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ABSTRACT 

 

OPTIMAL DESIGNS OF THE VARIABLE SAMPLE SIZE (VSS) X  

CHART BASED ON MEDIAN RUN LENGTH AND EXPECTED 

MEDIAN RUN LENGTH 

 

CHONG JIA KIT 

 

The variable sample size (VSS) X  chart, devoted to the detection of moderate 

mean shifts, has been widely investigated under the context of the average run 

length (ARL) criterion. Because the shape of the run-length distribution alters 

with the magnitude of the mean shifts, the ARL is a confusing measure and the 

use of percentiles of the run-length distribution is considered as more intuitive. 

This research develops two optimal designs of the VSS X  chart, by 

minimizing (i) the median run length (MRL) and (ii) the expected MRL for 

both deterministic and unknown shift sizes, respectively. The 5
th

 and 95
th

 

percentiles are also provided in order to measure the variation in the run-length 

distribution. Two VSS schemes are considered in this research, i.e. when the (i) 

small sample size ( )Sn  or (ii) large sample size ( )Ln  is predefined for the first 

1subgroup ( ).n The Markov chain approach is adopted to evaluate the 

performance of these two VSS schemes. The comparative study reveals that 

improvements in the detection speed are found for these two VSS schemes 

without increasing the in-control average sample size. For moderate to large 

mean shifts, the optimal VSS X  chart with 1 Ln n  significantly outperforms 

the optimal EWMA X  chart; while the former is comparable to the latter when 

1 .Sn n  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Statistical Process Control 

 

 In this fast moving and highly competitive globalization and industrial 

era, the quality of products and services becomes ever-increasingly vital in 

various fields. Quality of products and services is one of the foremost 

customers’ decision making factors. Therefore, quality improvement becomes 

an important approach in industrial and service sectors. Quality improvement is 

the reduction of variability in products and processes (Montgomery, 2013). The 

demand for continuous improvement and better quality tends to remain as an 

essential feature in the world of business (James and William, 2002). 

 

In order to improve the quality of a process or product, Statistical 

Process Control (SPC) is applied to ascertain the predictability and stability of 

a process (James and William, 2002). In real life applications, variations in any 

process are usually unspecified. Hence, there are no processes which will be in 

a stable condition forever (Anand, 2003). SPC is the most popular statistical 

technique to improve quality characteristics of products (Montgomery, 2013).  

Indisputably, SPC provides an objective means of controlling quality in any 

transformation processes which include the information transferring, services 

supplying and artefacts manufacturing (Oakland, 2003). There are wide 



2 
 

applications of SPC in manufacturing and service sectors. Some examples 

include the monitoring of the flow width measurement of wafers in a 

semiconductor manufacturing company, the improvement of suppliers’ process 

in checking the quality of products produced by machine tools and the 

monitoring of the costs of processing loan applications in a bank (Montgomery, 

2013). 

 

In production processes, no matter how well the process is designed or 

carefully maintained, there surely exist some amounts of variability. This is 

because the existence of variations is unstable and unpredictable all the time 

(James and William, 2002). There are two main types of process variations, i.e. 

common causes of variation and assignable causes of variation. Anand (2003) 

stated that common causes of variation are a part of the normal operation, for 

which the effect is relatively small. Therefore, the process is considered to be 

statistically in-control. A stable process is operating with a constant 

distribution, mean and variance over time. On the contrary, assignable causes 

of variation produce a large variation in the output characteristics (Anand, 

2003). This leads to unfavourable process performance and the process is said 

to be out-of-control. Operator errors, inappropriate controlled or adjusted 

machines and defective raw materials are the arising sources of this variation 

(Montgomery, 2013). 

 

The problem-solving tools in SPC are known as the “Magnificent 

Seven”. These seven tools include the Pareto chart, histogram or stem-and-leaf 

plot, check sheet, cause-and-effect diagram, defect concentration diagram, 
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scatter diagram and control chart (see Besterfield, 2004; Montgomery, 2013). 

Among all the SPC tools, control charts are the most effective tools for 

controlling quality in any transformation process (Montgomery, 2013). Control 

chart is a graphical tool used to determine whether or not a process is in a state 

of statistical control. The key function of a control chart is to identify the 

occurrence of assignable causes, so that necessary corrective actions can be 

taken to eliminate process variations before a large number of defective items 

are manufactured (James and William, 2002).  Control charts can be divided 

into two types, i.e. variables control charts and attributes control charts. A 

variables control chart is used to monitor quality characteristics that can be 

measured in terms of numerical measurements or continuous values 

(Besterfield, 2004). Examples of variables data are distance, length and weight. 

An attributes control chart deals with nominal scale of measurement 

(Montgomery, 2013). Attributes measurements of products or services are 

classified either as present or absent, acceptable or not acceptable, defective or 

non-defective, and etcetera (Anand, 2003). 

 

 If a practitioner is unable to differentiate between common and 

assignable causes of variation, this will lead to counterproductive corrective 

actions and result in a costly production process (Anand, 2003). Thus, Walter 

A. Shewhart proposed the first Shewhart X  chart in the year 1924 to 

distinguish between these two kinds of variability (Montgomery, 2013). The 

Shewhart X  chart only considers the current information in the process. This 

control chart is extensively used in manufacturing and service sectors because 

of the ease of implementation and interpretation (Montgomery, 2013). 
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1.2 Problem Statement 

 

 In view of its simplicity, the Shewhart X  chart is widely used to detect 

large process changes; however, it is insensitive to small and moderate process 

mean shifts. Therefore, adaptive control charts are proposed to enhance the 

sensitivity of the basic Shewhart X  chart. The variable sample size (VSS) X  

chart is one of the adaptive control charts. 

 

To date, the design of the VSS X  chart in the existing literature is 

based on the average run length (ARL) performance measure; for example, see 

Prabhu et al. (1993), Costa
 
(1994), and Castagliola et al. (2012). However, it 

has been long recognized that sole dependence on the ARL is potentially 

confusing and is a somewhat peculiar criterion for a control chart (see Bischak 

and Trietsch, 2007; Chakraborti, 2007; Mei, 2008; Khoo et al., 2012; Teoh et 

al., 2014). This is due to the fact that when the process is in-control or the 

process shift is small, (i) the run-length distribution is highly skewed to the 

right and (ii) the value of the standard deviation of the run length (SDRL) is 

quite large (Montgomery, 2013). 

 

 In addition, Gan (1993) pointed out that interpretation of the ARL 

corresponding to a highly skewed distribution (for in-control or small shifts) is 

surely different with that of an almost symmetric distribution (for large shifts), 

leading to bewildering conclusions. For dependent data, Lai (1995) stated that 

the ARL metric is conceptually unacceptable and is hard to analyze for more 

complex detection schemes. Zhou et al. (2012) claimed that the ARL may not 
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be a good performance metric in practice because of the unsatisfactory run-

length distribution and excessive variations of the run length. 

  

  Therefore, there is a need for an alternative performance measure to be 

adopted to design a control chart. Since the associated run-length distribution 

has different skewness for different shift sizes and the run-length random 

variable is defined by a positive integer value, the percentiles of the run-length 

distribution are more appealing performance indexes compared to the ARL 

(see Palm, 1990; Khoo, 2004; Radson and Boyd, 2005; Zhou et al., 2012). The 

percentiles of the run-length distribution, which are sufficient to summarize the 

run-length behavior, provide extra information and comprehensive 

understanding of a control chart (Zhou et al., 2012). 

 

  Among the percentiles of the run-length distribution, Chakraborti (2007) 

indicated that it is more practical to design a control chart by using the 50
th

 

percentile, i.e the median run length (MRL); while the 25
th

 and 75
th

 or 5
th

 and 

95
th

 percentiles are supplemented with the MRL in order to measure the spread 

and skewness of the run-length distribution. Here, 5
th

 and 95
th

 percentiles are 

the tails of the run-length distribution; whereas 25
th

 and 75
th

 percentiles are the 

first and third quartiles, respectively. 

 

  Maravelakis et al. (2005) also asserted that the MRL is a reliable 

indicator of a chart’s performance as it is less influenced by the skewness of 

the run-length distribution. This is because in a right-skewed distribution, the 

MRL is a better and fair measure of central tendency as the value of MRL is 
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smaller than that of the ARL. In view of these advantages, Shmueli and Cohen 

(2003), Golosnoy and Schmid (2007), Capizzi and Masarotto (2008), Khoo et 

al. (2012), and Teoh et al. (2014, 2015, 2016), advocated the use of MRL as an 

alternative measure to design and evaluate a control chart. 

 

 Owing to the beneficial properties of the MRL measure, this 

dissertation proposes the optimal designs of the VSS X  chart based on the 

MRL and expected MRL (EMRL). Two optimal designs are developed for the 

VSS X  chart, i.e. by minimizing (i) the out-of-control 
1MRL (MRL ) and (ii) 

the expected 1 1MRL  (EMRL ),  for known and unknown shift sizes, respectively. 

 

 In practice, it is common to have insufficient historical data; thus, 

practitioners usually do not know in advance the entity of the next shift size 

(Castagliola et al., 2011). Also, the shift size is unidentifiable and changes 

according to some undetermined stochastic models. To circumvent this 

problem, the expected ARL (EARL) is widely employed by many researchers 

as the performance metric to study the unknown shift size situation. To the best 

of the authors’ knowledge, none of the existing literature explores the 

application of the EMRL as the performance measure to investigate the VSS 

X  chart under the unknown shift size condition. Therefore, the optimal design 

for the unknown shift size, i.e. minimizing the 1EMRL ,  is vitally viewed and 

proposed in this research. 

 

 Also, the vast majority of existing researches on the VSS chart only 

consider one VSS scheme, i.e. when the small sample size ( )Sn  is predefined 
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for the first subgroup 
1( ).n  For the sake of completeness, this dissertation 

accounts for two VSS schemes, i.e. when (i) 
1  Sn n  and (ii) 

1 . Ln n  Here, 
Ln  

is the large sample size and .S Ln n  

 

1.3 Objectives of the Dissertation 

 

The objectives of this dissertation are as follows: 

i) To show that the MRL is an intuitive and credible measure compared to 

the ARL. 

ii) To develop a new optimization algorithm for the VSS X  charts when 

1  Sn n  and 1  Ln n , by minimizing the 1MRL  for the known shift size.  

iii) To develop a new optimization algorithm for the VSS X  charts when 

1  Sn n  and 1  Ln n , by minimizing the 1EMRL  for the unknown shift 

size.  

iv) To compute the optimal charts’ parameters of the MRL- and EMRL- 

based VSS X  charts when 1  Sn n  and 1 . Ln n  

 

1.4   Organization of the Dissertation 

 

Chapter 1 introduces an overview of SPC. This chapter highlights the 

problem statement and objectives of this dissertation. Chapter 2 reviews the 

relevant literature on the development of the VSS-type control charts. In 

addition, some performance measures of a control chart are briefly introduced 

in this chapter. Also, this chapter discusses relevant literature review regarding 
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the control charts designing based on the percentiles of the run-length 

distribution and MRL. 

 

Chapter 3 outlines the operation of the VSS X  chart’s procedures. The 

run-length properties of the Shewhart X , VSS X  and exponentially weighted 

moving average (EWMA) X  charts are also studied in this chapter. In addition, 

this chapter proposes two new optimal designs of the VSS X  charts, i.e. by 

minimizing the 
1MRL  and 

1EMRL  for the known and unknown shift sizes, 

respectively. 

 

  Chapter 4 studies the performance of the VSS X  chart in terms of the 

ARL, SDRL and percentiles of the run-length distribution. The optimal charts’ 

parameters of the MRL- and EMRL-based VSS X  charts when 1  Sn n  and 

1  Ln n  are also tabulated in this chapter. Comparative studies of the 

performance of the proposed optimal MRL- and EMRL-based VSS X  charts 

with that of the Shewhart X  and optimal EWMA X  charts are provided in 

this chapter. Furthermore, the implementation of the proposed optimal VSS X  

charts is illustrated with an example in this chapter. Last, some contributions of 

this dissertation and some recommendations for future research are 

summarized in Chapter 5. 

 

  The developed computer programs for the optimal VSS X , Shewhart 

X  and optimal EWMA X  charts are provided in Appendices A to C, 

respectively. By using the ScicosLab software, these written optimization 
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programs are used to compute the charts’ parameters and the run-length 

properties (ARL, SDRL, average sample size (ASS), MRL or percentiles of the 

run-length distribution) of the optimal VSS X , Shewhart X  and optimal 

EWMA X  charts. With the aid of the Statistical Analysis System (SAS), the 

written simulation programs are also provided in Appendices A to C in order to 

verify all the results obtained in this dissertation. Last, some additional results 

are tabulated in Appendix D. 
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1.5 Flow Chart of Research Methodology 

 

                                                                                          

Phase 1 

Literature Review and 

Formulation of  

Theoretical Framework 

 

 

----------------------------------------------------------------------------------------------- 

 

 

 

 

 

 

Phase 2 

Optimal Designs  

and Framework  

Development 

 

 

 

 

 

 

 

 

----------------------------------------------------------------------------------------------- 
 

Phase 3 

Control Charts’  

Performance Analyzes  

and Comparative 

Studies 

----------------------------------------------------------------------------------------------- 

 

Phase 4 

Illustrative Example 

----------------------------------------------------------------------------------------------- 

 

Phase 5 

Dissemination  

of Findings 

Literature review on related VSS-type charts, 

various performance measures for a control chart 

and the MRL-based control charts. 

Develop the MRL and EMRL of the VSS X  

chart by means of the Markov Chain approach. 

Develop two new optimal-designs algorithms of 

the VSS X  charts when 1  Sn n  and 1  Ln n , by 

minimizing the (i) 1MRL  and (ii) 1EMRL  for 

both known and unknown shift sizes. 

 

Develop optimization programs with ScicosLab 

software to compute the optimal charts’ 

parameters, together with their corresponding 

(
0.05

, 
1MRL , 

0.95
) or 1EMRL  of the optimal 

VSS X  chart. 

Verify the accuracy of the computed results with 

that of the simulation programs written in SAS. 

Compare the performance of the proposed two 

optimal MRL- and EMRL-based VSS X  charts 

with that of the Shewhart X  and optimal EWMA 

X  charts. 

Implement the proposed optimal VSS X  charts 

in a yoghurt manufacturing firm. 

Publish research findings in an ISI-index journal, 

i.e. Quality Reliability Engineering International. 

Disseminate findings in dissertation. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1  Introduction 

 

 Relevant literature regarding this research is studied in this chapter. 

Since the adaptive control charts outperform the Shewhart X  chart, there is a 

vast literature evolving around the development of various adaptive control 

charts. An in-depth literature review on the development of adaptive control 

charts was discussed by Tagaras (1998), Jensen et al. (2008), and Psarakis 

(2015). 

 

 The design of an adaptive control chart depends on the determination of 

three charting parameters, i.e. the sampling interval, sample size and control 

limit coefficient. During the implementation of the adaptive control chart, at 

least one of these three parameters will vary according to the value of the 

previous sample statistic. Since the adaptive control chart adopts more 

information compared to the static control chart, the flexibility feature of this 

adaptive chart provides a more powerful statistical and economical process-

monitoring method (see Tagaras, 1998). The VSS chart is one of the adaptive 

control charts. A thorough literature review on the development of the VSS-

type charts is discussed in Section 2.2. 
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  Some performance measures are required to investigate the superiority 

of a control chart over other control charts. Therefore, in Section 2.3, I briefly 

discuss the performance or design criteria of a control chart, i.e. the ARL, 

SDRL and percentiles of the run-length distribution. 

 

  As discussed in the problem statement section of Chapter 1, lots of 

studies focus on the development of control charts designing based on the ARL 

criterion. It is well known that the ARL is traditionally used as a measure of the 

control chart’s performance. However, the shape of the run-length distribution 

is highly skewed to the right when the process shift is in-control or small, to 

approximately symmetric when the process shift is large. Therefore, 

interpretation based on the ARL alone is misleading and complicated. It is high 

time that alternative measures of the control charts’ performance need to be 

suggested. Some related studies regarding the development of the control 

charts’ performance measures, i.e. the MRL and percentiles of the run-length 

distribution, are discussed in Section 2.4.  

 

2.2 Development of the Variable-Sample-Size-Type Control Charts 

 

  The VSS scheme allows the sample size to change at difference levels; 

while the sampling interval and control-limit coefficient remain constant 

(Prabhu et al., 1993). A two-sample-size VSS chart consists of three regions, 

divided by the control and warning limits. These three regions are the central, 

warning and out-of-control regions. If the current sample statistic falls in the 

central region, a relaxed sampling is arranged for the next inspection epoch by 
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taking a small sample size ( ).Sn  If the current sample statistic falls in the 

warning region, a large sample size ( )Ln  should be selected in the next 

sampling time to tighten the control. 

 

  Prabhu et al. (1993) and Costa (1994) were the first to propose the VSS 

X  chart. They studied the properties of this chart using the Markov chain 

approach. Prabhu et al. (1993) claimed that the VSS X  chart has faster 

detection speed and lower costs associated with the in-control sampling, 

compared to the Shewhart X  chart, when both control charts are applied in a 

real-industrial practice. Furthermore, the VSS X  chart shows improvement in 

detecting a certain range of shifts compared to the Shewhart X  chart with 

supplementary run rules, variable-sampling-interval (VSI) X , cumulative-sum 

(CUSUM) and EWMA charts (see Costa, 1994). 

 

  From the economic point of view, Park and Reynolds (1994) developed 

an economic-design model of the VSS X  chart by minimizing the expected 

cost per hour. They found that the VSS X  chart provides greater cost savings 

compared to the Shewhart X  chart. Reynolds (1996) manifested that the VSS 

X  chart has a notable gain in statistical efficiency compared to the VSI with 

fixed times (VSIFT) X  chart for detecting small mean shifts. 

 

  Zimmer et al. (1998) developed a three-state VSS scheme to improve 

the efficiency of the standard Shewhart X  and the two-state VSS X  charts. 

Since the additional states on the VSS scheme do not provide a great 
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improvement, they claimed that the two-state VSS X  chart proposed by 

Prabhu et al. (1993) is more practical and easy to be implemented in many 

applications. Zimmer et al. (2000) further proposed the three-state variable-

sample-size-and-sampling-interval (VSSI) X  and four-state VSS X  charts. 

They concluded that adding more states on adaptive control scheme show 

significant improvement compared to the standard Shewhart control chart; 

however, the performance of the three- and four-state adaptive control schemes 

is slightly better than their corresponding two-state adaptive control scheme. 

Moreover, it is very complicated to manage more than two-state VSS scheme 

in monitoring a process. Therefore, the easiest method to improve the 

performance of the VSS scheme is to increase its average sample size (Zimmer 

et al., 2000). 

 

  The VSS scheme is usually designed under the assumption of normality 

observations. However, in some production processes, this assumption may not 

be true. Accordingly, Lin and Chou (2005) proposed the VSS and control limit 

(VSSCL) X  chart under Burr distribution. For both normal and non-normal 

underlying distributions, the comparative studies reveal that the VSSCL X  

chart outperforms the VSS X  and Shewhart X  charts in detecting small and 

moderate mean shifts; while the EWMA chart is still the best for monitoring 

small process mean shifts. 

 

  Due to the attractive features of the VSS scheme, Castagliola et al. 

(2012) investigated the optimal VSS X  chart with estimated process 

parameters. They provided new optimal chart’s parameters for the VSS X  
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chart with estimated process parameters, specially designed for practical 

numbers of Phase-I samples and sample sizes. In real-life applications, 

measurement errors may occur in any process. Hu et al. (2015) examined the 

impact of the VSS X  chart with measurement errors by using a linearly-

covariate-error model. They found that the performance of the VSS X  chart is 

dramatically affected by measurement errors. Moreover, they exhibited that the 

run-length performance of the VSS X  chart becomes worst when the 

measurement errors increase. They also suggested taking multiple 

measurements for each sample in order to compensate for the negative effects 

of measurement errors. 

 

  Recently, Costa and Machado (2016) developed a X -type control chart 

by incorporating both the side-sensitive synthetic (SS) rule and VSS scheme, 

i.e. the SSVSS X  chart. They found that the SSVSS X  chart surpasses the 

standard Shewhart X , VSS X  and synthetic VSS X  charts, in terms of extra 

quadratic loss (EQL). On the contrary, the VSS EWMA chart is better than the 

SSVSS X  chart in detecting small shifts. Due to the low rates of false alarms 

and inspected items, Costa and Machado (2016) highly recommended the use 

of SSVSS X  chart in process monitoring. 

 

 Concerning the adaptive CUSUM-type control charts, Annadi et al. 

(1995) introduced the VSS CUSUM chart with and without fast initial response. 

They showed that there is an improvement for the VSS CUSUM chart 

compared to the CUSUM chart in detecting small mean shifts. Zhang and Wu 

(2007) presented a weighted loss function (WLC) CUSUM chart incorporating 
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the VSS feature, for simultaneous monitoring of both the mean and variance 

shifts. 

 

 For the VSS EWMA dispersion-type chart, the optimal 
2VSS S -

EWMA chart designing based on the average time to signal (ATS) was 

discussed by Castagliola et al. (2008). They concluded that the optimal VSS 

2S -EWMA chart outperforms the static 
2S -EWMA chart for all levels of 

process variability and the VSI 
2S -EWMA chart for certain process operating 

conditions. For the VSS EWMA X -type chart, a new VSS EWMA chart 

proposed by Amiri et al. (2014) used an integer linear function (ILF) to 

determine its sample size. The proposed chart is called the VSSILF EWMA 

chart. They claimed that the VSSILF EWMA chart surpasses the EWMA and 

the traditional VSS EWMA charts. Zhang and Song (2014) suggested the VSS 

EWMA median chart and compared their suggested chart with the EWMA X  

and VSS EWMA X  charts. They found that their proposed chart is the best 

among all the three control charts. Kazemzadeh et al. (2016) applied the VSS 

feature to the combination of three univariate EWMA charts and a multivariate 

EWMA chart for monitoring the simple linear profiles. They found that 

employing the VSS feature in a control chart effectively improves the detection 

speed of a control chart. 

 

  The attribute-type control charts with VSS feature that are found in 

existing literature, include the np and c charts studied by Epprecht and Costa 

(2001). They investigated the properties of the VSS np and c charts. Also, they 

compared the performance of the proposed charts with that of the fixed-
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sample-parameter np and c charts. Kooli and Limam (2011) used the similar 

approach as discussed by Park and Reynolds (1994) to formulate an economic 

design for the VSS np chart. Based on the sensitivity analysis, they pointed out 

that the proposed VSS np chart is more economically preferable than the static 

chart. By means of genetic algorithm and Taguchi experiments, Zhou and Lian 

(2011) developed a new VSS np chart with adjusting sampling inspection 

(ASI), i.e. ASI np chart. The sample size is determined according to three 

different levels of sampling inspection, i.e. normal, reduced and tightened 

inspections. The ASI np chart outperforms the classical np chart for all levels 

of shifts, particularly in the processes with high quality and small shifts (Zhou 

and Lian, 2011). 

 

  When the production horizon is finite, Castagliola et al. (2013) 

discussed the VSS t chart for monitoring short production runs. The VSS t 

chart is statistically superior to the t chart for a broad domain of shift sizes. 

They also claimed that in a short production runs, lack of historical data is a 

common situation. Therefore, they optimized the VSS t chart for a selected 

range of shifts modeled with a uniform distribution. Castagliola et al. (2015) 

recently monitored the three-parameter logarithmic transformation of the 

coefficient of variation (CV) by employing the VSS chart. The results show the 

potential benefits of the VSS CV chart over the Shewhart CV, VSI CV and 

synthetic CV charts for detecting certain levels of shifts in the CV. Amdouni et 

al. (2015) extended the work of Castagliola et al. (2015) by implementing the 

VSS chart to monitor the CV in short production runs. They evaluated the 

chart’s performance in terms of the ASS and truncated average run length 
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(TARL). Yeong et al. (2015) applied the VSS chart to monitor the CV without 

involving transformed statistics. This proposed chart is benefit to non-

statistically trained practitioners as the transformed statistics are not required 

during implementation. This chart is evaluated by minimizing the out-of-

control 1ARL (ARL )  and out-of-control 1ASS (ASS ).  They indicated that less 

observation is needed for the VSS chart to detect a shift in the CV when the 

sample CV is monitored directly compared to that of the transformed CV. 

 

  For multivariate process monitoring, Faraz et al. (2010) and Seif et al. 

(2011) investigated the economic and economic statistical design of the VSS 

2T  and VSSCL 2T  charts, respectively, by using the model proposed by 

Lorenzen and Vance (1986). Faraz et al. (2010) showed that the VSS 2T  chart 

is superior to the fixed-ratio-sampling (FRS) chart and comparative to the 

multivariate EWMA chart. Seif et al. (2011) demonstrated that the VSSCL 2T  

chart leads to improvement compared to the FRS 2T  and VSS 2T  charts. In 

order to enhance the performance of the variable dimension (VD) 2T  chart for 

detecting small process shifts, Aparisi et al. (2014) developed the VSS variable 

dimension (VSSVD) 2T
 
chart. They showed that the detection speed of the 

VSSVD 2T  chart in detecting small process shifts is reduced by 30% to 80%; 

whereas the performance of the VD 2T  and VSSVD 2T  charts are both 

equivalently sensitive towards large process shifts. 
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2.3  Performance Measures of a Control Chart 

 

  In order to analyze the performance of a control chart, some 

performance measures are required. The chart’s performance is usually 

measured in terms of the run length. The run length is a random variable which 

is defined as the number of sample statistics plotted on a control chart until the 

first out-of-control signal is detected. In the following sub-sections, various 

performance measures are briefly described. These include the ARL, SDRL 

and percentiles of the run-length distribution. 

 

2.3.1 The Average Run Length (ARL) 

 

  Traditionally, ARL is widely used to evaluate a control chart’s 

performance. The ARL is the expected value of the first run length. In other 

words, ARL is the average number of samples (subgroups) that must be plotted 

until the chart produces the first out-of-control signal (Montgomery, 2013). 

The two commonly used ARLs are the in-control 0ARL (ARL )  and the out-of-

control 1ARL (ARL ). 

 

  Jensen et al. (2008) indicated that a balance between the 0ARL  and 

1ARL  is very important. If the 0ARL  is too small, the control charts will 

produce smaller 1ARL  compared to those having large 0ARL .  However, the 

control charts having too small 0ARL  will produce many false alarms and 

subsequently reduce practitioners’ confidence in the monitoring system. On the 
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other hand, if the 0ARL  is too large, though the control charts produce less 

false alarms, the detection ability of the control charts on process shifts will be 

reduced. 

 

 In practice, it is recommended to have a large value of 0ARL  in order 

to avoid too frequent false-alarm rates. When the process is out-of-control or a 

shift occurs, it is desirable to have a small value of 1ARL  (Ryan, 2000). 

Therefore, a quick signal indication can be obtained and assignable cause(s) 

can be removed as soon as possible. When all the competing control charts 

having the same 0ARL  value, a control chart having the lowest 1ARL value is 

the best among all the competitors.  

 

2.3.2 The Standard Deviation of the Run Length (SDRL) 

 

  When ARL is used as the performance measure, the SDRL is a 

favorable supplemental value to determine the spread, variability and 

dispersion of the run-length distribution (Jensen et al., 2008; Shu et al., 2013). 

The in-control and out-of-control SDRLs are denoted as 0SDRL  and 1SDRL ,  

respectively. When compared with different control charts, the chart having the 

smallest 1SDRL  value is preferable. Small value of SDRL is able to ensure a 

consistent behavior of a control chart (Jensen et al., 2008). 
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2.3.3 The Percentiles of the Run-length Distribution 

 

  The percentiles of the run-length distribution give the probability of 

getting a signal at or before a certain number of samples. For example, if the 

20
th

 percentile of the run-length distribution is equal to 50, there is a 0.20 

probability that the run length of a chart is less than 50. In addition, the 

percentiles of the run-length distribution are random variables with positive 

integers. Palm (1990) claimed that the percentiles of the run-length distribution 

provide extra information regarding the spread and expected behaviour of the 

run-length distribution.  

 

  It may be helpful to evaluate the lower percentiles of the run-length 

distribution, i.e. the 5
th

, 10
th

 and 20
th

 percentiles. These lower percentiles 

provide practical guidance regarding an analysis of early false alarms when the 

process is in-control (Teoh et al., 2014). However, the computation of the 

higher percentiles (i.e. 80
th

, 90
th

 and 95
th

 percentiles) of the run-length 

distribution also gives some crucial information to quality practitioners (Khoo 

et al., 2011). 

