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ABSTRACT 

 

 

Falls lead to injuries and fatality. Studies have been carried out to create 

systems to detect falls; however, fall detection is sometimes too late to prevent 

injuries or fatalities. Studies on fall prediction have also revealed that fall 

prediction is hard as there are many factors that can lead to falls. Abnormal 

gait is one of the common factors for falls, but the linkage between human 

trunk acceleration in normal gait and abnormal gait with falls is still unclear. 

The aims of this study are to investigate the trunk acceleration in normal and 

abnormal gaits and exploit this relationship to introduce threshold-based fall 

reduction algorithms.  

 

Firstly, a tri-axial accelerometer was used in this research to capture 3-

dimensional trunk acceleration for 144 healthy subjects. Trunk acceleration 

data in simulated normal and abnormal gaits were collected and analysed 

using the statistical analysis software IBM SPSS.  In this research, quantitative 

analysis results have identified a significant difference between trunk 

acceleration in normal and abnormal gaits.  Particularly, trunk acceleration of 

abnormal gaits in medio-lateral, anterior-posterior and vertical directions are 

257%, 376% and 217% larger than those of a normal gait respectively. 

 

Based on simulated normal and abnormal gaits statistical analysis 

results, a novel universal fall reduction algorithm that consists of universal 

abnormal gait detection threshold and universal near fall detection threshold 

was proposed in this research. To evaluate the effectiveness of the proposed 
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universal fall reduction algorithm, an Android-based fall reduction mobile 

apps was developed using a smartphone that is equipped with an 

accelerometer. The detection rate for abnormal gait and near fall gait was 98% 

and 90% respectively. 

 

To improve the accuracy of universal fall reduction algorithm, an 

individual fall reduction algorithm that consists of individual abnormal gait 

detection threshold and individual near fall detection threshold was proposed 

in this research. The individual fall reduction algorithm was inspired from the 

observation noticed in the simulated normal gait and abnormal gait 

experiments where the gait cycle duration and the trunk acceleration amplitude 

for each individual test subject were similar, but different from other test 

subjects. Experiment results showed that the self-learning fall reduction 

algorithm can detect 100% of both the abnormal gait and near fall gait. Thus, 

the self-learning fall reduction mobile apps can be developed to provide an 

alert message to the caregiver and to remind the user automatically whenever 

the thresholds are exceeded. This application is particularly important to older 

adults to reduce falls and help to prolong their lives. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

Second leading cause of accidents that may result in deaths is fall 

(World Health Organization, 2017). As such, falls related research has attracted 

much attention worldwide.  Research outcomes have shown that the 

consequences of falls are injury, hospitalisation, death, the increased of 

healthcare cost and the reduced confidence of the elderly to live alone. 

(Alexander, 1992; CDC, 2017; Department of Health, Social Services and 

Public Safety, 2016;   Najafi et al., 2002; Tinetti et al., 1998). According to 

Sterling (2001), seniors who were injured as a result of falls such as hip 

fractures would stay in a hospital for a year or more due to functional 

impairments. 

 

In Malaysia, the population aged 65 years and over has reached 5.9 per 

cent (i.e., 1.8 million persons) (Department of Statistics Malaysia, 2016) and 

World Health Organization  (2017) has reported adults who are older than 65 

years old have suffered the greatest number of fatal falls. Due to the high risk 

of fall for ageing people and the increasing population of seniors, falls have 

become one of the major concerns worldwide. Therefore, it is important to seek 

possibilities of reducing or preventing falls. 
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 Falls detection related research has been carried out worldwide. 

Unfortunately, falls detection is too late to help the people who have fallen. On 

the other hand, fall prediction cannot achieve 100% accuracy due to many 

factors that can result in falls (Lim et al., 2011; Marschollek et al., 2016; Weiss 

et al., 2010). Therefore, it is necessary to find a practical solution to reduce the 

numbers of falls during walking that may result in injury, fatality or 

hospitalisation. 

 

 

The human gaits are classified into two categories which are steady gait 

and unsteady gait. Steady gait and unsteady gait are also defined as normal gait 

and abnormal gait respectively. Abnormal gait is one of the factors for falls 

(Rubenstein, 2006), but the association between trunk acceleration in normal 

gait and abnormal gait with falls is still unclear. It is interesting if experiments 

can be carried out to study and simulate the relationship between trunk 

acceleration in normal gait and abnormal gait with falls. Subsequently, a fall 

reduction algorithm, that is, a way to detect or predict fall, can be developed if 

the relationship between trunk acceleration in normal gait and abnormal gait 

with falls can be identified. 

 

 

1.2 Aims and objectives 

The aims of this research is to study the relationship between human 

trunk accelerations in normal gait and abnormal gait with fall and to create a 

fall reduction algorithm based on the identified relationship between trunk 
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acceleration in normal and abnormal gaits with falls. More precisely, to 

achieve the aforementioned aims, the objectives of this research project are 

listed as follows. 

1. To design experimental methods to capture trunk accelerations in 

normal gait and abnormal gait. 

2. To identify the correlation between human trunk acceleration and 

human locomotion in terms of normal gait and abnormal gait.  

3. To propose a method to classify gaits into normal and abnormal based 

on trunk acceleration. 

4. To design fall reduction algorithms based on the trunk acceleration. 

 

 

1.3 Research contributions 

In short, new methods to conduct human locomotion experiments in 

terms of the normal and abnormal gaits are introduced in this research. The 

trunk acceleration data for both normal gait and abnormal gait is analysed by 

using statistical methods. The analysis is then used to propose fall reduction 

algorithms. Lastly, experiments are carried out to evaluate the reliability of the 

proposed fall reduction algorithms. In a nutshell, the contribution of this 

research is twofold and is listed as follows: 

 

1. The outcome of this research shows that there is an association between 

trunk acceleration and human gait. Trunk acceleration in normal gait 

demonstrates a consistent periodical gait cycle pattern and peak-to-peak 

amplitude while trunk acceleration in abnormal gait shows random gait 
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cycle pattern and different peak-to-peak amplitude. Trunk acceleration 

in abnormal gait is significantly greater than that of normal gait.  As 

such, trunk acceleration in gaits can be exploited to classify normal and 

abnormal gaits.  

2. The successful classification of abnormal and normal gaits lead to the 

proposal of two fall reduction algorithms, namely universal fall 

reduction algorithm and individual fall reduction algorithm. Universal 

fall reduction algorithm consists of generic threshold obtained from the 

simulated normal and abnormal gait experiments. Meanwhile, 

individual fall reduction algorithm consists of unique personal 

threshold. Experimental results showed that the detection rate for 

universal fall reduction algorithm and individual fall reduction 

algorithm is 90% and 100% respectively.  

 

 

Important finding includes the trunk acceleration in normal and 

abnormal gaits is different for every individual which implies that each 

individual has different lower extremity strength and sensory-motor condition. 

It is noteworthy to highlight that, this finding is consistent with the finding of 

Cordero et al. (2003). More precisely, Cordero et al. (2003) found that the 

ability to recover from abnormal gait is depend on the physical condition of an 

individual.  
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1.4 Structure of the thesis 

The remainder of this thesis is structured as follows. Chapter 2 first 

briefly describes the risk factors and consequences of falls. Different fall 

detection methods and fall prediction methods are then described in terms of 

the approaches used and the accuracy of the proposed methods. To understand 

the relationship between falls and human gaits, the study and background of 

human gaits are presented. Lastly, the shortage of existing fall related research 

that motivates this research project is highlighted.   

 

 

Chapter 3 aims to study the trunk acceleration in normal gait and 

abnormal gait. To achieve this aim, trunk acceleration data of 144 test subjects 

are collected using the proposed experiments. The health condition, genders, 

ages, heights and weights of the test subjects are first described. Subsequently, 

experiment setup and procedure for the simulated trunk acceleration in normal 

gait and abnormal gait are elaborated with the help of the diagrams. 

 

 

Chapter 4 consists of experimental results and discussion on the trunk 

acceleration in normal gait and abnormal gait. Experimental results include 

individual trunk acceleration waveform, the statistical analysis result of all test 

subjects, the comparison of the mean value of trunk acceleration between the 

elderly and young, male and female test subjects, visual observation outcomes 

of the test subjects and the recovery action taken by the test subjects when they 

experienced gait disorder. The results of the experiments are then explained 
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based on Newton's Second Law of motion. Lastly, the correlation between 

forward trunk acceleration and trunk leaning angle during walking is discussed.  

 

 

Chapter 5 proposes the methods to define universal abnormal gait 

detection threshold and universal near fall detection threshold by exploiting the 

findings of Chapter 4. These two thresholds are then used to develop a 

universal fall reduction algorithm. To evaluate the effectiveness of the 

developed universal fall reduction algorithm, the sensitivity or accuracy 

performance is measured. To further improve the universal fall reduction 

system, an individual threshold is proposed. Finally, the sensitivity or accuracy 

performance of developed individual fall reduction algorithm is evaluated to 

check its effectiveness. 

 

 

Chapter 6 concludes the outcomes of the research. The findings of the 

study are summarised. Furthermore, the potential directions that can also be 

explored are recommended.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 Status quo of falls 

2.1.1 Introduction 

Falls represent a sudden uncontrollable descent that may result in injury 

or death. With an increasing rate of ageing population in the world (United 

Nation, 2017), elderly falls have became one of the major problems that need 

immediate attention. Therefore, many efforts have been carried out worldwide 

to identify the reasons of falls and the risks of falls.  

 

 

2.1.2 Fall related research and the study outcomes 

Loganathan et al. (2016) identified various views on falls, help-seeking 

behaviour and logistic difficulties to establish falls interventions among 

elderly. The finding of this study indicated that the ethnic and cultural 

differences among older persons must be considered in tackling issues about 

falls prevention. Besides, the lacking of structured fall prevention guidelines 

and insufficient training on fall management led to the inability of healthcare 

professional to address fall prevention among elderly adequately (Loganathan 

et al., 2015). In addition, Pohl et al. (2015) investigated the risks of fall and 

safety measures taken to prevent falls among the elderly. Pohl et al. 
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commented that the awareness on the risk of falls should be promoted to 

elderly. Tan et al. (2014) took a further step to propose the methods in 

evaluating individually-tailored multi-faceted interventions on falls, but the 

outcome of their study was not conclusive. On the other hand, Kim et al. 

(2013) found that, in Malaysia, the annual prevalence of falls in rural dwellers 

older than 60 years was 27% of which 67% involved home falls. 

 

 

Falls are the most frequent cause of injury at home for elderly people 

(Lim et al., 2013). Stevens et al. (2012) conducted a survey to identify the 

willingness of women and men in seeking medical assistance and information 

that are related to falls from health care service providers. The results indicated 

that men are more reluctant to seek medical assistance and information related 

to falls.  

 

 

To reduce the chances of falls among elderly people who live in a 

community, Gillespie et al. (2012) conducted an assessment to identify the 

effectiveness of existing interventions. The assessment outcomes concluded 

that the risk and the rate of falls will be reduced by carrying out group- and 

home-based exercise programs and home safety interventions. For an example, 

practising Tai Chi can improve balancing and thus can reduce the risk of falls. 

Meanwhile, multi-factorial assessment and response program can reduce the 

rate of falls (Gillespie et al., 2012). 
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2.1.3 Risk factors of falls 

Ageing, impaired physical function, impaired cognition, chronic 

diseases and environmental hazards represent the risk factors of falls 

(Yasumura et. al, 1996). Falls in young and middle-aged adults are often 

results of sports and vigorous activity, side-effect of medication, lower levels 

of physical activity and physiological changes that alter postural stability 

(Talbot et. al, 2005). On the other hand, Rubenstein (2006) reported that 

diseases and physiological functions degradation are the main reasons of falls 

among elderly. In addition, falls of the elderly are associated with one or more 

identifiable risk factors such as unstable gait and medications that degrade 

physiological functions. 

 

 

According to David et al. (1990), the balance control of ageing people 

degenerates and thus causes the falls in elderly. Similarly, Criak (1989) also 

concluded that elderly falls are due to balance disorder and inability to recover 

from balance disorder.  There are several factors that may affect balance 

control.  Puggaard et al. (2000) confirmed that the condition of human visual 

and cardiovascular systems will affect balance control. Besides, Kerrigan et al. 

(2001) and Burnfield et al. (2000) identified that the condition of neuro 

muscular system and human skeleton will affect body balancing control. In 

addition, cognition ability, the use of medication, and environmental factors 

will also impair balance control (Koski et al. 1998; Tinetti et al. 1995). 

According to Hausdorff et al. (1997) and Wolfson et al. (1990), neuromuscular 

pathologies is the leading cause of falls and elderly people with a history of 
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falls suffer from abnormal gait compared with seniors without any history of 

falls. Salzman (2010) reported that gait and balance disorders are common in 

elderly and the causes of falls are related to the increased morbidity, reduced 

level of body physical function and illness such as arthritis and orthostatic 

hypotension. The factors of falls are summarised in Table 2.1. 

