

EFFECTS OF ARCHITECTURE ON IMPUTATION OF GENE EXPRESSION

USING DEEP NEURAL NETWORKS

BY

LAI WING KHANG

A PROPOSAL

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

MAY 2018

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “EFFECTS OF ARCHITECTURE ON

IMPUTATION OF GENE EXPRESSION USING DEEP NEURAL NETWORK”

is my own work except as cited in the references. The report has not been accepted for

any degree and is not being submitted concurrently in candidature for any degree or

other award.

Signature : _____________________

Name : _____________________

Date : _____________________

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR iii

ACKNOWLEDGEMENTS

I would like to express my gratitude and appreciation to my supervisor, Dr. Ng Yen

Kaow for sharing his wisdom with me and giving me this opportunity to work on this

project under his guidance.

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR iv

ABSTRACT

Interests in using RNA sequencing (RNA-seq) data in the studies of differential gene

expression analysis has been on the rise recently. Obtaining RNA-seq data at high

coverages allows us to more reliably reconstruct RNA sequences, but at much higher

costs. Hence it is highly beneficial to researchers if RNA sequences can be reliably

inferred from low coverage RNA-seq data. One way to accomplish this is to impute

low coverage RNA-seq data based on knowledge from known gene expression

profiles. This is possible since studies have shown that correlations exist in the gene

expression of RNA-seq data; by capturing these correlations through statistical

models, the models can then be used to impute the RNA-seq data.

This project aims to study the effects of deep neural networks’ architecture on

imputation of gene expression. The performance of a deep neural networks on the

imputation task will be evaluated by its root mean squared error. Besides, the

performance of deep neural networks will be compared with a baseline K nearest

neighbour imputation model as well.

We have applied 1D convolutional layers and greedy layer-wise training algorithm to

achieve a good performance on our neural network.

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR v

TABLE OF CONTENTS

TITLE i

DECLARATION OF ORIGINALITY ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ABBREVIATIONS viii

CHAPTER 1 INTRODUCTION

1

 1.1 Problem Statement and Motivation 1

 1.2 Project Scopes 2

 1.3 Project Objectives 2

 1.4 Background Information 3

 1.4.1 RNA-seq 3

 1.5 Report Organisation 4

CHAPTER 2 LITERATURE REVIEW

5

 2.1 Gene Expression Imputation 5

 2.1.1 Statistical Models 5

 2.1.2 Deep Learning 8

 2.2 Vanishing Gradient Problem 10

 2.2.1 Layer-wise Training 10

 2.2.2 Activation Functions 12

 2.2.3 Weight Initialization 12

CHAPTER 3 SYSTEM DESIGN

14

 3.1 Dataset 14

 3.2 Data pre-processing 15

 3.3 Implementation 18

 3.3.1 Methodology and Experiment Procedure 18

 3.3.2 Models Implementation 18

 3.3.3 Evaluation of Models 19

 3.4 Timeline 19

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR vi

CHAPTER 4 EXPERIMENTS AND RESULTS

20

 4.1 Fully Connected and Autoencoder Models 20

 4.2 Fully Connected Models with Convolutional Layer 23

 4.3 Greedy Layer-wise Trained Models 25

CHAPTER 5 CONCLUSION

27

 5.1 Project Review 27

 5.2 Future Work 27

BIBLIOGRAPHY

28

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR vii

LIST OF FIGURES

Figure Number

Title

Page

Figure 1.4.1 Illustration of the process of transcription and

translation (Madeleine, 2006)

3

Figure 1.4.2 Illustration of high coverage and low coverage RNA-

seq data

4

Figure 2.1.1 Gene expression matrix and missing values are

highlighted (Baghfalak et al., 2016)

5

Figure 2.1.2 Architecture of D-GEX (Chen et al., 2015) 8

Figure 2.1.3 Architecture of the deep autoencoder network (Xie et

al., 2017)

9

Figure 2.2.1 Different CNN trained (Rueda-Plata et al., 2015), ‘C’

represents convolutional layer, ‘P’ represents pooling,

‘N’ represents normalization, ‘FC’ represents fully

connected layer

11

Figure 3.1.1 First three sequences of one sample in FASTQ format 14

Figure 3.2.1 First two lines of the aligned and sorted reads in BAM

format

15

Figure 3.2.2 First 4 lines of the extracted output from

featureCounts

16

Figure 3.2.3 Flowchart of data pre-processing 17

Figure 3.2.4 Gene expression matrix of high coverage bam files 18

Figure 3.4.1 Project Gantt chart 19

Figure 4.1.1 Architecture of FC_3 model 20

Figure 4.1.2 Architecture of autoencoder model 21

Figure 4.1.3 Plot of sum of magnitude of gradients in first layer for

FC_3, FC_6 and FC_7

22

Figure 4.2.1 Plot of sum of magnitude of gradients in first layer for

FC_3, FC_6, FC_7, FC_6 with CONV_1 and FC_7

with CONV_1

24

Figure 4.3.1 Architecture of base network and base network with 1

fully connected layer added

25

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR viii

LIST OF TABLES

Table Number

Title

Page

Table 4.1.1 Results of fully connected and autoencoder models 21

Table 4.2.1 Configuration of 1D convolutional layers 23

Table 4.2.2 Comparison of results of FC model with and without

CONV

24

Table 4.3.1 Results of greedy layer-wise trained models 26

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR ix

LIST OF ABBREVIATIONS

RNA-seq RNA sequencing

mRNA Messenger RNA

RNA Ribonucleic acid

VAE Variational Autoencoder

DAE Denoising Autoencoder

SAM Sequence Alignment Map

Chapter 1: Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 1

1.1 Problem Statement and Motivation

In recent years, RNA-seq data generated by next-generation sequencing technology

has gained popularity in the studies of differential gene expression analysis due to its