 

Among all the percentiles of the run-length distribution, the 50
th

 

percentile of the run-length distribution, i.e. the MRL, is more practical to be 

used as the performance or design criterion of a control chart (Chakraborti, 

2007). The MRL represents half of the time. Also, the MRL provides more 

information than the ARL. In a right-skewed distribution, the median is less 

than the mean. Therefore, the MRL is a fair representation of central tendency 
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(Chakraborti, 2007). The 0MRL  and 1MRL  represent the in-control and out-of-

control MRLs, respectively. When 0MRL  is 250, practitioners will justify that 

in 50% of the time, a control chart will certainly detect a false alarm at the 

250
th

 sample. This will increase practitioners’ confidence when they encounter 

a few short runs without assignable causes. When 0MRL  is the same for all the 

control charts, a control chart outperforms its competitors if the chart has the 

smallest 1MRL  value among all its competitors. 

  

If MRL is the choice of design measure of a control chart, the spread 

and dispersion of the run-length distribution can be measured through the 

difference between the 25
th

 and 75
th

 (or 5
th

 and 95
th

) percentiles of the run-

length distribution (Chakraborti, 2007). Note that the difference between the 

25
th

 and 75
th

 percentiles of the run-length distribution is the interquartile range. 

The 25
th

 and 75
th

 percentiles represent the middle half of the run-length 

distribution; while the 5
th

 and 95
th

 percentiles are the extremes of the run-

length distributions (Radson and Boyd, 2005). A control chart having the 

smallest difference between the 25
th

 and 75
th

 (or 5
th

 and 95
th

) percentiles of the 

run-length distribution is the best among all its competitors. The smaller the 

difference between the 25
th

 and 75
th

 (or 5
th

 and 95
th

) percentiles of the run-

length distribution, the smaller the variation and spread of the run-length 

distribution. 
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2.4  Development of the Median Run Length (MRL) and Percentiles of 

the Run-length Distribution as the Control Charts’ Performance 

Measures 

 

Traditionally, the ARL is used as the design and performance criterion 

to evaluate a control chart. The design of a control chart solely based on the 

ARL measure was highly criticized by many researchers. For instance, Gan 

(1993, 1994) showed that the ARL is affected by the skewness of the run-

length distribution. For highly right-skewed run-length distribution, the ARL is 

greater than the MRL; while the ARL is almost the same as the MRL for 

approximately symmetric run-length distribution. Bischak and Trietsch (2007) 

argued that the ARL is a peculiar measure when the process parameters of a 

control chart are estimated. This is because for a control chart with estimated 

process parameters, the unconditional expected run lengths no longer follow a 

geometric distribution. Thus, the first run length and any other run length will 

no longer have the same expectation, leading to ambiguous ARL measure. 

Capizzi and Masarotto (2008) claimed that the ARL is not a robust metric 

when the run-length distribution exhibits heavy-tailed behaviour. Furthermore, 

Mei (2008) discussed some limitations of the ARL measure in some cases of 

dependent observations. 

 

In order to overcome the weakness of the ARL as the sole measurement 

of a control chart’s performance, there are a rich literature focusing on the 

development of control charts designing based on the MRL and percentiles of 

the run-length distribution. For the X -type charts, Palm (1990) provided tables 
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of percentiles of the run-length distribution for the Shewhart chart with 

supplementary run rules. Shmueli and Cohen (2003) evaluated the performance 

of the Shewhart chart with runs and scans rules in terms of the ARL, 5
th

, 25
th

, 

50
th

 (MRL), 75
th

 and 95
th

 percentiles of the run-length distribution. Khoo 

(2004) introduced two performance measures for the Shewhart X  chart, i.e. 

the percentage points of the number of individual units sampled and the 

percentage points of the time to signal. Charkraborti (2007) extended Khoo’s 

(2004) research to investigate the impact of the Shewhart X  chart with 

estimated parameters, in terms of the percentiles of the run-length distribution. 

  

By using the Markov chain approach, Low et al. (2012) studied the 

Shewhart X  chart incorporating the revised m-of-k runs rule based on MRL. 

The overall MRL performance shows that the revised runs rule significantly 

outperforms the Shewhart X  chart for detecting small and moderate mean 

shifts, while maintaining similar sensitivity for large shifts. Khoo et al. (2012) 

proposed an optimization procedure for the synthetic X  chart by minimizing 

the 1MRL ,  subject to a desired 0MRL  value. Both zero- and steady-state cases 

are considered in their study. Here, zero-state run length represents the run 

length of a control scheme initialized at the target value. Meanwhile, the 

steady-state run length is defined as the run length of a control chart evaluated 

after the control statistic has reached the steady-state condition (Lucas and 

Saccucci, 1990). Khoo et al. (2012) also provided some useful applications for 

the MRL performance measure. 
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Teoh et al. (2013) proposed two optimal-design models for the MRL-

based double sampling (DS) X  chart, i.e. by minimizing the (i) 0ASS  and (ii) 

0 1ASS +ASS . Here, 0ASS  and 1ASS  represent the in-control and out-of-control 

ASS, respectively. The proposed optimization models lead to a substantial 

reduction of sampling and inspection costs. When the process parameters are 

estimated, Teoh et al. (2014) developed new theoretical and optimization 

methods for the DS X  chart based on MRL. With the implementation of the 

proposed optimization method, they found that the MRL-based DS X  chart 

with estimated process parameters provides easier chart’s interpretation and 

lower false alarm rate compared to its ARL-based counterpart. Teoh et al. 

(2015) further suggested the optimization procedure of the DS X  chart with 

estimated process parameters by minimizing the 0ASS ,  subject to the desired 

0MRL  and 1MRL  values. Teoh et al. (2016) argued that the ARL is an 

ambiguous representation of the run length, especially for the case with 

estimated parameters. Thus, they provided a new design and charting 

parameters for the MRL-based Shewhart X  chart with estimated process 

parameters. By taking practical number of Phase-I samples and sample sizes, 

the newly proposed MRL-based Shewhart X  chart with estimated process 

parameters has similar sensitivity with its known-process-parameter 

counterpart. 

 

This paragraph focusses on the EWMA- and CUSUM-type control 

charts. Gan (1992) derived the exact run-length distribution for the one-sided 

CUSUM charts when the observations are exponentially distributed. He 
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concluded that a comprehensive understanding of the CUSUM charts can be 

achieved through the knowledge of run-length distribution. Because the MRL 

is a more credible measure compared to the ARL, Gan (1993, 1994) optimally 

designed the EWMA and CUSUM charts, respectively, based on MRL. Radson 

and Boyd (2005) proposed a new graphical representation, i.e. the percentiles 

of the distribution plot (PD-Plot) for the Shewhart X  and EWMA X  charts. 

This plot displays multiple pictures of data about the run-length probability 

distribution of a control chart. The advantage of the PD-Plots is to allow easy 

comparison of several run-length distributions. Chin and Khoo (2012) extended 

the idea of Zhang et al. (2009) to investigate the performance comparison of 

the optimal EWMA X  and optimal EWMA t charts based on the MRL 

criterion. You et al. (2016) examined the optimal designs of the EWMA X  

chart with estimated process parameters based on MRL and EMRL. By using a 

reasonable number of Phase-I samples and sample sizes, they showed that the 

performance of the optimal MRL- and EMRL-based EWMA X  chart with 

estimated process parameters is close to that of its known-process-parameter 

counterpart. 

 

Regarding the multivariate-type control charts, Khoo and Quah (2002) 

comprehensively studied the percentiles of the run-length distribution for the 

multivariate CUSUM control charts. By means of the Markov chain approach, 

Lee and Khoo (2006a, b) proposed the optimal designs of the multivariate 

EWMA and multivariate CUSUM control charts, respectively, based on ARL 

and MRL. Khoo et al. (2011) developed an optimal design of the multivariate 

synthetic 2T  chart for monitoring the process mean vector. The proposed 
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optimization algorithm involves minimizing the 1MRL ,  under the zero- and 

steady-state cases. Recently, Lee and Khoo (2017) proposed an optimal design 

of the multivariate synthetic generalized sample variance |S| (i.e. synthetic |S|) 

control chart by minimizing the 1MRL ,  for both zero- and steady-state cases. 

The comparative studies reveal that the multivariate synthetic |S| chart 

outperforms the standard |S| chart for detecting shifts in the covariance matrix.  

 

 

 



28 
 

CHAPTER 3 

 

RESEARCH METHODOLOGY 

 

 

3.1  Introduction 

 

 In this chapter, the operation of the VSS X  chart is discussed in 

Section 3.2. Section 3.3 provides the run-length properties (i.e. the ARL, 

SDRL, MRL, ASS and percentiles of the run-length distribution) of the 

Shewhart X , VSS X  and EWMA X  charts. As discussed in the problem-

statement section of Chapter 1, the MRL is more readily comprehensible than 

the ARL. Therefore, the MRL is used as the alternative measure to optimally 

design the VSS X  charts with 1 Sn n  and 1 Ln n  in this research. Two new 

optimal-design procedures for the MRL- and EMRL-based VSS X  charts for 

both known and unknown shift sizes, respectively, are proposed in this 

research. These two optimal-design procedures are presented in Section 3.4. 

 

3.2 The Operation of the Variable Sample Size (VSS) X  Chart 

 

  Without loss of generality, let us assume that a quality characteristic X  

follows an independent and identically distributed normal distribution, i.e. 

2

0 0~ ( , ),X N    where 0  and 0  are the in-control mean and standard 

deviation, respectively. Let iX  be the sample mean of the 
thi  subgroup, i.e. 
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 ,

1

1
,

in

i i j

ji

X X
n 

   (3.1) 

where i   1, 2, ..., j 1, 2, ..., 
in  and  ,  i S Ln n n . The plotting statistic for 

the thi  sample is computed as follows: 

 0

0

( )
,

i i

i

X n
Z







 (3.2) 

where  ~ ,  1i iZ N n  (Castagliola et al., 2012). Here, 1 0

0

μ μ
δ

σ


  denotes 

the magnitude of mean shift in multiples of standard deviation units, where 
1μ  

is the out-of-control mean. When 0,   i.e. the process is in-control, 
iZ  

follows a standard normal,  0,  1N  distribution. Figure 3.1 graphically 

displays the VSS X  chart’s operation. Here, K ( W) and W (> 0) are the 

control and warning limits, respectively. The VSS X  chart is divided into 

three regions, i.e. the central region   ,   SI W W , the warning region  LI

 ,  K W   ,  W K  and the out-of-control region  oocI    ,   K 

 ,  .K  The procedure of implementing the VSS X  chart is described as 

follows: 

1. Collect a sample, each having 
in  observations. 

2. Calculate the 
thi  sample mean and sample statistic as in Equations (3.1) 

and (3.2), respectively. 

3. If i SZ I , the process is deemed as in-control; thus, take a small sample 

size for the next sample, i.e. 1 . i Sn n  
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                           Out-of-control 
OOC( )I                 

                  K 

                           In-control ( )LI      Next sample size = 
Ln  

                 W 

                           In-control ( )SI      Next sample size = 
Sn  

              – W                                                                              **S = small 

                           In-control ( )LI      Next sample size = Ln               L = large 

              – K 

                           Out-of-control OOC( )I  

 

Figure 3.1: A graphical view of the VSS X  chart’s operation 

4. If i LZ I , the process is still considered as in-control, but it has a higher 

chance to shift to an out-of-control state; thus, take a large sample size for 

the next sample, i.e. 1i Ln n  , in order to tighten the control.  

5. If OOCiZ I , we conclude that the process is out-of-control. Take the 

necessary corrective actions in order to remove the assignable cause(s). 

 

3.3 The Run-length Properties of the Univariate Control Charts 

 

 The performances of the two optimal VSS X  charts with 1 Sn n  and 

1 Ln n  are compared to that of the Shewhart X  and optimal EWMA X  

charts in Chapter 4. Therefore, the run-length properties, i.e. the ARL, SDRL, 

MRL, ASS and percentiles of the run-length distribution for the Shewhart X , 

VSS X  and EWMA X  charts are delineated in this section. 
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3.3.1 The Shewhart X  Chart 

 

 Assume that the quality characteristic ,i jX  be the thj  observation in the 

thi  subgroup, where i   1, 2, ... and j 1, 2, ..., n . For the Shewhart X  chart, 

the upper 
SH( )UCL  and lower 

SH( )LCL  control limits are computed as 

(Montgomery, 2013) 

 0
SH SH 0/ , UCL LCL L

n


  (3.3) 

with the center line SH 0CL   and L is the chart’s coefficient controlling the 

width of the Shewhart X  chart’s limits. 

 

 Let   and   denote the probabilities of Type-I and Type-II errors, 

respectively. According to Montgomery (2013), the  -risk or the probability 

of not detecting a shift on the first subsequence sample can be expressed as 

       ,L n L n        (3.4) 

where     is the cumulative distribution function (cdf) of the standard normal 

random variable. When 0   is substituted in Equation (3.4), the  -risk or 

false alarm probability can be obtained as follows: 

 
   

   

 

1

1 Φ Φ

1 Φ 1 Φ

2 2Φ

α β

  L L

  L L

  L

 

     

     

 

  

                          2 1 Φ .L      (3.5) 
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It is well known that if the plotted statistics are independent and the 

chart’s limits are known constants, the run lengths of the Shewhart X  chart 

follow a geometric distribution (Montgomery, 2013). Accordingly, the 

probability mass function (pmf), ( )RLf  and cdf, ( )RLF  of the run length (RL) 

for the Shewhart X  chart are defined as 

 ( )RLf P ( RL  ) 1  (1  ) (3.6) 

and 

 ( )RLF P ( RL  ) 1  , (3.7) 

respectively, where {1, 2, 3, ...}. 

 

 The  
th

100  percentile of the run-length distribution can be 

determined as the value 

 such that (Gan, 1993) 

 ( 1)γP RL γ  
 
and ( )γP RL γ  , (3.8) 

where   is in the range 0 1.   The percentiles of the run-length distribution 

of the Shewhart X  chart can be obtained by using both Equations (3.7) and 

(3.8). Then the MRL can be easily obtained by setting   0.5 in Equation (3.8), 

i.e. 

 P(RL   MRL 1 )   0.5 and
 
P(RL   MRL)   0.5. (3.9) 

 

The computation of the 0ARL  and 0SDRL  of the Shewhart X  chart 

are obtained as follows (Montgomery, 2013): 
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0

1
ARL


  (3.10) 

and 

 0

1
SDRL ,






  (3.11) 

respectively. The 
1ARL  and 

1SDRL  of the Shewhart X  chart are calculated as 

 
1

1
ARL

1 



 (3.12) 

and 

 1SDRL
1







,  (3.13) 

respectively. 

 

3.3.2 The VSS X  Chart 

 

The run-length properties of the VSS X  chart can be modeled by a 

Markov chain approach. The VSS X  chart applies the 33 Markov transition 

probability matrix P, i.e. (Costa, 1994) 

( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( ) ,
1

0 0 1

S S L S S S L S

S L L L S L L LT

p n p n p n p n

p n p n p n p n

  
   

      
   

 

Q r
P

0
 (3.14) 

where the first two states are transient; while the third state is an absorbing 

state. In Equation (3.14), Q is the 2  2 matrix of transient probabilities, 

 0,  0
T

0  and r is the 21 vector fulfilling  r 1 Q1 , where  1,  1 .
T

1  

 



34 
 

The probability ( )S ip n  in Equation (3.14) with  ,  i S Ln n n  is defined 

as 

 

 

0

0

( )

( )
          

S i i

i i

p n P W Z W

X n
P W W





   

 
    

 
 

                    

                                0 0
0 0i

i i

P W X W
n n

 
 
 

      
 

. (3.15) 

By subtracting and multiplying each side of the inequality in Equation (3.15) 

with 0 0   and 
0

in


, respectively, Equation (3.15) becomes 

 
 0 0

0

( )
i i

S i i i

X n
p n P W n W n

 
 



  
      

  

. (3.16) 

Since 
2

0
0 0~ ,  

 
 

 
i

i

X N
n


   and thus 

 
 

0 0

0

~ 0,  1 ,
 i iX n

N
 


  

Equation (3.16) is equal to 

    ( )S i i ip n W n W n       . (3.17) 

The probability ( )L ip n  in Equation (3.14) with  ,  i S Ln n n  is evaluated as 

      ( )L i i ip n P K Z W P W Z K                                        

                                     

0 0

0 0

( ) ( )i i i iX n X n
P K W P W K

 

 

    
             

   

 

              0 0
0 0i

i i

P K X W
n n

 
      

 
 

 
   

                 0 0
0 0i

i i

P W X K
n n

 
    

 
 

 
  . (3.18) 
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After subtracting and multiplying each side of the inequality in Equation (3.18) 

with 
0 0   and 

0

in


, respectively, we obtain 

  
 0 0

0

i i

L i i i

X n
p n P K n W n

 
 



  
       

  

+ 

          
 0 0

0

i i

i i

X n
P W n K n

 
 



  
    

  

. (3.19) 

Since 
2

0
0 0~ ,  

 
 

 
i

i

X N
n


   and thus 

 
 

0 0

0

~ 0,  1 ,
 i iX n

N
 


 

Equation (3.19) is simplified to 

    ( )L i i ip n W n K n          

           .i iK n W n      (3.20) 

 

RL is the number of steps until the process reaches the absorbing state; 

hence, RL is a Discrete Phase-type random variable with parameters  ,  Q q  

(see Castagliola et al., 2012), where q is the 21 initial probability vector. 

Then the pmf and cdf of RL, i.e. fRL    and FRL   , respectively, for the VSS 

X  chart are equal to 

     1T

RLf P RL    q (Q )r  (3.21) 

and 

     1 T

RLF P RL   q Q 1 , (3.22) 

where {1,  2,  3,  ...}.  If we consider the initial sample size as 1 Sn n  for the 

first subgroup, then  1,  0
T

q ; otherwise, if we assume that the initial sample 
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size is 
1 Ln n  for the first subgroup, then  0,  1 .

T
q  Equation (3.8) together 

with Equation (3.22) are used to compute the percentiles of the run-length 

distribution of the VSS X  chart; whereas Equations (3.9) and (3.22) are used 

to calculate the MRL values of the VSS X  chart. 

 

The computation of the ARL and SDRL for the VSS X  chart is as 

follows: 

  
1

ARL T 
 q I Q 1  (3.23) 

and 

  
2 2SDRL 2 ARL ARLT 

   q I Q Q1 , (3.24) 

where I is the 22 identity matrix. 

 

For a fair comparison with other control charts, it is vital to evaluate the 

ASS of the VSS X  chart. The ASS is defined in a process functioning over an 

infinite horizon. Castagliola et al. (2015) showed that the ASS of the VSS 

schemes can be evaluated by transforming the matrix P in Equation (3.14) into 

P* as shown below 

( ) 1 ( ) ( )( )

,( ) 1 ( ) ( )( )

 0

S S S S L SL S

S L S L L LL L

T

p n p n p np n

p n p n p np n

  
 

  
 
 
 

P*

q

 (3.25) 

where  1,  0T q  when 1 Sn n  and  0,  1T q  when 1 .Ln n  Note that, there 

is no absorbing state in matrix P*. When the Markov chain moves to the third 

state (i.e. the out-of-control state), it restarts the process in either the first or 
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second state, depending on the value of q. Therefore, the stationary-probability 

vector,  (
S , 

L , 
OOC )

T
 is obtained from the Markov chain defined by 

matrix P* (see Castagliola et al., 2015). Here, the stationary probabilities 
S , 

L  and 
OOC  represent 

Sn , 
Ln  and 

1n , respectively. This stationary-probability 

vector ( ) can be computed as follows: 

 
1

0

  
 
 

q
R , (3.26) 

where matrix R is the transpose of matrix P*, then the diagonal elements are 

subtracted with one. Next, either the first or second row is replaced by ones, 

depending on the choice of 
1 Sn n  or 

1 .Ln n  For 
1 Sn n , the matrix R can be 

obtained as 

 R

1 1 1

( ) ( ) 1 0 ;

1 ( ) ( ) 1 ( ) ( ) 1

L S L L

S S L S S L L L

p n p n

p n p n p n p n

 
 

  
      

 (3.27) 

while the matrix R for 1 Ln n  is equal to 

 R

( ) 1 ( ) 0

1 1 1 .

1 ( ) ( ) 1 ( ) ( ) 1

S S S L

S S L S S L L L

p n p n

p n p n p n p n

 
 

  
      

 (3.28) 

Then the ASS of the VSS X  chart can be calculated as 

 1ASS ( ,  ,  )S Ln n n  , (3.29) 

where  1 ,  S Ln n n . 

 



38 
 

3.3.3 The Exponentially Weighted Moving Average (EWMA) X  Chart 

 

 Assume that the observations  ,1 ,2 ,,  ,  ,  i i i nX X X  are taken for the thi  

subgroup, where 1,  2,  i   and n is the sample size of the EWMA X  chart. 

The plotting statistic of the EWMA X  chart is (Montgomery, 2013) 

 1(1 )i i iZ X Z     , for 1,  2,  i   (3.30) 

with 
0 0Z  , 0 1   and iX  is the sample mean at the 

thi  subgroup. The 

asymptotic upper  EWMAUCL  and lower  EWMALCL  control limits of the 

EWMA X  chart are expressed as follows (Montgomery, 2013): 

 EWMA EWMA 0 0/ , UCL LCL H   (3.31) 

with the center line EWMA 0CL    and 
(2 )

H h
n







, where h is the 

multiplier to be determined. 

 

The Markov chain approach proposed by Brook and Evans (1972) is 

adopted to evaluate the ARL, SDRL, MRL and percentiles of the run-length 

distribution of the EWMA X  chart. Let us assume that the discrete-time 

Markov chain of the EWMA X  chart has 1p   states. Here, states 1, 2, …, p 

are transient and state 1p   is an absorbing state. The transition probability 

matrix P (including the absorbing state) of this discrete-time Markov chain can 

be expressed as (Zhang et al., 2009) 
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1,1 1,2 1, 1

2,1 2,2 2, 2

,1 ,2 ,

,
1

0 0 0 1

p

p

T

p p p p p

Q Q Q r

Q Q Q r

Q Q Q r

 
 
  
   
  
 
 
 

Q r
P

0
 (3.32) 

where 0 = (0, 0, …, 0)
 T

 and Q is a p p  transition probability matrix of the 

transient states. Also, in Equation (3.32), r is the 1p  vector fulfilling 

 r 1 Q1 , where 1
 
= (1, 1, …, 1)

T
. 

 

Zhang et al. (2009) showed that the interval between 
EWMALCL  and 

EWMAUCL  can be divided into 2 1p w   subintervals of width 2  each (see 

Figure 3.2). Here, EWMA EWMA 
.

2

UCL LCL

p


   Let iH  or jH  be the midpoint of 

the 
thi  or thj  subinterval, where i  or j w  , ..., 1 , 0, 1 , ..., .w  Then the 

generic element ,i jQ  of the matrix Q is computed as 

 
,

(1 )j i

i j

H H
Q n






      
     

  

 

         
(1 )

.
j iH H

n
     

   
  





 (3.33) 

 

 The pmf ( )RLf  and cdf ( )RLF  of the RL for the EWMA X  chart can 

be obtained from Equations (3.21) and (3.22), respectively, where q is replaced 

by p1 initial probability vector, Q and r can be found in Equation (3.32). The 

element jq  of the vector q is obtained as follows: 

 
0 1,  if 

.
0, elsewhere

j j

j

H Z H
q

   
 


 (3.34) 
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Figure 3.2: Interval between 
EWMALCL  and 

EWMAUCL  of the EWMA X  

chart, divided into 2 1p w   subintervals of width 2  each 

 

Since 
0 0Z   is the initial value of the EWMA statistic, jq  equals to 1 when 

1j w   and zero elsewhere.  

 

Similar to the VSS X  chart, the percentiles of the run-length 

distribution or the MRL values of the EWMA X  chart can be calculated from 

Equation (3.22) together with Equation (3.8) or (3.9), respectively. Whereas, 

the ARL and SDRL of the EWMA X  chart can be computed from Equations 

(3.23) and (3.24), respectively. Note that, the vector q and matrix Q in these 

Equations (3.22), (3.23) and (3.24) need to be obtained from Subsection 3.3.3. 

Also, I in Equations (3.23) and (3.24) should be replaced with p p  identity 

matrix. 

 

wH

 

1H

 
0H  2

 
1H

 

wH

 EWMALCL  



41 
 

3.4 Optimal Designs of the VSS X  Chart 

 

  In this section, two optimal designs of the VSS X  chart, aiming at 

minimizing the (i) 1 optMRL ( )  and (ii) 
1EMRL ,  for known and unknown shift 

sizes are developed. These two optimal-design algorithms are shown in 

Subsections 3.4.1 and 3.4.2, respectively. Here, 1 optMRL ( )  represents the out-

of-control MRL for a desired magnitude of mean shift opt ,  which should be 

detected quickly. 

 

3.4.1 MRL Optimization of the VSS X  Chart 

 

  When the size of the mean shift is known a priori, the optimal-statistical 

design of the VSS X  chart based on MRL is outlined as follows: 

 1 opt
, , , 
Min MRL ( ),

S Ln n W K
  (3.35) 

subject to  

(i) 0MRL ,  (3.36) 

(ii) 0ASS n  and (3.37) 

(iii) max1 S Ln n n n    , (3.38) 

where   and n are the desired values of the 0 0MRL  and ASS , respectively. 

Similar to Castagliola et al. (2013, 2015), the upper bound for the sample-size 

constraint in (3.38), i.e. max ,n  is restricted to 31 throughout this research. This 

is because small and moderate sample sizes are commonly used in industries. 
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By means of the above optimization model in (3.35)-(3.38), the 

procedure to obtain the optimal chart’s parameters (
Sn , 

Ln , W, K) of the VSS 

X  chart with known shift sizes is as follows: 

Step 1. Specify the desired values of n, 
max ,n  opt  and  . 

Step 2. Select a (
Sn , 

Ln ) pair based on constraint (3.38). 

Step 3. Compute the initial value of K with 1 1
2

K
  

   
 

, which is derived 

from Equation (3.23) when 0  . Here,  1   is the inverse cdf of 

the standard normal random variable and   is the Type-I error 

probability which is determined so that 
 
ln 0.5

ln 1






 (Chakraborti, 

2007).  

Step 4. Search for the initial value of W that satisfies constraint (3.37), by 

means of a nonlinear equation solver.   

Step 5. Readjust the K and W values obtained in Steps 3 and 4 simultaneously 

in order to satisfy constraints (3.36) and (3.37).  

Step 6. When the values of all the four chart’s parameters ( Sn , Ln , W, K) are 

preliminarily determined, calculate the objective function 1 optMRL ( )  

with Equations (3.9) and (3.22). 

Step 7. Repeat Steps (2) to (6) in order to obtain all the possible ( Sn , Ln , W, K) 

combinations of the VSS X  chart, which satisfy all the constraints in 

(3.36)-(3.38). 

Step 8. Identify the optimal ( Sn , Ln , W, K) combination(s) that minimize the 

1 optMRL ( )  for any out-of-control conditions ( 0  ). Since the MRL 
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is a positive integer, there may be several optimal (
Sn , 

Ln , W, K) 

combinations which have the same minimum value of 
1MRL . For such 

a situation, select the optimal (
Sn , 

Ln , W, K) combination, first, for 

having the smallest difference between the 5
th

 and 95
th

 percentiles of 

the run-length distribution and second, for having the smallest 
1ASS  

value.  

Note that the difference between the 5
th

 and 95
th

 percentiles of the run-length 

distribution is viewed as an important criterion in this optimization algorithm. 

This is because once the 1 optMRL ( )  is minimized, a practitioner may opt for 

the optimal ( Sn , Ln , W, K) combination(s) having the smallest variation in the 

run-length distribution. However, as the 5
th

 and 95
th

 percentiles of the run-

length distribution are positive integers, there may again exist several optimal 

( Sn , Ln , W, K) combinations, for which situation, the optimal ( Sn , Ln , W, K) 

combination having the smallest 1ASS  value will be selected.  

 

3.4.2 Expected MRL (EMRL) Optimization of the VSS X  Chart 

 

 It is really a very restrictive hypothesis to assume that the shift size is 

known a priori. In real life applications, the magnitude of future process 

changes is seldom known. When the actual mean shift differs from the desired 

opt  value, the optimization model in (3.35)-(3.38) may lead to a poor 

performance as the degree of changes or mismatch increases. For example, if 

1 Sn n , 5n   and opt 1  , Table 4.2 (see Chapter 4) gives the optimal chart’s 
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parameters (
Sn , 

Ln , W, K) = (2, 14, 1.1420, 2.9922) and 
1MRL 2.  If the 

actual mean shift is 0.25, the 
1MRL  value is 73 by using these (

Sn , 
Ln , W, K) 

parameters. Then, the relative error is 100%   (73 – 51) / 51 = 43.14%. This 

error is absolutely undesirable. To overcome the lack of knowledge on the 

actual shift size, the EMRL is proposed in this research as an alternative design 

criterion to achieve a good detection performance for a domain of shift sizes. 

