STUDY ON PERFORMANCE OF ENERGY STORAGE SYSTEM ON POWER GRID FOR FREQUENCY REGULATION

TANG ZHI XUAN

MASTER OF ENGINEERING SCIENCE

LEE KONG CHIAN FACULTY OF ENGINEERING AND SCIENCE UNIVERSITI TUNKU ABDUL RAHMAN DECEMBER 2017

STUDY ON PERFORMANCE OF ENERGY STORAGE SYSTEM ON POWER GRID FOR FREQUENCY REGULATION

By

TANG ZHI XUAN

A dissertation submitted to the Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, in partial fulfillment of the requirements for the degree of Master of Engineering Science December 2017

ABSTRACT

STUDY ON PERFORMANCE OF ENERGY STORAGE SYSTEM ON POWER GRID FOR FREQUENCY REGULATION

Tang Zhi Xuan

A stable grid frequency is maintained by balancing the load and generation of real power. In frequency regulation, being one of the main ancillary services managed by the Grid Service Operators (GSOs), power is traditionally supplied by spinning reserves to keep the frequency of a control area within the limits. Although these generators possess high grid inertia to act against frequency change, they are limited by their ramping duration and rate. These shortcomings will be further magnified with the higher penetration of intermittent renewable energy (RE) sources in near future, which decreases the grid inertia and results in a more frequent and higher magnitude of power mismatches, hence frequency events. To effectively carry out frequency regulation services, additional spinning reserves are required to be set aside, incurring a higher cost for power generation. Besides, varying power output renders a higher maintenance cost due to increased wearand-tear on the plants. This research proposes a comprehensive work package of utilizing energy storage system (ESS) for grid frequency regulation. As such, two power networks are modelled, namely of the Peninsular Malaysia and IEEE 24bus Reliability Test System (RTS). The work package mainly contains two items; first, a frequency response analysis in MATLAB/Simulink through the modelling

of power plants in the power system with transfer functions, their respective daily scheduling and load profiles and second, a load flow analysis in MATLAB/Matpower to study the grid voltage impacts of the operation of frequency regulation by ESS. Droop controllers with integral and derivative controls are proposed for the frequency regulation operation of ESS, while the state-of-charge (SOC) is conserved through a set of offset algorithm. The effects of undersizing ESS for frequency regulation under various scenarios and high photovoltaic (PV) penetration are studied, along with the identification of the optimal ESS placement on the power grid in terms of frequency response and minimal grid voltage impacts. The proposed controller is shown to be able to continuously regulate grid frequency effectively while maintaining the SOC within a healthy range throughout the simulation period. Besides, it demonstrates that the undersizing of ESS does not diminish the quality of frequency regulation service significantly due to the actions of the proposed offset algorithm. However, the undersizing of ESS introduces fluctuations to the SOC profiles, which is further magnified during high PV penetration. Although the actual impacts of the frequent ramping of ESS are beyond the scope of the research, it proves the technical feasibility of ESS undersizing for capital cost savings. Based on the power networks simulated in the dissertation, it is shown that the frequency regulation operation brings relatively little impact to the grid voltages.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my research supervisor, Prof. Ir. Dr. Lim Yun Seng for having enormous patience to spend his quality time and effort to teach and guide me throughout the course of this research. Not only has he inspired me in the field of engineering, but also shaped me in my professional, leadership, and character development.

Next, I would also like to thank my colleagues working in the same research cabin throughout my career here, for they have made my days more bearable, while constantly being informative and helpful for the research experience. My appreciation also goes to my co-supervisor, Dr. Stella Morris, for being supportive to address any inquiries and concerns that I have faced in the process.

Last but not least, I am grateful to my family, for making personal sacrifices to accommodate my decision to pick up a research experience, rather than a full-time job.

APPROVAL SHEET

This dissertation entitled <u>"STUDY ON PERFORMANCE OF ENERGY</u> <u>STORAGE SYSTEM ON POWER GRID FOR FREQUENCY</u> <u>REGULATION</u>" was prepared by TANG ZHI XUAN and submitted as partial fulfilment of the requirements for the degree of Master of Engineering Science at Universiti Tunku Abdul Rahman.

Approved by:

(Prof. Ir. Dr. LIM YUN SENG) Date:
Professor/Supervisor
Department of Electrical and Electronics Engineering
Faculty of Engineering and Science
Universiti Tunku Abdul Rahman

(Dr. STELLA MORRIS) Date:
Co-supervisor
Department of Electrical and Electronics Engineering
Faculty of Engineering and Science
Universiti Tunku Abdul Rahman

LEE KONG CHIAN FACULTY OF ENGINEERING AND SCIENCE UNIVERSITI TUNKU ABDUL RAHMAN

Date:

SUBMISSION OF DISSERTATION

It is hereby certified that TANG ZHI XUAN (ID No: <u>15UEM07431</u>) has completed this dissertation entitled "Study On Performance Of Energy Storage System On Power Grid For Frequency Regulation" under the supervision Prof. Ir. Dr. Lim Yun Seng (Supervisor) from the Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, and Dr. Stella Morris (Co-Supervisor) from the Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science.

I understand that University will upload softcopy of dissertation in pdf format into UTAR Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(Tang Zhi Xuan)

DECLARATION

I (TANG ZHI XUAN) hereby declare that the dissertation is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTAR or other institutions.

Name : Tang Zhi Xuan

Date : December 2017

TABLE OF CONTENTS

ABSTRACT	iv
ACKNOWLEDGEMENTS	vi
APPROVAL SHEET	vii
SUBMISSION SHEET	viii
DECLARATION	ix
TABLE OF CONTENTS	Х
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS/NOTATION	XX

CHAPTER

1.0	INT	NTRODUCTION		
	1.1	Research Background	1	
	1.2	Objectives	9	
	1.3	Research Methodology	10	
	1.4	Research Outline	13	
	1.5	Publications	15	
2.0	LIT	ERATURE REVIEW	16	
	2.1	Introduction	16	
	2.2	Electricity Markets – Deregulated Market	16	
	2.3	Conventional Frequency Regulation	19	
		2.3.1 Primary Frequency Control	21	
		2.3.2 Secondary Frequency Control	22	

	2.3.3	Tertiary Frequency Control	23
	2.3.4	Summary of Frequency Control Actions	23
2.4	Electri	city Market – Regulated Market	24
2.5	Issues	Related to the Conventional Mechanism of	28
	Freque	ency Regulation	
	2.5.1	Slow Response of Synchronous Generators	28
		Towards Frequency Changes	
	2.5.2	Reduction in the Inertia of Power System	30
		Caused By the Increased PV Systems and Wind	
		Turbines	
2.6	Propos	sed Solutions for Supplementing the Existing	33
	Mecha	nism for Frequency Regulation	
	2.6.1	ESSs	33
	2.6.2	Existing Methods of SOC Conservation for	38
		ESS	
	2.6.3	Other Pertinent Solutions	42
	2.6.4	The Rationale for Formulating the Research	45
		Objectives in this Dissertation	
2.7	Summ	ary	46
MET	THODO	DLOGY	48
3.1	Introd	uction	48
3.2	Power	System Model of Peninsular Malaysia	48
3.3	Model	ling of Peninsular Malaysia's Power System in	50
	MATI	_AB/Simulink	
	3.3.1	Block Diagrams in Matlab/Simulink	51
		3.3.1.1 Transfer Function of Power System	52
		for Power Mismatch	
		3.3.1.2 Transfer Functions of TPP	53
		3.3.1.3 Transfer Functions of GPP	54

3.0

		3.3.1.4	Transfer Functions of HPP	55
		3.3.1.5	Droop and Secondary Control	55
	3.3.2	Load Pro	file and Power Plant Scheduling	56
	3.3.3	Transfer	Function of ESS	58
		3.3.3.1	ESS Controller	59
		3.3.3.2	SOC of the Batteries	60
		3.3.3.3	Offset Algorithm	60
	3.3.4	Penetrati	on of PV Systems	62
	3.3.5	Loss of I	Largest Generating Unit (LGU)	62
3.4	IEEE 2	24-Bus RT	S	63
	3.4.1	MATLA	B/Simulink	63
		3.4.1.1	Block Diagrams of Power System	65
		3.4.1.2	Load Profile and Power Plant	69
			Scheduling	
		3.4.1.3	Modelling of ESS	70
		3.4.1.4	Identification of Optimal Control	72
			Area Placement of ESS	
	3.4.2	Scenario	s of Study	72
		3.4.2.1	Penetration of PV Systems	72
		3.4.2.2	Undersizing of ESS	73
	3.4.3	Summar	y of Improvements and Changes from	74
		Previous	Model	
	3.4.4	Paramete	ers of the Simulation Models	75
3.5	Matpo	wer		76
	3.5.1	Modellin	g of Power System and ESS	77
	3.5.2	Identifica	ation of Optimal Busbar Placement of	77
		ESS		
	3.5.3	Integrate	d Test Environment (ITE) in	79
		Cooperat	ion with Newcastle University	
3.6	A Con	nprehensiv	e Work Package for ESS as Frequency	80
	Regula	ation Provi	sion	

4.0	RES	SULTS AND DISCUSSION	83
	4.1	Introduction	83
	4.2	Peninsular Malaysia Network	83
		4.2.1 Frequency Deviations and Power Profiles	84
		4.2.2 SOC Profiles and the Actions of Offset	86
		4.2.3 10% PV Penetration	90
		4.2.4 ESS to Cater for the Loss of LGU	92
	4.3	IEEE 24-bus RTS	94
		4.3.1 Frequency Deviation Histograms and	94
		Identification of Optimal Control Areas	
		Placement of ESS for Maximum Frequency	
		Quality	
		4.3.2 ESS Sizing	98
		4.3.3 Network Voltage Profiles	99
		4.3.4 Results of Undersized ESS	102
		4.3.5 25% PV Penetration	109
	4.4	Summary	115
5.0	CON	ACT LICION AND FUTURE WORK	117
5.0		A CLUSION AND FUTURE WORK	11/
	5.1	Conclusion	117
	5.2	Future Work	120
LIST	Г OF I	REFERENCES	122
APP	APPENDICES		

LIST OF TABLES

Table		Page
1.1	List of publication	15
2.1	Summary of frequency regulation actions	24
2.2	Response criteria of three frequency control actions based on Malaysian Grid Code	27
2.3	Ramping capability and duration of various generating units	28
2.4	Ramp rates of various generating unit type	30
2.5	Types of ESSs with the pertinent examples	33
2.6	The advantages and disadvantages of some energy storage technologies	35
2.7	Ramp rates of ESSs	36
2.8	Summary of works of other authors	43
3.1	Breakdown of Malaysian fuel mix in 2013 and 2014	49
3.2	Capacity breakdown of power plant types in the simulation model	50
3.3	Substitution of power plants on IEEE 24-bus RTS	65
3.4	Ramp rates of various power plant types modelled in MATLAB/Simulink	69
3.5	Maximum load in Week 51 and the respective generation capacity in the control areas in RTS	70
3.6	Improvements and changes of RTS model from the previous Peninsular Malaysia model	74
3.7	Similar parametrical values in both simulation models	75
3.8	Other differing parametrical values in both simulation models	76

- 3.9 Major components and the respective parameters in 77 Matpower
- 4.1 Standard deviation and range of two-week frequency 89 deviation profile
- 4.2 Standard deviation and range of frequency deviation under 90 10% PV penetration
- 4.3 Average ramp rate of power plants without and with ESS 92 under 10% PV penetration
- 4.4 Standard deviation and range of histogram of 1-week 98 frequency deviation profile for various ESS locations
- 4.5 Maximum and minimum daily power and energy capacity 99 required for ESS based on 1-week simulation for various ESS locations
- 4.6 Standard deviation and range of histogram of 1-week 106 frequency deviation profile for various ESS sizing
- 4.7 Standard deviation and range of histogram of 1-week 113 frequency deviation profile for various ESS sizing under 25% PV penetration
- 4.8 Total power plant output energy for various ESS sizing 115 without PV and with 25% PV penetration

LIST OF FIGURES

Figure		Page
1.1	Main components of a synchronous generator	1
1.2	Three windings that constitute the armature winding in stator, corresponding to three phases of power grid	2
1.3	Components of a rotor	3
1.4	A detailed cross-section of a 500MW synchronous generator	3
1.5	A mechanical speed governor	6
1.6	A 5-day averaged PV power profile	7
1.7	Flow chart of the methodology	11
2.1	Wide area synchronous grids in Europe	18
2.2	Three frequency regulation actions in the ENTSO-E	20
2.3	An illustration of the control mechanism of a 5% droop rating in primary frequency control	22
2.4	Minimum frequency response requirement profile for a certain frequency deviation of a generating unit	26
2.5	Solar PV global capacity and annual additions, 2005-2015	31
2.6	Wind power global capacity and annual additions, 2005-2015	31
2.7	An illustration of the decomposed AGC signal of 5 power commands for 5 generating units	40
3.1	Modelling of power system of Peninsular Malaysia with transfer functions in MATLAB/Simulink	51
3.2	Transfer function of power system	52
3.3	Transfer functions of TPP	53

3.4	Transfer functions of GPP	54
3.5	Transfer functions of HPP	55
3.6	Modelling of primary and secondary controls by power plants	56
3.7	Daily load scheduling of power plants and load profile in Peninsular Malaysia	57
3.8	Transfer function of ESS	58
3.9	Modelling of ESS controller	59
3.10	IEEE 24-bus RTS with three interconnected control areas	64
3.11	Modelling of the interconnection between control areas in MATLAB/Simulink	65
3.12	Electrical equivalent of power transfer between two control areas	66
3.13	Block diagram of the power system model of Area 1 of the RTS	68
3.14	Illustration of the operation of the proposed offset algorithm	71
3.15	Positioning of PV in the RTS	73
3.16	An overview diagram of ITE	79
3.17	The proposed comprehensive work package of utilizing ESS for frequency regulation	81
4.1	Frequency deviation profile of a sampled day with and without ESS	84
4.2	Power profiles of different generating units of a sampled day without ESS	85
4.3	Power profiles of different generating units of a sampled day with ESS	86
4.4	SOC and power offset signals of ESS on the sampled day	88

4.5	SOC profiles of ESS with and without offset algorithm on the sampled day	88
4.6	Daily maximum and minimum SOC of ESS for two-week of continuous frequency regulation	89
4.7	Frequency deviation profiles of a sampled day with and without ESS under 10% PV penetration	90
4.8	Power profiles of different generating units without ESS under 10% PV penetration	91
4.9	Power profiles of different generating units with ESS under 10% PV penetration	92
4.10	Frequency deviation profile and power profile of ESS in the event of the loss of LGU	93
4.11	SOC and power offset signals of ESS in the event of the loss of LGU	93
4.12	Histogram of 1-week frequency deviation for 3 control areas in RTS without ESS	95
4.13	Histogram of 1-week frequency deviation for 3 control areas in RTS with ESS in Area 1	96
4.14	Histogram of 1-week frequency deviation for 3 control areas in RTS with ESS in Area 2	96
4.15	Histogram of 1-week frequency deviation for 3 control areas in RTS with ESS in Area 3	97
4.16	Histogram of 1-week frequency deviation for 3 control areas in RTS with ESS in all control areas	97
4.17	Network voltage profiles of various ESS placement combinations at maximum power mismatch of a sampled day	101
4.18	Network voltage profiles of various ESS placement combinations at minimum power mismatch of a sampled day	102
4.19	Histogram of 1-week frequency deviation for 3 control areas in RTS with an 80%-sized ESS in all control areas	103

- 4.20 Histogram of 1-week frequency deviation for 3 control 104 areas in RTS with a 60%-sized ESS in all control areas 4.21 Histogram of 1-week frequency deviation for 3 control 104 areas in RTS with a 40%-sized ESS in all control areas 4.22 Histogram of 1-week frequency deviation for 3 control 105 areas in RTS with a 20% sized ESS in all control areas 4.23 SOC profiles of a sampled day of a 100%-sized ESS in all 107 control areas 4.24 SOC profiles of a sampled day of a 20%-sized ESS in all 107 control areas 4.25 Weekly maximum SOC of ESS placed in all 3 RTS control 108 areas for various ESS sizing Weekly minimum SOC of ESS placed in all 3 RTS control 4.26 108 areas for various ESS sizing. Histogram of 1-week frequency deviation under 25% PV 4.27 109 penetration for 3 control areas in RTS without ESS 4.28 Histogram of 1-week frequency deviation under 25% PV 110 penetration for 3 control areas in RTS with a 100%-sized ESS in all control areas 4.29 Histogram of 1-week frequency deviation under 25% PV 111 penetration for 3 control areas in RTS with an 80%-sized
- 4.30 Histogram of 1-week frequency deviation under 25% PV 111 penetration for 3 control areas in RTS with a 60%-sized

ESS in all control areas

ESS in all control areas

- 4.31 Histogram of 1-week frequency deviation under 25% PV 112 penetration for 3 control areas in RTS with a 40%-sized ESS in all control areas
- 4.32 Histogram of 1-week frequency deviation under 25% PV 112 penetration for 3 control areas in RTS with a 20%-sized ESS in all control areas
- 4.33 SOC profiles of a sampled day of a 20%-sized ESS in all 114 control areas under 25% PV penetration

LIST OF ABBREVIATIONS/ NOTATION

AC Alternating current AGC Automatic Generation Control APS Automatic programming system BESS Battery-based energy storage system CAES Compressed air energy storage CAISO California ISO CC Combined-Cycle CCGT Combined-Cycle Gas Turbine CT Combustion turbines DC Direct current DMOL Designed Minimum Operating Level Electromotive force emf ENTSO-E European Network of Transmission System Operators for Electricity ESS Energy storage system EU European Union EV Electric vehicle FiT Feed-in-Tariff GPP Gas power plant GSO Grid Service Operators HELCO Hawaii Electric Light Company HPP Hydro power plant

HVDC	High voltage direct current
IEA	International Energy Agency
ISO	Independent System Operator
ITE	Integrated test environment
LFC	Load-frequency control
LGU	Largest generating unit
MAS	Multi-Agent System
MGL	Minimum Generation Level
NEM	Net Energy Metering
NREL	National Renewable Energy Laboratory
OCGT	Open Cycle Gas Turbine
PID	Proportional-integral-derivative
РЈМ	Pennsylvania-New Jersey-Maryland Interconnection
PNNL	Pacific Northwest National Laboratory
PTM	Pusat Tenaga Malaysia
PV	Photovoltaic
R/X	Reactance to resistance
RC	Registered Capacity
RE	Renewable energy
ROI	Return of investment
RPM	Revolutions per minute
RTS	Reliability Test System
SAPP	South African Power Pool

SEB	Sarawak Energy Berhad
SEDA	Sustainable Energy Development Authority
SESB	Sabah Electric Sdn Bhd
SOC	State-of-charge
ST	Steam turbine
TC	Time constant
TNB	Tenaga Nasional Berhad
TPP	Thermal power plant
TSO	Transmission System Operators
UCTE	Union for the Coordination of the Transmission of Electricity
VFT	Variable frequency transformer
VSC	Voltage source converters
WPP	Wind power plant

CHAPTER 1

INTRODUCTION

1.1 Research Background

In large alternating current (AC) networks, three-phase synchronous generators are largely relied upon for power generation. Also known as alternators, these generators are used to convert mechanical power generated by steam or gas or hydraulic turbines to AC electric power. Essentially, a synchronous generator is formed by two main components: the stator and the rotor, as seen in Figure 1.1.

Figure 1.1: Main components of a synchronous generator (Sedky, 2009)

The stator, also known as the armature, is made of thin laminations of highly permeable steel, held together by a stator frame to provide mechanical support to the machine. Meanwhile, the inside surface of the stator are filled with slots to accommodate thick armature conductors, which are arranged symmetrically to form a balanced three-phase windings. A set of three conductors that constitutes the armature winding corresponds to three phases of power grid, as shown in Figure 1.2. To generate a uniform torque on the rotor, the phases are wound such that they are 120 degrees apart spatially on the stator.

Figure 1.2: Three windings that constitute the armature winding in stator, corresponding to three phases of power grid (Department of Computer Science, University of Waikato)

On the other hand, the rotor contains the field winding, which is excited by direct current (DC) through the slip rings and brushes, shown in Figure 1.3. The DC supply typically comes from a DC generator known as the exciter that is usually mounted on the same shaft as the synchronous machine. In larger generators, AC exciters and solid state rectifiers are more commonly used instead.

Figure 1.3: Components of a rotor (Holt, 2009)

Meanwhile, a detailed cross-section of a 500MW synchronous generator with a 2400kW DC exciter is shown in Figure 1.4. As such, the 25 kW pilot exciter controls the variable field of main exciter, which in turn supplies the electric current to the rotor through the slip rings and brush.

Figure 1.4: A detailed cross-section of a 500MW synchronous generator

(Sedky, 2009)

Based on Faraday's Law of Electromagnetic Induction, if there exists a conductor in a varying magnetic field or a conductor is moved in a magnetic field, an electromotive force (emf) is induced in the conductor. When a power source mechanically turns the rotor (acts as a magnet) at a constant speed, the magnetic field goes through the armature conductor that is electrically connected to the endusers (load); therefore current is induced into the stator and electrical power is generated.

The induced currents in the three conductors of the armature combine spatially to represent the magnetic field of a single rotating magnet. Similarly, the rotor represents a single dipole magnetic field. As these two fields spin, they move in synchronicity while maintaining a fixed position to each other. In simpler words, the term synchronous refers to the phenomenon whereby the rotor and the magnetic field rotate at the same speed.

The frequency of the induced voltage in the stator that corresponds to the utility frequency, f is directly proportional to the rotation rate of the rotor (in revolutions per minute, RPM), N. It is given in Eq. 1.1, where P is the number of magnetic rotor poles.

$$f = \frac{PN}{120} \tag{1.1}$$

Hence, the utility frequency is the nominal frequency at where the AC oscillates in the power transmission and distribution of an electric grid, from power plants to the end-users. While utility frequency is most commonly set at 50 Hz around the world, 60 Hz is also commonly seen in North Americas and some countries. Basically, the utility frequency is maintained by balancing the real power generation and load. The utility companies forecast the load demand for the next day on a daily basis; hence the number of generators and the power level they are running are planned ahead. Meanwhile, a certain amount of extra generating capacity of the generators connected to the network is to be reserved as for both the standby of the loss of generating unit and regulation provision, known as the spinning reserve. For instance in the case of Peninsular Malaysia, a total of 1,200MW of spinning reserve is allocated from 2015-2019; 1,000MW acts as a standby while 200MW is for regulation (Suruhanjaya Tenaga (Energy Commission), 2016).

The governor speed of generators is tied to the grid frequency, in which the governor operates under droop speed control. A droop speed control adjusts the governor speed based on the frequency deviation signals, by changing the position of control and intercept valves that dictates the power output. A figure of a mechanical speed governor is shown in Figure 1.5. In short, the governor adjusts its position output based on the rotor speed signal, ω_r . There are also variants of electronic governors and digital systems replacing the mechanical governors, with

similar overall functional requirements though with a faster response (Kundur, 1993).

Figure 1.5: A mechanical speed governor (Kundur, 1993)

Magnitude of power mismatch aside, the frequency deviation is also mainly dependent on the grid inertia, which is provided by the rotating masses of generators. For instance, with large grid inertia in a power system in the event of a power mismatch, the rotor speed is not easily influenced as the rotor inertia keeps itself spinning at a constant speed, hence keeping a constant grid frequency.

However, with the increasing installations of intermittent power production sources like wind and photovoltaic (PV) systems in the power systems, the power mismatch between generation and load is anticipated to get worsened, driving the grid frequency to be out of the nominal range. A sample of 5-day averaged PV power profile measured within the university compound during the research work of this dissertation is shown in Figure 1.6, displaying high fluctuations of power production. At the same time, replacing conventional power plants with intermittent power sources directly decrease the grid inertia, rendering power grid to be susceptible to the occurrence of frequency events.

Figure 1.6: A 5-day averaged PV power profile

Based on Renewables 2016 Global Status Report compiled by the Renewable Energy Policy Network, PV and wind energy have average annual growth rates of 42% and 17% respectively from 2010 to 2015, contributing about 1.4% of global energy consumption in 2014 (REN21, 2016). In Malaysia in particular, although the total power generation from renewable energy (RE) is almost negligible in 2014, it is expected to increase to up to 3% in 2024 (Suruhanjaya Tenaga (Energy Commission), 2014).

It is crucial to maintain grid frequency within statutory limits to protect the operations and conditions of electrical equipment as they are designed to operate under certain system frequency; over- or under-frequency might contribute to overheating or spoiling the equipment. Besides, the impedance of a power system, specifically the reactance is dependent on frequency, thus a stable grid frequency is crucial to maintain the smooth operation of a power system.

Currently, the frequency regulation in the power system is performed by conventional power plants. However, the task requires frequent ramping up and down of power production, which increases the wear and tear of generators and decreases the efficiency. Besides, they have limited ramping rate and duration due to their mechanical components. It also requires a certain share of power plant capacity to be set aside as regulation capacity, hence they are run at a lower capacity, indirectly driving up the cost of electricity.

Energy storage system (ESS), on the other hand, possesses shorter response time than traditional generators, besides having higher ramp rates and high cycling ability. In fact, ESS has been recently utilised for small-scale regulation services in Europe and Americas. However, most researches (to be discussed in Chapter 2.6) mainly focus on the control performance without a long-term consideration of the state-of-charge (SOC) or capacity of the ESS, therefore neglecting its longterm sustainability in regulating frequency. Also, certain important aspects like the placement of ESS for effective frequency regulation on the power grid and voltage issues have not been investigated by the current authors.