superior benefits compared to traditional microarray data (Zhao et al., 2015).

Higher coverage of RNA-seq data is recommended for researchers because rarely

expressed genes can be detected by increasing the coverage. (Kukurba &

Montgomery, 2015) Besides, increased coverage can also improve the accuracy and

precision of gene expression. However, higher coverage also comes at a higher cost.

By imputing gene expression from low coverage RNA-seq, a corrected gene

expression that is similar to the one derived from high coverage RNA-seq may be

possible.

Many approaches have been proposed to impute RNA-seq data. These approaches use

statistical models to impute the missing values in the RNA-seq data. To the best of

our knowledge, there has been no attempt at using deep learning to impute RNA-seq

data, although deep learning has made tremendous gains in many other areas in recent

years. Promising result in data imputation by deep generative models (Duan et al.,

2014) has prompted us to apply deep generative model in imputation of gene

expression from low coverage RNA-seq data.

Chapter 1: Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 2

1.2 Project Scope

The project scope is to study the effects of architecture on imputation of gene

expression from low coverage RNA-seq data. The model should be able to correct

possible errors and noises in gene expression such that the difference between

corrected gene expression and gene expression from high coverage RNA-seq data is

small.

1.3 Project Objectives

The project objectives are:

I. To develop different neural network model that can impute gene expression

from low coverage RNA-seq data.

II. To achieve performance on par with, or above existing statistical models in the

imputation of RNA-seq data.

III. To consider the difference in gene expression derived from RNA-seq data that

are collected from different tissues or under different conditions.

Chapter 1: Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 3

1.4 Background Information

1.4.1 RNA-seq

A gene is a sequence of nucleotides that encodes a protein through the process of

transcription and translation. Figure 1.4.1 shows the process of transcription and

translation. Gene expression simply means that the gene is used in synthesizing a

corresponding protein, and, this process is regulated by multiple mechanisms in our

body. In transcription, an mRNA which has the complementary nucleotide sequence

to the gene it was transcribed is produced. The mRNA is then used as a template to

synthesize protein in the translation process.

Figure 1.4.1. Illustration of the process of transcription and translation.

(Madeleine, 2006)

The technology known as RNA-seq uses next-generation sequencing to generate

millions of short nucleotides sequence, which is known as “read” from RNA of a

sample of interest. These generated reads are then map to a reference genome, then,

we can deduce which gene is being expressed from the mapped reads. This deduction

is possible because RNA is used in both transcription and translation.

The number of reads mapped to a specific gene is called the read depth. In this project,

read depth will also be referred to as coverage. Hence, higher coverage RNA-seq data

means higher number of mapped reads. Higher coverage allows researcher to

conclude that a gene is being expressed with higher confidence level. Furthermore,

Chapter 1: Introduction

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 4

higher coverage RNA-seq data is also able to reveal rarely expressed genes which low

coverage RNA-seq data is unable to do so. The following figure shows the difference

between high coverage and low coverage RNA-seq data.

Figure 1.4.2. Illustration of high coverage and low coverage RNA-seq data.

1.5 Report Organisation

This report consists of 5 chapters. The first chapter introduces the problem statement

and motivation of the project. This chapter explains the project background as well.

Chapter 2 is reviews of past researches on imputation of gene expression using deep

neural networks and statistical models.

Chapter 3 explains the process of data gathering and processing. Methodology for this

project is included in this chapter too. Chapter 4 shows different architectures being

experimented on and its results.

The final chapter concludes this project with discussion and future improvement that

can be made to this project.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 5

2.1 Gene Expression Imputation

2.1.1 Statistical Model

Over the years, different approaches have been proposed to impute missing values in

RNA-seq data. These imputation approaches are mainly based on regression,

clustering and nearest neighbour method. In 2013, Bagjfalaki et al. conducted a

comparative study on imputation of missing value in RNA-seq data using statistical

models. The notations used in the paper are defined as follow:

Let 𝑌𝑔𝑖𝑟 = read count of the gth gene in rth iteration of condition i.

 𝑌𝑔
𝑚𝑖𝑠= missing read count of gth gene.

Figure 2.1.1 shows the gene expression matrix going to be used.

Figure 2.1.1. Gene expression matrix and missing values are highlighted (Baghfalak

et al., 2016).