 

Table 2.1: Factors of falls 

Factors of fall References 

Degradation of 

physiological functions 

(Burnfield et al., 2000; Craik, 1989; David 

et al., 1990; Hausdorff et al., 1997; Kerrigan 

et al., 2001;  Puggaard et al., 2000; 

Rubenstein, 2006; Talbot et al., 2005; 

Wolfson et al., 1990; Yasumura, et al., 

1996) 

Diseases (Talbot et al., 2005; Yasumura, et al., 1996) 

Environmental hazards (Koski et al., 1998; Tinetti et al., 1995; 

Yasumura, et al., 1996) 

Medication (Koski et al., 1998; Rubenstein, 2006; 

Talbot et al., 2005; Tinetti et al., 1995) 

 

 

2.1.4 Falls induced risks 

According to Alexander et al. (1992), falls that have caused injury and 

require medical attention can be as high as 30%. Fall injury is the fifth leading 

cause of death among elderly people (Kannus et al., 1999). Independent of the 

finding reported by Kannus et al. (1999), similar finding had been reported by 

Ambrose et al. (2013) and Deandrea (2010) where the major cause of injury 

and death among elderly people is falls.  
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In Finland, Kannus et al. (1999) carried out 30 years survey to identify 

the numbers of deaths that resulted from falls on elderly. The survey outcome 

revealed that the numbers of deaths that resulted from falls on elderly in 

Finland has increased. In United States, there were 2.8 million older people 

treated in emergency departments and over 800,000 patients hospitalised in a 

year due to falls (Centers for Disease Control and Prevention, 2017). 

Meanwhile, in United Kingdom, falls account for 71% of total fatal accidents 

to people aged 65 and over with the number continuing to increase 

(Department of Health, Social Services and Public Safety, 2016).  

 

 

In Malaysia, Kim et al. (2013) carried out a 10 years study on elderly 

people with falls that result in admittance to hospital emergency department. 

The results showed that 70% of falls occurred indoors. Research has shown 

that more than 33% of older people fall at least once in a year (Hausdorff et al., 

2001; Hornbrook et al., 1994). 32% of the elderly aged more than 75 years, 

have a fall at least once in a year, and 24% of the falls caused serious injury 

(Najafi et al., 2002; Tinetti et al., 1998).  

 

 

Elderly falls are considered as a major public health problem that will 

affect the health condition of elderly and increase public healthcare costs 

(Najafi et al., 2002). Falls demotivate and decrease the self-confidence of older 

adults to live alone (Hwang et al., 2004). Table 2.2 summarise the possible 
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results of falls. As falls will produce many negative impacts to the individual 

and to the society, it is necessary to seek ways to reduce or prevent falls. 

 

 Table 2.2: Falls induced risks 

Falls induced risks References 

Injuries  (Alexander et al.,1992; Deandrea et al., 
2010; Hausdorff et al., 2013; Lim et al., 
2013; Najafi et al., 2002;  Tinetti et al., 
1998) 

Death  (Deandrea et al., 2010; Department of 
Health, Social Services and Public Safety, 
2016; Hausdorff et al., 2013; Kannus et al., 
1999) 

Hospitalisation (Centres for Disease Control and 
Prevention, 2016; Kim et al., 2013) 

Increase public and 
personal medical cost 

(Najafi et al., 2002) 

Reduce the self-
confidence of elderly 

(Hwang et al., 2004)   

 

 

 

 

2.2 Falls detection 

2.2.1 Introduction 

Falls detector is a system that is able to detect falls and alert the user or 

the caregivers. Fall detector or fall detection system is designed to reduce the 

risks of falls and to save the medical costs that are associated with falls. The 

advancement in sensor and computer technology has made it possible to 

develop a reliable fall detection system. As of today, one of the most popular 

assistive gadgets for elderly is the fall detector. 
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2.2.2 Fall detection system and its performances 

Various efforts have been carried out to detect falls by applying various 

technologies. Table 2.3 summarises the recent research works that were carried 

out in relation to the use of various sensing technologies for fall detection 

systems. 

 

 

Chuah et al. (2016) used ultrasound sensor and infrared sensor to detect 

falls of the bathroom users of different heights. Omar et al. (2014) evaluated 

the sensitivity of a fall detector that is able to detect falls and identify the cause 

of falls. The evaluation outcomes showed that the sensors located at left and 

right of the ankle and sternum can achieve 83% accuracy. On the other hand, 

by monitoring improper body weight shifting during sitting, turning and 

reaching, slips and trips, the designed falls detector can achieve 89% accuracy 

in detecting falls. 

 

 

Mubashir et al. (2013) carried out an in-depth survey of different fall 

detection systems and their underlying algorithms. The fall detection systems 

can be classified as wearable device based, ambience device based or vision 

based as illustrated in Figure 2.1. The review showed that there is room for 

improvement to increase the consistency of sensor-based fall detectors. 

Besides, further research and development should be carried out to automate 

the system without much intervention. Existing vision-based fall detectors are 
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still lacking of flexibility as most of the systems are designed based on specific 

application.  

 

 

There is a need to produce a reliable, robust yet generic vision based 

fall detector. It was also found that modern ambience based and sensor based 

falls detection systems were not properly evaluated in terms of the reliability 

and the accuracy of the systems. The video recorded by the camera or the data 

captured by the sensor in the falls detection system may also lead to the privacy 

issues of the users. 

 

 

Figure 2.1: Classification of fall detection methods (Mubashir et al., 

2013) 

 

 

Igual et al. (2013) carried out an extensive literature review of fall 

detectors to identify challenges, limitations, and future trends in the area of fall 

detection. The study indicated that vision-based systems have received 

increased attention. It was also found that, fall detection system had been  

developed and integrated into smartphones. However, limited research had 
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been done to evaluate the smartphone based fall detection system from the 

system design point of view. Thus, there is an urgent need to perform 

evaluation on smartphone based fall detection system against the criteria of 

user experience and expectation verification, power consumption, limitation of 

existing sensor technology, the sensitivity of the system, data privacy and 

security, real-time data logging and data transmission. 

 

 

Liu et al. (2010) designed an algorithm for a fall detection system that 

can achieve the sensitivity of 84.44% in detecting horizontal position and falls. 

Zhuang et al. (2009) utilised an audio signal obtained from a microphone to 

detect falls at home by filtering the noise using machine a learning approach. 

By running the experiment based on a dataset of human falls, the results 

showed that the method can successfully improve fall classification from 59% 

to 67%. This approach can also effectively identify the falls even though audio 

segment boundaries of an audio signal are unknown. 

 

 

Lan et al. (2009) developed an automatic fall detection system for the 

elderly who used canes as an assistive device to overcome balance disorder and 

leg weakness problems. This fall detection system was integrated with a 

specially designed stick to detect falls automatically. The fall detection system 

consists of sensors, such as motion, force, pressure, and gyroscope with data 

acquisition unit and communication unit. Experiments were conducted to 
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evaluate the performance of the fall detection system. The results indicated that 

the algorithm was able to detect nearly 100% of falling.  

 

 

Dobashi et al. (2008) created a fall detection system using ultrasound 

sensors installed on the ceiling of the bathroom to detect slip and fall accidents 

in a bathroom quickly. The system used ultrasound sensors to measure the 

distance between the sensor and the subject. Falls will be identified when the 

distance between the sensor and the subject changes suddenly. The 

experimental result indicated that the sensitivity of the fall detection system 

was 100%.  

 

 

Bourke and Lyons (2008) used a biaxial gyroscope sensor to create a 

fall detection system.  A gyroscope sensor was used to measure pitch and roll 

angular velocities at trunk. Matlab was used to carry out data analysis to 

identify the trunk angular accelerations, trunk angular velocities and changes in 

trunk angle. The system was also able to classify the activities of daily living 

by using three different types of thresholds. The evaluation results showed the 

system is able to differentiate falls from other daily-life activities with 100% 

accuracy. 

 

 

Bourke et al. (2007) mounted tri-axial accelerometer on the trunk and 

captured acceleration of different types of daily-life activities and falls. The 
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data collected in the experiment was analysed using Matlab to identify the peak 

accelerations for eight different types of falls. In the experiment, a threshold 

was defined based on the fall data derived from the resultant magnitude 

acceleration signal from accelerometer. The trunk and thigh thresholds were 

also used to determine the number of activities of daily living. The results 

showed that 67–100% of activities of daily living were correctly identified. 

However, result of distinguishing activities of daily-life and falls was not 

presented. 

 

 

Yu (2008) conducted a survey on the existing methods to detect falls 

among elderly and patient. Different approaches and methods to detect falls for 

elderly and patients can be generalised using a general framework as shown in 

Figure 2.2. The fall detection system consists of sensors and/or camera, data 

acquisition system, data processing and feature extraction, fall detection 

algorithm and fall alert message to the caregivers through a wire or wireless 

communication.   

 

 

Figure 2.2: General framework of fall detection system (Yu, 2008) 
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Table 2.3: Summary of components used in fall detection systems and 

their sensitivities or outcomes achieved 

Components used  Outcomes/sensitivity References 

Ultrasound sensors, 
infrared sensor  

100% (able to detect falls of the 
bathroom users of different heights) 

Chuah et al. 
(2016) 

Tri-axial 
accelerometers and 
cameras 

83% (sensors at left ankle, right 
ankle and sternum) and 89% 
(classifying falls due to slips, trips, 
and incorrect shift of body weight) 

Omar et al. 
(2014)  

Tri-axial 
accelerometers, 
microphone and 
cameras 

There is still space to improve the 
sensor sensitivity. 

Mubashir et al. 
(2013)  

Web camera 
The system has the accuracy of 
84.44% on fall detection and 
horizontal position detection. 

Liu et al. (2010) 

 

Single far-field 
microphone 

This method improved fall 
classification to 67% from 59%. 

Zhuang et al. 
(2009) 

Motion sensor, a 
force sensor, 
pressure sensor and 
gyroscope 

The algorithm was able to detect 
near 100% of falling in the 
experiments. 

Lan et al. (2009)  

Ultrasound sensors 
The accuracy of detecting the 
bather's fall was 100%. 

Dobashi et al. 
(2008) 

Bi-axial gyroscope 
sensor 

100% distinguished falls from 
activities of daily living. 

Bourke and 
Lyons (2008) 

Tri-axial 
accelerometer 
sensors 

67- 100% of activities of daily 
living tasks were correctly 
classified.  

Bourke et al. 
(2007) 

Omni camera 
The detection rates with and 
without personal information were 
79.8% and 68%. 

Miaou et al. 
(2006) 

 

Miaou et al. (2006) used images of Omni camera and personal 

information to design a fall detection system. The functions of the Omni 

camera were able to captured 360º scenes and eliminate blind viewing zone. 

The fall detection system required the user to key in information such as 
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medical history, weight and height into the system. The experimental results 

showed that the sensitivity of the fall detections using Omni camera and user 

information was higher (i.e., 79.8%) as compared with the system without user 

information (i.e., 68%). Table 2.3 summarises the components used in different 

fall detection systems and their respective outcomes or sensitivities achieved. 

 

 

 

2.3 Falls prediction 

2.3.1 Introduction 

Falls prediction is a system that is able to predict falls and alerts the 

user or the caregivers. Fall prediction system is designed to reduce the risks of 

falls. Different methods had been attempted to identify a reliable fall prediction 

system.  

 

 

2.3.2 Fall prevention or prediction related research 

Marschollek et al. (2017) carried out fall detection and fall prediction 

experiments by using vision sensor and accelerometers. Palumbo et al. (2016) 

evaluated the performance of Fall Risk Assessment Tool for Community-

Dwelling Older People (FRAT-up) in four European Cohorts. They have 

concluded that FRAT-up is a valid approach to estimate risk of falls for elderly. 

However, further studies should be performed to identify the reasons for the 

observed heterogeneity across studies and to refine a tool that shows 

homogeneity.  
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Razmara et al. (2016) applied multi-layer neural network with back-

propagation learning algorithm based on a physiological profile approach to 

predict the fall risk of elders. The accuracy for fall prediction among the 

physiological factors such as bodily action was 90 percent and the accuracy for 

fall prediction among the public factors such as age and health condition was 

87.5 percent. The result concluded that, fall can be predicted based on a 

physiological profile such as vision abilities and muscle strength. 

 

 

Van Schooten et al. (2015) applied daily-life accelerometry to 

investigate the relationship between retrospective and prospective falls on 

elderly with identified risks factor. In this study, total number of daily activity 

and gait quality of the elderly were identified and confirmed. In addition, the 

information related to grip strength, the risk factors on fall and trail making test 

were gathered from the elderly. The study outcomes have showed that, daily-

life accelerometry was able to identify the potential risk of falls among the 

elderly and precisely forecast the risk of falls within six months.  Weiss et al. 

(2010) suggested that tri-axial accelerometers can be applied to classify near 

falls condition from other gait patterns observed in the laboratory. However, no 

further fall prediction method had been proposed based on tri-axial 

accelerometers.  
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Table 2.4: Summary of fall prediction systems 

Methods/ sensors used 

to predict falls 

Outcomes Approaches 

Vision sensor and 
accelerometers 

No result was reported. Marschollek et al. 
(2017) carried out fall 
prediction experiment. 