Hence, a comprehensive work package is developed and presented in the dissertation to address the important aspects of using ESS for frequency regulation on an interconnected power system. An offset control algorithm is developed in MATLAB/Simulink under this work package to study how ESS can regulate the frequency while conserving its energy under the constraints of the SOC. This model is able to determine the optimum capacity of ESS and is used to study the effects of ESS on the quality of frequency if the size of ESS is reduced under the penetration of RE sources on the networks. Then, a task is developed in MATLAB/Matpower to identify the best locations where ESS can be installed on a control area to carry out frequency regulation effectively without creating voltage regulation issues. Essentially, this work package is used to investigate the feasibility of using ESS as a means of frequency regulation in the power network under the increased penetration of PV.

1.2 Objectives

The objectives of this research work are as follows:

I. To propose a comprehensive work package for adopting ESSs to carry out frequency regulation continuously in an interconnected power system.

- II. To evaluate the performance of the proposed framework in terms of the frequency regulation algorithm and the capacity conservation offset algorithm of ESS.
- III. To identify the optimal ESS location for frequency regulation purpose in the transmission network in terms of frequency regulation quality and minimal voltage impact to the power grid.
- IV. To evaluate the case studies of high PV penetration and the adoption of undersized ESSs for frequency regulation.

1.3 Research Methodology

This research aims to develop a comprehensive work package for adopting ESSs to carry out frequency regulation continuously in an interconnected power system. The study was carried out using simulation approach, where the flow chart of methodology is given in Figure 1.7. The research methodology is divided into 7 steps as follows:

Figure 1.7: Flow chart of the methodology

Step 1: Literature Review

The mechanisms of traditionally frequency regulation and the pertinent current challenges are researched. Later, the proposed works and solutions of the academic and industrial authors are summarised and critically reviewed. A sensible approach to the solution of the problem is proposed based on the literature review.

Step 2: Preliminary Modelling: Malaysian Power Grid Network

A preliminary modelling to the problem is carried out in MATLAB/Simulink with the Malaysian power grid network. A simple single control area is modelled to prove the feasibility of the approach. In the meantime, the model shed lights on the shortcomings of the analysis due to the lack of grid network data. The results collected in the modelling serves to further improve on a more complicated modelling of the problem for a more in-depth study.

Step 3: IEEE 24-Bus Power System Modelling

A more complicated three control area of IEEE 24-Bus Reliability Test System (RTS) is modelled in MATLAB/Simulink. The RTS is modified so as to more closely resemble the current power system. The modelling is a step-up from Step 2 by including more advanced control features and detailed modelling of power system.

Step 4: Frequency Regulation and Capacity Offset Algorithms

The frequency regulation algorithm of ESSs is designed such that the frequency deviation can be minimised effectively. Besides, a capacity offset algorithm is designed such that the capacity of ESSs can be maintained in a healthy range for the continuous operation of frequency regulation.

Step 5: Performance Assessment

One week of load profile is simulated to evaluate the performance of the designed frequency regulation and capacity offset algorithms.

Step 6: Identification of Optimal ESS Location for Frequency Regulation

The optimal placement of ESS in network is identified by running repeated simulations while varying the positioning of ESS in the control areas. The time series of the power profile of each generating unit and the respective load profiles are obtained as input values for the subsequent modelling in Matpower, a load flow tool. The Matpower modelling of IEEE 24-Bus RTS is to identify the exact

busbar placement of ESS within the control areas for minimal impact on grid voltages.

Step 7: Case Studies of ESSs Undersizing and High PV Penetration

A case study of a high PV penetration in the power system is modelled to study its effects on the proposed methodology. Also, some case studies of undersizing ESSs for grid frequency regulation aided by the actions of capacity offset algorithm are simulated.

1.4 Research Outline

The structure of the dissertation is outlined in the following manner:

Chapter 2 summarizes the literature review on the conventional frequency regulation mechanisms, while also highlighting the respective shortcomings of the traditional generators and the potential challenges brought by intermittent RE sources. The research work carried out by other researchers is reviewed critically before the rationale for formulating the research objectives of the dissertation is stated.

Chapter 3 explains the methodology of the proposed work package, where two power networks are modelled, of the Peninsular Malaysia and IEEE 24-bus RTS.

The modelling of power plants with transfer functions in Simulink is described, along with their pertinent daily scheduling and load profiles in MATLAB/Simulink for frequency response analysis. The proposed frequency regulation control algorithm and capacity offset algorithm for ESS are illustrated as well. In addition, the use of an integrated automatic programming system (APS) test environment (ITE) through the cooperation with Newcastle University for the load flow studies in Matpower is elucidated. The case studies considered in the dissertation are also laid out.

Chapter 4 presents the simulation results of the Peninsular Malaysian and IEEE 24-bus RTS network separately. The effectiveness of the proposed algorithms for ESS under various scenarios and case studies is assessed. Other than that, the optimal placement of ESS in the power grid is identified while the effects of undersizing ESS are scrutinised.

Chapter 5 draws the conclusion of the dissertation by summarising the major findings and takeaways of the research work. Besides that, the potential future work is discussed for the reference of readers and other researchers.
1.5 Publications

Based on the research findings, a paper has been published in an international conference listed as follows:

No.	Title	Status	Journal/	Index/ Impact
			Conference	Factor
1	Frequency	Accepted	Conference:	SCOPUS
	Regulation		4 th IET	
	Mechanism of		International	
	Energy Storage		Conference on	
	System for the		Clean Energy and	
	Power Grid		Technology 2016	

Table 1.1: List of publication

Meanwhile, a journal paper is in the process of composition for submission as per the completion of this dissertation.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter first summarises the general concepts of electricity markets and the description of the pertinent frequency regulation mechanisms. Next, the challenges of the conventional frequency regulation are presented, before delving into the works and solutions proposed by the academic and industrial authors. The rationales for the objectives of this research work are highlighted before the summary of this chapter.

2.2 Electricity Markets – Deregulated Market

The electricity market is mainly divided into two; first, it is the deregulated electricity wholesale market as it is seen in the Europe and United States (US), where electricity is traded as a commodity and second, it is a tightly regulated monopoly by an organisation where a single unified electricity tariff is adopted as it is with Malaysia. A regulated electricity structure is whereby one main company, known as the Utility, owns the entire infrastructure of transmission and

distribution, purchasing electricity from power generation companies before distributing it to the consumers. Meanwhile, in a deregulated market, multiple parties are involved; although the Utility still owns the infrastructure and distributing electricity to the consumers, it is not the sole buyer of electricity. Hence, there are multiple sellers in the market, encouraging competitive bidding and pricing in the electricity market.

A wide area synchronous electric grid is a regional electrical grid that is tied together, operating at a synchronised frequency. Some examples of the grid network are the Continental European Synchronous Area (formerly known as the Union for the Coordination of the Transmission of Electricity (UCTE) that covers multiple countries in Europe, NORDEL that covers the Nordic countries, and Eastern Interconnection that covers between eastern US and Canada. The interconnections between synchronous grids can be tied to each other via high voltage direct current (HVDC) power transmission lines and variable frequency transformers (VFTs). Most of the wide area synchronous electric grids are deregulated electricity markets. Besides the aforementioned grid networks, other examples are the Indian national grid and Southern African Power Pool (SAPP) (Indian Energy Exchange, 2017; Southern African Power Pool, 2016).

Figure 2.1: Wide area synchronous grids in Europe (Forschungsstelle für Energiewirtschaft e.V., 2017)

The wide area synchronous grids as seen in Europe and shown in Figure 2.1 forms the European Network of Transmission System Operators for Electricity, namely ENTSO-E, with the objectives of supporting the implementation of European Union (EU) energy policy. Therefore, the ENTSO-E regulates the electricity transmission and distribution frameworks of Europe, including frequency regulation. In fact, similar frequency regulation framework is applied all across the world; hence, only the ENTSO-E regulation is presented for the case of a deregulated electricity market. On the implementation of frequency regulation, there are more than 40 transmission system operators (TSOs) in ENTSO-E that are responsible for the task. As such, TSOs are the ones that are accountable for the purchasing of frequency regulation services in the deregulated market through biddings or auctions of power and energy.

There are basically two main commodities in the electricity supply: power and energy. Power is the net electrical transfer rate at any given time, measured in megawatts (MW) while energy is the electricity that flows through a point for a given time, measured in megawatt-hours (MWh). In this context, the bid amount is the power while the delivery duration gives the energy required out of the participating unit.

2.3 Conventional Frequency Regulation

In general, a stable utility frequency is achieved by maintaining the balance between real power generation and load. Should there be a shortage of power in the grid, power is temporarily drawn from the rotor to satisfy the load demand, decreasing the kinetic energy and the speed of the rotor, hence the utility frequency. The speed governor that detects such rotor speed change triggers the control valves to be opened to regulate the rotor to its nominal speed, hence the nominal frequency, f_0 . The similar principle applies when there is an excess of power in the grid. The utility frequency deviation in the event of power mismatch is given by the Swing Equation, as shown in Eq. 2.1.

$$\frac{df}{dt} = f_0 \frac{P_m - P_e}{2H} \tag{2.1}$$

 P_m and P_e are the mechanical and electrical power of the rotor respectively, where H is the inertia constant of machine. Hence, based on Eq. 2.1, the magnitude of frequency deviation is mainly dependent on two parameters; the mismatch between load and generation and the grid inertia.

On a side note, *H* is the normalisation of *M*, also known as the inertia constant of machine, given in Eq. 2.2, where ω is the angular speed of the rotor and *S_{rated}* is the three-phase rating of the machine in MVA.

$$H = \frac{M\omega}{2S_{rated}} \tag{2.2}$$

Figure 2.2: Three frequency regulation actions in the ENTSO-E

The frequency regulation in the ENTSO-E is carried out in three actions: primary, secondary, and tertiary, as seen in Figure 2.2 (UCTE, 2004). Each action of the frequency regulation has its respective tasks and desirable response times. In the case that a large frequency deviation occurs, the primary control is to take charge

within seconds to stabilise the frequency, before the secondary control sets in for frequency recovery. On the other hand, the tertiary control acts if the secondary control fails to restore the frequency.

2.3.1 Primary Frequency Control

On the primary frequency control, the activation is done automatically and locally by all participating units, with the main aim at reestablishing the balance between the supply and demand of power. The control is carried out automatically such that the governor of the generators is set to a droop control mode, in which the governor speed or the power output is linearly proportional with the frequency deviation (Kundur, 1993). The equation of droop rating, *R* is given in Eq. 2.3.

$$R = \frac{\text{percentage of speed or frequency change}}{\text{percentage of power output change}} x \ 100\%$$
(2.3)

Referring to Eq. 2.3 for instance, a 5% droop rating implies that a 5% frequency deviation results in 100% change in the power output. An illustration of a 5% droop rating assuming the generating unit is running at 50% power output initially is shown in Figure 2.3, in which the droop control renders the generating unit to ramp up the power to 100% power output (hence a 100% change) when it is subject to a 5% frequency deviation.

Figure 2.3: An illustration of the control mechanism of a 5% droop rating in primary frequency control

The maximum allowable "quasi steady-state" frequency deviation is ± 0.2 Hz, while the primary frequency control is to set in within 15 seconds. The provisions for the primary control are to be fully activated after 30 seconds, which is known as the response time, while the minimum duration of delivering the power, namely delivery time, is 15 minutes, until the secondary or tertiary control is ready to take over.

2.3.2 Secondary Frequency Control

On the secondary frequency control, the participating unit is required to run at a power level that is between the maximum and minimum power output. This criterion is to ensure that the participating unit has the ability to respond symmetrically. The term "symmetry" in frequency regulation context, implies that a participating unit is able to supply and absorb power, contributing to frequency regulation symmetrically in both the addition and subtraction of power. It is required to set in within 30 seconds the latest upon a frequency event, taking over from the primary frequency control (Schmutz, 2013).

2.3.3 Tertiary Frequency Control

Last but not least, tertiary frequency control is manually called upon if the grid frequency is not recovered back to its nominal value after 15 minutes. Tertiary reserves are expected to run continuously until the event is resolved by generation rescheduling.

2.3.4 Summary of Frequency Control Actions

The frequency regulation actions are summarised in Table 2.1. To qualify for the biddings, the prospective suppliers are to fulfil certain prequalification procedure conducted by the TSOs to demonstrate their ability to meet the technical requirements of frequency regulation as required, to ensure the reliability of service.

Frequency Regulation Actions	Primary	Secondary	Tertiary	
	15 seconds			
Response	Full	30 seconds	15 minutes	
Time	activation:	50 seconds		
	30 seconds			
Delivery Time	15 minutes	15 minutes	Until the situation is resolved	
Power/Energy			Asymmetrical; successful power	
Provision	Symmetrical	Symmetrical	bidders are to bid for energy as	
Auction			well	

Table 2.1: Summary of frequency regulation actions

2.4 Electricity Market – Regulated Market

Meanwhile in Malaysia, under the Malaysian National Grid framework, there are three grid service operators (GSOs) responsible to serve the three regions of Malaysia: Tenaga Nasional Berhad (TNB) in the Peninsular, Sabah Electric Sdn Bhd (SESB) in Sabah, and Sarawak Energy Berhad (SEB) in Sarawak. The Malaysian grid network is regulated in such a way that the GSOs are the sole buyers of the electricity generated by the power producers within their region of responsibility. In addition, the GSOs are also responsible for frequency regulation apart from the reliability of power supply.

However, unlike the earlier mentioned deregulated grid structure, each generating unit is to participate in all the actions of frequency regulation. In fact per Malaysian Grid Codes, "Each Generating Unit or Combined Cycle Gas Turbine (CCGT) Module or Power Park Module must be capable of providing response" (Suruhanjaya Tenaga (Energy Commission), 2014).

A Power Park Module is comprised of a collection of non-synchronous generating units that are powered by an intermittent power source (in which the primary source of power is not controllable, wind and solar, for example) that is connected to the transmission system. In short, all the generating units that are connected to the grid network are to respond to the frequency deviation (Suruhanjaya Tenaga (Energy Commission), 2014). However, it is understood that the intermittent power sources are not able to respond to frequency deviation effectively.

The Malaysian grid frequency is to be maintained within the limits of 49.5 Hz to 50.5 Hz, except under exceptional circumstances. Some examples of the exceptional circumstances include the failure of operation of the generating unit and transmission system. The utility frequency regulation responses are divided into primary, secondary, and high-frequency response; the previous two deal with frequency decrease while the latter deals with frequency increase.

On the other hand, each generating unit connected to the Malaysian grid is to run above the Minimum Generation Level (MGL). The MGL is defined as a maximum of 65% of the Registered Capacity (RC) of a generating unit. Under normal circumstances, the generating unit will not be dispatched to run below the MGL; however, it must be capable of operating down to the Designed Minimum Operating Level (DMOL). The DMOL is defined as a maximum of 55% of the RC. This is to cater for high-frequency events, where the generating unit has to be ramped down.

The response level of each generating unit during a frequency deviation depends on its loading levels and the magnitude of the deviation, unless it reaches its full capacity. A sample of minimum frequency response requirement profile for a certain frequency deviation is shown in Figure 2.4, in which the actual profile might differ for each generating unit. Any response level that is below this minimum requirement is considered unacceptable by the GSOs. From Figure 2.4, while it shows that a generating unit is not required to provide any response during a high-frequency event at DMOL, it is obliged to further ramp down the power output should the frequency is at or above 50.5 Hz.

Figure 2.4: Minimum frequency response requirement profile for a certain

frequency deviation of a generating unit (Suruhanjaya Tenaga (Energy

Commission), 2014)

The response criteria for the three frequency control actions are shown in Table 2.2 below:

Control Actions for	Response Time (s)	Power Delivery Time
Frequency Regulation		
Primary Response	10	30 seconds
Secondary Response	30	30 minutes
High-Frequency	10	n/a
Response		

Malaysian Grid Code

Table 2.2: Response criteria of three frequency control actions based on the

Unlike the primary and secondary response, high-frequency response does not require additional fuel to be carried out; since it deals with the ramping down of power, the response time of power plants is crucial. Compared with the ENTSO-E criteria, the delivery time of primary response does not overlap with that of the secondary response. Also, there is not a stipulation of the frequency response measures beyond the 30 minutes delivery time of secondary response. However, there is one additional regulation in the Malaysian Grid Code whereby the generating units are to be fully restored within 20 minutes to its full responsive capability after responding to a significant frequency disturbance.

To cater for regulation capacity, a certain percentage of power plant capacity has to be set aside as spinning reserves. Therefore, the cost of energy generation is indirectly increased as the power plants are running on part-loads, which is very likely to be channelled to the consumers (Koh et al., 2011).

2.5 Issues Related to the Conventional Mechanism of Frequency Regulation

2.5.1 Slow Response of Synchronous Generators towards Frequency Changes

As frequency regulation requires frequent ramping of generating units, their limited ramping capability due to their rotary turbo-machinery features may result in limited regulation ability. Based on a report from the Pacific Northwest National Laboratory (PNNL) (Makarov et al., 2008), the ramping capability of various types of the generating units managed by the California Independent System Operator (ISO) is shown in Table 2.3. While the regulation capacity can be increased by having more generating units, the frequency regulation quality is essentially limited by their ramp rate and ramp duration capability.

Unit Type	Averaging Ramping	Average Duration
	Capability, % per	Capability of Highest
	Minute	Ramp (minute)
Natural-Gas-Fired Steam	1.8	3.9
Turbines (STs)		
Combined-Cycle (CCs)	2	5.4
Combustion Turbines (CTs)	20.4	N/A
Hydro Aggregate	13.2	1.9
Hydro	44.5	0.9

Table 2.3: Ramping capability and duration of various generating units

In addition, varying the loads of fossil-based power plants induces thermal and pressure stresses within the system such as the boilers, steam lines, turbines, and auxiliary components (Lew et al., 2013). The effects are not only the resulting wear-and-tear that may incur additional capital and maintenance costs due to the reduced life expectancies of components (Connolly et al., 2011; EPRI, 2001), a prolonged ramping also degrades the fuel conversion efficiency (Lefton and Besuner, 2001).

On the other hand, according to Wärtsilä, a Finnish manufacturer and service provider of power sources, the starting loading capability of gas turbines is different from their advertised ramp rate, in which the full ramp rates are only achieved when a particular unit reaches its self-sustaining speed (Wärtsilä). Traditionally, the ramp rates of CCGTs are limited to allow steam temperatures and pressures to rise within tolerable limits to control the thermal stress imparted on the steam generators and turbine. Recently, the achievements of improved boiler designs, along with the bypass system designs that allow ramping to be done independently of steam turbine, stretch the limits of CCGTs in terms of ramp rate. However, this is not achievable without incurring higher maintenance costs. As a side note, Wärtsilä claimed that its combustion engines are able to reach a ramp rate of 50% capacity per minute.

Meanwhile, in a report of Cost and Performance Data for Power Generation Technologies prepared to the National Renewable Energy Laboratory (NREL), the ramp rate values presented by them to evaluate the cost and performance date for power generation technologies are shown in Table 2.4 (Black & Veatch, 2012).

Unit Type	Ramp Rate, % per Minute	
Nuclear	5	
Gas Turbine	8.33	
CCs	5	
Pulverised Coal-Fired	2	

Table 2.4: Ramp rates of various generating unit types

2.5.2 Reduction in the Inertia of Power System Caused by the Increased PV Systems and Wind Turbines

The limitations of the traditional generating units are not helped by the increased penetration of PV systems and wind turbines in the near future. Such phenomenon reduces the number of synchronous generators on power systems. As a result, the moment of inertia in the power system is reduced, hence making the system frequency to be very susceptible to the power mismatches (Knap et al., 2014). With the current low response of the generators to the frequency changes, the existing mechanism of controlling the frequency may not be effective.

According to the estimated RE share on the global electricity production in 2015 (REN21, 2016), wind and PV are estimated to contribute 3.7% and 1.2% respectively of the total generation. While the projection for the future wind and PV contribution is inconsistent based on the assumptions made in forecasting models (U.S. Energy Information Administration, 2016), the historical trends as shown in Figures 2.5 and 2.6 suggest that the pickup is exponential.

Figure 2.5: Solar PV global capacity and annual additions, 2005-2015

(REN21, 2016)

Figure 2.6: Wind power global capacity and annual additions, 2005-2015

(REN21, 2016)

In Malaysia, the power generation derived from RE is almost negligible in 2014, but it is planned for the share to reach at least 3% by 2024 (Suruhanjaya Tenaga (Energy Commission), 2014). To achieve the goal, the Sustainable Energy Development Authority (SEDA) Malaysia first incurred a 1% surcharge on electricity bills to pool funds for the Feed-in-Tariff (FiT) of RE in 2011. The FiT was meant to provide incentives for the industrial, commercial, and residential consumers to install RE resources for electricity production to the common grid. The figure was later revised to 1.6% in 2014 before being phased out in 2016, in favour of a lower-rate net energy metering (NEM) after the Malaysian RE industry, in particular the PV industry was established.

In a longer horizon, the solar energy is projected to contribute at least 6,500 MW by 2030, by the Pusat Tenaga Malaysia (PTM) and the International Energy Agency (IEA) (Augustin et al., 2012). Meanwhile, wind energy is less favourable in Malaysia due to the geographical location and climate in the equatorial region (Wong J., 2015).

2.6 Proposed Solutions for Supplementing the Existing Mechanism for Frequency Regulation

2.6.1 ESSs

There are various types of ESSs that are employed for industrial use, summarized in Table 2.5. ESSs are mainly utilised to capture the energy production preferably when extra energy is generated in the system, such that the energy can be supplied during occasions that it is needed and the energy production from other sources is scarce.

Types of ESSs	Examples	
Mechanical	Compressed Air Energy Storage	
	Flywheel Energy Storage	
	Pumped-Storage	
	Gravitational Potential Energy	
Electrical/Electromagnetic	Capacitor	
	Super Capacitor	
	Superconducting Magnetic Energy Storage	
Electrochemical	Battery	
Thermal	Molten Salt Storage	
	Solar Pond	
	Liquid Nitrogen Engine	
	Phase Change Material	
	Thermal Energy Storage	
	Steam Accumulator	
Chemical	Biofuels	
	Hydrogen Storage	
	Hydrated Salts	

Table 2.5: Types of ESSs with the pertinent examples

The most common usage of ESSs is for electricity production, especially when they are coupled with RE sources. As RE sources are known for their intermittency in power production, ESSs allow the energy produced throughout the day to be stored and released at strategic times, hence rendering RE sources relevant for some beneficial industrial applications. Besides providing heating and cooling in general, ESSs are also recently used to provide ancillary services in the power grid, including voltage regulation, operating reserve, peak shaving, and demand side management (Wong J. , 2015).

In fact, utilising ESS for frequency regulation services is an emerging idea since ESS has been commercialised for such purpose in Europe and Americas because of their fast response time and high cycling operation (Gyuk and Eckroad, 2003; Laszarewicz and Arseneaux, 2006). A summary of the advantages and disadvantages of the more common energy storage technologies is shown in Table 2.6 (Gustavsson, 2016).

Table 2.6: The advantages and disadvantages of some energy storage

Energy Storage	Advantages	Disadvantages		
Technologies				
Lead acid	- Low cost	- Short lifespan, further		
batteries	- Mature technology	shortened by deep		
	- Able to provide high	discharge		
	current			
Lithium ion	- High energy density	- High cost		
batteries	- Low weight			
Redox flow	- Long cycle life	- Low efficiency (60-70%)		
batteries	- Short charging time	- Low energy density		
		- A more complicated design		
		involving pumps, sensors,		
		and control units		
Flywheel - High efficiency		- High self-discharge rate		
	- Long cycle life	- Sophisticated technology		
Super capacitor	- Long cycle and shelf life	- High self-discharge rate		
		- Low energy density		
Pumped-storage	- Long lifetime	- Relatively slow response		
	- Mature technology	- Inflexible in terms of		
		geographical restrictions		
		- Huge capital expenditure		
		- Low energy capacity		

technologies

Based on the references (Black & Veatch, 2012; First Hydro Company, 2009), the ramp rates of ESSs are presented in Table 2.7, showing higher ramp rates than the conventional power plants.

ESSs	Ramp Rate, % per Minute
Pumped-Storage Hydro	50
Battery-based Energy Storage	20%/sec
System (BESS) (Sodium Sulfide)	
	10
Compressed Air Energy Storage	(Black & Veatch, 2012)
(CAES)	15-40
	(First Hydro Company, 2009)
Flywheel	100

Table 2.7: Ramp rates of ESSs

In fact, in one of the case studies presented (First Hydro Company, 2009), although the pumped hydro energy possesses the ability to achieve a ramp rate of 3% of capacity per second, a waiting period of several minutes is incurred for a change of its operating mode due to the massive hydrodynamic and mechanical inertia in the turbine. To counter the lag time, faster-responding sodium sulfide battery is picked as the backup resource.

On the other hand, in another report prepared by PNNL (Kintner-Meyer et al., 2012), it was discussed that the high ramp rates and cycling abilities of battery presents the opportunity for grid balancing to be done more effectively. In particular, the vanadium redox flow batteries have a response time of milliseconds, with the ability to sustain more than 200,000 cycles.

Some of the actual deployed physical projects for frequency regulation are a 1MW and 250kWh of lithium ion BESS at Hawaii (Hawai'i Natural Energy Institute, 2014), a 4MW and 8MWh lithium ion BESS at Jeju Island (Castillo et

al., 2014), and a 1MW and 580kWh of lithium ion BESS at Zurich (Koller et al., 2014).

In Hawaii, where the power grid is maintained by Hawaii Electric Light Company (HELCO), the wind and distributed PV contribute to approximately 15% and 3% of the total generation respectively. The phenomenon has limited further installation of intermittent RE sources as they have frequently resulted in grid-wide power imbalances. Therefore, HNEI developed a 1MW and 250kWh ESS made of lithium ion batteries on the grid system to perform frequency regulation and wind power smoothing. To test out the control algorithm before being deployed to the actual system, computer simulations were carried out to study hypothetical disturbance scenarios such as sudden loss of power generation and step load and wind power production change (Hawai'i Natural Energy Institute, 2014).

