

EVALUATION OF KNOWLEDGE ENCODED IN DEEP NEURAL NETWORK

IN THE IMPUTATION OF GENE EXPRESSION

BY

CHOW JENN PANG

A PROPOSAL

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology
(Perak Campus)

MAY 2018

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

EVALUATION OF KNOWLEDGE ENCODED IN DEEP NEURAL NETWORK

IN THE IMPUTATION OF GENE EXPRESSION

BY

CHOW JENN PANG

A PROPOSAL

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology
(Perak Campus)

MAY 2018

ii
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “EVALUATION OF KNOWLEDGE ENCODED IN

DEEP NEURAL NETWORK IN THE IMPUTATION OF GENE EXPRESSION” is my

own work except as cited in the references. The report has not been accepted for any degree

and is not being submitted concurrently in candidature for any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

iii
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr. Ng Yen Kaow

for giving me this opportunity to take up this project. I feel grateful that even I have lots of

misunderstanding in the project, his still willing to lead me along the way and inspire me for

new ideas to complete the project. Without his guidance, I would not able to complete this

project.

Besides, I would also like to thanks my friend, Wing Khang, Lai, that have been cooperate with

me all the way long in this project. I would not have complete this project without him. Not to

forget Ling Xi, Cheng from City University of Hong Kong, who has been consistently

providing opinion and feedback on this project, thanks for being so helpful and providing useful

feedback.

Finally, I would like to express my gratitude to my family for their love and supports.

iv
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

ABSTRACT

As deep learning technology are getting advanced and advanced, researchers have start to

proposed to solve gene expression imputation problem with deep neural network. However,

most of the time deep neural network remain a black box algorithm despite it may achieve

outstanding result. Thus, in this project a probability model will be proposed and developed to

investigate the features that have been learn by deep neural network that use for gene

expression imputation.

v
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

TABLE OF CONTENT

TITLE i

DECLARATION OF ORIGINALITY ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ABBREVATIONS viii

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 LITERATURE REVIEW 9

CHAPTER 3 SYSTEM DESIGN 17

CHAPTER 4 METHODOLOGY, TOOLS AND IMPLEMENTATION 21

CHAPTER 5 RESULTS 24

CHAPTER 6 CONCLUSION 26

BIBLIOGRAPHY 27

APPENDIX 29

vi
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 1 DNA transcription and translation. (Austin Community College,

n.d.)

3

Figure 2 Illustration of RNA read alignment (University of Helsinki,

2009)

4

Figure 3 Sample workflow of RNA sequencing and RNA expression

profiling (Han et al.)

5

Figure 4 Typical neural network with 3 hidden layer. (Lee, et al., 2017) 7

Figure 5 Overall workflow MLP-SAE model. (Xie, et al., 2016) 14

Figure 6 True Expression and Predicted Expression of All Genes Using

MLP-SAE with Dropout

15

Figure 7 Architecture of an adversarial autoencoder (Makhzani et al, n.d.) 16

Figure 8 Illustration of output gene expression feature and highly

contributed input gene expression features

17

Figure 9 Proposed base probability model 18

Figure 10 Flowchart for evaluating neural network using proposed

probability model

20

Figure 11 Methodology used for the project 21

vii
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 1 Results for deep neural network 25

viii
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

LIST OF ABBREVATIONS

CNN Convolutional Neural Network

DNA Deoxyribonucleic Acid

GMC Gaussian Mixture Clustering

KNN K-nearest neighbor

NGS Next Generation Sequencing

RNA Ribonucleic Acid

RNN Recurrent Neural Network

SVD Single Value Decomposition

GANs Generative Adversarial Network

ReLU Rectified Linear Unit

MLP-SAE Multilayer Perceptron Stacked Auto-Encoder

GO Gene Ontology

CHAPTER 1. INTRODUCTION

1
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 1. INTRODUCTION

1.1. Problem Statement

RNA (Ribonucleic Acid) is a very important component in living organism. One of its

main role is to transcribe parts of DNA sequences into functional protein within the cells.

Therefore, analysis of RNA would help us understand organism cell activity and for this reason,

RNA expression profiling is under very active research.

In daily life, when an organism encounters a different environment or situation, its

respective cell will produce corresponding protein to respond to the current situation. For

example, human cell will actively produce alcohol dehydrogenase when ethanol concentration

is increased in the human inner-body environment (Edenburg, 2007). Hence an expression

profile that demonstrates an elevated RNA expression that corresponding to alcohol

dehydrogenase may indicate that the subject was consuming alcoholic drink when the sample

was taken. Therefore, RNA expression profiling is a useful technique to study the activity of

gene under different conditions or environments. Some useful application of RNA expression

profiling will be cancer classification, identification of gene that is useful in disease diagnosis

and therapy, etc. (Liew et al., 14 December 2010).

 Researchers have developed many different methods to identify gene sequences, e.g.

Sanger Sequencing, Shotgun Sequencing, Illumina (Solexa) sequencing, SOLiD Sequencing,

etc. However, RNA sequence data retrieved from gene sequencing might sometimes suffer

from missing value. When dealing with gene expression profiling, missing values are always a

big challenge to solve, as many known methods to analyze RNA sequence data require a

complete RNA sequence. Missing values in RNA sequence could adversely affect gene

expression profiling output. Therefore, a good method to impute the missing gene expression

values can be tremendously helpful to ensure the gene expression profiling analysis are

accurate and precise, to allow better analysis. On the other hand, deep learning techniques are

achieving outstanding results in several real world problem such as object detection and

classification, computer vision and etc. Researchers have started to propose deep learning

neural network to solve the problem of missing and incorrect gene expression value, where the

proposed deep learning neural network will take in gene expression data from input, and

produce imputed gene expression data as the output. However, even though these techniques

CHAPTER 1. INTRODUCTION

2
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

are getting advanced, deep learning neural network remain a black box algorithm to most

researchers. Even through neural network may show outstanding results when it tried to solve

missing and incorrect gene expression value problem, researchers might not understand how

actually neural network impute them. Therefore in this project, we would like to investigate

and analyze the performance of deep neural network used for gene expression imputation and

uncover the underlying feature that deep neural network used for gene expression imputation.

1.2. Project Scope

In this project, a probability model will be proposed and developed to investigate the

features that deep neural network learned when the deep neural network is trained to impute

missing and incorrect gene expression value problem.

1.3. Project Objective and Contribution

This project aims to study the behavior of deep neural network in gene expression

imputation. A probability model will be proposed and developed in order to investigate the

features that deep neural network utilize in producing its outcome. The probability model will

allow researchers to gain more understanding on how the neural network performs the gene

expression imputation, and may help in improve future training of such networks.

1.5. Project Background

In living organism, the most important component inside living cell is the DNA. DNA

resides inside cell nucleus, and is made up of four base, namely Adenine, Thymine, Cytosine,

and Guanine. DNA stores all the information about the living organism, which makes them in

charge in almost everything about living organisms, such as growth, development,

reproduction, functioning, etc. One of the most important behaviors of DNA is to produce

functional proteins to assist in cell activities. Whenever the cell is required to produce a new

protein, the DNA inside the cell nucleus will be responsible in transforming the information in

the cell into the required protein, through the processes of transcription and translation.