Data-based analysis 
without using any 
sensor. 

Fall Risk Assessment 
Tool can be used to 
estimate risk of falls of 
elderly. 

Palumbo et al. (2016) 
evaluated the 
performance of Fall 
Risk Assessment Tool 
for Community-
Dwelling Older People. 

Neural network with 
back-propagation 
learning algorithm  
using sensor. 

The experimental results 
showed an accuracy of 
90 percent and 87.5 
percent for fall 
prediction among the 
psychological and public 
factors. The accuracy 
was improved to 91 
percent by combining 
these two datasets. 
 

Razmara et al. (2016) 
applied multilayer 
neural network with a 
back-propagation 
learning algorithm to 
predict elders fall risk. 

Accelerometer Daily-life accelerometry 
was able to identify the 
potential risk of falls 
among the elderly and 
precisely forecast the 
risk of falls within six 
months 

Van Schooten et al. 
(2015) conducted a 
study by using daily-life 
accelerometry on 
elderly. 
  

Tri-axial 
accelerometers. 

No further fall 
prediction methods or 
algorithms were 
proposed. 

Weiss et al. (2010) 
suggested that tri-axial 
accelerometers may be 
used to distinguish near 
falls from other gait 
patterns. 

Pressure sensors. No experiment was 
carried out. 

Lim et al. (2011) 
suggested a fainted fall 
prediction system by 
monitoring the blood 
pressure. 

 

 

Lim et al. (2011) proposed to design a fall prediction system by 

monitoring the blood pressure fluctuation in predicting a faint fall. However, 
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no experimental result had been reported. From the above studies, it has been 

found that only a few fall prediction methods have been proposed, but with 

little evidence of an effective fall prediction system. The literature review on 

the fall prediction system is summarised in Table 2.4. 

 

 

2.4 Human gaits  

2.4.1 Introduction 

In order to understand the proposed approach based on human gait, 

biped locomotion of humans must properly be understood. Therefore, a 

background to gait-related research is provided here. 

 

 

 

2.4.2 Human locomotion 

 
Sauders et al. (1959) explained human locomotion as a bipedal cyclical 

activity to move the human body from one place to another place by using 

human lower limbs. Human locomotion can be classified as walking and 

running. During walking, either one foot or both feet has contact with the 

ground at all times. During running, one foot is in contact with the ground 

which is then followed by both feet simultaneously off the ground (Saibene et 

al., 2003). According to Inman et al. (1981), human gait appears to be a learned 

skill.  Toddlers never attempt to stand or walk without training. They need help 

from caregivers to establish the static and dynamic balance ability to walk 

upright. The body's centre of gravity is continuously maintained by the base 

support of both feet during the standing phase to allow an upright standing 



23 
 

position. Double support stance in standing phase prevents imbalance, retains 

the postures and prevents stance leg from collapsing (Winter, 1980). 

 

 

 

 

2.4.3 Gaits of healthy adult 

 
The gait of a healthy adult without any gait disturbance can be 

categorised into four phases which are standing phase, initiation phase, steady-

state phase and termination phase as illustrated in Figure 2.3. 

 

 

Figure 2.3: Phases in human gait 

 

 

During initiation phase of gait, one limb is pushing at a great force 

while the other limb is acquiring the full weight of body (Winter et al., 1990). 

The body's centre of gravity is disrupted and becomes unstable where it falls 

forward and outward of the positioning foot (Mann et al. 1979). In steady-state 

phase, stride period consists of 80% single-support stance and 20% double-

support stance. The weight-accepting foot first undergoes heel contact as the 
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foot lowers to the ground at the beginning of the double-support stance before 

ending with the toe bearing most of the body weight. The body is at an unstable 

state at this moment. The double support stance is then re-established when 

both the limbs start to reduce its forward force and prepare for termination 

before reaching back to the standing phase (Winter et al., 1990). The 

termination of human gait is described as a progression from a steady-state 

motion to a standing still position as shown in Figure 2.4. 

 

 

Figure 2.4: Events during Gait Termination (Vanitchatchavan, 2009) 

 

 

 
Roger and John (1979) reported that stance phase is the period where 

the foot is on the ground and it occupies 60% of the gait cycle consisting of 
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20% double stance and 40% single stance. Investigations were performed in 

many studies to focus on the relationship between the variability of step 

kinematics and falls. Owings and Grabiner (2004) investigated the factor of 

age, walking velocity and handrail use on the step kinematics variability based 

on an instrumented treadmill. Their results indicated a consistent relationship 

between step width variability and age where step width variability had been 

related with falls in previous studies (Maki, 1997; Hausdorff et al., 2001). 

 

 

2.4.4 The study of elderly gaits 

Gait parameters are important in assessing elderly impairment in 

balance control, condition of sensory-motor functionality and the risk of fall 

among elderly. Elderly gaits demonstrated shorter and broader strides, reduced 

ankle movement and smaller swing-to-stance time ratio. As a result, this has 

caused the increase of the double support period in elderly gaits (Ferrandze et 

al., 1988; Hageman and Blanke, 1986; Winter et al., 1990; Kressig et al., 

2004). In fact, there were many causes for the slow gait and shorter strides of 

the elderly. One of the main causes was weaker muscles in the lower limbs. 

Shorter strides were able to reduce the energy consumption during walking 

(Larish et al., 1988). Danion et al. (2003) investigated the stride length 

parameters and stride frequency in human gait. The investigation outcomes 

showed that, the stride frequency increases with stride length. Meanwhile, 

reduction in ankle and knee joints flexibility limited the stride length (Bertram, 

2005). Except for unpredicted perturbation that resulted in balance disorder, a 

slower gait was able to help elderly in monitoring the ability of their balance 
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control during walking and provide longer time for the elderly to respond to 

change of the environment such as floor condition (Spirduso, 1995). The 

chances of falls have increased as the dynamic balance control among elderly 

become increasingly difficult (Winter et al., 1990). Almarwani et al. (2016) 

examined the impact of challenging walking conditions in terms of gait speeds 

in younger and elderly people and discovered that slow gait was more 

challenging to the motor control of gait and more sensitive to age-related 

declines in gait. 

 

 

2.4.5. The study of gaits as a mechanical system 

The easiest and most common model used to describe human walking 

is the inverted pendulum model (Kuo, 2002; Winter et al., 1993). In this model, 

human walking is characterised by two variables: the centre of mass and the 

centre of pressure. The two variables are crucial in assessing energy 

expenditure and stability of human walking (Schepers et al., 2009).  

 

 

Among the factors that will cause the change in the centre of gravity 

include body shape, age, gender, displacement of the body and neuro-

musculoskeletal malfunctions. In addition, the amount of body fat and the 

reduction of soft tissue will also cause the change in the centre of gravity. Body 

movement that will cause the changes in alignment, stretching of the muscles 

and displacement of joints can shift the body centre of gravity (Schafer, 1987). 
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The centre of gravity of a body is continuously maintained by the base 

support of both feet during the standing phase to permit an upright standing 

position. The motion pattern of the upper part of the body is essential for 

reducing energy consumption (Cappozzo et al., 1978) and maintaining balance 

(Pozzo et al., 1990). Hanlon and Anderson (2006) and Hirasaki et al. (1996) 

discovered that, gait velocity will affect the kinematics of body segments. 

Lamonth et al. (2002) observed that, the increase of gait velocity will cause 

three phase component to emerge in the pelvic rotation, while thoracic 

rotations remain harmonic in every gait velocity. Voloshin (2000) studied the 

influence of gait speed on the heel strike that initiated shock waves and 

discovered that the dynamic loading to the musculoskeletal system will 

increase when the gait speed was increased. The speed of gait was found to 

reduce when walking in an unfamiliar place or walking with the eyes 

closed (Assaiante et al., 1989; Nadeau et al., 2003). 

 

 

2.5 Body balance and falls 

2.5.1 Introduction 

Many factors will result in falls, but all falls occurred as a consequence 

of balance disorder. As such, the correlation between body balance and falls is 

studied and reported in this section. 
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2.5.2 The correlation between body balance and falls 

During walking, the central nervous system always struggles to obtain a 

dynamic balance of upper torso during the swing phase of walking (Winter et 

al., 1990).  Therefore, a human is always challenged to remain balanced during 

gait due to most body weight being positioned at two-thirds of their body 

height above the ground (Kavanagh et al., 2004). The centre of gravity will be 

shifted sideward when the human body part shifts to one side without a 

compensation of body weight by other body part of the equal weight. Shifted 

body part will increase the risk of body to topple as the centre of gravity is 

displaced outside its base of support (Schafer, 1987).  

 

 

According to the study of Winter (1990; 1995) and Winter et al. (1993), 

gait is a continuous state of imbalance, and the only way to prevent falls is to 

position our swinging foot ahead of and lateral to the forward-moving centre of 

gravity. Two-thirds of the total body weight is centred in the upper body and 

store a significant amount of potential energy. If the trunk is not controlled in 

an upright position, this potential energy can easily be converted to kinetic 

energy to induce falls (Kuo, 2002).  

 

 

According to David et al. (1990), the balance control of ageing people 

degenerates, thus falls represent a major health problem in elderly. According 

to Horak (2006), the control of body posture is a complex human dynamic 

sensorimotor interaction. Postural orientation and postural equilibrium were 
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two functional goals in postural behaviour. Postural orientation aligns the   

trunk and head with gravitational force, condition of floor surfaces,  visual 

reaction due to environmental stimulation and internal references. Postural 

equilibrium coordinates the body movement to stabilise the centre of body 

mass when the body is subjected to external perturbation or self-initiated body 

action that will cause body balance disorder. 

 

 

2.6. Biomechanics of gait 

2.6.1 Introduction 

Biomechanics is a scientific study of biological systems that is 

concerned with the behaviour of physical bodies when subjected to internal 

forces (i.e., muscles generated forces) or to external forces. Based on Newton's 

second law of motion, these forces will induce accelerations on the biological 

system. Gait dynamics may be useful in providing insight into the neural 

control of human locomotion. The difference in trunk acceleration may affect 

the gait stability.   This section reports the literature review outcomes on the 

gait speed and trunk acceleration in human gait. 

 

 

2.6.2. Gait dynamics 

Evidence showed that gait speed will affect gait stability (Bhatt et al. 

2005; Dingwell and Marin, 2006). Trunk plays a crucial dynamic function in 

undermining accelerations accomplished during walking to ensure the stability 

of the head and visual platform (Winter, 1995; Menz et al., 2003; Prince et al., 
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1994). Hausdorff (2007) reported that stride-to-stride fluctuations of gait would 

increase the risk of falls and gait fluctuations can be detected by an 

accelerometer (Kobsar, 2012).  

 

 

Kavanagh et al. (2004) performed a study on upper body accelerations 

of elderly and young men in human gait as shown in Figure 2.5. It was found 

that elderly subjects have lower critical peak positive anterior-posterior (AP) 

trunk acceleration during push-off and higher peak negative AP head and trunk 

accelerations after heel contact. Old adults also experienced slower time delay 

between the trunk and head accelerations in AP direction in comparison to 

young adults. 
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Figure 2.5: Ensemble averages of correlation coefficients between head-

trunk accelerations in the vertical (VT), anterior-posterior (AP) and 

medial-lateral (ML) directions calculated over a full gait cycle (Kavanagh 

et al., 2004) 
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2.7 Techniques used to quantify gait 

2.7.1 Introduction 

Accelerometry is a technique for quantifying movement patterns using 

accelerometer-based systems. Activities monitored using accelerometers 

provide data regarding movement characteristics. This section reviews the 

current applications of accelerometer in the study of gait. 

 

 

2.7.2 Applications of accelerometry in gaits related research 

Van Schooten et al. (2015) reported that using accelerometer to capture 

trunk accelerations could provide useful information related to daily-life 

activities. This information can be used to reduce the risks of falls. Lu et al. 

(2017) found that smartphones equipped with accelerometers can accurately 

recognise physical activities of an individual to determine the correlation 

between physical activities and health. Kavanagh and Menz (2008) reviewed 

the use of accelerometer technology to investigate gait-related movement 

patterns and addressed issues of acceleration measurement for experimental 

design. They concluded that accelerometry can provide an accurate and reliable 

measurement of gait parameters and segmental accelerations of the body.  

 

 

Mathie et al. (2004) reviewed the use of accelerometer-based systems 

in different movements which include gait, sit-to-stand transfers, postural sway 

and falls. The study outcome concluded that accelerometry is a tool that is 

suitable for long-term monitoring of free-living subjects as this method can 
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provide reliable motion records of unconstrained subjects at low cost. Many of 

these functions can be carried out using a single triaxial accelerometer worn at 

the waist. Along this research direction, Giuffrida et al. (2008) selected  

KinetiSense system (Cleveland Medical Devices, 2011) to collect the body 

acceleration data of test subjects. The accuracy of the KinetiSense system was 

validated by Doan (2015), Professional Engineer at Engineering and Human 

Performance Lab by using 24 healthy young adults and performed 8 different 

actions. The result showed that, Kinetisense is a highly reliable motion capture 

system. 