  

 The optimization model for the VSS X  chart with unknown shift sizes 

is described as follows: 

 1 opt
, , , 
Min EMRL ( ),

S Ln n W K
  (3.39) 

subject to  

(i) 0EMRL ' , (3.40) 

(ii) 0ASS n  and (3.41) 

(iii) max1 S Ln n n n    , (3.42) 

where '  is the desired in-control 0EMRL (EMRL )  value. The EMRL can be 

computed as 

 EMRL =  MRLf d   , (3.43) 

where  f   is the probability density function (pdf) of .  The proposed 

EMRL criterion integrates over the distribution function  f   for the shift 

range. As it is difficult to estimate the actual shape of  f  , Castagliola et al. 

(2011, 2015), Celano (2010) and Ou et al. (2012) all assumed that the process 
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mean shifts follow a uniform distribution  min max,  .U    Here, 
min  and 

max  

are the lower and upper bounds of the mean shift, respectively. 

 

The optimization model in (3.39)-(3.42) enables the computation of 

new optimal chart’s parameters (
Sn , 

Ln , W, K) of the VSS X  chart, which are 

suitable to optimally detect a range of mean shifts without having to guess the 

actual value of  . The procedure to obtain these optimal chart’s parameters is 

illustrated as follows: 

Step 1. Specify the desired values of n, maxn , 
min , max  and ' . 

Steps 2 - 5. Similar to Steps 2 to 5 for the optimization model in (3.35)-(3.38) 

of Subsection 3.4.1, but replace constraints (3.36), (3.37) and 

(3.38) with constraints (3.40), (3.41) and (3.42), respectively. 

Step 6. When the values of all the four chart’s parameters ( Sn , Ln , W, K) are 

preliminarily determined, calculate the objective function 1EMRL with 

Equation (3.43). The Legendre-Gauss Quadrature method is employed 

to evaluate the integral in Equation (3.43). 

Step 7. Repeat Steps (2) to (6) in order to obtain all the possible ( Sn , Ln , W, K) 

combinations of the VSS X  chart, which satisfy all the constraints 

(3.40)-(3.42). 

Step 8. Identify the optimal ( Sn , Ln , W, K) combination that minimizes the 

1EMRL  over a range of mean shifts.  
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

4.1  Introduction 

 

 In this chapter, the performances of the two VSS schemes are analyzed 

and discussed. Section 4.2 presents the computation of the ARL, SDRL and 

percentiles of the run-length distribution for the two VSS X  charts with 

1 Sn n  and 
1 . Ln n  Section 4.3 compares the performances of the two optimal 

VSS X  charts with that of the Shewhart X  and optimal EWMA X  charts, 

based on the MRL and EMRL. All the results presented in this chapter and this 

dissertation, have been verified using the Monte Carlo simulation programs 

written in SAS software. Refer to Appendices A, B and C for the simulation 

programs of the VSS X , Shewhart X  and EWMA X  charts, respectively. An 

example of application is demonstrated in Section 4.4 to illustrate the 

implementation of the two optimal VSS X  charts. 

 

4.2 Performance of the VSS X  Charts Based on ARL, SDRL and 

Percentiles of the Run-length Distribution 

 

Table 4.1 summarizes the exact values of the ARL, SDRL and 

percentiles of the run-length distribution for the two optimal ARL-based VSS  
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Table 4.1: Exact ARL, SDRL and percentiles of the run-length 

distribution for the VSS X  chart with the optimal chart’s parameters (
S

n , 

L
n , W, K) corresponding to 

opt
 {0.5, 2.0}, 

0
ASS 5  and 

0
ARL 370  

   Percentiles of the run-length distribution 

  ARL SDRL 5
th

 10
th
 20

th
 30

th
 40

th
 50

th
 60

th
 70

th
 80

th
 90

th
 95

th
 

1  Sn n , opt 0.5  , (
Sn , 

Ln , W, K) = (2, 31, 1.6144, 2.9997) 

0.00 370.00 369.50 19 39 83 132 189 257 339 445 595 851 1108 

0.25 80.12 78.77 5 10 19 29 42 56 74 96 128 183 237 

0.50 8.85 6.87 2 3 4 5 6 7 8 10 13 18 22 

0.75 4.46 2.93 2 2 2 3 3 4 4 5 6 8 10 

1.00 3.24 1.84 1 2 2 2 2 3 3 4 4 6 7 

1.50 2.17 0.91 1 1 2 2 2 2 2 2 3 3 4 

2.00 1.64 0.63 1 1 1 1 1 2 2 2 2 2 3 

1  Sn n , opt 2.0  , (
Sn , 

Ln , W, K) = (4, 9, 1.2724, 2.9997) 

0.00 370.00 369.50 19 39 83 132 189 257 339 445 595 851 1108 

0.25 124.71 124.00 7 14 28 45 64 87 114 150 200 286 372 

0.50 23.56 22.50 2 3 6 9 13 17 22 28 37 53 68 

0.75 6.31 5.05 1 2 2 3 4 5 6 7 9 13 16 

1.00 2.95 1.74 1 1 2 2 2 3 3 3 4 5 6 

1.50 1.56 0.61 1 1 1 1 1 1 2 2 2 2 3 

2.00 1.16 0.37 1 1 1 1 1 1 1 1 1 2 2 

1  Ln n , opt 0.5  , ( Sn , Ln , W, K) = (1, 31, 1.5102, 2.9997) 

0.00 370.00 369.53 19 39 83 132 189 257 339 445 595 851 1108 

0.25 71.27 74.82 1 4 13 23 34 48 65 86 117 169 221 

0.50 3.75 5.02 1 1 1 1 1 2 2 3 5 9 14 

0.75 1.15 0.58 1 1 1 1 1 1 1 1 1 2 2 

1.00 1.00 0.08 1 1 1 1 1 1 1 1 1 1 1 

1.50 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

2.00 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

1  Ln n , opt 2.0  , (
Sn , 

Ln , W, K) = (4, 31, 2.1149, 2.9997) 

0.00 370.00 369.50 19 39 83 132 189 257 339 445 595 851 1107 

0.25 102.29 107.17 1 6 19 33 50 69 93 124 168 242 316 

0.50 6.31 9.30 1 1 1 1 1 2 3 6 10 18 26 

0.75 1.21 0.91 1 1 1 1 1 1 1 1 1 2 2 

1.00 1.01 0.09 1 1 1 1 1 1 1 1 1 1 1 

1.50 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

2.00 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

 

schemes. The performances for the VSS X  charts with 1 Sn n  and 1 Ln n  are 

listed in the upper and bottom parts of Table 4.1, respectively. In order to 

compute the optimal chart’s parameters ( Sn , Ln , W, K) for the VSS X  chart, 

two ScicosLab (www.scicoslab.org) optimization programs have been written 
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for the 
1 Sn n  and 

1 Ln n  schemes (see Appendix A.1). These programs are 

subjected to a desired 
0ARL 370,  a specific 

0ASS 5 and 
opt {0.5,  2.0}. 

 

Note that 
opt  represents the desired mean shift for which a quick detection is 

needed. These optimal chart’s parameters (
Sn , 

Ln , W, K) are used to compute 

the ARL, SDRL and percentiles of the run-length distribution for various shift 

sizes,  {0, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00} in Table 4.1. The ARL and 

SDRL for the VSS X  chart are calculated with Equations (3.23) and (3.24), 

respectively; while Equation (3.8) together with Equation (3.22) are employed 

to compute the percentiles of the run-length distribution. 

 

From Table 4.1, I notice that the value of the ARL is much larger than 

the MRL when the process is in-control. The difference between the ARL and 

MRL values decreases when the process shift increases. From this point of 

view, it is important to take note that the shape and skewness of the run-length 

distribution change according to the magnitude of the mean shifts, ranging 

from highly right-skewed when the process is in-control or slightly shifted to 

almost symmetric when the process is out-of-control. With 0ARL 370,  

practitioners may wrongly interpret that a false alarm occurs at the 370
th

 

sample in half of the time. In fact, this value is allocated between the 60
th

 and 

70
th

 percentiles of the run-length distribution and the false alarm actually 

occurs earlier, i.e. by the 257
th

 sample 0(MRL 257),  in half of the time. By 

referring to Table 4.1, when 1 Sn n , 
opt 2.0   and  1.0, the 1ARL  is 2.95; 

whereas half of all the run lengths are less than 3 1(MRL 3),  which is almost 

the same as the ARL value. This single example shows that in a highly right- 



49 
 

skewed distribution, the average is always higher than the median; while in a 

symmetric distribution, the average is almost the same as the median. It is 

apparent that interpretation based on ARL for a highly right-skewed 

distribution is different from that of the symmetric distribution. Therefore, the 

MRL is a better representative of the central tendency compared to the ARL. 

 

The percentiles of the run-length distribution provide practitioners with 

extra information regarding the shape, skewness, variation and behavior of a 

control chart. The lower percentiles such as the 5
th

, 10
th

 and 20
th

 percentiles of 

the run-length distribution when 0  , provide practical guidance regarding 

the early false alarms in the in-control process. Let us consider the case of 

1 Sn n , 
opt 2.0   and 0  , there is a 10% chance that an early false alarm 

may occur by the 39
th

 sample (see Table 4.1). This indicates that the lower 

percentiles are quite short even though the 0ARL  value (= 370) is large. 

Unequivocally, although the false alarm rate (= 0.0027) is low, there is a 

significant high percentage of false signals which occur at the beginning of 

process monitoring. The extra information on the early false alarms is 

beneficial and of great help to practitioners. With a comprehensive 

understanding on the behavior of the run-length distribution of a control chart, 

practitioners will have higher confidence in making conclusions about the 

actual status of a process being monitored when they encounter a few short run 

lengths with non-existing assignable causes. The information on the higher 

percentiles (i.e. 80
th

, 90
th

 and 95
th

 percentiles) of the run-length distribution 

also provides valuable information to practitioners. For instance, when 1 Ln n , 
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opt 0.5   and 0.25  , practitioners are 95% confident to claim that an out-

of-control signal will be detected by the 221
st
 sample (see Table 4.1). 

 

Practitioners should also be aware of the spread of the run-length 

distribution. The extremes, i.e. the 5
th

 and 95
th

 percentiles of the run-length 

distributions provide crucial information regarding the spread, variation and 

skewness of the run-length distribution. From Table 4.1, I observe that the 

difference between the 5
th

 and 95
th

 percentiles decreases when   increases. For 

instance, when 
1 Sn n  and 

opt 0.5  , the difference between the 5
th

 and 95
th

 

percentiles is 232 when 0.25  ; while the difference is only 3 when 1.50  . 

This shows that the spread and skewness of the run-length distribution are large 

for in-control and slightly out-of-control cases. The variation in the run-length 

distribution is small when   is large. 

 

Since the associated run-length distribution of the VSS X  chart has 

different skewness levels corresponding to different   values, interpretation 

solely based on the ARL can be misleading and inappropriate. The ARL only 

provides the expected number of samples required to signal a false alarm or an 

out-of-control condition. It does not disclose the likelihood of obtaining a 

signal by a certain number of samples. There is hence a need for an alternative 

optimal-design criterion of the VSS X  chart to be proposed in this research. 

The MRL is a more intuitive and credible measure as it is less influenced by 

the skewness of the run-length distribution. The MRL provides 50% certainty 

that the VSS X  chart will signal by a particular number of samples for all 

ranges of shifts. By referring to Appendix D, Tables D.1 to D.3 exhibit 
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additional results for the ARL, SDRL, and percentiles of the run-length 

distribution for the two optimal ARL-based VSS X  charts when 
0ARL   

 250,  370 ,  opt 0.5,  2.0  as well as 
0ASS = 5 and/or 10. Similar conclusions 

as for Table 4.1 are found for Tables D.1 to D.3 in Appendix D.  

 

4.3 Comparative Studies 

 

 This section consists of two subsections. Subsections 4.3.1 and 4.3.2 

discuss the comparative studies of the two optimal VSS X  charts with the 

Shewhart X  and optimal EWMA X  charts, for known and unknown shift 

sizes, respectively. 

 

4.3.1 Performance Comparisons for the Mean Shift of Known Size 

 

 Tables 4.2 and 4.3 compare the performances of the two optimal VSS 

schemes, Shewhart X  and optimal EWMA X  charts when the shift size is 

known a priori. Note that in this research, I consider 0MRL {250,  370} , n

{3, 5, 7, 10} and opt  {0.25, 0.50, 0.75, 1.00, 1.50, 2.00}. The charts’ 

parameters L, ( Sn , Ln , W, K) and ( , )H   of the Shewhart X , optimal VSS X  

and optimal EWMA X  charts are recorded in the first row of each cell in 

Tables 4.2 and 4.3; while the ( 0.05 , 1MRL , 0.95 ) values are tabulated in the 

second row of each cell. Here, 0.05  and 0.95  denote the 5
th

 and 95
th

 percentiles 

of the run-length distribution. The values of 0.05  and 0.95  are provided in  
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Table 4.2: Comparison of the (   
0.05 1 0.95

, MRL , ) values for the Shewhart 

X , optimal VSS X  and optimal EWMA X  charts, together with the 

charts’ corresponding parameters when n{3, 5, 7, 10}, 
opt

  {0.25, 0.50, 

0.75, 1.00, 1.50, 2.00} and 
0

MRL 250  

 Shewhart X  
 VSS X   

EWMA X  
  Sn n1

   Ln n1
  

 L (
Sn , 

Ln , W, K) (
Sn , 

Ln , W, K) ( , ) H  

opt  (
0.05 1 0.95, MRL ,  ) (

0.05 1 0.95, MRL ,  ) (
0.05 1 0.95, MRL ,  ) (

0.05 1 0.95, MRL ,  ) 

3n   

0.25 
2.9923 

(10, 125, 539) 

(1, 31, 1.8144, 2.9922) 

(7, 82, 351) 

(1, 31, 1.8516, 2.9922) 

(1, 78, 362) 

(0.0798, 0.3094) 

(9, 27, 82) 

0.50 
2.9923 

(4, 41, 177) 

(1, 31, 1.8144, 2.9922) 

(2, 11, 42) 

(1, 31, 1.8516, 2.9922) 

(1, 2, 29) 

(0.1750, 0.5050) 

(4, 10, 27) 

0.75 
2.9923 

(2, 15, 65) 

(1, 21, 1.6303, 2.9922) 

(2, 5, 16) 

(1, 27, 1.7844, 2.9922) 

(1, 1, 2) 

(0.3000, 0.7074) 

(2, 6, 14) 

1.00 
2.9923 

(1, 7, 28) 

(2, 10, 1.5216, 2.9922) 

(1, 3, 8) 

(2, 22, 1.9830, 2.9922) 

(1, 1, 1) 

(0.5500, 1.0582) 

(1, 4, 11) 

1.50 
2.9923 

(1, 2, 9) 

(1, 6, 0.8347, 2.9922) 

(1, 2, 4) 

(2, 10, 1.5440, 2.9922) 

(1, 1, 1) 

(0.5500, 1.0582) 

(1, 2, 4) 

2.00 
2.9923 

(1, 1, 3) 

(2, 6, 1.1420, 2.9922) 

(1, 2, 2) 

(2, 6, 1.1554, 2.9922) 

(1, 1, 1) 

(0.5500, 1.0582) 

(1, 1, 2) 

5n   

0.25 
2.9923 

(7, 90, 389) 

(1, 31, 1.4891, 2.9922) 

(5, 51, 215) 

(1, 31, 1.5104, 2.9922) 

(1, 47, 217) 

(0.0975, 0.2719) 

(7, 19, 53) 

0.50 
2.9923 

(2, 23, 97) 

(1, 31, 1.4891, 2.9922) 

(2, 7, 22) 

(1, 31, 1.5104, 2.9922) 

(1, 2, 14) 

(0.3000, 0.5480) 

(2, 7, 20) 

0.75 
2.9923 

(1, 8, 31) 

(2, 20, 1.3725, 2.9922) 

(2, 3, 9) 

(2, 26, 1.5440, 2.9922) 

(1, 1, 2) 

(0.5500, 0.8197) 

(2, 4, 12) 

1.00 
2.9923 

(1, 3, 12) 

(2, 14, 1.1420, 2.9922) 

(1, 2, 5) 

(4, 22, 1.9354, 2.9922) 

(1, 1, 1) 

(0.5500, 0.8197) 

(1, 2, 6) 

1.50 
2.9923 

(1, 1, 3) 

(4, 10, 1.3725, 2.9922) 

(1, 1, 2) 

(4, 10, 1.3906, 2.9922) 

(1, 1, 1) 

(0.5500, 0.8197) 

(1, 1, 3) 

2.00 
2.9923 

(1, 1, 2) 

(3, 6, 0.4244, 2.9922) 

(1, 1, 2) 

(4, 6, 0.6766, 2.9922) 

(1, 1, 1) 

(0.5500, 0.8197) 

(1, 1, 2) 

7n   

0.25 
2.9923 

(6, 69, 298) 

(1, 31, 1.2721, 2.9922) 

(4, 37, 155) 

(1, 31, 1.2879, 2.9922) 

(1, 34, 155) 

(0.1090, 0.2464) 

(6, 15, 40) 

0.50 
2.9923 

(2, 15, 62) 

(2, 31, 1.3542, 2.9922) 

(2,  5, 15) 

(2, 30, 1.3522, 2.9922) 

(1,  2, 10) 

(0.3000, 0.4631) 

(2, 5, 14) 

0.75 
2.9923 

(1, 5, 18) 

(3, 20, 1.1782, 2.9922) 

(2, 3, 6) 

(4, 26, 1.4986, 2.9922) 

(1, 1, 2) 

(0.5500, 0.6928) 

(1, 3, 8) 

1.00 
2.9923 

(1, 2, 7) 

(2, 13, 0.7412, 2.992) 

(1, 2, 4) 

(6, 22, 1.8815, 2.9922) 

(1, 1, 1) 

(0.5500, 0.6928) 

(1, 2, 4) 

1.50 
2.9923 

(1, 1, 3) 

(4, 9, 0.5180, 2.9922) 

(1, 1, 2) 

(6, 10, 1.1554, 2.9922) 

(1, 1, 1) 

(0.5500, 0.6928) 

(1, 1, 2) 

2.00 
2.9923 

(1, 1, 2) 

(6, 8, 0.6679, 2.9922) 

(1, 1, 1) 

(6, 8, 0.6766, 2.9922) 

(1, 1, 1) 

(0.5500, 0.6928) 

(1, 1, 1) 

10n   

0.25 
2.9923 

(4, 50, 214) 

(1, 31, 1.0287, 2.9922) 

(4, 27, 112) 

(1, 31, 1.0406, 2.9922) 

(1, 25, 111) 

(0.1450, 0.2462) 

(5, 12, 31) 

0.50 
2.9923 

(1, 9, 37) 

(2, 30, 1.0597, 2.9922) 

(2, 4, 11) 

(1, 31, 1.0406, 2.9922) 

(1, 2, 7) 

(0.5500, 0.5796) 

(2, 4, 13) 

0.75 
2.9923 

(1, 3, 10) 

(6, 24, 1.2118, 2.9922) 

(1, 2, 4) 

(8, 26, 1.6043, 2.9922) 

(1, 1, 2) 

(0.5500, 0.5796) 

(1, 2, 5) 

1.00 
2.9923 

(1, 1, 4) 

(9, 13, 1.1420, 2.9922) 

(1, 1, 3) 

(9, 22, 1.7844, 2.9922) 

(1, 1, 1) 

(0.8000, 0.7721) 

(1, 1, 3) 

1.50 
2.9923 

(1, 1, 1) 

(4, 11, 0.1735, 2.9922) 

(1, 1, 2) 

(9, 11, 0.6766, 2.9922) 

(1, 1, 1) 

(0.5500, 0.5796) 

(1, 1, 2) 

2.00 
2.9923 

(1, 1, 1) 

(6, 11, 0.2469, 2.9922) 

(1, 1, 1) 

(9, 11, 0.6766, 2.9922) 

(1, 1, 1) 

(0.5500, 0.5796) 

(1, 1, 1) 
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Table 4.3: Comparison of the (   
0.05 1 0.95

, MRL , ) values for the Shewhart 

X , optimal VSS X  and optimal EWMA X  charts, together with the 

charts’ corresponding parameters when n{3, 5, 7, 10}, 
opt

  {0.25, 0.50, 

0.75, 1.00, 1.50, 2.00} and 
0

MRL 370  

 Shewhart X  
 VSS X   

EWMA X  
  Sn n1

   Ln n1
  

 L (
Sn , 

Ln , W, K) (
Sn , 

Ln , W, K) ( , ) H  

opt  (
0.05 1 0.95, MRL ,  ) (

0.05 1 0.95, MRL ,  ) (
0.05 1 0.95, MRL ,  ) (

0.05 1 0.95, MRL ,  ) 

3n   

0.25 
3.1099 

(14, 177, 764) 

(1, 31, 1.8206, 3.1098) 

(9, 109, 468) 

(1, 31, 1.8458, 3.1098) 

(2, 105, 477) 

(0.0813, 0.3312) 

(10, 31, 96) 

0.50 
3.1099 

(5, 56, 240) 

(1, 31, 1.8206, 3.1098) 

(3, 12, 44) 

(1, 31, 1.8458, 3.1098) 

(1, 2, 32) 

(0.1750, 0.5296) 

(4, 11, 30) 

0.75 
3.1099 

(2, 20, 84) 

(1, 19, 1.5840, 3.1098) 

(2, 5, 16) 

(1, 28, 1.7970, 3.1098) 

(1, 1, 2) 

(0.3000, 0.7385) 

(3, 6, 16) 

1.00 
3.1099 

(1, 8, 35) 

(2, 12, 1.6350, 3.1098) 

(2, 3, 8) 

(2, 23, 1.9969, 3.1098) 

(1, 1, 1) 

(0.5500, 1.1011) 

(2, 4, 12) 

1.50 
3.1099 

(1, 2, 9) 

(1, 7, 0.9624, 3.1098) 

(1, 2, 4) 

(2, 11, 1.6007, 3.1098) 

(1, 1, 1) 

(0.5500, 1.1011) 

(1, 2, 4) 

2.00 
3.1099 

(1, 1, 3) 

(2, 6, 1.1447, 3.1098) 

(1, 2, 2) 

(2, 6, 1.1538, 3.1098) 

(1, 1, 1) 

(0.8000, 1.4652) 

(1, 1, 3) 

5n   

0.25 
3.1099 

(10, 126, 544) 

(1, 31, 1.4929, 3.1098) 

(6, 66, 280) 

(1, 31, 1.5074, 3.1098) 

(2, 62, 281) 

(0.0690, 0.2319) 

(9, 21, 54) 

0.50 
3.1099 

(3, 30, 128) 

(1, 31, 1.4929, 3.1098) 

(2, 7, 24) 

(1, 31, 1.5074, 3.1098) 

(1, 2, 15) 

(0.3000, 0.5721) 

(3, 8, 23) 

0.75 
3.1099 

(1, 9, 38) 

(3, 21, 1.5840, 3.1098) 

(2, 3, 9) 

(3, 28, 1.7608, 3.1098) 

(1, 1, 2) 

(0.5500, 0.8529) 

(2, 4, 13) 

1.00 
3.1099 

(1, 4, 15) 

(3, 12, 1.2146, 3.1098) 

(1, 2, 5) 

(4, 23, 1.9527, 3.1098) 

(1, 1, 1) 

(0.5500, 0.8529) 

(1, 3, 6) 

1.50 
3.1099 

(1, 1, 4) 

(4, 11, 1.4574, 3.1098) 

(1, 2, 2) 

(4, 11, 1.4711, 3.1098) 

(1, 1, 1) 

(0.8000, 1.1350) 

(1, 1, 3) 

2.00 
3.1099 

(1, 1, 2) 

(3, 6, 0.4264, 3.1098) 

(1, 1, 2) 

(4, 6, 0.6760, 3.1098) 

(1, 1, 1) 

(0.5500, 0.8529) 

(1, 1, 2) 

7n   

0.25 
3.1099 

(8, 96, 412) 

(1, 31, 1.2752, 3.1098) 

(5, 48, 200) 

(1, 31, 1.2858, 3.1098) 

(2, 44, 199) 

(0.1355, 0.2966) 

(6, 17, 49) 

0.50 
3.1099 

(2, 19, 80) 

(2, 31, 1.3575, 3.1098) 

(2, 6, 16) 

(1, 30, 1.2663, 3.1098) 

(1, 2, 11) 

(0.3000, 0.4835) 

(2, 6, 15) 

0.75 
3.1099 

(1, 5, 22) 

(4, 21, 1.3449, 3.1098) 

(1, 3, 6) 

(2, 27, 1.2858, 3.1098) 

(1, 1, 2) 

(0.5500, 0.7209) 

(1, 3, 8) 

1.00 
3.1099 

(1, 2, 8) 

(2, 16, 0.9160, 3.1098) 

(2, 2, 4) 

(6, 23, 1.9028, 3.1098) 

(1, 1, 1) 

(0.5500, 0.7209) 

(1, 2, 4) 

1.50 
3.1099 

(1, 1, 2) 

(5, 9, 0.6701, 3.1098) 

(1, 1, 2) 

(6, 11, 1.2858, 3.1098) 

(1, 1, 1) 

(0.5500, 0.7209) 

(1, 1, 2) 

2.00 
3.1099 

(1, 1, 1) 

(6, 8, 0.6701, 3.1098) 

(1, 1, 1) 

(6, 8, 0.6760, 3.1098) 

(1, 1, 1) 

(0.5500, 0.7209) 

(1, 1, 1) 

10n   

0.25 
3.1099 

(5, 68, 292) 

(1, 31, 1.0312, 3.1098) 

(4, 34, 143) 

(1, 31, 1.0392, 3.1098) 

(2, 32, 142) 

(0.1450, 0.2586) 

(5, 13, 34) 

0.50 
3.1099 

(1, 11, 46) 

(3, 31, 1.1447, 3.1098) 

(2, 4, 12) 

(1, 31, 1.0392, 3.1098) 

(1, 2, 8) 

(0.5500, 0.6031) 

(2, 5, 15) 

0.75 
3.1099 

(1, 3, 12) 

(6, 28, 1.3284, 3.1098) 

(1, 2, 4) 

(6, 27, 1.3137, 3.1098) 

(1, 1, 2) 

(0.5500, 0.6031) 

(1, 2, 5) 

1.00 
3.1099 

(1, 1, 5) 

(3, 18, 0.7234, 3.1098) 

(1, 2, 3) 

(9, 23, 1.8139, 3.1098) 

(1, 1, 1) 

(0.5500, 0.6031) 

(1, 2, 3) 

1.50 
3.1099 

(1, 1, 2) 

(5, 11, 0.2060, 3.1098) 

(1, 1, 2) 

(9, 11, 0.6760, 3.1098) 

(1, 1, 1) 

(0.5500, 0.6031) 

(1, 1, 2) 

2.00 
3.1099 

(1, 1, 1) 

(6, 11, 0.2490, 3.1098) 

(1, 1, 1) 

(9, 11, 0.6760, 3.1098) 

(1, 1, 1) 

(0.5500, 0.6031) 

(1, 1, 1) 
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these tables in order to measure the variation and spread of the run-length 

distribution. All the charting parameters of the Shewhart X , optimal VSS X  

and optimal EWMA X  charts attain 
0MRL {250,  370}  when n{3, 5, 7, 

10}. 

 

The optimization model in (3.35)-(3.38) (see Subsection 3.4.1 of 

Chapter 3) and optimization programs shown in Appendix A.2, are used to 

compute the optimal chart’s parameters (
Sn , 

Ln , W, K) of the two VSS 

schemes in Tables 4.2 and 4.3. For instance, when 5n  , 0MRL 370  and 

opt 0.75  , Table 4.3 gives ( Sn , Ln , W, K) = (3, 21, 1.5840, 3.1098)  and ( Sn , 

Ln , W, K) = (3, 28, 1.7608, 3.1098) as the optimal chart’s parameters of the 

VSS X  chart with 1 Sn n  and 1 Ln n , respectively. With these optimal 

chart’s parameters, the computed ( 0.05 , 1MRL , 0.95 ) values are (2, 3, 9) and 

(1, 1, 2) for 1 Sn n  and 1 Ln n , respectively. For the MRL-based Shewhart X  

and optimal MRL-based EWMA X  charts, the written ScicosLab programs 

shown in Appendices B.1 and C.1, respectively, are used to compute the charts’ 

parameters and their corresponding ( 0.05 , 1MRL , 0.95 ) values. Note that the 

formulae used to compute the ( 0.05 , 1MRL , 0.95 ) values of these four control 

charts can be obtained from Section 3.3 of Chapter 3. 