In the algorithms developed, when the battery is close to its full capacity, its charge power limit is reduced; likewise, when the battery is close to being fully discharged, its discharge power limit is reduced. Besides that, the charging and discharging power limits are also adjusted based on the battery temperature. In the results, only graphical presentations were shown on the effectiveness of frequency control response, without quantifying the improvements. Besides that, the SOC profiles were not presented during the course of investigation; neither the effects of limiting the power control limits to the frequency profile were discussed.

In one of the substations in Jeju Island (Castillo et al., 2014), a 4MW and 8MWh ESS was connected for frequency regulation and shown to be operating continuously for three days. While a discharge limit is set for the steady-state operation, the ESS is automatically instructed to charge or discharge according to its SOC. However, the ESS is set to operate as required at all times, thus exposing the risk of overdischarging or overcharging the ESS. As such, the authors have not discussed about the risks of rendering the ESS inoperable due to overdischarging or overcharging. As the authors largely concentrated on the communication between hardware, the simulation only presented SOC and frequency profiles of three days, which may not be sufficient to justify the viability of regulating the network frequency using ESS.

2.6.2 Existing Methods of SOC Conservation for ESS

On the other hand, in the case of Zurich (Koller et al., 2014), the 1MW and 580kWh BESS was responsible for 1MW of frequency regulation power. The authors introduced a moving average approach to control the SOC of BESS by decreasing the overall power and energy required by BESS. Meanwhile, the value of power offset is capped and the offset rate is limited so as not to interfere with the frequency control performance. In short, in a moving average approach, the BESS power control is almost offset at all times. A simulation was run based on one year of actual frequency measurements. It was shown that the SOC was

within operating limits ($0\% \leq SOC \leq 100\%$) throughout the course of simulation, although the frequency profile was not presented. Since frequency regulation service of a predetermined power or energy magnitude is auctioned in a deregulated grid network, it is not required to model the other generating units of power systems but the BESS itself, hence the BESS operates independently. For real-time measurements, a few hours of frequency and SOC profiles were presented.

Meanwhile, the regulatory and market conditions molded the task of frequency regulation to be "net-zero" (or "zero-mean") on the timescale of 10 to 15 minutes, in which the net energy supplied for frequency regulation is zero by balancing the occasions of over-generation and under-generation (Rojas and Lazarewicz, 2004).

For instance, ISOs such as Pennsylvania-New Jersey-Maryland Interconnection (PJM) and California ISO (CAISO) decompose the power required for frequency regulation known as Automatic Generation Control (AGC) signal into a few power commands to be allocated to various generating units (Campbell and Bradley, 2014). An illustration of the power command amplitude being decomposed into 5 power commands for 5 generating units is shown in Figure 2.7. As such, the power commands represent a sine curve to achieve a "net-zero" frequency regulation.

Figure 2.7: An illustration of the decomposed AGC signal of 5 power commands for 5 generating units (Campbell and Bradley, 2014)

However, frequency regulation services especially secondary control are not strictly zero-mean as system losses are unavoidable (Megel et al., 2013) Also, another statistical analysis shows that while frequency deviation profiles are close to a normal distribution, it presents a net outflow of energy in the long term (Borsche et al., 2013).

Nonetheless, Megel, et al. (2013) proposes to only manage fast and zero-mean frequency deviations with BESS while passing the rest of the tasks to other response resources. As such, another concept of offset algorithm based on SOC thresholds is recommended in an ENTSO-E grid. In simpler terms, the BESS power is only offset when its SOC goes out of a predefined range. This approach focuses on keeping the SOC in between the defined lower and upper thresholds to minimise the degradation of BESS. Meanwhile, the ramp rate of offset is set such

that it is slow enough for the power plants to follow so as not to negatively impact the quality of frequency regulation services. However, the paper mainly focuses on the return of investment (ROI) of the proposed primary frequency control while the overall frequency and SOC profile are not evaluated, therefore neglecting the impact of passing the non-zero-mean frequency deviations to the power plants.

In terms of SOC conservation, some authors proposed to rely on a mixture of methods while proposing BESS for primary frequency control (Oudalov et al., 2007). First, the paper proposes adjustable SOC limits while also incorporating the selling of energy to the market when the BESS is close to its full capacity. It is mentioned that the main intention of selling is to maintain the operability of BESS rather to make a profit. However, such approach only works in a deregulated electricity market. It is not necessary that there are buyers when electricity is needed to be sold off. Besides that, the authors included deadband charging when the frequency is within a non-critical range that does not require BESS action. This discharges to resistors as an emergency measure and introduces two groups of BESS units where they are only responsible for power injection and absorption respectively. While the paper aims to optimise the sizing and operation of BESS, it might have incurred additional costs and wastage by utilising dump loads and redundancy in BESS units as the results were not compared with other methods. Also, the authors presented that the frequency profile in UCTE is relatively stable on the simulated network, with a few frequency excursions being outside the

tolerance of ± 0.1 Hz per month. While one month of healthy SOC profile was presented, the challenges brought by RE sources on the proposed BESS operability remains to be investigated.

2.6.3 Other Pertinent Solutions

Other forms of energy storage being used for frequency regulation purpose include flywheels (Rojas and Lazarewicz, 2004), vanadium redox flow battery (Lucas and Chondrogiannis, 2016; Shankar et al., 2016; Johnston et al., 2015), pumped storage (Perez-Diaz et al., 2014), electric vehicles (EVs) (Zhong et al., 2014), fuel cell and aqua electrolyser (Mallesham et al., 2011), and capacitors (Das et al., 2011), ranging from interconnected power systems, microgrids, and isolated networks.

Other than that, a small-scale laboratory test-bench is set up to investigate the frequency and voltage support of BESS in a microgrid, especially during islanding and grid synchronisation mode (Serban and Marinescu, 2014). Fuzzy logic-based droop control for both frequency and voltage regulation in an AC microgrid with PV source and wind turbines on the grid are also simulated by some others (Ahmadi et al., 2015). The works of other authors are summarised in Table 2.8.

Authors	Network	Regulation	SOC	Main/Other
	Туре	Action/	Conservation/	Features
		ESS	SOC Profile	
(Li et al.,	Two-area	Primary/	Three variable	- Voltage profiles
2014)	power	BESS	droop control	are presented
	system		strategies/ 1 day	- No frequency
			of SOC profile	profile presented
			presented	
(Delille et	Island	Primary/	Deadband	- Wind and solar
al., 2012)	(French	Ultra-	charging/ No	penetration
	Island of	capacitor	SOC profile	- Mainly to
	Guadelou-		presented	mitigate the
	pe)			impact of non-
				mertia type
				- 50 s of frequency
				profile presented
(Rojas and	PIM at	Primary	Not discussed/	- Reacted well to
Lazarewicz	USA	and	Ran out of	fast transients
2004)		secondary/	capacity after 30	and deep
,		Flywheel	minutes of	discharges
		2	continuous action	- No frequency
				profile presented
(Lucas and	Microgrid	Primary/	Not considered	- Performs load
Chondrogia		Vanadium		shaving as well
nnis, 2016)		redox flow		- 30 s of frequency
		BESS		profile presented
(Shankar et	Two-area	Primary/	Not considered	- Economic load
al., 2016)	power	Redox flow		dispatch and
	system	BESS		small signal
				stability analysis
				are included
				- Multiple types of
				generations units
				frequency profile
				presented

Authors	Network	Regulation	SOC	Main/Other
	Туре	Action/	Conservation/	Features
		ESS	SOC Profile	
(Johnston et	UK wind	Primary/	Not discussed/ 24	- Mainly on the
al., 2015)	power	Vanadium	h of SOC profile	economic
	plants	redox flow	presented	optimisation of
	(WPPs)	BESS		ESS in WPPs
				- No frequency
			~	profile presented
(Perez-Diaz	Isolated	Primary	Capacity is	- 20 minutes of
et al., 2014)	power	and	mostly not an	frequency profile
	system	secondary/	issue	presented
		Hydraulic		
		short-		
		circuit		
		pumped-		
		nower		
		power		
(Zhong et	Two-area	Primary	Based on the	- Mainly on the
(211011g) or $a1 - 2014)$	nower	and	assumptions by	coordination of
un, 2011)	system	Secondary/	author. the	EV charging
	~) ~ · · · · ·	Electric	regulation	facilities and
		vehicles	capacity is almost	energy storage
		(EVs) and	available at all	devices in
		BESS	times and the	frequency
			scenario of	regulation
			unavailability is	- 180 s of
			not addressed.	frequency profile
				presented
(Mallesham	Microgrid	Primary/	Not considered	- Mainly to fine-
et al., 2011)		Aqua		tune the
		electrolyzer		controller of
		, fuel cell,		various
		battery, and		generating units
		flywheel		- 300 s of
				trequency profile
				presented

Table 2.8 continued: Summary of works of other authors

Essentially, ESS acts as a source of synthetic inertia through its fast response to support the grid frequency. Besides ESS, other means of providing inertial

response have also been proposed, including utilising wind power plants and power electronics (Christensen and Tarnowski, 2011; Miller and Marken, 2010) and voltage source converters (VSC) -HVDC (Zhu et al., 2013) to provide inertial response on behalf of synchronous generators. Meanwhile, an unconventional method of multi-stage load shedding in the event of under frequency, as an effort of demand side management in a microgrid island is also investigated (Gu et al., 2013). However, the aforementioned methods are not practical to be adopted in conventional interconnected power systems.

2.6.4 The Rationale for Formulating the Research Objectives in this Dissertation

Based on the literature review, many research works may not focus on several important aspects of using ESS for achieving satisfactory frequency control on the networks. The first aspect is that the current works mainly focus on the control performance of ESS without much consideration of the long-term sustainability of the SOC of the ESS for frequency regulation. Secondly, most of the researchers have not thoroughly assessed the placement of the ESS across the power systems for achieving maximum quality of frequency. In addition, the voltage regulation imposed by the connection of ESS across the power systems should be studied to avoid any voltage violation. Also, additional research efforts should be carried out to investigate the quality of frequency as a result of the cooperative actions by the

ESS and the governors with respect to the amount of RE on the power systems. All the shortcomings as found in the literature review form the bases for formulating the research objectives in this dissertation to further validate the viability of using the ESS for frequency control under the increased penetration of RE in the future.

2.7 Summary

With the increased penetration of RE sources to the power grid in near future, it presents a challenge for the conventional grid frequency regulation, mainly due to three reasons: the limited ramp rate and duration of conventional power plants, the inconsistent power production of these RE sources, and the decrease of grid inertia for frequency support. Among the methods to support the grid frequency stability, fast-responding ESS acting as synthetic grid inertia emerges as the most potential solution.

However, most of the existing studies have not focused on the important criterion of utilising ESSs for a sustainable and an effective frequency control, namely the long-term sustainability of SOC of an ESS, the placement of ESS on the power grid for maximum quality of frequency with minimum voltage impact, and the inclusive modelling that includes the regulation actions of ESSs and governors with RE penetration. Therefore, a more comprehensive study of frequency regulation by ESS is needed for the continuous effective service without causing disturbances to the general grid.

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter describes the methodology of the dissertation, namely the concepts and the description of the simulation modelling of two grid networks; the Peninsular Malaysia and IEEE 24-bus RTS network. The first modelling of the Peninsular Malaysia grid network is carried out in MATLAB/Simulink; while presenting positive results in Chapter 4. Meanwhile, the second modelling of IEEE 24-bus RTS network is implemented in both MATLAB/Simulink and Matpower. The chapter ends with the description of the proposed comprehensive framework of utilising ESS for frequency regulation and summarising the earlier sections of the chapter.

3.2 Power System Model of Peninsular Malaysia

To study the feasibility of utilising ESS for frequency regulation purposes, the first chosen power network of the study is Peninsular Malaysia. Based on the available references at the time of the study, the power network dated at the end of 2013 is modelled. As of 31st December 2013, the fuel mix in Malaysia is made up of coal, gas, and hydro, in which the detailed breakdown is shown in Table 3.1 (Suruhanjaya Tenaga (Energy Commission), 2014).

Based on the references dated at a later period of 2016 (Suruhanjaya Tenaga (Energy Commission), 2016), the fuel mix dated at the end of 2014 was given. As shown in Table 3.1, the capacity of each fuel mix for the two years has not differed by much.

Туре	Fuel	Capacity (MW) in 2013	Capacity (MW) in 2014
Conventional	Coal	7,056	8,066
Thermal			
Conventional	Gas	564	564
Thermal			
CCGT	Gas	9,200	8,030
Open Cycle Gas	Gas	2,340	1,900
Turbine (OCGT)			
Hydroelectric	Hydro	1,899	2,150

Table 3.1: Breakdown of Malaysian fuel mix in 2013 and 2014

Based on Table 3.1, the fuel mix is summarised to three types of power plants, namely thermal power plants (TPPs), gas power plants (GPPs), and hydro power plants (HPPs). The classification is required as each type of power plants possesses its individual characteristics of response based on the components that it contains, which will be described in the later section. Hence, Table 3.1 is modified as shown in Table 3.2 for the simulation modelling.

Power Plant Type	Capacity (MW) in 2013
TPPs	7,620
GPPs	11,540
HPPs	1,900

Table 3.2: Capacity breakdown of power plant types in the simulation model

3.3 Modelling of Peninsular Malaysia's Power System in MATLAB/Simulink

Essentially, the power system of Peninsular Malaysia is modelled in MATLAB/Simulink as a single control-area with transfer functions in block diagrams as shown in Figure 3.1. MATLAB/Simulink is used for simulation as it offers a diagram representation of the control system to be modelled, while presenting the flow and linkages of parameters in a user-friendly way. Besides, it also allows repeated simulations to be run easily, especially when it deals with different value inputs of parameters without changing the building blocks. Meanwhile, the individual components in Figure 3.1 are described in the following sections.

Figure 3.1: Modelling of power system of Peninsular Malaysia with transfer functions in MATLAB/Simulink

3.3.1 Block Diagrams in Matlab/Simulink

Generally, the block diagrams model in Figure 3.1 is an evaluation of power balance between the load and power supply in Peninsular Malaysia. As such, the power mismatch is converted to frequency deviation signals, which are split into two: high-frequency and low-frequency signals. The previous high-frequency signals are proposed to be picked up by fast-responding ESS, while the latter lowfrequency signals are picked up by conventional power plants. At the same time, all the power plants in Peninsular Malaysia are lumped into a single generating unit based on the type of power plant, which are TPPs, HPPs, and GPPs. Also, each lumped power plant is to follow a daily scheduling of power generation, other than carrying out frequency regulation based on the frequency deviation signals.

3.3.1.1 Transfer Function of Power System for Power Mismatch

In the analysis of frequency regulation known as load-frequency control (LFC), the collective performance of the generating units within the power system is the focus. Therefore, the inter-machine oscillations and the performance and conditions of the transmission system are not considered (Kundur, 1993). As such, by assuming a coherent response from all the generating units towards load changes, essentially the response is represented by an equivalent generator. The inertia constant, M of the equivalent generator is the sum of all inertia constants of the generating units. Meanwhile, the effects of the system loads on the frequency deviation are represented by the load-damping constant, D. In short, the conversion of power mismatch to frequency deviation is shown in Figure 3.2.

Figure 3.2: Transfer function of power system

3.3.1.2 Transfer Functions of TPP

Figure 3.3: Transfer functions of TPP

In the modelling of TPP as shown in Figure 3.3, as the reheating of steam is included, the main components modelled are the governor, the reheat turbine and the thermal turbine. The thermal governor is modelled with a first-order transfer function. Meanwhile, there are two factors that mainly contribute to the dynamic response of reheat-type steam turbine; the steam transportation from the inlet valve to the first stage of turbine and the storage action in the reheater that causes the steam output at low-pressure stage to lag the high-pressure stage (Sivanagaraju, 2009). Therefore, the thermal and reheat turbine are modelled with a first-order transfer function and a lag compensator respectively.

3.3.1.3 Transfer Functions of GPP

Figure 3.4: Transfer functions of GPP

In the modelling of GPP as shown in Figure 3.4, the components modelled are the valve position, gas governor, fuel system and compressor discharge system. The valve position and compressor discharge system are modelled by first-order transfer function while the gas governor and fuel system are modelled with a lag compensator. For information, the fuel system in GPP exhibits an initial negative power response to the power signal.

3.3.1.4 Transfer Functions of HPP

Figure 3.5: Transfer functions of HPP

In the modelling of HPP as shown in Figure 3.5, the components modelled are the hydro governor, transient droop compensation and hydro turbine. The hydro governor is modelled with a first-order transfer function while the latter two are modelled with a lag compensator. As a hydro turbine exhibits a peculiar response of having an initial opposite power change to the power signals, a transient droop compensation with long resettling time is required for a stable control performance. In fact, the long resettling time is achieved by slowing down the gate movement until the water flow catches up with the power signals.

3.3.1.5 Droop and Secondary Control

In conventional power plants, primary droop control is implemented to share the load between the power plants so as to ensure the power plants not to counteract each other when making adjustments in the ramping up or down of power. In the model, a standard 5% of droop rating is assumed on all generating units.

Meanwhile for secondary control, an integral control is implemented to evaluate the total amount of power to be ramped up or down, taking over the frequency regulation action from primary droop control.

An illustration of the primary and secondary control mechanisms is shown in Figure 3.6.

Figure 3.6: Modelling of primary and secondary controls by power plants

3.3.2 Load Profile and Power Plant Scheduling

The actual load profile of Peninsular Malaysia used for simulation is obtained from the website of the Energy Commission of Malaysia. A daily sample of recorded power generation parameters is given in Appendix A. As a single control area is assumed for the grid network, a lumped load that represents the total load of Peninsular Malaysia is modelled.

Besides, since the power generation data points are provided at the interval of 30minute, the obtained time series load profile is not fine enough for frequency regulation simulation. Therefore, two improvisations are employed; first is to interpolate the in-between data points and second is to add a random number generator of up to $\pm 1\%$ of peak load at every 10 seconds that represents the random load deviations.

Figure 3.7: Daily load scheduling of power plants and load profile in Peninsular Malaysia

For the daily load scheduling of each power plant type and simplification of simulation, HPP and TPP are scheduled to provide a constant power while GPP is

proposed to track a second-degree function of the load profile as shown in Figure 3.7. In fact, in conventional power generation, GPPs possess the shortest response time as they are the main contributors for frequency regulation services. The mismatch between the scheduled power generation and total load in the power system is represented as frequency deviation signals (as described in Section 3.3.1.1), which are picked up both the power plants and ESS modelled in the power system.

3.3.3 Transfer Function of ESS

Figure 3.8: Transfer function of ESS

ESS is modelled with a first-order transfer function as its response is fast without the involvement of mechanical parts as it is with the power plants.

3.3.3.1 ESS Controller

Figure 3.9: Modelling of ESS controller

A primary droop control is proposed for the use of all ESS units designated for frequency regulation. Meanwhile, the secondary control is a combination of integral and derivative control; the former to sum up the power mismatches through time while the latter acts as a predictive control and virtual inertia to handle high-frequency frequency deviation signals. The power output reference signals are passed to the ESS transfer function model for power generation or absorption. An offset control is implemented should the SOC be out of a defined healthy operation range, which is described in the following section.

On a side note, the modelling of ESS in the simulation represents a lumped generating unit of multiple ESS units rather than a single unit. However, in the case of a centralized ESS within a control area, the primary droop and secondary control can be replaced by a proportional-integral-derivative (PID) controller instead.

3.3.3.2 SOC of the Batteries

The below formulae is used to estimate the SOC of ESS, where η_d and η_c are the discharging and charging efficiencies, equally set at 90% and E is the nominal energy capacity of the ESS.

$$SOC(k+1) = SOC(k) - \frac{\int_{k}^{k+1} \eta P(t) dt}{E},$$
(3.1)

$$\eta = \frac{1}{\eta_d} if P(t) > 0, \quad \eta = \eta_c \quad otherwise$$
(3.2)

Due to the efficiencies of ESS, it absorbs less while injecting more power than an ideal operation in which a net outflow of energy is anticipated on most of the operation days. Therefore, an offset control is required to ensure the continuous operation of ESS.

3.3.3.3 Offset Algorithm

In the study, the ESS power response is proposed to be offset when the SOC of ESS is out of the specified SOC thresholds, SOC_T , with a fixed rate of power offset, P'_o . When the SOC recovers within the threshold after an offset is applied, the offset is ramped back to zero (an opposite offset) with the same rate. The value of P'_o is set such that the offset ramp rate is slow enough for the power

plants in the power grid to follow, hence it does not contribute negatively to the frequency regulation. The algorithm of the proposed offset is shown in the equations below:

$$P_o(t) = P_{OU}(t) + P_{OUR}(t) + P_{OL}(t) + P_{OLR}(t)$$
(3.3)

$$P_{OU}(t) = \int_{k}^{k+1} P'_{o} dt \qquad \qquad if \ SOC \ge SOC_{TU}$$
(3.4)

$$P_{OUR}(t) = -\int_{k}^{k+1} P'_{o} dt \qquad \qquad if \ P_{OH}(t) > 0 \qquad (3.5)$$

and $SOC < SOC_{TU}$

$$P_{OL}(t) = -\int_{k}^{k+1} P'_{o} dt \qquad \qquad if \ SOC \le SOC_{TL} \qquad (3.6)$$

$$P_{OLR}(t) = \int_{k}^{k+1} P'_{o} dt \qquad f P_{OH}(t) < 0 \qquad (3.7)$$

and $SOC > SOC_{TL}$

 $P_O(t)$ is the offset power, $P_{OU}(t)$ is the offset power when SOC exceeds SOC_{TU} , the upper threshold of SOC, $P_{OUR}(t)$ is the opposite offset power when the SOC recovers from SOC_{TU} . Similarly, $P_{OL}(t)$ is the offset power when SOC goes below SOC_{TL} , the lower threshold of SOC, $P_{OLR}(t)$ is the opposite offset power when the SOC recovers from SOC_{TL} .

Since the cycle length of batteries decrease exponentially with its depth of discharge (Martin II, 2016), a SOC_{TL} of 65% is set to prevent deep discharge of batteries to maintain its lifespan in the simulation. Meanwhile, a SOC_{TU} of 80% is imposed to ensure that the batteries can cater for potential power absorption during frequency regulation.

3.3.4 Penetration of PV Systems

While it is planned for RE to reach at least 3% of the total power generation mix by 2020 (Suruhanjaya Tenaga (Energy Commission), 2016), a case study of 10% PV penetration of the maximum load demand is presented in the study.

To generate the PV profile utilised in the simulation, 4 strings of 8 Panasonic PV panels each with an output 230W were connected to two Zigor PV inverters, installed at the open-space car park in the campus, titled at 5°. The PV power output is recorded every 1 minute and the 5-day averaged profile is scaled up to 10% penetration to represent one daily PV profile in Peninsular Malaysia.

3.3.5 Loss of Largest Generating Unit (LGU)

Based on the reserve classification in Peninsular Malaysia in 2014, 700MW of spinning reserve is allocated to cater for the loss of LGU in the network (Suruhanjaya Tenaga (Energy Commission), 2014). This figure is later revised to be 1000MW in 2016 (Suruhanjaya Tenaga (Energy Commission), 2016). While the item is not within the main proposal objective of the dissertation as it requires a large capacity of ESS, it is presented as a side case study.

3.4 IEEE 24-Bus RTS

The IEEE 24-Bus RTS is initially proposed as a reference test system that contains the basic data required in power system reliability evaluation, approved by the IEEE Power System Engineering Committee (Reliability Test System Task Force, 1979). Due to the lack of grid network data of Peninsular Malaysia, the RTS is chosen to be modelled as a step-up for a more detailed analysis as it contains load and generation system and transmission network data that are required for the study.

Meanwhile, the RTS is also a larger transmission network than the previous model of Peninsular Malaysia, therefore it is able to be divided into a few control areas to simulate the interactions between and the combined actions of them. While there are larger test systems available for simulation, the RTS is picked as it fulfils the main criterion of being a reasonable size to be modelled, such that further analysis is achievable within the time frame of the study.

3.4.1 MATLAB/Simulink

The IEEE 24-bus RTS is modelled in MATLAB/Simulink with transfer functions in block diagrams. As such, the RTS is divided into three interconnected control areas as shown in Figure 3.10, in which the generation in each area is sufficient to meet its load.

Figure 3.10: IEEE 24-bus RTS with three interconnected control areas

Since RTS is of an old test system, its composition is modified to represent a more realistic mix of power plants in the power system. Hence, certain thermal power plants are substituted by fast-responding GPPs. Essentially, the RTS is improvised to contain three types of power plants; HPPs, TPPs and GPPs. Besides, each control area is allocated with GPPs for grid regulation purposes. The description for the substitution is given in Table 3.3.

Bus Number	Original	Substituted by	
Bus 1 and Bus	2 x 20MW GPPs respectively	2 x 20MW TPPs respectively	
2			
Bus 7	3 x 100MW TPPs	3 x 100MW GPPs	
Bus 13	3 x 197MW TPPs	3 x 197MW GPPs	
Bus 15	5 x 12MW and 155MW TPPs	5 x 12MW and 155MW	
		GPPs	
Bus 18	400MW Nuclear Power Plant	400 MW TPP	
Bus 21	400MW Nuclear Power Plant	400 MW GPP	

3.4.1.1 Block Diagrams of Power System

As the RTS is divided into three control areas in MATLAB/Simulink model, the general layout of the block diagrams are given in Figure 3.11.