 According to the Central Dogma of cell biology, the information required to produce

new protein are passed from DNA to RNA, and RNA will move out of nucleus and assembly

into new protein according to the information passed from the DNA. The process of producing

CHAPTER 1. INTRODUCTION

3
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

new protein from DNA to protein involves the transcription and translation of genes. Generally,

in the process of producing a new protein, the first step is to transfer the information required

to RNA. This process is known as transcription. In transcription, an enzyme named RNA

polymerase will bind to the correct DNA, and it will moving from the beginning of the gene

toward the end of gene. During the transcription process, a chain of RNA will be formed, as an

RNA polymerase make a single step on the DNA nucleotide, a complement RNA base will be

added on to the RNA sequence. The process will continue until the RNA polymerase reach the

end part of the DNA. Then, the RNA polymerase will detach from the DNA, and the formed

RNA sequence will be moved out from the nucleus and become ready to translate into a protein.

After the RNA sequence moves out from the nucleus, the RNA sequence will be used to form

a new protein, through the process of translation. In the process of translation, the nucleotide

on RNA will be grouped into a group of three nucleotide, also known as triplet. The three

nucleotide in a single group will be responsible to match with an amino acid. And traverse

through down the RNA sequence, a sequence of amino acid will be formed up, and finally it

will formed a new protein. At the last stage in translation, the RNA sequence is translated into

a new protein. The process occur in the Central Dogma that produce protein also known as

gene expression (Peter, et al., 2013).

 After understand the process of transcription and translation in organism cell,

researchers came out with a new method to analyze cell activity using DNA and RNA, known

as gene expression profiling. In gene expression profiling, several processes will be conducted

Figure 1: DNA transcription and translation. (Austin Community College, n.d.)

CHAPTER 1. INTRODUCTION

4
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

to analyze the gene expression. Firstly, the desired RNA will first be preprocessed through

preparation, fragmentation, purification, amplification, and lastly sequencing to obtain the

RNA sequence. Also, after obtaining the RNA sequence data, it may undergo further

processing to enhance its quality before the next step. At present, the most often used

sequencing technique is high throughput sequencing, also known as Next Generation

Sequencing (NGS). In next generation sequencing, the long RNA will cleaved into multiple

short sequence, and each sequence will then pass through machine to identify the RNA

sequence independently. By doing so, it allows the sequencing of RNA to be parallelized, thus

achieving fast, effective sequencing, and at the same time reducing the cost of sequencing. For

example, in Illumina sequencing the long RNA will be cleaved into 100-150 base pair per read,

and each read will be passed to a machine to identify the sequence (EMBL-EBI, 2018).

 After the RNA sequence data is prepared well, the next step is to align and map the

short read onto a reference genome. In this step, each short read obtained is aligned back onto

reference genome in multiple location in the genome if the short read sequence is the same as

genome sequence in the genome location.

Moving on, after the alignment has been done, the next step will be to count the number

of RNA reads that are mapped to a particular gene. This process is also known as gene

expression profiling. A gene expression value is basically just the number of RNA read on a

particular gene. When a gene is expressed actively, more RNA sequence will be produced from

that gene, hence the number of reads would increase. This is how researchers can use gene

expression profiling to detect the gene activity inside a cell. After obtaining the count value,

normalization could be done on the gene expression value. Normalization is usually performed

to modify the gene expressions into values relative to each other’s.

 After the gene expression values are obtain, others analysis could take place to analyze

the RNA sequence. For example, one of the most common analyses will be differential gene

Figure 2: Illustration of RNA read alignment. (University of Helsinki, 2009)

CHAPTER 1. INTRODUCTION

5
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

expression. In this analysis, the gene expression value from the same genomic sequence are

collected under different condition, such as under normal condition and under therapy

condition. After the gene expression value are collected from different conditions, the

difference between the gene expression value could be determine, so that researchers could

analyze which gene are relatively active when the patient in under therapy, and researchers

could extract the active gene and analyze the functionality of that gene toward patient disease

(Han et al., 2015).

In this project I use a classification of genes known as GO terms. A go term, or gene

ontology term, is an initiative developed by biologists that intent to integrate the representation

of all gene and gene product characteristic across all species. In gene ontology, biologists try

Figure 3: Sample workflow of RNA sequencing and RNA expression profiling. (Han et al.)

CHAPTER 1. INTRODUCTION

6
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

to assign different labels to each gene according to their functionalities, characteristic, cell

activities and etc. Go terms are mainly assigned based on three different domain, which is

cellular component, molecular function and also biological process. For example, one can

imagine go term as label and genre for video such as funny, horror, action and etc. A gene may

have one or multiple go terms, or no go term at all. In fact, in human gene, more than half of

the genes do not contain go term. Gene with the same pathway are like videos of the same

genre; they will be assigned the same go term. Some examples of go terms are GO:0022900

for electron transport chain, and GO:0020037 for heme binding.

Rapid development in artificial intelligence, especially deep learning technique

introduce a new opportunity in developing effective alternative method to solve a lot of real

world problem. Prior to deep learning it was machine learning that first appear in the field of

artificial intelligence. Machine learning is subset of artificial intelligence, which defined as the

method to identify some pattern from input data, and could be used to predict future value and

allow decision making under certain circumstances (Lee et al., 2017). Machine learning is a

data driven approach of analyzing past data to obtain some model which can be utilized to

predict future data. They can be roughly categorized into two categories, namely supervised

learning and unsupervised learning. In supervised learning, the data used is labeled. Examples

of supervised learning are, for instance, prediction of house prices given the house size, or

classification of data into categories. In supervised learning, each input data is prepared with a

corresponding label, which the learning algorithm is expected to produce. If the output label is

continuous number, then the supervised learning is known as regression; the learning of

category output label such as “yes” and “no” is known as classification. On the other hand,

unsupervised learning did not have output label for the input data, but the learning algorithm

is used to find the hidden structure or patterns that exist in the input data. For example, the

problem of clustering requires the machine to group the input data into several groups without

any associated label (Lee et al., 2017).

Many machine learning method suffer from the problem of feature selection. This

problem is as follows. The process of machine learning is separated into two phases: training

phase and testing phase. In the training phase of machine learning, the pattern inside the input

data will be identified, and a model will be built based on the input data pattern; while in the

testing phase, the trained model will be used to predict the output value based on the input.

CHAPTER 1. INTRODUCTION

7
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Many machine learning algorithms require the input features to be pre-determined before

training the data model. In another words, the data input into the machine learning algorithm

must be extracted, pre-processed and filtered manually from the raw input. If the input feature

was not pre-processed well, it might affect the performance of the machine learning algorithm.

It typically requires a very long time to extract useful features from raw data before input into

the learning algorithm, especially when dealing with complicated input such as images (Dong

et al., n. d.). This problem is not present in the learning algorithm known as deep learning.

Deep learning, or neural network, was inspired by the processes in the human neural

system. While the human brain consists of neurons, a neural network is made up of artificial

neurons, each which consists of a set of weights and biases which are multiplied to the inputs,

and each generates an activation value. While a single neuron itself have limited function, the

combination of multiple neurons into a single neural network can form a very complex model.