In regression imputation approach, Spearman correlation is first used to find the K

most correlated genes that is not a missing read count to the 𝑌𝑔
𝑚𝑖𝑠. Let

 𝑥𝑔* = (𝑥𝑔*1, 𝑥𝑔*2, … , 𝑥𝑔*(𝑛1+𝑛2)), 𝑥𝑔*𝑟 = {
0 if 𝑖 = 0
1 if 𝑖 = 1

And let 𝑋𝑔 = (𝑌𝑔*
1 , 𝑌𝑔*

2 ,..., 𝑌𝑔*
𝐾 , 𝑥𝑔) be the covariate matrix for gth gene.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 6

Then, the regression model will be

 𝑌𝑔* ∨ 𝛽𝑔* ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑔*), where log(𝜇𝑔*) = 𝑋𝑔*
′ 𝛽𝑔*

The regression model will then be fitted to the data, and the missing values are

replaced by the predicted values from the regression equation. Other than this, another

approach is using Expectation-Maximization algorithm to estimate the parameters 𝛽𝑔*

of the regression model.

A model known as Bayesian Poisson regression is discussed in the paper as well.

Here, a Poisson model is first fitted to the data, and then the posterior mean 𝛽𝑔 and

posterior variance 𝑉(𝛽𝑔) of the parameters 𝛽𝑔, g = 1, 2, ..., G are computed. Next,

new parameters 𝛽𝑔
* are drawn from (𝛽𝑔, 𝑉(𝛽𝑔)) . Lastly, the missing values are

imputed as 𝑌𝑔*
𝑚𝑖𝑠 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑔*

𝑚𝑖𝑠) , where log(𝜇𝑔*
𝑚𝑖𝑠) = 𝑋𝑔*

𝑚𝑖𝑠𝛽𝑔
* . In the case of

overdispered count data, the missing values are imputed from negative binomial

distribution instead of Poisson distribution.

The approach that yields the best results in missing value imputation among all the

approaches discussed is Poisson mixture model. This is a clustering method that

assumes all RNA read counts follow Poisson distribution. Parameters estimation and

clustering of genes are done by Expectation-Maximization algorithm, whereas the

number of clusters is estimated by Bayesian information criterion and Integrated

Complete Likelihood criterion. After the genes have been clustered, the missing

values are imputed as the mean of available genes in the respective cluster.

A review on imputation algorithms of gene expression data was conducted in 2010

(Liew et al., 2010). During that time, microarray data was the norm in studies of

differential gene expression analysis. Therefore, the gene expression values discussed

in the paper were derived from microarray data instead of RNA-seq data. Despite this

difference, this paper is still important as it provides prior knowledges in imputation

of gene expression.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 7

In the following discussion, the term gene expression matrix refers to the matrix

shown in Figure 2.1.1. One major insight from the paper is the existence of

correlations in the rows and columns of the gene expression matrix. In the case of

rows, multiple genes will be expressed at the same time under a certain condition,

therefore, there is a correlation between these expressed genes. In the case of columns,

it is to be expected that the same set of genes will be expressed under similar

condition. Thus, there exists a correlation between these columns.

The algorithms reviewed were categorized into four different categories based on the

type of information used by the algorithm, namely global approach, local approach,

hybrid approach and knowledge assisted approach.

For algorithms in global approach, an assumption that there exists a global covariance

structure in the gene expression matrix was made. Then, imputation algorithms such

as SVD imputation and Bayesian principal analysis perform imputation based on this

assumption. However, when the gene expression matrix is heterogeneous (and hence

the local correlation is stronger) these algorithms will not perform well. On the other

hand, algorithms in local approach work better when the gene expression matrix is

homogeneous. These algorithms assume that only a subset of genes has a strong

correlation with the gene that contains missing values. Missing values of the target

gene will then be imputed based on the selected subset of genes known as reference

genes. Notable algorithms in local approach include K nearest-neighbour imputation,

least square imputation and linear regression imputation. In hybrid approach, they

capture both local and global correlation information by combining algorithms from

global approach and local approach. Hence, the method in hybrid approach is simply

a combination of algorithms from global approach and local approach. Integration of

domain knowledge such as regulatory mechanism and underlying biomolecular

process into imputation is known as knowledge assisted approach. In case of small

datasets that contains many missing values, this approach works better compared to

the other three approaches discussed.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 8

2.1.2 Deep Learning

Recent successes of deep learning have prompted researchers to use deep learning for

tackling genomic problem. In 2015, Chen et al. proposed a deep learning model

known as D-GEX to infer gene expression from the expression of selected landmark

genes. Their study was motivated by an observation discovered by researchers from

LINCS program. The observation is that ~1000 genes out of ~22000 human coding

genes can capture around 80% of the gene expression information. These ~1000

genes are known as landmark genes. However, LINCS program uses linear regression

to infer the gene expression from the expression of landmark genes. Therefore, Chen

et al. proposed using deep learning instead of linear regression to infer the gene

expression based on landmark genes, because there exists nonlinearity in gene

expression data.