Figure 3.11: Modelling of the interconnection between control areas in MATLAB/Simulink

Each zone is interconnected to the adjacent zones through tie lines, where the power flow from one zone to another zone (say Zone 1 to Zone 2, P_{12}) is given by

Eq. 3.8, where *E* and δ stand for the voltage of the equivalent voltage source of the control area and phase difference respectively, while X_T represents the impedance of the tie line. The electrical equivalent of the power flow that illustrates the formulation of Eq. 3.8 is shown in Figure 3.12.

$$P_{12} = \frac{E_1 E_2}{X_T} \sin(\delta_1 - \delta_2)$$
(3.8)

Figure 3.12: Electrical equivalent of power transfer between two control areas (Kundur, 1993)

Eq. 3.8 can be later represented by the synchronizing torque coefficient, T, given in Eq. 3.9, which is utilised as a simulation parameter in the model.

$$T_{12} = \frac{E_1 E_2}{X_T} \cos(\delta_1 - \delta_2)$$
(3.9)

In each of the control area, power plants on each bus of the similar type are lumped into a single unit to simplify the simulation. The modeling of a sample control area (Zone 1) is shown in Figure 3.13. The revisions made as compared to the earlier model to represent multiple control areas are such that a bias factor, B and interconnection power transfer are included. A bias factor essentially controls

the magnitude of contribution of one particular control area to frequency regulation of the interconnected power system.

The recommended bias factor for a control area is given in Eq. 3.10 (Kundur, 1993), where R_{eq} and D are the equivalent droop rating and load-damping constant of the particular control area. Meanwhile, R_{eq} is given in Eq. 3.11, a summation of all the droop ratings of the generating units within the control area.

$$B = \frac{1}{R_{eq}} + D \tag{3.10}$$

$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}}$$
(3.11)

As for the interconnection power transfer, it is modelled such that if power is supplied from other control areas, the power reference signal for frequency regulation is decreased by the same magnitude, and vice versa.

Figure 3.13: Block diagram of the power system model of Area 1 of the RTS

(red lines represent frequency deviation and black lines represent power)

The transfer functions of the TPPs, GPPs and HPPs are as described in Sections 3.2.1.2, 3.2.1.3 and 3.2.1.4, where each power plant is assumed to have a 5% droop rating. As compared to the previous model, multiple units of the similar power plant type are modelled if they are on different busbars in the control area to better represent the combined actions of multiple generating units in frequency regulation. In addition, two enhancements to the modelling of power plants are made. First, the maximum and minimum outputs of each busbar are capped to avoid under and over supplying of power based on the defined capacity. Next, a ramp rate is applied to model the ramping ability of each type of power plant, where the figures are given in Table 3.4.

Table 3.4: Ramp rates of various power plant types modelled in

Power Plant Types	Ramp Rate (% of Power Capacity/min)
TPPs	2
GPPs	10

MATLAB/Simulink

50

3.4.1.2 Load Profile and Power Plant Scheduling

HPPs

Week 51 of the RTS load profile is chosen for simulation as it displays the biggest magnitude of load profile change during the year. Since the load profile is given at per-hour data point, the values are interpolated while a random number generator of a Gaussian distribution with 3 standard deviations of 1% of peak load per second is added to model the load fluctuations.

Meanwhile, the scheduling of power plant is similar to Section 3.2.2., where GPPs are set to track a second-degree function of the load profile. While only one equivalent GPP is modelled previously, there are multiple GPPs in certain control area where the tracking of load profile is shared based on their respective rated power capacities. The maximum load in Week 51 and the generation capacity on each control area is shown in Table 3.5.

Table 3.5: Maximum load in Week 51 and the respective generation capacity

Control Area	Maximum Load (MW)	Generation Capacity	
		(MW)	
Zone 1	1305	1470	
Zone 2	1070	1251	
Zone 3	475	684	

in the control areas in RTS

3.4.1.3 Modelling of ESS

The structure of the ESS model is similar to Section to 3.2.3. However, there are some enhancements made on the offset algorithm. First, the magnitude of offset is capped at a ceiling limit for the stability of the algorithm. Second, the rate of offset, P'_o differs for each control area such that the value is lower than the total ramp rate of all the generating units in the particular control area.

An illustration to describe the proposed offset algorithm in a control area is shown in Figure 3.14. Initially, the ESS is injecting power to the grid network for frequency regulation where the SOC is decreasing. At the time of T1, the SOC breaches the defined lower threshold at 65%, hence a constant rate of offset that is slow enough for the power plants to pick up is applied. Therefore, the ESS power is offset downwards to conserve its capacity, injecting less power and absorbing more power than it was intended. Meanwhile, the shaded region in the figure shows the energy that has to be picked up by the power plants. When the SOC recovers back to the threshold value at the time of T2, the offset is ramped back to zero. The same condition applies when SOC exceeds the upper threshold. The only difference in the illustration of the operating concept of the proposed offset algorithm from the Peninsular Malaysia network is such that the offset power is capped at a certain value in RTS.

Figure 3.14: Illustration of the operation of the proposed offset algorithm

3.4.1.4 Identification of Optimal Control Area Placement of ESS

The ESS is placed alternatively on the control area to identify the optimal placement of ESS for maximum frequency regulation quality.

3.4.2 Scenarios of Study

Two scenarios of simulation are considered; the penetration of solar PV in the RTS and the undersizing of ESS for frequency regulation.

3.4.2.1 Penetration of PV Systems

Utilising similar PV profile obtained previously, PV sources are positioned on the RTS network as shown in Figure 3.15. The PV Placement on Bus 19 in Area 1 is intended to act as a solar farm while the spreading out of PV on several buses in Area 2 and Area 3 mimics residential PV. In the simulation, 25% of PV penetration in each control area is modelled.

Figure 3.15: Positioning of PV (Represented by Yellow Blocks) in the RTS

3.4.2.2 Undersizing of ESS

Repeated simulations with the similar conditions are run by decreasing the capacity of ESS, at 80%, 60%, 40% and 20% respectively to study its effects on the frequency regulation quality, while exploring the possibility of utilising a smaller capacity of ESS for potential capital cost savings.

3.4.3 Summary of Improvements and Changes from Previous Model

The summary of the improvements and changes of RTS model from the previous

Peninsular Malaysia model is shown in Table 3.6.

Table 3.6: Improvements and changes of RTS model from the previous

Items	Peninsular Malaysia Model	RTS Model
Number of	1	3
Control Area		
Power Generation	 No interconnection power transfer Single unit of each type of power plants 	 Interconnection power transfer Multiple units of each type of power plants Ramp rates of power plants are modelled
Fluctuation of Load Profile	A random number generator of up to $\pm 1\%$ of peak load per 10 seconds.	A random number generator of a Gaussian distribution with 3 standard deviations of 1% of peak load per second.
Offset Algorithm of ESS	Magnitude of offset is not capped	 Magnitude of offset is capped for the stability of algorithm. Rate of offset differs for each control area
Percentage of PV Penetration	10%	25%

Peninsular Malaysia model

3.4.4 Parameters of the Simulation Models

The constants used in both the simulation models that are of similar values are shown in Table 3.7.

Components	Parameters	Value	
TPP	Speed Governor Time Constant (TC), T_{tg} (s)	0.08	
	Coefficient of Reheat Steam Turbine, <i>K</i> _{rt}	0.3	
	Reheat TC, $T_{rt}(s)$	10	
	Turbine TC, $T_{tt}(s)$	0.3	
HPP	Main Servo TC, T_{hg} (s)	0.2	
	Speed Governor Rest Time, T_r (s)	5	
	Transient Droop TC, T_{rh} (s)	28.75	
	Water TC, T_w (s)	1	
GPP	PP b		
	С	0.1	
	Speed Governor Lead TC, $X(s)$		
	Speed Governor Lag TC, $Y(s)$		
	Combustion Reaction Time Delay, $T_{cr}(s)$	0.01	
	Fuel TC, T_f (s)	0.23	
	Compressor Discharge Volume TC, T_{cds} (s)		
Power	High-Pass Filter TC, $T_{hp}(s)$	10	
System	Frequency Deadband (Hz)	±0.01	

Table 3.7: Similar parametrical values in both simulation models

Meanwhile, the constants used that are of different values are shown in Table 3.8.

Components	Parameters	Peninsular	RTS		
		Malaysia	Z1	Z2	Z3
Power System	Grid Inertia Constant,	3.5	0.261	0.214	0.095
-	M (GW/Hz/s)				
	Load Damping	0.36	0.039	0.032	0.014
	Constant, D (GW/Hz)				
	Secondary Control	2	0.131	0.107	0.048
	Integral Gain, K_i				
	(GW/Hz/s)				
	Bias Factor, B	-	0.627	0.533	0.288
	Synchronizing Torque	-	Z12	Z23	Z13
	Coefficient, T		4	1.5	1
ESS	ESS TC, T_{ess} (s)	0.5		1	
	Controller Integral	30		2.5	
	Gain, Iess (GW/Hz/s)				
	Controller Derivative	30		2.5	
	Gain, Dess (GWs/Hz)				
	SOC Threshold, SOC _T	65%/80%	(65%/859	%
	Droop, Ress (Hz/GW)	0.2		0.1	
	Rate of Power Offset,	0.04	0.003	0.001	0.0006
	P'_o (GW/hr)				

 Table 3.8: Other differing parametrical values in both simulation models

3.5 Matpower

Matpower is a package of MATLAB input file-based power flow and optimal power flow solver (Zimmerman et al., 2011). The components of the network are buses, branches and generators to be defined for the solution. Some major parameters defined in the components are as follows:

Components	Parameters		
Bus	Bus type (PV/PQ/Swing), real and reactive power demand,		
	shunt conductance and susceptance, voltage magnitude and		
	angle, base voltage, maximum and minimum voltage		
	magnitude, etc.		
Branch/	"From" and "To" bus number, line resistance, reactance and		
Transformer	susceptance, MVA ratings, transformer turn ratio (a value of		
	'1' implies a 'branch'), etc.		
Generator	Real and reactive power output, maximum and minimum real		
	and reactive power output, voltage magnitude setpoint, total		
	MVA base of machine, etc.		

Table 3.9: Major components and the respective parameters in Matpower

3.5.1 Modelling of Power System and ESS

The input parameters for Matpower are provided in the reference (Reliability Test System Task Force, 1979). The bus with the largest generating capacity, Bus 23 is identified as the swing bus. Meanwhile, the buses that contain generators are modelled as PV buses and ESS is modelled as a generator on a PQ bus as it does not possess any voltage regulation ability in the simulation.

3.5.2 Identification of Optimal Busbar Placement of ESS

To ensure the frequency regulation operation of ESS does not cause any voltage issues, Matpower is used to identify its optimal busbar placement within the previously identified control areas with minimal impact on the grid voltages. While the frequency regulation model in MATLAB/Simulink is evaluated continuously throughout a defined simulation time, Matpower evaluates the power flow solution based on the input parameters of a given time step.

Therefore, due to the time constraints and the large amount of data to be processed if power flow is to run continuously for the 1-week input data, certain time steps of daily results are simulated instead. As such, the load and generation profiles at the time step where the maximum and minimum power mismatch occur during a day are simulated, with the assumption that those time steps will deal the greatest impact on the grid voltage. Hence, MATLAB/Simulink is programmed to output the respective load and generation value of all supplying units in the RTS at the identified time steps to be fed into the Matpower load flow model, which outputs the resulting voltage profiles across the network.

In the simulation, the scenarios investigated for various busbar locations in the RTS network are as follows:

- (a) A PV busbar (Bus 14) in Control Area 1
- (b) A PQ busbar (Bus 19) in Control Area 1
- (c) A PV busbar (Bus 13) in Control Area 2
- (d) A PQ busbar (Bus 20) in Control Area 2
- (e) A PV busbar (Bus 2) in Control Area 3
- (f) A PQ busbar (Bus 5) in Control Area 3
- (g) A PV busbar (Bus 14, 13 and 2) in every control area

- (h) A PQ busbar (Bus 19, 20 and 5) in every control area
- (i) All buses

3.5.3 Integrated Test Environment (ITE) in Cooperation with Newcastle University

As running repeated simulations with different parameter values in Matpower are time-consuming, it is achieved with a developed ITE through the cooperation with Newcastle University. Simply put, the ITE enables the interaction between a Javabased Multi-Agent System (MAS) and Matpower input files, as shown in Figure 3.16.

Figure 3.16: An overview diagram of ITE

Based on Figure 3.16, the ITE allows both the simulation on Java-based MAS and Matpower to run simultaneously. First, the MAS initiates the power flow simulation in Matpower, where the results of each time step of the simulation are passed back to the MAS. Should the logic of the programme be developed, the MAS dictates that certain control activity is required on the power system (i.e. changing the transformer tap position, shutting down a generating unit, etc.), the control commands are sent to Matpower before the next time step of simulation resumes (Yi et al., 2016). Some of the example platforms of MAS are C, MATLAB, Python, etc., therefore enabling the interaction between Matpower and various programming languages while enhancing the maneuverability of power flow simulation in Matpower.

Meanwhile for the simulation in this study, the ITE is utilised for the interaction between MATLAB and Matpower to carry out repeated simulations of Matpower based on the earlier identified input profiles. While the ITE demonstrates the prospects of offering variable control actions to the simulation, it is not applied in the dissertation. However, the potential future work is discussed at Chapter 5.

3.6 A Comprehensive Work Package for ESS as Frequency Regulation Provision

The main motivation of the dissertation is to propose a comprehensive work package of using ESS for frequency regulation, where a summary flow chart of the earlier described methodology is shown in Figure 3.17.

Figure 3.17: The proposed comprehensive work package of utilising ESS for frequency regulation

Firstly, the power plants in the defined grid network are modelled in MATLAB/Simulink with transfer functions, along with the load profile. This is followed by the scheduling of power plants and the modelling of ESS and its respective frequency regulation controller. In the paper, a droop controller for primary control and an integral and derivative controller for secondary control are proposed for ESS. Also, a set of offset algorithm is proposed to conserve the SOC of ESS for its continuous operation. The simulation model in MATLAB/Simulink studies the frequency regulation quality based on the proposed solution and identifies the ESS placement in the control areas. Next, the power network data at certain time steps is transferred to Matpower for load flow studies to generate the overall network voltage profile.

The work package also allows the incorporation of various types of ESSs and generating units by modelling its respective transfer functions and power generation profiles. The penetration of RE sources is easily able to be included in the simulation model. Essentially, the proposed work package provides a flexible framework to analyze grid frequency regulation problems with various possibilities of scenarios and solutions are able to be tested for the use of academic and commercial researchers.

3.7 Summary

The chapter describes the modelling of two simulation models, namely the Peninsular Malaysia grid network and the IEEE 24-bus RTS to utilize ESS for frequency regulation. The IEEE 24-bus RTS model represents a step-up from the previous model, extending the scope of the study mainly by including the simulation of interconnection power transfer and power flow studies. The latter is achieved through the cooperation with Newcastle University that developed the ITE, which allows more possibilities to the study. Last but not least, a comprehensive work package of frequency regulation by ESS, which is the main objective of the dissertation, is summarised.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the simulation results of the two modelled grid networks, namely the Peninsular Malaysia and IEEE 24-bus RTS. For the Peninsular Malaysia grid network, the presented results include the frequency deviations and SOC profiles of ESS, the actions of offset algorithm and the power profiles of all generating units in the network. Meanwhile for the IEEE 24-bus RTS network, the frequency deviation histograms, the SOC profiles and the network voltage profiles are included. The sizing of ESS required is also identified, along with the optimum ESS placement in the control areas and the busbars for maximum frequency quality and minimum impact on grid voltages.

4.2 Peninsular Malaysia Network

The simulation results of the Peninsular Malaysia network are presented in the following sections.

4.2.1 Frequency Deviations and Power Profiles

This section presents the frequency deviation profile of the power system with and without ESS. The pertinent generation and load profiles are presented along to manifest the ineffectiveness of power plants to track the daily fluctuating load profiles, in contrast with the fast-response of ESS. As such, Figure 4.1 shows the frequency deviation profiles of a sampled day, where the frequency deviation is minimised significantly by the actions of ESS. The frequency deadband is set at ± 0.01 Hz in the simulation; based on the Malaysian Grid Code, it should be set not more than ± 0.025 Hz. Essentially, a narrower frequency deadband results in more frequent regulations, hence producing better frequency quality at the expense of more power injection or absorption.

Figure 4.1: Frequency deviation profile of a sampled day with and without

ESS

On the other hand, Figure 4.2 shows the power profiles of various generating units on the equivalent sampled day for the case of without ESS. The three shaded regions represent the energy supplied by each type of power plants, where their combined actions are represented by the black line.

Figure 4.2: Power profiles of different generating units of a sampled day without ESS

As seen from Figure 4.2, the power plants are not able to track the daily load fluctuations represented by the yellow band effectively due to their slow response time, hence resulting in a larger frequency deviation as shown in Figure 4.1. Although the TPP and HPP are scheduled to provide a constant power acting as base loads, they are still performing a certain degree of frequency regulation based on the signals fed into them. As described in Section 3.3.1.4, hydro turbine possesses an initial opposite power change with respect to the power signals. This phenomenon is seen at two instances in Figure 4.2; when large power ramping is

required due to the increase in load, HPP ramped itself down instead initially before ramping the power production back up.

Meanwhile, the power profiles of different generating units on the equivalent sampled day for the case of with ESS is shown in Figure 4.3. It is shown that the ESS is performing majority of the frequency regulation instead with the frequent ramping up and down of power due to its response being faster than that of the power plants.

Figure 4.3: Power profiles of different generating units of a sampled day with

ESS
4.2.2 SOC Profiles and the Actions of Offset

The SOC profiles of the ESS and the actions of the offset algorithm on the equivalent sampled day are shown in Figure 4.4. The SOC is kept at a healthy operating range by the actions of the offsets, defined at 65% and 80%; when the SOC exceeds SOC_{TU} at the beginning of the day, an up-ramp is applied on the power offset such that the ESS supplies more or absorbs less power during the frequency regulation, whereby the offset is made up by the power plants. Once the SOC is recovered within the defined healthy range, a down-ramp is applied to zero out the offset. Likewise, when the SOC decreases beyond SOC_{TL} later of the day as seen in Figure 4.4, a negative-ramp is applied such that the ESS supplies less or absorbs more power. It is important to point out that ESS is not a power source therefore it requires constant charging from the power plants from time-to-time to maintain its capacity. Without the offset algorithm, its SOC collapses in the middle of the day as seen in Figure 4.5 due to the fact that frequency regulation is not zero-mean and the non-ideal efficiencies of ESS.

Figure 4.4: SOC and power offset signals of ESS on the sampled day

Figure 4.5: SOC profiles of ESS with and without offset algorithm on the sampled day

Figure 4.6: Daily maximum and minimum SOC of ESS for two-week of continuous frequency regulation

The effectiveness and feasibility of the offset algorithm is verified by running the simulation based on continuous first two weeks of Peninsular Malaysian load profiles in February 2016. The pertinent daily maximum and minimum SOC of ESS are shown in Figure 4.6, which is within the operable range of ESS. Meanwhile, the performance of the ESS is quantified using the standard deviation and range of the two-week frequency deviation profile, as shown in Table 4.1.

Table 4.1. Standard deviation and range of two-week frequency deviation

Scenario	Frequency Deviation (Hz)		
	Standard	Maximum	Minimum
	Deviation		
No ESS	0.0148	0.0742	-0.0735
With ESS	0.0102	0.0227	-0.0218

profile

4.2.3 10% PV Penetration

The effectiveness of ESS for frequency regulation under 10% PV penetration is highlighted in Figure 4.7, while the improvement is tabulated in Table 4.2.

Figure 4.7: Frequency deviation profiles of a sampled day with and without

ESS under 10% PV penetration

 Table 4.2. Standard deviation and range of frequency deviation under 10%

Scenario	Frequency Deviation (Hz)		
	Standard	Maximum	Minimum
	Deviation		
No ESS	0.0161	0.0779	-0.0768
With ESS	0.0109	0.0252	-0.0257

PV penetration

On the other hand, Figure 4.8 shows PV being included as the power producer in the Peninsular Malaysia grid network. The power plants are shown to adjust their power production to balance out the power mismatch with the load.

Figure 4.8: Power profiles of different generating units without ESS under 10% PV penetration

Meanwhile, Figure 4.9 shows the power profiles of all the generating units in the network along with the inclusion of PV. As such, the power plants are shown to be ramping with a lower rate as compared to Figure 4.8, where the results tabulated in Table 4.3 shows a reduction of close to a factor of 16. In fact, the power profile of power plants is smoothened out by the fast-response ESS, therefore indirectly decreases the occasions and the degree of wear-and-tear of the mechanical components in the power plants.

Figure 4.9: Power profiles of different generating units with ESS under 10%

PV penetration

Table 4.3. Average ramp rate of power plants with and without ESS under

10% PV penetration

	No ESS	With ESS
Average Ramp Rate (MW/s)	25.166	1.591

4.2.4 ESS to Cater for the Loss of LGU

An incident of the loss of LGU in the middle of the day in the Peninsular Malaysia network is simulated and the results are shown in Figure 4.10 and 4.11. The frequency deviation is shown to be successfully maintained within ± 0.05 Hz and the SOC operation range is secured, however the ESS power required for such operation indicates an additional equivalent capacity. While admittedly such

ESS capacity is to incur a huge capital cost to the Utility, the case study nonetheless demonstrates the ability of ESS for such application.

Figure 4.10: Frequency deviation profile and power profile of ESS in the

event of the loss of LGU

Figure 4.11: SOC and power offset signals of ESS in the event of the loss of

LGU

4.3 IEEE 24-bus RTS

The simulation results of the IEEE 24-bus RTS are presented in the following sections.

4.3.1 Frequency Deviation Histograms and Identification of Optimal Control Areas Placement of ESS for Maximum Frequency Quality

This section presents the 1-week frequency deviation histograms of the RTS with ESS being placed at various control areas to identify the optimal placement for maximum frequency quality. Figure 4.12 shows the frequency deviation profiles without ESS in the network, where the frequency deviation runs up to \pm 0.1 Hz. Meanwhile, Figure 4.13, Figure 4.14 and Figure 4.15 show the histograms of frequency deviation when ESS is placed in the individual control area 1, 2 and 3 respectively. It is noticed that the frequency quality of the particular control area is improved but not of other control areas. This phenomenon is quantified and shown in bold in Table 4.1. The simulation implies that the reliance on the power transfer from other control areas is not effective in terms of frequency regulation. On other hand, Figure 4.16 shows the profiles where ESS is placed at every control area where the frequency deviations in all zones are minimised

significantly. Hence, it is deduced that the provision for frequency regulation

should be available in each control area. The numerical results on the range and the standard deviations of the histograms are shown in Table 4.4 and having ESSs in every control area displays the smallest range and standard deviation in all control areas.

Figure 4.12: Histogram of 1-week frequency deviation for 3 control areas in

RTS without ESS

Figure 4.13: Histogram of 1-week frequency deviation for 3 control areas in

Figure 4.14: Histogram of 1-week frequency deviation for 3 control areas in

RTS with ESS in Area 2

Figure 4.15: Histogram of 1-week frequency deviation for 3 control areas in

Figure 4.16: Histogram of 1-week frequency deviation for 3 control areas in RTS with ESS in all control areas

Table 4.4: Standard deviation and range of histogram of 1-week frequency

ESS	Frequency Deviation (Hz)			
Location	Control	Standard	Maximum	Minimum
	Zone	Deviation		
No ESS	Z1	0.0153	0.0961	-0.0839
	Z2	0.0158	0.1042	-0.0938
	Z3	0.0162	0.0927	-0.0881
Zone 1 (Z1)	Z1	0.0121	0.0698	-0.0694
	Z2	0.0131	0.0666	-0.0668
	Z3	0.0143	0.0742	-0.0745
Zone 2 (Z2)	Z1	0.0134	0.0706	-0.0686
	Z2	0.0126	0.0668	-0.0704
	Z3	0.0150	0.0763	-0.0723
Zone 3 (Z3)	Z1	0.0155	0.0805	-0.0866
	Z2	0.0159	0.0857	-0.0838
	Z3	0.0136	0.0625	-0.0653
All Three	Z1	0.0105	0.0311	-0.0293
Zones	Z2	0.0106	0.0310	-0.0293
	Z3	0.0105	0.0298	-0.0290

deviation profile for various ESS locations

4.3.2 ESS Sizing

The maximum and minimum daily power and energy capacity required for ESSs placed at various locations for frequency regulation are summarised in Table 4.5. While it is shown that having one single ESS is not able to regulate frequency effectively regardless of the control area that it is placed in, the identified power and energy capacities are nonetheless determined to be about 50MW and 15MWh respectively. On the other hand, since having an ESS in every control area provides the best frequency quality, the total power and energy capacity required for the RTS are identified to be about 50MW and 50MWh respectively. Having to

set the operating range of ESS at 65% to 85%, the usable capacity is only 20%. To identify the exact ESS capacity sizing, the identified required energy capacity is multiplied by 5 to give a 250MWh. In short, the ESS sizing proposed in the dissertation is derived from historical load profiles based on the modelled control algorithm.