 

 

Yang and Hsu (2010) reported that most of the motion sensors were 

placed at the waist because the waist is close to the centre of mass and the 

trunk occupies the most mass of a human body. The measurement taken by a 

single sensor at this location can well represent the primary human motion. 

Besides, from an ergonomic point of view, sensors can easily be attached to or 

detached from a belt around waist level (Yang and Hsu, 2009; Karantonis et 

al., 2006; Sekine et al., 2000). 

 

 

2.8 Findings from literature review 

In this chapter, falls related research is briefly reviewed and can be 

summarised as follows: 

1. Falls are a major public health problem particularly among older people 

as falls can result in deaths, injuries, hospitalisation, the increased of 
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public and personal medical cost and also affect the self-confidence of 

the fallers. Therefore, immediate preventive measures have to be taken 

to reduce the risks of falls. 

2. The falls detection system is used to alert the caregiver when a fall 

event has occurred. Much effort has been expended to develop falls 

detection system using sensors and remote sensing technology. The 

accuracy of these systems was evaluated. Falls detection system with 

precision sensing technology and effective fall detection algorithm is 

possible to yield 100% sensitivity.   

3. To reduce the harm to the victims of falls, fall prediction systems have 

been designed. However, high sensitivity fall prediction system is yet to 

be proposed to predict or eliminate falls by using wireless sensor 

technology. 

4. Human gait is in a continuous state of imbalance.  The lower limbs 

maintain the balance of body in human gait with the help of the 

sensory-motor system. The degradation of physiological functions, 

diseases and medication will impair balance control in human 

locomotion.   

5. There is an association between balance disorder and falls. The body 

weight is centred in the upper body and stores a large amount of 

potential energy. The risk of fall increases if the body centre of gravity 

is displaced outside of the base of support.  

6. Balance disorder is associated with gait speed and trunk acceleration. 

Therefore, trunk acceleration can be used as a parameter in studying the 

dynamic balance of gait.  
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7. An accelerometer can provide accurate and reliable measurements of 

trunk acceleration. Therefore, accelerometry is selected in this research 

to capture trunk acceleration for normal and abnormal gaits..  

 

  Based on the literature review, it is understood that fall detection is 

sometime too late to rescue the elderly people that could result in injuries or 

fatal conditions. On the other hand, it is challenging to design a real-time fall 

prediction system as many factors can induce falls. These factors include health 

conditions, floor surface conditions, and other unpredictable parameters. 

Similarly, it is challenging to measure the accuracy of a designed prediction 

algorithm. As a result, this research project explores the possibility of 

developing a fall reduction system which is an intermediate solution between 

fall detection and fall prediction (Figure 2.6). It is hypothesized that gait 

disorder will induce higher trunk acceleration while long period of high trunk 

acceleration will increase the risk of falls. Simulated normal gait and abnormal 

gait trunk acceleration data may provide some implications to confirm the 

hypothesis. 

 

 

 

 

 

 

 

 

 

Figure 2.6: Scope of the research 

Fall 
prediction 
(Prediction is 
complicated 
and almost 
difficult 
under wide 
variety of 
fall 
conditions) 

Near fall detection 
(The algorithm 
detects abnormal 
gaits, then the system 
will send alert to 
caregiver and the 
user) 

This is the intended research  
(A solution between fall detection 

and fall prediction) 

Fall 
detection 
(Detection is 
always after 
falls) 
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CHAPTER 3 

 

METHODOLOGY 

 

 

3.1 Introduction 

Two simulated experiments, namely normal gait experiment and 

abnormal gait experiment, were proposed to capture the trunk acceleration data 

among young and elderly cohorts. The trunk acceleration data collected were 

analysed statistically to investigate the relationship between human gaits with 

falls.  The procedures used in each simulated experiment were explained in 

detail. Lastly, the details of test subjects (i.e., young and elderly) involved in 

the simulated experiments were presented. The relationship between trunk 

acceleration in human gaits with falls will be exploited to design fall reduction 

algorithms in Chapter 5.  

 

 

3.2 Proposed simulated experiments 

 

  Human gait is defined as human biped locomotion. For ease of 

understanding, human gaits are the various ways in which a human can walk. 

Generally, human gait is classified into normal gait and abnormal gait. Normal 

gait is defined as a stable gait cycle that demonstrates a consistent gait pattern 

throughout the gait. Meanwhile, abnormal or unstable gait is defined as a result 
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of balance disorder during walking. The gait cycle is inconsistent and 

fluctuating. 

 

3.2.1 Experimental setup to capture and analyse trunk acceleration 

   

Figure 3.1 shows the block diagram of KinetiSense wireless sensor system 

(Cleveland Medical Devices, 2011) used to capture and analyse the trunk 

acceleration in human gait.  

 

 

 

 

 

 

 

 

 

Figure 3.1: KinetiSense wireless sensor system 

 
 
 

  KinetiSense wireless sensor system consists of the following 

components: 

1. Sensor unit: The sensor unit consists of a tri-axial accelerometer and 

a gyroscope. The sensor unit is used to capture the trunk 

acceleration in the simulated normal and abnormal gait 

experiments. The tri-axial accelerometer is orthogonally arranged 

to calculate the linear acceleration of the human trunk along x-, y- 

USB wireless receiver 

DIN Connector 

Wireless Transmission 

Sensor unit 

Command module 

Computer 
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and z-axis in the unit of g where 1g is equivalent to 9.8 m/s2. Note 

that x-, y- and z-axes represent medio-lateral (ML) direction, 

anterior-posterior (AP) direction and vertical (VT) direction, 

respectively, as shown in Figure 3.2.  

 

 

 

Figure 3.2: Orientations of the tri-axial accelerometer axes 
 

2.  Command module: The command module is shown in Figure 3.3. The 

command module receives acceleration data from the tri-axial 

accelerometer through a DIN connector and transmits the data to a 

computer through its wireless communication circuit. Full-duplex data 

transmission is employed where both end devices (i.e., command 

module and computer) can send and receive signals at the same time. 

The command module has five DIN connector sockets that allow the 

module to connect to five sensor units simultaneously.  

y-axis / Anterior-posterior direction 

z-axis / Vertical direction 

x-axis / Medio-

lateral direction 
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Figure 3.3: The command module 

 

3.  DIN connector: The DIN connector refers to a connector that meets the 

DIN standard. The DIN connecter is used to transmit the acceleration 

data from the tri-axial accelerometer to the command module as shown 

in Figure 3.4. 

 

Figure 3.4: Tri-axial accelerometer is connected to command module using 

DIN connector 
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4.  USB wireless receiver: As shown in Figure 3.5, USB wireless receiver 

is a device attached to a computer to receive the accelerometer data 

from the transmitter of the command module. 2.4 GHz radio transmitter 

receiver system is embedded inside the command module enable real-

time wireless data transmission to a computer. 

 

Figure 3.5: USB wireless receiver attached to a computer 

 

5.  Computer: A computer is used to receive and analyse real-time trunk 

acceleration data from the command module using KinetiSence 

biokinetic analysis system software and USB wireless receiver. As 

shown in Figure 3.6, the KinetiSence biokinetic analysis system 

software is installed in the computer where the data can be viewed, 

processed and saved.  



41 
 

 

Figure 3.6: KinetiSence biokinetic analysis system software 

 

Overall, the tri-axial accelerometer is attached to the command 

module using the DIN connector and sampled at 128 Hz with 12-bit 

resolution to capture the trunk acceleration of the test subjects  for medio-

lateral direction, anterior-posterior direction and vertical direction. The 

data acquisition starts after switching on the command module while the 

USB wireless receiver is linked to the computer. After the KinetiSense 

device connection is setup, sensors will be detected and acceleration data 

will be received and analysed by the KinetiSense software and IBM SPSS 

statistical analysis software.  
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3.2.2 Method to wear the tri-axial accelerometer 

  As shown in Figure 3.7, test subjects were instructed to wear a tri-

axial accelerometer connected to a command module through the DIN 

connector at the waist position. The command module must be securely 

fixed at the waist position to achieve consistent orientation of the 

accelerometer as different orientations will produce inconsistent readings.  

 

 
Figure 3.7: Subject wears the three axes wireless accelerometer at the 

waist position 

 

3.2.3 Simulated normal gait experiment  

 The procedures to capture the trunk acceleration data in normal gait 

experiment are listed as follows: 

1.  A 10 meters long of dry and flat floor with starting and ending lines 

was prepared as shown in Figure 3.8. 
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Figure 3.8: A 10 meters long of flat and dry floor for normal gait 

experiment 

2.  Test subject was instructed to standby at the starting line of the 10 

meters long of dry and flat floor as shown in Figure 3.9. 

 

Figure 3.9: Test subject standby at the starting line for simulated 

normal gait experiment 
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3.  Two helpers were positioned at the starting line and the end line 

respectively of the 10-meter walkway to assist and monitor the 

trunk acceleration data capturing process. 

4.  Test subject was instructed to switch on the command module and 

walk normally through the 10-meter walkway. 

5.  The walking process was repeated twice to confirm the reliability 

of the experimental method and the consistency of the devices used 

in the experiment. 

6.  The trunk acceleration data of the test subject in normal gait 

experiment was collected and stored in the computer connected to 

the command module wirelessly. 

 Throughout the simulated normal gait experiment, video was 

captured. 

   

 

3.2.4 Simulated abnormal gait experiment 

  The procedures to capture the trunk acceleration data in abnormal 

gait experiment are listed as follows: 

1.  An instrumented treadmill was needed to simulate the abnormal 

gait of test subjects. 

2.  As test subjects will experience gait disorder which results in falls, 

a safety belt was placed on a built mechanical structure constructed 

around the treadmill to ensure the safety of test subjects as shown 

in Figure 3.10 and Figure 3.11.    
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Figure 3.10: Supporting structure to place the safety belt 

 

 

 

Figure 3.11: The safety belt is attached to the supporting structure 
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3.  Two helpers were positioned to make sure the test subject had 

properly tightened the tri-axial accelerometer, the command module 

and the safety belt. 

4.  Test subject was instructed to get used to the treadmill by walking 

on the treadmill for 20 minutes. The starting belt-conveyer moving 

speed was set to 1.1 m/s (i.e., 4 km/h) as this speed was 

comfortable for all of the volunteers during the trial. 

5.  A number of 10-milimeter round stickers were randomly pasted on 

the treadmill as shown in Figure 3.12. 

   

Figure 3.12: Round stickers are randomly pasted on the treadmill 

 

6.   Test subject was instructed to avoid round stickers while walking 

on the treadmill to simulate abnormal gait condition as shown in 

Figure 3.13. 
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Figure 3.13: Subject need to avoid stepping on randomly pasted round 

stickers to simulate abnormal gaits 

 
7. Near fall condition will occur if the test subject continues to 

experience gait disorder. Near fall condition can be observed when 

the safety belt that supports the subjects from fall is in tension as 

shown in Figure 3.14. Once safety belt is in tension, the helpers 

will stop the treadmill. A strain gauge system that consists of sensor 

whose resistance varies with applied force and buzzle (alarm) was 

developed and installed at the supporting belt to measure the 

tension of the belt. When the supporting belt is in tension, the 

electrical resistance of the sensor will changed and triggered the 

alarm to alert the helpers to stop the treadmill. Qualification test 

was carried out before the experiment to ensure imbalance between 

the tensions in various directions of falls (ML and AP directions) is 

not affect the sensitivity of the strain gauge.  
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Figure 3.14: The safety belt that supports the subjects from fall is in 

tension  
 

8.  The walking process was repeated twice for each test subject to 

confirm the repeatability of the experimental method and the 

consistency of the devices used in the experiment. 

9.  The trunk acceleration data of the test subject in abnormal gait 

experiment was collected and stored in the computer connected to 

the command module wirelessly. 

 Throughout the simulated abnormal gait experiment, video was 

captured. 

 

 

3.3 Test Subjects 

  A total of 144 test subjects that consist of young and elderly adults 

participated in the simulated normal gait experiment and abnormal gait 

experiment. The test subjects consisted of 84 males and 60 females with 
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ages between 20 to 70 years old, heights between 154cm to 180cm and 

weights between 43kg to 70kg. Test subjects are classified into young 

adult if the test subject’s age is less than or equal to 55 years old and 

elderly adult otherwise. Out of 144 test subjects, there are 80 young adults 

and 64 elderly adults. Notice that 80 young adults consist of 48 males and 

32 females. Meanwhile, 64 elderly adults consist of 36 males and 28 

females. 