The D-GEX with the best performance is a feedforward neural network that consists

of three fully connected layers. The architecture of the network is shown in Figure

2.1.2. Since the network has three fully connected layers with 9000 hidden units in

each layer, the memory usage of this network is relatively large. So, they separate the

target genes layer into two different GPU. D-GEX also uses dropout technique which

is known to be useful in regularization, and they use tanh as activation function to

capture the nonlinearity in gene expression. Two important observation were

discovered when Chen et al. were trying to interpret the learned D-GEX. One of it is

that they discovered the connections of units in hidden layers are sparse. Another

observation is that neural network is able to capture the nonlinearity in gene

expression.

Figure 2.1.2. Architecture of D-GEX (Chen et al., 2015)

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 9

A deep autoencoder network is proposed for inferring gene expression from single

nucleotide polymorphisms (SNP) genotypes (Xie et al., 2017). Autoencoder (Bengio

et al., 2007) is a type of neural network that made up of two components, encoder and

decoder. Both encoder and decoder are feed forward neural networks. Given an input

x, encoder will encode it into a compressed features vector, in other words, the input

is being encoded into a low dimensional representation. Then, the compressed

features vector is feed into decoder, and an output which is similar to the input x is

generated by the decoder. The architecture of the proposed network is shown in

Figure 2.1.3.

Figure 2.1.3. Architecture of the deep autoencoder network. (Xie et al., 2017)

The network consists of two hidden layers which are autoencoders, and a final layer

of linear regression model. One thing to note is that they use denoising autoencoder

(DAE) instead of autoencoder in the network. DAE is just another variant of

autoencoder (Vincent et al., 2008). The difference between autoencoder and DAE is

the input data, noises are added into the input of DAE as the name suggested.

Although it uses noisy input, but the original input without noises is used to compare

with the generated output. This forces the DAE to learn the features from the noisy

input, instead of learning an identify function which simply recreates the input.

Dropout was used in the network to improve the performance as well. Unfortunately,

details of the two hidden autoencoder layers such as number of layers in autoencoder

and activation function used were not stated by the authors.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 10

2.2 Vanishing Gradient Problem

By adding more hidden layers to a neural network, it is able to model a much more

complex function, and hence it can perform well on complicated tasks. However,

simply adding more hidden layers does not necessarily improve the performance of a

neural network, as it might suffer from vanishing gradient problem.

Training a neural network is generally done with backpropagation and gradient

descent, where each layer in the neural network is updated based on the gradients of

loss with respect to the layer's weights. Vanishing gradient happens when the

gradients being backpropagated are getting smaller. As a result, early layers are not

updated as the gradient is too small.

Over the years, multiple approaches have been proposed to deal with vanishing

gradient problem.

2.2.1 Layer-wise training

One of the earlier methods used to overcome vanishing gradient is greedy layer-wise

training of neural network. In 2006, Hinton et al. introduced Deep Belief Networks

(DBN), which is a stacked of Restricted Boltzmann Machines (RBM) layers. The

training of DBN involves two stages, pre-training stage and fine-tuning stage.

During the pre-training stage, each layer is trained sequentially as an RBM with

Contrastive Divergence algorithm. Unlike gradient descent, each layer is trained

without a cost function, instead it is trained to learn a higher-level representation of its

input. Once a layer has been trained, another layer will be trained using trained layer's

output as its input, and they are stacked together at the end. Hence, this is known as a

greedy layer-wise unsupervised learning algorithm. In the fine-tuning stage, a wake-

sleep algorithm is used to fine-tune the network. Besides, gradient descent has been

used to fine-tune the DBN as well (Bengio et al., 2007). Although DBN does not

suffer from vanishing gradient problem, it does not address the root cause of the

problem, but merely avoided the problem by not using gradient descent and

backpropagation to update the network's weights.

In 2007, Bengio et al. attempted a greedy layer-wise supervised training algorithm. In

this case, each layer is trained using gradient descent sequentially. However, their

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 11

experiments show that networks trained using this algorithm performs worse than

networks trained using greedy layer-wise unsupervised learning algorithm.

Greedy layer-wise supervised training algorithm was also used to train convolutional

neural network in an attempt to deal with small and specialized dataset (Rueda-Plata

et al., 2015). The networks that they trained is shown as followed.

Figure 2. Different CNN trained (Rueda-Plata et al., 2015), ‘C’ represents

convolutional layer, ‘P’ represents pooling, ‘N’ represents normalization, ‘FC’

represents fully connected layer.

The training of their networks can be summarized as follow:

1) Start with a base network which consists of one convolutional layer and three

fully connected layers.

2) Initialize the base network with random weights and train the base network.

3) Add an additional convolutional layer to the trained network. The new layer is

added in between the trained convolutional layer and fully connected layers.

4) Initialize the newly added convolutional layer and fully connected layers with

random weights, while keeping the weights of trained convolutional layer

same. Then, train the resulting network.

5) Repeatedly add new convolutional layer as described in Step 3 and 4.

Their results show that CNN trained layer-wise achieved higher accuracy on multiple

datasets compared to CNN trained from scratch.