In deep learning, most of the neural networks consist of multiple layers: the input layer,

intermediate hidden layers, and the output layer. Each layer of neural network contains a list

of neurons, and the neurons are connected to neurons in the next layer. The input layer are the

features used to train the neural network, and the output layer output the desired result of the

neural network. In between, the hidden layer receives sets of input from the previous layer, and

propagate the activation value through the equation:

𝛼 = 𝜎(𝑤்𝑥 + 𝑏)

where w is the weight, x is the input from previous layer neuron, b is the bias, and σ as the

transfer function. The transfer function σ in a deep neural network is typically a ReLU function

Figure 4. Typical neural network with 3 hidden layer. (Lee, et al., 2017)

CHAPTER 1. INTRODUCTION

8
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

or a Leaky ReLU function. Besides that, maximum likelihood with stochastic gradient descent

is the most popular method to fit the parameter w and b to the training data. By combining

neurons through multiple layers, the neural network can perform well and learn complex data

model (Litjens et al., 2017).

𝑅𝑒𝐿𝑈 , 𝑆(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥(𝛼𝑥, 𝑥)

CHAPTER 2. LITERATURE REVIEW

9
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 2. LITERATURE REVIEW

 Convolutional Neural Network (CNN) is a famous deep learning architecture used for

image recognition and classification problem. In the past few years, CNNs have successfully

outperformed traditional image processing technique in image classification.

Although neural networks perform well in general, their content are often difficult to

interpret, resulting in the trained networks being treated as black box algorithms to researchers.

In 2014, Simonyan, Vedaldi and Zisserman proposed two methods to visualize the information

captured inside the convolutional neural network. Firstly, the first method proposed in the paper

is class model visualization. This visualization method is achieve by generating an image that

maximizes the output score of neural network. In this method, the weight and parameter in

neural network is fixed, while the output score of neural network is back-propagated with

respect to the input image. By getting the gradient of output score with respect to input image,

one can apply gradient descent on the input image to obtain a local maxima input image that

maximizes the output score, hence the information that trigger the neural network the most can

be visualized as an image, thus allowing researchers to understand more about the features that

neural network learn.

 Apart from that, the paper also suggested another visualization method through saliency

map, known as image-specific class saliency visualization. Instead of determining the input

image that maximizes the output score, this visualization method is trying to determine which

feature in input image that contributes to the output score, and hence to determine the feature

learned by the neural network. Hence in this method, the output score is differentiated with

respect to the input image, and the features that contribute the most to the output score is can

be determined by finding the features that have the highest absolute gradient. In other word, if

an input feature contains high gradient when we differentiate the output score with respect to

the input image, it indicates that this input feature have a huge impact to the output score.

Saliency map is generated by obtaining the gradient of each input feature from the output score.

By obtaining the saliency map, one can discover the features that actually contribute the most

to the image classification and visualize the features that have been learned by neural network.

From the saliency map obtained, it can be used for object localization as features with high

gradient indicate are the ones that are important for the classification.

CHAPTER 2. LITERATURE REVIEW

10
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

 The learning task considered in this project is that of imputation. More specifically, this

project studies the imputation of gene expression values that are missing or incorrect. Several

researchers have proposed different methods to impute correct gene expression value from the

incorrect or missing gene expression value. In 2010, Liew, Law and Yan introduced several

methods to impute missing value for micro-array technology. Although micro-array and RNA

sequencing are different technology that try to achieve the same thing, the method used to

impute missing value in micro-array could be used as a references in RNA sequencing data.

 In gene expression profiling, the result from the experiment would be a large 2D matrix

that keeps the expression values under each condition as a row in the matrix, and the expression

values of each gene as a column. Hence each matrix element Yij denotes the gene expression

value for gene j under condition i. As proposed by Liew et al., there are useful information

available inside the gene expression matrix. The useful information available is the correlation

structure in the entries of the gene expression matrix. Correlation exists in the matrix in terms

of rows and columns. As the gene expressions are obtained from the same gene sequence under

different conditions, the cellular activity should retain a minimal relationship that forms a

correlation between each row in the matrix. Similarly, a correlation should also exist between

columns in the matrix as the gene are expected to display similar characteristics under similar

condition. Hence, it is possible to impute the missing gene expression values from neighboring

gene expression value as correlation exist between row and column in the matrix.

 As discussed by Liew et al, there are four approaches that can be used to impute missing

values in gene expression matrix, which is global, local, hybrid and knowledge assisted

approach. Firstly, global approach make use of correlation information from the global matrix.

Global approach algorithm derive correlation from the whole matrix, and impute the missing

value using the global relation derived. Known algorithm that categorized as global approach

are SVD imputation and Bayesian principal component analysis. SVD imputation will make

use of eigengenes which is a set of mutually orthogonal expression pattern that can be linearly

combined to predict the expression of all gene in the RNA sequence. By obtaining the

eigengenes, SVD imputation imputes the missing gene expression value by regressing the gene

against k most significant eigengenes and linearly combine the k eigengenes through the

coefficient of the regression. Besides SVD impute, Bayesian principal component analysis

expressed the N-dimensional matrix into a linear combination of K principal axis vector as:

CHAPTER 2. LITERATURE REVIEW

11
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

where wl is the score factor and ε is the residual error. The score factor and residual error are

then treated as normally distributed random variables in the PCA probabilistic model. After

that, an Expectation Maximization-like algorithm will be used to predict he model parameter

and impute the missing values. Although global approach works in several situations, the

authors of the paper mentioned that global approach will likely have poor performance when

the expression matrix does not contain a global correlation structure among the elements in the

matrix, or when the correlation information only exhibits locally within neighboring elements.

Therefore, another approach, the local approach is developed to impute the missing expression

value through the neighboring information.

 In the local approach to impute expression value, the algorithm only makes use of

locally similarity in the matrix as model. Some well-known algorithms that are categorized in

this category will be K-nearest neighbor imputation, least square imputation and local least

square imputation. Firstly, K-nearest neighbor imputation (KNN impute) make use of pair-

wise information between the missing value gene and the K nearest references gene to

determine the missing value. In KNN impute, the missing value in the target gene is imputed

as the weighted average of the K reference jth component, where the weights for the j

component are set inversely proportional to the Euclidean distance between the j component

and the missing value gene. According to Liew et al., the performance of KNN impute produce

very good results when the local correlation between the cells are very strong. Besides KNN

impute, several local approach imputation algorithms make use of the idea of least square

regression to impute the missing gene expression. For example, in the least square imputation

method, a linear regression model are used to model the missing value gene with other

references gene.

 Firstly, least square imputation will first select the K most correlated gene according to

Pearson correlation values, and for each of the K most correlated gene, a missing values is

estimated from it through regression. After K missing values are obtained from regression, the

K missing value is then linearly combined to form the final estimation value. In least square

imputation, the row and column correlation structure are also considered to increase the

CHAPTER 2. LITERATURE REVIEW

12
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

accuracy. Another method, local least square imputation uses multiple regression model to

impute the missing value from reference gene.

