03 -0.02 0.03 -0.02 

BACT 0.89 0.25 0.89 0.26 

3118102 

GLM 0.23 0.21 0.22 0.20 

NHMM 0.03 0.00 0.03 0.00 

BACT 0.93 0.25 0.93 0.25 
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4.7 Data Pre-processing Approach in Combined BACT-ANN Model 

 

Prior to the development of ANN model, the rainfall data was pre-

processed using the developed BACT model, which some days may become 

zero amount even though the observed rainfall series indicate them are wet days 

in reality. Therefore, the prediction ability of BACT model in simulating the 

observed rainfall occurrence may also affect the performance of ANN model. 

Based on the results in Table 4.16, the incident of observed wet days became 

dry days after data pre-processing approach was less than 2% during calibration 

period. However, the percentage of this incident was in the range of 13.5%– 17% 

during validation period, which mean there were 505–615 wet days from 

observed rainfall series became dry days.     

Table 4.16: Percentage of observed wet days become dry days after data 

pre-processing approach 

Station Calibration Validation 

2815001 0.60 13.84 

2913001 0.92 16.16 

2917001 1.77 16.85 

3118102 1.08 15.62 

 

 

4.8 Structure of Neural Network for ANN and Combined BACT-ANN 

Model 

 

The combined model in this study was developed using bootstrap-

aggregated classification decision tree with the random forest algorithm (BACT 

model) to model the rainfall occurrence, thereafter combined with ANN to 

model the rainfall amount conditional on simulated rainfall occurrence. The 

comparison of structure between rainfall amount model in combined BACT-
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ANN model and another individual traditional ANN model used in this study, 

is presented in Table 4.17. The structures of both models consisted of same 

neurons number in input and output layers, which are directly depending on the 

number of predictors and observed rainfall series, respectively. The only 

difference between them was the number of hidden neuron numbers used to link 

the predictors and observed rainfall series. Based on the results in Table 4.17, 

the number of hidden neuron used in combined BACT-ANN model was greater 

than traditional ANN model in the range of 5–40 neurons. The accuracy of 

model is generally contributed by the larger optimum number of hidden neuron 

numbers to sufficiently describe the relationship between predictors and 

predictand. This increased accuracy was presented by combined BACT-ANN 

model due to the application of pre-processing approach, which resulted in the 

increase of the number of wet days to be trained in the model.  

 

Table 4.17: Structure of combined BACT-ANN and traditional ANN 

models 

Station  ANN BACT-ANN 

2815001 5-40-1 5-60-1 

2913001 5-45-1 5-85-1 

2917001 5-50-1 5-85-1 

3118102 5-55-1 5-60-1 

- Structure of neural network = (number of selected predictors)-(number of 

optimum hidden neurons)-(number of predictand)  
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4.9 Goodness of Fit of Rainfall Amount Models 

 

The performance of rainfall amount models developed in this study were 

evaluated and compared using the parametric (RMSE), non-parametric tests 

(Kolmogorov-Smirnov test, Mann-Whitney U test, squared-rank test, Kendall’s 

tau-b correlation and Spearman’s rho correlation) and quantile plots by 

comparing the observed and simulated monthly rainfall series. Besides, the 

performance of combined BACT-ANN model were further compared with 

traditional ANN and NHMM. It is noteworthy that the observed rainfall series 

was proved to be skewed and not normally distributed, so the non-parametric 

tests were main evaluation criteria to be focused in this study. 

 

 

4.9.1 Parametric Test 

 

Root mean square error (RMSE) is the one of the measures commonly 

used to evaluate the performance of a statistical downscaling model in terms of 

error. Both traditional ANN and combined BACT-ANN model, which exhibited 

the lowest RMSE during validation period, were selected as the well-trained 

models in this study. The performance of selected traditional ANN and BACT-

ANN model were further evaluated and compared together with NHMM in 

terms of their RMSE, as shown in Table 4.18. Generally, the lower RMSE value 

is indicating the accuracy of model is higher with the smaller error is produced.  
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Overall, the combined BACT-ANN model showed the smaller errors 

than ANN and NHMM in the majority of 12 months during validation period. 

According to the results in Table 4.18, the combined BACT-ANN model, 

traditional ANN and NHMM produced the RMSE in the range of 38.75–144.10 

mm, 49.53–155.23 mm, and 69.35–230.22 mm, respectively. Hence, the 

combined BACT-ANN model exhibited the better performance in this study 

with the smaller range of RMSE produced, followed by the traditional ANN and 

NHMM.  

 

In other word, the application of combined BACT-ANN model reduced 

the maximum RMSE produced from traditional ANN and NHMM model up to 

11.13 mm and 86.12 mm, respectively. However, the measure of RMSE belongs 

to one of the parametric tests, which is used to analyse the normal distributed 

data, but the observed rainfall series in this study as reported much earlier herein, 

were proved to be not normally distributed. Therefore, the performance of these 

three models were further evaluated and compared using the non-parametric 

tests.  
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Table 4.18 : Root mean square error (RMSE) of rainfall amount models 

during validation (1996–2005) period  

Station Month 
Validation 

ANN NHMM BACT-ANN 

2815001 

Jan 110.21 106.81 39.49 

Feb 70.74 84.38 42.36 

Mar 73.76 91.30 42.74 

Apr 72.42 113.31 52.57 

May 63.68 99.14 38.75 

Jun 57.53 93.80 66.85 

Jul 87.49 114.13 87.33 

Aug 54.27 88.73 59.08 

Sep 89.27 83.56 66.71 

Oct 91.64 77.72 53.74 

Nov 106.46 142.34 63.97 

Dec 77.96 69.35 61.53 

2913001 

Jan 96.02 125.14 76.71 

Feb 76.60 139.96 58.51 

Mar 88.32 165.49 46.06 

Apr 95.75 130.51 58.89 

May 49.53 95.11 51.33 

Jun 66.52 82.28 67.45 

Jul 72.09 136.02 80.99 

Aug 75.98 137.48 65.97 

Sep 84.72 94.64 93.04 

Oct 97.56 143.12 102.00 

Nov 106.83 134.08 78.33 

Dec 92.01 141.01 57.17 

2917001 

Jan 74.60 93.93 103.67 

Feb 84.50 131.78 122.36 

Mar 114.88 132.71 82.33 

Apr 139.92 183.62 89.20 

May 79.46 115.36 52.66 

Jun 80.99 93.25 50.58 

Jul 69.47 102.29 91.16 

Aug 121.53 140.81 130.26 

Sep 67.50 80.89 59.15 

Oct 106.92 154.43 118.07 

Nov 155.23 230.22 128.72 

Dec 79.53 159.28 65.86 

- Grey shaded value indicated the model with the smaller RMSE.  
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Table 4.18 continued: Root mean square error (RMSE) of rainfall amount 