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 12

2.2.2 Activation Function

Sigmoid and tanh non-linearity were the norm as activation function for neural

network in the early days. However, both activation functions can saturate and cause

the gradient to vanish. This happens on sigmoid non-linearity when the output is near

0 or 1, where the gradient at these two regions is close to 0. On the other hand, this

happens to tanh non-linearity when the output is near -1 or 1.

ReLU has been the most common activation function used in neural network

nowadays, because it does not suffer from vanishing gradient problem as much as

other activation functions. ReLU only saturates at negative region, which is relatively

better than sigmoid and tanh which saturate on much larger region. However, since

the gradient of ReLU at negative region is completely 0, ReLU might "die" and never

be able to be updated again. This is known as the "dying ReLU" problem. Variations

of ReLU such as Leaky ReLU and Parametric ReLU have been proposed to fix the

"dying ReLU" problem. These ReLU variations introduced a tiny negative slope on

the negative region to deal with the problem.

2.2.3 Weight Initialization

The output of a neural network layer is generally in the form as followed:

 output = f(weights . input + bias),

where f is a non-linearity function. If the weights of a layer are initialized with values

that are too small, the output will be getting closer to 0 at deeper layers. On the other

hand, if the weights of a layer are initialized with values that are too large, and tanh is

used as the non-linearity function, then the output will be saturated on -1 or 1. This

will lead to vanishing gradient problem as the gradient is 0 when the output is

saturated.

Therefore, it is important to ensure the variance of the output remains approximately

the same across layers in neural network. In 2010, Glorot and Bengio shows that in

order for the variance of output remains the same, the variance of the weights need to

be

Chapter 2: Literature Review

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 13

 Var(weights) = 2 / (n_in + n_out),

where n_in is number of units in previous layer and n_out is number of units in next

layer. However, while this works well for sigmoid or tanh, it does not work well for

ReLU. So, in 2015, He et al. suggested the variance of the weights to be

 Var(weights) = 2 / n_in,

where n_in is number of units in previous layer. In 2015, batch normalization (Ioffe et

al., 2015) was introduced to ease the trouble of initializing neural network's weights

properly. The idea of batch normalization is that, if we want the variance of the output

to be similar across layers, we can just zero-centre and normalize the output at each

layer. This is similar to normalizing the data for the first layer of neural network.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 14

3.1 Dataset

The dataset was downloaded from National Center for Biotechnology Information, it

consists of 81 RNA-seq data, which were collected from skeletal muscle tissues of 23

participants. The skeletal muscle biopsies were performed on the participants before

and after a training period, hence, these RNA-seq data can be categorized based on

the exercise status, which is trained or untrained. 26 out of the 81 RNA-seq data have

the exercise status of trained, while the rest are untrained. All the RNA-seq data are in

FASTQ format and were produced by Illumina HiSeq 2000 Sequencing System.

Number of bases of the dataset range from 0.7 Gbases to 8.1 Gbases. And, the file

size of the dataset ranges from 0.5 GB to 5.9 GB. In total, the dataset contains around

195 GB of raw RNA-seq data.

For the RNA-seq data in FASTQ format, every read is represented by four lines. Line

1 and 3 consist of a unique sequence identifier and a description: the length of the

read in our case. Line 2 is the nucleotide sequence of the read. It is made up of five

different letters, A, T, C, G and N, which represents Adenine, Thymine, Cytosine,

Guanine and ambiguous base respectively. Each character in line 4 indicates the

quality value for the respective base in line 2. Figure 3.1.1 shows some examples of

RNA-seq data.

Figure 3.1.1. First three sequences of one sample in FASTQ format.

Since these are human RNA-seq data, Genome Reference Consortium Human Build

38 patch release 10 (GRCh38.p10) is used as the reference genome for read alignment.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 15

3.2 Data pre-processing

3.2.1 Alignment

Alignment is first performed on the raw sequences in FASTQ format using HISAT2

(Kim et al., 2015) with GRCh38.p10 used as the gene annotations. The aligned reads

are then stored in the format of SAM. In order to conduct further data preprocessing

and reduce the file size of the aligned reads, SAMtools (Li et al., 2009) is used to sort

the aligned reads. Next, the sorted aligned reads are converted into a binary format

known as BAM. 85% of the original file size is reduced by converting the aligned

reads to BAM format. Figure 3.2.1 shows first two reads in BAM format.

Figure 3.2.1 First two lines of the aligned and sorted reads in BAM format.

3.2.2 Subsampling

To simulate low coverage RNA-seq data, we use a function in SAMtools to

subsample 10% from the original aligned BAM file. We generate five low coverage

data for each of the sample with different seed value. The original aligned BAM file

will be used as high coverage data.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 16

3.2.3 Read count

Another tool known as featureCounts (Liao et al., 2013) is used to count the mapped

reads for each gene in GRCh38.p10. The output of featureCounts consists of seven

columns, but, we only require three out of the seven columns. Therefore, a basic

UNIX command cut is used to extract the relevant fields from the output of

featureCounts. The required columns are unique identifier of the gene, length of the

gene and count of mapped reads to the gene. Figure 3.2.2 shows read counts of first

three genes.

Figure 3.2.2. First 4 lines of the extracted output from featureCounts.