 

 

3.3.1 Health condition of the test subjects 

 Diseases and health status will affect gait stability. For example, a 

stroke will affect dynamic balance during walking. An et al. (2017) reported 

that hemiplegic patients after stroke would demonstrate spatiotemporal 

asymmetrical gait patterns. Impaired balance is common in neurological 

disorders. Barr et al. (2017) compared balance, mobility, gait and stepping 

reactions between people with cervical dystonia and healthy adults. The study 

outcomes have shown that there was a significant difference between 

individuals with cervical dystonia and healthy people. People with cervical 

dystonia have demonstrated deficits in balance, gait and stepping reactions and 

expressed higher fear of falling (Barr et al., 2017). Screening was carried out to 

make sure all test subjects have no gait disturbance by observing their normal 

gait for a 10-meter walk on the dry and flat floor.  The screening can eliminate 

the possibility of pathological change in that body that may affect the 

experiment result. Informed consents were obtained from all test subjects. 
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3.3.2 Informed consent and safety consideration  

  Before conducting simulated normal gait and abnormal gait 

experiments, all test subjects were briefed in detail on the purpose of the 

research, experimental procedure and the known risk of fall. All test subjects 

understand that the participation in this study is voluntary.  The participation 

may be stopped if the test subjects change their mind throughout the 

experiment. The test subjects were informed that their privacy (e.g. name, gait 

and health condition) is protected; however the collected trunk acceleration 

data of the test subjects would be studied and analysed by the researchers for 

academic research purposes.  

 

 

  There are four helpers who assisted in the simulated normal gait and 

abnormal gait experiments. In normal gait experiment, two assistants took care 

of the data collection system while the other two helpers assisted the test 

subjects throughout the experiments.  In abnormal gait experiment, the helpers 

are responsible to ensure all test subjects wore safety belt correctly.  Besides 

that, the test subjects and the assistants were allowed to stop the experiment if 

there was any uncontrolled situation such that the risk of fall is high. In 

abnormal gait experiment, one helper took care of data collecting system, one 

helper controlled the operation of the treadmill and two remaining helpers 

assisted the test subjects if the balance system of the test subject is out of 

control.  
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

4.1 Introduction 

  This chapter presents the results of simulated normal and abnormal gait 

experiments. Trunk acceleration data of 144 test subjects was collected in the 

simulated normal and abnormal gait experiments. Times series data is plotted 

and explained at the beginning of this chapter. Subsequently, the statistical 

analysis outcomes based on positive peak values of trunk acceleration in 

medio-lateral direction, anterior-posterior direction and vertical direction are 

presented. After that, the conditions of the test subjects when experiencing 

abnormal gait are described. Lastly, the results of the simulated normal and 

abnormal gait experiments are discussed. 

 

 

4.2 Trunk acceleration data of test subjects  

4.2.1 Simulated normal gait experiment 

In simulated normal gait experiment, video recording images 

showed the test subject swayed backward and forward consistently as an 

inverted pendulum to maintain the trunk in an upright position. Trunk 

acceleration values are considered as positive and negative for forward 

direction and backward direction respectively as shown in Figure 4.1. 
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Figure 4.1: Trunk acceleration data of test subjects in simulated normal 

gait experiment 
 

 

 A typical cyclic change of individual test subject's trunk 

acceleration in ML, AP and VT directions is illustrated in Figure 4.2 (a) 

and Figure 4.2 (b). The same experiment method was repeated twice to 

confirm the reliability of the experimental method and the consistency of 

the devices used in the experiments. The following observations were 

made:  
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 (a)  

 

(b) 

Figure 4.2: Time series graph of individual test subject acceleration in 

normal gait experiment in (a) Mediolateral (ML) and Vertical (VT) 

direction, (b) Vertical (VT) direction and Anterior-posterior (AP) 

direction 

 



54 
 

1.  Individual trunk acceleration time series graphs in normal gait 

showed consistent periodical gait cycle pattern and similar peak-

to-peak amplitude in every gait cycle. 

2.  Same test subject demonstrated similar trunk acceleration pattern 

when the experiment was repeated twice.  

3.  The duration of the gait cycle and the trunk acceleration amplitude 

for every individual test subject were similar, but different from 

other test subjects. 

 

 

4.2.2 Simulated abnormal gait experiment  

 
Figure 4.3 (a) and Figure 4.3 (b) illustrate typical individual trunk 

acceleration graph for abnormal gait. Time series graph of individual test 

subject acceleration in abnormal gait experiment showed irregular gait cycle 

and varying peak-to-peak amplitude in every gait cycle. 
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(b) 

Figure 4.3: Time series graph of individual test subject acceleration in 

abnormal gait experiment in (a) Mediolateral (ML) and Vertical (VT) 

direction, (b) Vertical (VT) and Anterior-posterior (AP) direction 

 

 

 

 

4.3 Statistical analysis of trunk acceleration result in simulated normal 

gait and abnormal gait 

 
  Based on line graphs in Figure 4.2 (a) and (b), the positive and negative 

peak trunk acceleration values are almost symmetrical. Therefore, either 

positive or negative peak trunk acceleration can be used in the study to confirm 

whether the trunk acceleration is one of the parameters that can be applied to 

classify normal and abnormal gait. 

 

 

 In this study, the maximum peak values of trunk acceleration in ML 

direction, AP direction and VT direction were analysed by using statistical 

analysis software, IBM SPSS.   
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Statistical analysis has been carried out to investigate the differences 

across the age ranges and genders between normal and abnormal gait trunk 

acceleration in ML, AP and VT directions. It was found that, all the P values 

are less than 0.05 indicating that there is significant difference between normal 

and abnormal trunk acceleration for all age ranges and genders. 

 

 

Table 4.1 summarises the results of the maximum trunk acceleration 

analysis results for 144 test subjects by assuming that acceleration unit is g = 

9.8 m/s2. Trunk acceleration in gait can be written as ɡiϵ (1,…,N)(trunk)i, where N 

denotes sampling time in second. Statistical data of normal and abnormal trunk 

accelerations based on 99% confidence interval (CI). The usage of 99% of CI 

is to have 1% error/accuracy, for example, to decide abnormal trunk 

acceleration.  

Table 4.1: Statistical data of normal and abnormal trunk accelerations 

based on 99% confidence interval for 144 test subjects  

TYPE OF GAITS NORMAL  ABNORMAL  

DIRECTION ML AP VT ML AP VT 
MEAN 0.51 0.46 1.64 1.31 1.73 3.56 

CI FOR LB
1
 0.46 0.40 1.60 1.14 1.46 3.28 

CI FOR UB
2
 0.56 0.51 1.69 1.48 1.99 3.83 

MEDIAN 0.47 0.44 1.61 1.14 1.43 3.46 

VARIANCE 0.04 0.06 0.04 0.33 0.83 0.86 
STANDARD 

DEVIATION 
0.21 0.25 0.20 0.58 0.91 0.93 

MIN 0.06 0.03 1.39 0.54 0.07 1.65 
MAX 1.14 1.06 2.24 2.94 4.50 4.52 

RANGE 1.08 1.03 0.85 2.40 4.43 2.87 

SKEWNESS  0.61 0.31 1.30 1.07 1.45 -0.22 
KURTOSIS  0.38 -0.61 1.64 0.66 1.71 -1.58 

 
(Notes) 

1. CI for LB =99% Confidence Interval for Mean of Lower Bound 
2. CI for UB = 99% Confidence Interval for Mean of Upper Bound 
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  The statistical analysis results presented in Table 4.1 indicate the 

following observations: 

1. The mean value of normal gait is lower than of abnormal gait. 

2. The standard deviation of the normal gait is relatively smaller than of 

abnormal gait in all three directions. Small standard deviation in normal 

gait indicates that the trunk acceleration tends to be close to the mean 

value, while a high standard deviation observed in abnormal gait 

indicates that the trunk acceleration is spread out over a wider range of 

values. 

3. The range in normal gait is smaller as compared to abnormal gait. This 

means that the difference between the maximum and minimum trunk 

acceleration in normal gait is lower.  

4. The variance in normal gait is smaller as compared to abnormal gait.  

5. The difference between mean and median is small in normal gait 

indicates that the collected data is symmetrically distributed. The mean 

is greater than the median in abnormal gait means that the distribution 

skews to the right.  

 

For the data to be normally distributed, the skewness and kurtosis 

values should be in the range of -1.96 to +1.96 (Chua, 2013). Skewness is a 

measure of symmetry. Data set is symmetric if it looks the same to the left and 

right of the centre point. Meanwhile, kurtosis is a measure of whether the data 

are heavy-tailed or light-tailed relative to a normal distribution. Data sets with 

high kurtosis tend to have outliers. In normal and abnormal gait experiments, 

the trunk accelerations distribution data for ML, AP and VT directions are   
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normally distributed because the skewness and kurtosis values are within the 

normal distribution range. In general, statistical analysis performed after the 

experiments indicated that normal gait demonstrates smaller trunk acceleration 

variability when compared to abnormal gait. 

 

 The mean value of normal and abnormal trunk acceleration in ML 

direction, AP direction and VT direction are plotted in Figure 4.4. The mean 

value comparison between normal and abnormal trunk accelerations indicates 

that all mean values of trunk acceleration in ML direction, AP direction and 

VT direction of abnormal gait are greater than normal gait.  

 

In addition, it is observed that, the P values of significant test for ML, 

AL and VT directions between normal and abnormal trunk accelerations for 

144 test subjects are 0.030, 0.006 and 0.000 respectively.  The P values are less 

than 0.05 indicated that, there is significant difference between normal and 

abnormal trunk acceleration. 
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Figure 4.4: Comparison of mean value of trunk acceleration in ML, AP 

and VT directions between normal and abnormal gaits 
 

 

  Mean values of upper bound and lower bound trunk acceleration for 

values of normal gait and abnormal gait in ML, AP and VT directions are 

plotted in Figure 4.5. The ranges for ML, AP and VT shown in Figure 4.5 were 

obtained by subtraction of CI for UB and LB, where CI denotes confidence 

interval, UB denotes upper bound and LB denotes lower bound. The results 

showed that the upper bound normal gait trunk acceleration does not overlap 

with the lower bound abnormal gait trunk acceleration. No overlapping 

between upper bound of trunk acceleration in normal gait and lower bound of 

trunk acceleration in abnormal gait make it possible to classify gait into normal 

and abnormal based on trunk acceleration. 
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Figure 4.5: Mean Values of Upper Bound Normal Gait Trunk 

Acceleration do not overlap with Mean Values of Lower Bound Abnormal 

Gait Trunk Acceleration 

 

Figure 4.6 shows the mean trunk acceleration value for elderly aged 

more than 55 and young subjects with ages between 20 to 55 years old. The 

comparison outcome indicates that there is no significant difference trunk 

acceleration of old and young test subjects. 
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Figure 4.6: Comparison of Trunk Acceleration Mean Value Between the 

elderly (age > 55) and the young (age ≤ 55) in simulated normal gait 

experiment 

 

  Figure 4.7 illustrates the comparison of mean trunk acceleration value 

between male and female test subjects in simulated normal gait experiment. 

The comparison outcome shows that female test subjects have slightly higher 

mean trunk acceleration value with a small difference of less than 0.6g. 
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Figure 4.7: Comparison of mean trunk acceleration value between male 

and female test subjects in simulated normal gait experiment 

 

As shown in Figure 4.8, normal gait produce periodical trunk 

acceleration. However, abnormal gait did not produced periodical trunk 

acceleration as shown in Figure 4.9. More precisely, the trunk accelerations for 

abnormal gait were random and not consistent. From Table 4.1, quantitative 

analysis result revealed that there is a significant difference between the 

maximum value of a normal gait and maximum value of abnormal gait trunk 

acceleration. Figure 4.10 compares the mean value of a normal gait and mean 

value of abnormal gait trunk acceleration. 
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Figure. 4.8: Typical individual normal gait cycle 

 

 
Figure 4.9: Typical individual abnormal gait cycle 
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Figure 4.10: Comparison of mean value of trunk acceleration between 

normal gait and abnormal gait  
 

From Table 4.1, Figure 4.8, Figure 4.9 and Figure 4.10, it is observed 

that the maximum trunk acceleration value in normal gait is smaller than 

maximum trunk acceleration value in abnormal gait. Besides that, the 

minimum trunk acceleration value in normal gait is also smaller than abnormal 

gaits minimum trunk acceleration value of abnormal gait. 

 

g(max) normal gait < g(max) abnormal gait  ; g(min) normal gait < g(min) abnormal gait 

 

 

4.4 Observation in abnormal gaits experiment recovery action when test 

subjects experienced gaits disorder 
 

Two following conditions were observed in abnormal gaits experiment: 

1. Test subject can recover from abnormal gait: This condition is 

illustrated in Figure 4.11. First, test subject started walking in normal 

gait at the beginning of the abnormal gait experiment.  The trunk 

acceleration of the test subject was below the threshold value. Later, 

when the test subject tried to avoid stepping on the round stickers 
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pasted on the treadmill, they began to experience balance disorder. 

Thus, this leads to inconsistent gait cycles and higher trunk 

accelerations than the threshold value. Recovery action was taken to 

overcome balance disorder when test subject experienced abnormal 

gaits. Eventually, the test subject managed to recover from abnormal 

gait and the trunk acceleration back to normal gait trunk acceleration. 

Notice that several steps were needed to regain the normal gait. 

 

 
Start walking with a 
normal gait (Trunk 

acceleration below the 
threshold value). 