models during validation (1996–2005) period 

Station Month 
Validation 

ANN NHMM BACT-ANN 

3118102 

Jan 59.72 117.38 57.17 

Feb 77.26 161.90 100.07 

Mar 121.69 102.65 144.10 

Apr 97.38 124.84 109.17 

May 89.96 113.91 74.77 

Jun 93.91 69.97 84.82 

Jul 101.83 135.41 59.56 

Aug 96.34 112.28 66.14 

Sep 70.29 90.75 60.02 

Oct 97.79 107.48 69.85 

Nov 148.32 156.31 134.10 

Dec 100.78 132.72 95.66 

- Grey shaded value indicated the model with the smaller RMSE. 

 

 

4.9.2 Non-parametric Tests 

 

Kolmogorov-Smirnov (K-S) test is one of the non-parametric statistical 

hypothesis tests used to determine whether two independent samples of data 

come from the same or different distributions. In this study, the K-S test was 

used to evaluate the significance difference between the observed and simulated 

monthly rainfall distributions under the significance level of 0.05. The 

computed monthly p-values of traditional ANN, NHMM and combined BACT-

ANN model at each station, are present in Table 4.19. For instance, the 

computed p-value of combined BACT-ANN model in January was 0.952 at 

station 2815001, which is greater than the significance level. Therefore, the null 

hypothesis cannot be rejected and there is up to 95.2% to indicate the null 

hypothesis is true.  
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Based on the results in Table 4.19, both NHMM and combined BACT- 

model exhibited the better performance than ANN with the p-values exceed 

significance level of 0.05 in the majority of twelve months. Especially for 

station 2913001, both NHMM and combined BACT-ANN model able to 

simulate the distribution of observed rainfall series with the p-values greater 

than 0.05 in every month. However, the combined BACT-ANN model showed 

the higher number of months (eleven out of twelve months) passed the 

significant level of 0.05 than the NHMM (ten out of twelve months) at stations 

2917001 and 3118102. In overall, the combined BACT-ANN model produced 

the p-values in the range of 0.035–0.998, which were higher than ANN 

(<0.001–0.586) and NHMM (0.003–0.952).  

 

Table 4.19: Kolmogorov-Smirnov (K-S) tests p-values results of rainfall 

amount models at each station 

Station Month ANN NHMM BACT-ANN 

2815001 

Jan 0.035 0.388 0.952 

Feb 0.134 0.134 0.952 

Mar 0.003 0.071 0.236 

Apr 0.016 0.586 0.134 

May 0.016 0.799 0.035 

Jun 0.003 0.799 0.799 

Jul 0.001 0.586 0.586 

Aug 0.071 0.586 0.799 

Sep 0.001 0.035 0.236 

Oct 0 0.134 0.071 

Nov 0.016 0.016 0.035 

Dec 0.236 0.134 0.134 

- Grey shaded value indicated the p-value of model exceeded the significance 

level of 0.05. 

 

 

 

 



 

128 

 

Table 4.19 continued: Kolmogorov-Smirnov (K-S) tests p-values results of 

rainfall amount models at each station 

Station Month ANN NHMM BACT-ANN 

2913001 

Jan 0.134 0.799 0.952 

Feb 0.035 0.134 0.236 

Mar 0.003 0.071 0.952 

Apr 0.003 0.236 0.586 

May 0.035 0.071 0.236 

Jun 0.001 0.388 0.998 

Jul 0.003 0.134 0.586 

Aug 0.003 0.952 0.952 

Sep 0.134 0.586 0.799 

Oct 0.003 0.236 0.799 

Nov 0.003 0.071 0.388 

Dec 0.071 0.952 0.799 

2917001 

Jan 0.035 0.236 0.586 

Feb 0.071 0.071 0.236 

Mar 0.035 0.388 0.952 

Apr 0.007 0.799 0.388 

May < 0.001 0.003 0.035 

Jun 0.007 0.134 0.799 

Jul 0.035 0.071 0.998 

Aug 0.071 0.071 0.799 

Sep 0.586 0.388 0.799 

Oct 0.236 0.388 0.586 

Nov 0.071 0.016 0.586 

Dec 0.035 0.998 0.236 

3118102 

Jan 0 0.035 0.799 

Feb 0.035 0.134 0.799 

Mar 0.007 0.388 0.952 

Apr 0.016 0.236 0.799 

May 0.134 0.236 0.586 

Jun 0 0.035 0.388 

Jul 0.134 0.586 0.035 

Aug 0.071 0.236 0.586 

Sep 0.035 0.586 0.236 

Oct 0.134 0.236 0.388 

Nov 0.007 0.035 0.236 

Dec 0.007 0.586 0.388 

- Grey shaded value indicated the p-value of model exceeded the significance 

level of 0.05. 
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In addition, Mann-Whitney U test is another parametric test used to 

compare two independents samples and determine whether the samples are 

identical to each other or not based on their ranks. In this study, the Mann-

Whitney U test was used to evaluate equality between the observed and 

simulated monthly rainfall series relative to their ranks. If the computed p-value 

exceed the significance level of 0.05, then the null hypothesis is accepted with 

the difference of location between the samples is equal to zero. All three models 

exhibited the good results with the computed p-value exceeded the significance 

level of 0.05 in the majority on twelve months, as shown in Table 4.20. Besides, 

the p-values produced from combined BACT-ANN model in the range of 

0.012–0.971, was relatively higher than other models and indicating the higher 

probability of both simulated and observed rainfall series to be identical with 

each other.  