3.2.4 Gene expression value

Since we are using paired-end RNA-seq data, we use FPKM to measure the gene

expression value. The equation of FPKM is:

 𝐹𝑃𝐾𝑀𝑖 =
𝑛𝑖×10

9

𝑁×𝐿𝑖

where the number of reads mapped a gene i is denoted as ni, the total number of reads

mapped to all genes is denoted as N and the length of gene i is denoted as Li. A

simple Python script is written to compute the gene expression value.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 17

Figure 3.2.3. shows the flowchart of the whole data pre-processing.

Figure 3.2.3. Flowchart of data pre-processing.

3.2.5 Gene expression matrix

After the gene expression value of the 81 high coverage bam files and the 405 low

coverage bam files have been computed, the results are concatenated into two

different gene expression matrices. Figure 3.2.4. shows the gene expression matrix of

high coverage bam files.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 18

Figure 3.2.4. Gene expression matrix of high coverage bam files.

However, the range of the values in the gene expression matrix is too large. Therefore,

we log2 transformed the values in the matrix.

3.3 Implementation

3.3.1 Methodology and experiment procedure

In order to impute a gene expression value from low coverage data, it is important that

the neural network model is able to capture the correlations between genes in high

coverage data.

However, there are 58243genes in the gene expression matrix. Therefore, we will

experiment with different deep learning models to determine the most suitable model

that is able to capture these correlations.

To ensure that the independent variable in our experiment is the architecture, we will

keep the following hyperparameters constant across different architectures.

1) number of epochs trained: 100

2) batch size: 16

3) optimization algorithm: Adam

4) learning rate: 0.0001

Agile methodology will be adopted throughout this project, since it allows us to

quickly experiment with different architecture based on one’s result.

3.3.2 Models implementation

All the proposed models will be implemented in PyTorch and run on a system with

two GPUs (Nvidia GTX1060 and Nvidia GTX1080). Since we will be experimenting

with different models, a single system is not enough. Therefore, we will also be using

Colaboratory, a free cloud service with GPU (Nvidia Tesla K80) from Google.

Chapter 3: System Design

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 19

3.3.3 Evaluation of models

We adopt root mean square error (RMSE) to evaluate the performance of the

imputation model in imputation of gene expression from low coverage data,

𝑅𝑀𝑆𝐸 = √
∑(𝑥𝑖 − 𝑦𝑖)2

𝑁

where N is the total number of genes, xi is the corrected genei expression value of low

coverage data, and yi is the genei expression value of high coverage data.

In order to have a better understanding on the RMSE score obtained by each model,

we need a baseline model. K nearest-neighbour imputation will be used as the

baseline model for evaluation.

3.4 Timeline

Figure 3.4.1 shows the timeline of this project that span across roughly eight months.

The outcome of this project includes two reports.

Figure 3.4.1 Project Gantt chart.

Chapter 4: Experiments and Results

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 20

4.1 Fully connected and autoencoder models

The first architecture that we experiment with is fully connected model, which is

similar to D-GEX (Chen et al., 2015). The difference being our input and output

layers consist of 58243 units. Ideally, we would like to experiment with hidden layer

that has 3000, 6000 or 9000 hidden units. However, a fully connected layer between

58243 input units and 3000 hidden units will requires more than 8GB of memory,

which is unable to run on our machine. Thus, we only experiment with 1000, 2000 or

2500 hidden units. The number of hidden layers we experiment with is 3, 4, 5, 6 or 7.

Dropout was applied to all the hidden layers in the model as well, with the dropout

rate set to 25%. This fully connected model will be referred to as FC_x model in this

project, with x indicating number of hidden layers. Figure 4.1.1. shows an example of

architecture of FC_3 that has 3 hidden layers.

Figure 4.1.1. Architecture of FC_3 model.

An autoencoder model that is similar to MLP-SAE (Xie et al., 2017) is being

experimented on as well. The hidden layer of this model is an autoencoder as shown

in the following figure.

Chapter 4: Experiments and Results

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 21

Figure 4.1.2. Architecture of autoencoder model.

We experiment with one autoencoder as hidden layer, as well as two autoencoder

stacked together as hidden layer. The model with one autoencoder as hidden layer will

be referred to as AE_1, whereas the model with two autoencoder as hidden layer will

be referred to as AE_2.

 Number of hidden units

Architecture 1000 2000 2500

FC_3 1.425 1.391 1.383

FC_4 1.444 1.435 1.426

FC_5 1.489 1.518 1.511

FC_6 5.502 2.449 1.566

FC_7 5.310 2.243 1.736

KNN imputation 1.46

AE_1 9.82

AE_2 10.24

Table 4.1.1. Results of fully connected and autoencoder models.

Chapter 4: Experiments and Results

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 22

Results show that FC_3 perform better than all the other models, where three FC_3

with different hidden units have the lowest RMSE. There are two trends that can be

observed from this result. First, as the number of hidden layer in fully connected

model increases, their RMSE increases too. Second, RMSE decreases as the number

of hidden units increases.