Experiencing abnormal 
gait (Trunk acceleration 

exceed the threshold 
value for few times). 

Recovery action takes 
place to overcome 

balance disorder and 
manage to return to 
normal gait (Trunk 

acceleration below the 
threshold value). 

Figure 4.11: Abnormal gaits experiment: test subject is able to recover 

from abnormal gait  

 

2. Test subject cannot recover from abnormal gait: This condition is 

illustrated in Figure 4.12. Test subject started walking in normal gait at 

the beginning of the experiment.  The trunk acceleration of the test 

subject was below the threshold value. Later, when the test subject tried 

to avoid stepping on the round stickers pasted on the treadmill, they 

began to experience balance disorder. Thus, this leads to inconsistent 
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gait cycles and higher trunk accelerations than the threshold value. 

Recovery action was attempted to overcome balance disorder when test 

subject experienced abnormal gaits. However, the test subject failed to 

recover from abnormal gaits and experienced near fall after a few cycle 

of abnormal gaits. Table 4.2 shows the trunk acceleration values in near 

fall gaits in ML, AP and VT directions. As illustrated in Figure 4.13, 

the near fall trunk acceleration values are higher than abnormal gait 

trunk acceleration values. The near fall trunk acceleration values were 

obtained from CI for UB (99% Confidence Interval for Mean of Upper 

Bound) of abnormal gait trunk acceleration. 

 

 
Start walking with a 
normal gait (Trunk 

acceleration below the 
threshold value). 

Experiencing abnormal 
gait (Trunk acceleration 

exceed the threshold 
value for many times). 

Experience near fall 
gait (Trunk 

acceleration exceed the 
threshold value for 

many occasions) and 
fall. 

Figure 4.12: Abnormal gaits experiment: volunteer is not able to recover 

from abnormal gait and experience fall after experiencing many cycles of 

abnormal gaits 
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Table 4.2: Near fall gait trunk acceleration values for three directions  

Direction Near fall trunk accelerations 

ML 1.48g 

AP 1.99g 

VT 3.83g 

 

 
 

Figure 4.13: Comparison between CI for LB (Abnormal gait) wit CI for 

UB (near fall gait) trunk acceleration 

 

 

 

4.5 An application of Newton’s Second Law of motion in simulated normal 

and abnormal gait 
 
According to Newton's second law of motion, the acceleration a is produced 

when a force F is applied to a mass M as shown in Equation (4.1). 

 

                                                    F = M x a                                   (4.1) 

Thus, if the mass of the trunk Mtrunk remains constant, the force of the trunk 

Ftrunk will increase if the trunk acceleration atrunk increases as shown in 

Equation (4.2). 
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                                                  atrunk = Ftrunk /Mtrunk                                    (4.2)                         

The torque applied to the trunk Ttrunk of the subjects can be calculated by 

Equation (4.3), 

           Ttrunk = Ftrunk x R                                         (4.3) 

 

where R denotes the height from the ground to the waist of the subject (i.e., the 

position where the accelerometer is located) as depicted in Figure 4.14. 

 

Figure 4.14: During walking, abnormal gait occur due to higher trunk 

force applied to anterior-posterior (AP) direction around the subject’s 

waist 

 

From Table 4.1, the statistical analysis result of the trunk accelerations 

atrunk in normal gait for ML, AP and VT directions are 0.51g, 0.46g, and 1.64 g 

respectively. These values are much lower if compared to the mean values of 

trunk accelerations in abnormal gait where the trunk accelerations atrunk in 
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abnormal gait for ML, AP and VT directions are 1.31g, 1.73g and 3.56g 

respectively. 

 

 

In the simulated normal gait and abnormal gait experiments, all test 

subjects walked in AP direction and as such the trunk force of test subject in 

AP direction FAP and the trunk torque of test subject in AP direction TAP were 

studied. By applying the trunk acceleration of test subject in normal gait for AP 

direction, atrunk = 0.46g, in Equation (4.1) and Equation (4.3), FAP(normal) and 

TAP(normal) can be obtained as follows:  

 

    FAP(normal) = Mtrunk x 0.46g                       (4.4) 

                                 

       TAP(normal) = Mtrunk x 0.46g x R                                 (4.5) 

 

Similarly, by applying the trunk acceleration of test subject in abnormal gait 

for AP direction, atrunk = 1.73g, in Equation (4.1) and Equation (4.3), 

FAP(abnormal) and TAP(abnormal) can be obtained as follows:  

 

                                   FAP(abnormal) = Mtrunk x 1.73g                                     (4.6) 

                                  

     TAP(abnormal) = Mtrunk x 1.73g x R                                 (4.7) 

 

By calculating the ratio of FAP(abnormal) to FAP(normal) and the ratio of 

TAP(abnormal) to TAP(normal), it was found that the forward force FAP and forward 
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torque TAP in abnormal gait are 376% larger than of normal gait. Table 4.3 

shows the ratios of trunk force and trunk torque for abnormal gait and normal 

gait in ML, AP and VT directions.  

 

Table 4.3: Ratio of abnormal gait and normal gaits in term of trunk forces 

in ML, AP and VT directions 

Directions 
 Ration of abnormal gait trunk force and 

normal gait trunk force (%) 

ML (Medio-lateral) 257% 

AP (Anterior-posterior) 376% 

VT (Vertical) 217% 

 

Results show that abnormal gait trunk acceleration in ML, AP and VT 

directions are much higher than normal gait trunk acceleration.  

 

Trunk acceleration is the rate of change of trunk velocity with respect to 

time as shown in Equation (4.8).  

 

                                      atrunk = ∆(vtrunk2 - vtrunk1)/ ∆t                                      (4.8) 

 

When the trunk acceleration atrunk increases while the mass of the trunk remains 

constant, the trunk force will increase. The increase of trunk acceleration will 

result in a big change of velocity in a short period. Thus, this high-velocity 

change in a short period may topple the test subject with a torque that will 

result in gait disorder or fall. 
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4.6 The association of forward trunk acceleration with trunk leaning angle  

This section discusses the relationship of forward trunk acceleration 

with trunk leaning angle. In simulated normal and abnormal gait experiments, 

it was observed from Figure 4.14 that, the trunk is inclined to the front when 

the test subject is moving forward. Trunk leaning angle is defined as the angle 

between the trunk and the vertical axis of the test subject which is at the right 

angle to the floor. The forward trunk leaning angles can be derived by the 

torque applied to the waist of test subject induced by forward anterior-posterior 

direction trunk force as illustrated in Figure 4.14. Angle between the vertical 

axis and the trunk vertical plane is defined as leaning angle, θAP, an angular 

velocity caused by falls or near falls can be denoted as ωAP  = dθAP /dt . Thus, 

the forward velocity can be obtained by multiply angular velocity (vAP) with R 

(Figure 4.14), vAP= ωAP x R and the angular acceleration (α) is dωAP /dt or d2
θAP 

/dt
2. Subsequently, the forward force FAP applied to the mass center of the 

trunk can be computed using Equation (4.9). 

 

                                            FAP = Mtrunk x (dvAP /dt)                             (4.9) 

 

When the subject stops suddenly in the forward direction which might be 

followed by fall or near fall, the FAP can be denoted as in equation 4.10, 

 

                                        FAP = Mtrunk x R x dωAP /dt                                 (4.10) 
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Meanwhile, the forward leaning torque TAP at the waist of test subject can be 

computed using Equation (4.11). 

 

                       TAP = R x Mtrunk x dvAP /dt = Mtrunk x R2 x dωAP /dt             (4.11) 

 

Lastly, the relationship between anterior-posterior trunk acceleration and 

forward angular acceleration is represented in Equation (4.12). 

 

                       aAP  = R x  dωAP /dt   = R x d2
θAP /dt

2                      (4.12) 

 

In a nutshell, anterior and posterior trunk accelerations are related to 

forward leaning angular accelerations.  

 

 

4.7 Findings 

In this chapter, the findings of the statistical analysis of simulated normal and 

abnormal gait experiments can be summarised as follows. These findings lead 

to the proposals of the fall reduction algorithm stated in Chapter 5.  

 

1. Normal gait trunk acceleration shows consistent periodical gait cycle 

pattern and peak-to-peak amplitude in every gait cycle, while abnormal 

gait trunk acceleration shows fluctuating and inconsistent gait cycle 

pattern and peak-to-peak amplitude in every gait cycle.  

2. The mean value of trunk acceleration in abnormal gain for all ML 

direction, AP direction and VT direction is significantly greater than 
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those of normal gait. 

3. Upper bound of trunk acceleration in normal gait does not overlap with 

lower bound of trunk acceleration in abnormal gait.  

4. There is no significant difference between trunk acceleration of elderly 

and young adults.  

5. Female test subjects have a barely higher mean value of trunk 

acceleration compared to that of male test subjects with the small 

difference being below 0.6g.  

6. Two end results were observed in abnormal gait experiment. In the first, 

the test subject can recover from abnormal gait. For, the second, test 

subjects were not able to recover from abnormal gait and experienced 

near fall after a few cycles of abnormal gait.  



74 
 

CHAPTER 5 

 

THE PROPOSALS OF FALL REDUCTION ALGORITHMS  

 

 

5.1 Introduction 

The statistical analysis of trunk acceleration data collected in both 

simulated normal gait and abnormal gait experiments in Chapter 4 showed that 

trunk acceleration data can be used to distinguish normal gait and abnormal 

gait. Once a user starts to experience abnormal gait that can be distinguished 

through trunk acceleration data, the user can be reminded to recover from 

abnormal gait. Thus, two fall reduction algorithms were proposed based on 

abnormal gait detection threshold and near fall detection threshold. These two 

fall reduction algorithms are named as universal fall reduction algorithm and 

individual fall reduction algorithm respectively. Universal fall reduction 

algorithm can be applied to all people regardless of their ages and genders 

while individual fall reduction algorithm is tailor made for each specific user. 

Universal fall reduction algorithm was inspired from the finding that upper 

bound of trunk acceleration in normal gait does not overlap with lower bound 

of trunk acceleration in abnormal gait (Figure 4.5) while individual fall 

reduction algorithm is inspired by the finding that the gait cycle duration and 

the trunk acceleration amplitude for every individual test subject are 

similar, but different from other test subjects. Lastly, the sensitivity or 

accuracy of both fall reduction algorithms are evaluated. 

 



75 
 

5.2 The proposal of universal fall reduction algorithm   

Universal fall reduction algorithm is a threshold based algorithm. This 

algorithm would be apprioprate for all people regardless of their ages and 

genders. This algorithm consists of two thresholds, namely universal abnormal 

gait detection threshold and universal near fall detection threshold. These 

thresholds are defined based on trunk acceleration data collected in simulated 

normal and abnormal gait experiments.  

 

5.2.1 Universal abnormal gait detection threshold  

The threshold is set based on statistical data collected in the simulated 

normal gait and abnormal gait experiments. First, collected trunk acceleration 

data  in the simulated normal gait experiment was used to 

compute the mean value x̄ and standard deviation δ by using Equation (5.1) and 

Equation (5.2).  

 

Mean value x̄ =                 (5.1) 

                                    Standard deviation δ =                  (5.2) 

 

Subsequently, confidence interval (CI) for mean can be computed using 

Equation (5.3),  

 

                    99% CI = x̄ ± Zc (δ/ )                                     (5.3) 

 

where Zc denotes the confidence level critical value for 99% confidence 
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interval, i.e., 2.575. The usage of 99% of confidence interval instead of 95% of 

confidence interval is to have 1% of error instead of 5% of error to improve the 

data accuracy. Thus, 99% confidence interval for the mean value of upper 

bound (UB) and lower bound (LB) can be computed using Equation (5.4) and 

Equation (5.5), 

 

                                 UB99% CI = x̄ + 2.575(δ/ )                               (5.4) 

                                

             LB99% CI = x̄ - 2.575(δ/ )                         (5.5) 

 

The threshold level range will be between UB trunk acceleration of 

normal gait and LB trunk acceleration of abnormal gait. The threshold level is 

defined as the middle of the ranges in between 99% confidence interval for the 

mean of lower bound of trunk acceleration data collected in the simulated 

abnormal gait experiment LBabnormal and 99% confidence interval for the mean 

of upper bound of trunk acceleration data collected in the simulated normal gait 

experiment UBnormal, 

 

                                     (LBabormal) – {(LBabormal-UBnormal)/2}                       (5.6) 

 

From Equations (5.4-5.6), abnormal gait detection threshold can be rewritten as 

Equation (5.7), 

 

            (5.7) 
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where x̄ denotes the mean of the sample data calculated using Equation (5.1), δ 

denotes the standard deviation of the sampled data calculated using Equation 

(5.2) and n denotes the sample size of the data. The results of the universal 

abnormal gait detection threshold for three different directions are summarised 

in Table 5.1  

 

Table 5.1: Universal abnormal gait detection threshold for three directions 

Direction Trunk 

accelerations 

of normal 

gait 

Trunk 

acceleratio

ns of 

Abnormal 

gait 

Threshold level ranges 

and threshold  

ML (Medio-

lateral) 

LB 0.46 LB 1.14 
ML threshold level ranges:   
0.56 < TH <1.14 
ML Threshold:  
1.14 – {(1.14-0.56)/2}  
= 0.85g 

UB 0.56 UB 1.48 

AP (Anterior 

Posterior) 

 

LB 0.40 LB 1.46 
AP threshold level ranges:       
0.51 < TH <1.46 
AP Threshold:  
1.46 – {(1.46-0.51)/2}  
= 0.98g 

UB 0.51 UB 1.99 

VT (Vertical) 

LB 1.60 LB 3.28 
VT threshold level  ranges:      
1.69 < TH <3.28 
VT Threshold:  
3.28 – {(3.28-1.69)/2}  
= 2.48g UB 1.69 UB 3.83 

 
Remarks: 
1. The threshold level ranges are in between the UB trunk acceleration of normal gait and LB trunk acceleration of 

abnormal gait. 
2. The threshold levels are defined in the middle of the ranges. 