 

Table 4.20: Mann-Whitney U tests p-values results of rainfall amount 

models at each station 

Station Month ANN NHMM BACT-ANN 

2815001 

Jan 0.068 0.171 0.971 

Feb 0.387 0.018 0.888 

Mar 0.096 0.059 0.154 

Apr 0.935 0.663 0.11 

May 0.059 0.371 0.102 

Jun 0.167 0.186 0.544 

Jul 0.167 0.228 0.297 

Aug 0.663 0.326 0.877 

Sep 0.05 0.038 0.307 

Oct 0.07 0.115 0.012 

Nov 0.075 0.001 0.014 

Dec 0.994 0.167 0.099 

- Grey shaded value indicated the p-value of model exceeded the significance 

level of 0.05. 
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Table 4.20 continued: Mann-Whitney U tests p-values results of rainfall 

amount models at each station 

Station Month ANN NHMM BACT-ANN 

2913001 

Jan 0.888 0.923 0.706 

Feb 0.673 0.085 0.339 

Mar 0.018 0.018 0.501 

Apr 0.201 0.267 0.544 

May 0.039 0.042 0.387 

Jun 0.145 0.234 0.9 

Jul 0.149 0.141 0.391 

Aug 0.234 0.549 0.947 

Sep 0.923 0.326 0.982 

Oct 0.201 0.22 0.784 

Nov 0.052 0.048 0.46 

Dec 0.819 0.679 0.383 

2917001 

Jan 0.252 0.048 0.234 

Feb 0.492 0.112 0.258 

Mar 0.171 0.695 0.959 

Apr 0.026 0.959 0.212 

May < 0.0001 0.004 0.191 

Jun 0.064 0.02 0.652 

Jul 0.333 0.044 0.695 

Aug 0.246 0.096 0.511 

Sep 0.877 0.641 0.929 

Oct 0.141 0.395 0.819 

Nov 0.473 0.002 0.367 

Dec 0.105 0.706 0.717 

3118102 

Jan 0 0.013 0.706 

Feb 0.684 0.333 0.882 

Mar 0.865 0.842 0.842 

Apr 0.326 0.141 0.544 

May 0.446 0.122 0.391 

Jun 0.01 0.021 0.252 

Jul 0.971 0.539 0.038 

Aug 0.326 0.511 0.315 

Sep 0.935 0.673 0.145 

Oct 0.61 0.212 0.196 

Nov 0.171 0.012 0.367 

Dec 0.234 0.717 0.351 

- Grey shaded value indicated the p-value of model exceeded the significance 

level of 0.05. 
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Furthermore, the squared-rank test was another non-parametric test used 

to assess the equality of variance between observed and simulated monthly 

rainfall series with the null hypothesis of the samples are from the identical 

distribution. For station 2815001, the p-value obtained by combined BACT-

ANN model was 0.967, which indicated the distributions of observed and 

simulated rainfall series in January were identical with no significant difference 

between their variances. Both NHMM and combined BACT-ANN model 

exhibited the better performance than ANN with the p-values exceeded the 

significance level of 0.05 in the majority of twelve months. Based on the results 

in Table 4.21, the ANN basically produced the p-value lesser than 0.001 in most 

of the months, so the simulated rainfall series from ANN was inferred to be 

significance different from observed rainfall series regarding to their variances.    

 

Table 4.21: Squared-rank tests p-values results of rainfall amount models 

at each station 

Station Month ANN NHMM BACT-ANN 

2815001 

Jan 0.019 0.676 0.967 

Feb 0.000 0.827 0.199 

Mar 0.000 0.909 0.072 

Apr < 0.001 0.523 0.179 

May < 0.001 0.964 0.016 

Jun < 0.001 0.188 0.705 

Jul < 0.001 0.554 0.947 

Aug < 0.001 0.343 0.401 

Sep < 0.001 0.149 0.534 

Oct < 0.001 0.450 0.702 

Nov 0 0.978 0.738 

Dec 0.004 0.798 0.797 

- Grey shaded value indicated the p-value of model exceeded the significance 

level of 0.05. 
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Table 4.21 continued: Squared-rank tests p-values results of rainfall 

amount models at each station 

Station Month ANN NHMM BACT-ANN 

2913001 

Jan < 0.001 0.401 0.475 

Feb < 0.001 0.639 0.090 

Mar < 0.001 0.543 0.646 

Apr < 0.001 0.147 0.350 

May < 0.001 0.088 0.039 

Jun < 0.001 0.816 0.537 

Jul < 0.001 0.541 0.963 

Aug < 0.001 0.953 0.910 

Sep < 0.001 0.576 0.354 

Oct < 0.001 0.141 0.720 

Nov < 0.001 0.421 0.334 

Dec < 0.001 0.450 0.803 

2917001 

Jan < 0.001 0.305 0.581 

Feb < 0.001 0.141 0.043 

Mar < 0.001 0.014 0.277 

Apr < 0.001 0.148 0.388 

May 0.049 0.102 0.012 

Jun < 0.001 0.931 0.070 

Jul < 0.001 0.299 0.610 

Aug < 0.001 0.455 0.150 

Sep 0.006 0.467 0.553 

Oct 0.076 0.343 0.390 

Nov < 0.001 0.015 0.304 

Dec 0.004 0.920 0.276 

3118102 

Jan 0.031 0.897 0.495 

Feb < 0.001 0.230 0.479 

Mar < 0.001 0.004 0.749 

Apr < 0.001 0.034 0.228 

May < 0.001 0.167 0.755 

Jun < 0.001 0.161 0.431 

Jul < 0.001 0.487 0.212 

Aug < 0.001 0.032 0.728 

Sep < 0.001 0.190 0.792 

Oct < 0.001 0.015 0.962 

Nov < 0.001 0.025 0.073 

Dec < 0.001 0.004 0.577 

- Grey shaded value indicated the p-value of model exceeded the significance 

level of 0.05. 
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In considering that the main objective of this study is to select the most 

suitable rainfall generator for Langat River Basin, and the computed p-values 

in Tables 4.19–4.21 could not provide the significance information for the 

selection of the model, for this reason, the acceptability index (AI) proposed by 

Fodor et al. (2010) was used for further examination in summarizing the tests 

performance of these models. The computation of AI is related to the total score 

of model in passing the significance level of statistical tests. The higher the AI, 

the better the performance of model. As illustrated in Table 4.22, the combined 

BACT-ANN model achieved the better results by passing most of the K-S, 

Mann-Whitney U and squared-rank tests, thus it produced the AI higher than 

91% in all three tests. In other words, the combined BACT-ANN model is 

capable of reproducing the distribution of observed monthly rainfall series with 

the lesser significance differences, when compared to ANN and NHMM. Also, 

the inclusion of rainfall occurrence model in this study did enhance the 

performance of traditional ANN model with the increase of approximate 60% 

AI in K-S tests, 8% AI in Mann-Whitney U tests and 89% AI in squared-rank 

tests.    