 

From Tables 4.2 and 4.3, it is obvious that the two optimal VSS 

schemes and the optimal EWMA X  chart generally surpass the Shewhart X  

chart for all levels of mean shifts. By comparing between the two optimal VSS 
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schemes, the optimal VSS X  chart with 
1 Ln n  generally has a shorter 

1MRL  

value than its counterpart with 
1 Sn n , for all sizes of mean shifts. Tables 4.2 

and 4.3 also reveal that the optimal VSS X  chart with 
1 Ln n  remarkably 

reduces the 
1MRL  and 

0.95
 values. When 

opt 0.75   and 
opt 1.00  , the 

1MRL  and 
0.95

 values, respectively, for the VSS scheme with 
1 Ln n

 
are 

equal to 1. In addition, there is no variation in the run-length distribution for 

the VSS scheme with 1 Ln n
 
when 

opt 1.00  . This is because the difference 

between 0.05  and 0.95  is equal to zero (see Tables 4.2 and 4.3). From this 

point of view, it is preferable for the VSS X  chart to take a large sample size 

for the first subgroup in order to give additional protection against problems in 

the process arising during start-up. 

 

 From Tables 4.2 and 4.3, the detection speed of the optimal VSS X  

chart with 1 Sn n  is comparable to that of the optimal EWMA X  chart for 

opt0.50 2.00  . From Tables 4.2 and 4.3, the difference between 0.05  and 

0.95  for the optimal VSS X  chart with 1 Sn n  is generally smaller than that of 

the EWMA X  chart when 
opt 0.75  . This indicates that the variation in the 

run-length distribution of the former chart is lower than that of the latter chart. 

This is an advantage of the VSS X  chart with 1 Sn n  over the EWMA X  

chart toward moderate shifts. 

 

 For very small shifts, i.e. 
opt 0.25  , the optimal EWMA X  chart is 

the best among all the competing control charts. For moderate to large shifts, 
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opti.e. 0.50,  the optimal VSS X  chart with 
1 Ln n  significantly 

outperforms the Shewhart X , optimal VSS X  with 
1 Sn n  and optimal 

EWMA X  charts. By referring to Table 4.3, when 
0MRL 370,  n = 3 and 

opt 0.50   are considered, the 
1MRL  value for the optimal VSS X  chart with 

1 Ln n  is 2 as opposed to 56, 12 and 11 for the Shewhart X , optimal VSS X  

with 
1 Sn n  and optimal EWMA X  charts, respectively. From this example, it 

is apparent that the VSS X  chart with 1 Ln n  tremendously reduces the 1MRL  

values of the Shewhart X , optimal VSS X  with 
1 Sn n  and optimal EWMA 

X  charts by nearly 96.4%, 83.3% and 81.8%, respectively. Concerning the 

dispersion of the run-length distribution, the values of 0.05  and 0.95  in Tables 

4.2 and 4.3 show that when  
opt0.50 2.00  , the optimal VSS X  chart with 

1 Ln n  generally has the lowest variation in the run-length distribution 

compared to the other three competitive control charts; while for small shifts 

(
opt 0.25  ), the spread in the run-length distribution is the smallest for the 

optimal EWMA X  chart compared to that of the other three competitive 

control charts. 

 

 Tables 4.2 and 4.3 indicate that the optimal VSS X  chart with 1 Ln n   

guards well against moderate to large shifts; while the optimal EWMA X  

chart provides effective protection against small shifts. However, the 

effectiveness of the optimal VSS X  chart with 1 Ln n  in detecting moderate 

and large shifts is more meaningful than its inferiority towards small shifts. 

This is because moderate and large shifts are more deleterious to a process. 
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Also, there will be too frequent process interruptions if very small shifts are 

detected regularly, where it is better not to interrupt process monitoring in such 

a situation. Similar results which are provided in Tables D.4 to D.6 (see 

Appendix D.2), hold for 
0MRL {200, 300, 500} and n{3, 5, 7, 10}. 

 

4.3.2 Performance Comparisons for the Mean Shift of Unknown Size 

 

 Table 4.4 provides the charting parameters of the Shewhart X , optimal 

VSS X  and optimal EWMA X  charts over a range of shift sizes when the 

intended 
0EMRL 370,  3,  5,  7,  10 ,n min 0.1  and 

max 2.0.  For 

example, if 3,n  the optimal chart’s parameters ( Sn ,
 Ln , W, K) and the 

corresponding 1EMRL  value for the VSS X  chart with 1 Sn n  are (1, 31, 

1.8206, 3.1098) and 25.02, respectively. These optimal chart’s parameters of 

the VSS X  chart are obtained from the optimization model in (3.39)-(3.42) 

(see Subsection 3.4.2 of Chapter 3) and the optimization programs presented in 

Appendix A.2. For the EMRL-based Shewhart X  chart, the developed 

ScicosLab program is shown in Appendix B.1; while that for the optimal 

EMRL-based EWMA X  chart, is shown in Appendix C.1. Table 4.4 also 

presents the ( 0.05 , 1MRL , 0.95 ) values for the Shewhart X , VSS X  and 

EWMA X  charts, for   {0.25, 0.50, 0.75, 1.00, 1.50, 2.00}, corresponding 

to the EMRL-based charts’ parameters recorded in this table. For instance, if 

3,n  the ( 0.05 , 1MRL , 0.95 ) values for the VSS X  chart with 1 Sn n  

corresponding to ( Sn ,
 Ln , W, K) = (1, 31, 1.8206, 3.1098) are (3, 12, 44) when 

0.50.  
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Table 4.4: Comparison of the 
1

EMRL  and (   
0.05 1 0.95

, MRL , ) values for 

the Shewhart X , optimal VSS X  and optimal EWMA X  charts, together 

with the charts’ corresponding parameters when n {3, 5, 7, 10},

0
EMRL 370 , 

min
 0.1   and 

max
 2.0   

 Shewhart X  
 VSS X   

EWMA X  
  Sn n1

   Ln n1
  

 
L  

1EMRL  

(
Sn , 

Ln , W, K) 

1EMRL  

(
Sn , 

Ln , W, K) 

1EMRL  

( , H ) 

1EMRL  

  (
0.05 1 0.95, MRL ,  ) (

0.05 1 0.95, MRL ,  ) (
0.05 1 0.95, MRL ,  ) (

0.05 1 0.95, MRL ,  ) 

 n = 3 

 
3.1099 

41.18 

(1, 31, 1.8206, 3.1098) 

25.02 

(1, 31, 1.8458, 3.1098) 

21.16 

(0.0726, 0.3090) 

11.14 

0.25 (14, 177, 764) (9, 109, 468) (2, 105, 477) (10, 31, 92) 

0.50 (5, 56, 240) (3, 12, 44) (1, 2, 32) (6, 12, 25) 

0.75 (2, 20, 84) (2, 6, 21) (1, 1, 2) (4, 7, 13) 

1.00 (1, 8, 35) (2, 4, 14) (1, 1, 1) (3, 5, 9) 

1.50 (1, 2, 9) (1, 3, 8) (1, 1, 1) (3, 4, 5) 

2.00 (1, 1, 3) (1, 2, 5) (1, 1, 1) (2, 3, 4) 

 n = 5 

 
3.1099 

28.58 

(1, 31, 1.4929, 3.1098) 

18.19 

(1, 31, 1.5074, 3.1098) 

15.58 

(0.1090, 0.3073) 

7.98 

0.25 (10, 126, 544) (6, 66, 280) (2, 62, 281) (7, 22, 64) 

0.50 (3, 30, 128) (2, 7, 24) (1, 2, 15) (4, 8, 16) 

0.75 (1, 9, 38) (2, 4, 13) (1, 1, 2) (3, 5, 9) 

1.00 (1, 4, 15) (2, 3, 9) (1, 1, 1) (2, 4, 6) 

1.50 (1, 1, 4) (1, 2, 6) (1, 1, 1) (2, 2, 3) 

2.00 (1, 1, 2) (1, 2, 4) (1, 1, 1) (2, 2, 3) 

 n = 7 

 
3.1099 

22.01 

(1, 30, 1.2559, 3.1098) 

14.78 

(1, 31, 1.2858, 3.1098) 

12.80 

(0.0956, 0.2396) 

6.22 

0.25 (8, 96, 412) (5, 49, 205) (2, 44, 199) (7, 17, 43) 

0.50 (2, 19, 80) (2, 6, 17) (1, 2, 11) (4, 7, 12) 

0.75 (1, 5, 22) (2, 3, 9) (1, 1, 2) (3, 4, 7) 

1.00 (1, 2, 8) (2, 3, 7) (1, 1, 1) (2, 3, 5) 

1.50 (1, 1, 2) (1, 2, 5) (1, 1, 1) (2, 2, 3) 

2.00 (1, 1, 1) (1, 2, 3) (1, 1, 1) (1, 2, 2) 

 n = 10 

 
3.1099 

16.35 

(1, 31, 1.0312, 3.1098) 

11.76 

(1, 31, 1.0392, 3.1098) 

10.20 

(0.1450, 0.2586) 

4.86 

0.25 (5, 68, 292) (4, 34, 143) (2, 32, 142) (5, 13, 34) 

0.50 (1, 11, 46) (2, 5, 13) (1, 2, 8) (3, 5, 9) 

0.75 (1, 3, 12) (2, 3, 7) (1, 1, 2) (2, 3, 5) 

1.00 (1, 1, 5) (2, 2, 6) (1, 1, 1) (2, 2, 3) 

1.50 (1, 1, 2) (1, 2, 4) (1, 1, 1) (1, 2, 2) 

2.00 (1, 1, 1) (1, 2, 3) (1, 1, 1) (1, 1, 2) 

 

When 5n   and the shift size is 0.75  , Table 4.3 gives the optimal 

chart’s parameters and 
1MRL  value for the VSS X  chart with 1 Sn n  as ( Sn ,

 

Ln , W, K) = (3, 21, 1.5840, 3.1098) and 
1MRL 3,  respectively; while Table 
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4.4 gives ( Sn ,
 Ln , W, K) = (1, 31, 1.4929, 3.1098) and 1MRL 4.  I notice 

from this example that the global chart’s parameters listed in Table 4.4 are able 

to provide the 1MRL  value which is close to the one obtained with a specific 

shift size in Table 4.3. This indicates that the global charts’ parameters shown 

in Table 4.4 can be considered as a robust alternative to the charts’ parameters 

presented in Table 4.3. 

 

The results in Table 4.4 demonstrates the superiority of the optimal 

EWMA X  chart, in comparison to the other competing control charts, for a 

shift domain of  min max0.1,  2.0 .    The smallest 1EMRL  value is obtained 

for the EWMA X  chart because there is a significant improvement in the 

1MRL  performance over a range of small shifts. Nevertheless, the optimal 

EWMA X  chart is only effective in detecting small process mean shifts 

( 0.25  ); while for moderate and large shifts ( 0.50),  the VSS X  chart 

with 1 Ln n  has the best performance, in terms of the detection speed and the 

variation in the run-length distribution. For example, when 5n   and 0.75  , 

the 1MRL  value for the VSS X  chart with 1 Ln n  is 1 compared to 9, 4 and 5 

for the Shewhart X , VSS X  with 1 Sn n  and EWMA X  charts, respectively. 

For the same condition, the difference between 0.05  and 0.95  for the VSS X  

chart with 1 Ln n  is 1 compared to 37, 11 and 6 for the Shewhart X , VSS X  

with 1 Sn n  and EWMA X  charts, respectively. Therefore, it is found that the 

VSS X  chart with 1 Ln n  reduces the variation in the run-length distribution 

of the Shewhart X , VSS X  with 1 Sn n  and EWMA X  charts, by nearly 
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97.3%, 90.9% and 83.3%, respectively. Additional results for the Shewhart X , 

VSS X  and EWMA X  charts by minimizing the 1EMRL  when 0EMRL  

{200, 250, 300, 500} and n{3, 5, 7, 10}, are provided in Tables D.7 to D.10 

of Appendix D.3. 

 

4.4 An Illustrative Example 

 

 This section illustrates the implementation of the optimal MRL-based 

VSS X  charts both with 1 Sn n  and 1 . Ln n  The example in Carot et al. (2002) 

is considered in this dissertation. The two optimal VSS X  schemes are applied 

in a yoghurt manufacturing firm, in order to monitor the amount of potassium 

sorbate added to its products. Potassium sorbate is primarily used as a basic 

ingredient in food preservation. The public health institutions recommend the 

use of the amount of potassium sorbate in the range 0.5g to 2.0g per kg of 

product. The desired process parameters are assumed to be 0 1.5g   and 

0 0.008g   (Carot et al., 2002).  

 

The optimal MRL-based EWMA X  and Shewhart X  charts are also 

constructed in order to enable comparisons with the two optimal VSS schemes. 

The data for this example are generated from a normal distribution with mean, 

0 1.5  and standard deviation, 0 0.008  by using the developed SAS 

programs. These programs for the VSS X  charts with 1  Sn n  and 1 Ln n , 

Shewhart X  chart and EWMA X  chart can be obtained from Appendices  
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Table 4.5: Summary statistics of the simulated data for the amount of 

potassium sorbate (in grams, g) to be added in a yoghurt manufacturing 

process 

 
VSS X  chart  Shewhart 

X  chart 

 EWMA 

X  chart  Sn n1
   Ln n1

   

Subgroup 

number, i in  
iX  

iZ   in  
iX  

iZ   iX   iZ  

1 3 1.50609 1.31921  28 1.49915 –0.56467  1.50192  1.50106 

2 3 1.49547 –0.98054  3 1.49668 –0.71987  1.49426  1.49732 

3 3 1.49948 –0.11233  3 1.50455 0.98525  1.49835  1.49789 

4 3 1.49099 –1.95039  3 1.49698 –0.65330  1.49702  1.49741 

5 21 1.50016 0.09076  3 1.49333 –1.44421  1.50278  1.50036 

6 3 1.49646 –0.76710  3 1.50346 0.74957  1.49817  1.49915 

7 3 1.49500 –1.08294  3 1.49751 –0.53903  1.50206  1.50075 

8 3 1.49708 –0.63204  3 1.49196 –1.74140  1.49558  1.49791 

9 3 1.50177 0.38230  3 1.49969 –0.06631  1.49993  1.49902 

10 3 1.49494 –1.09565  3 1.50250 0.54081  1.49364  1.49606 

11 3 1.50217 0.46995  3 1.51012 2.19149  1.50951  1.50346 

12 3 1.50877 1.89845  28 1.50809 5.35426  1.50528  1.50446 

13 21 1.50792 4.53809  28 1.50516 3.40988  1.50592  1.50526 

14 3 1.51080 2.33824  28 1.50618 4.08790  1.51030  1.50803 

15 21 1.50718 4.11203  28 1.50513 3.39162  1.50976  1.50898 

16 3 1.51005 2.17500  28 1.50564 3.72983  1.51321  1.51131 

17 21 1.50434 2.48422  28 1.50565 3.73851  1.50735  1.50913 

Remarks: The boldfaced values denote the out-of-control cases. 

 

A.3.3, A.3.4, B.2.2 and C.2.2, respectively. The observations for the first ten 

subgroups ( i 1 to 10) are generated under the in-control condition; whereas 

the observations for the 11
th

 subgroup onwards ( i 11 to 17) are generated 

under the out-of-control condition, i.e. 0.75.   Table 4.5 summarizes the 

statistics for the VSS X , Shewhart X  and EWMA X  charts. Note that the 

boldfaced values represent the out-of-control cases. In this example, the dataset 

for all the observations used to construct the VSS X , Shewhart X  and 

EWMA X  charts can be found in Tables D.11 to D.13 of Appendix D.4. 

Assume that the intended 0MRL 370,  n = 5 and opt 0.75.  From Table 4.3, 

the charts’ parameters for the optimal VSS X  charts with 1 Sn n  and 1 Ln n , 

the Shewhart X  chart and the optimal EWMA X  chart are ( ,Sn  ,Ln  W, K) = 

(3, 21, 1.5840, 3.1098), ( ,Sn  ,Ln  W, K) = (3, 28, 1.7608, 3.1098), L = 3.1099  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4.1: The optimal VSS X  chart with (a) 1 S
n n  and (b) 1 L

n n , as 

well as (c) the optimal EWMA X  chart and (d) the Shewhart X  chart, 

for monitoring the amount of potassium sorbate to be added to a yoghurt 

manufacturing process 
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and ( ,  )H  = (0.5500, 0.8529), respectively. Figures 4.1(a) to (d) graphically  

display the optimal MRL-based VSS X  charts with 1 Sn n  and 1 Ln n , the 

optimal MRL-based EWMA X  chart and the Shewhart X  chart, respectively. 

The control limits, i.e. SH SH/UCL LCL  and EWMA EWMA/UCL LCL  of the 

Shewhart X  and optimal EWMA X  charts are computed from Equations (3.3) 

and (3.31), respectively, in Chapter 3. 

 

  By referring to Figures 4.1(a)-(d), it is obvious that the VSS X  charts 

with 1 Sn n  and 1 Ln n , Shewhart X  and EWMA X  charts detect the first 

out-of-control signal at subgroup 13i  (as 
13Z  = 4.53809 > K = 3.1098), 

12i  (as 
12Z  = 5.35426 > K = 3.1098), 16i  (as 

16X  = 1.51321 > 

SH  1.51113)UCL  and 14i  (as 
14 1.50803Z > 

EWMA  1.50682),UCL  

respectively. Immediate investigations should be conducted to identify and 

eliminate the assignable cause(s). The results in this example suggest that the 

VSS X  chart with 1 Ln n
 
has the fastest detection speed, followed by the VSS 

X  chart with 1 , Sn n  EWMA X  chart and Shewhart X  chart. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

5.1  Introduction 

 

 An effective control chart has quick detection of process shifts. This 

will in turn lead to an increase in the quality and size of productions for 

sustainable industry. The aim of this research is to propose two new 

optimization algorithms for the VSS X  charts with 1 Sn n  and 1 Ln n . These 

two proposed optimization algorithms include minimization of (i) the 1MRL  

and (ii) 1EMRL  for known and unknown shift sizes, respectively. In this 

chapter, the findings and contributions of this research are summarized in 

Section 5.2; while some potential topics for future research are discussed in 

Section 5.3. 

 

5.2 Findings and Contributions of this Dissertation 

 

 A comprehensive understanding and an in-depth knowledge of a 

control chart’s behavior is vitally viewed by practitioners as it helps them to 

increase their confidence. The ARL criterion has received too much emphasis 

in the existing VSS charts. This will result in some important and useful 

information regarding the run-length properties and behavior of the VSS charts 

to be overlooked in their implementation by practitioners. In this research, we 

propose that the percentiles of the run-length distribution, particularly the 5
th

, 
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50
th

 (MRL) and 95
th

 percentiles are taken into account in the design of the VSS 

X  charts as they provide several practical advantages to the shop floor 

personnel and quality practitioners. Consequently, we develop two optimal 

VSS X  charts with 1 Sn n  and 1 Ln n  by minimizing the 1MRL  and 

1EMRL ,  for known and unknown shift sizes, respectively. When the 

characteristics of the data for the out-of-control process are inadequate or 

unknown, the optimization design based on EMRL proposed in this research is 

able to cope with this random-shift size problem.  

 

 Specific optimal charts’ parameters for the two VSS schemes are 

provided in Tables 4.2 to 4.4 of Chapter 4 and Tables D.4 to D.10 in Appendix 

D. These tables are useful and appealing to quality practitioners whose priority 

is to implement the control chart immediately. The results in Tables 4.2 to 4.4 

of Chapter 4 and Tables D.4 to D.10 in Appendix D show that there is a 

remarkable improvement in the VSS X  chart with 1 Ln n , for detecting 

moderate to large shifts; while the performances of the VSS X  chart with 

1 Sn n  and EWMA X  chart are comparable. Undeniably, for very small shifts, 

one still opts for the EWMA X  chart.  

 

 The optimal designs of the two VSS schemes based on MRL and 

EMRL suggested in this research provide an alternative to the SPC users in 

designing control charts. Four optimization programs for the MRL- and 

EMRL-based VSS schemes developed with the ScicosLab software are shown 

in Appendix A. These developed programs enable quick and easy 
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computations of the optimal chart’s parameters for these two VSS schemes, 

based on a specific or a range of shift sizes. 

 

5.3 Recommendations for Future Research 

 

 Some potential topics for future research are discussed as follows: 

(i) Optimal designs of the VSS X  charts with estimated process 

parameters based on MRL and EMRL. In this dissertation, when the 

process parameters are known, two optimal designs of the VSS X  

charts with 1 Sn n  and 1 Ln n  based on MRL and EMRL are proposed. 

Castagliola et al. (2012) developed an optimal design of the VSS X  

chart with 1 Sn n  based on ARL, when the process parameters are 

estimated. However, the ARL is a confusing measure especially for the 

control charts with estimated process parameters (see Bischak and 

Trietsch, 2007; Jensen et al., 2008; Teoh et al., 2014). Therefore, it is 

worthwhile to recommend new optimal designs for the VSS X  charts 

with 1 Sn n  and 1 Ln n  based on MRL and EMRL, when the process 

parameters are estimated. 

(ii) Monitoring of processes under non-normal underlying distribution. In 

this dissertation, the assumption of the proposed MRL- and EMRL-

based VSS schemes is the normal underlying distribution. However, in 

some production processes, this assumption may not be true. Future 

research can be conducted to study the VSS X  charts based on MRL 

and EMRL under non-normality. For example, Lin and Chou (2005) 



67 
 

discussed the VSS and VSSCL X  charts under Burr distribution in 

terms of the ATS and adjusted ATS. It is interesting to further study the 

VSS and VSSCL X  charts under Burr distribution in terms of median 

time to signal (MTS) and adjusted MTS.   

 (iii) Economic design. Yeong et al. (2016) proposed the economic and 

economic-statistical designs of the Hotelling's 2T  chart based on EARL. 

Inspired by Yeong et al. (2016), future research can be performed to 

develop the economic and economic-statistical designs of the two VSS 

X  charts based on MRL and EMRL. Therefore, the expected costs for 

the two VSS X  charts can be minimized. Through these economic and 

economic-statistical designs, practitioners are able to select design 

parameters which minimize the cost by specifying an exact shift size or 

a range of possible shift sizes.  

(iv) Monitoring of shifts in the process dispersion. In this dissertation, the 

two VSS X  charts for monitoring the process mean shifts are 

investigated. Future research can be performed to develop optimal 

designs of the VSS dispersion-type charts based on MRL and EMRL. 

For example, Castagliola et al. (2008) proposed the optimal VSS 
2S -

EWMA chart for process dispersion based on ATS. Therefore, future 

research can be extended to propose the optimal VSS 
2S -EWMA chart 

based on MRL and EMRL.  

(v) Monitoring of auto-correlated processes. The performance of the VSS 

X  charts with 1 Sn n  and 1 Ln n  shown in this dissertation, requires 

the assumption of independent observations. Montgomery (2013) stated 
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that the assumption of independence may not be true in some 

manufacturing processes. For example, the consecutive measurements 

on product or process characteristics, such as the viscosity 

measurements in chemical processes, are often highly correlated 

(Montgomery, 2013). Accordingly, future research can be explored to 

design the optimal VSS X  charts with 1 Sn n  and 1 Ln n  based on 

MRL and EMRL for auto-correlated data.      
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APPENDIX A 

 

PROGRAMS FOR THE VSS X  CHART 

 

 

A.1 Optimization Programs for the VSS X  Chart Based on ARL 

 

 Two optimization programs are written using the ScicosLab software to 

compute the optimal charts’ parameters (
Sn , 

Ln , W, K), ARL, SDRL and ASS 

for the VSS X  charts with 
1 Sn n  (see Appendix A.1.1) and 

1 Ln n  (see 

Appendix A.1.2). To obtain a particular result, we need to call the related 

function in the Command Window of the ScicosLab software. The function 

body, which contains all the ScicosLab codes, is written in the Scipad of the 

ScicosLab software. Note that the desired 0ARL  and   are replaced by ‘tau0’ 

and ‘delta’ in these programs. 

 

A.1.1 An Optimization Program for the ARL-based VSS X  Chart with 

1 Sn n  

 

For the VSS X  chart with 1 ,Sn n  the input parameters and call 

functions, typed at the Command Window, are listed as follows: 

(i) To compute the ASS, ARL and SDRL for the given values of 
Sn , 

Ln , W, K and  , enter 

nS=9;nL=15;W=1.3728;K=2.9997;delta=2; 

[ASS,ARL,SDRL]=rlvssxb(nS,nL,W,K,delta) 
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(ii) To compute the optimal chart’s parameters (
Sn , 

Ln , W, K) as well 

as the corresponding 
1ASS , 1 1ARL  and SDRL  values,  for the desired 

values of n,   and 
0ARL , enter 

n=10;delta=2;tau0=250; 

[nS,nL,W,K,ASS,ARL,SDRL]=optvssxb(n,delta,tau0) 

 

The written ScicosLab program in the Scipad is shown as follows: 

//-------------------------------------------------------------

function [e1,e2]=momdphase(Q,q) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=2 

  error("incorrect number of arguments") 

end 

q=q(:)' 

W=inv(eye(Q)-Q) 

z=q*W 

nu1=sum(z) 

e1=nu1 

WQ=W*Q 

z=z*WQ 

nu2=2*sum(z) 

e2=nu2+nu1 

 

//------------------------------------------------------------- 

function [Q,q]=qvssxb(nS,nL,W,K,delta) 

//------------------------------------------------------------- 

dsnS=delta*sqrt(nS) 

dsnL=delta*sqrt(nL) 

pSnS=cdfnormal(W-dsnS)-cdfnormal(-W-dsnS) 

pSnL=cdfnormal(W-dsnL)-cdfnormal(-W-dsnL) 

pLnS=cdfnormal(-W-dsnS)-cdfnormal(-K-dsnS)+cdfnormal(K-dsnS)-.. 

cdfnormal(W-dsnS) 

pLnL=cdfnormal(-W-dsnL)-cdfnormal(-K-dsnL)+cdfnormal(K-dsnL)-.. 

cdfnormal(W-dsnL) 

Q=[pSnS,pLnS;pSnL,pLnL] 

q=[1;0] 

 

//------------------------------------------------------------- 

function [ASS,ARL,SDRL]=rlvssxb(nS,nL,W,K,delta) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<4)|(argin>5) 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if W<0 

  error("argument ''W'' must be >= 0") 
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end 

if K<W 

  error("argument ''K'' must be >= W") 

end 

if argin==4 

  delta=0 

end 

if delta<0 

  error("argument ''delta'' must be >= 0") 

end 

[Q,q]=qvssxb(nS,nL,W,K,delta) 

P=[Q,1-sum(Q,"c");1,0,0] 

R=(P-eye(P))' 

R(1,:)=[1,1,1] 

ASS=[nS,nL,nS]*(R\[1;0;0]) 

[e1,e2]=momdphase(Q,q) 

ARL=e1 

SDRL=sqrt(e2-e1^2) 

 

//------------------------------------------------------------- 

function z=warlvssxb_(W,n,nS,nL,K) 

//------------------------------------------------------------- 

if (W<=0)|(W>K) 

  z=%inf 

else 

  ASS=rlvssxb(nS,nL,W,K) 

  z=ASS-n 

end 

 

//------------------------------------------------------------- 

function W=warlvssxb(n,nS,nL,K) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if (n<nS)|(n>nL)|(n~=floor(n)) 

  error("argument ''n'' must be an integer in {nS,...,nL}") 

end 

W=simplexolve(1,warlvssxb_,list(n,nS,nL,K)) 

 

//------------------------------------------------------------- 

function [nS,nL,W,K,ASS,ARL,SDRL]=optvssxb(n,delta,tau0) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

K=idfnormal(1-1/(2*tau0)) 

ARL=%inf 

for inS=1:n-1 

  for inL=n+1:31 
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    W1=warlvssxb(n,inS,inL,K) 

    [ASS1,ARL1,SDRL1]=rlvssxb(inS,inL,W1,K,delta) 

    [ASS0,ARL0]=rlvssxb(inS,inL,W1,K) 

    

mprintf("%2d %2d %8.6f %8.6f %6.2f %6.2f %6.2f %6.2f %6.2f\n",.. 

[inS,inL,W1,K,ASS1,ARL1,SDRL1,ASS0,ARL0]) 

 

    if (ARL1<=ARL) 

      ASS=ASS1 

      ARL=ARL1 

      SDRL=SDRL1 

      W=W1 

      nS=inS 

      nL=inL 

    end 

  end 

end 

mprintf("\n\n(%2d,%2d,%6.4f,%6.4f)%6.2f(%6.2f, %6.2f)\n",[nS,.. 

n,W,K,ASS,ARL,SDRL]) 

 

A.1.2 An Optimization Program for the ARL-based VSS X  Chart with 


1 L

n n  

 

For the VSS X  chart with 1 ,Ln n  the input parameters and call 

functions, typed at the Command Window, are described as follows: 

(i) To compute the ASS, ARL and SDRL for the desired values of 
Sn , 

Ln , W, K and  , enter 

nS=9;nL=31;W=2.0249;K=2.9997;delta=2; 

[ASS,ARL,SDRL]=rlvssxb(nS,nL,W,K,delta) 

 

(ii) To compute the optimal chart’s parameters ( Sn , Ln , W, K) as well 

as the corresponding 1ASS , 1 1ARL  and SDRL  values,  for the desired 

values of n,   and 0ARL ,  enter 

n=10;delta=2;tau0=250; 

[nS,nL,W,K,ASS,ARL,SDRL]=optvssxb(n,delta,tau0) 
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The written ScicosLab program in the Scipad is shown as follows: 

//------------------------------------------------------------- 

function [e1,e2]=momdphase(Q,q) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=2 

  error("incorrect number of arguments") 

end 

q=q(:)' 

W=inv(eye(Q)-Q) 

z=q*W 

nu1=sum(z) 

e1=nu1 

WQ=W*Q 

z=z*WQ 

nu2=2*sum(z) 

e2=nu2+nu1 

 

//------------------------------------------------------------- 

function [Q,q]=qvssxb(nS,nL,W,K,delta) 

//------------------------------------------------------------- 

dsnS=delta*sqrt(nS) 

dsnL=delta*sqrt(nL) 

pSnS=cdfnormal(W-dsnS)-cdfnormal(-W-dsnS) 

pSnL=cdfnormal(W-dsnL)-cdfnormal(-W-dsnL) 

pLnS=cdfnormal(-W-dsnS)-cdfnormal(-K-dsnS)+cdfnormal(K-dsnS)-.. 

cdfnormal(W-dsnS) 

pLnL=cdfnormal(-W-dsnL)-cdfnormal(-K-dsnL)+cdfnormal(K-dsnL)-.. 

cdfnormal(W-dsnL) 

Q=[pSnS,pLnS;pSnL,pLnL] 

q=[0,1] 

 

//------------------------------------------------------------- 

function [ASS,ARL,SDRL]=rlvssxb(nS,nL,W,K,delta) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<4)|(argin>5) 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if W<0 

  error("argument ''W'' must be >= 0") 

end 

if K<W 

  error("argument ''K'' must be >= W") 

end 

if argin==4 

  delta=0 

end 

if delta<0 

  error("argument ''delta'' must be >= 0") 

end 

[Q,q]=qvssxb(nS,nL,W,K,delta) 

P=[Q,1-sum(Q,"c");0,1,0] 

R=(P-eye(P))' 
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R(2,:)=[1,1,1] 

ASS=[nS,nL,nL]*(R\[0;1;0]) 

[e1,e2]=momdphase(Q,q) 

ARL=e1 

SDRL=sqrt(e2-e1^2) 

 

//------------------------------------------------------------- 

function z=warlvssxb_(W,n,nS,nL,K) 

//------------------------------------------------------------- 

if (W<=0)|(W>K) 

  z=%inf 

else 

  ASS=rlvssxb(nS,nL,W,K) 

  z=ASS-n 

end 

 

//------------------------------------------------------------- 

function W=warlvssxb(n,nS,nL,K) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if (n<nS)|(n>nL)|(n~=floor(n)) 

  error("argument ''n'' must be an integer in {nS,...,nL}") 

end 

W=simplexolve(1,warlvssxb_,list(n,nS,nL,K)) 

 

//------------------------------------------------------------- 

function [nS,nL,W,K,ASS,ARL,SDRL]=optvssxb(n,delta,tau0) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

K=idfnormal(1-1/(2*tau0)) 

ARL=%inf 

for inS=1:n-1 

  for inL=n+1:31 

    W1=warlvssxb(n,inS,inL,K) 

    [ASS1,ARL1,SDRL1]=rlvssxb(inS,inL,W1,K,delta) 

    [ASS0,ARL0]=rlvssxb(inS,inL,W1,K) 

    

mprintf("%2d %2d %8.6f %8.6f %6.2f %6.2f %6.2f %6.2f %6.2f\n",.. 

[inS,inL,W1,K,ASS1,ARL1,SDRL1,ASS0,ARL0]) 

 

    if (ARL1<=ARL) 

      ASS=ASS1 

      ARL=ARL1 

      SDRL=SDRL1 

      W=W1 

      nS=inS 
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      nL=inL 

    end 

  end 

end 

mprintf("\n\n(%2d, %2d, %6.4f, %6.4f) %6.2f(%6.2f, %6.2f)\n",.. 

[nS,nL,W,K,ASS,ARL,SDRL]) 

 

A.2 Optimization Programs for the VSS X  Chart Based on MRL and 

EMRL 

 

 Four optimization programs are written using the ScicosLab software to 

compute the optimal charts’ parameters (
Sn , 

Ln , W, K), MRL, percentiles of 

the run-length distribution and ASS of the VSS X  chart with 1 Sn n  (see 

Appendix A.2.1) and 
1 Ln n  (see Appendix A.2.2). To obtain a particular 

result, we need to call the related function in the Command Window of the 

ScicosLab software. The function body, which contains all the ScicosLab 

codes, is written in the Scipad of the ScicosLab software. In these ScicosLab 

programs, ‘pcrl’ represents the probability   and ‘mrlini’ is the initial value of 

the MRL. Also, ‘delta’, ‘deltamin’ and ‘deltamax’ in the programs denote  , 

min  and max , respectively. The 5
th

 and 95
th

 percentiles of the run-length 

distribution are replaced by Q05 and Q95 in these programs. 

 

A.2.1 Optimization Programs for the MRL- and EMRL-based VSS X  

Chart with 
1 S

n n  

 

For the MRL-based VSS X  chart with 1 ,Sn n  the input parameters 

and call functions, typed at the Command Window, are presented as follows: 
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(i) To compute the MRL or the percentiles of the run-length 

distribution for the given values of  , 
Sn , 

Ln , W, K and  , enter 

pcrl=0.05;mrlini=1;nS=9;nL=15;W=1.3728;K=2;delta=2; 

X=pcrlvssxb(pcrl,mrlini,nS,nL,W,K,delta) 

 

(ii) To compute the ASS for the given values of 
Sn , 

Ln , W, K and  , 

enter 

nS=2;nL=9;W=1.4540;K=3;delta=0; 

ASS=assrlvssxb(nS,nL,W,K,delta) 

 

(iii) To compute the optimal chart’s parameters ( Sn , Ln , W, K) as well 

as the corresponding 
1ASS , 1MRL , th th5  and 95  percentiles of the  

run-length distribution, for the desired values of n, 
0MRL  and  , 

enter 

n=10;mrl0=200;delta=2; 

[nS,nL,W,K,ASS,Q05,MRL,Q95]=optvssxb(n,mrl0,delta) 

 

For the EMRL-based VSS X  chart with 1 ,Sn n  the input parameters 

and call functions, typed at the Command Window, are demonstrated as 

follows: 

(i) To compute the EMRL for the given values of 
min , 

max , Sn , Ln , 

W and K, enter 

deltamin=0.1;deltamax=2;nS=2;nL=9;W=1.4540;K=3; 

EMRL=emrlvssxb(deltamin,deltamax,nS,nL,W,K) 

 

(ii) To compute the optimal chart’s parameters ( Sn , Ln , W, K) and 

1EMRL  for the desired values of n, 0EMRL , 
min  and 

max , enter 

n=10;mrl0=500;deltamin=0.1;deltamax=2; 

[nS,nL,W,K,EMRL]=optemrlvssxb(n,mrl0,deltamin,deltamax) 

The written ScicosLab programs in the Scipad are shown below: 
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//------------------------------------------------------------- 

function F=cdfvssxb(Q,q,pct) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

q=q(:)' 

Ft1=q*Q^pct 

Ft2=sum(Ft1) 

F=Ft2 

 

//------------------------------------------------------------- 

function [Q,q]=qvssxb(nS,nL,W,K,delta) 

//------------------------------------------------------------- 

dsnS=delta*sqrt(nS) 

dsnL=delta*sqrt(nL) 

pSnS=cdfnormal(W-dsnS)-cdfnormal(-W-dsnS) 

pSnL=cdfnormal(W-dsnL)-cdfnormal(-W-dsnL) 

pLnS=cdfnormal(-W-dsnS)-cdfnormal(-K-dsnS)+cdfnormal(K-dsnS)-.. 

cdfnormal(W-dsnS) 

pLnL=cdfnormal(-W-dsnL)-cdfnormal(-K-dsnL)+cdfnormal(K-dsnL)-.. 

cdfnormal(W-dsnL) 

Q=[pSnS,pLnS;pSnL,pLnL] 

q=[1;0] 

 

//------------------------------------------------------------- 

function X=pcrlvssxb(pcrl,mrlini,nS,nL,W,K,delta) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<6)|(argin>7) 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if W<0 

  error("argument ''W'' must be >= 0") 

end 

if K<W 

  error("argument ''K'' must be >= W") 

end 

if argin==6 

  delta=0 

end 

if delta<0 

  error("argument ''delta'' must be >= 0") 

end 

[Q,q]=qvssxb(nS,nL,W,K,delta) 

for X=mrlini:500000 

    F=1-cdfvssxb(Q,q,X) 

    if F>=pcrl 

        break 

     end 

end 

 

//------------------------------------------------------------- 

function ASS=assrlvssxb(nS,nL,W,K,delta) 



86 
 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<4)|(argin>5) 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if W<0 

  error("argument ''W'' must be >= 0") 

end 

if K<W 

  error("argument ''K'' must be >= W") 

end 

if argin==4 

  delta=0 

end 

if delta<0 

  error("argument ''delta'' must be >= 0") 

end 

[Q,q]=qvssxb(nS,nL,W,K,delta) 

P=[Q,1-sum(Q,"c");1,0,0] 

R=(P-eye(P))' 

R(1,:)=[1,1,1] 

ASS=[nS,nL,nS]*(R\[1;0;0]) 

 

//------------------------------------------------------------- 

function [ASS,probMRL]=rlvssxb(nS,nL,W,K,mrl0,delta) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<5)|(argin>6) 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if W<0 

  error("argument ''W'' must be >= 0") 

end 

if K<W 

  error("argument ''K'' must be >= W") 

end 

if argin==5 

  delta=0 

end 

if delta<0 

  error("argument ''delta'' must be >= 0") 

end 

[Q,q]=qvssxb(nS,nL,W,K,delta) 

P=[Q,1-sum(Q,"c");1,0,0] 

R=(P-eye(P))' 

R(1,:)=[1,1,1] 

ASS=[nS,nL,nS]*(R\[1;0;0]) 

probMRL=1-cdfvssxb(Q,q,mrl0) 
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//------------------------------------------------------------- 

function dif=searchalpha(alpha,mrl0) 

//------------------------------------------------------------- 

if (alpha<0)|(alpha>1)  

  dif=%inf 

else 

  dif=mrl0-log(0.5)./log(1-alpha) 

end 

 

//------------------------------------------------------------- 

function z=warlvssxb_(W,n,nS,nL,K) 

//------------------------------------------------------------- 

if (W<=0)|(W>K) 

  z=%inf 

else 

  ASS=assrlvssxb(nS,nL,W,K) 

  z=ASS-n 

end 

 

//------------------------------------------------------------- 

function W=warlvssxb(n,nS,nL,K) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if (n<nS)|(n>nL)|(n~=floor(n)) 

  error("argument ''n'' must be an integer in {nS,...,nL}") 

end 

W=simplexolve(1,warlvssxb_,list(n,nS,nL,K)) 

 

//------------------------------------------------------------- 

function z=wkarlvssxb_(WK,n,nS,nL,mrl0) 

//------------------------------------------------------------- 

W=WK(1) 

K=WK(2) 

if (W<=0)|(W>K) 

  z=%inf 

else 

  [ASS0,probMRL]=rlvssxb(nS,nL,W,K,mrl0) 

  z=[(ASS0-n),(probMRL-0.5001)*10] 

end 

 

//------------------------------------------------------------- 

function [W,K]=wkarlvssxb(n,nS,nL,mrl0) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 
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end 

if (n<nS)|(n>nL)|(n~=floor(n)) 

  error("argument ''n'' must be an integer in {nS,...,nL}") 

end 

alpha0=1/mrl0 

alpha=simplexolve(alpha0,searchalpha,list(mrl0),tol=1e-6) 

arl0=1/alpha 

K0=idfnormal(1-1/(2*arl0)) 

W0=warlvssxb(n,nS,nL,K0) 

WK=simplexolve([W0,K0],wkarlvssxb_,list(n,nS,nL,mrl0),tol=1e-6) 

W=WK(1) 

K=WK(2) 

 

//------------------------------------------------------------- 

function [nS,nL,W,K,ASS,Q05,MRL,Q95]=optvssxb(n,mrl0,delta) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

mprintf("delta=%3.2f\n\n",delta) 

sol=[] 

ii=1 

MRLmin=%inf 

diffPCRmin=%inf 

ASSmin=%inf 

for inS=1:n-1 

  for inL=n+1:31 

    [W1,K1]=wkarlvssxb(n,inS,inL,mrl0) 

    PCR5=pcrlvssxb(0.05,1,inS,inL,W1,K1,delta) 

    MRL1=pcrlvssxb(0.5,PCR5,inS,inL,W1,K1,delta) 

    PCR95=pcrlvssxb(0.95,MRL1,inS,inL,W1,K1,delta) 

    MRL00=pcrlvssxb(0.5,mrl0-5,inS,inL,W1,K1) 

    ASS1=assrlvssxb(inS,inL,W1,K1,delta) 

    ASS0=assrlvssxb(inS,inL,W1,K1) 

    diffPCR=PCR95-PCR5 

    

mprintf("%2d %2d %8.6f %8.6f %8.4f %5d %5d %5d %5.2f %5d\n",.. 

[inS,inL,W1,K1,ASS1,PCR5,MRL1,PCR95,ASS0,MRL00]) 

    sol(ii,1)=inS 

    sol(ii,2)=inL 

    sol(ii,3)=W1 

    sol(ii,4)=K1 

    sol(ii,5)=ASS1 

    sol(ii,6)=PCR5 

    sol(ii,7)=MRL1 

    sol(ii,8)=PCR95 

    sol(ii,9)=diffPCR 

    ii=ii+1 

    if MRL1<MRLmin 

        MRLmin=MRL1 

  end 

  if diffPCR<diffPCRmin 

        diffPCRmin=diffPCR 

    end 

  end 

end 
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for jj=1:(ii-1) 

  if sol(jj,7)==MRLmin 

      if sol(jj,5)<ASSmin 

          ASSmin=sol(jj,5) 

          

solf=[sol(jj,1),sol(jj,2),sol(jj,3),sol(jj,4),sol(jj,5),.. 

sol(jj,6),sol(jj,7),sol(jj,8)] 

      end 

  end 

end 

 

ASSmin=%inf 

for jj=1:(ii-1) 

  if (sol(jj,7)==MRLmin)&(sol(jj,9)==diffPCRmin) 

      if sol(jj,5)<ASSmin 

          ASSmin=sol(jj,5) 

          

solf=[sol(jj,1),sol(jj,2),sol(jj,3),sol(jj,4),sol(jj,5),.. 

sol(jj,6),sol(jj,7),sol(jj,8)] 

      end 

  end 

end 

nS=solf(1) 

nL=solf(2) 

W=solf(3) 

K=solf(4) 

ASS=solf(5) 

Q05=solf(6) 

MRL=solf(7) 

Q95=solf(8) 

mprintf("\n(%2d,%2d,%6.4f,%6.4f) %5.2f(%5d,%5d,%5d)\n\n\n\n",.. 

[nS,nL,W,K,ASS,Q05,MRL,Q95]) 

 

//------------------------------------------------------------- 

function EMRL=emrlvssxb(deltamin,deltamax,nS,nL,W,K) 

//------------------------------------------------------------- 

[xi,wi]=quadlegendre(9,deltamin,deltamax) 

EMRL=0 

for il=1:9 

  xil=xi(il) 

  wil=wi(il) 

  MRL=pcrlvssxb(0.5,1,nS,nL,W,K,xil) 

  EMRL=EMRL+MRL.*wil 

end 

EMRL=EMRL/(deltamax-deltamin) 

 

//------------------------------------------------------------- 

function[nS,nL,W,K,EMRL]=optemrlvssxb(n,mrl0,deltamin,deltamax) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

sol=[] 

EMRL=%inf 

for inS=1:n-1 

  for inL=n+1:31 

    [W1,K1]=wkarlvssxb(n,inS,inL,mrl0) 
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    EMRLt=emrlvssxb(deltamin,deltamax,inS,inL,W1,K1) 

    MRL00=pcrlvssxb(0.5,mrl0-5,inS,inL,W1,K1) 

    ASS0=assrlvssxb(inS,inL,W1,K1) 

    

mprintf("%2d %2d %8.6f %8.6f %8.4f %5.2f %5d\n",[inS,inL,W1,.. 

K1,EMRLt,ASS0,MRL00]) 

    if EMRLt<EMRL 

        EMRL=EMRLt 

        W=W1 

        K=K1 

        nS=inS 

        nL=inL 

    end 

  end 

end 

mprintf("\n\n(%2d, %2d, %6.4f, %6.4f) %5.2f\n\n",[nS,nL,W,K,.. 

EMRL]) 

 

for delta={0.25,0.5,0.75,1.0,1.5,2.0}  

    PCR5=pcrlvssxb(0.05,1,nS,nL,W,K,delta) 

    MRL1=pcrlvssxb(0.5,PCR5,nS,nL,W,K,delta) 

    PCR95=pcrlvssxb(0.95,MRL1,nS,nL,W,K,delta) 

    mprintf("%3.2f (%3d, %4d, %6d)\n",[delta,PCR5,MRL1,PCR95]) 

end 

 

A.2.2 Optimization Programs for the MRL- and EMRL-based VSS X  

Chart with 
1 L

n n  

 

For the MRL-based VSS X  chart with 1 ,Ln n the input parameters 

and call functions, typed at the Command Window, are outlined as follows: 

(i) To compute the MRL or the percentiles of the run-length 

distribution for the given values of  , Sn , Ln , W, K and  , enter 

pcrl=0.05;mrlini=1;nS=9;nL=31;W=2.0249;K=2;delta=1; 

X=pcrlvssxb(pcrl,mrlini,nS,nL,W,K,delta) 

 

(ii) To compute the ASS for the given values of 
Sn , 

Ln , W, K and  , 

enter 

nS=2;nL=9;W=1.4540;K=3;delta=0; 

ASS=assrlvssxb(nS,nL,W,K,delta) 

(iii) To compute the optimal chart’s parameters ( Sn , Ln , W, K) as well 

as the corresponding 1ASS , 1MRL , th th5  and 95  percentiles of the  
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run-length distribution, for the desired values of n, 
0MRL  and  , 

enter 

n=3;mrl0=370;delta=0.25; 

[nS,nL,W,K,ASS,Q05,MRL,Q95]=optvssxb(n,mrl0,delta) 

 

For the EMRL-based VSS X  chart with 
1 ,Ln n  the input parameters 

and call functions, typed at the Command Window, are presented as follows: 

(i) To compute the EMRL for the given values of 
min , 

max , Sn , Ln , 

W and K, enter 

deltamin=0.1;deltamax=2;nS=2;nL=9;W=1.4540;K=3; 

EMRL=emrlvssxb(deltamin,deltamax,nS,nL,W,K) 

 

(ii) To compute the optimal chart’s parameters ( Sn , Ln , W, K) and 

1EMRL  for the desired values of n, 0EMRL , 
min  and 

max , enter 

n=10;mrl0=500;deltamin=0.1;deltamax=2; 

[nS,nL,W,K,EMRL]=optemrlvssxb(n,mrl0,deltamin,deltamax) 

 

The written ScicosLab programs in the Scipad are presented as follows: 

//------------------------------------------------------------- 

function F=cdfvssxb(Q,q,pct) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

q=q(:)' 

Ft1=q*Q^pct 

Ft2=sum(Ft1) 

F=Ft2 

 

//------------------------------------------------------------- 

function [Q,q]=qvssxb(nS,nL,W,K,delta) 

//-------------------------------------------------------------

dsnS=delta*sqrt(nS) 

dsnL=delta*sqrt(nL) 

pSnS=cdfnormal(W-dsnS)-cdfnormal(-W-dsnS) 

pSnL=cdfnormal(W-dsnL)-cdfnormal(-W-dsnL) 

pLnS=cdfnormal(-W-dsnS)-cdfnormal(-K-dsnS)+cdfnormal(K-dsnS)-.. 

cdfnormal(W-dsnS) 

pLnL=cdfnormal(-W-dsnL)-cdfnormal(-K-dsnL)+cdfnormal(K-dsnL)-.. 

cdfnormal(W-dsnL) 

Q=[pSnS,pLnS;pSnL,pLnL] 
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q=[0;1] 

 

//------------------------------------------------------------- 

function X=pcrlvssxb(pcrl,mrlini,nS,nL,W,K,delta) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<6)|(argin>7) 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if W<0 

  error("argument ''W'' must be >= 0") 

end 

if K<W 

  error("argument ''K'' must be >= W") 

end 

if argin==6 

  delta=0 

end 

if delta<0 

  error("argument ''delta'' must be >= 0") 

end 

[Q,q]=qvssxb(nS,nL,W,K,delta) 

for X=mrlini:500000 

    F=1-cdfvssxb(Q,q,X) 

    if F>=pcrl 

        break 

     end 

end 

 

//------------------------------------------------------------- 

function ASS=assrlvssxb(nS,nL,W,K,delta) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<4)|(argin>5) 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if W<0 

  error("argument ''W'' must be >= 0") 

end 

if K<W 

  error("argument ''K'' must be >= W") 

end 

if argin==4 

  delta=0 

end 

if delta<0 

  error("argument ''delta'' must be >= 0") 

end 

[Q,q]=qvssxb(nS,nL,W,K,delta) 
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P=[Q,1-sum(Q,"c");0,1,0] 

R=(P-eye(P))' 

R(2,:)=[1,1,1] 

ASS=[nS,nL,nL]*(R\[0;1;0]) 

 

//------------------------------------------------------------- 

function [ASS,probMRL]=rlvssxb(nS,nL,W,K,mrl0,delta) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<5)|(argin>6) 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if W<0 

  error("argument ''W'' must be >= 0") 

end 

if K<W 

  error("argument ''K'' must be >= W") 

end 

if argin==5 

  delta=0 

end 

if delta<0 

  error("argument ''delta'' must be >= 0") 

end 

[Q,q]=qvssxb(nS,nL,W,K,delta) 

P=[Q,1-sum(Q,"c");0,1,0] 

R=(P-eye(P))' 

R(2,:)=[1,1,1] 

ASS=[nS,nL,nL]*(R\[0;1;0]) 

probMRL=1-cdfvssxb(Q,q,mrl0) 

 

//-------------------------------------------------------------

function dif=searchalpha(alpha,mrl0) 

//------------------------------------------------------------- 

if (alpha<0)|(alpha>1)  

  dif=%inf 

else 

  dif=mrl0-log(0.5)./log(1-alpha) 

end 

 

//------------------------------------------------------------- 

function z=warlvssxb_(W,n,nS,nL,K) 

//-------------------------------------------------------------

if (W<=0)|(W>K) 

  z=%inf 

else 

  ASS=assrlvssxb(nS,nL,W,K) 

  z=ASS-n 

end 

//-------------------------------------------------------------

function W=warlvssxb(n,nS,nL,K) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 
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end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if (n<nS)|(n>nL)|(n~=floor(n)) 

  error("argument ''n'' must be an integer in {nS,...,nL}") 

end 

W=simplexolve(1,warlvssxb_,list(n,nS,nL,K)) 

 

//------------------------------------------------------------- 

function z=wkarlvssxb_(WK,n,nS,nL,mrl0) 

//-------------------------------------------------------------

W=WK(1) 

K=WK(2) 

if (W<=0)|(W>K) 

  z=%inf 

else 

  [ASS0,probMRL]=rlvssxb(nS,nL,W,K,mrl0) 

  z=[(ASS0-n),(probMRL-0.5001)*10] 

end 

 

//------------------------------------------------------------- 

function [W,K]=wkarlvssxb(n,nS,nL,mrl0) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 

end 

if (nS<=0)|(nS~=floor(nS)) 

  error("argument ''nS'' must be an integer >= 1") 

end 

if (nL<=0)|(nL~=floor(nL))|(nL<nS) 

  error("argument ''nL'' must be an integer >= nS") 

end 

if (n<nS)|(n>nL)|(n~=floor(n)) 

  error("argument ''n'' must be an integer in {nS,...,nL}") 

end 

alpha0=1/mrl0 

alpha=simplexolve(alpha0,searchalpha,list(mrl0),tol=1e-6) 

arl0=1/alpha 

K0=idfnormal(1-1/(2*arl0)) 

W0=warlvssxb(n,nS,nL,K0) 

WK=simplexolve([W0,K0],wkarlvssxb_,list(n,nS,nL,mrl0),tol=1e-6) 

W=WK(1) 

K=WK(2) 

 

//-------------------------------------------------------------

function [nS,nL,W,K,ASS,Q05,MRL,Q95]=optvssxb(n,mrl0,delta) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

mprintf("delta=%3.2f\n\n",delta) 

sol=[] 
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ii=1 

MRLmin=%inf 

diffPCRmin=%inf 

ASSmin=%inf 

for inS=1:n-1 

  for inL=n+1:31 

    [W1,K1]=wkarlvssxb(n,inS,inL,mrl0) 

    PCR5=pcrlvssxb(0.05,1,inS,inL,W1,K1,delta) 

    MRL1=pcrlvssxb(0.5,PCR5,inS,inL,W1,K1,delta) 

    PCR95=pcrlvssxb(0.95,MRL1,inS,inL,W1,K1,delta) 

    MRL00=pcrlvssxb(0.5,mrl0-5,inS,inL,W1,K1) 

    ASS1=assrlvssxb(inS,inL,W1,K1,delta) 

    ASS0=assrlvssxb(inS,inL,W1,K1) 

    diffPCR=PCR95-PCR5 

    

mprintf("%2d %2d %8.6f %8.6f %8.4f %5d %5d %5d %5.2f %5d\n",.. 

[inS,inL,W1,K1,ASS1,PCR5,MRL1,PCR95,ASS0,MRL00]) 

    sol(ii,1)=inS 

    sol(ii,2)=inL 

    sol(ii,3)=W1 

    sol(ii,4)=K1 

    sol(ii,5)=ASS1 

    sol(ii,6)=PCR5 

    sol(ii,7)=MRL1 

    sol(ii,8)=PCR95 

    sol(ii,9)=diffPCR 

    ii=ii+1 

    if MRL1<MRLmin 

        MRLmin=MRL1 

  end 

  if diffPCR<diffPCRmin 

        diffPCRmin=diffPCR 

    end 

  end 

end 

 

for jj=1:(ii-1) 

  if sol(jj,7)==MRLmin 

      if sol(jj,5)<ASSmin 

          ASSmin=sol(jj,5) 

          

solf=[sol(jj,1),sol(jj,2),sol(jj,3),sol(jj,4),sol(jj,5),.. 

sol(jj,6),sol(jj,7),sol(jj,8)] 

      end 

  end 

end 

 

ASSmin=%inf 

for jj=1:(ii-1) 

  if (sol(jj,7)==MRLmin)&(sol(jj,9)==diffPCRmin) 

      if sol(jj,5)<ASSmin 

          ASSmin=sol(jj,5) 

          

solf=[sol(jj,1),sol(jj,2),sol(jj,3),sol(jj,4),sol(jj,5),.. 

sol(jj,6),sol(jj,7),sol(jj,8)] 

      end 

  end 

end 

nS=solf(1) 

nL=solf(2) 

W=solf(3) 
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K=solf(4) 

ASS=solf(5) 

Q05=solf(6) 

MRL=solf(7) 

Q95=solf(8) 

mprintf("\n(%2d, %2d, %6.4f, %6.4f) %5.2f .. 

(%5d, %5d, %5d)\n\n\n\n",[nS,nL,W,K,ASS,Q05,MRL,Q95]) 

 
//------------------------------------------------------------- 

function EMRL=emrlvssxb(deltamin,deltamax,nS,nL,W,K) 

//------------------------------------------------------------- 

[xi,wi]=quadlegendre(9,deltamin,deltamax) 

EMRL=0 

for il=1:9 

  xil=xi(il) 

  wil=wi(il) 

  MRL=pcrlvssxb(0.5,1,nS,nL,W,K,xil) 

  EMRL=EMRL+MRL.*wil 

end 

EMRL=EMRL/(deltamax-deltamin) 

 

//------------------------------------------------------------- 

function[nS,nL,W,K,EMRL]=optemrlvssxb(n,mrl0,deltamin,deltamax) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

sol=[] 

EMRL=%inf 

for inS=1:n-1 

  for inL=n+1:31 

    [W1,K1]=wkarlvssxb(n,inS,inL,mrl0) 

    EMRLt=emrlvssxb(deltamin,deltamax,inS,inL,W1,K1) 

    MRL00=pcrlvssxb(0.5,mrl0-5,inS,inL,W1,K1) 

    ASS0=assrlvssxb(inS,inL,W1,K1) 

    

mprintf("%2d %2d %8.6f %8.6f %8.4f %5.2f %5d\n",[inS,inL,W1,.. 

K1,EMRLt,ASS0,MRL00]) 

    if EMRLt<EMRL 

        EMRL=EMRLt 

        W=W1 

        K=K1 

        nS=inS 

        nL=inL 

    end 

  end 

end 

mprintf("\n\n(%2d, %2d, %6.4f, %6.4f) %5.2f\n\n",[nS,nL,W,K,.. 

EMRL]) 

 

for delta={0.25,0.5,0.75,1.0,1.5,2.0}  

    PCR5=pcrlvssxb(0.05,1,nS,nL,W,K,delta) 

    MRL1=pcrlvssxb(0.5,PCR5,nS,nL,W,K,delta) 

    PCR95=pcrlvssxb(0.95,MRL1,nS,nL,W,K,delta) 

    mprintf("%3.2f (%3d, %4d, %6d)\n",[delta,PCR5,MRL1,PCR95]) 

end 
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A.3 Monte Carlo Simulation Programs for the VSS X  Chart 

 

 In this appendix, by using the SAS software, two simulation programs 

are written to verify the values of ARL, SDRL, MRL and percentiles of the 

run-length distribution computed from the theoretical method (see Subsection 

3.3.2 of Chapter 3, Appendices A.1 and A.2) of the VSS X  charts with 
1 Sn n  

and 
1 .Ln n  These two simulation programs of the VSS X  charts with 

1 Sn n  

and 1 Ln n  are shown in Appendices A.3.1 and A.3.2, respectively. Also, 

Appendices A.3.3 and A.3.4 show two simulation programs written in SAS 

software for the example of application of the VSS X  chart with 
1 Sn n  and 

1 ,Ln n  respectively. 

 

A.3.1 A Simulation Program for the VSS X  Chart with 
1 S

n n  

 

 In this simulation program, the ARL, SDRL, MRL and percentiles of 

the run-length distribution for the VSS X  chart with 1 ,Sn n  are calculated 

using 50001 simulation trials. The intended results can be obtained by inputting 

the values of the parameters ‘delta’, ‘nS’, ‘nL’, ‘W’ and ‘K’  in the SAS code. 

 
Data VSSXbar; 

mu0=0; 

sigma=1; 

delta=0.25; 

nS=1; 

nL=31; 

W=1.8206; 

K=3.1098; 

 

Do m=1 to 50001; 

   ok=1;i=0; 

   ni=nS; 

   Do while (ok=1); 

      i=i+1; 

        Xsum=0; 
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   Do j=1 to ni; 

         X=delta+sigma*rannor(55555); 

         Xsum=Xsum+X; 

   End;  

 

   Xbar=Xsum/ni; 

   Z=(Xbar-mu0)/(sigma/sqrt(ni)); 

 

   If(Z<-K) or (Z>K) then do; 

    ARL=i; 

    output; 

    ok=0; 

   end; 

 

   If(Z<-W) or (Z>W) then ni=nL; 

   else ni=nS; 

 End;  

End; 

run; 

 

proc univariate; 

var ARL; 

output pctlpts=5 50 95 pctlpre=p; 

 

proc print; 

run; 

 

A.3.2 A Simulation Program for the VSS X  Chart with 
1 L

n n  

 

This simulation program computes the ARL, SDRL, MRL and 

percentiles of the run-length distribution for the VSS X  chart with 1 .Ln n  By 

using 50001 simulation trials, the user needs to input the parameters ‘delta’, 

‘nS’, ‘nL’, ‘W’ and ‘K’ in the SAS code in order to obtain the results. 

 
Data VSSXbar; 

mu0=0; 

sigma=1; 

delta=0.5; 

nS=1; 

nL=31; 

W=1.8516; 

K= 2.9922; 

 

Do m=1 to 50001; 

   ok=1;i=0; 

   ni=nL; 

   Do while (ok=1); 

      i=i+1; 

        Xsum=0; 

   Do j=1 to ni; 

         X=delta+sigma*rannor(99999); 
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         Xsum=Xsum+X; 

   End;  

 

   Xbar=Xsum/ni; 

   Z=(Xbar-mu0)/(sigma/sqrt(ni)); 

 

   If(Z<-K) or (Z>K) then do; 

    ARL=i; 

    output; 

    ok=0; 

   end; 

 

   If(Z<-W) or (Z>W) then ni=nL; 

   else ni=nS; 

 End;  

End; 

run; 

 

proc univariate; 

var ARL; 

output pctlpts=5 50 95 pctlpre=p; 

 

proc print; 

run; 

 

A.3.3 A Simulation Program for the Example of Application for the VSS 

X  Chart with 
1 S

n n  

 

 This simulation program computes the summary statistics for the 

illustrative example of the VSS X  chart with 1 Sn n  in Table 4.5 (see Section 

4.4 of Chapter 4).  The intended results can be obtained by entering the values 

of the parameters ‘sigma0’, ‘mu0’, ‘delta’, ‘n’, ‘nS’, ‘nL’, ‘W’ and ‘K’ in the 

SAS code.  

 
Data VSSXb_example; 

sigma0=0.008; 

mu0=1.5; 

delta=0.75; 

mu1=mu0+delta*sigma0; 

n=5; 

nS=3; 

nL=21; 

W=1.5840; 

K=3.1098; 

array X{*} X1-X450; 

array ni{*} ni1-ni26; 

array Xbar{*} Xbar1-Xbar25; 

array Z{*} Z1-Z25; 
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array OOC{*} OOC1-OOC25; 

 

c=1; 

nii=nS; 

ni(1)=nS; 

 

Do i=1 to 25; 

   If(i<11) then mu=mu0; 

      else mu=mu1; 

   Ysum=0; 

   Do jj=1 to nii; 

      Y=mu+sigma0*rannor(12911); 

      Ysum=Ysum+Y; 

   X(c)=Y; 

   c=c+1; 

   End; 

   Xbar(i)=Ysum/nii; 

   Z(i)=(Xbar(i)-mu0)/(sigma0/sqrt(nii));  

 

   If(Z(i)<-K) or (Z(i)>K) then do; 

     nii=nS; 

     ni(i+1)=nS; 

     OOC(i)=1; 

   end; 

 

   else if(Z(i)<-W) or (Z(i)>W) then do; 

  nii=nL; 

  ni(i+1)=nL; 

   end; 

   else do; 

  nii=nS; 

  ni(i+1)=nS; 

   end;    

End; 

run; 

 

proc print; 

run;  

 

A.3.4 A Simulation Program for the Example of Application for the VSS 

X  Chart with 
1 L

n n  

 

 This simulation program computes the summary statistics for the 

illustrative example of the VSS X  chart with 1 Ln n  in Table 4.5 (see Section 

4.4 of Chapter 4).  The intended results can be obtained by entering the values 

of the parameters ‘sigma0’, ‘mu0’, ‘delta’, ‘n’, ‘nS’, ‘nL’, ‘W’ and ‘K’ in the 

SAS code. 

Data VSSXb_example; 
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sigma0=0.008; 

mu0=1.5; 

delta=0.75; 

mu1=mu0+delta*sigma0; 

n=5; 

nS=3; 

nL=28; 

W=1.7608; 

K=3.1098; 

array X{*} X1-X450; 

array ni{*} ni1-ni26; 

array Xbar{*} Xbar1-Xbar25; 

array Z{*} Z1-Z25; 

array OOC{*} OOC1-OOC25; 

 

c=1; 

nii=nL; 

ni(1)=nL; 

 

Do i=1 to 25; 

   If(i<11) then mu=mu0; 

      else mu=mu1; 

   Ysum=0; 

   Do jj=1 to nii; 

      Y=mu+sigma0*rannor(12911); 

      Ysum=Ysum+Y; 

   X(c)=Y; 

   c=c+1; 

   End; 

   Xbar(i)=Ysum/nii; 

   Z(i)=(Xbar(i)-mu0)/(sigma0/sqrt(nii));  

 

   If(Z(i)<-K) or (Z(i)>K) then do; 

     nii=nL; 

     ni(i+1)=nL; 

     OOC(i)=1; 

   end; 

 

   else if(Z(i)<-W) or (Z(i)>W) then do; 

  nii=nL; 

  ni(i+1)=nL; 

   end; 

   else do; 

  nii=nS; 

  ni(i+1)=nS; 

   end;    

End; 

run; 

 

proc print; 

run; 
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APPENDIX B 

 

PROGRAMS FOR THE SHEWHART X  CHART 

 

 

B.1 Programs for the MRL- and EMRL-based Shewhart X  Chart 

 

 These programs are written using the ScicosLab software to compute 

the chart’s parameter (L), MRL, percentiles of the run-length distribution and 

EMRL for the Shewhart X  chart. To obtain a particular result, we need to call 

the related function in the Command Window of the ScicosLab software. The 

function body, which contains all the ScicosLab codes, is written in the Scipad 

of the ScicosLab software. In these ScicosLab programs, the letter ‘L’ 

represents the chart’s coefficient controlling the width of the Shewhart X  

chart’s limits. Also, in these programs, ‘delta’ is the magnitude of mean shifts 

( ), ‘pctl’ denotes the probability   and ‘mrlini’ is the initial value of the 

MRL. The 5
th

 and 95
th

 percentiles of the run-length distribution are represented 

by Q5 and Q95, respectively, in these programs. The lower ( min ) and upper 

( max ) bounds of the mean shifts are represented by ‘deltamin’ and ‘deltamax’ 

in these programs, respectively. 

 

For the MRL-based Shewhart X  chart, the input parameters and call 

functions, typed at the Command Window, are presented as follows: 

(i) To compute the MRL for the given values of n, L and  , enter 

n=5;L=3;delta=1;mrlini=1; 

MRL=mrlXbar(n,L,delta,mrlini) 
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(ii) To compute the percentiles of the run-length distribution for the 

given values of n, L,   and  , enter 

n=3;L=3.1098738;delta=0.25;pctl=0.05;mrlini=1; 

PRL=pctlXbar(n,L,delta,pctl,mrlini) 

 

(iii) To compute the chart’s parameter (L) and 
1MRL , 5

th
 and 95

th
 

percentiles of the run-length distribution for the desired values of n, 

0MRL  and  , enter 

n=3;mrl0=250;delta=0.25; 

[n,L,MRL0,MRL1,Q5,Q95]=mrlXbarL(n,mrl0,delta) 

 

For the EMRL-based Shewhart X  chart, the intended results can be 

obtained by entering the input parameters and call functions in the Command 

Window, as described below. 

(i) To compute the EMRL for the given values of 
min , 

max , n and L, 

enter 

deltamin=0.1;deltamax=2;n=10;L=3.1098738; 

EMRL=emrlxbar(deltamin,deltamax,n,L) 

 

(ii) To compute the chart’s parameter (L) and 
1EMRL  for the desired 

values of n, 
0EMRL , 

min  and 
max , enter 

n=7;mrl0=370;deltamin=0.1;deltamax=2; 

[n,L,MRL0,EMRL]=emrlXbarL(n,mrl0,deltamin,deltamax) 

 

The written ScicosLab programs in the Scipad are outlined as follows: 

//------------------------------------------------------------- 

function MRL=mrlXbar(n,L,delta,mrlini) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin>4 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 
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if L<=0 

  error("argument ''L'' must be an integer > 0") 

end 

if delta<0 

  error("argument ''delta'' must be an integer >= 0") 

end 

if mrlini<=0 

  error("argument ''mrlini'' must be an integer > 0") 

end 

betaxbar=cdfnormal(L-delta*sqrt(n))-cdfnormal(-L-delta*sqrt(n)) 

for MRL=mrlini:1000 

    probmed=1-betaxbar.^MRL 

    if probmed>=0.5 

        break 

    end 

end 

 

//------------------------------------------------------------- 

function PRL=pctlXbar(n,L,delta,pctl,mrlini) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin>5 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if L<=0 

  error("argument ''L'' must be an integer > 0") 

end 

if delta<0 

  error("argument ''delta'' must be an integer >= 0") 

end 

if (pctl<=0)|(pctl>=1) 

  error("argument ''percentile'' must be an integer > 0 or < 1") 

end 

if mrlini<=0 

  error("argument ''mrlini'' must be an integer > 0") 

end 

betaxbar=cdfnormal(L-delta*sqrt(n))-cdfnormal(-L-delta*sqrt(n)) 

for PRL=mrlini:5000 

    prob_percen=1-betaxbar.^PRL 

    if prob_percen>=pctl 

        break 

    end 

end 

 

//------------------------------------------------------------- 

function dif=minLXbar(L,mrl0) 

//------------------------------------------------------------- 

if L<=0 

  dif=%inf 

else 

  betat=cdfnormal(L)-cdfnormal(-L) 

  dif=0.50001-(1-betat.^mrl0) 

end 

 

//------------------------------------------------------------- 

function [n,L,MRL0,MRL1,Q5,Q95]=mrlXbarL(n,mrl0,delta) 

//------------------------------------------------------------- 

[argout,argin]=argn() 
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if (argin<2)|(argin>3) 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if mrl0<0 

  error("argument ''mrl0'' must be an integer > 0") 

end 

if argin==2 

  delta=0 

end 

if delta<0 

  error("argument ''delta'' must be >= 0") 

end 

L=simplexolve(3,minLXbar,list(mrl0),tol=1e-6) 

Q5=pctlXbar(n,L,delta,0.05,1) 

MRL1=mrlXbar(n,L,delta,Q5) 

Q95=pctlXbar(n,L,delta,0.95,MRL1) 

MRL0=mrlXbar(n,L,0,mrl0-5) 

mprintf("%8.5f (%2d, %3d, %4d) %4d\n",[L,Q5,MRL1,Q95,MRL0]) 

 

//------------------------------------------------------------- 

function EMRL=emrlxbar(deltamin,deltamax,n,L) 

//------------------------------------------------------------- 

[xi,wi]=quadlegendre(9,deltamin,deltamax) 

EMRL=0 

for il=1:9 

  xil=xi(il) 

  wil=wi(il) 

  MRL=mrlXbar(n,L,xil,1) 

  EMRL=EMRL+MRL.*wil 

end 

EMRL=EMRL/(deltamax-deltamin) 

 

//------------------------------------------------------------- 

function [n,L,MRL0,EMRL]=emrlXbarL(n,mrl0,deltamin,deltamax) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<3)|(argin>4) 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if mrl0<0 

  error("argument ''mrl0'' must be an integer > 0") 

end 

L=simplexolve(3,minLXbar,list(mrl0),tol=1e-6) 

EMRL=emrlxbar(deltamin,deltamax,n,L) 

MRL0=mrlXbar(n,L,0,mrl0-5) 

mprintf("%8.5f %6.2f %4d\n",[L,EMRL,MRL0]) 
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B.2 Monte Carlo Simulation Programs for the Shewhart X  Chart 

 

 In this appendix, two simulation programs are written by using the SAS 

software. Appendix B.2.1 is a simulation program to verify the accuracy of 

( 0.05 , MRL, 0.95 ) computed from the theoretical method (see Subsection 3.3.1 

of Chapter 3 and Appendix B.1) of the Shewhart X  chart; while Appendix 

B.2.2 illustrates a simulation program for the example of application for the 

Shewhart X  chart. 

 

B.2.1 A Simulation Program for the Shewhart X  Chart 

 

 In this simulation program, the 5
th

, 50
th

 (MRL) and 95
th

 percentiles of 

the run-length distribution, i.e. ( 0.05 , MRL, 0.95 ), are calculated using 50001 

simulation trials. To obtain the intended results, the user needs to input the 

values of the parameters ‘n’, ‘L’ and ‘delta’ in the SAS code. 

Data Xbar_pctl; 

n=7; 

L=3.1099; 

delta=0.25; 

 

mu0=0; 

sigma0=1; 

std=1/sqrt(n); 

UCL=mu0+L*std; 

LCL=-UCL; 

 

Do m=1 to 50001; 

 ok=1;RL=0; 

 Do while(ok=1); 

  RL=RL+1; 

  Xsum=0; 

  Do i=1 to n; 

   X=delta+sigma0*rannor(55555); 

   Xsum=Xsum+X; 

  End; 

  Xbar=Xsum/n; 

 

  If (Xbar>UCL) or (Xbar<LCL) then do; 

   ARL=RL;output; 

   ok=0; 
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  end; 

 End; 

End; 

run; 

 

proc univariate; 

var ARL; 

output pctlpts=5 50 95 pctlpre=p; 

 

proc print; 

run;  

 

B.2.2 A Simulation Program for the Example of Application for the 

Shewhart X  Chart 

 

 This simulation program computes the summary statistics for the 

illustrative example of the Shewhart X  chart in Table 4.5 (see Section 4.4 of 

Chapter 4).  The intended output can be obtained by entering the values of the 

parameters ‘sigma0’, ‘mu0’, ‘delta’, ‘n’ and ‘L’ in the SAS code.  

Data example_Xbar; 

sigma0=0.008; 

mu0=1.5; 

delta=0.75; 

mu1=mu0+delta*sigma0; 

n=5; 

L=3.10987; 

std=1/sqrt(n); 

UCL=mu0+L*std*sigma0; 

LCL=mu0-L*std*sigma0; 

 

array X{*} X1-X125; 

array Xbar{*} Xbar1-Xbar25; 

 

c=1; 

Do i=1 to 25; 

 If (i<11) then mu=mu0; 

     else mu=mu1; 

 Ysum=0; 

 Do j=1 to n; 

  Y=mu+sigma0*rannor(12911); 

  Ysum=Ysum+Y; 

  X(c)=Y; 

  c=c+1; 

 end; 

 Xbar(i)=Ysum/n; 

end; 

run; 

 

proc print; 

run; 
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APPENDIX C 

 

PROGRAMS FOR THE EWMA X  CHART 

 

 

C.1 Optimization Programs for the MRL- and EMRL-based EWMA 

X  Chart 

 

These optimization programs are written using the ScicosLab software 

to compute the optimal ( , ) H  combination, MRL, percentiles of the run-

length distribution and EMRL for the EWMA X  chart. To obtain a particular 

result, we need to call the related function in the Command Window of the 

ScicosLab software. The function body, which contains all the ScicosLab 

codes, is written in the Scipad of the ScicosLab software. In these ScicosLab 

programs, the symbols   and H used in Subsection 3.3.3 of Chapter 3 are 

replaced by ‘lam’ and ‘K’. Note that, the symbols ‘a’ and ‘b’ in these programs 

represent shifts in the process mean ( )  and standard deviation, respectively. 

Also, ‘probperc’ denotes the probability  ; while ‘mrlini’ and ‘percini’ are the 

initial values of the MRL and percentiles of the run-length distribution, 

respectively. The 5
th

 and 95
th

 percentiles of the run-length distribution are 

replaced by Q5 and Q95, respectively, in these programs. The terms ‘deltamin’ 

and ‘deltamax’ in the program represent min   and max , respectively.  

For the MRL-based EWMA X  chart, the input parameters and call 

functions, typed at the Command Window, are presented as follows: 
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(i) To compute the MRL for the given values of  , n,  , H and 
0MRL , 

enter 

a=0.2;b=1;n=4;lam=0.5;K=0.836;mrlini=1;mrl0=200; 

MRL=mrlEWMAx(a,b,n,lam,K,mrlini,mrl0) 

 

(ii) To compute the percentiles of the run-length distribution for the 

given values of  , n,  , H and  , enter 

a=0.5;b=1;n=3;lam=0.0734;K=0.3;percini=1;probperc=0.05; 

percentile=rlEWMAx(a,b,n,lam,K,percini,probperc) 

 

(iii) To compute the optimal ( , ) H  combination as well as the 

corresponding 1MRL , 5
th

 and 95
th

 percentiles of the run-length 

distribution,  for the desired values of  , n and 
0MRL , enter 

a=0.25;b=1;n=10;mrl0=250; 

[lam,K,MRL,MRL0,Q5,Q95]=mrlEWMAxoptim(a,b,n,mrl0) 

 

For the EMRL-based EWMA X  chart, the intended results can be 

obtained by entering the values of parameters and call functions at the 

Command Window, as described below. 

(i) To compute the EMRL for the given values of 
min , 

max , n,   and 

H, enter 

deltamin=0.1;deltamax=2.0;b=1;n=4;lam=0.5;K=0.836; 

mrlini=1;mrl0=370; 

EMRL=emrlewma(deltamin,deltamax,b,n,lam,K,mrlini,mrl0) 

 

(ii) To compute the optimal ( , ) H  combination and 1EMRL  for the 

desired values of 
min , 

max , n and 0EMRL , enter 

deltamin=0.1;deltamax=2;b=1;n=10;mrl0=370; 

[lam,K,EMRL,MRL0]=emrlEWMAxoptim(deltamin,deltamax,b,.. 

n,mrl0) 
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The written ScicosLab programs in the Scipad are exhibited as follows: 

//------------------------------------------------------------- 

function [Q,q]=QEWMAx(a,b,n,lam,K) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=5 

  error("incorrect number of arguments") 

end 

if a<0 

  error("argument ''a'' must be >= 0") 

end 

if b<=0 

  error("argument ''b'' must be > 0") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if (lam<=0)|(lam>1) 

  error("argument ''lam'' must be in (0,1]") 

end 

if K<=0 

  error("argument ''K'' must be > 0") 

end 

KL=-K 

KU=K 

m=25 

p=2*m+1 

d=(KU-KL)/(2*p) 

h=KL+d:2*d:KU-d 

Hj=ones(p,1)*h 

Hi=Hj' 

Q1=(Hj+d-(1-lam)*Hi)/lam 

Q2=(Hj-d-(1-lam)*Hi)/lam 

Q=cdfnormal((Q1-a)*sqrt(n)/b)-cdfnormal((Q2-a)*sqrt(n)/b) 

q=zeros(p,1) 

q(m+1)=1 

 

//------------------------------------------------------------- 

function MRL=mrlEWMAx(a,b,n,lam,K,mrlini,mrl0) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=7 

  error("incorrect number of arguments") 

end 

if a<0 

  error("argument ''a'' must be >= 0") 

end 

if b<=0 

  error("argument ''b'' must be > 0") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if (lam<=0)|(lam>1) 

  error("argument ''lam'' must be in (0,1]") 

end 

if K<=0 

  error("argument ''K'' must be > 0") 

end 

if mrlini<=0 
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  error("argument ''mrlini'' must be an integer >= 1") 

end 

[Q,q]=QEWMAx(a,b,n,lam,K) 

q=q(:)' 

for MRL=mrlini:mrl0+5 

    W=eye(Q)-Q^MRL 

    z=q*W 

    probmed=sum(z) 

    if probmed>=0.5 

        break 

    end 

end     

 

//------------------------------------------------------------- 

function percentile=rlEWMAx(a,b,n,lam,K,percini,probperc) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=7 

  error("incorrect number of arguments") 

end 

if a<0 

  error("argument ''a'' must be >= 0") 

end 

if b<=0 

  error("argument ''b'' must be > 0") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if (lam<=0)|(lam>1) 

  error("argument ''lam'' must be in (0,1]") 

end 

if K<=0 

  error("argument ''K'' must be > 0") 

end 

if percini<=0 

  error("argument ''percini'' must be an integer >= 1") 

end 

[Q,q]=QEWMAx(a,b,n,lam,K) 

q=q(:)' 

for percentile=percini:50000 

    W=eye(Q)-Q^percentile 

    z=q*W 

    probmed=sum(z) 

    if probmed>=probperc 

        break 

    end 

end  

 

//------------------------------------------------------------- 

function f=mrlEWMAxsolve(K,lam,n,mrl0) 

//------------------------------------------------------------- 

if K<=0 

  f=%inf 

else 

  [Q,q]=QEWMAx(0,1,n,lam,K) 

  q=q(:)' 

  W=eye(Q)-Q^mrl0 

  z=q*W 

  f=0.5001-sum(z) 

end 
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//------------------------------------------------------------- 

function mrl=mrlEWMAxoptimlam(lam,a,b,n,mrl0) 

//------------------------------------------------------------- 

if (lam<=0.01)|(lam>1) 

  mrl=%inf 

else                         

  K0=0.1 

  K=simplexolve(K0,mrlEWMAxsolve,list(lam,n,mrl0),tol=1e-5) 

  mrl=mrlEWMAx(a,b,n,lam,K,1,mrl0) 

  if mrl<0 

    mrl=%inf 

  end 

end 

 

//------------------------------------------------------------- 

function [lam,K,MRL,MRL0,Q5,Q95]=mrlEWMAxoptim(a,b,n,mrl0) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 

end 

if a<0 

  error("argument ''a'' must be >= 0") 

end 

if b<=0 

  error("argument ''b'' must be > 0") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if mrl0<0 

  error("argument ''mrl0'' must be > 0") 

end  

lam0=0.05 

lam=neldermead(lam0,mrlEWMAxoptimlam,list(a,b,n,mrl0),.. 

tol=1e-4,opt="min") 

K0=0.1 

K=simplexolve(K0,mrlEWMAxsolve,list(lam,n,mrl0),tol=1e-5) 

Q5=rlEWMAx(a,b,n,lam,K,1,0.05) 

MRL=mrlEWMAx(a,b,n,lam,K,Q5,mrl0) 

Q95=rlEWMAx(a,b,n,lam,K,MRL,0.95) 

MRL0=mrlEWMAx(0,1,n,lam,K,mrl0-5,mrl0) 

mprintf("(%6.4f, %6.4f)(%2d, %3d, %4d) %4d\n",[lam,K,Q5,MRL,.. 

Q95,MRL0]) 

 

//------------------------------------------------------------- 

function EMRL=emrlewma(deltamin,deltamax,b,n,lam,K,mrlini,mrl0) 

//------------------------------------------------------------- 

[xi,wi]=quadlegendre(9,deltamin,deltamax) 

EMRL=0 

for il=1:9 

  xil=xi(il) 

  wil=wi(il) 

  MRL=mrlEWMAx(xil,b,n,lam,K,mrlini,mrl0) 

  EMRL=EMRL+MRL.*wil 

end 

EMRL=EMRL/(deltamax-deltamin) 

 

//------------------------------------------------------------- 

function EMRL=emrlEWMAxoptimlam(lam,deltamin,deltamax,b,n,mrl0) 

//------------------------------------------------------------- 
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if (lam<=0.01)|(lam>1) 

  EMRL=%inf 

else                         

  K0=0.1 

  K=simplexolve(K0,mrlEWMAxsolve,list(lam,n,mrl0),tol=1e-5) 

  if K>2 

    EMRL=%inf 

  else 

    EMRL=emrlewma(deltamin,deltamax,b,n,lam,K,1,mrl0) 

    if EMRL<0 

        EMRL=%inf 

     end 

  end 

end 

 

//------------------------------------------------------------- 

function[lam,K,EMRL,MRL0]=emrlEWMAxoptim(deltamin,deltamax,b,.. 

n,mrl0) 

//------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=5 

  error("incorrect number of arguments") 

end 

if b<=0 

  error("argument ''b'' must be > 0") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if mrl0<0 

  error("argument ''mrl0'' must be > 0") 

end  

lam0=0.05 

lam=neldermead(lam0,emrlEWMAxoptimlam,list(deltamin,deltamax,.. 

b,n,mrl0),tol=1e-4,opt="min") 

K0=0.1 

K=simplexolve(K0,mrlEWMAxsolve,list(lam,n,mrl0),tol=1e-5) 

EMRL=emrlewma(deltamin,deltamax,b,n,lam,K,1,mrl0) 

MRL0=mrlEWMAx(0,1,n,lam,K,mrl0-5,mrl0) 

mprintf("(%6.4f, %6.4f) %5.2f %4d\n",[lam,K,EMRL,MRL0]) 

 

C.2 Monte Carlo Simulation Programs for the EWMA X  Chart 

 

 In this appendix, two simulation programs related to the EWMA X  

chart are written using the SAS software. Appendix C.2.1 is a simulation 

program to verify the accuracy of the ( 0.05 , MRL, 0.95 ) values computed from 

the theoretical method (see Subsection 3.3.3 of Chapter 3 and Appendix C.1) 

of the EWMA X  chart. Appendix C.2.2 illustrates a simulation program for 

the example of application of the EWMA X  chart. 
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C.2.1 A Simulation Program for the EWMA X  Chart 

 

 In this simulation program, the (
0.05

, MRL, 
0.95

) values of the EWMA 

X  chart are calculated using 50001 simulation trials. Here, the symbols   and 

H used in Subsection 3.3.3 of Chapter 3 are replaced by ‘lambda1’ and ‘L’ in 

this program. To obtain the intended results, the user needs to enter the values 

of the parameters  ‘L’, ‘lambda1’, ‘delta’ and ‘n’ in the SAS code. 

 
Data EWMA;  

L=0.4631; 

lambda1=0.3; 

lambda2=1-lambda1; 

mu0=0; 

sigma=1; 

delta=0.5;   

n=7; 

UCL=L; 

LCL=-L; 

 

do nsim=1 to 50001; 

Z=0; 

 

do i=1 to 15000; 

   Xsum=0; 

   do j=1 to n; 

   X=delta+sigma*RANNOR(55555); 

   Xsum=Xsum+X; 

   end;  

   Xbar=Xsum/n; 

   Z=lambda1*Xbar+lambda2*Z; 

 

   If (Z>UCL) or (Z<LCL) then do; 

          MRL=i; 

          output;i=15001; 

               end; 

    end;  

end;  

run; 

 

proc univariate; 

var MRL; 

output pctlpts=5 50 95 pctlpre=p; 

 

proc print; 

run; 
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C.2.2 A Simulation Program for the Example of Application for the 

EWMA X  Chart 

 

 This simulation program computes the summary statistics for the 

illustrative example of the EWMA X  chart in Table 4.5 (see Section 4.4 of 

Chapter 4). The results can be obtained by entering the values of the 

parameters ‘K’, ‘lambda1’, ‘mu0’, ‘sigma0’, ‘delta’ and ‘n’ in the SAS code. 

 
Data example_EWMA; 

K=0.8529;  

lambda1=0.5500;  

lambda2=1-lambda1; 

mu0=1.5; 

sigma0=0.008; 

delta=0.75; 

mu1=mu0+delta*sigma0; 

n=5; 

UCL=mu0+K*sigma0; 

LCL=mu0-K*sigma0; 

 

array X{*} X1-X125; 

array Xbar{*} Xbar1-Xbar25; 

array Z{*} Z1-Z25; 

 

c=1; 

Do i=1 to 25; 

 If (i<11) then mu=mu0; 

     else mu=mu1; 

 Ysum=0; 

 Do j=1 to n; 

  Y=mu+sigma0*rannor(12911); 

  Ysum=Ysum+Y; 

  X(c)=Y; 

  c=c+1; 

 end; 

 Xbar(i)=Ysum/n; 

 if i=1 then Z(i)=lambda1*Xbar(i)+lambda2*mu0; 

     else Z(i)=lambda1*Xbar(i)+lambda2*Z(i-1); 

     

end; 

run; 

 

proc print; 

run; 

  

   

 



116 
 

APPENDIX D 

 

ADDITIONAL RESULTS 

 

 

D.1 Additional Results for the Computation of ARL, SDRL and 

Percentiles of the Run-length Distribution of the VSS X  Chart 

 

 In this appendix, additional results regarding the ARLs, SDRLs and 

percentiles of the run-length distribution of the two VSS schemes with  1 Sn n  

and 1 Ln n  are provided in Tables D.1 to D.3. Tables D.1 and D.2 show the 

exact values of the ARL, SDRL and percentiles of the run-length distribution 

for the two optimal ARL-based VSS X  charts when 0ARL 250  and 

0ASS {5,  10};  while those results for 0ARL 370  and 0ASS 10  are shown 

in Table D.3. 
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Table D.1: Exact ARL, SDRL and percentiles of the run-length 

distribution for the VSS X  chart with the optimal chart’s parameters (
S

n , 

L
n , W, K) corresponding to 

opt
 {0.5, 2.0}, 

0
ASS 5  and 

0
ARL 250  

   Percentiles of the run-length distribution 

  ARL SDRL 5
th

 10
th
 20

th
 30

th
 40

th
 50

th
 60

th
 70

th
 80

th
 90

th
 95

th
 

1  Sn n , opt 0.5  , (
Sn , 

Ln , W, K) = (2, 31, 1.6079, 2.8782) 

0.00 250.00 249.53 13 27 56 90 128 173 229 301 402 575 748 

0.25 61.37 60.08 4 8 15 23 32 43 56 74 98 140 181 

0.50 8.31 6.46 2 2 3 4 5 6 8 10 12 17 21 

0.75 4.37 2.90 2 2 2 3 3 4 4 5 6 8 10 

1.00 3.19 1.83 1 2 2 2 2 3 3 4 4 6 7 

1.50 2.11 0.92 1 1 1 2 2 2 2 2 3 3 4 

2.00 1.58 0.62 1 1 1 1 1 2 2 2 2 2 3 

1  Sn n , opt 2.0  , (
Sn , 

Ln , W, K) = (4, 9, 1.2680, 2.8782) 

0.00 250.00 249.53 13 27 56 90 128 173 229 301 402 575 748 

0.25 89.93 89.23 5 10 21 33 46 63 82 108 144 206 268 

0.50 18.65 17.62 2 3 5 7 10 13 17 22 29 49 54 

0.75 5.48 4.27 1 2 2 3 3 4 5 6 8 11 14 

1.00 2.72 1.56 1 1 2 2 2 2 3 3 4 5 6 

1.50 1.49 0.59 1 1 1 1 1 1 2 2 2 2 2 

2.00 1.13 0.34 1 1 1 1 1 1 1 1 1 2 2 

1  Ln n , opt 0.5  , (
Sn , 

Ln , W, K) = (1, 31, 1.5146, 2.8782) 

0.00 250.00 249.53 13 27 56 90 128 173 229 301 402 575 748 

0.25 54.84 58.25 1 3 9 17 26 37 50 67 90 131 171 

0.50 3.37 4.64 1 1 1 1 1 2 2 3 4 8 13 

0.75 1.13 0.54 1 1 1 1 1 1 1 1 1 1 2 

1.00 1.00 0.06 1 1 1 1 1 1 1 1 1 1 1 

1.50 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

2.00 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

1  Ln n , opt 2.0  , (
Sn , 

Ln , W, K) = (4, 31, 2.1298, 2.8782) 

0.00 250.00 249.53 13 27 56 90 128 173 229 301 402 575 748 

0.25 76.38 80.88 1 4 13 24 36 51 69 93 126 182 238 

0.50 5.69 8.65 1 1 1 1 1 2 2 5 9 16 24 

0.75 1.18 0.89 1 1 1 1 1 1 1 1 1 1 2 

1.00 1.00 0.08 1 1 1 1 1 1 1 1 1 1 1 

1.50 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

2.00 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 
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Table D.2: Exact ARL, SDRL and percentiles of the run-length 

distribution for the VSS X  chart with the optimal chart’s parameters (
S

n , 

L
n , W, K) corresponding to 

opt
 {0.5, 2.0}, 

0
ASS 10  and 

0
ARL 250  

   Percentiles of the run-length distribution 

  ARL SDRL 5
th

 10
th
 20

th
 30

th
 40

th
 50

th
 60

th
 70

th
 80

th
 90

th
 95

th
 

1  Sn n , opt 0.5  , (
Sn , 

Ln , W, K) = (6, 31, 1.3896, 2.8782) 

0.00 250.00 249.53 13 27 56 90 128 173 229 301 402 575 748 

0.25 35.31 34.06 3 5 9 13 19 25 32 42 56 80 103 

0.50 4.51 2.88 2 2 2 3 3 4 4 5 6 8 10 

0.75 2.35 1.02 1 1 2 2 2 2 2 3 3 4 4 

1.00 1.78 0.66 1 1 1 1 2 2 2 2 2 2 3 

1.50 1.22 0.42 1 1 1 1 1 1 1 1 2 2 2 

2.00 1.02 0.15 1 1 1 1 1 1 1 1 1 1 1 

1  Sn n , opt 2.0  , (
Sn , 

Ln , W, K) = (9, 15, 1.3679, 2.8782) 

0.00 250.00 249.53 13 27 56 90 128 173 229 301 402 575 748 

0.25 49.92 49.25 3 6 12 18 26 35 46 60 80 114 148 

0.50 7.74 6.80 1 2 2 3 4 6 7 9 12 17 21 

0.75 2.60 1.64 1 1 1 2 2 2 3 3 4 5 6 

1.00 1.56 0.71 1 1 1 1 1 1 2 2 2 2 3 

1.50 1.05 0.22 1 1 1 1 1 1 1 1 1 1 2 

2.00 1.00 0.03 1 1 1 1 1 1 1 1 1 1 1 

1  Ln n , opt 0.5  , (
Sn , 

Ln , W, K) = (1, 31, 1.0425, 2.8782) 

0.00 250.00 249.53 13 27 56 90 128 173 229 301 402 575 748 

0.25 28.72 29.66 1 2 6 9 14 20 26 35 47 67 88 

0.50 2.41 2.18 1 1 1 1 1 2 2 3 3 5 7 

0.75 1.11 0.36 1 1 1 1 1 1 1 1 1 1 2 

1.00 1.00 0.06 1 1 1 1 1 1 1 1 1 1 1 

1.50 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

2.00 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

1  Ln n , opt 2.0  , (
Sn , 

Ln , W, K) = (9, 31, 2.0371, 2.8782) 

0.00 250.00 249.53 13 27 56 90 128 173 229 301 402 575 748 

0.25 43.36 45.17 1 3 8 14 21 29 39 52 71 102 134 

0.50 3.36 3.87 1 1 1 1 1 2 2 3 5 8 11 

0.75 1.13 0.47 1 1 1 1 1 1 1 1 1 1 2 

1.00 1.00 0.06 1 1 1 1 1 1 1 1 1 1 1 

1.50 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

2.00 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 
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Table D.3: Exact ARL, SDRL and percentiles of the run-length 

distribution for the VSS X  chart with the optimal chart’s parameters (
S

n , 

L
n , W, K) corresponding to 

opt
 {0.5, 2.0}, 

0
ASS 10  and 

0
ARL 370  

   Percentiles of the run-length distribution 

  ARL SDRL 5
th

 10
th
 20

th
 30

th
 40

th
 50

th
 60

th
 70

th
 80

th
 90

th
 95

th
 

1  Sn n , opt 0.5  , (
Sn , 

Ln , W, K) = (5, 31, 1.2944, 2.9997) 

0.00 370.00 369.53 19 39 83 132 189 257 339 445 595 851 1108 

0.25 43.51 42.11 4 6 11 16 23 31 40 52 69 98 128 

0.50 4.85 3.06 2 2 2 3 3 4 5 6 7 9 11 

0.75 2.51 1.06 1 2 2 2 2 2 2 3 3 4 5 

1.00 1.94 0.67 1 1 1 2 2 2 2 2 2 3 3 

1.50 1.37 0.50 1 1 1 1 1 1 1 2 2 2 2 

2.00 1.07 0.26 1 1 1 1 1 1 1 1 1 1 2 

1  Sn n , opt 2.0  , (
Sn , 

Ln , W, K) = (9, 15, 1.3728, 2.9997) 

0.00 370.00 369.53 19 39 83 132 189 257 339 445 595 851 1108 

0.25 67.26 66.57 4 8 16 24 35 47 62 81 108 154 200 

0.50 9.29 8.32 1 2 3 4 5 7 9 11 14 20 26 

0.75 2.85 1.86 1 1 1 2 2 2 3 3 4 5 6 

1.00 1.64 0.76 1 1 1 1 1 1 2 2 2 3 3 

1.50 1.07 0.25 1 1 1 1 1 1 1 1 1 1 2 

2.00 1.00 0.04 1 1 1 1 1 1 1 1 1 1 1 

1  Ln n , opt 0.5  , (
Sn , 

Ln , W, K) = (1, 31, 1.0405, 2.9997) 

0.00 370.00 369.53 19 39 83 132 189 257 339 445 595 851 1108 

0.25 36.81 37.77 1 3 7 12 18 25 34 44 60 86 112 

0.50 2.68 2.45 1 1 1 1 1 2 2 3 4 6 8 

0.75 1.14 0.41 1 1 1 1 1 1 1 1 1 2 2 

1.00 1.01 0.07 1 1 1 1 1 1 1 1 1 1 1 

1.50 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

2.00 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

1  Ln n , opt 2.0  , (
Sn , 

Ln , W, K) = (9, 31, 2.0249, 2.9997) 

0.00 370.00 369.53 19 39 83 132 189 257 339 445 595 851 1108 

0.25 57.24 59.19 1 4 11 19 28 39 52 69 93 134 175 

0.50 3.76 4.29 1 1 1 1 1 2 3 4 6 9 13 

0.75 1.16 0.51 1 1 1 1 1 1 1 1 1 2 2 

1.00 1.01 0.07 1 1 1 1 1 1 1 1 1 1 1 

1.50 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 

2.00 1.00 0.00 1 1 1 1 1 1 1 1 1 1 1 
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D.2 Additional Results for the Performance Comparisons of the 

Shewhart X , Optimal VSS X  and Optimal EWMA X  Charts 

Based on MRL 

 

 Tables D.4 to D.6 tabulate the additional results for the comparative 

studies of the two optimal MRL-based VSS schemes with the MRL-based 

Shewhart X  and optimal MRL-based EWMA X  charts. In these tables, 

{3,  5,  7,  10},n
opt {0.25, 0.50, 0.75, 1.00, 1.50, 2.00} and 0MRL {200, 

300, 500} are considered. 
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Table D.4: Comparison of the (   
0.05 1 0.95

, MRL , ) values for the Shewhart 

X , optimal VSS X  and optimal EWMA X  charts, together with the 

charts’ corresponding parameters when n{3, 5, 7, 10}, 
opt

  {0.25, 0.50, 

0.75, 1.00, 1.50, 2.00} and 
0

MRL 200  

 Shewhart X  
 VSS X   

EWMA X  
  Sn n1

   Ln n1
  

 L (
Sn , 

Ln , W, K) (
Sn , 

Ln , W, K) ( , ) H  

opt  ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) 

3n   

0.25 2.9236 

(8, 103, 441) 

(1, 31, 1.8096, 2.9235) 

(6, 70, 299) 

(1, 31, 1.8561, 2.9235) 

(1, 66, 310) 

(0.0766, 0.2909) 

(8, 25, 74) 

0.50 2.9236 

(3, 35, 150) 

(1, 31, 1.8096, 2.9235) 

(2, 11, 40) 

(1, 31, 1.8561, 2.9235) 

(1, 2, 28) 

(0.2713, 0.6461) 

(3, 10, 31) 

0.75 2.9236 

(1, 13, 56) 

(1, 18, 1.5484, 2.9235) 

(2, 5, 15) 

(1, 26, 1.7695, 2.9235) 

(1, 1, 2) 

(0.4375, 0.8820) 

(2, 6, 17) 

1.00 2.9236 

(1, 6, 25) 

(1, 9, 1.1399, 2.9235) 

(2, 3, 8) 

(2, 21, 1.9655, 2.9235) 

(1, 1, 1) 

(0.5050, 0.9724) 

(1, 4, 9) 

1.50 2.9236 

(1, 2, 7) 

(1, 6, 0.8330, 2.9235) 

(1, 2, 4) 

(2, 10, 1.5465, 2.9235) 

(1, 1, 1) 

(0.5050, 0.9724) 

(1, 2, 4) 

2.00 2.9236 

(1, 1, 3) 

(2, 5, 0.9582, 2.9235) 

(1, 2, 2) 

(2, 6, 1.1567, 2.9235) 

(1, 1, 1) 

(0.5050, 0.9724) 

(1, 1, 2) 

5n   

0.25 2.9236 

(6, 75, 322) 

(1, 31, 1.4861, 2.9235) 

(5, 44, 186) 

(1, 31, 1.5128, 2.9235) 

(1, 41, 188) 

(0.1090, 0.2822) 

(6, 18, 51) 

0.50 2.9236 

(2, 20, 83) 

(1, 31, 1.4861, 2.9235) 

(2, 7, 22) 

(1, 31, 1.5128, 2.9235) 

(1, 2, 13) 

(0.3503, 0.5899) 

(2, 7, 21) 

0.75 2.9236 

(1, 7, 27) 

(2, 17, 1.2698, 2.9235) 

(2, 3, 9) 

(1, 25, 1.3925, 2.9235) 

(1, 1, 2) 

(0.5050, 0.7536) 

(2, 4, 10) 

1.00 2.9236 

(1, 3, 11) 

(2, 12, 1.0268, 2.9235) 

(1, 2, 5) 

(4, 21, 1.9144, 2.9235) 

(1, 1, 1) 

(0.5050, 0.7536) 

(1, 2, 5) 

1.50 2.9236 

(1, 1, 3) 

(4, 9, 1.2698, 2.9235) 

(1, 1, 2) 

(4, 10, 1.3925, 2.9235) 

(1, 1, 1) 

(0.5050, 0.7536) 

(1, 1, 3) 

2.00 2.9236 

(1, 1, 2) 

(3, 6, 0.4228, 2.9235) 

(1, 1, 2) 

(4, 6, 0.6772, 2.9235) 

(1, 1, 1) 

(0.5050, 0.7536) 

(1, 1, 2) 

7n   

0.25 2.9236 

(5, 58, 248) 

(1, 31, 1.2698, 2.9235) 

(4, 32, 135) 

(1, 31, 1.2895, 2.9235) 

(1, 29, 135) 

(0.1090, 0.2385) 

(5, 14, 37) 

0.50 2.9236 

(1, 13, 54) 

(1, 31, 1.2698, 2.9235) 

(2, 5, 15) 

(1, 30, 1.2698, 2.9235) 

(1, 2, 9) 

(0.3329, 0.4824) 

(2, 5, 14) 

0.75 2.9236 

(1, 4, 16) 

(1, 17, 0.8783, 2.9235) 

(2, 3, 7) 

(4, 25, 1.4762, 2.9235) 

(1, 1, 2) 

(0.5050, 0.6369) 

(1, 3, 7) 

1.00 2.9236 

(1, 2, 7) 

(5, 17, 1.3699, 2.9235) 

(1, 2, 3) 

(6, 21, 1.8561, 2.9235) 

(1, 1, 1) 

(0.5050, 0.6369) 

(1, 2, 4) 

1.50 2.9236 

(1, 1, 2) 

(4, 8, 0.3107, 2.9235) 

(1, 1, 2) 

(6, 10, 1.1567, 2.9235) 

(1, 1, 1) 

(0.5050, 0.6369) 

(1, 1, 2) 

2.00 2.9236 

(1, 1, 1) 

(6, 8, 0.6663, 2.9235) 

(1, 1, 1) 

(6, 8, 0.6772, 2.9235) 

(1, 1, 1) 

(0.5050, 0.6369) 

(1, 1, 1) 

10n   

0.25 2.9236 

(4, 42, 180) 

(1, 31, 1.0268, 2.9235) 

(3, 24, 97) 

(1, 31, 1.0416, 2.9235) 

(1, 21, 96) 

(0.1090, 0.1995) 

(5, 11, 27) 

0.50 2.9236 

(1, 8, 32) 

(3, 31, 1.1399, 2.9235) 

(2, 4, 10) 

(3, 30, 1.1342, 2.9235) 

(1, 2, 7) 

(0.5050, 0.5329) 

(2, 4, 12) 

0.75 2.9236 

(1, 3, 9) 

(5, 24, 1.1088, 2.9235) 

(1, 2, 4) 

(7, 25, 1.3925, 2.9235) 

(1, 1, 2) 

(0.5050, 0.5329) 

(1, 2, 5) 

1.00 2.9236 

(1, 1, 4) 

(9, 12, 0.9582, 2.9235) 

(1, 1, 3) 

(9, 21, 1.7498, 2.9235) 

(1, 1, 1) 

(0.9010, 0.8370) 

(1, 1, 3) 

1.50 2.9236 

(1, 1, 1) 

(4, 11, 0.1718, 2.9235) 

(1, 1, 2) 

(9, 11, 0.6772, 2.9235) 

(1, 1, 1) 

(0.5050, 0.5329) 

(1, 1, 2) 

2.00 2.9236 

(1, 1, 1) 

(6, 11, 0.2453, 2.9235) 

(1, 1, 1) 

(9, 11, 0.6772, 2.9235) 

(1, 1, 1) 

(0.5050, 0.5329) 

(1, 1, 1) 
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Table D.5: Comparison of the (   
0.05 1 0.95

, MRL , ) values for the Shewhart 

X , optimal VSS X  and optimal EWMA X  charts, together with the 

charts’ corresponding parameters when n{3, 5, 7, 10}, 
opt

  {0.25, 0.50, 

0.75, 1.00, 1.50, 2.00} and 
0

MRL 300  

 Shewhart X  
 VSS X   

EWMA X  
  Sn n1

   Ln n1
  

 L (
Sn , 

Ln , W, K) (
Sn , 

Ln , W, K) ( , ) H  

opt  ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) 

3n   

0.25 3.0475 

(11, 147, 634) 

(1, 31, 1.8176, 3.0474) 

(8, 94, 401) 

(1, 31, 1.8486, 3.0474) 

(2, 90, 411) 

(0.0800, 0.3184) 

(9, 29, 88) 

0.50 3.0475 

(4, 48, 204) 

(1, 31, 1.8176, 3.0474) 

(3, 12, 43) 

(1, 31, 1.8486, 3.0474) 

(1, 2, 30) 

(0.2575, 0.6561) 

(4, 11, 35) 

0.75 3.0475 

(2, 17, 74) 

(1, 20, 1.6081, 3.0474) 

(2, 5, 16) 

(2, 29, 2.1105, 3.0474) 

(1, 1, 2) 

(0.3473, 0.7926) 

(2, 6, 16) 

1.00 3.0475 

(1, 8, 31) 

(1, 12, 1.3269, 3.0474) 

(2, 3, 9) 

(2, 23, 2.0007, 3.0474) 

(1, 1, 1) 

(0.5050, 1.0160) 

(2, 4, 10) 

1.50 3.0475 

(1, 2, 8) 

(1, 7, 0.9613, 3.0474) 

(1, 2, 4) 

(2, 10, 1.5424, 3.0474) 

(1, 1, 1) 

(0.5050, 1.0160) 

(1, 2, 4) 

2.00 3.0475 

(1, 1, 3) 

(2, 6, 1.1434, 3.0474) 

(1, 2, 2) 

(2, 6, 1.1546, 3.0474) 

(1, 1, 1) 

(0.9010, 1.5929) 

(1, 1, 3) 

5n   

0.25 3.0475 

(8, 106, 455) 

(1, 31, 1.4910, 3.0474) 

(6, 57, 243) 

(1, 31, 1.5089, 3.0474) 

(2, 54, 245) 

(0.0816, 0.2498) 

(8, 20, 54) 

0.50 3.0475 

(2, 26, 111) 

(1, 31, 1.4910, 3.0474) 

(2, 7, 23) 

(1, 30, 1.4911, 3.0474) 

(1, 2, 15) 

(0.3518, 0.6191) 

(3, 8, 24) 

0.75 3.0475 

(1, 8, 34) 

(3, 19, 1.5236, 3.0474) 

(2, 3, 9) 

(2, 27, 1.5634, 3.0474) 

(1, 1, 2) 

(0.5050, 0.7870) 

(2, 4, 11) 

1.00 3.0475 

(1, 3, 13) 

(2, 15, 1.1911, 3.0474) 

(1, 2, 5) 

(4, 23, 1.9562, 3.0474) 

(1, 1, 1) 

(0.5050, 0.7870) 

(1, 3, 6) 

1.50 3.0475 

(1, 1, 4) 

(4, 10, 1.3743, 3.0474) 

(1, 2, 2) 

(4, 10, 1.3893, 3.0474) 

(1, 1, 1) 

(0.9010, 1.2338) 

(1, 1, 3) 

2.00 3.0475 

(1, 1, 2) 

(3, 6,0.4254, 3.0474) 

(1, 1, 2) 

(4, 6, 0.6763, 3.0474) 

(1, 1, 1) 

(0.5050, 0.7870) 

(1, 1, 2) 

7n   

0.25 3.0475 

(6, 81, 347) 

(1, 31, 1.2737, 3.0474) 

(5, 42, 175) 

(1, 31, 1.2868, 3.0474) 

(2, 38, 174) 

(0.1090, 0.2527) 

(6, 16, 42) 

0.50 3.0475 

(2, 17, 70) 

(2, 31, 1.3559, 3.0474) 

(2, 5, 16) 

(2, 31, 1.3706, 3.0474) 

(1, 2, 10) 

(0.3473, 0.5189) 

(2, 6, 16) 

0.75 3.0475 

(1, 5, 20) 

(3, 21, 1.2132, 3.0474) 

(2, 3, 6) 

(5, 27, 1.7017, 3.0474) 

(1, 1, 2) 

(0.5050, 0.6651) 

(1, 3, 7) 

1.00 3.0475 

(1, 2, 8) 

(1, 14, 0.7308, 3.0474) 

(2, 2, 5) 

(6, 23, 1.9060, 3.0474) 

(1, 1, 1) 

(0.5050, 0.6651) 

(1, 2, 4) 

1.50 3.0475 

(1, 1, 2) 

(5, 8, 0.4254, 3.0474) 

(1, 1, 2) 

(6, 10, 1.1546, 3.0474) 

(1, 1, 1) 

(0.5050, 0.6651) 

(1, 1, 2) 

2.00 3.0475 

(1, 1, 1) 

(6, 8, 0.6691, 3.0474) 

(1, 1, 1) 

(6, 8, 0.6763, 3.0474) 

(1, 1, 1) 

(0.5050, 0.6651) 

(1, 1, 1) 

10n   

0.25 3.0475 

(5, 58, 247) 

(1, 31, 1.0300, 3.0474) 

(4, 30, 125) 

(1, 31, 1.0399, 3.0474) 

(2, 28, 124) 

(0.1090, 0.2114) 

(5, 12, 30) 

0.50 3.0475 

(1, 10, 41) 

(3, 31, 1.1434, 3.0474) 

(2, 4, 11) 

(3, 30, 1.1322, 3.0474) 

(1, 2, 8) 

(0.3000, 0.3955) 

(2, 4, 10) 

0.75 3.0475 

(1, 3, 11) 

(3, 25, 0.9919, 3.0474) 

(2, 2, 5) 

(3, 26, 1.0306, 3.0474) 

(1, 1, 2) 

(0.5050, 0.5565) 

(1, 2, 5) 

1.00 3.0475 

(1, 1, 4) 

(1, 12, 0.2245, 3.0474) 

(2, 2, 4) 

(9, 23, 1.8166, 3.0474) 

(1, 1, 1) 

(0.9010, 0.8725) 

(1, 1, 4) 

1.50 3.0475 

(1, 1, 1) 

(5, 11, 0.2050, 3.0474) 

(1, 1, 2) 

(9, 11, 0.6763, 3.0474) 

(1, 1, 1) 

(0.5050, 0.5565) 

(1, 1, 2) 

2.00 3.0475 

(1, 1, 1) 

(6, 11, 0.2480, 3.0474) 

(1, 1, 1) 

(9, 11, 0.6763, 3.0474) 

(1, 1, 1) 

(0.5050, 0.5565) 

(1, 1, 1) 
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Table D.6: Comparison of the (   
0.05 1 0.95

, MRL , ) values for the Shewhart 

X , optimal VSS X  and optimal EWMA X  charts, together with the 

charts’ corresponding parameters when n{3, 5, 7, 10}, 
opt

  {0.25, 0.50, 

0.75, 1.00, 1.50, 2.00} and 
0

MRL 500  

 Shewhart X  
 VSS X   

EWMA X  
  Sn n1

   Ln n1
  

 L (
Sn , 

Ln , W, K) (
Sn , 

Ln , W, K) ( , ) H  

opt  ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) 

3n   

0.25 3.1977 

(18, 232, 1001) 

(1, 31, 1.8240, 3.1976) 

(11, 136, 582) 

(1, 31, 1.8427, 3.1976) 

(3, 131, 590) 

(0.1045, 0.4013) 

(10, 37, 123) 

0.50 3.1977 

(6, 70, 302) 

(1, 31, 1.8240, 3.1976) 

(3, 13, 47) 

(1, 31, 1.8427, 3.1976) 

(1, 2, 34) 

(0.1090, 0.4117) 

(5, 12, 28) 

0.75 3.1977 

(2, 24, 103) 

(1, 22, 1.6608, 3.1976) 

(2, 6, 17) 

(1, 30, 1.8272, 3.1976) 

(1, 1, 2) 

(0.3611, 0.8560) 

(3, 7, 19) 

1.00 3.1977 

(1, 10, 41) 

(2, 12, 1.6375, 3.1976) 

(2, 3, 9) 

(2, 24, 2.0128, 3.1976) 

(1, 1, 1) 

(0.5050, 1.0679) 

(2, 4, 12) 

1.50 3.1977 

(1, 3, 10) 

(1, 8, 1.0636, 3.1976) 

(2, 2, 4) 

(2, 11, 1.5987, 3.1976) 

(1, 1, 1) 

(0.5050, 1.0679) 

(1, 2, 5) 

2.00 3.1977 

(1, 1, 4) 

(2, 7, 1.2768, 3.1976) 

(1, 2, 2) 

(2, 6, 1.1529, 3.1976) 

(1, 1, 1) 

(0.9010, 1.6715) 

(1, 1, 3) 

5n   

0.25 3.1977 

(13, 163, 704) 

(1, 31, 1.4950, 3.1976) 

(7, 81, 343) 

(1, 31, 1.5057, 3.1976) 

(2, 76, 343) 

(0.1087, 0.3183) 

(8, 24, 71) 

0.50 3.1977 

(3, 37, 158) 

(1, 31, 1.4950, 3.1976) 

(2, 8, 25) 

(1, 30, 1.4881, 3.1976) 

(1, 2, 17) 

(0.2999, 0.5897) 

(3, 9, 25) 

0.75 3.1977 

(1, 11, 46) 

(3, 26, 1.7036, 3.1976) 

(2, 3, 9) 

(3, 29, 1.7765, 3.1976) 

(1, 1, 2) 

(0.4825, 0.8019) 

(2, 5, 13) 

1.00 3.1977 

(1, 4, 17) 

(3, 14, 1.3302, 3.1976) 

(1, 2, 5) 

(4, 24, 1.9714, 3.1976) 

(1, 1, 1) 

(0.5050, 0.8272) 

(1, 3, 6) 

1.50 3.1977 

(1, 1, 4) 

(1, 6, 0.2501, 3.1976) 

(2, 2, 4) 

(4, 11, 1.4696, 3.1976) 

(1, 1, 1) 

(0.9010, 1.2947) 

(1, 1, 4) 

2.00 3.1977 

(1, 1, 2) 

(3, 6, 0.4276, 3.1976) 

(1, 1, 2) 

(4, 6, 0.6756, 3.1976) 

(1, 1, 1) 

(0.5050, 0.8272) 

(1, 1, 2) 

7n   

0.25 3.1977 

(10, 123, 528) 

(1, 31, 1.2768, 3.1976) 

(6, 58, 243) 

(1, 31, 1.2847, 3.1976) 

(2, 54, 242) 

(0.1090, 0.2695) 

(7, 18, 49) 

0.50 3.1977 

(2, 23, 97) 

(2, 31, 1.3593, 3.1976) 

(2, 6, 17) 

(1, 30, 1.2652, 3.1976) 

(1, 2, 12) 

(0.3606, 0.5599) 

(2, 7, 18) 

0.75 3.1977 

(1, 6, 26) 

(4, 23, 1.4068, 3.1976) 

(2, 3, 6) 

(5, 29, 1.7388, 3.1976) 

(1, 1, 2) 

(0.5050, 0.6991) 

(2, 3, 8) 

1.00 3.1977 

(1, 3, 9) 

(2, 12, 0.6712, 3.1976) 

(2, 2, 5) 

(6, 24, 1.9249, 3.1976) 

(1, 1, 1) 

(0.5050, 0.6991) 

(1, 2, 4) 

1.50 3.1977 

(1, 1, 2) 

(5, 9, 0.6712, 3.1976) 

(1, 1, 2) 

(6, 11, 1.2847, 3.1976) 

(1, 1, 1) 

(0.5050, 0.6991) 

(1, 1, 2) 

2.00 3.1977 

(1, 1, 1) 

(6, 8, 0.6712, 3.1976) 

(1, 1, 1) 

(6, 8, 0.6756, 3.1976) 

(1, 1, 1) 

(0.5050, 0.6991) 

(1, 1, 2) 

10n   

0.25 3.1977 

(7, 86, 370) 

(1, 31, 1.0326, 3.1976) 

(5, 41, 173) 

(1, 31, 1.0385, 3.1976) 

(2, 39, 172) 

(0.1090, 0.2255) 

(6, 14, 34) 

0.50 3.1977 

(1, 13, 56) 

(1, 31, 1.0326, 3.1976) 

(2, 5, 13) 

(3, 31, 1.1529, 3.1976) 

(1, 2, 9) 

(0.4696, 0.5568) 

(2, 5, 14) 

0.75 3.1977 

(1, 4, 14) 

(4, 25, 1.0636, 3.1976) 

(2, 2, 5) 

(1, 28, 0.9693, 3.1976) 

(1, 1, 2) 

(0.5050, 0.5849) 

(1, 3, 6) 

1.00 3.1977 

(1, 2, 5) 

(1, 14, 0.3925, 3.1976) 

(2, 2, 4) 

(9, 24, 1.8427, 3.1976) 

(1, 1, 1) 

(0.5050, 0.5849) 

(1, 2, 3) 

1.50 3.1977 

(1, 1, 2) 

(5, 11, 0.2072, 3.1976) 

(1, 1, 2) 

(9, 11, 0.6756, 3.1976) 

(1, 1, 1) 

(0.5050, 0.5849) 

(1, 1, 2) 

2.00 3.1977 

(1, 1, 1) 

(6, 11, 0.2501, 3.1976) 

(1, 1, 1) 

(9, 11, 0.6756, 3.1976) 

(1, 1, 1) 

(0.5050, 0.5849) 

(1, 1, 1) 
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D.3 Additional Results for the Performance Comparisons of the 

Shewhart X , Optimal VSS X  and Optimal EWMA X  Chart 

Based on EMRL 

 

 Tables D.7 to D.10 tabulate the additional results for the comparative 

studies of the two optimal EMRL-based VSS schemes with the EMRL-based 

Shewhart X  and optimal EMRL-based EWMA X  charts. In these tables, n 

{3, 5, 7, 10}, 0EMRL {200,  250, 300, 500}, min  0.1  and max  2.0   are 

considered. 
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Table D.7: Comparison of the 
1

EMRL  and (   
0.05 1 0.95

, MRL , ) values for 

the Shewhart X , optimal VSS X  and optimal EWMA X  charts, together 

with the charts’ corresponding parameters when n {3, 5, 7, 10}, 

0
EMRL 200 , 

min
 0.1   and 

max
 2.0   

 Shewhart X  
 VSS X   

EWMA X  
  Sn n1

   Ln n1
  

 
L  

1EMRL  

( Sn , Ln , W, K) 

1EMRL  

( Sn , Ln , W, K) 

1EMRL  

( , ) H  

1EMRL  

  ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) 

 n = 3 

 
2.9236 

24.66 

(1, 30, 1.7949, 2.9235) 

16.72 

(1, 31, 1.8561, 2.9235) 

12.99 

(0.0953, 0.3346) 

9.01 

0.25 (8, 103, 441) (6, 71, 302) (1, 66, 310) (8, 26, 80) 

0.50 (3, 35, 150) (2, 11, 40) (1, 2, 28) (5, 10, 22) 

0.75 (1, 13, 56) (2, 6, 20) (1, 1, 2) (3, 6, 11) 

1.00 (1, 6, 25) (2, 4, 14) (1, 1, 1) (3, 5, 8) 

1.50 (1, 2, 7) (1, 3, 8) (1, 1, 1) (2, 3, 4) 

2.00 (1, 1, 3) (1, 2, 5) (1, 1, 1) (2, 3, 3) 

 n = 5 

 
2.9236 

17.37 

(1, 31, 1.4861, 2.9235) 

12.27 

(1, 31, 1.5128, 2.9235) 

9.76 

(0.1507, 0.3460) 

6.61 

0.25 (6, 75, 322) (5, 44, 186) (1, 41, 188) (6, 19, 59) 

0.50 (2, 20, 83) (2, 7, 22) (1, 2, 13) (3, 7, 15) 

0.75 (1, 7, 27) (2, 4, 12) (1, 1, 2) (2, 4, 8) 

1.00 (1, 3, 11) (2, 3, 9) (1, 1, 1) (2, 3, 5) 

1.50 (1, 1, 3) (1, 2, 6) (1, 1, 1) (2, 2, 3) 

2.00 (1, 1, 2) (1, 2, 4)  (1, 1, 1) (1, 2, 2) 

 n = 7 

 
2.9236 

13.51 

(1, 31, 1.2698, 2.9235) 

9.92 

(1, 31, 1.2895, 2.9235) 

8.07 

(0.2180, 0.3686) 

5.55 

0.25 (5, 58, 248) (4, 32, 135) (1, 29, 135) (4, 15, 50) 

0.50 (1, 13, 54) (2, 5, 15) (1, 2, 9) (3, 5, 12) 

0.75 (1, 4, 16) (2, 3, 9) (1, 1, 2) (2, 3, 6) 

1.00 (1, 2, 7) (2, 3, 7) (1, 1, 1) (2, 2, 4) 

1.50 (1, 1, 2) (1, 2, 5) (1, 1, 1) (1, 2, 2) 

2.00 (1, 1, 1) (1, 2, 3) (1, 1, 1) (1, 1, 2) 

 n = 10 

 
2.9236 

10.36 

(5, 31, 1.2918, 2.9235) 

7.86 

(1, 31, 1.0416, 2.9235) 

6.67 

(0.2560, 0.3412) 

4.28 

0.25 (4, 42, 180) (3, 26, 109) (1, 21, 96) (4, 12, 37) 

0.50 (1, 8, 32) (2, 4, 10) (1, 2, 7) (2, 4, 9) 

0.75 (1, 3, 9) (1, 2, 4) (1, 1, 2) (2, 3, 4) 

1.00 (1, 1, 4) (1, 2, 3) (1, 1, 1) (1, 2, 3) 

1.50 (1, 1, 1) (1, 1, 2) (1, 1, 1) (1, 1, 2) 

2.00 (1, 1, 1) (1, 1, 2) (1, 1, 1) (1, 1, 1) 
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Table D.8: Comparison of the 
1

EMRL  and (   
0.05 1 0.95

, MRL , ) values for 

the Shewhart X , optimal VSS X  and optimal EWMA X  charts, together 

with the charts’ corresponding parameters when n {3, 5, 7, 10}, 

0
EMRL 250 , 

min
 0.1   and 

max
 2.0   

 Shewhart X  
 VSS X   

EWMA X  
  Sn n1

   Ln n1
  

 
L  

1EMRL  

( Sn , Ln , W, K) 

1EMRL  

( Sn , Ln , W, K) 

1EMRL  

( , ) H  

1EMRL  

  ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) 

 n = 3 

 
2.9923 

29.75 

(1, 31, 1.8144, 2.9922) 

19.18 

(1, 31, 1.8516, 2.9922) 

15.53 

(0.1079, 0.3740) 

9.68 

0.25 (10, 125, 539) (7, 82, 351) (1, 78, 362) (8, 28, 92) 

0.50 (4, 41, 177) (2, 11, 42) (1, 2, 29)  (5, 10, 24) 

0.75 (2, 15, 65) (2, 6, 20) (1, 1, 2) (3, 6, 12) 

1.00 (1, 7, 28) (2, 4, 14) (1, 1, 1) (3, 5, 8) 

1.50 (1, 2, 8) (1, 3, 8) (1, 1, 1) (2, 3, 4) 

2.00 (1, 1, 3) (1, 2, 5) (1, 1, 1) (2, 2, 3) 

 n = 5 

 
2.9923 

20.74 

(1, 31, 1.4891, 2.9922) 

14.03 

(1, 31, 1.5104, 2.9922) 

11.52 

(0.1444, 0.3473) 

7.07 

0.25 (7, 90, 389) (5, 51, 215) (1, 47, 217) (6, 20, 63) 

0.50 (2, 23, 97) (2, 7, 22) (1, 2, 14) (3, 7, 16) 

0.75 (1, 8, 31) (2, 4, 12) (1, 1, 2) (3, 4, 8) 

1.00 (1, 3, 12) (2, 3, 9) (1, 1, 1) (2, 3, 5) 

1.50 (1, 1, 3) (1, 2, 6) (1, 1, 1) (2, 2, 3) 

2.00 (1, 1, 2) (1, 2, 4) (1, 1, 1) (1, 2, 2) 

 n = 7 

 
2.9923 

16.22 

(1, 31, 1.2721, 2.9922) 

11.39 

(1, 30, 1.2683, 2.9922) 

9.54 

(0.2141, 0.3747) 

5.88 

0.25 (6, 69, 298) (4, 37, 155) (1, 35, 158) (5, 16, 54) 

0.50 (2, 15, 62) (2, 6, 16) (1, 2, 10) (3, 6, 12) 

0.75 (1, 5, 18) (2, 3, 9) (1, 1, 2) (2, 3, 6) 

1.00 (1, 2, 7) (2, 3, 7) (1, 1, 1) (2, 2, 4) 

1.50 (1, 1, 2) (1, 2, 5) (1, 1, 1) (1, 2, 2) 

2.00 (1, 1, 1) (1, 2, 3) (1, 1, 1) (1, 1, 2) 

 n = 10 

 
2.9923 

12.18 

(5, 31, 1.2942, 2.9922) 

9.12 

(1, 31, 1.0406, 2.9922) 

7.75 

(0.1760, 0.2776) 

4.48 

0.25 (4, 50, 214) (4, 30, 126) (1, 25, 111) (4, 12, 33) 

0.50 (1, 9, 37) (2, 4, 11) (1, 2, 7) (2, 5, 9) 

0.75 (1, 3, 10) (1, 2, 5) (1, 1, 2) (2, 3, 5) 

1.00 (1, 1, 4) (1, 2, 3) (1, 1, 1) (2, 2, 3) 

1.50 (1, 1, 1) (1, 1, 2) (1, 1, 1) (1, 2, 2) 

2.00 (1, 1, 1) (1, 1, 2) (1, 1, 1) (1, 1, 2) 
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Table D.9: Comparison of the 
1

EMRL  and (   
0.05 1 0.95

, MRL , ) values for 

the Shewhart X , optimal VSS X  and optimal EWMA X  charts, together 

with the charts’ corresponding parameters when n {3, 5, 7, 10}, 

0
EMRL 300 , 

min
 0.1   and 

max
 2.0   

 Shewhart X  
 VSS X   

EWMA X  
  Sn n1

   Ln n1
  

 
L  

1EMRL  

( Sn , Ln , W, K) 

1EMRL  

( Sn , Ln , W, K) 

1EMRL  

( , ) H  

1EMRL  

  ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) 

 n = 3 

 
3.0475 

34.42 

(1, 31, 1.8176, 3.0474) 

21.77 

(1, 31, 1.8486, 3.0474) 

17.90 

(0.1072, 0.3820) 

10.60 

0.25 (11, 147, 634) (8, 94, 401) (2, 90, 411) (9, 30, 100) 

0.50 (4, 48, 204) (3, 12, 43) (1, 2, 30) (5, 11, 25) 

0.75 (2, 17, 74) (2, 6, 21) (1, 1, 2) (4, 7, 12) 

1.00 (1, 8, 31) (2, 4, 14) (1, 1, 1) (3, 5, 8) 

1.50 (1, 2, 8) (1, 3, 8) (1, 1, 1) (2, 3, 5) 

2.00 (1, 1, 3) (1, 2, 5) (1, 1, 1) (2, 2, 3) 

 n = 5 

 
3.0475 

24.14 

(1, 31, 1.4910, 3.0474) 

15.75 

(1, 31, 1.5089, 3.0474) 

13.20 

(0.1090, 0.2990) 

7.47 

0.25 (8, 106, 455) (6, 57, 243) (2, 54, 245) (7, 20, 59) 

0.50 (2, 26, 111) (2, 7, 23) (1, 2, 15) (4, 8, 16) 

0.75 (1, 8, 34) (2, 4, 13) (1, 1, 2) (3, 5, 8) 

1.00 (1, 3, 13) (2, 3, 9) (1, 1, 1) (2, 4, 6) 

1.50 (1, 1, 4) (1, 2, 6) (1, 1, 1) (2, 2, 3) 

2.00 (1, 1, 2) (1, 2, 4) (1, 1, 1) (2, 2, 2) 

 n = 7 

 
3.0475 

18.53 

(1, 31, 1.2737, 3.0474) 

12.73 

(1, 31, 1.2868, 3.0474) 

10.87 

(0.1080, 0.2513) 

6.01 

0.25 (6, 81, 347) (5, 42, 175) (2, 38, 174) (6, 16, 42) 

0.50 (2, 17, 70) (2, 6, 16) (1, 2, 10) (4, 6, 12) 

0.75 (1, 5, 20) (2, 3, 9) (1, 1, 2) (3, 4, 7) 

1.00 (1, 2, 8) (2, 3, 7) (1, 1, 1) (2, 3, 4) 

1.50 (1, 1, 2) (1, 2, 5) (1, 1, 1) (2, 2, 3) 

2.00 (1, 1, 1) (1, 2, 3) (1, 1, 1) (1, 2, 2) 

 n = 10 

 
3.0475 

13.88 

(4, 31, 1.2132, 3.0474) 

10.27 

(1, 31, 1.0399, 3.0474) 

8.83 

(0.2219, 0.3276) 

4.90 

0.25 (5, 58, 247) (4, 33, 136) (2, 28, 124) (4, 13, 40) 

0.50 (1, 10, 41) (2, 4, 11) (1, 2, 8) (2, 4, 9) 

0.75 (1, 3, 11) (1, 2, 5) (1, 1, 2) (2, 3, 5) 

1.00 (1, 1, 4) (1, 2, 3) (1, 1, 1) (1, 2, 3) 

1.50 (1, 1, 1) (1, 2, 2) (1, 1, 1) (1, 1, 2) 

2.00 (1, 1, 1) (1, 1, 2) (1, 1, 1) (1, 1, 1) 
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Table D.10: Comparison of the 
1

EMRL  and (   
0.05 1 0.95

, MRL , ) values 

for the Shewhart X , optimal VSS X  and optimal EWMA X  charts, 

together with the charts’ corresponding parameters when n{3, 5, 7, 10}, 

0
EMRL 500 , 

min
 0.1   and 

max
 2.0   

 Shewhart X  
 VSS X   

EWMA X  
  Sn n1

   Ln n1
  

 
L  

1EMRL  

( Sn , Ln , W, K) 

1EMRL  

( Sn , Ln , W, K) 

1EMRL  

( , ) H  

1EMRL  

  ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) ( 0.05 1 0.95, MRL ,  ) 

 n = 3 

 
3.1977 

53.20 

(1, 31, 1.8240, 3.1976) 

31.03 

(1, 31, 1.8427, 3.1976) 

27.07 

(0.0671, 0.3068) 

12.23 

0.25 (18, 232, 1001) (11, 136, 582) (3, 131, 590) (11, 34, 99) 

0.50 (6, 70, 302) (3, 13, 47) (1, 2, 34) (6, 13, 26) 

0.75 (2, 24, 103) (2, 6, 21) (1, 1, 2) (5, 8, 14) 

1.00 (1, 10, 41) (2, 4, 14) (1, 1, 1) (4, 6, 9) 

1.50 (1, 3, 10) (2, 3, 8) (1, 1, 1) (3, 4, 5) 

2.00 (1, 1, 4) (1, 2, 5) (1, 1, 1) (2, 3, 4) 

 n = 5 

 
3.1977 

36.57 

(1, 31, 1.4950, 3.1976) 

22.29 

(1, 31, 1.5057, 3.1976) 

19.68 

(0.1008, 0.3041) 

8.69 

0.25 (13, 163, 704) (7, 81, 343) (2, 76, 343) (8, 24, 68) 

0.50 (3, 37, 158) (2, 8, 25) (1, 2, 17) (5, 9, 17) 

0.75 (1, 11, 46) (2, 4, 13) (1, 1, 2) (3, 5, 9) 

1.00 (1, 4, 17) (2, 3, 9) (1, 1, 1) (3, 4, 6) 

1.50 (1, 1, 4) (2, 2, 6) (1, 1, 1) (2, 3, 4) 

2.00 (1, 1, 2) (1, 2, 4) (1, 1, 1) (2, 2, 3) 

 n = 7 

 
3.1977 

28.05 

(1, 31, 1.2768, 3.1976) 

18.06 

(1, 31, 1.2847, 3.1976) 

16.05 

(0.1044, 0.2625) 

6.77 

0.25 (10, 123, 528) (6, 58, 243) (2, 54, 242) (7, 18, 48) 

0.50 (2, 23, 98) (2, 6, 18) (1, 2, 12) (4, 7, 13) 

0.75 (1, 6, 26) (2, 4, 10) (1, 1, 2) (3, 4, 7) 

1.00 (1, 3, 9) (2, 3, 7) (1, 1, 1) (2, 3, 5) 

1.50 (1, 1, 2) (2, 2, 5) (1, 1, 1) (2, 2, 3) 

2.00 (1, 1, 1) (1, 2, 3) (1, 1, 1) (1, 2, 2) 

 n = 10 

 
3.1977 

20.70 

(1, 31, 1.0326, 3.1976) 

14.38 

(1, 31, 1.0385, 3.1976) 

12.87 

(0.1459, 0.2688) 

5.33 

0.25 (7, 86, 370) (5, 41, 173) (2, 39, 172) (5, 14, 38) 

0.50 (1, 13, 56) (2, 5, 13) (1, 2, 9) (3, 5, 10) 

0.75 (1, 4, 14) (2, 3, 7) (1, 1, 2) (2, 3, 5) 

1.00 (1, 2, 5) (2, 2, 6) (1, 1, 1) (2, 2, 4) 

1.50 (1, 1, 2) (2, 2, 4) (1, 1, 1) (1, 2, 2) 

2.00 (1, 1, 1) (1, 2, 3) (1, 1, 1) (1, 1, 2) 
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D.4 Simulated Dataset for the Illustrative Example  

 

 This appendix provides the complete simulated dataset for the 

illustrative example discussed in Section 4.4 of Chapter 4. The simulated 

dataset for the two optimal MRL-based VSS X  charts with 1 Sn n  and 1 Ln n  

are shown in Tables D.11 and D.12, respectively. The simulated dataset for the 

optimal MRL-based EWMA X  and MRL-based Shewhart X  charts are 

provided in Table D.13. The observations for this example are generated from 

a normal distribution with in-control mean 0 1.5  and in-control standard 

deviation 0 0.008.   The summary statistics for this illustrative example are 

presented in Table 4.5 (see Section 4.4 of Chapter 4).  

 

 

 

 

 

 

 



Table D.11: Dataset for an illustrative example for the VSS X  chart with 
1 S

n n  

Subgroup 

number, i in  
Observations 

 iX  
iZ  

3Sn    21Ln   

1 3 1.50778 1.51327 1.49723        1.50609 1.31921 

2 3 1.49492 1.49641 1.49508        1.49547  0.98050 

3 3 1.48689 1.51443 1.49713        1.49948  0.11230 

4 3 1.47777 1.50172 1.49348        1.49099  1.95040 

5 21    1.49765 1.50375 1.49516 1.50021 1.50251 1.48404 1.49405 1.50016 0.09076 

     1.50431 1.51153 1.50383 1.49848 1.49389 1.50615 1.49875   
     1.50753 1.49814 1.49405 1.49236 1.50361 1.51118 1.50214   

6 3 1.50034 1.49301 1.49602        1.49646  0.76710 

7 3 1.50191 1.49526 1.48782        1.49500  1.08290 

8 3 1.49691 1.49606 1.49827        1.49708  0.63200 

9 3 1.51605 1.49470 1.49454        1.50177 0.38230 

10 3 1.50328 1.49167 1.48987        1.49494  1.09570 

11 3 1.50034 1.49503 1.51114        1.50217 0.46995 

12 3 1.51091 1.50146 1.51394        1.50877 1.89845 

13 21    1.51009 1.50324 1.52403 1.50309 1.49979 1.49623 1.50375 1.50792 4.53809 
     1.51123 1.50087 1.51144 1.50232 1.49967 1.50842 1.51950   

     1.51381 1.51007 1.52469 1.50832 1.50845 1.49547 1.51186   

14 3 1.52123 1.50355 1.50761        1.51080 2.33824 
15 21    1.51613 1.51751 1.50447 1.51511 1.50196 1.50960 1.50561 1.50718 4.11203 

     1.49796 1.50630 1.51613 1.50099 1.51031 1.50805 1.50153   
     1.50832 1.50695 1.51249 1.50144 1.49825 1.51254 1.49912   

16 3 1.50260 1.50931 1.51823        1.51005 2.17500 

17 21    1.50332 1.49479 1.50144 1.49849 1.50007 1.50210 1.50179 1.50434 2.48422 
     1.49923 1.51115 1.50673 1.50613 1.50658 1.49355 1.51114   

     1.51007 1.50853 1.50512 1.51202 1.51154 1.50520 1.50210   

 

 

1
3
0
 



Table D.12: Dataset for an illustrative example for the VSS X  chart with 
1 L

n n  

Subgroup 

number, i in  
Observations  

iX  
iZ  

3Sn   28Ln   

1 28    1.50778 1.51327 1.49723 1.49492 1.49641 1.49508 1.48689 1.51443 1.49713 1.47777 1.49915  0.56467 

     1.50172 1.49348 1.49765 1.50375 1.49516 1.50021 1.50251 1.48404 1.49405 1.50431   

     1.51153 1.50383 1.49848 1.49389 1.50615 1.49875 1.50753 1.49814     

2 3 1.49405 1.49236 1.50361           1.49668  0.71987 

3 3 1.51118 1.50214 1.50034           1.50455 0.98525 

4 3 1.49301 1.49602 1.50191           1.49698  0.65330 

5 3 1.49526 1.48782 1.49691           1.49333  1.44421 

6 3 1.49606 1.49827 1.51605           1.50346 0.74957 

7 3 1.49470 1.49454 1.50328           1.49751  0.53903 

8 3 1.49167 1.48987 1.49434           1.49196  1.74140 

9 3 1.48903 1.50514 1.50491           1.49969  0.06631 

10 3 1.49546 1.50794 1.50409           1.50250 0.54081 
11 3 1.50324 1.52403 1.50309           1.51012 2.19149 

12 28    1.49979 1.49623 1.50375 1.51123 1.50087 1.51144 1.50232 1.49967 1.50842 1.51950 1.50809 5.35426 

     1.51381 1.51007 1.52469 1.50832 1.50845 1.49547 1.51186 1.52123 1.50355 1.50761   
     1.51613 1.51751 1.50447 1.51511 1.50196 1.50960 1.50561 1.49796     

13 28    1.50630 1.51613 1.50099 1.51031 1.50805 1.50153 1.50832 1.50695 1.51249 1.50144 1.50516 3.40988 

     1.49825 1.51254 1.49912 1.50260 1.50931 1.51823 1.50332 1.49479 1.50144 1.49849   
     1.50007 1.50210 1.50179 1.49923 1.51115 1.50673 1.50613 1.50658     

14 28    1.49355 1.51114 1.51007 1.50853 1.50512 1.51202 1.51154 1.50520 1.50210 1.49468 1.50618 4.08790 
     1.51599 1.50758 1.49967 1.51497 1.50522 1.51635 1.50450 1.50775 1.49706 1.50336   

     1.51501 1.50900 1.50384 1.50740 1.50630 1.51080 1.49140 1.50290     

15 28    1.49025 1.49542 1.49945 1.50875 1.51025 1.51843 1.51881 1.48939 1.50913 1.51561 1.50513 3.39162 
     1.50868 1.50893 1.51708 1.50694 1.50788 1.51783 1.51096 1.49864 1.48768 1.49887   

     1.51521 1.49706 1.51095 1.49721 1.49654 1.50231 1.51007 1.49525     

16 28    1.49595 1.51447 1.51265 1.49993 1.51026 1.52694 1.50394 1.50671 1.50447 1.50986 1.50564 3.72983 
     1.50321 1.49733 1.50930 1.49951 1.49547 1.49949 1.49834 1.51021 1.50666 1.49199   

     1.49302 1.50074 1.50470 1.51654 1.51548 1.52003 1.51294 1.49775     

17 28    1.51639 1.49940 1.51209 1.48801 1.50724 1.50899 1.50013 1.49796 1.48615 1.51466 1.50565 3.73851 
     1.50369 1.50079 1.51859 1.50312 1.51547 1.50943 1.48698 1.52028 1.50056 1.50232   

     1.50076 1.50013 1.51135 1.51279 1.51996 1.49982 1.50598 1.51523     

1
3
1
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Table D.13: Dataset for an illustrative example for the EWMA X  and 

Shewhart X  charts 

Subgroup 
number, i 

Observations 
iX  

iZ  
X1 X2 X3 X4 X5 

1 1.50778 1.51327 1.49723 1.49492 1.49641 1.50192 1.50106 

2 1.49508 1.48689 1.51443 1.49713 1.47777 1.49426 1.49732 
3 1.50172 1.49348 1.49765 1.50375 1.49516 1.49835 1.49789 

4 1.50021 1.50251 1.48404 1.49405 1.50431 1.49702 1.49741 

5 1.51153 1.50383 1.49848 1.49389 1.50615 1.50278 1.50036 
6 1.49875 1.50753 1.49814 1.49405 1.49236 1.49817 1.49915 

7 1.50361 1.51118 1.50214 1.50034 1.49301 1.50206 1.50075 

8 1.49602 1.50191 1.49526 1.48782 1.49691 1.49558 1.49791 
9 1.49606 1.49827 1.51605 1.49470 1.49454 1.49993 1.49902 

10 1.50328 1.49167 1.48987 1.49434 1.48903 1.49364 1.49606 

11 1.51114 1.51091 1.50146 1.51394 1.51009 1.50951 1.50346 
12 1.50324 1.52403 1.50309 1.49979 1.49623 1.50528 1.50446 

13 1.50375 1.51123 1.50087 1.51144 1.50232 1.50592 1.50526 

14 1.49967 1.50842 1.51950 1.51381 1.51007 1.51030 1.50803 
15 1.52469 1.50832 1.50845 1.49547 1.51186 1.50976 1.50898 

16 1.52123 1.50355 1.50761 1.51613 1.51751 1.51321 1.51131 

17 1.50447 1.51511 1.50196 1.50960 1.50561 1.50735 1.50913 
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