Both autoencoder models performed the worst in this experiment with 9.82 and 10.24.

This result is to be expected, as the autoencoder model is essentially the same as the

fully connected model, with the difference being autoencoder model has less hidden

units in the middle layers.

To investigate further on why fully connected model performs worse when it has

more than 5 hidden layers, we examine the gradients of the hidden layers. First, we

examined the magnitude of gradients for units in the hidden layers by plotting a graph.

The sum of magnitude of gradients can be used as a heuristic to measure how fast the

layer is learning (Socher, 2016). Intuitively, if the sum of magnitude of gradients is

large, then the layer is learning faster.

Figure 4.1.3. Plot of sum of magnitude of gradients in first layer for FC_3, FC_6 and

FC_7.

Chapter 4: Experiments and Results

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 23

Based on the graph, we can observe that the sum of magnitude of gradients is lower

for deeper fully connected model, such as FC_6 and FC_7. This indicates that first

layer of deeper fully connected models is learning relatively slower. This is one of the

possible explanations that fully connected models have a higher RMSE when number

of hidden layers increases.

4.2 Fully connected models with convolutional layer

With the input layer and output layer having 58243 units, it is difficult to increase the

number of units in hidden layers to more than 2500, as it will take tremendous amount

of GPU memory to train the model. Hence, we used 1D convolutional layers to reduce

the number of units in the input layer.

We experiment with two different number of 1D convolutional layers added to fully

connected model, these combinations of 1D convolutional layers will be referred to as

CONV_1 and CONV_2. The configuration of each of them is shown in the following

table:

Combination Layer Input size Filter

size

Stride Output

size

CONV_1 1D convolu-

tion

58243 3 2 29121

1D convolu-

tion

29121 3 2 14560

CONV_2 1D convolu-

tion

58243 3 2 29121

1D convolu-

tion

29121 3 2 14560

1D convolu-

tion

14560 3 2 7280

Table 4.2.1. Configuration of 1D convolutional layers.

Chapter 4: Experiments and Results

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 24

As shown in Table 4.2.1., the input size got reduced to 29121, 14560 or 7280. These

reduced size input are then feed into FC model.

FC Model with

1000 hidden units

Without Conv

With CONV_1

With CONV_2

FC_3 1.425 1.489 1.756

FC_4 1.444 1.742 1.843

FC_5 1.489 1.596 1.774

FC_6 5.502 1.729 1.677

FC_7 5.310 1.567 1.647

Table 4.2.2. Comparison of results of FC model with and without CONV.

Based on the results shown in Table 4.2.2., we can see that shallower fully connected

models such as FC_3, FC_4 and FC_5 has a worse performance when CONV_1 or

CONV_2 is added to the model. However, deeper fully connected models such as

FC_6 and FC_7 are able to perform better with CONV_1 or CONV_2 added

compared to without any convolutional layer added. Again, we examined the

gradients of the hidden units in the first layer.

Chapter 4: Experiments and Results

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 25

Figure 4.2.1. Plot of sum of magnitude of gradients in first layer for FC_3, FC_6,

FC_7, FC_6 with CONV_1 and FC_7 with CONV_1.

Based on Figure 4.2.1., sum of magnitude of gradients on first layer for FC_6 and

FC_7 with CONV_1 is larger than FC_6 and FC_7 without any convolutional layer.

This might be the reason that deeper fully connected models with convolutional layers

are performing better than deeper fully connected models without convolutional

layers.

4.3 Greedy layer-wise trained models

We used greedy layer-wise supervised training algorithm to train fully connected with

convolutional layer models as well. The training of the models can be described as

follow:

1) Train a base network which consists of two 1D convolutional layers and three

fully connected layers.

2) Add an additional fully connected layer to the trained network. The new layer

is added in between the trained second last and last fully connected layer.

3) Train the resulted network.

4) Repeatedly add new fully connected layer as described in Step 2 and 3.

The architecture of base network and resulted network with 1 fully connected layer

added is shown in the following figure.

Chapter 4: Experiments and Results

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 26

Figure 4.3.1. Architecture of base network and base network with 1 fully connected

layer added.

FC Model with

1000 hidden units

Without Conv and

greedy layer-wise

training

With CONV_1 and

greedy layer-wise

training

FC_3 1.425 1.490

FC_4 1.444 1.387

FC_5 1.489 1.370

FC_6 5.502 1.371

FC_7 5.310 1.360

FC_8 - 1.351

Table 4.3.1. Results of greedy layer-wise trained models.

Based on the results shown in Table 4.3.1., it shows that with convolutional layer and

greedy layer-wise training, we are able further reduce the RMSE to 1.351.

Chapter 5: Conclusion

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 27

5.1 Project Review

RNA-seq has gained a lot of interests from researchers lately due to its superiority

compared to microarray data. The level of coverage of the RNA-seq data will affects

the application of the data, as high coverage RNA-seq data is able to reveal rarely ex-

pressed genes. However, higher cost of high coverage RNA-seq data has hinder the

progress of researches. Thus, it is important that we can impute low coverage RNA-

seq data into high coverage RNA-seq data.