 
 

5.2.2 Universal near fall detection threshold  

It was observed that some test subjects were able to recover from 

abnormal gait and back to normal gait when they exceeded the abnormal gait 

detection threshold (more details can be found in Section 4.4). Therefore, the 

detection of abnormal gait could not be claimed as near fall detection. As a 

result, a near fall detection threshold was also proposed.  
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In the simulated abnormal gait experiment, near fall condition will 

occur if the test subject continues to experience gait disorder after a period of 

time. Near fall condition can be observed when the safety belt that supports the 

test subject from fall is in tension. When the safety belt that supports the test 

subject from fall is in tension, the trunk acceleration will be recorded as 

maximum abnormal gait trunk acceleration value. This value is used to define 

as near fall threshold.  Near fall threshold is the threshold when test subject 

experiences near fall condition. If this condition continues, the test subject will 

experienced fall. 

 

 

The threshold value is defined based on 99% confidence interval for the 

mean of upper bound of trunk acceleration data collected in the simulated 

abnormal gait experiment UBabnormal. A 99% confidence interval for the mean 

of upper bound is applied as this is the lowest value when the test subject 

experienced near fall gait. The near fall detection threshold value can be 

computed using Equation (5.8), 

 

                                                                              (5.8)             

 

where x̄ denotes the mean of the sampled data, δ denotes the standard deviation 

of the sampled data and n denotes the sample size of the data. Table 5.2 shows 

the near fall threshold in ML, AP and VT directions based on Equation (5.8). 
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Table 5.2: Near fall gait detection threshold for three directions 

Direction Threshold levels 

ML 
ML threshold level:   1.48g  
TH  ≥ 1.48 

AP 
AP Threshold level: 1.99g 
TH  ≥ 1.99 

VT 
VT Threshold level: 3.83g 
TH  ≥ 3.83 

 

5.2.3 Classification of normal gait, abnormal gait and near fall gait 

Universal abnormal gait detection and universal near fall detection 

thresholds were used to distinguish the following three different gaits: 

 

1. Normal gait: Normal gait is classified if the trunk acceleration input 

value gin is less than universal abnormal gait threshold, i.e., gin < 

(LBabormal) – {(LBabnormal -UBnormal)/2}. More precisely, Equation (5.9) is 

performed. 

 

 

                                                                                                                       (5.9) 

 

 

 

 

 



80 
 

2.  Abnormal gait: Abnormal gait is classified if the trunk acceleration 

input value gin is equal or bigger than universal abnormal gait threshold 

but lesser than universal near fall detection threshold, i.e., where 

LBabnormal  > gin ≥ [(LBabnormal) – {(LBabnormal-UBnormal)/2}]. More 

precisely, Equation (5.10) is performed. 

 

 

                                                                                                                     (5.10) 

 

3.  Near fall gait: Near fall gait is classified as the trunk acceleration input 

value gin being equal or greater than universal near fall detection 

threshold, i.e., gin ≥ UBabnormal. More precisely, Equation (5.11) is 

performed. 

 

                                         (5.11)                                                       

                         

 

5.2.4 Universal fall reduction algorithm  

There exist three directions, i.e., ML, AP and VT directions. The 

universal abnormal gait detection threshold and the universal near fall detection 

threshold for these three directions can be found from Table 5.1 and Table 5.2 

respectively. Equation (5.12) is performed to distinguish normal gait, abnormal 
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gait and near fall gait based on three directions. To classify as abnormal or near 

fall, the trunk accelerations of all three directions (ML, AP and VT) of the test 

subjects must exceed the derived thresholds. 

 

and 

 

and 

 

(5.12) 

Figure 5.1 shows the flow chart of universal fall reduction algorithm. 

The universal fall reduction algorithm developed using a mobile apps consists 

of the following steps: 

1. Capture the trunk acceleration input value gin using the tri-axial 

accelerometer. 

2. Compare the trunk acceleration input value with pre-defined universal 

abnormal gait detection threshold and universal near fall detection 

threshold using Equation (5.12). 

3. If all abnormal gait thresholds exceeded, send an abnormal gait alert 

message to both the user and the caregiver.  

4. If all near fall gait thresholds exceed, send a near fall alert message to 

both the user and the caregiver. 
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Figure 5.1: Flow chart of universal fall reduction algorithm  
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5.2.5 The recognition performance of universal fall reduction algorithm 

5.2.5.1 Test subjects 

A total of 144 test subjects were involved in the aforementioned 

simulated normal gait and abnormal gait experiments to define the universal 

abnormal gait detection threshold and the universal near fall detection 

threshold. A total of 74 young healthy subjects and 26 elderly healthy 

subjects participated in evaluating the recognition performance of the 

proposed universal fall reduction algorithm. These additional 100 test subjects 

were not involved in the experiments to define the universal abnormal gait 

detection threshold and the universal near fall detection threshold. 

 

 

Each subject repeated the experiment twice to ensure the data 

collected is reliable. Informed consents were obtained from all subjects in 

advance. The young subjects consist of 40 males and 34 females with ages 

between 20 to 55 years old and their weights between 45kg to 75kg. 

Meanwhile, the elderly subjects consisted of 16 male and 10 female with 

ages between 56 to 66 years old and weights between 46kg to 69kg. 

 

 

5.2.5.2 Experiment device and method 

Universal fall reduction algorithm as shown in Figure 5.1 was 

constructed and implemented into an android based smartphone.  The same 

simulated abnormal gait experiment method that was used to collect the trunk 

acceleration data for abnormal gait and near fall detection threshold was 

applied in the experiment. Instead of setting a tri-axial accelerometer at the 
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waist of the test subject, a smartphone that contains an accelerometer was 

inserted into a tight-fit waist bag located at the waist of the test subject as 

shown in Figure 5.2.  

 

Figure 5.2: Orientation of smart phone into a waist bag 

 

5.2.5.3 Evaluation results 

 The performance evaluation results showed that pre-defined universal 

abnormal gait detection threshold can detect the abnormal gaits of 98 test 

subjects (out of 100 test subjects). The near fall detection threshold can identify 

near fall gait of 90 test subjects as shown in Figure 5.3. Two test subjects 

experienced near fall condition was only detected as abnormal gait. 

Furthermore, 10 test subjects who experienced near fall condition were able to 

recover from near fall situation and returned to normal gait. These 10 test 

subjects consist of six males and four females. 
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Figure 5.3: Summary of universal abnormal gait detection and near fall 

detection threshold evaluation result  

 

 

5.2.5.4 Discussions 

The detection rate for abnormal gait and near fall gait was 98% and 

90% respectively. Since the universal fall reduction algorithm is based on the 

accuracy of both thresholds, therefore the overall performance of the universal 

fall reduction algorithm is 90%.  

 

 

In the experiment to evaluate the performance of universal fall 

reduction algorithm, it was observed that a test subject who has better lower 

extremity strength and sensory-motor system was able to overcome balance 

disorder when experiencing abnormal gait and return to normal gait. In 

contrast, the test subject who has weaker lower extremity strength and sensory-

motor system will experience near fall gait without experiencing abnormal gait.  
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Lower extremity strength and sensory-motor system are considered as 

random variables in the experiments. There are no specific subjects grouping 

for data collections by considering subjects’ lower limb extremity strength, 

adequate sensory-movement system. In fact, there are diverse factors and 

situations of gait and balance disorder. It is believed that gait and balance 

disorders are the result of an interaction between environmental challenges and 

many deficits concerning mainly cognitive, neuromuscular or cardiovascular 

functions. Researchers have found that ageing and medical conditions are the 

causes of gait and balance disorder.  Medical conditions associated with gait 

and balance disorder are affective disorder and psychiatric conditions, 

cardiovascular diseases, infectious and metabolic diseases, musculoskeletal 

disorders, neurologic disorders and sensory abnormalities (Alexander, 1996; 

Alexander & Goldberg, 2005; Moylan & Binder, 2007; Salzman, 2010; 

Sudarsky, 2001).  

 

 

Forner-Cordero et al. (2003) reported that the ability to recover from 

abnormal gait depends on the physical condition of an individual. The physical 

condition can be classified as mechanical which can be a muscular force or 

joint ranges of motion, neurological which includes a muscular activation delay 

or sensory thresholds, and psychological which is the ability to adapt to new 

situations and self-perception of stability (Forner-Cordero et al., 2003). The 

finding of this research is consistent with the finding reported by Forner-

Cordero et al. (2003). 
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5.3 The Proposal of individual fall reduction algorithm   

The gait cycle duration and the trunk acceleration amplitude for 

every individual test subject were similar, but different from other test 

subjects. Thus, each individual may have unique abnormal gait detection 

threshold and near fall detection threshold. The 90% accuracy of the proposed 

universal fall reduction algorithm also suggested that the universal fall 

reduction algorithm may not apply to certain people. This is because test 

subject who has better lower extremity strength is able to overcome balance 

disorder when experiencing abnormal gait while the test subject who has 

weaker lower extremity strength will experience near fall gait without 

experiencing abnormal gait.  

 

 

In addition, test subjects may have different chronological age and 

biological age. Chronological age is commonly defined as the age of a person 

counted from the date the person was born. Based on research in biological 

age, chronological age may not be a reliable indicator of the body's rate of 

decline or physiological breakdown. Given the number of cellular and systemic 

changes that accompany the ageing process, it is believed that such changes 

could be quantified through the identification and measurement of biomarkers 

of ageing (Levine, 2013).  

 

 

Karasik et al. (2005) reported that tissues age at different rates, humans 

become increasingly different from one another with age and eventually, 
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chronological age will fail to provide an accurate indicator of the ageing 

process. People who have younger tissues and organs age might be deemed 

biologically younger, and people with poor tissues and organs functions are 

categorised as biologically older. Biological age may help in identifying 

individuals at risk for age-related disorders, serving as a measure of relative 

fitness, and predicting disability in later life and mortality independent of 

chronological age (Mitnitski, 2013; Uttley & Crawford, 1994). According to 

Horak (2006), balance control involve various body physiological systems. 

Pathology or sub-clinical constraints can affect the functionality of the 

physiological systems. Functionality impairment of these systems will result in 

various context-specific instabilities. Therefore, the understanding of multiple 

mechanisms underlying postural control and the functions of physiological 

systems that will affect balance control are important in the study of human 

gait. 

 

 

Thus, the aforementioned reasons and results have motivated the 

proposal of individual fall reduction algorithm based on individual abnormal 

gait detection threshold and individual near fall detection threshold. These two 

thresholds are unique to each individual. These thresholds are defined based on 

trunk acceleration data collected in simulated normal and abnormal gait 

experiments.  
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5.3.1 Classification of normal gait, abnormal gait and near fall gait 

Individual abnormal gait detection and individual near fall detection 

thresholds were used to distinguish the following three different gaits where 

the thresholds are set based on statistical data collected on each individual in 

the simulated normal gait and abnormal gait experiments. Notice that 

individual abnormal gait detection threshold, a(normal)Max, is the maximum 

individual trunk acceleration value captured in the simulated normal gait 

experiment. 

1. Normal gait: Normal gait is classified if the trunk acceleration input 

value gin is less than individual abnormal gait threshold, i.e., gin < 

a(normal)Max. 

2. Abnormal gait: Abormal gait is classified if the trunk acceleration input 

value gin is equal to or more than individual abnormal gait threshold 

(but less than the near fall gait threshold that will be defined later), i.e., 

gin ≥ a(normal)Max.  

3.  Near fall gait: Near fall constant is defined by Equation (5.13) based on 

the data collected in the simulated normal gait and abnormal gait 

experiments.  

 

                                 CILB(abnormal)/CIUB (normal)                           (5.13) 

 

where CIUB(normal) and CILB (abnormal) denote 99% confident interval 

for the mean value of upper bound and lower bound trunk acceleration 

data collected in the simulated normal gait and  abnormal gait 

experiments respectively. CILB (abnormal) and CIUB (normal) can be 
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obtained from statistical analysis result listed in Table 4.1. Table 5.3 

shows the near fall constant in ML, AP and VT directions. The near fall 

constants in ML, AP and VT directions are 2.03, 2.86 and 1.94 

respectively. Finally, the individual near fall detection threshold can be 

obtained by Equation (5.14), Equation (5.15) and Equation (5.16), 

 

                               NFTAML = 2.03(NGTAML(Max))                                 (5.14) 

                             NFTAAP = 2.86(NGTAAP(Max))                                (5.15) 

                             NFTAVT = 1.94(NGTAVT(Max))                                 (5.16) 

 

where NFTA denotes near fall trunk acceleration value and NGTA(Max) 

denotes maximum normal gait trunk acceleration value. 