 Table 4.5: Maximum and minimum daily power and energy capacity

 required for ESS based on 1-week simulation for various ESS locations

ESS	Max. ESS	Min. ESS	Max. ESS	Min. ESS
Location	Power (MW)	Power (MW)	Capacity	Capacity
			(MWh)	(MWh)
Zone 1	44.39	-40.45	12.12	-14.48
Zone 2	42.16	-44.2	11.39	-15.06
Zone 3	47.75	-48.56	11.30	-13.94
Each Zone	50.72	-48.29	37.01	-51.48

4.3.3 Network Voltage Profiles

The network voltage profiles are simulated at the time steps when daily maximum and minimum power mismatch occur during the course of frequency regulation. To identify the busbar location of ESS that contributes the least impact to the grid voltage, ESS has been placed at various locations as described in Section 3.4.2. For the last scenario where a unit of ESS is placed on all buses, the sized ESS power and capacity for a control area is divided equally among all buses. For instance, as there are 10 buses in Control Area 1, each ESS is rated at 5MW and 25MWh. Figure 4.17 and Figure 4.18 show the network voltage profiles at the identified time steps of one sampled day, where the results of ESS being placed at various control areas and busbar types are presented. As the power injection and absorption of ESSs required during frequency regulation is small to result in voltage violations in the transmission network, the voltage profiles of having one ESS in the RTS and of spreading the ESSs on every single bus do not make a significant difference. This is also contributed by the fact that the line reactance to resistance ratio (R/X ratio) is low in the transmission network; hence the transmission loss and the voltage drop are low. In the meantime, the voltage magnitude on certain buses remained unchanged in all scenarios as they contain generators with voltage regulation ability and modelled as PV buses. The complete 1-week result is shown in Appendix B.

Figure 4.17: Network voltage profiles of various ESS placement

combinations at maximum power mismatch of a sampled day

Figure 4.18: Network voltage profiles of various ESS placement combinations at minimum power mismatch of a sampled day

4.3.4 Results of Undersized ESS

As the capacity sizing of ESS is identified to be 250MWh (about 83MWh per control area), the simulation is repeated with 80%, 60%, 40%, 20% sizing of ESSs in every control area. The histograms of the pertinent 1-week frequency deviation profiles are shown in the following figures, demonstrating consistent frequency quality for all of them. Meanwhile, the results are tabulated in Table 4.6. The main reason of obtaining similar frequency quality for an undersized ESS is that the actions of the proposed offset algorithm allows ESSs to keep track with

the load changes rather than supplying the exact power required for frequency regulation when the ESSs are out of the defined healthy operating range. For instance, at a time when a certain regulation power is required but the ESSs are running out of capacity, the offset renders the ESSs to supply the determined power initially. The supplied power is later slowly ramped down to conserve the ESS capacity, where the balance is picked up by the power plants. Therefore, rather than supplying the exact amount of power required for frequency regulation, ESSs are tracking the change of the power required, such that certain portion of the power is eventually passed and to be supplied by the power plants.

Figure 4.19: Histogram of 1-week frequency deviation for 3 control areas in

RTS with an 80%-sized ESS in all control areas

Figure 4.20: Histogram of 1-week frequency deviation for 3 control areas in

RTS with a 60%-sized ESS in all control areas

Figure 4.21: Histogram of 1-week frequency deviation for 3 control areas in RTS with a 40%-sized ESS in all control areas

Figure 4.22: Histogram of 1-week frequency deviation for 3 control areas in

RTS with a 20% sized ESS in all control areas

Table 4.6: Standard deviation and range of histogram of 1-week frequency

	Frequency Deviation (Hz)			
ESS	Control	Standard	Movimum	Minimum
	Area	Deviation	Iviaxiiiiuiii	wiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
	Z1	0.0153	0.0961	-0.0839
No ESS	Z2	0.0158	0.1042	-0.0938
	Z3	0.0162	0.0927	-0.0881
1000/	Z1	0.0106	0.0346	-0.0345
100%- Sized	Z2	0.0106	0.0317	-0.0356
Sizeu	Z3	0.0106	0.0346	-0.0345
	Z1	0.0107	0.033	-0.037
80%-Sized	Z2	0.0107	0.0334	-0.0358
	Z3	0.0106	0.0334	-0.0367
	Z1	0.0107	0.0398	-0.0445
60%-Sized	Z2	0.0107	0.0328	-0.0465
	Z3	0.0107	0.0353	-0.039
40%-Sized	Z1	0.0107	0.0433	-0.0431
	Z2	0.0108	0.0431	-0.0393
	Z3	0.0107	0.0484	-0.0429
20%-Sized	Z1	0.0108	0.0374	-0.0397
	Z2	0.0108	0.0378	-0.0395
	Z3	0.0107	0.0393	-0.0371

deviation profile for various ESS sizing

However, if the ESSs are undersized by a large factor, the frequency and the magnitude of ramping increase due to the actions of the offset. In this context, Fig 4.23 shows the full-sized ESSs with smooth SOC profiles while Fig 4.24 shows 20%-sized ESSs with turbulent and fluctuating profiles. Nevertheless, it is beyond the scope of the dissertation to investigate the prolonged chemical and physical effects of such operation to the batteries but it demonstrates the possibility of undersizing ESSs with the combined actions of offset algorithm.

Figure 4.23: SOC profiles of a sampled day of a 100%-sized ESS in all

control areas

Figure 4.24: SOC profiles of a sampled day of a 20%-sized ESS in all control

Meanwhile, throughout the 1-week simulation, the SOCs of ESSs for various sizing operate within a healthy range as shown in Figure 4.25 and Figure 4.26. The maximum and minimum SOC is kept close to the defined 85% and 65% respectively, while the more undersized ESSs result in larger deviations of the values.

Figure 4.25: Weekly maximum SOC of ESS placed in all 3 RTS control areas

for various ESS sizing

Figure 4.26: Weekly minimum SOC of ESS placed in all 3 RTS control areas

for various ESS sizing.

4.3.5 25% PV Penetration

This section presents the 1-week frequency deviation histograms of the RTS under 25% PV penetration with and without various sizing of ESSs. The frequency deviation profile under PV penetration without the participation of ESSs in Figure 4.27 breaches ± 0.1 Hz, which is worse than the profile in Figure 4.12 without PV penetration due to the intermittency of PV.

Figure 4.27: Histogram of 1-week frequency deviation under 25% PV penetration for 3 control areas in RTS without ESS

At the same time, the frequency quality is also worse off in general with undersized ESSs where the quantitative results are shown in Table 4.7. In addition, the intermittency of PV also causes stability issues to the offset algorithm for undersized ESSs as shown in Figure 4.33 such that the fluctuations of SOCs of 20%-sized ESSs are most prominent during the middle of the day when the PV is 109 producing power. The profiles in Figure 4.33 are also more turbulent than that without PV penetration in Figure 4.24, which the operation might decrease the lifespan of the batteries.

Figure 4.28: Histogram of 1-week frequency deviation under 25% PV penetration for 3 control areas in RTS with a 100%-sized ESS in all control

Figure 4.29: Histogram of 1-week frequency deviation under 25% PV

penetration for 3 control areas in RTS with an 80%-sized ESS in all control

areas

Figure 4.30: Histogram of 1-week frequency deviation under 25% PV

penetration for 3 control areas in RTS with a 60%-sized ESS in all control

Figure 4.31: Histogram of 1-week frequency deviation under 25% PV

penetration for 3 control areas in RTS with a 40%-sized ESS in all control

areas

Figure 4.32: Histogram of 1-week frequency deviation under 25% PV

penetration for 3 control areas in RTS with a 20%-sized ESS in all control

	Frequency Deviation (Hz)			
ESS	Control Zone	Standard Deviation	Maximum	Minimum
	Z1	0.0164	0.1116	-0.1092
No ESS	Z2	0.0169	0.1089	-0.1075
	Z3	0.0173	0.1011	-0.1075
1000/	Z1	0.0112	0.0357	-0.037
100%-	Z2	0.0112	0.0356	-0.0369
Sized	Z3	0.0111	0.036	-0.0365
200/	Z1	0.0111	0.0363	-0.0366
80%-	Z2	0.0111	0.0357	-0.0371
Sized	Z3	0.011	0.035	-0.0356
(00/	Z1	0.0112	0.0376	-0.0386
60%-	Z2	0.0112	0.0364	-0.0381
Sized	Z3	0.0111	0.0352	-0.0385
400/	Z1	0.0113	0.036	-0.0381
40%- Sized	Z2	0.0113	0.0345	-0.0379
	Z3	0.0112	0.0352	-0.0382
200/	Z1	0.0121	0.0631	-0.0704
20%- Sized	Z2	0.0122	0.0599	-0.069
	Z3	0.0121	0.0633	-0.0707

Table 4.7: Standard deviation and range of histogram of 1-week frequency

deviation profile for various ESS sizing under 25% PV penetration

Figure 4.33: SOC profiles of a sampled day of 20%-sized ESS in all control areas under 25% PV penetration

Fundamentally, ESSs are not energy sources therefore they require additional energy sources to provide the capacity for frequency regulation. In this context, the total power plant output energy in the RTS network in 1 week for various ESS sizing is higher than that without ESS, as shown in Table 4.8. However, the power plant energy for meeting the load and for charging the ESS can be reduced with other RE sources in the grid network.

Table 4.8: Total	power plant	output energy	for various ESS	sizing without
------------------	-------------	---------------	-----------------	----------------

ESS	Total Power Plant Energy (MWh)		
Sizing	Without PV	25% PV	
100%	300383.10	280789.45	
80%	300383.54	280815.07	
60%	300380.25	280820.52	
40%	300377.94	280816.65	
20%	300381.47	281074.05	
None	300275.69	280642.81	

PV and with 25% PV penetration

As the dissertation proposes to charge the ESSs with power plants through offset algorithm since they are available at all times, ESSs are not able to replace spinning reserves in terms of capacity but for frequency regulation response in the network. On other hand, ESSs are able to replace the spinning reserves that cater for the loss of LGU. However, it requires the standing by of a large capacity of ESSs.

4.4 Summary

The chapter presents the simulation results of Peninsular Malaysian and IEEE 24bus RTS network. ESSs are shown to be able to minimise the frequency deviation effectively with the proposed control algorithm and under high PV penetration. Meanwhile, the proposed offset algorithm are also shown to be able to maintain the SOC at a healthy operating range throughout the simulation and allowing ESSs to be undersized for frequency regulation purposes, thus providing potential monetary savings in utilising reduced capacity of ESSs.

An undersized ESS does not degrade the grid frequency quality significantly, but given the condition of a high PV penetration in the network, the particular ESS requires frequent and large-magnitude ramping to maintain its capacity, which might decrease the lifespan of the batteries. However, the lifespan limitation might be able to be overcome by using other types of ESSs. Also, coupling ESSs with sufficient power output of RE sources in the network presents an opportunity to replace spinning reserves completely.

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

A stable grid frequency is achieved by maintaining the power balance between load and generation in a grid network. The task is conventionally carried out by the traditional power plants categorized as spinning reserves, mainly CCGTs in fact, as they possess the shortest response time for frequency regulation. However, the power plants are essentially limited by their ramping rate and duration for an effective frequency regulation. Meanwhile, constant ramping of the power plants results in the increased wear-and-tear of their mechanical components. Besides, the power plants are required to run at partial capacity to cater for such purpose. The objectives as proposed previously with the respective conclusions are described in the following.

I. To propose a comprehensive work package for adopting ESSs to carry out frequency regulation continuously in an interconnected power system.

A comprehensive work package is proposed to model the transfer functions of the power system with the power plants to study the network frequency changes

throughout load profiles with and without ESSs. The transfer functions of the components are used to represent their respective responses in terms of power frequency regulation is generation. The analysis carried out in MATLAB/Simulink while the voltage analysis is implemented in Matpower where the inputs are obtained from the outputs of MATLAB/Simulink. The proposed work package provides the seamless transfer of simulation data to study the frequency regulation response, the power profiles of all generating units in the network, the sizing of ESS and the SOC profile and the network voltage profiles.

II. To evaluate the performance of the proposed framework in terms of the frequency regulation algorithm and the capacity conservation offset algorithm of ESS.

Droop control as the primary while integral and derivative control as the secondary control are proposed as the frequency regulation algorithm of ESS. The algorithm is shown to be effective in minimizing frequency deviations qualitatively and quantitatively for both network models; of the Peninsular Malaysia and IEEE 24-bus RTS. A set of SOC conservation offset algorithm is also proposed and proven to work throughout the simulated duration in the dissertation to ensure the continuous operation of ESS.

III. To identify the optimal ESS location for frequency regulation purpose in the transmission network in terms of frequency regulation quality and minimal voltage impact to the power grid.

In the frequency regulation response study carried out in MATLAB/Simulink, it is identified that placing ESSs in every control area provides the best frequency quality as effective frequency regulation is performed locally within the control area without the reliance of power transfer from other control areas. Meanwhile in the network voltage study in Matpower, it is learned that the power absorption and injection of ESS for frequency regulation is small to deal a significant impact on the modelled transmission network voltage profiles. However, this may not hold true in other networks or distribution networks, hence the proposed framework allows such studies to be carried out seamlessly.

IV. To evaluate the case studies of high PV penetration and the adoption of undersized ESSs for frequency regulation.

The ESSs are shown to regulate the grid frequency effectively for both the simulation models, first under a 10% PV penetration in the Peninsular Malaysia network and second under a 25% PV penetration in RTS network. While undersizing the ESSs does not degrade the grid frequency quality by much due to the actions of the proposed capacity offset algorithm, a higher penetration of intermittent sources presents a more significant deterioration of regulation quality. Besides, undersizing the ESSs not only results in a more frequent ramping up and down of power by ESSs, but also at a large power magnitude change. The effects

on the chemistry and long-term sustainability of BESSs are beyond the scope of the study. However, it presents the idea of replacing BESSs with other mechanical ESSs like flywheels and super capacitors that may not encounter similar shortcomings.

5.2 Future Work

The major limitation of the dissertation is that it is essentially a simulation and physical ESSs are not involved in the study. Therefore, the physical and chemical effects of the proposed offset algorithm and frequent ramping of undersized BESSs are beyond the scope of the study. Hence, the most immediate future work is to test the effects of the aforementioned operation experimentally with a physical ESS. This can be achieved by integrating real-time network simulator that models the large power network, incorporated with hardware-in-the-loop (HIL) that includes a battery simulator or a physical battery. Likewise, based on the similar experimental network, BESSs can be replaced with other types of ESS, or combining multiple types of ESS for the study.

Similarly in the simulation models, other types or combining multiple types of ESS can be simulated. Meanwhile, other types of RE source can be simulated as well, along with the possibility of extending it to a larger network or narrowing it down to a smaller distribution network, which are achievable due to the flexibility

of the proposed work package. As the magnitude of power absorption and injection by ESSs is too small to impact the voltages in the transmission network in the dissertation, it is recommended to investigate the effects of having large ESS size on smaller distribution networks.

For more complicated simulations that involve the dynamic actions or interventions by other components in the power network like transformers and demand-side response, the ITE can be utilised to connect the simulations in MATLAB/Simulink with MAS (as described in Section 3.4.3). Last but not least, an economic analysis can also be incorporated to the study to identify the most cost effective way of utilising ESSs for frequency regulation.

LIST OF REFERENCES

Ahmadi, S., Shokoohi, S. & Bevrani, H., 2015. A Fuzzy-Logic Based Droop Control for Simultaneous Voltage and Frequency Regulation in an AC Microgrid. *Electr. Power and Energy Syst.*, pp. 148-155.

Augustin, M., Tom, M. & Luis, C., 2012. Solar Cells: Materials, Manufacture and Operation. s.l.: Academic Press.

Black & Veatch, 2012. Cost and Performance Data for Power Generation Technologies, s.l.: Black & Veatch.

Campbell, T. & Bradley, T., 2014. A Model of the Effects of Automatic Generation Control Signal Characteristics on Energy Storage System Reliability. *J. Power Sources*, pp. 594-604.

Castillo, M., Lim, G., Yoon, Y. & Chang, B., 2014. Application of Frequency Regulation Control on the 4MW/8MWh Battery Energy Storage System (BESS) in Jeju Island, Republic of Korea. *Journal of Energy Power Sources*, pp. 287-295.

Das, D., Roy, A. & Sinha, N., 2011. PSO Based Frequency Controller for Wind-Solar-Diesel Hybrid Energy Generation/Energy Storage System. Odisha, s.n.

Delille, G., Francois, B. & Malarange, G., 2012. Dynamic Frequency Control Support by Energy Storage to Reduce the Impact of Wind and Solar Generation on Isolated Power System's Inertia. *IEEE Trans. on Sustainable Energy*, pp. 931-939.

Department of Computer Science, University of Waikato, n.d. *Electrical Machines - Basic Vocational Knowledge*. [Online] Available at: http://www.nzdl.org/gsdlmod?e=d-00000-00---off-0gtz--00-0---0-10-0---0-direct-10---4-----0-0l--11-en-50---20-help---00-0-1-00-0-0-11-1-0utfZz-8-00&a=d&cl=CL3.2&d=HASH01693eebdf3891bea95c4ae7.6.1.fc [Accessed 11 April 2017].

First Hydro Company, 2009. Welcome to First Hydro Company. s.l., s.n.

Forschungsstelle für Energiewirtschaft e.V., 2017. *Technischer Aufbau der Frequenzregelung im UCTE*. [Online] Available at: https://www.ffe.de/publikationen/fachartikel/167-technischeraufbau-der-frequenzregelung-im-ucte [Accessed 19 March 2013].

Gu, W., Liu, W., Shen, C. & Wu, Z., 2013. Multi-Stage Underfrequency Load Shedding for Islanded Microgrid with Equivalent Inertia Constant Analysis. *International Journal of Electric Power & Energy Systems*, pp. 36-39.

Hawai'i Natural Energy Institute, 2014. *Control Algorithms for Grid-Scale Battery Energy Storage*, s.l.: HNEI.
Holt, G., 2009. Portable Generators in Motion Picture Production. [Online] Available at:

http://screenlightandgrip.com/html/emailnewsletter_generators4.1.html [Accessed 24 March 2017].

Johnston, L. et al., 2015. Methodology for the Economic Optimisation of Energy Storage Systems for Frequency Support in Wind Power Plants. *Applied Energy*, pp. 660-669.

Kintner-Meyer, M. et al., 2012. *National Assessment of Energy Storage for Grid Balancing and Arbitrage*, Richland: PNNL.

Knap, V. et al., 2014. *Grid Inertial Response with Lithium-ion Battery Energy Storage Systems.* Istanbul, IEEE.

Koh, S., Lim, Y. & Morris, S., 2011. Potential of Advanced Coal and Gas Combustion Technologies in GHG Emission Reduction in Developing Countries from Technical, Environmental and Economic Perspective. *Energy Procedia*, pp. 878-85.

Koller, M., Schmidli, J. & Vollmin, B., 2014. Frequency Regulation and Microgrid Investigations with a 1MW Battery Energy Storage System. Rome, CIRED.

Kundur, P., 1993. Prime Movers and Energy Supply Systems. In: *Power System Stability and Control*. Palo Alto: McGraw-Hill, pp. 379-396.

Lefton, S. & Besuner, P., 2001. *Power Plant Cycling Operations and Unbundling Their Effect on Plant Heat Rate*, Sunnyvale: APTECH.

Lew, D. et al., 2013. *The Western Wind and Solar Integration Study Phase 2,* Golden, Colorado: NREL.

Li, X. et al., 2014. Modeling and Control Strategy of Battery Energy Storage System for Primary Frequency Regulation. Chengdu, s.n.

Lucas, A. & Chondrogiannis, S., 2016. Smart Grid Energy Storage Controller for Frequency Regulation and Peak Shaving, Using a Vanadium Redox Flow Battery. *Elec. Power and Energy Syst.*, pp. 16-36.

Mallesham, G., Mishra, S. & Jha, A., 2011. Ziegler-Nichols Based Controller Parameters Tuning for Load Frequency Control in a Microgrid. s.l., s.n.

Martin II, J., 2016. *Why depth of discharge matters in solar battery storage system selection*. [Online] Available at: https://www.solarchoice.net.au/blog/depth-of-discharge-for-solar-battery-storage [Accessed 7 April 2016].

Oudalov, A., Chartouni, D. & Ohler, C., 2007. Optimizing a Battery Energy Storage System for Primary Frequency Control. *IEEE Trans. Power Syst.*, pp. 1256-1266.

Perez-Diaz, J., Sarasua, J. & Wilhelmi, J., 2014. Contribution of a Hydraulic Short-Circuit Pumped-Storage Power Plant to the Load-Frequency Regulation of an Isolated Power System. *Elec. Power and Energy Syst.*, pp. 199-211.

Reliability Test System Task Force, 1979. IEEE Reliability Test System. *IEEE Trans. on Power Apparaturs and Syst.*, pp. 2047-2054.

REN21, 2016. Renewable 2016 Global Status Report, Paris: REN21.

Rojas, A. & Lazarewicz, M., 2004. *Grid Frequency Regulation by Recycling Electrical Energy in Flywheels*. Denver, CO, s.n., pp. 2038-2042.

Schmutz, J., 2013. *Primary Frequency Control Provided by Battery*. Semester thesis, ETH Zurich, Zurich.

Sedky, E., 2009. *Cutaway View of a Synchronous AC Generator*. [Online] Available at: http://emadrlc.blogspot.my/2009/01/cutaway-view-of-synchronous-ac.html [Accessed 5 January 2017].

Serban, I. & Marinescu, C., 2014. Battery Energy Storage System for Frequency Support in Microgrids and with Enhanced Control Features for Uninterruptible Supply of Local Loads. *Elec. Power and Energy Syst.*, pp. 432-441.

Shankar, R., Chatterjee, K. & Bhushan, R., 2016. Impact of Energy Storage System on Load Frequency Control for Diverse Power Sources of Interconnected Power System in Deregulated Power Environment. *Electr Power Energy Syst.*, pp. 11-26.

Sivanagaraju, S., 2009. Load Frequency Control - I. In: *Power System Operation and Control*. New Delhi: Pearson Education India, pp. 268-269.

Suruhanjaya Tenaga (Energy Commission), 2014. *Peninsular Malaysia Electricity Supply Industry Outlook 2014*, s.l.: Suruhanjaya Tenaga.

Suruhanjaya Tenaga (Energy Commission), 2014. *The Malaysian Grid Code*, s.l.: Suruhanjaya Tenaga.

Suruhanjaya Tenaga (Energy Commission), 2016. *Peninsular Malaysia Electricity Supply Industry Outlook 2016*, Putrajaya: Suruhanjaya Tenaga.

U.S. Energy Information Administration, 2016. Wind and Solar Data and Projections from the U.S. Energy Information Administration: Past Performance and Ongoing Enhancements, Washington: U.S. Energy Information Administration.

Wartsila, n.d. *Combustion Engine vs Gas Turbine: Ramp Rate.* [Online] Available at: http://www.wartsila.com/energy/learning-center/technicalcomparisons/combustion-engine-vs-gas-turbine-ramp-rate [Accessed 15 April 2016]. Wong, J., 2015. Fuzzy Controlled Energy Storage System for Low-Voltage Distribution Networks with Photovoltaic Systems. PhD Thesis, Universiti Tunku Abdul Rahman, Malaysia.

Yi, J., Cameron, C. D. & Patsios, H., 2016. *Integrated Test Environment: Introduction and User Manual*, Newcastle: Newcastle University.

Zhong, J. et al., 2014. Coordinated Control for Large-Scale EV Charging Facilities and Energy Storage Devices Participating in Frequency Regulation. *Applied Energy*, pp. 253-262.

Zhu, J. et al., 2013. Inertia Emulation Control Strategy for VSC-HVDC Transmission Systems. *IEEE Trans. on Power Syst.*, pp. 1277-1287.

Zimmerman, R. D., Murillo-Sanchez, C. E. & Thomas, R. J., 2011. MATPOWER: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education. *IEEE Trans. on Power Syst.*, pp. 12-19.