 

Table 4.22: Acceptability index for the simulated monthly rainfall series in 

passing the Kolmogorov-Smirnov (K-S), Mann-Whitney U 

and squared-rank tests for all stations  

  Acceptability Index (%)  

 K-S tests Mann-Whitney U tests Squared-rank tests 

ANN 31.25 85.42 2.08 

NHMM 85.42 70.83 83.33 

BACT-ANN 91.67 93.75 91.67 
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In addition, there were two measures of non-parametric rank 

correlations used in this study to assess the statistical associations between 

observed and simulated monthly rainfall series, namely Kendall’s tau-b 

correlation and Spearman’s rho correlation. Both correlation coefficients in the 

range of -1 to 1, where the positive correlation implies that the ranks of both 

variables are increasing, while the negative correlation implies that the ranks of 

both variables are moving in opposite direction. These analyses can be used in 

assessing the correlation between two variables in hypothesis testing, with the 

null hypothesis of there is no correlation between two series. 

 

Overall, the combined BACT-ANN model achieved the better 

performance than ANN and NHMM, with its computed p-values of Kendall’s 

tau-b correlation coefficient smaller than significance level of 0.05 in every 

month. For example, the correlation coefficient of combined BACT-ANN 

model at station 2815001 was 0.707 in January, with the p-value smaller than 

0.05. Thus, the null hypothesis is rejected and the obtained correlation 

coefficient is significantly different from zero.  As presented in Table 4.23, the 

correlation coefficients obtained by combined BACT-ANN model were ranged 

between 0.287–0.737 and significantly different from zero correlation. Both 

ANN and NHMM showed the relatively low correlation coefficients with some 

computed p-values exceeded the significance level of 0.05 in certain months.  
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Table 4.23: Kendall’s tau-b correlation coefficients of rainfall amount 

models at each station 

Station Month ANN NHMM BACT-ANN 

2815001 

Jan 0.29 -0.11 0.707 

Feb 0.211 -0.058 0.594 

Mar 0.115 0.124 0.737 

Apr 0.148 -0.088 0.569 

May 0.41 -0.299 0.494 

Jun 0.171 -0.125 0.509 

Jul 0.064 0.032 0.406 

Aug 0.295 0.087 0.525 

Sep -0.148 0.037 0.375 

Oct 0.03 0.269 0.641 

Nov 0.108 -0.214 0.655 

Dec 0.329 0.136 0.545 

2913001 

Jan 0.198 -0.056 0.659 

Feb 0.354 -0.144 0.636 

Mar 0.15 -0.127 0.622 

Apr 0.383 -0.051 0.593 

May 0.192 -0.155 0.515 

Jun 0.197 0.192 0.45 

Jul 0.177 -0.137 0.341 

Aug 0.215 -0.083 0.651 

Sep -0.064 0.087 0.355 

Oct 0.078 -0.295 0.551 

Nov 0.014 0.177 0.569 

Dec 0.314 -0.132 0.588 

2917001 

Jan 0.2 0.375 0.428 

Feb 0.444 0.053 0.407 

Mar 0.14 0.09 0.503 

Apr 0.108 -0.136 0.582 

May 0.37 0.039 0.563 

Jun 0.147 0.17 0.603 

Jul 0.343 0.067 0.287 

Aug 0.375 0.186 0.406 

Sep 0.393 0.287 0.434 

Oct 0.31 -0.025 0.338 

Nov 0.338 0.03 0.595 

Dec 0.448 0.053 0.674 

- Grey shaded value indicated the coefficient with the p-value smaller than the 

significance level of 0.05. 
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Table 4.23 continued: Kendall’s tau-b correlation coefficients of rainfall 

amount models at each station 

Station Month ANN NHMM BACT-ANN 

3118102 

Jan 0.346 0.009 0.541 

Feb 0.343 0.182 0.494 

Mar 0.267 0.198 0.382 

Apr 0.283 0.002 0.329 

May 0.255 0.14 0.577 

Jun 0.23 0.148 0.671 

Jul 0.094 -0.136 0.506 

Aug 0.251 0.067 0.54 

Sep 0.285 0 0.554 

Oct 0.14 0.113 0.674 

Nov -0.053 -0.195 0.48 

Dec 0.291 0.065 0.611 

- Grey shaded value indicated the coefficient with the p-value smaller than the 

significance level of 0.05. 

 

Basically, the Spearman’s rho correlation analysis usually obtain the 

coefficients greater than Kendall’s tau-b correlation analysis. Besides, this 

analysis is much more sensitive to error and discrepancies in data. Based on the 

results in Table 4.24, the coefficients of Spearman’s rho were apparently larger 

than Kendall’s tau-b, but the evaluation results remained the same with the 

combined BACT-ANN model outperformed ANN and NHMM by exhibiting 

the higher significant correlation coefficients in the range of 0.418–0.876. Both 

ANN and NHMM obtained the some positive and negative correlation 

coefficients, which were not significantly different from zero in certain months. 
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Table 4.24: Spearman’s rho correlation coefficients of rainfall amount 

models at each station 

Station Month ANN NHMM BACT-ANN 

2815001 

Jan 0.355 -0.158 0.875 

Feb 0.32 -0.061 0.779 

Mar 0.176 0.168 0.876 

Apr 0.26 -0.116 0.73 

May 0.57 -0.406 0.658 

Jun 0.286 -0.199 0.685 

Jul 0.111 0.076 0.575 

Aug 0.408 0.098 0.699 

Sep -0.211 0.076 0.509 

Oct 0.048 0.408 0.788 

Nov 0.11 -0.278 0.845 

Dec 0.449 0.203 0.72 

2913001 

Jan 0.295 -0.08 0.844 

Feb 0.495 -0.19 0.825 

Mar 0.251 -0.178 0.813 

Apr 0.526 -0.046 0.759 

May 0.284 -0.213 0.664 

Jun 0.296 0.285 0.578 

Jul 0.277 -0.191 0.488 

Aug 0.29 -0.121 0.839 

Sep -0.11 0.123 0.506 

Oct 0.108 -0.416 0.727 

Nov 0.019 0.236 0.734 

Dec 0.395 -0.2 0.761 

2917001 

Jan 0.303 0.501 0.528 

Feb 0.616 0.102 0.578 

Mar 0.219 0.127 0.712 

Apr 0.178 -0.191 0.753 

May 0.507 0.068 0.748 

Jun 0.247 0.215 0.765 

Jul 0.491 0.096 0.418 

Aug 0.464 0.278 0.545 

Sep 0.573 0.378 0.626 

Oct 0.498 -0.018 0.466 

Nov 0.503 0.05 0.778 

Dec 0.656 0.08 0.846 

- Grey shaded value indicated the coefficient with the p-value smaller than the 

significance level of 0.05. 
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Table 4.24 continued: Spearman’s rho correlation coefficients of rainfall 

amount models at each station 

Station Month ANN NHMM BACT-ANN 

3118102 

Jan 0.496 0.016 0.701 

Feb 0.475 0.248 0.653 

Mar 0.343 0.299 0.513 

Apr 0.36 0.003 0.44 

May 0.38 0.237 0.771 

Jun 0.289 0.258 0.793 

Jul 0.123 -0.163 0.644 

Aug 0.387 0.093 0.708 

Sep 0.489 -0.013 0.771 

Oct 0.175 0.161 0.855 

Nov -0.101 -0.257 0.621 

Dec 0.428 0.087 0.815 

- Grey shaded value indicated the coefficient with the p-value smaller than the 

significance level of 0.05. 