In this project, we experimented with different deep neural network architectures to

impute gene expression. By applying both convolutional layer and greedy layer-wise

supervised training algorithm, we are able to train deep neural networks that are able

to achieve better performance than the baseline model.

5.2 Future Work

In this project, we studied the effects of different deep neural network architectures on

a dataset of only 81 unique RNA-seq data. However, deep neural networks require

massive amounts of data to achieve a better performance. Therefore, we expect that a

larger dataset will be able to fully utilize the power of deep neural networks.

Bibliography

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 28

Baghfalaki, T., Ganjali, M. and Berridge, D., 2016. Missing Value Imputation for

RNA-Sequencing Data Using Statistical Models: A Comparative Study. Journal of

Statistical Theory and Applications, 15(3), pp.221-236.

Bao, J., Chen, D., Wen, F., Li, H. and Hua, G., 2017. CVAE-GAN: fine-grained

image generation through asymmetric training. arXiv preprint arXiv:1703.10155.

Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H., 2007. Greedy layer-wise

training of deep networks. In Advances in neural information processing systems (pp.

153-160).

Buuren, S.V. and Groothuis-Oudshoorn, K., 2010. mice: Multivariate imputation by

chained equations in R. Journal of statistical software, pp.1-68.

Chen, Y., Li, Y., Narayan, R., Subramanian, A. and Xie, X., 2016. Gene expression

inference with deep learning. Bioinformatics, 32(12), pp.1832-1839.

Duan, Y., Lv, Y., Kang, W. and Zhao, Y., 2014, October. A deep learning based

approach for traffic data imputation. In Intelligent Transportation Systems (ITSC),

2014 IEEE 17th International Conference on (pp. 912-917). IEEE.

Goodfellow, I., 2016. NIPS 2016 tutorial: Generative adversarial networks. arXiv

preprint arXiv:1701.00160.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. and Bengio, Y., 2014. Generative adversarial nets. In Advances in

neural information processing systems (pp. 2672-2680).

Isola, P., Zhu, J.Y., Zhou, T. and Efros, A.A., 2017. Image-to-image translation with

conditional adversarial networks. arXiv preprint arXiv:1611.07004.

Karpathy, A., Abbeel, P., Brockman, G., Chen, P., Cheung, V., Duan, R., Goodfellow,

I., Kingma, D., Ho, J., Houthooft, R., Salimans, T., Schulman, J., Sutskever, I. and

Zaremba, W., 2016. Generative Models. [ONLINE] Available at:

https://blog.openai.com/generative-models/. [Accessed 13 March 2018].

Kim, D., Langmead, B. and Salzberg, S.L., 2015. HISAT: a fast spliced aligner with

low memory requirements. Nature methods, 12(4), p.357.

Kingma, D.P. and Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114.

Kukurba, K.R. and Montgomery, S.B., 2015. RNA sequencing and analysis. Cold

Spring Harbor protocols, 2015(11), pp.pdb-top084970.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,

Abecasis, G. and Durbin, R., 2009. The sequence alignment/map format and

SAMtools. Bioinformatics, 25(16), pp.2078-2079.

Li, J., Skinner, K.A., Eustice, R.M. and Johnson-Roberson, M., 2018. WaterGAN:

unsupervised generative network to enable real-time color correction of monocular

underwater images. IEEE Robotics and Automation Letters, 3(1), pp.387-394.

https://blog.openai.com/generative-models/

Bibliography

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 29

Li, Y., Liu, S., Yang, J. and Yang, M.H., 2017, April. Generative face completion.

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (Vol. 1, No. 3, p. 6).

Liao, Y., Smyth, G.K. and Shi, W., 2013. featureCounts: an efficient general purpose

program for assigning sequence reads to genomic features. Bioinformatics, 30(7),

pp.923-930.

Liew, A.W.C., Law, N.F. and Yan, H., 2010. Missing value imputation for gene

expression data: computational techniques to recover missing data from available

information. Briefings in bioinformatics, 12(5), pp.498-513.

Madeleine Price Ball, (2013), Genetic code [ONLINE]. Available

at: https://upload.wikimedia.org/wikipedia/commons/3/37/Genetic_code.svg [Accesse

d 9 March 2018].

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B. and Lee, H., 2016.

Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396.

Shang, C., Palmer, A., Sun, J., Chen, K.S., Lu, J. and Bi, J., 2017. VIGAN: Missing

View Imputation with Generative Adversarial Networks. arXiv preprint

arXiv:1708.06724.

Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.A., 2008, July. Extracting

and composing robust features with denoising autoencoders. In Proceedings of the

25th international conference on Machine learning (pp. 1096-1103). ACM.

Xie, R., Wen, J., Quitadamo, A., Cheng, J. and Shi, X., 2017. A deep auto-encoder

model for gene expression prediction. BMC genomics, 18(9), p.845.

Zhao, S., Fung-Leung, W.P., Bittner, A., Ngo, K. and Liu, X., 2014. Comparison of

RNA-Seq and microarray in transcriptome profiling of activated T cells. PloS

one, 9(1), p.e78644.

Bibliography

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR 30