 In gene expression matrix, if the data set was homogeneous, then the correlation

information should exist globally in the matrix hence global approach algorithms would

perform better. If the data set was heterogeneous, local approaches would perform better than

global approach as correlation only exist locally in the matrix entries. Therefore, as both global

approach and local approach illustrate that both of them have their own advantage and

disadvantage on different kind of gene data, hybrid approach has been suggested so that the

hybrid method would work well under different data set. LinCmb is such a hybrid method that

capture the global and local correlation information and used it to impute the missing

expression value. In LinCmb, five different imputation method are combined together to

impute the missing value, which is row average, KNN impute, SVD impute, Bayesian principle

component analysis and GMC impute. Among these five imputation methods, row average,

KNN impute and GMC impute make use of local correlation information to output the missing

value, whereas the other two methods, SVD impute and Bayesian principal component analysis

make use of global correlation information to impute the missing values. After obtaining each

missing value from the five methods, LinCmb convexly combines the missing value imputed

through a set of weights. For the weight used in combining the imputed value from five

different method, LinCmb first generates fake entries in the matrix where the value is not

missing. The five imputation methods are used to impute the values at some known entries in

the matrix, then least square regression is performed on the predicted values and the actual

values. The optimal weight is obtain by averaging all the weights in 30 iterations. After the

optimal weights have been obtain, LinCmb will be run on actual missing expression values,

and the imputed output from all five methods will be convexly combine using the optimal

weights.

 Lastly, Liew et al. also suggested that knowledge assisted approach in imputing missing

expression value, where this approach suggested that domain knowledge and external

information about the gene expression experiment could be integrated into the process of

imputation such that the output of the imputation will be much more accurate. For example,

knowledge about the biomolecular process, regulatory mechanism inside cell activity, others

external knowledge for the data sets, can all be used to give a hint on the process of imputation

CHAPTER 2. LITERATURE REVIEW

13
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

such that approximation about the missing expression value, and the exact genes inside the

expression matrix are highly correlated with the missing value gene and etc. Therefore, by

involving domain knowledge and external information into the imputation process, the

accuracy of imputation would be much more promising. (Liew et al., 2010)

 In 2013, Baghfalaki et al. proposed their study on missing value imputation on RNA

sequence data by using statistical models. In this study, several statistical models were used to

impute the missing expression value in RNA sequence data. Firstly, Baghfalaki et al. proposed

the use of regression model. In the regression model, the missing values are imputed with the

predicted score from a regression model. The method would first find K most correlated gene

with the missing value gene, the K most correlated gene would then be fitted into a regression

model, and the fitted regression model will then be used to impute the missing value from the

expression value. In this regression model, expectation maximization approach will be used to

determine the parameter of the regression model. Another statistical approach discussed is

based on Poisson mixture. In this statistical model, the Poisson mixture model is used to cluster

the RNA sequence data and predict the missing expression values. Similar to the regression

model, Poisson mixture models also used expectation maximization approach to estimate the

parameter and the clustering of each gene. After parameter estimation, one can use Integrated

Complete Likelihood and Bayesian information criterion to determine the number of clusters

for the RNA sequence data. In order to use the Poisson mixture model to impute missing

expression values, the RNA sequence data will first be clustered based on the parameter

determine above, then for each missing value, it will be imputed as the mean value of all

available gene in the same cluster.

 Another regression model discussed is the Bayesian Poisson regression model. In this

model, a Bayesian approach will first be used to estimate the parameter for the model, and then

the Poisson imputation approach will fit the Poisson model and calculate the posterior mean

and posterior variance to determine the parameter for the model. After the parameter has been

determine, the Bayesian Poisson model will then be used to impute the missing value. Other

approach such as quasi-Poisson approach used quasi-Poisson family instead of Poisson family

to estimate the parameter.

CHAPTER 2. LITERATURE REVIEW

14
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Lastly, Baghfalaki et al. also discussed using Bayesian generalized linear model to impute

missing expression value. In this model, a generalized linear model with independent normal t

or Cauchy prior distribution for the coefficient will be used to impute the missing value in the

expression matrix. To apply this model, the model should first generate an impute matrix, then

iteratively and randomly impute expression value using regression model to the missing value

entries, until it reaches the approximate convergence in the expression matrix. In addition, the

concept of multiple imputation were also discussed in the paper, where it suggested that instead

of imputing the expression value one by one, the imputation method may impute multiple

missing values at the same time (Liew, et al., 2013).

 In 2016, Xie et al. proposed the use of deep auto-encoder in gene expression prediction.

In the paper, they developed a multilayer perceptron stacked auto-encoder to predict the gene

expression value. The multilayer perceptron stacked auto-encoder (MLP-SAE) model consists

of four layer, an input layer, two hidden auto-encoder layer, and lastly the output layer, as

shown in Figure below.

Figure 5. Overall workflow MLP-SAE model. (Xie, et al., 2016)

CHAPTER 2. LITERATURE REVIEW

15
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

In the model, the input was preprocessed before being fed into the neural network. For

the hidden layer stacked denoising auto-encoder is used. Also, since this neural network is

required to predict the gene expression value which is quantitative, a regression layer is used

as the output layer. Dropout was used in the model to ensure that no over-fitting will occur.

That is, in every training iteration some of the functional units in the neural network are

randomly chosen to be temporally disabled for training. Neural networks that apply dropout

often achieve higher model performance and are also able to avoid over-fitting. Xie et al.

showed that their model works better with dropout applied. By using their model with dropout

technique, Xie et al. used the model on predicting gene expression, and showed that their model

was able to predict the gene expression values close to the true values, as shown in Figure 8.

Therefore, this model might be able to become a starting point in constructing a model to

impute the RNA gene expression value.

 It is worth mentioning that some researchers have proposed a different kind of auto-

encoder, known as the adversarial auto-encoder, which adapted the characteristic of Generative

Adversarial Network (GANs) neural network. As proposed by Goodfellow et al. in 2014,

GANs is a special kind of neural network that consists of two competitive components in the

neural network: a generative model and a discriminative model. The discriminative model is a

neural network that computes the probability that the incoming sample belongs to the true

sample, but not from the sample generated by the generator neural network. In contrast, the

generator model is another neural network that is trained to produce sample that the

discriminator model couldn’t differentiate from the true sample. By having two competitive

components in the neural network, the performance of both discriminator and generator will

Figure 6. True Expression and Predicted Expression of All Genes Using MLP-SAE with Dropout
(Xie, et al., 2016)

CHAPTER 2. LITERATURE REVIEW

16
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

keep improving, until finally a generator model that is able to produce highly likely sample

from the input sample is obtained. As proposed in the paper from Makhzani et al., adversarial

auto-encoder can be achieved by using auto-encoder in GANs where the auto-encoder is the

generator that tries to produce input sample that are difficult to be distinguished from the true

sample, and another adversarial neural network that act as the discriminator to differentiate the

sample between true sample and sample from generator.

Figure 7. Architecture of an adversarial autoencoder (Makhzani et al, n.d.)

CHAPTER 3. SYSTEM DESIGN

17
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 3. SYSTEM DESIGN

 It is natural to expect that an input gene expression feature that is highly related to an

output gene in terms of some biological process should demonstrate higher influence over that

output expression values in the learned model. In this chapter, I will develop a model to test

this hypothesis. To investigate this possibility, one needs to address the following two

relationships:

(I) Biological relation between the input gene expression and the output gene expression

(II) The influence that the input gene expression has on the output gene expression in the

learned model.