Table 5.3: Near fall constants in ML, AP and VT directions 

Directions ML AP VT 

CILB(abnormal)
1
/CIUB (normal)

2
 2.03 2.86 1.94 

 

Remarks: 

1. CILB =99% Confidence Interval for Mean of Lower Bound 

2. CIUB = 99% Confidence Interval for Mean of Upper Bound 

 

Near fall gait is classified if the trunk acceleration input value gin is equal or 

more than individual near fall gait threshold, i.e., gin ≥ NFTA.                           

 

 

5.3.2 Individual fall reduction algorithm 

Equation (5.17) is performed to distinguish normal gait, abnormal gait 

and near fall gait based on three directions. To classify as abnormal or near fall, 

the trunk accelerations of all three directions (ML, AP and VT) of the test 

subjects in must be exceed the derived thresholds. 
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and 

 

and 

                                                                                 

                 (5.17)                      

          

 Figure 5.4 shows the flow chart of individual fall reduction algorithm. 

For a repeated user, the individual fall reduction algorithm developed using a 

mobile apps consists of the following steps: 

1. Capture the trunk acceleration input value gin using the tri-axial 

accelerometer in ML, AP and VT directions. 

2. Compare the trunk acceleration input value with pre-defined individual 

abnormal gait detection threshold and individual near fall detection 

threshold. 

3. If abnormal gait is detected, send an abnormal gait alert message to 

both the user and the caregiver.  

4. If near fall gait is detected, send a near fall alert message to both the 

user and the caregiver. 
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Figure 5.4: Flow chart of individual fall reduction algorithm 
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For a new user, experiments need to be performed to identify the 

individual abnormal gait threshold and individual near fall threshold as 

explained earlier. 

 

 

5.3.3 The recognition performance of individual fall reduction algorithm 

5.3.3.1 Test subjects and experiment devices 

The same test subjects and same experiment setup described in Section 

5.2.5 were employed in evaluating the recognition performance of the proposed 

individual fall reduction algorithm. The main differences in evaluating the 

proposed universal fall reduction algorithm and individual fall reduction 

algorithm are listed as follows: 

1.  Different proposed algorithms were implemented and installed into an 

android based smartphone. 

2.  The training set of the proposed universal fall reduction algorithm 

consists of 144 test subjects while the verification or validation set of 

the proposed universal fall reduction algorithm were examined using of 

100 test subjects that are different from the training set to evaluate the 

effectiveness of universal abnormal gait detection threshold and 

universal near fall detection threshold on all people. 

3.  The training set and validation set of the proposed individual fall 

reduction algorithm consists of 100 similar test subjects to check the 

effectiveness of unique individual abnormal gait detection threshold and 

individual near fall detection threshold. 
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5.3.3.2 Experiment procedure  

The overall experiment in evaluating the accuracy of the proposed 

individual fall reduction algorithm consists the following steps: 

1.  Test subjects were requested to walk with their normal gait on 10 

meters flat and dry floor. The process was repeated two times to ensure 

the test subjects have consistent gaits.  

2.  Test subjects were instructed to walk on the treadmill for 20 

minutes to get used to the treadmill. The starting belt-conveyer 

moving speed was set to 1.1m/s (i.e., 4 km/h) as this speed was 

comfortable for all of the volunteers during the trial.  

3.  Test subjects were asked to activate the mobile apps installed on a 

smartphone inserted into a tight-fit waist bag located at the waist of 

the test subjects. 

4.  Test subjects were asked to avoid stepping on 10 mm round stickers 

randomly pasted on the treadmill to create abnormal gait condition.  

5.  Alert message was sent if the trunk acceleration input value is 

greater or equal to the pre-defined thresholds. 

6.  Experiment will be stopped when the safety belt that supports the 

subjects from fall is in tension.  

 

 

5.4 Individual fall reduction algorithm evaluation result 

It was found that, the individual fall reduction threshold can detect all 

abnormal gaits and near fall condition of all test subjects as shown Figure 5.5.  

The individual fall reduction software can classify the incoming trunk 
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acceleration into a normal gait, abnormal and near fall gait. An alert was 

successfully sent to the care giver when abnormal, and near fall gait was 

detected. The individual fall reduction algorithm has achieved 100% accuracy 

in the experiment to verify the individual fall reduction software performance. 

 

Figure 5.5: Summary of individual abnormal gait detection and near fall 

detection threshold evaluation result 

 

 

5.5    Summary 

Two types of the fall reduction algorithms were created. Universal fall 

reduction algorithm consists of universal abnormal gait detection threshold and 

universal near fall detection threshold. These thresholds were defined based on 

the statistical analysis result of simulated normal and abnormal gait 

experiments. Individual fall reduction algorithm consists of individual 

abnormal gait detection threshold and individual near fall detection threshold. 

Individual abnormal gait detection threshold was obtained by carrying 

simulated normal gait experiment. Individual near fall detection threshold 



96 
 

defined based on the multiplication of abnormal gait detection threshold with 

near fall constant obtained according to the statistical calculation result 

proposed in section 5.5.3. These thresholds are unique for every individual. 

 

 

Figure 5.6 summarised the evaluation outcomes of universal fall 

reduction algorithm and individual fall reduction algorithm. Universal fall 

reduction algorithm has achieved 90% accuracy, and individual fall reduction 

algorithm has achieved 100% accuracy. 
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Figure 5.6: Universal and individual abnormal gait detection threshold, 

near fall detection threshold, overall universal and individual fall 

reduction algorithm performance evaluation result 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK  

 

 

6.1 Summary of research outcomes 

This chapter concludes the research contributions and proposes future 

research direction.  It is hypothesized that dynamic balance disorder during 

human locomotion will induce high trunk acceleration that will cause abnormal 

gait and eventually may result in falls. Quantitative analysis results have 

proved that it is possible to classify normal and abnormal gait based on the 

peak value of trunk acceleration. Threshold-based universal and individual fall 

reduction algorithms were created, and the reliability of these algorithms was 

evaluated. The outcomes of the research based on the research objectives can 

be concluded as below: 

 

1. Normal gait trunk acceleration shows a consistent periodical gait cycle 

pattern and peak-to-peak amplitude in every gait cycle, while temporal 

profiles on for abnormal gaits experiment shows fluctuating and 

inconsistent trunk acceleration in an abnormal gait.  

2. The mean values of abnormal trunk acceleration in all ML direction, AP 

direction and VT direction are significantly greater than normal gait. 

3. Upper bound normal gait trunk acceleration does not overlap with lower 

bound abnormal gait trunk acceleration.  

4. There is no significant difference between trunk acceleration of old and 

young test subjects.  
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5. Female test subjects have barely higher mean trunk acceleration value 

than male test subjects, with a small difference of below 0.6g.  

6. Two conditions were observed in abnormal gait experiment. In the first 

condition, the test subject can recover from abnormal gait. In the second 

condition, volunteers were not able to recover from abnormal gait and 

experienced near fall after few cycle of abnormal gaits.  

7. Two new gait experiment methods were introduced in this research. 

The first experiment method is simulated normal gait experiment and 

the second experiment method is simulated abnormal gait experiment. 

Simulated normal gait experiment is designed to capture trunk 

acceleration in the daily steady gait of the test subjects, while simulated 

abnormal gait experiment is designed to capture unstable abnormal gait 

of the test subjects.  

8. The reliability of using a wireless accelerometer to capture trunk 

acceleration in normal gait and abnormal gait experiments were 

confirmed by repeating the simulated gait experiment on the same test 

subjects.  It was found that same test subject demonstrated similar trunk 

acceleration pattern when the experiment was repeated twice. Also, the 

duration of the gait cycle and the trunk acceleration amplitude for every 

individual test subject is similar, but it is different from others. This has 

provided a remarkable evidence of the reliability of using a wireless tri-

axial accelerometer to capture trunk acceleration in normal gait and 

abnormal gait. 

9. Simulated normal gait and abnormal gait experiment results have 

revealed that there is a significant correlation between human trunk 
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acceleration, abnormal gait, and near fall.  Statistical analysis result on 

trunk acceleration in normal and abnormal gaits has found that the trunk 

acceleration in normal gait and abnormal gait is different. Abnormal 

gait is an unstable gait that will cause in high trunk acceleration. The 

body is losing balance, and the test subjects need to move their upper 

and lower limbs to recover the unbalance body posture in abnormal gait 

back to normal gait (stable gait). This has caused high trunk 

acceleration in abnormal gait. The average trunk accelerations in 

abnormal gait that may lead to falling in mediolateral, anterior-posterior 

and vertical directions are 257%, 376%, and 217% larger than those of 

a normal gait respectively.   

10. Two threshold based fall reduction algorithms were proposed in this 

research. The first fall reduction algorithm is universal fall reduction 

algorithm and second fall reduction algorithm is individual fall 

reduction algorithm: 

(a) Universal fall reduction algorithm consists of universal abnormal 

gait detection threshold and universal near fall detection 

threshold. The thresholds are defined according to the statistical 

calculation result of 144 test subjects obtained in simulated 

normal and abnormal experiments. Universal abnormal gait 

detection threshold value for ML, AP and VT directions are 

0.85g, 0.98g and 2.48g respectively. Universal near fall detection 

thresholds for ML, AP and VT are 1.14g, 1.46 and 3.28g 

respectively. The same thresholds can be applied to all people 

regardless of age and gender. 
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(b) Individual fall reduction algorithm consists of individual 

abnormal gait detection threshold and individual near fall 

detection threshold. Individual abnormal gait detection threshold 

is obtained by carrying simulated normal and abnormal gait 

experiments. The threshold is unique for every individual. 

Individual near fall detection threshold is obtained by multiplying 

individual abnormal gait detection threshold with near fall 

constant. Near fall constant is obtained according to the statistical 

calculation result of  test subjects in simulated normal and 

abnormal experiments. The near fall constants in ML, AP and VT 

directions are 2.03, 2.86 and 1.94 respectively. The threshold is 

unique for every individual. 

11.  Android-based software that based on the proposed algorithms have 

been evaluated and below are the evaluation results: 

(a)     Universal fall reduction algorithm was able to detect 98% of 

abnormal gait and 90% of near fall gait. 

(b)    Individual fall reduction algorithm was able to detect 100% of 

abnormal and near fall gaits. 

 

 

Fall detection evaluation results have shown that it is possible to have a 

universal threshold with 90% sensitivity, but some test subjects can recover 

from abnormal gait or near fall gait (10%). This implies that individual may 

has unique threshold as the result of different lower extremity strength. 

Therefore, a self-learning threshold algorithm is proposed. The verification 
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result has shown that individual fall reduction algorithm is more reliable and 

achieved 100% detection.  

 

 

6.2 Future work 

Pathological change in the body may affect the experiment result (An et 

al., 2017 and Barr et al., 2017). As such, current study only involved healthy 

subjects without gait disturbance. Studies have shown that, diseases could 

result in gait disorder. Normal pressure hydrocephalus and Parkinson's disease 

cause gait disorder (Stolze et al., 2011) and gait disturbance is observed in 

patients with Alzheimer's disease (O'keeffe et al., 1996). It is proposed to 

extend the current study of simulated normal and abnormal gaits using 

individual fall reduction algorithm proposed in this research to investigate the 

correlation between abnormal gaits with diseases. Besides, the finding of the 

proposed work could be used to monitor the health condition of the patient. 

Also, the study outcomes could also be used to develop an early detection of 

some diseases such as Parkinson's disease. 

 

 

Balance control of ageing people degenerates (David et al., 1990 ; 

Winter et al., 1990) causing gait disorder (Ferrandze et al., 1988; Hageman and 

Blanke, 1986; Winter et al., 1990; Kressig et al., 2004). The proposed 

individual fall detection algorithm in this research can be used to monitor the 

condition of elderly impairment such as balance control ability and sensory-

motor functionality. As this algorithm was developed based on control 
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environment, it is proposed to carry in house experiment to verify the 

reliability of the algorithm for elderly impairment monitoring purpose. 

 

 

According to Horak (2006), one of the factors that cause abnormal gait 

was due to the damage in any of the underlying physiological systems. Current 

study has revealed that there is a significant different on trunk acceleration in 

normal and abnormal gaits. Abnormal gait will cause in high trunk 

acceleration. Therefore, it is proposed to carry out a study to find out the 

possibility of applying fall reduction algorithm in gait rehabilitation. The 

patients that have gait impairment can monitor their gait stability by using the 

new developed individual fall reduction system. Consistent trunk acceleration 

amplitude and periodic gait cycle can be used as the indicators of gait stability. 
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