Availability at Daily Maximum Demand HourMaximum Demand HourST-Coal $3,040$ MW $3,040$ MWST-Coal $3,040$ MWDate: $6/11/2014$ ST-Gas 0 MWDate: $6/24/2014$ ST-Gas $4,462$ MWDate: $6/24/2014$ Flytco $2,102$ MWDate: $6/24/2014$ Flotal TNB $9,664$ MWTroal Set On BusTotal Co-Gen 38 MWTroal Set on BusTotal Co-Gen 38 MWNatrium Demand Hour atTotal Co-Gen $18,662$ MWNet EnergyTotal Set Conel $3,306$ $2.50.66$ MWhPercentageFuel CStrCoal $8,2,418$ $2.4.52$ Gas $8,2,418$ $2.4.52$ Gas $8,2,311$ $8,332$ Gas $8,3,325$ $2.50.66$ Average Spinning ResetTotal Cost:Gas $8,3,321$ $8,900$ Gas $8,3,323$ $8,900$ Gas $8,3,311$ $8,900$ Gas $8,3,311$ $8,900$ Gas $2,4,80.66$ $9,906$ Gas $9,177$ $28,32$ Gas $2,4,80.66$ $9,900$ Gas $8,3,323$ $8,900$ Gas $2,4,80.66$ $9,900$ </th <th>mand Record 16,901 MW 355,911 MWH 355,911 MWH 355,911 MWH 17,597 MW 7,845 MW 1,475 MW 1,475 MW 1,475 MW 336,133 MWH 336,133 MWH 336,133 MWH 35,131 MWH 35,131 MWH 35,131 MWH 35,131 MWH 35,131 MWH 35,131 MWH 35,131 MWH 1,475 MWH 1,475</th> <th>Gas U Station CBPS CBPS CBPS CBPS CBPS PAKA PAKA PAKA PAKA PAKA PAKA TJGS TJGS TJGS TJGS PGPS RDG TJGS PGPS RDG PGFS RDG RDG RDG RDG RDG RDG RDG RDG RDG RDG</th> <th>/sage /mmscfd) 13 14 54 54 54 54 54 54 54 54 54 54 54 54 54 54 661 101 42</th> <th>Alternat Station Total</th> <th>e Fuel Usa (m)</th> <th>ge 0</th>	mand Record 16,901 MW 355,911 MWH 355,911 MWH 355,911 MWH 17,597 MW 7,845 MW 1,475 MW 1,475 MW 1,475 MW 336,133 MWH 336,133 MWH 336,133 MWH 35,131 MWH 35,131 MWH 35,131 MWH 35,131 MWH 35,131 MWH 35,131 MWH 35,131 MWH 1,475	Gas U Station CBPS CBPS CBPS CBPS CBPS PAKA PAKA PAKA PAKA PAKA PAKA TJGS TJGS TJGS TJGS PGPS RDG TJGS PGPS RDG PGFS RDG RDG RDG RDG RDG RDG RDG RDG RDG RDG	/sage /mmscfd) 13 14 54 54 54 54 54 54 54 54 54 54 54 54 54 54 661 101 42	Alternat Station Total	e Fuel Usa (m)	ge 0
Availationing at Dariy AttAntion Date: 6/11/2014 ST-Coal 3,040 NW Date: 6/11/2014 ST-Coal 3,040 NW Date: 6/24/2014 ST-Coal 3,040 NW Date: 6/24/2014 ST-Oil 0 MW Set On Bus Hydro 2,102 MW Daily Maximum Demand Hour at 10 MW Distillate 0 MW Total Set On Bus Total IPP 9,664 MW TNB Generation Total IPP 8,450 MW NTNB Generation Total System 8,450 MW Ntherimm Demand Total System 18,662 MW Nther Energy Total System 10,666 MW Nther Energy Fydro 10,64 MW Nther Energy Fydro Stopton fo	16,901 MW 355,911 MWH 355,911 MWH at: 17,597 MW 7,845 MW 1,475 MW 1,475 MW 1,475 MW 336,133 MWH 336,133 MWH 336,133 MWH 35,131 MWH 35,131 MWH	Station CBPS CBPS CBPS CLGR PAKA PAKA PAKA PAKA PAKA PAKA TGCS PGPS SRDG TJGS TJGS PGPS RDG TJGS PGPS SRDG TJGS SGB3 SGB3 SGB3 SGB3 SGB3 SGB3 SGB3 SG	(mmscfd) 13 13 14 14 14 14 14 14 58 56 11 101 101	Station Total	(III)	0 0
ST-Coal 3,040 MW Date: 6,242014 ST-Gas 0 MW Date: 6,242014 Gas 2,102 MW Date: Maximum Demand Hour at Total IPP Date: 6,242014 Total IPP 3,460 MW Total Store Bus TOB Total IPP 8,450 MW TOB Etotal Hour at Total System Total System 8,450 MW NB Generation Image Reserve Total System 18,662 MW Net Emergy Etotal Total System 18,662 MW Net Emergy Etotal Total System 8,430 W Net Emergy Etotal Total Co-Gen 38 MW Net Emergy Etotal Etotal Type MWh Percentage Total Cost: Etotal Etotal Type S3.33 2.30 % Total Cost: Etotal Etotal Etotal	355,911 WWH 355,911 WWH at: 16,000 Hour 17,857 MW 7,845 MW 8,256 MW 1,475 MW 1,475 MW 336,133 MWH 336,133 MWH 87.05 % LOot	CBPS CBPS GLGR NFRU PAKA PAKA PAKA PAKA PAKA TJGS TJGS TJGS FOLA PCLA PLPS SGB3 SGB3	13 49 54 54 14 14 202 54 212 58 561 101	Total		0
ST-Gas 0.MW Daily Maximum Demand Hour at ST-Oil 0.MW Set On Bus, TNB Gas Set On Bus, TNB Gas TNB Gas Set On Bus, TNB Gas TNB Gas Cond Set On Bus, TNB Gas Cond Set On Cond Gas Cond Set On Cond Gas <thcond se<="" th=""><th>B, IPP And MD at: 16,000 Hour 17,597 MW 7,845 MW 8,256 MW 1,475 MW 1,475 MW 336,133 MWH 336,133 MWH 336,133 MWH 336,133 MWH 336,133 MWH 336,133 MWH</th><th>CBPS OLGR NPRI PAKA POGGS POGGS POGGS SRDG TJGS Total TNB MPSS PGLA PLPS PGLA PLPS SGB3 SGB3</th><th>49 54 18 18 14 50 202 58 58 212 661 101</th><th></th><th></th><th></th></thcond>	B, IPP And MD at: 16,000 Hour 17,597 MW 7,845 MW 8,256 MW 1,475 MW 1,475 MW 336,133 MWH 336,133 MWH 336,133 MWH 336,133 MWH 336,133 MWH 336,133 MWH	CBPS OLGR NPRI PAKA POGGS POGGS POGGS SRDG TJGS Total TNB MPSS PGLA PLPS PGLA PLPS SGB3 SGB3	49 54 18 18 14 50 202 58 58 212 661 101			
$ \begin{array}{c cccc} & 0 \mbox{W} & Set \mbox{On Bus, TNB} \\ \hline Gas & 4,62 \mbox{MW} & 210 \mbox{MW} & Set \mbox{On Bus, TNB} \\ \hline Hydro & 2,102 \mbox{MW} & 102 \mbox{MW} & 103 \mbox{Mum Demand Hour at} \\ \hline Distiliate & 2,102 \mbox{MW} & 70 \mbox{Bus rotan} \mbox{Beneration} \\ \hline Total TNB & 9,604 \mbox{MW} & 70 \mbox{Bus certaion} \\ \hline Total TNB & 9,604 \mbox{MW} & 70 \mbox{Beneration} \\ \hline Total Co-Gen & 38 \mbox{MW} & 70 \mbox{Beneration} \\ \hline Total System & 18,662 \mbox{MW} & Net Energy \\ \hline Type & MW & Net Energy \\ \hline Gas & 8,2,418 & 2.4,52 \mbox{M} & 7.08 \mbox{M} & Average Spinning Reserve \\ \hline Gas & 8,3,351 & 2.4,80 \mbox{M} & 67 \mbox{M} & 19,600 \\ \hline Gas & 8,3,351 & 2.4,80 \mbox{M} & 19,600 \\ \hline Gas & 17,85,28 & 5.3,11 \mbox{M} & 9,5000 \\ \hline Hydro & 0.06 \mbox{M} & 19,000 \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.06 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} & 1000 \mbox{M} \\ \hline Hydro & 0.00 \mbox{M} & 1000 \mbox{M}$	B, IPP And MD at: 17,597 MW 7,845 MW 7,845 MW 8,256 MW 1,475 MW 16,089 MW 87,05 % 87,05 % 52,171,712.10 RM	GLGR NPRI PAKA PGGS PGGS SRDG TJGS TJGS TJGS TJGS RCP PGLA PLPS SGB3 SGB3	54 18 202 14 41 58 212 561 101			
Gas 4,402 MW Case 4,402 MW Hydro 2,102 MW Daily Maximum Demand Hour at Total ITNB 9,604 MW Total Set On Bus Total ITNB 9,604 MW Total Set On Bus Total Set On Bus Total ITNB 9,604 MW Total Set On Bus Total Set On Bus Total ITNB 9,604 MW Total Set Set On Bus Total Set Set On Bus Total System 18,662 MW NM Maximum Demand Percention Type MWh Maximum Demand Net Energy Type MWh Percentage Fuel C Strong 8,395 2,50 % Total Cost: Gas 8,3,351 2,480 % Average Spinning Reserve Str-Coal 95,177 28,32 % Cost per Unit Hydro 138,3,351 24,80 % Average Spinning Reserve Str-Coal 95,177 28,32 % Graphydro Otal TNB 18,5,28 % Cost per Unit	at: 17.597 MW 17.597 MW 7,845 MW 8,256 MW 1,475 MW 16,089 MW 336,133 MWH 87.05 % 57.05 % 57.171,712.10 RM	NPRI PAKA PGGS PGGS PGPS SRDG TJGS TJGS TJGS RAITNB KLPP PGLA PLPS PCLG PLPS SGB3	18 202 14 41 58 58 58 58 58 58 661 101 101			
Hydro 2,102 MW Daily Maximum Demand Hour at 0 MW Daily Maximum Demand Hour at 10 at 17 Daily Maximum Demand Hour at 7 Dail TNB Daily Maximum Demand Hour at 10 at 18 Co. Total IPP 9,604 MW TOB ESC OB Bus 10 MW TOB ESC OB Bus 10 At 50 MW TOB ESC OB Bus 10 Bus 10 At 50 MW TOB ESC OB Bus 10 Bus 10 At 50 Hour At 10 Daily Maximum Demand 10 At 50 Hour At 118,662 MW TOB ESC OB Bus 10 At 50 Hour At 118,662 MW TOB ESC OB Bus 10 At 50 Hour At 118,662 MW TOB ESC OB Bus 10 At 50 Hour At 118,662 MW TOB ESC OB Bus 10 At 50 Hour At 118,662 MW TOB ESC OB Bus 10 At 50 Hour At 118,662 MW TOB ESC OB Bus 10 At 50 Hour At 118,662 MW TOB ESC OB Bus 10 At 50 Hour At 10 At 50 H	at: 15.02/00 Hour 17.597 MW 7.845 MW 8.256 MW 1,475 MW 1,475 MW 16,089 MW 336,133 MWH 87.05 % 87.05 % 1 Cost	PAKA PAKA PGGS PGFS SRDG TJGS TJGS TJGS MPSS PGLA PKLG PLPS SGB3	202 14 14 212 212 661 101 101			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17,597 MW 7,845 MW 7,845 MW 1,475 MW 16,089 MW 336,133 MWH 87.05 % 87.05 % 52,171,712.10 RM	PARA POGGS POGGS POGGS SRDG Total TNB MPSS PGLA PLPS PGLA PLPS SGB3	202 14 81 58 58 212 661 101 101			
Total TNB 9604 MW TNB Generation Total TNB 9,604 Total Co-Gen MW PP Generation Total Co-Gen 38 MW MM PP Generation Total System 18,662 MW Natimum Bensure Total System 18,662 MW Net Energy Total System 18,662 MW Net Energy Generation Mix Natimum Densad Net Energy Type MVh Percentage Fuel C ST-Coal 67,436 2006 % Total Factor Hydro 82,418 24,52 % Cost per Unit Hydro 83,395 2.50 % Average Spinning Reset ST-Coal 95,177 28:32 % Graphic Total TNB 185,238 5.311 % Hydro Gas 83,351 24,80 % Average Spinning Reset Total TNB 185,238 5.311 % Synon	7,845 MW 8,256 MW 1,475 MW 16,089 MW 336,133 MWH 87,05 % 87,05 % 57,05 %	PGGS PGPS SRDG TJGS Total TNB KLPP PGLA PLPS PCLG PLPS SGB3	14 58 212 661 101 42			
Total TNB 9,044 MW Trotal TNB 9,044 MW Trotal Concount Total IPP 8,450 MW Trotal Spattern 38 MW Trotal Spattern Trotal Spattern Total Co-Gen 38 MW Net Energy Maximum Demand Total System 18,662 MW Net Energy Maximum Demand Type MWh Precentage Load Factor Gas 8,3418 24,52 % Total Cost: Gas 8,395 2,50 % Total Cost: Hydro 83,351 24,80 % Average Spinning Reset ST-Coal 95,177 28,32 % Gast per Unit Gas 83,351 24,80 % Average Spinning Reset Total TNB 18,5349 47.08 % Average Spinning Reset Gas 83,351 24,80 % Moto Total Proto Total IPP 178,528 53,111 % Syncon Syncon	8,256 MW 1,475 MW 1,475 MW 16,089 MW 336,133 MWH 87.05 % 87.05 % 52,171,712.10 RM	PGPS SRDG TJGS Total TNB KLPP MPSS PGLA PLPS PLPS SGB3	41 58 212 661 101 101			
Total IPP 8,450 MW Number of the current out out of the current out out of the current out out out out out out out out out ou	1,475 MW 1,475 MW 16,089 MW 336,133 MWH 87.05 % 87.05 % 52,171,712.10 RM	SRDG Total TNB MPSS PGLA PLPS SGB3 SGB3	58 212 661 101 42			
Total Co-Gen 38 MW Number Summary Summary Searce Total System 18.662 MW Naximum Demand Total System 18.662 MW Net Energy Generation Mix Load Factor Fuel C Type MWh Percentage Fuel C ST-Coal 67,436 20.06 % Total Cost: Gas 82,418 24.52 % Cost per Unit Hydro 83.395 2.50 % Average Spinning Reset ST-Coal 95,177 28.32 % Gr Otal TNB 188,249 47.08 % Average Spinning Reset ST-Coal 95,177 28.32 % Gr Otal TNB 188,249 47.08 % Average Spinning Reset ST-Coal 95,177 28.32 % Gr Type Otal TNB 188,238 53.11 % Syncon Syncon	1,2,10,000 MW 16,009 MW 336,133 MWH 87,05 % 1 Cost 52,171,712,10 RM	TJGS Total TNB KLPP MPSS PGLA PLAS PLAS SGB3	212 661 101 42			
Total Location Maximum Demand Total System 18,662 MW Net Energy Type Maximum Demand Maximum Demand Type Maximum Demand Net Energy Type MWh Percentage Net Energy ST-Coal 61,436 20,06 % Total Cost: Fuel C Gas 82,418 24.52 % Cost per Unit Fuel C Hydro 83,395 2.50 % Cost per Unit Fuel C Total TNB 158,249 47.08 % Average Spinning Reset ST-Coal 95,177 28.32 % Gas Type Otal ITNB 158,528 53.11 % Hydro Type Otal IPP 178,528 53.11 % Syncon Syncon	10,059 MWH 336,133 MWH 87.05 % 52,171,712.10 RM	Total TNB KLPP MPSS PGLA PLPS PLPS SGB3	661 101 42			
I ofall system Type MWh Percentage Load Factor Fuel C ST-Coal 67,436 20.06 % Total Cost: Fuel C Hydro 82,418 24,52 % Cost per Unit Fuel C Hydro 158,249 47.08 % Average Spinning Reset ST-Coal 95,177 28.32 % Type Oas 83,351 24.80 % Hydro Oas 83,351 24.80 % Storen	530,135 MWH 87.05 % 52,171,712.10 RM	KLPP RCP2 PCLP3 RCP3 RCP3 RCP3 RCP3 RCP3 RCP3 RCP3 RC	101 42			
Generation Mix Load Factor Type MWh Percentage Fuel C ST-Coal 67,436 20.06 % Total Coat: Hydro 82,418 24,52 % Cost per Unit Hydro 8,395 2,50 % Cost per Unit Total TNB 158,249 47.08 % Average Spinning Reset ST-Coal 95,177 28,32 % Gr Oas 83,351 24.80 % Average Spinning Reset Oas 95,177 28,32 % Gr Oas 53,11 % 9400 Street	87.05 % 87.05 % 52,171,712.10 RM	KLPP PGLA PULG SCB3 SCB3	101			
Type MVh Percentage Fuel C ST-Coal 67,436 20.06 % Total Cost. Gas 82,418 24.52 % Cost per Unit Hydro 82,395 2.50 % Cost per Unit Total TNB 188,249 47.08 % Average Spinning Reset ST-Coal 95,177 28.32 % GT Otal TNB 188,249 47.08 % Average Spinning Reset ST-Coal 95,177 28.32 % GT Oas 53.311 24.80 % Hydro Oas 53.311 53.311 Syncon	52,171,712.10 RM	MPSS PGLA PLPS SGB3	42			
Type MWh Percentage Fuel C ST-Coal 67,436 20.06 % Total Cost. Fuel C Gas 82,418 24.52 % Cost per Unit. Fuel C Hydro 8,395 2.50 % Average Spinning Reset. Total TNB 158,249 47.08 % Average Spinning Reset. ST-Coal 95,177 28.32 % Type Iotal TNB 158,249 47.08 % Average Spinning Reset. ST-Coal 95,177 28.32 % Type Oas 83,351 24.80 % Synon Oas 53.11 % Synon	52,171,712.10 RM	PGLA PLPS SGB3				
ST-Coal 67,436 20.06 % Total Cost: das 82,418 24,52 % Cost per Unit Hydro 8,395 2.50% Cost per Unit Total TNB 158,249 47.08% Average Spinning Reset ST-Coal 95,177 28.32% G Type Gas 83,351 24.80% Hydro Hydro Otal IPP 178,528 53.11% Hydro Morion	52,171,712.10 RM	PKLG PLPS SGB3	112			
Gas 82,418 24,52 % Cost per Unit Hydro 8,395 2,50 % Cost per Unit Total TNB 158,249 47.08 % Average Spinning Reset ST-Coal 95,177 28,329 28,329 % Type Gas 83,351 24,80 % Hydro Hydro Total IPP 178,528 53,11 % Hydro Mydro		PLPS SGB3	13			
Hydro 8.395 2.50 % Cost per Unit Total TNB 158,249 47.08 % Average Spinning Reset ST-Coal 95,177 28.32 % Type Oas 83,351 24.80 % Flyic Oas 178,528 53.11 % Hydro Oas 55,117 28.32 % Stroon		SGB3	100			
Total TNB 158,249 47.08 Average Spinning Reset Total TNB 158,249 47.08 % Average Spinning Reset ST-Coal 95,177 28.32 % Type Gas 83,351 24.80 6 Hydro Total IPP 178,528 53.11 % Hydro	12.00 CEIIIS/AWA	SCBS	201			
10tal LNB 1.55,449 4.7.06 A versus Spunning Kest ST-Coal 95,177 28.32 % Type Gas 83,351 24.80 % GT Total IPP 178,528 53.11 % Hydro Total IPP 178,528 53.11 % Syncon	ourse During Book Hone		64			
ST-Coal 95,177 28,32 % Type Gas 83,351 24,80 % GT Total IPP 178,528 53,11 % Hydro	CLAST DULING LEAN TRUT	SGRI	178			
Gas 83,351 24,80 % GT Total IPP 178,528 53,11 % Hydro	MW	SKSP	52			
Total IPP 178,528 53.11 % Hydro	399	Total IPP	649			
Syncon	272	Tatal Gae	1311			
10 JU 10 10 10 10 10 10 10 10 10 10 10 10 10	748	T OLD COS	VERT			
Co-Gen 490 0.13 76 Thermal	126					
Total Co-Gen 490 0.15 % Total	1.545	Total Gas Bennired	116,1			
Total Generation 337,267 100.34 %						
PLTG 440 0.13 % Time Wea	eather Temperature					
EGAT -34 -0.01 % Afternoon Hot	ot 32					
HVDC 728 0.22 % Morning Sum	mny 28					
Interconnection 1,134 0.34 %						
Net Energy 336,133 100.00 %						
Hourly System A	MW Generation					
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00	0 11:00 12:00 13:00 14:00	15:00 16:00 17:0	0 18:00 19:0	0 20:00 21:0	0 22:00	23:00
Trial 12224 12688 12008 11667 11308 11230 11423 11547 11874 13672 14582	2 15288 15336 15062 15780	15965 16089 1571	17 14718 143:	50 15665 1565	15270	14851
THE REPORT OF A DESCRIPTION OF A DESCRIP				Contraction Cinade)		
ared By: Stit Nurhamizatul Aini	Printed on	Tuesday, February 02, 2.	016 8:36:31 Pen.	ncmeren ouign igurus Besar Kanau atan Sistem Operas	e, 12	

APPENDIX A: A Sample Daily System Generation Summary in Peninsular Malaysia

5																																					M	ondar	y, Fe	brua	y 01	, 20	16
Ŗ	TEN	0N 0N	AL	NERHA	9											_	Dail	ly N	MI	Ge	ners	atio	u o u	W	puo	ay																	
Station	Unit	0000	•	100	0	00	03(8	040		0500		0600	_	0200	•	800	60	00	1000	_	1100	12(00	130(1400	-	200	16(e	1700		800	19		2000	5	100	220		2300	li
		4000	001	09 . 00	10 00	11 - 20	209 0	1, 705	669	706	701-	669	700	869	687	685 .7	N - 50	02 00	5. 700	169	691	703 6	69 86	5 603	597	609	623	701	M 60	69 00	669	695	705	701 70	69 60	869	969	693	6 2	669	g	8	ig i
MAH	1000	E C	106	12 10	(R =	11 70	200	703	203	202	202	705	899	705	702	705	105 71	35 70	\$ 705	202	202	694 7	102 501	202 5	103	705	202	703	N 101	10, 20	103	208	502	F 501	20 10	203	<u>e</u> 1	2 (6 6	104 a	10/	100	2 2
The second		645	545	45 64	0 64	13 64	0 64	644	645	3	ş	55	643	645	645	545	43 6	45 64	9 644	645	15	645 6	543 64	043	8	6	678	619	30	10 91	619	090	6/0	0 110	2	8	0/0					11	040
- Marce	1000	679	615	78 6	64	82 67	9 671	\$ 676	674	676	678	619	619	673	682	666 4	540 6	46 67	677	675	678	678 é	29 089	1 677	619	675	629	619	19 115	6	682	676	678	9 60	10 01	670	674	0 029	90 00 00 00	876	678	675	674
CON LA CON	1003	636	103	34 6	34 6	37 63	5	3 635	634	636	629	3	634	634	634	643	942 6	32	6 634	F	83	54	234 63	4 63	0.58	878	100	5	10.22	9 9	000	2	200	0 000	1	0.00	19	698	86	198	22	064	190
DUNG	1004	ię,	681	L 05.	5	93 79	3 79	3 792	792	194	282	793	194	196	264	792	- 161	95 82	2 857	860	839	3 198	858 85	38 86	859	828	8	828	10 M		600	000	240	0 700	26 28	050	140	261 2	50 26	592	261	279	181
PKLG	1003	283	285	121	19 23	81 28	21 E	3 285	283	220	282	282	282	281	285	279	284 2	82 28	1 283	281	381	283	12 12	La L	283	2		780	A 514	17 70	100	100	of c	- OLL	10 01	270	P	E	12 12	5 275	112	279	278
PKLG	1004	280	281	181 2	78 22	78 27	3 27	9 276	273	281	279	230	780	282	282	6	279 2	R F	2 381	281	S 1	281		12 2	1	-	107	1	101	5 5		100	466	097	60 46	466	465	462	69 46	5 473	469	466	466
PKLG	2000	469	469	69 4	69 4	69 46	6 46	9 469	465	464	465	469	469	468	465	465	469 4	61 48	5 464	64 4	470	404	9 09 00	44	200	009		and a	20 803	100	509 2	009	100	6 209	97 69	5 698	100	969	69 00	7 694	689	001	695
VIEL	1000	100	909	9 665	99 95	59 86	8 69	669 6	69.	206	88	569	569	88	663	669	9 001	49 66 60	269 20	101	CK9	50	40 CK0	6 M	202 4	101		202	700 7	100	702	i į	002	702 7	03 69	S 700	705	203	01 168	4 683	669	669	869
TBIN	C003	869	90	200 6	8 e	9 00	6	7 700	0 698	69	69	. o	60 0	\$ o	0	0	6 0	0 0	0	0	2 0	0	0	0 6	•	135	136	•	0 1	32 14	2 162	121	281	336 3	66 39	2 471	448	4	568 56	4 562	568	557	3
TIBIN	C004	2	-					1000	1 20	0010	04.37	4027	100	6670	CCK6	6666	19 222	199 193	10 664	2 6641	6633	6647 6	650 676	67 654	4 6585	5 6714	6752	5899	675 67	99 68	3 6825	6827	6947	7006 7	077 70	31 7163	2 7146	7160 7	271 72	ST 725	7230	7201	7305
Total ST-Ct	al	1859	6581 (280 0	575 0	202 00	9 5	000 0	a 000	0000 0	-	-	-	-	-				•	•	•	•		-	•	•	0		0	0	٥	0	•		Ĵ	•	•	-	0	•	•	۰	•
Total ST-O		•	•							-	•	-	-	-	-	-			-	•	-		0	0	•	•	٠	•		0	۰	•	•	•		•	-	•		•	۰	•	•
Total ST-G	5	-	-	-				1	67	80	15		88	5	18	18	1.58	52	15	86	96	56	6 96	4 92	55	8	55	5	50	8 15	5. 94	16	8	88	87 8	8	86	16	6 16	16 1	5	5	87 4
CBPS	VIID	i e	i e	6 4							. •	0	•	•	0	0	0	8	16 2	\$	a	s	92 9	1 90	06 0	8	80	68	12	8. 45	55	8	5	87	87 8	1 87	8	8	93 9	8	8	76	00 1
CBIS	915	•						1	5	-	14	99	-	40	97	9	40	£ 15	7 81	101	100	66	5 66	16 L	16	95	95	5	8	8 06	8	100	100	8	5	1 92	101	101	101	10	102	F	5
CBPS	SILC	1 4			; •		05	-	•	-	•	•	0	•	•	0	•	0	0	•	•	D	0	0 0	•	9	153	114	112 1	n m	2 112	11	8	52	0	•	•	•		0	•	•	0
C and	CTN1	-	2	, Li	. 5	22		2	30	68	8	69	89	89	\$	59	\$	98 10	96 10	7 107	105	106	106 10	03 10	0 102	102	16	33	2	6 00	16	66	16	S	8	9 10	10	100	102	96	101	8	108
an or o	CTD2	101	101	107	10	10	- 50	88	68	68	8	89	9	8	89	68	\$	99 14	10 10	7 107	107	5	106 10	05 10	2 102	101	8	8	-6	8	96 8	8	8	63	63	6	101	102	103	90 10	101	101	
GLOR	STIC	86	16	16	5	87 7	6	0 70	70	14	F	10	P	8	02	R	۶	85	6 96	16 5	5	5	6 16	8	32	32	98	99	5	6	9 87	8	8	52	2 3	54 ; 10 ;	5			0.5	8 •	8	2
dd Da	GTH	0	0	•	•	0	് ം	0	0	•	0	•	۰	•	0	0	0	0	3 11	13	11	in,	5	1	m	6 1990	5	31	5	ел () Е	2	E	F	E	5	1.0	n ?	12					
AL.PP	GT12	0	0	0	•	0	۰ ٥	9 0	•	•	0	•	0	•	•	0	0	•	6	•	6	13	18	00	100	8	18			8	8 18	2	21	0	81	0 10	of 1	9 5	137	- E	137	E.	137
KLPP	GT13	134	136	135	136	136 1	35	H H	8	20	2	F	F	69	2	20	20	8	22	4 137	191	6	137 1	57 15	8 13	151	138	5 5	5	100	11	150	ISI	1 9	152	1 12	136	136	5	53 15	3 153	151	151
KLPP	6114	•	•	o	0		۵. ه	•	2	•	•	•	•	•	•	• 1	0	2 1	53 - 13 M	131	123	10	101	1 10	391. 3	107	071	i g		्र इ	12	1	12	157	811	18 13	8 15I	191	151 1	50 15	0 147	147	117
dd"TM	SLTD	148	148	148	ę.	148	6 7	8	۴. i	P 1	8	P 8	2 8	2	91	8/	2 0		1 2 2 0	110 0	1		2 966	24	222	228	228	225	525	14	17 227	7 227	227	727	208 2	08 21	9 228	52	227 2	27 22	7 216	203	196
KLPP	ST17	<u>z</u> .	130	8	5	130	=_`` 8 •	10	2			2 2	7 S	R	R 8	80	6	1 101	06 10	68 9	10	ş	102	01 8	9 101	1 103	103	8	103	104 1	101 105	S 104	104	103	103	05 10	30	105	105 1	02	6 106	107	107
NPSS	ia i	•									•	۲ - C		-	0	•	•	5	0	28	103	103	102	02 10	01 10	1 101	101	101	103	103	0 10	3 103	볋	10	104 1	02 10	4 104	104	3	10	4	104	104
MPSS	CI02	a (4		, c						, 6 	•		0	•	0	•	37	4	4 6	6 39	109	011	m i	N II	77 10	111 8	112	11	9	10	13 11.	3 113	11	Ħ	114	14	1	14	11	14	÷ :	14	1
NPRI	BLKI	•	0	•	0	0	0	0	8	•	0	•	0	•	0	0	•	0	0	0	•	•	0		0		0	•	0	011 0	0	•	•	•	•	• •		9	1	1.05 5 1	9 3	3.5	ş e
NPRU	BLK2	•	•	۰	0	0	•	9 0	0	• ()	0	•	•	•	0	۰	0	0		53		2	F 1		•	• ; ::::	٩.,	•	• •	× 8	ň č	2 3	3 8	1	23	n 9	3 3	2			88	3	68
PAKA	OTIA	88	80	8	8	8	99	55 6	5	66	Z.	8	\$	99	6	8 :	8	8 3	8 06	88	2 8	9 8	12	20 00 00	5 S	87 83	8 5	2 5	3 5	52	2 5	2 20	15	3 8	3	6 1 3	8	6	8	8	8	2	6
PAKA	GTIB	68	8	6	8	8	65	9 9	0	2 2	8	5	3	8 3	8 3	3	8 3	8 3	6 F		6 ¥	26	8 7	. 94	9	92. 3	2	92	92	26	6 76	5 76	29	99	59	8	5 76	28	36	76 7	5 76	36	76
PAKA	STIC	2	2	92	2	5	3 1	5 1	6 0 T (55	8.5	5 8	8 8	2 3	5	5 5	5 5	5 5	2 5		18	18	68	18	18 1	5	15	81	81	18	12 21	15	81	18	30) 16	80	1 82	55	12	52	2 83	84	5
PAKA	GT2A	8	2 5	2	20 B	- e	28	20 0 70 00		3 8	02	68	30	8 88	63	8	2	68	50	88	5	98	86	88	5 83	5 85	98	85	2	53	15 84	\$ \$6	86	86	\$	87 8	6 36	8	67	87 8	18	88	8
PAKA	51712	8.8	0 0	8 3	8 8	0.0	8 3			5		53	72		23	12	83	53	8	4 84	2	84	85	85	35	5 85	88	22	8	50	22	5 85	84	2	25	ŝ	4	I	8	** %	5	8	z
PAKA	\$120	20	\$ 8	5	5 5	t s	1 5	0 00	0.0	00	00	8	6	06	16	6	16	8	6 06	0 89	88	80	\$8	88	12 23	1 87	88	50	ţ,	86	8	88 88	88	13	60	88	88	88	88	8	8 8	8	50
LAKA	VEID	8		0	8 8	2	2 2			0	0	00	00	8	00	06	06	06	8 06	68 6	88	-23	87	87 \$	60	7 87	18	20	87	5	96 BI	50 50	5	87	88	88	88	88	3	80	8	8	6
PAKA	Gen D	8 8	6 6	8 5	2 5	2 8	2 5	6	0	6	5	22	32	55	6	56	8	92	92 9	12 92	5	Sł	16	5 16	22 9.	5	8	32	g	5	6 16	5	8	33	8	8	5	2	8	3	2	51	8
PARA	OFFIC STATE	76	2 2	1 8	10	3	: 5	50	1 12	8	ð	35	8	8	8	56	56	56	95 9	5 95	76 5	ä	z	X	94 94	3	3 93	8	8	66	2	5	8	8	8	6 56	56	a i	8	8 1	8.1	8 1	8 1
LANA A	dirto.	5	5	18	2	15	- 28	120	. 66 3	50	80	2	-8	1 84	2	\$\$	83	8	84 8	33 S	28	83	8	53	83	3	83	25	8	2	2	8	3	53	12	90 22	8 8		12	2 2	8 1 2 1	2 1	2 5
PANA PARA	OFTS	1 8	8 8	00	2 5	20	5 5	5 6	2	6	6	16	6	16	16	16	16	8	92 5	12 9	2 92	66	8	56	10	5	33	8	66	8	6 56	3 33	8	r	8	93 93	6 93	8	8	8	8 1	10.00	Re
A TOP	11115	1	1 6	722	122	512	325	1 28	86 1	56 18	8 15	3 15	6 19	4 223	220	226	229	229	192 2	22 22	4 226	102 1	53	233 2	10	11 05	191	225	187	202	11	161 02	8 197	211	165	2	ក្តី ន	12	8 1	230	2 2	1.	ā i
DDLA	GT12	ន	232	12	ន	217	S128	1 89	38	59 15	2 15	15 15	6 16	\$ 230	326	229	233	229	194 2	129	8 228	503	225	223	11 122	63 17	101	225	190	208	224 22	52	201	214	167	18	50	230	122	1	2	2	3