I use the number of go terms shared by the gene of the input expression and that of the

output expression to capture the relationship required in (I). To capture (II), the gradient

between the gene of the input expression and the gene of the output expression can be used. To

show the hypothesis, it suffices that one shows that the learned model demonstrate a correlation

between (I) and (II) that is above chance. Therefore, a hypothesis testing will be conducted,

with the null hypothesis and alternative hypothesis defined as

 H0: The model learned demonstrate a relationship between (I) and (II) within chance.

H1: The model learned shows high correlation between (I) and (II) beyond the

probability dictated by chance alone.

Figure 8. Illustration of output gene expression feature and highly contributed input gene

expression features

CHAPTER 3. SYSTEM DESIGN

18
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

 I first establish some basic probabilities for hypothesis testing. Consider the probability

that at least q out of k gene expression features randomly chosen output of n gene expression

features share at least x go terms with the output gene expression. To simplify this calculation

we further assume that m out of the n genes share at least x go terms with the output gene

expression features. That is,

n = the total number of gene expression feature

k = the number of gene expression features

q = the number of gene expression features out of the chosen k gene expression

features that share at least x common go term with the output gene (q  k)

x = the number of common go terms between input gene expression feature and

output gene expression feature

m = the number of gene expression features from all input gene expression features

that have at least x common go terms with gene of the output expression

The case where exactly q out of k gene expression features share at least x go terms with the

output can is given by
ቀ

௠
௤ ቁቀ

௡ି௠
௞ି௤ ቁ

ቀ
௡
௞ቁ

, as demonstrated in the figure below.

Since we want at least q gene expression features, the probability will range over j from q to k,

giving us 𝑝 = ∑
ቀ

௠
௝ ቁቀ

௡ି௠
௞ି௝ ቁ

ቀ
௡
௞ቁ

௞
௝ୀ௤ .

Figure 9. Proposed base probability model

CHAPTER 3. SYSTEM DESIGN

19
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

 Our aim is to compare this probability, where the k genes are chosen randomly, with

the case where we choose the top k genes according to the gradients encoded in the learned

model. (To simplify this comparison we fix q and x to 1, and let k =10. More on this in the

Results section.)

However, one parameter remains variable across different output genes, namely, m. To

remedy this variation we choose output genes that has the same m and only compare the

probabilities of these genes. For this set of genes, it clear that they yield the same p. Assuming

that there are a total r such genes, the probability that s out of these r genes used gene expression

features that share go terms with their input genes would be ቀ
𝑟
𝑠

ቁ (𝑝)௦(1 − 𝑝)௥ି௦, a binomial

distribution. This gives us the distribution of the null hypothesis.

 We now describe how we determine the k genes from the learned model. These k genes

are the ones which has the most influence on the output gene expression according to the

learned model. In order to determine these highly influential input gene expression features for

each output gene expression feature, the concept of saliency map is applied where for each

output gene expression feature, back-propagation is done on every single output expression

feature to input gene expression feature to obtain the gradient of each input gene expression

feature toward the single output gene expression feature. Hence, the highly contributed input

gene expression can be selected as the input gene expression feature that have the highest

absolute gradient value, also known as top absolute gradient gene expression feature. By

obtaining the top absolute gradient gene expression features, the top absolute gradient gene

expression features can be used to determine whether the output gene expression features used

gene expression features with same go term for imputation. Finally, by counting the number of

output gene expression features used gene expression with common go term for imputation as

test-statistic, the test-statistic can be applied in the formula to obtain the p-value used for

hypothesis testing.

CHAPTER 3. SYSTEM DESIGN

20
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Figure 10. Flowchart for evaluating neural network using proposed probability model

CHAPTER 4. METHODOLOGY, TOOLS AND IMPLEMENTATION

21
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 4. METHODOLOGY, TOOLS AND IMPLEMENTATION

4.1. Methodology

 In order to achieve this project in a reasonable time, a methodology has been proposed

to accomplish the project.

 Firstly, dataset like go terms are collect and download from the Internet, and analysis

have been conducted on the data. Next, existing method such as saliency map, neural network

and etc. have been study for project purpose. Moving on, the base probability model and the

binomial distribution model have been designed and developed. The probability model is

implemented and it is used to analyze neural network. Lastly, a report have been written.

Figure 11. Methodology used for the project

CHAPTER 4. METHODOLOGY, TOOLS AND IMPLEMENTATION

22
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

4.2. Tools

 Throughout the project, R programming language is used to prepare dataset such as

download go terms. R library biomaRt is used to download go term for each gene expression

feature from Internet. Besides, Python programming language is used to implement the

probability model. PyTorch Python library is used for neural network implementation.

4.3. Implementation

 In this project, several Python script is used in this project. Firstly,

base_probability_model.py is used to implement and generate the base probability model,

providing the parameters n and k. The generated probability model will be store in a file for

future use using Python pickle library. The generated probability model is store in the following

format.

 Loading the file into Python return a Python dictionary that store base probability model

for each gene expression features.

 Gene id such as ENSG00000223972 is used as the key to access the base probability

model for each gene, and each base probability model is a Python dictionary that store

the information as

 common_go_term_count

A list that store the number of gene expression features sharing ≥ x common go

term with the gene expression feature. For example,

data['ENSG00000223972']['common_go_term_count'][x] return a integer that

tells the number of gene expression features that shares x or more go term with

gene ENSG00000223972

 pdf

A two-dimensional list that store the base probability model P(n, k, q, x). In the

two-dimensional list, the row corresponding to value of q and column

corresponding to value of x in base probability model P(n, k, q, x). For example,

data['ENSG00000223972']['pdf'][q][x] tells the value of P(n, k, q, x).

 cdf

CHAPTER 4. METHODOLOGY, TOOLS AND IMPLEMENTATION

23
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

a two-dimensional list that store the cumulative base probability model,

෌ 𝑃(𝑛, 𝑘, 𝑖, 𝑥)
௞

௜ୀ௤
. In the two-dimensional list, the row corresponding to value

of q and column corresponding to value of x in base probability model P(n, k,

q, x). For example, data['ENSG00000223972']['cdf'][q][x] tells the value of

∑ 𝑃(𝑛, 𝑘, 𝑖, 𝑥)௞
௜ୀ௤ .

Next, saliency.py is used to generate gradient and determine top k absolute gradient gene

expression feature, providing neural network model file path and value of k. The top k absolute

gradient gene expression feature will be store in a file for future use using Python pickle library,

and having format as follow.

 Loading the file into Python return a Python list that store top absolute gradient gene

features for each gene expression features.

 Each element in the list will be a Python dictionary that store the information of top

absolute gradient gene expression features as

 min : the minimum value for all the gene expression features gradient

 generated

 max : the maximum value for all the gene expression features gradient

 generated

 mean : the mean value for all the gene expression features gradient generated

 sum : the sum for all the gene expression features gradient generated

 idx : the index of gene id that have top k highest absolute gradient value, in

 ascending order

 val : the gradient value corresponding to the gene expression features index

 in 'idx'

Lastly, Python script evaluate_nn.py is used to evaluate neural network and determine

the test-statistic and p-value for a given neural network, providing the file generated from

saliency.py and base_probability_model.py, together with the value of k, q and x for P(n, k, q,

x). The script will load the file and calculate the test-statistic and p-value for the neural network.