 

Similar to the K-S tests, the acceptability index (AI) was also employed 

to evaluate the overall performance of models in Kendall’s tau-b and 

Spearman’s rho correlations analysis. Based on the results in Table 4.25, the 

combined BACT-ANN model is capable to produce the monthly rainfall series, 

which were significantly correlated to the observed series of selected rainfall 

stations within Langat River Basin, thus resulting in 100% AI for both Kendall’s 

tau-b and Spearman’s rho correlations. On the other hand, the ANN and NHMM 

obtained the AI smaller than 50% in both correlations, which mean their 

simulated and observed monthly rainfall series were less likely correlated to 

each other. Besides, the strength of coefficients obtained by combined BACT-

ANN model in Spearman’s rho correlation were in the range of “moderate” to 

“very strong”. Hence, the monthly rainfall series simulated by combined 

BACT-ANN model is more reliable than ANN and NHMM.  
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Table 4.25: Acceptability index for the simulated monthly rainfall series 

obtaining the significant coefficient in Kendall’s tau-b and 

Spearman’s rho correlations for all stations  

  Acceptability Index (%) 

 Kendall's tau-b Spearman's rho 

ANN 43.75 41.67 

NHMM 10.42 10.42 

BACT-ANN 100 100 

 

 

4.9.3 Quantile Plot  

 

Other than the RMSE and non-parametric tests, there was another 

diagnostic test used in this study for the reproduction of observed monthly 

rainfall series. The scatter plots of simulated (ANN, NHMM and combined 

BACT-ANN model) versus observed 95th percentile of monthly rainfall series 

for all stations during study periods (years 1976–2005), are illustrated in Figure 

4.6. Both ANN and NHMM showed the unstable prediction abilities in 

simulating the observed rainfall series at each station, with the over-prediction 

of small rainfall amount and under-prediction of huge rainfall amount. Based 

on the results in Figure 4.6, both ANN and NHMM achieved the threshold 

values of 129.2 mm, 140.9 mm, 224 mm and 165.6 mm at station 2815001, 

station 2913001, station 2917001 and station 3118102, respectively. These 

threshold values indicated that both models have the over-prediction tendency 

at the rainfall value smaller than threshold value and under-prediction tendency 

at the rainfall value higher than threshold value. In addition, both ANN and 

NHMM also obtained the higher bias values in both over-prediction and under-

prediction, as shown in Table 4.26.   
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The combined BACT-ANN model exhibited the good performance in 

simulating the monthly rainfall distribution close to 1:1 line at station 2913001 

(Figure 4.6(b)) and station 2917001 (Figure 4.6(c)). However, the combined 

BACT-ANN model showed the consistent prediction ability in over-predicting 

the monthly rainfall series with the distribution above 1:1 line, as shown in 

Figure 4.6(a) and Figure 4.6(d). This situation can be justified by the bias 

calculation results in Table 4.26. Specifically for station 2815001, the combined 

BACT-ANN model achieved a very high bias value in over-prediction but a low 

bias value very near to zero in under-prediction. Overall, the combined BACT-

ANN exhibited better performance than ANN and NHMM with the smaller bias 

values in the over-prediction and under-prediction of rainfall.  

 

(a) Station 2815001
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(b) Station 2913001 

 

 

 (c) Station 2917001 
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(d) Station 3118102 

 

Figure 4.6: Scatter plots of simulated (ANN, NHMM and combined BACT-

ANN model) versus observed 95th percentile of monthly rainfall 

series at (a) station 2815001, (b) station 2913001, (c) station 

2917001 and (d) station 3118102 
 

 

Table 4.26: Bias calculation for the over-prediction and under-prediction 

of monthly rainfall series at each station 

Model 

Over-prediction Under-prediction 

ANN NHMM 

Combined 

BACT-

ANN 

ANN NHMM 

Combined 

BACT-

ANN 

2815001 38.2 8.9 28.6 -42.7 -11.6 -1.4 

2913001 43.7 11.4 5.0 -56.7 -19.2 -14.1 

2917001 31.0 20.1 6.2 -52.0 -27.8 -9.3 

3118102 54.0 31.3 27.0 -57.5 -29.1 -20.6 
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CHAPTER 5 

 

5 CONCLUSIONS 

 

 

5.1 Summary 

 

Statistical downscaling is a technique which has been widely used to 

predict the local climate variables through a robust statistical relationship 

established between the large scale atmospheric (predictors) and local climate 

(predictand) variables. However, the condition of insufficient efficiency or poor 

performance of traditional individual models, led to the development of hybrid 

models as a hydrological model to predict or downscale the future rainfall data. 

There was a two-stage approach employed in this study for the purpose of 

improving the performance of a traditional ANN. The first stage is the 

application of bootstrap aggregated classification tree (BACT) model with the 

random forest algorithm to model the daily rainfall occurrence and, followed by 

the second stage, which is the modelling of rainfall amount using ANN model 

with the Levenberg-Marquardt approach conditional on the simulated wet days.  

 

The Langat River Basin is the selected study area and the observed daily 

rainfall series (predictand) from four selected stations within the basin were 

collected from MMD and DID. Besides, there was another large scale data 

required, namely the NCEP & NCAR reanalysis dataset (predictors), which was 

obtained from the official website of the Canadian Climate Data and Scenarios. 
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Three normality tests (the Anderson-Darling, the Lilliefors and the Jarque-Bera 

tests) and four absolute homogeneity tests (SNHT, BR, PET and VNR tests) 

were applied on the observed rainfall series to determine whether they are 

normally distributed and homogenous or not. Thereafter, the potential predictors 

were screened with the predictand for selecting the suitable set of predictors for 

the modelling of rainfall occurrence and amount. 