[4	Aond	ay, l	Febr	uary	01,	201	9
B	TEN	AGA	AL	BERHA	9												Da	ily	W	v G	ent	erat	ion	00	Mo	pue	ay																		
Station	Unit	0000	•	100	62	00	036	9	040		050		090		070		0800	-	0060	T	000	1	00	120		1300	-	1400	-	200	16	8	170(1800	I	000	200	8	2100	~	200	2	90	
PGLA	ST10	245	243 .2	45 24	2 24	3. 243	3 226	5 217	195	221	200	195	223	246	239	230	243	243	224 2	150 2	49 2	\$2 24	4 249	240	237	205	225	242	옃	110 2	100 11	0 245	240	221	236	513	0 243	3 250	251	250	ន	252 2	5	22	m
PGPS	VETO	82	8	83 8	8	3	82	22	8	8		50	8	8	53	82	8	53	53	53	2	A B	8	63	8	8	3	8	200 22	6 16	4	8	55	z :	2	21	8	8	3.3	8 8	z :	8.3	51 S	ar a	
PGPS	GT3B	•	0	0	0	•	•	•	0	•	۰	•	•	•	•	0	2	S1	83	32	20	z	8	8	8	g	33	z	8	93 93	5	z.	8	z :	E.	E 1	2	a a	z 1	8 1	5	z :	2 2		
PGPS	STBC	36	36	36 3	19 19	6 36	8	3	35	36	36	35	36	36	8	36	8	36	5	8	91 5	5	2 92	8	8	33	8	66	8	5 26	8	8	5	5	0	2	а : н :	2	R	G I	40	20.0	A		0 3
PLPS	GTH	143	े ह	0	•	ŝ	•	•	•	•	•	•	•	•	0	•	•	2	141	145	1	4 : 2 :	14	143	139	139	128	135	66	139	n : : :	661	136	110					120	1	0 1	0 0	्र इ.स.	• •	8 4
Salid	GT12	141	139	140 14	5	8.14	2 14	9 142	136	137	135	136	137	69	8	8	145	143	4	141	40	n () 6	6 13	1122		151	5	R 1	8 5	5	2 4	124	9 1			0.00			11.0	g	-		1 10		
PLPS	GT13	6	146	141 11	34 14	0 13	12	132	13)	137	138	137	137	113	Ē	6	136	143	145	145	1	2 I 2	0 14	131	137	136	38	5	9 9		50 13	801 8	5	100	9 9	901 901			201	AUT.			0 1	1 6	2 2
STIA	ST18	213	213	145 14	44 34	1	3 14	3 I4:	143	5	143	142	143	118	120	2	148	99	214	214 517	213 2	ក រ ព			212	1	1	11	10.0	1	5 S 5 S		1	1	20	041	1. 1. I.	1 1 1	101	No.	10	101	1 8	1 1	: 5
SGB3	1615	0	•	•	සි. ද		•	•	•	• •	8	33	8	\$.	8 4	9	130	8	135	135	1 22	22 SS	5 15	141	8 9	3 5	261	201	19		2 2 2 2	1 12	145	124	8 <u>1</u>	50	1 21	4	108	108	E		1 2		
SOB3	GT32	• •					o . e	0.2			• •	•	2		*		4	1	1	140		1 05	0 151	151	150	150	150	8	150	50 1	61 65	9 150	8	140	136	130	50 14	4 145	133	133	133	136	2	0	10
SGBS	PLI2			100	100	1	-		i i	.11	N. Contraction	116	116	130	1.1	114	111	138	91	195	36 1	37 13	7 136	\$ 136	135	135	136	136	135	135 1	35 13	5 136	136	135	135	106 1	06 10	6 134	1 136	110	110	011	15	35 1	5
SCRI	GT12	151	146	51 14	08 1 3		9	E E	109	Ξ	Ē	105	109	150	125	112	72	144	in.	150	1 23	53 15	3 15	2 149	151	151	151	151	150	150	50 13	0 150	150	151	ISI	111 3	10 11	1 153	152	117	111	117	46	2	7
SGRU	ST14	150	148	149 14	40	13	2 13	134	4 132	132	132	129	135	149	141	135	135	140	131	150 1	130	49 14	14	8 151	148	131	150	150	149	149	49 I.4	9 148	148	121	148	951 110	29 12	7 145	9 149	132	132	22	48	23	8
SGRU	6121	135	139	139 1	39 1)	14 11	3 11	3 11	2 113	112	112	106	5 113	138	3 120	113	111	661	137	137	137 1	38 11	13	1 124	135	135	135	133	134	1		a l	a i	133	112	8	13	4 13	136	911	116	2	5	5	9 19
SGRI	GT22	142	143	36	ें 0	្តំ	•	•	•	•	0	•	•	•	0	•	0	8	142	143	1 661	40	1	133	140	141	137	138	62	139 1	37 13	7 135	140	LEI	1	E		8	138	8	= :	1	2 1		s :
SGRI	0123	145	4	145 1	48	=	3 11	3 11	211 6	1113	113	108	112	146	\$ 120	112	116	147	145	148	148 1	41 - 24	14	6 146	44	144	144	144	2	143	4	4	8	143	1	112	e :	5	141 5	1	8	9	90 14	 	2 2
SGRU	ST24	220	33	198 1-	46 13	32 13	6 13	2 13	3 131	135	SEI 5	123	135	123	3 136	138	138	151	223	216	219 2	16 21	17 31	6 217	218	218	219	215	219	218 2	3	9 221	516	B	196	200		8	1 1	161	6		3 1	200	9 9
SKSP	BLKI	342	306	333 2	95 2	18 23	3 21	3 21	3 213	213	234	213	5.213	. 222	211	- 215	53	230	340	342	343	4	22	337	X	30	316	20	5	341 3	동 : 동 :	8 338	155	000	14	212		- -	342	9 8	1		205	1 2	2 2
TJGS	GTIA	233	233	233 2	33 2	33 19	8 19	8 15.	2 162	162	16	2 162	162	1 162	3 152	162	ğ	230	234	231	231 2	8 6	31 23	1	33	231	331	5	121	2310 1	61.5 6	1	12	231	1	5			1010	101	-			4 C	8 5
TJCS	GTIB	12	223	220 2	50	23 18	8 18	8 14	6 15	150	3 15	3 153	153	153	3	153	2	518	222	8	218	10	12	8 218	218	312	118	1 1			1. 1	217 22 20 20 20 20 20 20 20 20 20 20 20 20	212	218	2 1	191	17 18			1	1 5	-	1 5	1 6	198
TJGS	STIC	52	253	123	80 18	8	सः म	7 20	0 19.	192	2 19	5 165	192	192	5	132	192	5	21	8	233	8 : 8 :		SS E	1 233	8 3	8 5	8	2	100	10.10	22 23		9 6	9 5	200 2010	10 11	1 (k) t ¥	210	112	1 1	316	18	1 6	e i
TJGS	GT2A	33	33	8	61. []	8	8 8	13	Я.) о	19	n i	6 134	9	9 136	9 136	123	130	8 1		1		1	1		10.0	1 010	1	1	1 8		1 3	10.2	116	110	1	Y IC	- C - X	1.5	6 216	10	22	220	8	1	1
TJGS	GT2B	5	17	31	सः सः	200	12	13	8		13	3 130	134	111		2	132	8	220	220	215	1 1 1	12 5	1000	120	817	817	251	290	1 017	1 2	2 262	292	282	262	262	62 26	28	2 262	262	363	262	1 53	G	1 23
TJGS	ST2C	264	5g	264	10	1	5	12				12 2	117 2	100	117	10.0	-	-	202	1000 H	1 100		10 75	20 746	1 T460	7766	TAKK	26.26	6956	7.444	20 75	23 762	178.6	7446	70.00	6621 6	58.6 72	58 764	1719	7695	7710	7625 7	681 7	439 6	122
Total CCG	T-Gas	6218	6139	5848 5	200 5	521 52	48 49	42 48	0 412	8 402	0	0	0.4/0	0	0	0	0.160	0	0	0	0	60	6 11	3 - 112	113	113	106	106	6	13	6 83	0 89	88	•	0	•	0	6	•	•	•	0		0	0
CBPS	GT05				ः • •		0		0			•	0	0	0	•	•	0	0	0	0	ঁ	0 0	.0	•	114	111	Ξ	68	8	80	9 89	2	30	٥	0	0	0	•	٩	٥	•	•	0	•
POGS	GT6A		•	0		0	.e.	ċ	0	°	•	•	•	•	0	•	0	0	0		5	100	01 10	0 101	1 100	101 6	8	100	8	8	80 8	0 80	8	80	8	8	80 8	8	6 0	100	101	•		្ល	
PKLG	60LD	0	0	۰	•	0	0	į	•	Î	D	å	0	•	9	•	0	0	•	0	65	86	6 4	1 98	- 38	8	- 18	R	8	ş	5 18	8 8	2	2	2	\$ 1	201	8) - 1	5 1 200	2 1	8	81 ×			
SRDG	OTO	0	0	0	•	0	8	į.	•	•	•		•	• 516	•	•	•	0	ę	0	•	8	5	68	68	8	68	8	8	68	8 8	0 00	16	66	R 8	R a	01 0	< 8 9 9	6. 6	R Ş	•	• •			
SRDG	CT03	0	•	o	•	0	0	្តី	0		23	•	0	• •	•	•	•	• •	0			0	0	1	11 4	Line 1	120	2 2	8 5	130		1 1 1		125	50	2 3	6 6 50	12 0	121	8 8	126			, 0	0
SRDG	GT04	• •	•		ः • •	0.0		1							• •		• •				3 12	3			12	Ē	13	1 2	2	120	8	11	12	124	68	80	80 8	9 12	4 125	124	125	124	0		0
Total OCC	T-Gas		-						°	ľ	l°	°	•	•	0	0	-	0	•	•	354	417 6	04 74	10 74	3 768	3 855	856	846	816	118	96 8	17 800	787 6	636	497	491	693 50	05 60	8 585	525	421	202	-		•
BSIA	10/H	21	=	ň	1		1	-	5	1	8	문	12		10	-	Ħ	н	11	Ξ	IF	10	2 2	夏.	н 32	Ę	=	5	21	1	्यः स	ाः इ.स.	8	10	9	9	10	58 5 -	금 · 김종	9	= :	73	= •	i.	= •
BSIA	HY03	0	0	•		0	ः •	<u>_</u>	•	ċ		ŝ	2	•	•	•	•	۰.	•	0	•	•	0	0.1	•	•	•	2	= '	=)	2,		•	• •	• •	• •			 	e †	9 F	, ,		a it	
CEND	HY01	1	-		r-	-	53) P		100 100	5	1	-	2	-	P	-	•	-	-	-		-		19			- 1	-	-	33	- 1		2	1						1		•	- F		- 1
CEND	HY02	F.	-	•	-	-	E.	į,	1	-	5		1	н 305	-	-	1	-	•	-		5				1		0													• •	.,		1	- 6
CEND	HY03	5	r	2	- -	-	703 ••		tij) F	-	<u></u>	1		20	-		-		-		6		118					-		-	- 1		10	1	- 1	- 7	1		30		- 7	ŝ	- 7		. 7
HTRG	HY01	7	7	7	7 (-	1.13 17 4	1. 195	1		4. (* -	1	1.4	7.4	7.05		7 4	7 9		7 0	1.5				1 12	e ve	1	4	; ¢	•	1 0		•	•	0	•		. 0	•	•	•	•		0	0
HIRG	HY02	• 2	0 %	0 0			ిని లం		6.18 			્રે				• •	•	• •			0		0	183 -	• 323	•	•	e	ន	1	12	2 3	0 2	•	0	•	0	0	0	•	•	•	0	•	•
Dava -	COVID	8 ¢	R =						ි 				-	-	0	•	•	0	٩	•	0	•	0	0	0	0	•	0	51	ä	2	2	5	•	•	0	P	ි 0	ŝ	9	•	0	ø	•	0
KORG	HY03	36	36	15	- LE	10	5	1	E.	3	10	7 31	5	1 3	7 33	1 37	46	37	31	37	37	37	37 3	in.	1 37	37	37	37	53	8	1	17	5	5	31	51	5	2	13	5	21	ล	ដ	ន	3
MNYR	HYVOI		7	7	7	-	7			1	19	7	۳. ۲	7	5	7	7	7	7	7	7	7	-	1	7 (13)	٦.	7	R.	7	86	66		1	7	7	7		7. 7	7	10	7		7	T	7
XNYR	HY02	7	7	ų.	7	ġ	ः च		्त् च	ģ	97) 	7	С. Г	1	7	7	5	7	5	7		7	ų.	派 マ	1	Ħ	7	7	7	09	7	1	17. 17	7	7	7		20 7	7 2	2	7		7	S.	7

[č																																Mc	nday	, Feb	ruar	y 01,	2010	10
יול	NAS	NO	AL BER	DAH											Dai	ly N	M	Ger	ıera	tion	1 0 U	Mo	nda	A.																
Station	Unit	0000	0100	-	0200	0300		0400	8	200	06	00	010		0800	60	8	1000	I	100	120		1300	14	00	1500	-	600	170		1800	19	g	2000	21	00	2200	2	300	
KNYR F	HY04	62 6	2 64	\$	59 58	S 57	8	33	5 22	15 21	2 35	0 03	99	8	6] 6	50	3	65	8	56 66	8	8	-66	8	66 8	-26	18	8 85	8	4	65	8	82	66	67 51	09 2	6	5	90 61	1.
LPLA 2	IOVE	10 1	0 10	10	10 II	01 0	10	2	01	0 10	0 10	0 10	8	9	10	01 01	10	01	2	10 10	0 10	9	10	1 2	0 10	10	10	10 11	070	19	9	0	9	10	10	01	9	9 9	9 0	1
LPIA	HY02	16 1	6 16	16	16 14	5 16	16	16	16 3	6 16	6 I6	5 16	16	16	16 1	6 16	16	16	16	16 16	5 16	16	16	16	6 16	91	16	16 14	5 16	16	16	16	19	16	16 I	9 19	16	16	16	
MNOR 3	10XB	9	9	9	50	4	4	N.	4	4	*	4	4	*	-	4	-		-	5	-	-0	**	* *	9	9	\$	9 9	4	4	N	4	4	4	4	*	1	4	4	
F UAD	10AH	8	7	٣		1	7	Ŧ	333 7	77	7	7	7	7	ų.	78 7	7		5	85 21	88	7	7	ः म	7	88	84	8 15	3	30	8	8	3	ន	20	8	8	8 8	7	1
PGAU 1	HY02	-	7	7	7 33	7	7	R	ी। म	- 43	1	7	Ŧ	7	5	ः -	5	7	7	7	7	7	7	ः न	7	Ŧ.	7		7	7	7	7	7	7	छः च	8 200		7	Į.	
PGAU 1	HY03		1	7	7		7	7	16	7	(T)	7	7	7	T	7	7	7	7	7	2	130	8	81 1	0 113	E	13	11	2 109	7	7	7	7	7	7	7 202	70	7	T Go	`
PGAU	HY04	0	0	•	0	0	•	•	•		8		0	•	0	0	•	•	•	0	•	•	•	0	0110	8	011	100	0 110	5	Fi (5 ×	N 4	R 4	तः स्र	3	5	0 e		1
AHIS	ELV01	65	•	•		•	•	•	•		•	28	•	•	•	•	•	•	800 10	4 1 6	•	•	PIE	्र • •	8 8 8 8	4	2 2	n 1 2 1	-	•		• •	•	• •	- -					
AHIS	HY02	20	•	•		•	•	•	• •		0	•	• •			0 0	• •	0 4		2 2						8.9	2 4	n 9					• •		505 5 6)
YHIX -	EY CO	2			2.5		• •														}	•			32	2	*	25		• •		0	•		0		. 0	. 0		,
evre	1012	9 ¥							00 0		10		0				• •	• •	. 0	1 71	1	•	0	0	12	12	ล	3	•	•	0	0	•	0	ී ං	•	0	•		
SAPS	50714	2	0	0	0	0	•	•	•	0 0	0	•	0	0	0	0 0	•	0	0	0 0		•	0	0	6 25	ุล	n	3	0 5	•	0	0 0	•	0	0	0	•	0	0	
SYPS	HY04	ุล	0	0	0	•	•	Þ	•		0 0	-	0	•	0	0 0		•	•	0 0	•	•	•	е 0	6 25	*1	•	0	•	•	•	0 0	•	۰	0	0	۰	•	0	`
TMGR	10XH	1	7	ч		-	7	$\overline{\tau}$	7	4	3	7	7	7	ģ	7	4 0	7	4	-	1	7	Ŧ	ें। म	7	7	7	ģ	7	7	7	78) 7	7 220	7	ाः च	구 전망	7	-2649 -	ŝ	
TMGR	HV02	12	7E E	56	30 3	1 28	31	38	2	19	32	2 39	36	33	32	34 33	33	36	8	20 8	32	33	33	31	7 82	80	12	S2 7	1	31	8	52	X	99 17	19 12	0 30	33	z	£ 66	_
TMGR	HY03	0	0	0	0	0	¢	•	0	0	0	0	0	•	0	0	•	0	•	9 0	0	•	•	0	2	63	62	82	8	•	•	0	•	•	•	•	•	0	•	
TMGR	HY04	7	7	7		1	7	H.	ೆ. ಇ	걸	38 7	7 20	7	7	1	िः 7	7	7	7	7 5	7 	7	7	াণ্ড 7	7 133	100	7	- 1005 1709	3	7	7	70	7	7	7.8 7	7	-	7 (- 	
UPIA	HY01	5	5	w	5	~	**	n	5	5	19 10	43 ·	10	n	~	n -	** ·	•	n 1		9 9	•• •	•	n .	v. •	n .	n -		n .	•	n -	n .	n .	9.9	9.0 • •	•	n x	n .		•
UPIA	HV02	1	1	Ŧ		4	4	-						+	+	4		-	-			•		-			-	1 000	1 0	-		1 00					100	1		1.
Total Hydro		514 2	32 200	18/		0 192	<u>R</u> 4						1 190	107	6	0	-	-	0.0		-	-	-	0	0 0		100			•			•	-	0	•	•			1_
DODI DISUIT	C IIIO	-	1			100		200				1	1		1	6	1	100			1	-	9			19153	-		1	1	5	100	6	3	2. ++	0	10	4	-	١.,
FOUF	CUFK	. 91	61 0	1 2	20 1	100	. 22	19	10	18 1	ñ 6	8 19	19	19	R	19 20	30	19	19	19 1	7	11	16	18	7 17	18	11	18 1	7 18	11	18	19 11	11	18	19	8 19	18	19	20 2	0
Total Co-Get		20	2 20	21	22	0 19	31	21	21	19 2	0 15	9 21	21	22	24	21 22	21	8	21	21 1	9 18	18	20	20	8 18	61	18	21 1	61 6	18	30	21 21	2	8	20	22	5	5	24 2	-
Total Gen		13500 12	974 12648	12483	12146 121	05 11721	11622	11501 1	1426 11	112 0021	371 115	211 80	31 1158	N 11575	11909 1	151 131	60 1424	4 14620	15012 1	5362 158	505 1545	19231 5	15993	153,82 15	831 1594	63 16077	10091	6122 36	133 1580	6 15275	1991	4418 143	89 15187	15679	5190 15	124 1564	15353	15139 1	4888 14	8
TIE-EGAT		0	0 0	•	000	0	¢	0	•	0	0	0 0	¢	•	•	ස _්	•	0	•	0	•	•	•	•	0 0	•	•	0	•	•	•	5)) 0	• 999	•	•	0	0	0		-
TIE-HVDC		98	10 30	30	30 3	10 30	8	0£	IE	31 3	e	0 3(8	5	5	31	1 30	30	E	en Tie	E	30	8	5	30	8	30	30	3	20	ê	м Я	8	R	ಣ್ಣ: ಷ:	នៈ រូប	8	in 1	en 1 1	
TIE-PLTG		- 33	02- 69	٩ ;	18	19 24	ŝ	1	8 8	6 9	9 F	5	1		2 ¥	30 5	19 2	90 A	9 %	4 5	29 86	82	् ह	05 18	10 40 10 10	112	8	14	6 60	°¦ -	2 2	11 0 8 1 1 1 1 2 8 1 1 2 8 1 1 1 1	8	1910	4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8	6 5	୍ଷ ଜୁନ ଜୁନ	el H
CONTRACTOR	0		AL		-		-						100	1011	1 12011	1010	101 11	14687	1 PLOT	1 100	101 Int	6 19140	1400	51 13431	180 1460	27621 14	10967	1000	87 1571	15271	14718	101 100	13131 05	199951	51 05250	654 1560	15270	15088 1	481 14	19
System Tota		T OCOUR	10071 (1)		100017	1011 101	1	1000										ANN -		1000			-	100	10. 20	140	102	1.01	10 156	50	100	140.001	111	1	1	00	20	114	56 12	g
SRev ST-Co	ac .	20	8 1	137	12751	55 133	<u>a</u>	4	2	1 60	9	24	1 1	9			0 134	5 1	f i		9 9 9 9		9		5 8 1 5	2 10	8 8	1 20	APE OF	201	-			Ţ	1 8		3 8	•		2
SRev OCGT	See.	•	0	-			-				(-)) 			-	-	1 10		200	3		104 13		oc Pite	And a	120 24	1 1	Test	t and	222 11	1	198	1140	209 70	040	406	10 K1	144	18	4	s
SRev COGT	-Girs	2	01 248	2	252	14. 00	ŝ	6	S. C		ان مو		0-T 00			100		•	•			-	1	к 5 е		(-				•	•	e		4			¢		b	
SRev ST-Ga	2	• •	0 9				•	- -					2.0					> ∞			100	2	5 ec			• •	2			- 1	5 90	565 	0	00	. 60			, vi	-	
Skev Lo-Ur	5	° 0	2 250 25	150	0 250	. 55	556	659	202	53 9	53 95	53 95	3 953	- 953	556	56 656	3 802	953	\$02	802 St	02 802	802	802	S02 8	02 80	2 449	550	550 6	51 651	802	802	802 80	2 802	802	802 8	02 651	802	802	6 656	12
Hydro		1 12	25 118	151	127 1	27 132	127	138	212	39 1	38 .13	11 06	5 121	116	124	119 12	5 253	119	147	97 14	61 21	1 103	216	217 4	13 16	2 279	344	322 2	45 248	390	408	410 41	0 375	353	392 4	05 532	363	263	93 1	2
S.Reserve T	ctal	1 7361	370 1457	1411	1745 18	856 2170	2268	1962	2609.2	12 160	766 26	118 24	0 263	3 2683	1222	2184 17	\$3 146	1151 0	1357	1317 12	295 141	6 1355	1671	1698 1	731 131	9 1305	158)	1465 1	130 150	3 2854	2445	72 2112	10 2001	1602	1833 24	261 690	1634	1365	1461 13	3