CHAPTER 5. RESULTS

24
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 5. RESULTS

This chapter shows the probability calculated from the learned model, and demonstrate

how the values suggest that the relationship between the input and output gene expressions

encoded in the learned model to be non-random.

There are a total of n = 58243 gene expression features in the dataset. To simplify

calculation, I let k=10, indicate that the top 10 absolute gradient input gene expression features

will be used to analyze the go term relationship with the output gene expression feature.

Furthermore, q is set to 1, indicating that at least 1 out of 10 of the top absolute gradient input

gene expression features will have to have at least x common go terms to be considered as the

output gene expression features used input gene expression features with common go term for

imputation. Finally, x is also set to 1 as it is to determine whether the top absolute gradient

input gene expression feature have common go term with the output gene expression feature.

Therefore, the base probability derived will be

𝑝 = ෍
ቀ

𝑚
𝑗 ቁ ൬

58243 − 𝑚
10 − 𝑗

൰

ቀ
58243

10
ቁ

ଵ଴

௝ୀଵ

 At this point, the calculation can be simplified if m is fixed. However, the value of each

m depends on the output gene, and these m values is not fixed in general. Hence, in order to

simplify the problem, instead of using all gene expression features, I choose only the genes of

the same value of m. To find a suitable value of m, I calculated the number of genes of different

values of m and identified the m value with the most number of genes, that is, the group with

the largest number of gene expression features. This corresponds to a value of m = 8340, which

includes 352 gene expression features. This yields the probability

𝑝 = ෍
൬

8340
𝑗

൰ ൬
58243 − 8340

10 − 𝑗
൰

ቀ
58243

10
ቁ

ଵ଴

௝ୀଵ

 = 0.7868

 Hence, the binomial distribution probability for hypothesis testing is

ቀ
352

𝑥
ቁ 0.7868௫(0.2132)ଷହଶି௫

CHAPTER 5. RESULTS

25
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

giving the cumulative density function

෍ ቀ
352

𝑥
ቁ

ଷହଶ

௫ୀ௧

0.7868௫(0.2132)ଷହଶ

 To evaluate each deep neural network, each output gene expression features is back-

propagated to obtain the top 10 absolute gradient gene expression features. Then, the output

gene expression features is determine to have used highly contributed input gene expression

features with common go term for imputation. Finally, the number of output gene expression

features that used highly contributed input gene expression features with common go term for

imputation is counted and is used as test-statistic to determine the p-value.

Model Loss Test-statistic (t) p-value

FC_1_1000 1.42 310 3.291e-06

FC_1_2000 1.39 328 6.998e-14

FC_1_2500 1.38 324 9.326e-12

CONV_c3_h1000_4_retrain 1.27 352 2.216e-37

CONV_c3_h1000_5_retrain 1.31 350 1.026e-33

 From the results, it shows that neural network with the least loss obtain relatively

smaller p-value, compare to neural network with higher loss.

 The p-values for all the models are significantly small for us to reject the null hypothesis.

Therefore, this lends evidence to the hypothesis that the learned model is not random in terms

of the go terms. That is, the gene expression features have relevant common go terms with

highly contributed input gene expression feature, indicating that the neural network does utilize

input gene expression feature from same go term to impute output gene expression value.

Table 1. Results for deep neural network

CHAPTER 6. CONCLUSION

26
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

CHAPTER 6. CONCLUSION

 In conclusion, a probability model have been proposed and developed to investigate the

features learn by neural network for gene expression imputation. Through the probability

model, we have successfully shown that the neural network does utilize input gene expression

feature with same go term to impute the gene expression value. Hence, by developing this

probability model, researchers in the future may make use of this probability model to gain

more understanding about the neural network and how the neural network learn features to

perform gene imputation. Besides, gaining such understanding on features learn by neural

network allow researchers to train deep neural network more effectively, such as drop-out can

be applied on input gene expression features that do not have common go terms to further

enhance the results of neural network. Moreover, as this project only consider a small subset

of gene expression feature to investigate the features learn by neural network, future

improvement can be done by develop a more robust and comprehensive probability model to

include all gene expression feature for evaluation. Lastly, with this probability model, it is hope

that it can enhance the result from neural network for gene expression imputation, and allow

analysis on gene expression profiling to be much more accurate and precise, thus benefit

different aspect in related field.

BIBLIOGRAPHY

27
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

BIBLIOGRAPHY

1. Allen, A., Li, W., n.d. Generative Adversarial Denoising Autoencoder for Face

Completion. [Online] Available at

https://www.cc.gatech.edu/~hays/7476/projects/Avery_Wenchen/ [Accessed 1 March

2018]

2. Austin Community College, n.d. Molecular Genetics - From DNA to Trait. [Online]

Available at

http://www.austincc.edu/mlt/mdfund/mdfund_unit4notesTranscription%20and%20Tr

anslation%2006.pdf [Accessed 1 March 2018].

3. Baghfalaki, T., Ganjali, M., Berridge, D., 2013. Missing Value Imputation for RNA-

Sequencing Data Using Statistical Models: A Comparative Study. [Online] Available

at https://www.atlantis-press.com/php/download_paper.php?id=25862105 [Accessed

1 March 2018].

4. Dong, Y., Pan, Y., Zhang, J. & Xu, W., n.d. Learning to Read Chest X-Ray Images

from 16000+ Examples using CNN. [Online] Available at:

http://iiis.tsinghua.edu.cn/~weixu/files/bigdata4health2017_pan.pdf [Accessed 15

August 2017].

5. Edenburg, H.J., 2007. The Genetics of Alcohol Metabolism: Role of Alcohol

Dehydrogenase and Aldehyde Dehydrogenase Variants. [Online] Available at

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860432/pdf/arh-30-1-5-13.pdf

[Accessed 1 March, 2018].

6. EMBL-ABI, 2018. Illumina sequencing. [Online] Available at

https://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-

practical-course/what-next-generation-dna-sequencing/illumina- [Accessed 1 March

2018].

7. Goodfellow, I., Bengio, Y., Courville, A., 2016. Chapter 14: Autoencoders. [Online]

Available at https://www.deeplearningbook.org/contents/autoencoders.html

[Accessed 1 March 2018]

8. Han, Y.X., Gao, S.G., Muegge, K., Zhang, W., Zhou, B., 2015. Advanced Application

of RNA Sequencing and Challenges. [Online] Available at

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648566/. [Accessed 1 March 2018].

BIBLIOGRAPHY

28
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

9. Lee, J.-G.et al., 2017. Deep Learning in Medical Imaging: General Overview.

[Online] Available at:

https://synapse.koreamed.org/Synapse/Data/PDFData/0068KJR/kjr-18-570.pdf

[Accessed 15 August 2017].

10. Liew, W.C., Law, N.F., Yan, H, 14 December 2010. Missing value imputation for

gene expression data: computational techniques to recover missing data from

available information. [Online] Available at

https://academic.oup.com/bib/article/12/5/498/268546 [Accessed 1 March 2018].