 

 

5.1.1 Rainfall Occurrence Model 

 

In this study, the threshold value of 0.1 mm was used to define a wet day; 

a larger threshold value may cause the under-prediction of rainfall occurrence in 

Langat River Basin. A three-state NHMM was chosen for station 2815001 and 

station 2913001, based on the consideration of log-likelihood values, Bayesian 

information criterion (BIC) and Akaike information criterion (AIC) scores. 

Unlike the BIC and AIC scores, the normalized log-likelihood decreases as the 

number of hidden state increase (from state 1 to state 7).  The purpose of 

considering both BIC and AIC scores is to reduce the complexity of the model 

by selecting the optimum hidden state number. However, a two-state NHMM 

was chosen and adequately described the observed rainfall occurrence at station 

2917001 and station 3118102.  The advantage of using NHMM is the application 

of the first-order Markov chain model, which has been proven by many studies 

regarding to its ability in predicting the weather persistence. 
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Furthermore, unlike the simple Markov chain model with the state is 

visible and the transition probabilities between the states are the only parameters, 

the ‘hidden’ in NHMM is referring to the sequence of states through which the 

model passes, but not to parameters of model. They are not directly visible, but 

the output generated based on hidden state is visible. Compared to NHMM, both 

GLM and BACT model showed the simplicity in modelling the rainfall 

occurrence using the algorithm of logistic regression and random forests, 

respectively, without the application of any hidden state. 

 

 The main advantages of using logistic regression are that the predictors 

need not to be normally distributed and it ensures the generated output lies 

between 0 and 1, which can be interpreted as a probability. For the BACT model, 

the random forests algorithm was used to improve the performance of single 

classification tree by reducing the variance and increasing the stability of model. 

However, in considering the computational efficiency and stability of prediction, 

the number of grown trees was set to 150 in BACT model based on their 

generated OOB classification errors. 

 

The performance of rainfall occurrence models (GLM, NHMM and 

BACT model) were evaluated and compared in terms of their rainfall persistence, 

spell lengths distribution and matching. As predicted, the NHMM exhibited the 

better performance with the smaller absolute difference of rainfall persistence 

during validation period, followed by BACT model and GLM. This is because 

of the transition probabilities between the hidden states are defined by a first-

order Markov chain model, in which they are conditional on the predictors on 
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that day and the rainfall state on previous day. Besides, both NHMM and BACT 

model showed good prediction ability in simulating the observed wet- and dry-

spell lengths with slight under-prediction and over-prediction at some stations. 

However, the GLM showed the poor prediction ability with the significant 

under-prediction at every station when compared to them. 

 

Further to this, the performance of developed rainfall occurrence models 

were evaluated using a 2x2 contingency table, which can precisely compare the 

matching between observed and simulated rainfall occurrence series. The BACT 

model outperformed the GLM and NHMM with the higher POD and CSI indices 

in the range of 0.51–0.65 and 0.29–0.44, respectively. Nevertheless, they over-

predicted the number of wet days with the FAR higher than GLM’s but lower 

than NHMM’s. For the comparison in terms of skill score, the prediction ability 

of NHMM was more likely to be equivalent to a random prediction with the HSS 

and PSS indices nearly equal to zero at every station. Both GLM and BACT 

model exhibited a reasonably good prediction with the skill scores greater than 

0.15 at every station, except for station 2913001. However, the BACT model 

still outperformed the GLM with the higher skill scores during calibration and 

validation periods. Based on the results in rainfall persistence, it can be 

concluded that the NHMM performed well in predicting the rainfall occurrence 

only if the time frame is not taken into account. Eventually, the BACT model 

was selected and recommended as the suitable rainfall occurrence model for this 

study due to its overall good simulation performance. 

 



 

147 

 

5.1.2 Rainfall Amount Model 

 

In this study, the suitable rainfall distribution type in NHMM was 

determined based on the log-likelihood values, Bayesian information criterion 

(BIC) and Akaike information criterion (AIC) scores. The gamma distribution 

was selected as the suitable rainfall distribution to model the rainfall intensity of 

selected rainfall stations within the basin, due to its outstanding performance 

over the single-exponential and two-component mixed-exponential distributions. 

Besides, the number of hidden neurons used in combined BACT-ANN model 

was greater than the traditional ANN model due to the application of pre-

processing approach, which resulted in the increasing number of wet days. 

 

The performance of rainfall amount models (ANN, NHMM and 

combined BACT-ANN model) were evaluated and compared using the 

parametric (RMSE) and non-parametric (K-S tests, Mann-Whitney U tests, 

squared-rank tests, Kendall’s tau-b correlation and Spearman’s rho correlation) 

tests. According to the results in parametric tests, the combined BACT-ANN 

model produced the smaller range of RMSE during validation period, when 

compared to ANN and NHMM. Besides, the application of combined BACT-

ANN model reduced the maximum RMSE produced from ANN and NHMM 

model up to 11.13 mm and 86.12 mm, respectively.  

 

In addition, the combined BACT-ANN model achieved the AI greater 

than 91% in passing most of the K-S, Mann-Whitney U and squared-rank tests. 

Other than that, the combined BACT-ANN model was also capable to produce 
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the monthly rainfall series which are significantly correlated to the observed 

series, thus resulted in 100% AI for both Kendall’s tau-b and Spearman’s rho 

correlations. The strength of coefficients obtained by combined BACT-ANN 

model in Spearman’s rho correlation were in the range of “moderate” to “very 

strong”. However, the ANN and NHMM obtained the AI smaller than 50% in 

both correlations. Therefore, the combined BACT-ANN model was able to 

reproduce the distribution of observed monthly rainfall series with the lesser 

significance differences and more reliable prediction, when compared to ANN 

and NHMM.  

 

Based on the results in quantile plots, the combined BACT-ANN model 

also exhibited the good simulation results with the monthly rainfall distribution 

close to 1:1 line at station 2913001 and station 2917001. However, it over-

predicted the monthly rainfall amount at station 2815001 and station 3118102. 

This can be justified by the bias analyses, where the high bias value is obtained 

in the over-prediction of rainfall amount, but very low bias value in the under-

prediction of rainfall amount. Furthermore, both ANN and NHMM showed the 

inconsistent prediction stability in simulating the observed monthly rainfall 

series with the higher bias values in both over-prediction and under-prediction 

of rainfall amount at each station. The combined BACT-ANN model not only 

reduced the errors produced by ANN but also improved their performance with 

the increase of approximate 60% AI in K-S tests, 8% AI in Mann-Whitney U 

tests and 89% AI in squared-rank tests. For the reasons delineated, the combined 

BACT-ANN model outperformed both the NHMM and ANN, and is 

recommended as the suitable rainfall generator for this study. 