APPENDIX B: 1-Week Network Voltage Profiles (in pu) For Various ESS Placements On Busbars Simulated At Daily Maximum And Minimum Power Mismatch

Busb]	BESS Bi	ısbar Pl	acement	t		
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses
ber							Bus	Bus	
							Each	Each	
							Zone	Zone	
1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1
3	0.972	0.972	0.97	0.969	0.973	0.973	0.974	0.974	0.974
4	0.974	0.973	0.971	0.971	0.974	0.974	0.974	0.974	0.975
5	0.992	0.992	0.99	0.99	0.992	0.998	0.992	0.994	0.993
6	0.992	0.991	0.987	0.987	0.992	0.993	0.992	0.992	0.992
7	1	1	1	1	1	1	1	1	1
8	0.973	0.973	0.969	0.969	0.973	0.974	0.973	0.973	0.973
9	0.985	0.985	0.981	0.981	0.985	0.986	0.985	0.985	0.985
10	1.009	1.009	1.005	1.005	1.01	1.011	1.01	1.01	1.01
11	0.984	0.984	0.982	0.982	0.985	0.986	0.985	0.985	0.985
12	0.978	0.978	0.974	0.974	0.979	0.98	0.978	0.978	0.979
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1
19	0.996	0.997	0.996	0.996	0.996	0.996	0.996	0.996	0.996
20	0.996	0.997	0.996	0.996	0.996	0.996	0.996	0.997	0.996
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.967	0.966	0.965	0.964	0.968	0.968	0.968	0.968	0.968

Day 1 – Maximum Mismatch (Generation > Load)

Day 1 – Minimum Mismatch (L	load > Generation)
-----------------------------	--------------------

Busb]	BESS B	usbar Pl	acemen	t		
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses
ber		_					Bus	Bus	
							Each	Each	
							Zone	Zone	

1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1
3	0.971	0.971	0.972	0.972	0.976	0.976	0.97	0.97	0.969
4	0.972	0.972	0.973	0.973	0.975	0.975	0.971	0.971	0.971
5	0.99	0.99	0.991	0.991	0.993	0.988	0.99	0.989	0.989
6	0.988	0.988	0.989	0.989	0.992	0.991	0.987	0.986	0.986
7	1	1	1	1	1	1	1	1	1
8	0.97	0.971	0.971	0.971	0.971	0.971	0.969	0.969	0.969
9	0.982	0.983	0.983	0.983	0.985	0.984	0.981	0.981	0.981
10	1.006	1.006	1.007	1.007	1.009	1.008	1.005	1.005	1.005
11	0.982	0.982	0.983	0.983	0.985	0.984	0.982	0.982	0.981
12	0.975	0.975	0.976	0.976	0.977	0.976	0.974	0.974	0.974
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1
19	0.996	0.995	0.996	0.996	0.996	0.996	0.996	0.996	0.996
20	0.996	0.996	0.996	0.996	0.996	0.996	0.996	0.996	0.996
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.966	0.967	0.967	0.967	0.97	0.97	0.965	0.965	0.965

Day 2 – Maximum Mismatch

Busb]	BESS B	usbar Pl	acement	t		
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses
ber							Bus	Bus	
							Each	Each	
							Zone	Zone	
1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1
3	0.969	0.969	0.969	0.969	0.97	0.97	0.969	0.969	0.97
4	0.971	0.971	0.971	0.971	0.972	0.972	0.971	0.971	0.971
5	0.99	0.99	0.989	0.989	0.99	0.996	0.989	0.991	0.99
6	0.988	0.987	0.986	0.986	0.988	0.989	0.986	0.987	0.987
7	1	1	1	1	1	1	1	1	1
8	0.97	0.97	0.969	0.969	0.97	0.971	0.969	0.969	0.97
9	0.982	0.981	0.981	0.981	0.982	0.983	0.981	0.981	0.982
10	1.006	1.006	1.004	1.004	1.007	1.008	1.005	1.005	1.005
11	0.982	0.982	0.981	0.981	0.983	0.984	0.982	0.982	0.982
12	0.975	0.975	0.974	0.974	0.976	0.977	0.975	0.974	0.975

13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1
19	0.996	0.997	0.996	0.996	0.996	0.996	0.996	0.996	0.996
20	0.996	0.997	0.996	0.996	0.996	0.996	0.996	0.996	0.996
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.964	0.964	0.964	0.964	0.966	0.965	0.964	0.964	0.965

Day 2 – Minimum Mismatch

Busb]	BESS B	usbar Pl	acement	t		
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses
ber							Bus	Bus	
							Each	Each	
							Zone	Zone	
1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1
3	0.968	0.968	0.968	0.968	0.967	0.967	0.966	0.966	0.966
4	0.969	0.969	0.97	0.97	0.969	0.969	0.968	0.968	0.968
5	0.988	0.988	0.989	0.989	0.988	0.982	0.987	0.986	0.987
6	0.984	0.984	0.985	0.985	0.983	0.982	0.982	0.982	0.982
7	1	1	1	1	1	1	1	1	1
8	0.967	0.968	0.968	0.968	0.967	0.967	0.966	0.966	0.966
9	0.979	0.979	0.98	0.98	0.979	0.978	0.977	0.977	0.977
10	1.002	1.002	1.004	1.004	1.002	1	1.001	1	1
11	0.98	0.98	0.981	0.981	0.979	0.979	0.979	0.979	0.979
12	0.972	0.972	0.973	0.973	0.971	0.971	0.97	0.97	0.97
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1
19	0.996	0.995	0.996	0.996	0.996	0.996	0.995	0.995	0.995
20	0.996	0.996	0.996	0.996	0.996	0.996	0.996	0.996	0.996
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.964	0.964	0.964	0.964	0.963	0.963	0.962	0.962	0.962

Day 3 –	Maximum	Mismatch
---------	---------	----------

Busb	BESS Busbar Placement										
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All		
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses		
ber							Bus	Bus			
							Each	Each			
							Zone	Zone			
1	1	1	1	1	1	1	1	1	1		
2	1	1	1	1	1	1	1	1	1		
3	0.97	0.97	0.97	0.97	0.971	0.971	0.971	0.971	0.972		
4	0.972	0.972	0.971	0.971	0.972	0.973	0.972	0.972	0.973		
5	0.99	0.99	0.99	0.99	0.991	0.996	0.991	0.992	0.991		
6	0.989	0.989	0.987	0.987	0.989	0.991	0.989	0.989	0.989		
7	1	1	1	1	1	1	1	1	1		
8	0.971	0.971	0.97	0.97	0.971	0.972	0.971	0.971	0.971		
9	0.983	0.982	0.982	0.982	0.983	0.984	0.983	0.983	0.983		
10	1.007	1.007	1.005	1.005	1.007	1.009	1.007	1.007	1.008		
11	0.983	0.983	0.982	0.982	0.984	0.984	0.983	0.983	0.983		
12	0.976	0.976	0.975	0.975	0.977	0.978	0.976	0.976	0.977		
13	1	1	1	1	1	1	1	1	1		
14	1	1	1	1	1	1	1	1	1		
15	1	1	1	1	1	1	1	1	1		
16	1	1	1	1	1	1	1	1	1		
17	1	1	1	1	1	1	1	1	1		
18	1	1	1	1	1	1	1	1	1		
19	0.996	0.997	0.996	0.996	0.996	0.996	0.996	0.996	0.996		
20	0.996	0.997	0.996	0.996	0.996	0.996	0.996	0.996	0.996		
21	1	1	1	1	1	1	1	1	1		
22	1	1	1	1	1	1	1	1	1		
23	1	1	1	1	1	1	1	1	1		
24	0.965	0.965	0.965	0.965	0.966	0.966	0.966	0.966	0.966		

Day 3 – Minimum Mismatch

Busb	BESS Busbar Placement										
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All		
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses		
ber							Bus	Bus			
							Each	Each			
							Zone	Zone			
1	1	1	1	1	1	1	1	1	1		
2	1	1	1	1	1	1	1	1	1		
3	0.969	0.969	0.969	0.969	0.968	0.968	0.97	0.97	0.97		
4	0.97	0 97	0 971	0 971	0 97	0 97	0 071	0 971	0 071		

5	0.989	0.989	0.989	0.989	0.988	0.983	0.99	0.989	0.989
6	0.985	0.985	0.986	0.986	0.985	0.983	0.987	0.987	0.987
7	1	1	1	1	1	1	1	1	1
8	0.968	0.968	0.969	0.969	0.968	0.968	0.97	0.97	0.969
9	0.98	0.98	0.981	0.981	0.98	0.979	0.981	0.981	0.981
10	1.004	1.004	1.005	1.005	1.003	1.001	1.005	1.005	1.005
11	0.981	0.981	0.981	0.981	0.98	0.979	0.981	0.981	0.981
12	0.973	0.973	0.974	0.974	0.972	0.972	0.974	0.974	0.974
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	4
15	1	1	1	1	1	l	1	1	1
15 16	1	1	1	1	1	1	1	1	1 1
15 16 17	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1
15 16 17 18	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	$ \frac{1}{1} 1 1 $	1 1 1 1	1 1 1 1	1 1 1 1
15 16 17 18 19	1 1 1 0.996	1 1 1 0.995	1 1 1 0.996	1 1 1 0.996	1 1 1 0.996	1 1 1 0.996	1 1 1 0.996	1 1 1 0.996	1 1 1 0.996
$ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 $	1 1 1 0.996 0.996	1 1 1 0.995 0.996	1 1 1 0.996 0.996	1 1 1 0.996 0.996	1 1 1 0.996 0.996	1 1 1 0.996 0.996	1 1 1 0.996 0.996	1 1 1 0.996 0.996	1 1 1 0.996 0.996
15 16 17 18 19 20 21	1 1 0.996 0.996 1	1 1 1 0.995 0.996 1	1 1 1 0.996 0.996 1	1 1 1 0.996 0.996 1	1 1 1 0.996 0.996 1	1 1 1 0.996 0.996 1	1 1 1 0.996 0.996 1	1 1 1 0.996 0.996 1	1 1 1 0.996 0.996 1
$ \begin{array}{r} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ \end{array} $	1 1 0.996 0.996 1 1	1 1 0.995 0.996 1 1	1 1 0.996 0.996 1 1	1 1 0.996 0.996 1 1	1 1 0.996 0.996 1 1	1 1 0.996 0.996 1 1	1 1 0.996 0.996 1 1	1 1 0.996 0.996 1 1	1 1 0.996 0.996 1 1
$ \begin{array}{r} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ \end{array} $	1 1 0.996 0.996 1 1 1	1 1 0.995 0.996 1 1 1	1 1 0.996 0.996 1 1 1 1	1 1 0.996 0.996 1 1 1	1 1 0.996 0.996 1 1 1 1	1 1 0.996 0.996 1 1 1 1	1 1 0.996 0.996 1 1 1 1	1 1 0.996 0.996 1 1 1 1	1 1 0.996 0.996 1 1 1

Day 4 – Maximum Mismatch

Busb				BESS B	usbar Pl	acemen	t		
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses
ber							Bus	Bus	
							Each	Each	
							Zone	Zone	
1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1
3	0.971	0.971	0.968	0.968	0.972	0.972	0.972	0.972	0.973
4	0.973	0.973	0.97	0.97	0.973	0.973	0.973	0.973	0.974
5	0.991	0.991	0.988	0.988	0.991	0.997	0.991	0.993	0.992
6	0.99	0.99	0.984	0.984	0.99	0.992	0.99	0.99	0.99
7	1	1	1	1	1	1	1	1	1
8	0.972	0.972	0.967	0.967	0.972	0.972	0.972	0.972	0.972
9	0.983	0.983	0.979	0.979	0.984	0.984	0.984	0.984	0.984
10	1.008	1.008	1.003	1.003	1.008	1.01	1.008	1.008	1.008
11	0.983	0.983	0.981	0.981	0.984	0.985	0.984	0.984	0.984
12	0.977	0.977	0.972	0.972	0.978	0.978	0.977	0.977	0.977
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1

17	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1
19	0.996	0.997	0.996	0.996	0.996	0.996	0.996	0.996	0.996
20	0.996	0.997	0.996	0.996	0.996	0.996	0.996	0.997	0.996
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.966	0.966	0.964	0.963	0.967	0.967	0.967	0.967	0.967

Day 4 – Minimum Mismatch

Busb]	BESS B	usbar Pl	acement	t		
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses
ber							Bus	Bus	
							Each	Each	
							Zone	Zone	
1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1
3	0.97	0.97	0.97	0.97	0.974	0.974	0.971	0.971	0.971
4	0.971	0.971	0.972	0.972	0.974	0.973	0.972	0.972	0.972
5	0.989	0.989	0.99	0.99	0.991	0.987	0.99	0.99	0.99
6	0.986	0.986	0.988	0.988	0.99	0.988	0.988	0.988	0.988
7	1	1	1	1	1	1	1	1	1
8	0.969	0.969	0.97	0.97	0.968	0.968	0.97	0.97	0.97
9	0.981	0.981	0.982	0.982	0.983	0.982	0.982	0.982	0.982
10	1.005	1.005	1.006	1.006	1.007	1.005	1.006	1.006	1.006
11	0.981	0.981	0.982	0.982	0.983	0.983	0.982	0.982	0.982
12	0.974	0.974	0.975	0.975	0.975	0.975	0.975	0.975	0.975
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1
19	0.996	0.995	0.996	0.996	0.996	0.996	0.996	0.996	0.996
20	0.996	0.996	0.996	0.996	0.996	0.996	0.996	0.996	0.996
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.965	0.966	0.966	0.966	0.969	0.969	0.966	0.966	0.966

Busb]	BESS B	usbar Pl	acement	t		
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses
ber							Bus	Bus	
							Each	Each	
							Zone	Zone	
1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1
3	0.972	0.972	0.969	0.969	0.973	0.973	0.973	0.973	0.974
4	0.973	0.973	0.97	0.97	0.974	0.974	0.974	0.974	0.974
5	0.992	0.992	0.989	0.989	0.992	0.997	0.992	0.993	0.992
6	0.991	0.991	0.985	0.985	0.991	0.993	0.991	0.991	0.992
7	1	1	1	1	1	1	1	1	1
8	0.972	0.972	0.967	0.967	0.973	0.973	0.972	0.972	0.973
9	0.984	0.984	0.98	0.98	0.985	0.985	0.985	0.985	0.985
10	1.009	1.009	1.004	1.004	1.009	1.011	1.009	1.009	1.009
11	0.984	0.984	0.981	0.981	0.985	0.985	0.984	0.984	0.985
12	0.978	0.977	0.973	0.973	0.979	0.979	0.978	0.978	0.978
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1
19	0.996	0.997	0.996	0.996	0.996	0.996	0.996	0.996	0.996
20	0.996	0.997	0.996	0.996	0.996	0.996	0.996	0.997	0.996
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.967	0.966	0.965	0.964	0.968	0.968	0.968	0.968	0.968

Day 5 – Minimum Mismatch

Busb		BESS Busbar Placement										
ar Num ber	Z1 - PV	Z1 - PQ	Z2 - PV	Z2 - PQ	Z3 - PV	Z3 - PQ	One PV Bus	One PQ Bus	All Buses			
							Each	Each				
							Zone	Zone				
1	1	1	1	1	1	1	1	1	1			
2	1	1	1	1	1	1	1	1	1			
3	0.971	0.971	0.971	0.972	0.975	0.975	0.969	0.969	0.969			
4	0.972	0.972	0.973	0.973	0.974	0.974	0.971	0.971	0.97			

5	0.99	0.99	0.991	0.991	0.992	0.987	0.989	0.988	0.989
6	0.987	0.987	0.989	0.989	0.99	0.989	0.986	0.985	0.985
7	1	1	1	1	1	1	1	1	1
8	0.97	0.97	0.971	0.971	0.968	0.968	0.968	0.968	0.968
9	0.982	0.982	0.983	0.983	0.983	0.983	0.98	0.98	0.98
10	1.006	1.006	1.007	1.007	1.008	1.006	1.004	1.004	1.004
11	0.982	0.982	0.983	0.983	0.984	0.983	0.981	0.981	0.981
12	0.975	0.975	0.976	0.976	0.976	0.975	0.973	0.973	0.973
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1
19	0.996	0.995	0.996	0.996	0.996	0.996	0.996	0.995	0.996
20	0.996	0.996	0.996	0.996	0.996	0.996	0.996	0.996	0.996
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.966	0.967	0.967	0.967	0.97	0.97	0.965	0.965	0.965

Day 6 – Maximum Mismatch

Busb]	BESS B	usbar Pl	acemen	t		
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses
ber							Bus	Bus	
							Each	Each	
							Zone	Zone	
1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1
3	0.982	0.982	0.978	0.978	0.982	0.982	0.982	0.982	0.982
4	0.981	0.981	0.978	0.977	0.981	0.981	0.98	0.98	0.981
5	0.998	0.998	0.995	0.995	0.998	1.003	0.997	0.999	0.998
6	1.002	1.002	0.996	0.996	1.001	1.003	1	1.001	1.001
7	1	1	1	1	1	1	1	1	1
8	0.98	0.98	0.975	0.975	0.98	0.98	0.979	0.979	0.979
9	0.992	0.992	0.988	0.988	0.992	0.993	0.992	0.992	0.992
10	1.018	1.018	1.013	1.013	1.017	1.019	1.017	1.017	1.017
11	0.989	0.99	0.987	0.987	0.99	0.99	0.989	0.989	0.989
12	0.985	0.985	0.981	0.981	0.986	0.986	0.985	0.985	0.985
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1

17	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1
19	0.997	0.998	0.996	0.997	0.997	0.997	0.997	0.997	0.997
20	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.974	0.974	0.972	0.972	0.975	0.975	0.975	0.975	0.975

Day 6 – Minimum Mismatch

Busb	BESS Busbar Placement								
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses
ber							Bus	Bus	
							Each	Each	
							Zone	Zone	
1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1
3	0.982	0.982	0.981	0.981	0.979	0.979	0.98	0.98	0.98
4	0.98	0.98	0.98	0.98	0.978	0.978	0.98	0.979	0.979
5	0.997	0.997	0.997	0.997	0.995	0.991	0.997	0.996	0.996
6	1	1	1	1	0.996	0.995	0.999	0.999	0.999
7	1	1	1	1	1	1	1	1	1
8	0.978	0.978	0.978	0.978	0.974	0.974	0.978	0.977	0.977
9	0.991	0.991	0.991	0.991	0.988	0.988	0.991	0.99	0.99
10	1.016	1.016	1.016	1.016	1.013	1.012	1.015	1.015	1.015
11	0.989	0.989	0.989	0.989	0.987	0.986	0.988	0.988	0.988
12	0.984	0.984	0.984	0.984	0.98	0.98	0.983	0.983	0.983
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1
19	0.997	0.996	0.997	0.997	0.997	0.997	0.997	0.997	0.997
20	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.975	0.975	0.974	0.975	0.973	0.973	0.974	0.974	0.974

Day 7 –	Maximum	Mismatch
---------	---------	----------

Busb	BESS Busbar Placement								
ar	Z1 -	Z1 -	Z2 -	Z2 -	Z3 -	Z3 -	One	One	All
Num	PV	PQ	PV	PQ	PV	PQ	PV	PQ	Buses
ber							Bus	Bus	
							Each	Each	
							Zone	Zone	
1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1
3	0.982	0.982	0.979	0.979	0.983	0.983	0.982	0.982	0.983
4	0.981	0.981	0.978	0.978	0.981	0.982	0.981	0.981	0.982
5	0.998	0.998	0.996	0.996	0.998	1.003	0.998	0.999	0.999
6	1.003	1.003	0.998	0.997	1.002	1.004	1.002	1.002	1.002
7	1	1	1	1	1	1	1	1	1
8	0.981	0.981	0.977	0.977	0.981	0.981	0.98	0.98	0.98
9	0.993	0.993	0.989	0.989	0.993	0.993	0.992	0.993	0.993
10	1.018	1.018	1.014	1.014	1.018	1.02	1.018	1.018	1.018
11	0.99	0.99	0.988	0.988	0.991	0.991	0.99	0.99	0.99
12	0.986	0.986	0.982	0.982	0.987	0.987	0.986	0.986	0.986
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1
17	1.001	1.001	1.001	1.001	1.001	1.001	1.001	1.001	1.001
18	1	1	1	1	1	1	1	1	1
19	0.997	0.998	0.997	0.997	0.997	0.997	0.997	0.997	0.997
20	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.975	0.975	0.972	0.972	0.976	0.976	0.975	0.975	0.975

Day 7 – Minimum Mismatch

Busb		BESS Busbar Placement								
ar Num	Z1 - PV	Z1 - PO	Z2 - PV	Z2 - PO	Z3 - PV	Z3 - PO	One PV	One PO	All Buses	
ber							Bus Each	Bus Each		
							Zone	Zone		
1	1	1	1	1	1	1	1	1	1	
2	1	1	1	1	1	1	1	1	1	
3	0.982	0.982	0.982	0.982	0.98	0.98	0.981	0.981	0.981	
4	0.981	0.981	0.981	0.981	0.979	0.979	0.98	0.98	0.98	

5	0.998	0.998	0.998	0.998	0.996	0.992	0.997	0.997	0.997
6	1.001	1.001	1.001	1.001	0.998	0.997	1	1	1
7	1	1	1	1	1	1	1	1	1
8	0.979	0.979	0.979	0.979	0.976	0.976	0.979	0.979	0.979
9	0.992	0.992	0.992	0.992	0.99	0.989	0.991	0.991	0.991
10	1.017	1.017	1.017	1.017	1.014	1.013	1.017	1.016	1.016
11	0.989	0.989	0.989	0.989	0.987	0.987	0.989	0.989	0.989
12	0.985	0.985	0.985	0.985	0.981	0.981	0.984	0.984	0.984
13	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1
17	1.001	1.001	1.001	1.001	1.001	1.001	1.001	1.001	1.001
18	1	1	1	1	1	1	1	1	1
19	0.997	0.996	0.997	0.997	0.997	0.997	0.997	0.997	0.997
20	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997
21	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1
24	0.975	0.976	0.975	0.975	0.973	0.974	0.974	0.975	0.974