11. Litjens, G. et al., 2017. A Survey on Deep Learning in Medical Image Analysis.

[Online] Available at: http://ac.els-cdn.com/S1361841517301135/1-s2.0-

S1361841517301135-main.pdf?_tid=ef8c3446-81fd-11e7-8bbe-

00000aacb35f&acdnat=1502831511_1068f92fac2d7e69262e56b2c759595e

[Accessed 15 August 2017].

12. Makhzani A., Goodfellow, I., Shlens, J., Jaitly, N., Frey, B., n.d. Adversarial

Autoencoders. [Online] Available at https://arxiv.org/pdf/1511.05644.pdf. [Accessed

1 March 2018]

13. Raven, P., Johnson, G., Mason, K., Losos, J., Singer, S., 2013. Biology. [Online]

Available at http://biology.org.ua/files/lib/Raven_Johnson_McGraw-Hill_Biology.pdf

[Accessed 1 March 2018].

14. Simonyan, K., Vedaldi, A., Zisserman, A., 2014. Deep Inside Convolutional

Networks: Visualising Image Classification Models and Saliency Maps. [Online]

Available at https://arxiv.org/pdf/1312.6034.pdf. [Accessed 1 Jun 2018]

15. Stanford University, n.d. Autoencoders. [Online] Available at

http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/ [Accessed 1 March

2018]

16. University of Helsinki, 2009. Basics on Molecular Biology. [Online] Available at

https://www.cs.helsinki.fi/bioinformatiikka/mbi/courses/09-

10/itb/Lectures_1509_and_1709.pdf [Accessed 1 March 2018]

17. Xie, R., Wen, J., Quitadamo, A., Cheng, J., Shi, X., 2016. A deep auto-encoder model

for gene expression prediction. [Online] Available at

https://link.springer.com/content/pdf/10.1186%2Fs12864-017-4226-0.pdf. [Accessed

1 March 2018]

APPENDIX A

29
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Source Codes

A-1. saliency.py

import pickle
import numpy as np
import torch
from torch import tensor
import argparse

import utils

##
##########################

def generate_gradient(model_file, low_set = None, k = 10, write_to_file = True,
out_file = 'gradient.grad', verbose = True):
 if low_set is None:
 _, _, low_set = utils.get_dataset()
 low_set = low_set[0].float()

 low_set = low_set.unsqueeze(0).float().cuda()
 low_set.requires_grad = True
 low_set.retain_grad()

 net = torch.load(model_file).cuda() if (type(model_file) is str) else
model_file.cuda()
 net.eval()

 for param in net.parameters():
 param.requires_grad = False

 output = net(low_set)
 grad = []

 for idx in range(low_set.shape[-1]):
 final_grad = torch.zeros(low_set.shape[-1], requires_grad =
True).cuda()
 final_grad[idx] = 1

 output.backward(final_grad, retain_graph = True)
 sort_grad_abs = low_set.grad[0].abs().sort()[1]

 grad.append({
 'min': low_set.grad[0].min().item(),
 'max': low_set.grad[0].max().item(),
 'mean': low_set.grad[0].mean().item(),
 'sum': low_set.grad[0].sum().item(),
 'idx': sort_grad_abs[-k:].tolist(),
 'val': low_set.grad[0][sort_grad_abs[-k:]].tolist()
 })

 low_set.grad.zero_()

 if verbose:
 print (utils.progress_str(idx + 1, low_set.shape[-1]), end =
'')

APPENDIX A

30
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

 if verbose:
 print()

 if write_to_file:
 with open(out_file, 'wb') as f:
 pickle.dump(grad, f)

 for param in net.parameters():
 param.requires_grad = True

 if not write_to_file:
 return grad

##
##########################

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description = 'Generate gradient for
neural network')
 parser.add_argument('nn_path', help = 'neural network model file')
 parser.add_argument('output_file', help = 'output file to store gradient
generated')
 parser.add_argument('-k', type = int, default = 10, help = 'number of top
absolute gradient feature to generate')
 parser.add_argument('-v', action = 'store_true', help = 'print progress
message')

 args = parser.parse_args()
 generate_gradient(args.nn_path, k = args.k, out_file = args.output_file,
verbose = args.v)

APPENDIX A

31
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

A-2. base_probability_model.py

import numpy as np
import pickle
import argparse

import utils
from utils import C

##
###########

def single_q_prob(n, k, q, m):
 if k > n or q > m or (k - q) > (n - m):
 return 0.0

 return C(m, q) * C(n - m, k - q) / C(n, k)

def generate_base_probability(k = 10, write_to_file = True, out_file = '10.prob',
verbose = True):
 prob_model = {}
 gene_id = utils.get_gene_id()
 go_term = utils.get_go_term()
 n = len(gene_id)

 for gene_idx, gene in enumerate(gene_id):
 common_go_term_count = [0] * (len(go_term[gene]) + 1)

 for gene_2 in gene_id:
 for idx in
range(len(set(go_term[gene]).intersection(set(go_term[gene_2]))) + 1):
 common_go_term_count[idx] += 1

 pdf = np.zeros((k + 1, len(common_go_term_count)))
 cdf = np.zeros((k + 1, len(common_go_term_count)))

 for q in range(k + 1):
 for idx_x, m in enumerate(common_go_term_count):
 pdf[q][idx_x] = single_q_prob(n, k, q, m)

 for x in range(pdf.shape[1]):
 for p in range(pdf.shape[0]):
 cdf[p][x] = pdf[p:, x].sum()

 prob_model[gene] = {
 'common_go_term_count':
common_go_term_count,
 'pdf': pdf.tolist(),
 'cdf': cdf.tolist()
 }

 if verbose:
 print (utils.progress_str(gene_idx + 1, len(gene_id)), end =
'')

 if verbose:

APPENDIX A

32
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

 print()

 if write_to_file:
 with open(out_file, 'wb') as f:
 pickle.dump(prob_model, f)
 else:
 return prob_model

##
##########################

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description = 'Generate base probability
model')
 parser.add_argument('output_file', help = 'output file to store base
probability model generated')
 parser.add_argument('-k', type = int, default = 10, help = 'number of
feature to choose')
 parser.add_argument('-v', action = 'store_true', help = 'print progress
message')

 args = parser.parse_args()
 generate_base_probability(k = args.k, out_file = args.output_file, verbose
= args.v)

APPENDIX A

33
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

A-3. evaluate_nn.py

import os, argparse
import numpy as np
import matplotlib.pyplot as plt
import utils
from utils import C