 

149 

 

5.2 Recommendations 

 

In order to have consistent periods between predictors and predictand, 

the study period used in this study was 30 years (years 1976–2005) only, which 

is considered short with 20 years used for calibration and 10 years used for 

validation. It must be reiterated here that this period is the longest periocd where 

the rainfall data is considered reliable. Therefore, the longer study period is 

recommended in future research in order to improve the performance of BACT 

model in simulating the observed rainfall occurrence series, especially reduce 

the over-prediction of number of wet days during validation period (The current 

percentage of over-prediction in this study is in the range of 20%–27%). Besides, 

longer study period also provide more information for ANN to establish more 

robust relationship between large scale atmospheric and local climate variables. 

It must be noted that another decade (2006–2016) can be included. This was not 

pursued due to research funding constraint. 

 

The combined BACT-ANN model developed in this model can be used 

for further research in downscaling the future rainfall occurrence and amount 

using the future atmospheric variables projected by GCMs under different 

emission scenarios. However, the scaling method proposed by Abdellatif, et al. 

(2013) is recommended to prevent the bias in the case of utilizing the GCM 

outputs to downscale the future rainfall. 
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ANN in Matlab R2015a 
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APPENDIX B 

 

 

Computed p-value of homogeneity tests results 

 

 

Station  Tests Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2815001 

SHNT 0.77 0.85 0.72 0.41 0.39 0.47 0.85 0.27 0.62 0.16 0.54 0.89 

BR 0.83 0.86 0.77 0.46 0.18 0.21 0.74 0.14 0.72 0.43 0.82 0.50 

PET 0.79 0.10 0.53 0.49 0.67 0.75 0.77 0.78 0.71 0.22 0.46 0.63 

VNR 0.86 0.80 0.40 0.43 0.17 0.34 0.50 0.07 0.53 0.19 0.45 0.72 

2913001 

SHNT 0.68 0.70 0.74 0.70 0.62 0.71 0.87 0.32 0.85 0.11 0.33 0.41 

BR 0.75 0.93 0.54 0.77 0.53 0.75 0.71 0.35 0.68 0.04 0.87 0.21 

PT 0.05 0.75 0.39 0.59 0.33 0.26 0.48 0.08 0.15 0.06 0.19 0.56 

VNR 0.76 0.64 0.22 0.11 0.44 0.43 0.85 0.52 0.09 0.01 0.73 0.39 

2917001 

SHNT 0.18 0.78 0.46 0.44 0.56 0.52 0.98 0.89 0.82 0.37 0.20 0.13 

BR 0.11 0.29 0.66 0.31 0.32 0.63 0.98 0.91 0.50 0.10 0.25 0.09 

PET 0.08 0.55 0.39 0.91 0.30 0.98 0.02 0.01 0.45 0.70 0.57 0.16 

VNR 0.80 0.53 0.59 0.03 0.02 0.54 0.84 0.59 0.16 0.47 0.56 0.18 

3118102 

SHNT 0.20 0.59 0.03 0.36 0.44 0.68 0.24 0.12 0.41 0.14 0.33 0.20 

BR 0.09 0.90 0.04 0.71 0.04 0.15 0.02 0.18 0.35 0.28 0.11 0.26 

PET 0.15 0.56 0.02 0.53 0.42 0.64 0.96 0.25 0.82 0.16 0.70 0.28 

VNR 0.61 0.60 0.05 0.65 0.06 0.76 0.02 0.56 0.28 0.78 0.04 0.13 
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APPENDIX C 

 

 

2x2 Contingency table 

 

 

  Observed  

  Yes No  

Predicti

on 
Yes 𝑎 𝑏 𝑎 + 𝑏 

 No 𝑐 𝑑 𝑐 + 𝑑 

  𝑎 + 𝑐 𝑏 + 𝑑 𝑛 = 𝑎 + 𝑏 + 𝑐 + 𝑑 

Four possible outcomes: 

(i) Number of events which are predictioned and actually occurred (a). 

(ii) Number of events which are predictioned but actually not occurred (b). 

(iii) Number of events which are not predictioned but actually occurred (c). 

(iv) Number of events which are not predictioned and actually not occurred 

(d). 
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APPENDIX D 

 

 

 Graphs of log-likelihood values of rainfall distributions in NHMM 

 

 

(a) station 2815001 

 

 

(b) station 2913001 
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(c) station 2917001  

 

 

(d) station 3118102 
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APPENDIX E 

 

 

Graphs of BIC scores of rainfall distributions in NHMM 

 

 

(a) station 2815001 

 

 

(b) station 2913001 
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(c) station 2917001 

 

 

(d) station 3118102 
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APPENDIX F 

 

 

 Graphs of AIC scores of rainfall distributions in NHMM 

 

 

(a) station 2815001 

 

 

(b) station 2913001 
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(c) station 2917001 

 

 

(d) station 3118102 
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APPENDIX G 

 

 

 Scores of non-parametric tests for calculating the total score in 

acceptability index 

 

 

Kolmogorov-Smirnov test 

Station Month ANN NHMM BACT-ANN 

2815001 

Jan 1 0 0 

Feb 0 0 0 

Mar 1 0 0 

Apr 1 0 0 

May 1 0 1 

Jun 1 0 0 

Jul 1 0 0 

Aug 0 0 0 

Sep 1 1 0 

Oct 1 0 0 

Nov 1 1 1 

Dec 0 0 0 

2913001 

Jan 0 0 0 

Feb 1 0 0 

Mar 1 0 0 

Apr 1 0 0 

May 1 0 0 

Jun 1 0 0 

Jul 1 0 0 

Aug 1 0 0 

Sep 0 0 0 

Oct 1 0 0 

Nov 1 0 0 

Dec 0 0 0 

2917001 

Jan 1 0 0 

Feb 0 0 0 

Mar 1 0 0 

Apr 1 0 0 

May 1 1 1 

Jun 1 0 0 

Jul 1 0 0 

Aug 0 0 0 

Sep 0 0 0 

Oct 0 0 0 

Nov 0 1 0 

Dec 1 0 0 
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3118102 

Jan 1 1 0 

Feb 1 0 0 

Mar 1 0 0 

Apr 1 0 0 

May 0 0 0 

Jun 1 1 0 

Jul 0 0 1 

Aug 0 0 0 

Sep 1 0 0 

Oct 0 0 0 

Nov 1 1 0 

Dec 1 0 0 

- “0” indicated the non-significant difference between observed and 

simulated series; 

- “1” indicated the significant difference between observed and simulated 

series. 

 

 

Mann-Whitney U test 

Station Month ANN NHMM BACT-ANN 

2815001 

Jan 0 0 0 

Feb 0 1 0 

Mar 0 0 0 

Apr 0 0 0 

May 0 0 0 

Jun 0 0 0 

Jul 0 0 0 

Aug 0 0 0 

Sep 1 1 0 

Oct 0 0 1 

Nov 0 1 1 

Dec 0 0 0 

2913001 

Jan 0 0 0 

Feb 0 0 0 

Mar 1 1 0 

Apr 0 0 0 

May 1 1 0 

Jun 0 0 0 

Jul 0 0 0 

Aug 0 0 0 

Sep 0 0 0 

Oct 0 0 0 

Nov 0 1 0 

Dec 0 0 0 

2917001 Jan 0 1 0 
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Feb 0 0 0 

Mar 0 0 0 

Apr 1 0 0 

May 1 1 0 

Jun 0 1 0 

Jul 0 1 0 

Aug 0 0 0 

Sep 0 0 0 

Oct 0 0 0 

Nov 0 1 0 

Dec 0 0 0 

3118102 

Jan 1 1 0 

Feb 0 0 0 

Mar 0 0 0 

Apr 0 0 0 

May 0 0 0 

Jun 1 1 0 

Jul 0 0 1 

Aug 0 0 0 

Sep 0 0 0 

Oct 0 0 0 

Nov 0 1 0 

Dec 0 0 0 

- “0” indicated the non-significant difference between observed and 

simulated series; 

- “1” indicated the significant difference between observed and simulated 

series. 

 

 

Squared-rank test 

Station Month ANN NHMM BACT-ANN 

2815001 

Jan 1 0 0 

Feb 1 0 0 

Mar 1 0 0 

Apr 1 0 0 

May 1 0 1 

Jun 1 0 0 

Jul 1 0 0 

Aug 1 0 0 

Sep 1 0 0 

Oct 1 0 0 

Nov 1 0 0 

Dec 1 0 0 

2913001 
Jan 1 0 0 

Feb 1 0 0 
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Mar 1 0 0 

Apr 1 0 0 

May 1 0 1 

Jun 1 0 0 

Jul 1 0 0 

Aug 1 0 0 

Sep 1 0 0 

Oct 1 0 0 

Nov 1 0 0 

Dec 1 0 0 

2917001 

Jan 1 0 0 

Feb 1 0 1 

Mar 1 1 0 

Apr 1 0 0 

May 1 0 1 

Jun 1 0 0 

Jul 1 0 0 

Aug 1 0 0 

Sep 1 0 0 

Oct 0 0 0 

Nov 1 1 0 

Dec 1 0 0 

3118102 

Jan 1 0 0 

Feb 1 0 0 

Mar 1 1 0 

Apr 1 1 0 

May 1 0 0 

Jun 1 0 0 

Jul 1 0 0 

Aug 1 1 0 

Sep 1 0 0 

Oct 1 1 0 

Nov 1 1 0 

Dec 1 1 0 

- “0” indicated the non-significant difference between observed and 

simulated series; 

- “1” indicated the significant difference between observed and simulated 

series. 
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Kendall’s tau-b correlation 

Station Month ANN NHMM BACT-ANN 

2815001 

Jan 0 1 0 

Feb 1 1 0 

Mar 1 1 0 

Apr 1 1 0 

May 0 0 0 

Jun 1 1 0 

Jul 1 1 0 

Aug 0 1 0 

Sep 1 1 0 

Oct 1 0 0 

Nov 1 1 0 

Dec 0 1 0 

2913001 

Jan 1 1 0 

Feb 0 1 0 

Mar 1 1 0 

Apr 0 1 0 

May 1 1 0 

Jun 1 1 0 

Jul 1 1 0 

Aug 1 1 0 

Sep 1 1 0 

Oct 1 0 0 

Nov 1 1 0 

Dec 0 1 0 

2917001 

Jan 1 0 0 

Feb 0 1 0 

Mar 1 1 0 

Apr 1 1 0 

May 0 1 0 

Jun 1 1 0 

Jul 0 1 0 

Aug 0 1 0 

Sep 0 0 0 

Oct 0 1 0 

Nov 0 1 0 

Dec 0 1 0 

3118102 

Jan 0 1 0 

Feb 0 1 0 

Mar 0 1 0 

Apr 0 1 0 

May 1 1 0 

Jun 1 1 0 

Jul 1 1 0 
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Aug 1 1 0 

Sep 0 1 0 

Oct 1 1 0 

Nov 1 1 0 

Dec 0 1 0 

- “0” indicated the significant correlation between observed and simulated 

series; 

- “1” indicated the non-significant correlation between observed and 

simulated series. 

 

 

Spearman’s rho correlation 

Station Month ANN NHMM BACT-ANN 

2815001 

Jan 1 1 0 

Feb 1 1 0 

Mar 1 1 0 

Apr 1 1 0 

May 0 0 0 

Jun 1 1 0 

Jul 1 1 0 

Aug 0 1 0 

Sep 1 1 0 

Oct 1 0 0 

Nov 1 1 0 

Dec 0 1 0 

2913001 

Jan 1 1 0 

Feb 0 1 0 

Mar 1 1 0 

Apr 0 1 0 

May 1 1 0 

Jun 1 1 0 

Jul 1 1 0 

Aug 1 1 0 

Sep 1 1 0 

Oct 1 0 0 

Nov 1 1 0 

Dec 0 1 0 

2917001 

Jan 1 0 0 

Feb 0 1 0 

Mar 1 1 0 

Apr 1 1 0 

May 0 1 0 

Jun 1 1 0 

Jul 0 1 0 

Aug 0 1 0 
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Sep 0 0 0 

Oct 0 1 0 

Nov 0 1 0 

Dec 0 1 0 

3118102 

Jan 0 1 0 

Feb 0 1 0 

Mar 1 1 0 

Apr 1 1 0 

May 0 1 0 

Jun 1 1 0 

Jul 1 1 0 

Aug 0 1 0 

Sep 0 1 0 

Oct 1 1 0 

Nov 1 1 0 

Dec 0 1 0 

- “0” indicated the significant correlation between observed and simulated 

series.; 

- “1” indicated the non-significant correlation between observed and 

simulated series. 

 

 