##
#########

def binomial_probability_model(r, p, t):
 p_value = 0

 for i in range(t, r + 1):
 p_value += C(r, i) * (p ** i) * ((1 - p) ** (r - i))

 return p_value

def evaluate_nn(grad_file, prob_file, k = 10, q = 1, x = 1):
 gene_id = utils.get_gene_id()
 go_term = utils.get_go_term()
 grad = utils.load_pickle(grad_file) if (type(grad_file) is str) else
grad_file
 prob = utils.load_pickle(prob_file) if (type(prob_file) is str) else
prob_file
 common_go_term_count_gene = [gene for gene in prob if
len(prob[gene]['common_go_term_count']) > x]
 count = {}

 for gene in common_go_term_count_gene:
 if prob[gene]['common_go_term_count'][x] in count:
 count[prob[gene]['common_go_term_count'][x]].append(gene)
 else:
 count[prob[gene]['common_go_term_count'][x]] = [gene]

 p_value = {x: None for x in list(count)}

 for m, same_m_gene in count.items():
 base_prob = prob[same_m_gene[0]]['cdf'][q][x]
 test_statistic = 0

 for g in same_m_gene:
 cgtc = [0] * (len(go_term[g]) + 1)

 for g2 in grad[gene_id.index(g)]['idx'][-k:]:
 for idx in
range(len(set(go_term[g]).intersection(set(go_term[gene_id[g2]]))) + 1):
 cgtc[idx] += 1

 if cgtc[x] >= q:
 test_statistic += 1

 p_value[m] = [len(same_m_gene), test_statistic,
binomial_probability_model(len(same_m_gene), base_prob, test_statistic)]

 return p_value;

APPENDIX A

34
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

##
#########

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description = 'Generate gradient for neural
network')
 parser.add_argument('gradient_file_path', help = 'path to neural network
gradient file')
 parser.add_argument('base_probability_model_file', help = 'path to base
probability model file')
 parser.add_argument('output_file', help = 'output file to store gradient
generated')
 parser.add_argument('boxplot_path', help = 'output file to p-value box-plot')
 parser.add_argument('-k', type = int, default = 10, help = 'number of top
absolute gradient feature to used for evaluation')
 parser.add_argument('-q', type = int, default = 1, help = 'number of top
absolute gradient feature to have at least x common go term')
 parser.add_argument('-x', type = int, default = 1, help = 'minimum number of
common go term to be shared (>=)')

 args = parser.parse_args()
 p_value = evaluate_nn(args.gradient_file_path,
args.base_probability_model_file, k = args.k, q = args.q, x = args.x)

 with open(args.output_file, 'w') as f:
 f.write('final p-value = {}\n'.format(np.prod([p_value[x][-1] for x in
p_value])))
 f.write('number of gene have p-value <= 0.05 =
{}\n'.format(sum([p_value[x][0] for x in p_value if p_value[x][-1] <= 0.05])))

 f.write('\n')
 f.write('\t'.join(['m', 'number of gene have m', 'test statistic', 'p-
value', 'p-value <= 0.05?']) + '\n')

 for m in sorted(p_value.keys()):
 f.write(str(m) + '\t' + '\t'.join([str(x) for x in p_value[m]])
+ '\t' + ('1' if p_value[m][-1] <= 0.05 else ' ') + '\n')

 plt.title('boxplot for p-value
({})'.format(os.path.basename(args.gradient_file_path)))
 plt.ylabel('p-value')
 plt.boxplot([p_value[x][-1] for x in p_value])
 plt.savefig(args.boxplot_path)

APPENDIX A

35
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

A-4. utils.py

import os, sys
import pickle
import numpy as np
import pandas as pd
from torch import tensor

##
##############

DATASET_DIR = '/home/wingkhang/gene-expression/skeletal_muscle/data/'
NN_DIR = '/home/wingkhang/gene-expression/skeletal_muscle/trained-models/'
HIGH_COVERAGE_DATASET = os.path.join(DATASET_DIR, 'high_coverage_data_lg_n200000')
LOW_COVERAGE_DATASET = os.path.join(DATASET_DIR, 'low_coverage_data_lg_n200000')

GENE_ID_PATH = 'data/etc/gene_id'
GO_TERM_PATH = 'data/etc/go_term'

def get_dataset(high = HIGH_COVERAGE_DATASET, low = LOW_COVERAGE_DATASET):
 high_set = pd.read_csv(high, sep = '\t')
 low_set = pd.read_csv(low, sep = '\t')

 gene_id = high_set['Geneid'].tolist()
 high_set = tensor(high_set.drop(['Geneid'], axis = 1).as_matrix().T)
 low_set = tensor(low_set.drop(['Geneid'], axis = 1).as_matrix().T)

 return gene_id, high_set, low_set

def get_gene_id(path = GENE_ID_PATH, from_dataset = False):
 if from_dataset is False:
 with open(path, 'rb') as f:
 return pickle.load(f)

 high_set = pd.read_csv(HIGH_COVERAGE_DATASET, sep = '\t')

 return high_set['Geneid'].tolist()

def get_go_term(path = GO_TERM_PATH, filtered = True):
 with open(path, 'rb') as f:
 go_term = pickle.load(f)

 if filtered:
 for key in go_term:
 if '' in go_term[key]:
 go_term[key].remove('')

 return go_term

def load_pickle(file):
 with open(file, 'rb') as f:
 return pickle.load(f)

APPENDIX A

36
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

def save_pickle(file, data):
 with open(file, 'wb') as f:
 pickle.dump(data, f)

##
##############

def C(n, r):
 while len(C.fac) - 1 < n:
 C.fac.append(C.fac[-1] * len(C.fac))

 return C.fac[n] // C.fac[r] // C.fac[n - r]

C.fac = [1, 1]

def progress_str(k, total):
 return "\r[{} %] ({} / {})".format(int(k / total * 100), k, total)

APPENDIX A

37
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

A-5. download_go_term.R

library('biomaRt')

mart <- useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")
gene <- strsplit(readLines(file('gene_id', 'r')), ',')[[1]]

for (g in gene)
{
 print (g)
 results <- getBM(attributes = c("go_id"), filters = "ensembl_gene_id", values
= (g), mart = mart)
 writeLines(unlist(results), file(paste('full_go_term/', g, sep = '')))
}

APPENDIX B

38
BCS (Hons) Computer Science
Faculty of Information and Communication Technology (Perak Campus), UTAR

Universiti Tunku Abdul Rahman
Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)
Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

FACULTY OF

Full Name(s) of
Candidate(s)

ID Number(s)

Programme / Course

Title of Final Year Project

Similarity Supervisor’s Comments

(Compulsory if parameters of originality exceeds the
limits approved by UTAR)

Overall similarity index: %

Similarity by source
Internet Sources: %
Publications: %
Student Papers: %

Number of individual sources listed of
more than 3% similarity:

Parameters of originality required and limits approved by UTAR are as follows:
(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report to
Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final
Year Project Report submitted by my student(s) as named above.

Signature of Supervisor Signature of Co-Supervisor
Name: Name:

Date: Date:

76

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION
TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id
Student Name
Supervisor Name

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have
checked your report with respect to the corresponding item.

 Front Cover
 Signed Report Status Declaration Form
 Title Page
 Signed form of the Declaration of Originality
 Acknowledgement
 Abstract
 Table of Contents
 List of Figures (if applicable)
 List of Tables (if applicable)
 List of Symbols (if applicable)
 List of Abbreviations (if applicable)
 Chapters / Content
 Bibliography (or References)
 All references in bibliography are cited in the thesis, especially in the chapter

of literature review
 Appendices (if applicable)
 Poster
 Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed
all the items listed in the table are included
in my report.

(Signature of Student)
Date:

Supervisor verification. Report with
incorrect format can get 5 mark (1 grade)
reduction.

(Signature of Supervisor)
Date:

