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ABSTRACT 

 

Interests in using RNA sequencing (RNA-seq) data in the studies of differential gene 

expression analysis has been on the rise recently. Obtaining RNA-seq data at high 

coverages allows us to more reliably reconstruct RNA sequences, but at much higher 

costs. Hence it is highly beneficial to researchers if RNA sequences can be reliably 

inferred from low coverage RNA-seq data. One way to accomplish this is to impute 

low coverage RNA-seq data based on knowledge from known gene expression 

profiles. This is possible since studies have shown that correlations exist in the gene 

expression of RNA-seq data; by capturing these correlations through statistical 

models, the models can then be used to impute the RNA-seq data. 

 

This project aims to study the effects of deep neural networks’ architecture on 

imputation of gene expression. The performance of a deep neural networks on the 

imputation task will be evaluated by its root mean squared error. Besides, the 

performance of deep neural networks will be compared with a baseline K nearest 

neighbour imputation model as well. 

 

We have applied 1D convolutional layers and greedy layer-wise training algorithm to 

achieve a good performance on our neural network.   
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1.1 Problem Statement and Motivation 

In recent years, RNA-seq data generated by next-generation sequencing technology 

has gained popularity in the studies of differential gene expression analysis due to its 

superior benefits compared to traditional microarray data (Zhao et al., 2015).  

 

Higher coverage of RNA-seq data is recommended for researchers because rarely 

expressed genes can be detected by increasing the coverage. (Kukurba & 

Montgomery, 2015) Besides, increased coverage can also improve the accuracy and 

precision of gene expression. However, higher coverage also comes at a higher cost. 

By imputing gene expression from low coverage RNA-seq, a corrected gene 

expression that is similar to the one derived from high coverage RNA-seq may be 

possible. 

 

Many approaches have been proposed to impute RNA-seq data. These approaches use 

statistical models to impute the missing values in the RNA-seq data. To the best of 

our knowledge, there has been no attempt at using deep learning to impute RNA-seq 

data, although deep learning has made tremendous gains in many other areas in recent 

years. Promising result in data imputation by deep generative models (Duan et al., 

2014) has prompted us to apply deep generative model in imputation of gene 

expression from low coverage RNA-seq data.  
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1.2 Project Scope 

The project scope is to study the effects of architecture on imputation of gene 

expression from low coverage RNA-seq data. The model should be able to correct 

possible errors and noises in gene expression such that the difference between 

corrected gene expression and gene expression from high coverage RNA-seq data is 

small. 

 

1.3 Project Objectives 

The project objectives are: 

I. To develop different neural network model that can impute gene expression 

from low coverage RNA-seq data. 

II. To achieve performance on par with, or above existing statistical models in the 

imputation of RNA-seq data. 

III. To consider the difference in gene expression derived from RNA-seq data that 

are collected from different tissues or under different conditions.  
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1.4 Background Information 

1.4.1 RNA-seq  

 

A gene is a sequence of nucleotides that encodes a protein through the process of 

transcription and translation. Figure 1.4.1 shows the process of transcription and 

translation. Gene expression simply means that the gene is used in synthesizing a 

corresponding protein, and, this process is regulated by multiple mechanisms in our 

body. In transcription, an mRNA which has the complementary nucleotide sequence 

to the gene it was transcribed is produced. The mRNA is then used as a template to 

synthesize protein in the translation process.  

Figure 1.4.1. Illustration of the process of transcription and translation.  

(Madeleine, 2006) 

 

The technology known as RNA-seq uses next-generation sequencing to generate 

millions of short nucleotides sequence, which is known as “read” from RNA of a 

sample of interest. These generated reads are then map to a reference genome, then, 

we can deduce which gene is being expressed from the mapped reads. This deduction 

is possible because RNA is used in both transcription and translation. 

 

The number of reads mapped to a specific gene is called the read depth. In this project, 

read depth will also be referred to as coverage. Hence, higher coverage RNA-seq data 

means higher number of mapped reads. Higher coverage allows researcher to 

conclude that a gene is being expressed with higher confidence level. Furthermore, 
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higher coverage RNA-seq data is also able to reveal rarely expressed genes which low 

coverage RNA-seq data is unable to do so. The following figure shows the difference 

between high coverage and low coverage RNA-seq data. 

 

Figure 1.4.2. Illustration of high coverage and low coverage RNA-seq data. 

 

1.5 Report Organisation 

This report consists of 5 chapters. The first chapter introduces the problem statement 

and motivation of the project. This chapter explains the project background as well.  

Chapter 2 is reviews of past researches on imputation of gene expression using deep 

neural networks and statistical models. 

Chapter 3 explains the process of data gathering and processing. Methodology for this 

project is included in this chapter too. Chapter 4 shows different architectures being 

experimented on and its results. 

The final chapter concludes this project with discussion and future improvement that 

can be made to this project. 
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2.1 Gene Expression Imputation 

2.1.1 Statistical Model 

Over the years, different approaches have been proposed to impute missing values in 

RNA-seq data. These imputation approaches are mainly based on regression, 

clustering and nearest neighbour method. In 2013, Bagjfalaki et al. conducted a 

comparative study on imputation of missing value in RNA-seq data using statistical 

models. The notations used in the paper are defined as follow: 

Let  𝑌𝑔𝑖𝑟 = read count of the gth gene in rth iteration of condition i.   

 𝑌𝑔
𝑚𝑖𝑠= missing read count of gth gene. 

Figure 2.1.1 shows the gene expression matrix going to be used. 

Figure 2.1.1. Gene expression matrix and missing values are highlighted (Baghfalak 

et al., 2016). 

 

In regression imputation approach, Spearman correlation is first used to find the K 

most correlated genes that is not a missing read count to the 𝑌𝑔
𝑚𝑖𝑠. Let 

 𝑥𝑔* = (𝑥𝑔*1, 𝑥𝑔*2, … , 𝑥𝑔*(𝑛1+𝑛2)),    𝑥𝑔*𝑟 = {
0 if 𝑖 = 0
1 if 𝑖 = 1

  

And let 𝑋𝑔 = (𝑌𝑔*
1 , 𝑌𝑔*

2 ,..., 𝑌𝑔*
𝐾 , 𝑥𝑔) be the covariate matrix for gth gene. 
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Then, the regression model will be 

 𝑌𝑔* ∨  𝛽𝑔* ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑔*), where log(𝜇𝑔*) = 𝑋𝑔*
′ 𝛽𝑔* 

The regression model will then be fitted to the data, and the missing values are 

replaced by the predicted values from the regression equation. Other than this, another 

approach is using Expectation-Maximization algorithm to estimate the parameters 𝛽𝑔* 

of the regression model. 

 

A model known as Bayesian Poisson regression is discussed in the paper as well. 

Here, a Poisson model is first fitted to the data, and then the posterior mean 𝛽𝑔 and 

posterior variance 𝑉(𝛽𝑔) of the parameters 𝛽𝑔, g = 1, 2, ..., G are computed. Next, 

new parameters 𝛽𝑔
*  are drawn from (𝛽𝑔, 𝑉(𝛽𝑔)) . Lastly, the missing values are 

imputed as 𝑌𝑔*
𝑚𝑖𝑠 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑔*

𝑚𝑖𝑠) , where log(𝜇𝑔*
𝑚𝑖𝑠) = 𝑋𝑔*

𝑚𝑖𝑠𝛽𝑔
* . In the case of 

overdispered count data, the missing values are imputed from negative binomial 

distribution instead of Poisson distribution.  

 

The approach that yields the best results in missing value imputation among all the 

approaches discussed is Poisson mixture model. This is a clustering method that 

assumes all RNA read counts follow Poisson distribution. Parameters estimation and 

clustering of genes are done by Expectation-Maximization algorithm, whereas the 

number of clusters is estimated by Bayesian information criterion and Integrated 

Complete Likelihood criterion. After the genes have been clustered, the missing 

values are imputed as the mean of available genes in the respective cluster. 

 

A review on imputation algorithms of gene expression data was conducted in 2010 

(Liew et al., 2010). During that time, microarray data was the norm in studies of 

differential gene expression analysis. Therefore, the gene expression values discussed 

in the paper were derived from microarray data instead of RNA-seq data. Despite this 

difference, this paper is still important as it provides prior knowledges in imputation 

of gene expression. 
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In the following discussion, the term gene expression matrix refers to the matrix 

shown in Figure 2.1.1. One major insight from the paper is the existence of 

correlations in the rows and columns of the gene expression matrix. In the case of 

rows, multiple genes will be expressed at the same time under a certain condition, 

therefore, there is a correlation between these expressed genes. In the case of columns, 

it is to be expected that the same set of genes will be expressed under similar 

condition. Thus, there exists a correlation between these columns. 

 

The algorithms reviewed were categorized into four different categories based on the 

type of information used by the algorithm, namely global approach, local approach, 

hybrid approach and knowledge assisted approach.  

 

For algorithms in global approach, an assumption that there exists a global covariance 

structure in the gene expression matrix was made. Then, imputation algorithms such 

as SVD imputation and Bayesian principal analysis perform imputation based on this 

assumption. However, when the gene expression matrix is heterogeneous (and hence 

the local correlation is stronger) these algorithms will not perform well. On the other 

hand, algorithms in local approach work better when the gene expression matrix is 

homogeneous. These algorithms assume that only a subset of genes has a strong 

correlation with the gene that contains missing values. Missing values of the target 

gene will then be imputed based on the selected subset of genes known as reference 

genes. Notable algorithms in local approach include K nearest-neighbour imputation, 

least square imputation and linear regression imputation. In hybrid approach, they 

capture both local and global correlation information by combining algorithms from 

global approach and local approach. Hence, the method in hybrid approach is simply 

a combination of algorithms from global approach and local approach. Integration of 

domain knowledge such as regulatory mechanism and underlying biomolecular 

process into imputation is known as knowledge assisted approach. In case of small 

datasets that contains many missing values, this approach works better compared to 

the other three approaches discussed.  
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2.1.2 Deep Learning 

Recent successes of deep learning have prompted researchers to use deep learning for 

tackling genomic problem. In 2015, Chen et al. proposed a deep learning model 

known as D-GEX to infer gene expression from the expression of selected landmark 

genes. Their study was motivated by an observation discovered by researchers from 

LINCS program. The observation is that ~1000 genes out of ~22000 human coding 

genes can capture around 80% of the gene expression information. These ~1000 

genes are known as landmark genes. However, LINCS program uses linear regression 

to infer the gene expression from the expression of landmark genes. Therefore, Chen 

et al. proposed using deep learning instead of linear regression to infer the gene 

expression based on landmark genes, because there exists nonlinearity in gene 

expression data.  

The D-GEX with the best performance is a feedforward neural network that consists 

of three fully connected layers. The architecture of the network is shown in Figure 

2.1.2. Since the network has three fully connected layers with 9000 hidden units in 

each layer, the memory usage of this network is relatively large. So, they separate the 

target genes layer into two different GPU. D-GEX also uses dropout technique which 

is known to be useful in regularization, and they use tanh as activation function to 

capture the nonlinearity in gene expression. Two important observation were 

discovered when Chen et al. were trying to interpret the learned D-GEX. One of it is 

that they discovered the connections of units in hidden layers are sparse. Another 

observation is that neural network is able to capture the nonlinearity in gene 

expression. 

Figure 2.1.2. Architecture of D-GEX (Chen et al., 2015) 
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A deep autoencoder network is proposed for inferring gene expression from single 

nucleotide polymorphisms (SNP) genotypes (Xie et al., 2017). Autoencoder (Bengio 

et al., 2007) is a type of neural network that made up of two components, encoder and 

decoder. Both encoder and decoder are feed forward neural networks. Given an input 

x, encoder will encode it into a compressed features vector, in other words, the input 

is being encoded into a low dimensional representation. Then, the compressed 

features vector is feed into decoder, and an output which is similar to the input x is 

generated by the decoder. The architecture of the proposed network is shown in 

Figure 2.1.3.  

Figure 2.1.3. Architecture of the deep autoencoder network. (Xie et al., 2017) 

 

The network consists of two hidden layers which are autoencoders, and a final layer 

of linear regression model. One thing to note is that they use denoising autoencoder 

(DAE) instead of autoencoder in the network. DAE is just another variant of 

autoencoder (Vincent et al., 2008). The difference between autoencoder and DAE is 

the input data, noises are added into the input of DAE as the name suggested. 

Although it uses noisy input, but the original input without noises is used to compare 

with the generated output. This forces the DAE to learn the features from the noisy 

input, instead of learning an identify function which simply recreates the input. 

Dropout was used in the network to improve the performance as well. Unfortunately, 

details of the two hidden autoencoder layers such as number of layers in autoencoder 

and activation function used were not stated by the authors.  
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2.2 Vanishing Gradient Problem 

By adding more hidden layers to a neural network, it is able to model a much more 

complex function, and hence it can perform well on complicated tasks. However, 

simply adding more hidden layers does not necessarily improve the performance of a 

neural network, as it might suffer from vanishing gradient problem.  

Training a neural network is generally done with backpropagation and gradient 

descent, where each layer in the neural network is updated based on the gradients of 

loss with respect to the layer's weights. Vanishing gradient happens when the 

gradients being backpropagated are getting smaller. As a result, early layers are not 

updated as the gradient is too small.  

Over the years, multiple approaches have been proposed to deal with vanishing 

gradient problem. 

2.2.1 Layer-wise training 

One of the earlier methods used to overcome vanishing gradient is greedy layer-wise 

training of neural network. In 2006, Hinton et al. introduced Deep Belief Networks 

(DBN), which is a stacked of Restricted Boltzmann Machines (RBM) layers. The 

training of DBN involves two stages, pre-training stage and fine-tuning stage. 

During the pre-training stage, each layer is trained sequentially as an RBM with 

Contrastive Divergence algorithm. Unlike gradient descent, each layer is trained 

without a cost function, instead it is trained to learn a higher-level representation of its 

input. Once a layer has been trained, another layer will be trained using trained layer's 

output as its input, and they are stacked together at the end. Hence, this is known as a 

greedy layer-wise unsupervised learning algorithm. In the fine-tuning stage, a wake-

sleep algorithm is used to fine-tune the network. Besides, gradient descent has been 

used to fine-tune the DBN as well (Bengio et al., 2007). Although DBN does not 

suffer from vanishing gradient problem, it does not address the root cause of the 

problem, but merely avoided the problem by not using gradient descent and 

backpropagation to update the network's weights. 

In 2007, Bengio et al. attempted a greedy layer-wise supervised training algorithm. In 

this case, each layer is trained using gradient descent sequentially. However, their 
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experiments show that networks trained using this algorithm performs worse than 

networks trained using greedy layer-wise unsupervised learning algorithm. 

Greedy layer-wise supervised training algorithm was also used to train convolutional 

neural network in an attempt to deal with small and specialized dataset (Rueda-Plata 

et al., 2015). The networks that they trained is shown as followed. 

Figure 2. Different CNN trained (Rueda-Plata et al., 2015), ‘C’ represents 

convolutional layer, ‘P’ represents pooling, ‘N’ represents normalization, ‘FC’ 

represents fully connected layer.  

The training of their networks can be summarized as follow: 

1) Start with a base network which consists of one convolutional layer and three 

fully connected layers. 

2) Initialize the base network with random weights and train the base network. 

3) Add an additional convolutional layer to the trained network. The new layer is 

added in between the trained convolutional layer and fully connected layers. 

4) Initialize the newly added convolutional layer and fully connected layers with 

random weights, while keeping the weights of trained convolutional layer 

same. Then, train the resulting network. 

5) Repeatedly add new convolutional layer as described in Step 3 and 4. 

Their results show that CNN trained layer-wise achieved higher accuracy on multiple 

datasets compared to CNN trained from scratch. 
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2.2.2 Activation Function 

Sigmoid and tanh non-linearity were the norm as activation function for neural 

network in the early days. However, both activation functions can saturate and cause 

the gradient to vanish. This happens on sigmoid non-linearity when the output is near 

0 or 1, where the gradient at these two regions is close to 0. On the other hand, this 

happens to tanh non-linearity when the output is near -1 or 1. 

ReLU has been the most common activation function used in neural network 

nowadays, because it does not suffer from vanishing gradient problem as much as 

other activation functions. ReLU only saturates at negative region, which is relatively 

better than sigmoid and tanh which saturate on much larger region. However, since 

the gradient of ReLU at negative region is completely 0, ReLU might "die" and never 

be able to be updated again. This is known as the "dying ReLU" problem. Variations 

of ReLU such as Leaky ReLU and Parametric ReLU have been proposed to fix the 

"dying ReLU" problem. These ReLU variations introduced a tiny negative slope on 

the negative region to deal with the problem. 

 

2.2.3 Weight Initialization 

The output of a neural network layer is generally in the form as followed: 

 output = f(weights . input + bias), 

where f is a non-linearity function. If the weights of a layer are initialized with values 

that are too small, the output will be getting closer to 0 at deeper layers. On the other 

hand, if the weights of a layer are initialized with values that are too large, and tanh is 

used as the non-linearity function, then the output will be saturated on -1 or 1. This 

will lead to vanishing gradient problem as the gradient is 0 when the output is 

saturated. 

Therefore, it is important to ensure the variance of the output remains approximately 

the same across layers in neural network. In 2010, Glorot and Bengio shows that in 

order for the variance of output remains the same, the variance of the weights need to 

be  
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 Var(weights) = 2 / (n_in + n_out),  

where n_in is number of units in previous layer and n_out is number of units in next 

layer. However, while this works well for sigmoid or tanh, it does not work well for 

ReLU. So, in 2015, He et al. suggested the variance of the weights to be 

     Var(weights) = 2 / n_in,  

where n_in is number of units in previous layer. In 2015, batch normalization (Ioffe et 

al., 2015) was introduced to ease the trouble of initializing neural network's weights 

properly. The idea of batch normalization is that, if we want the variance of the output 

to be similar across layers, we can just zero-centre and normalize the output at each 

layer. This is similar to normalizing the data for the first layer of neural network.  
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3.1 Dataset 

The dataset was downloaded from National Center for Biotechnology Information, it 

consists of 81 RNA-seq data, which were collected from skeletal muscle tissues of 23 

participants. The skeletal muscle biopsies were performed on the participants before 

and after a training period, hence, these RNA-seq data can be categorized based on 

the exercise status, which is trained or untrained. 26 out of the 81 RNA-seq data have 

the exercise status of trained, while the rest are untrained. All the RNA-seq data are in 

FASTQ format and were produced by Illumina HiSeq 2000 Sequencing System. 

Number of bases of the dataset range from 0.7 Gbases to 8.1 Gbases. And, the file 

size of the dataset ranges from 0.5 GB to 5.9 GB. In total, the dataset contains around 

195 GB of raw RNA-seq data. 

 

For the RNA-seq data in FASTQ format, every read is represented by four lines. Line 

1 and 3 consist of a unique sequence identifier and a description: the length of the 

read in our case. Line 2 is the nucleotide sequence of the read. It is made up of five 

different letters, A, T, C, G and N, which represents Adenine, Thymine, Cytosine, 

Guanine and ambiguous base respectively. Each character in line 4 indicates the 

quality value for the respective base in line 2. Figure 3.1.1 shows some examples of 

RNA-seq data. 

Figure 3.1.1. First three sequences of one sample in FASTQ format. 

Since these are human RNA-seq data, Genome Reference Consortium Human Build 

38 patch release 10 (GRCh38.p10) is used as the reference genome for read alignment.  



  

Chapter 3: System Design 

BCS (Hons) Computer Science 

Faculty of Information and Communication Technology (Perak Campus), UTAR 15 

 

3.2 Data pre-processing 

3.2.1 Alignment 

Alignment is first performed on the raw sequences in FASTQ format using HISAT2 

(Kim et al., 2015) with GRCh38.p10 used as the gene annotations. The aligned reads 

are then stored in the format of SAM. In order to conduct further data preprocessing 

and reduce the file size of the aligned reads, SAMtools (Li et al., 2009) is used to sort 

the aligned reads. Next, the sorted aligned reads are converted into a binary format 

known as BAM. 85% of the original file size is reduced by converting the aligned 

reads to BAM format. Figure 3.2.1 shows first two reads in BAM format. 

 

Figure 3.2.1 First two lines of the aligned and sorted reads in BAM format. 

 

3.2.2 Subsampling 

To simulate low coverage RNA-seq data, we use a function in SAMtools to 

subsample 10% from the original aligned BAM file. We generate five low coverage 

data for each of the sample with different seed value. The original aligned BAM file 

will be used as high coverage data.   
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3.2.3 Read count 

Another tool known as featureCounts (Liao et al., 2013) is used to count the mapped 

reads for each gene in GRCh38.p10. The output of featureCounts consists of seven 

columns, but, we only require three out of the seven columns. Therefore, a basic 

UNIX command cut is used to extract the relevant fields from the output of 

featureCounts. The required columns are unique identifier of the gene, length of the 

gene and count of mapped reads to the gene. Figure 3.2.2 shows read counts of first 

three genes. 

Figure 3.2.2. First 4 lines of the extracted output from featureCounts. 

 

3.2.4 Gene expression value 

Since we are using paired-end RNA-seq data, we use FPKM to measure the gene 

expression value. The equation of FPKM is: 

    𝐹𝑃𝐾𝑀𝑖 =
𝑛𝑖×10

9

𝑁×𝐿𝑖
                                                       

where the number of reads mapped a gene i is denoted as ni, the total number of reads 

mapped to all genes is denoted as N and the length of gene i is denoted as Li. A 

simple Python script is written to compute the gene expression value. 
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Figure 3.2.3. shows the flowchart of the whole data pre-processing. 

Figure 3.2.3. Flowchart of data pre-processing. 

 

3.2.5 Gene expression matrix 

After the gene expression value of the 81 high coverage bam files and the 405 low 

coverage bam files have been computed, the results are concatenated into two 

different gene expression matrices. Figure 3.2.4. shows the gene expression matrix of 

high coverage bam files. 



  

Chapter 3: System Design 

BCS (Hons) Computer Science 

Faculty of Information and Communication Technology (Perak Campus), UTAR 18 

Figure 3.2.4. Gene expression matrix of high coverage bam files. 

However, the range of the values in the gene expression matrix is too large. Therefore, 

we log2 transformed the values in the matrix. 

3.3 Implementation 

3.3.1 Methodology and experiment procedure 

In order to impute a gene expression value from low coverage data, it is important that 

the neural network model is able to capture the correlations between genes in high 

coverage data. 

However, there are 58243genes in the gene expression matrix. Therefore, we will 

experiment with different deep learning models to determine the most suitable model 

that is able to capture these correlations. 

To ensure that the independent variable in our experiment is the architecture, we will 

keep the following hyperparameters constant across different architectures. 

1) number of epochs trained: 100 

2) batch size: 16 

3) optimization algorithm: Adam 

4) learning rate: 0.0001 

Agile methodology will be adopted throughout this project, since it allows us to 

quickly experiment with different architecture based on one’s result. 

3.3.2 Models implementation 

All the proposed models will be implemented in PyTorch and run on a system with 

two GPUs (Nvidia GTX1060 and Nvidia GTX1080). Since we will be experimenting 

with different models, a single system is not enough. Therefore, we will also be using 

Colaboratory, a free cloud service with GPU (Nvidia Tesla K80) from Google. 
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3.3.3 Evaluation of models 

We adopt root mean square error (RMSE) to evaluate the performance of the 

imputation model in imputation of gene expression from low coverage data,  

𝑅𝑀𝑆𝐸 = √
∑(𝑥𝑖 − 𝑦𝑖)2

𝑁
                                       

where N is the total number of genes, xi is the corrected genei expression value of low 

coverage data, and yi is the genei expression value of high coverage data.  

In order to have a better understanding on the RMSE score obtained by each model, 

we need a baseline model. K nearest-neighbour imputation will be used as the 

baseline model for evaluation.  

 

3.4 Timeline 

Figure 3.4.1 shows the timeline of this project that span across roughly eight months. 

The outcome of this project includes two reports.  

Figure 3.4.1 Project Gantt chart.
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4.1 Fully connected and autoencoder models 

The first architecture that we experiment with is fully connected model, which is 

similar to D-GEX (Chen et al., 2015). The difference being our input and output 

layers consist of 58243 units. Ideally, we would like to experiment with hidden layer 

that has 3000, 6000 or 9000 hidden units. However, a fully connected layer between 

58243 input units and 3000 hidden units will requires more than 8GB of memory, 

which is unable to run on our machine. Thus, we only experiment with 1000, 2000 or 

2500 hidden units. The number of hidden layers we experiment with is 3, 4, 5, 6 or 7. 

Dropout was applied to all the hidden layers in the model as well, with the dropout 

rate set to 25%. This fully connected model will be referred to as FC_x model in this 

project, with x indicating number of hidden layers. Figure 4.1.1. shows an example of 

architecture of FC_3 that has 3 hidden layers. 

Figure 4.1.1. Architecture of FC_3 model. 

An autoencoder model that is similar to MLP-SAE (Xie et al., 2017) is being 

experimented on as well. The hidden layer of this model is an autoencoder as shown 

in the following figure. 
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Figure 4.1.2. Architecture of autoencoder model. 

We experiment with one autoencoder as hidden layer, as well as two autoencoder 

stacked together as hidden layer. The model with one autoencoder as hidden layer will 

be referred to as AE_1, whereas the model with two autoencoder as hidden layer will 

be referred to as AE_2. 

 Number of hidden units 

Architecture 1000 2000 2500 

FC_3 1.425 1.391 1.383 

FC_4 1.444 1.435 1.426 

FC_5 1.489 1.518 1.511 

FC_6 5.502 2.449 1.566 

FC_7 5.310 2.243 1.736 

KNN imputation 1.46 

AE_1 9.82 

AE_2 10.24 

Table 4.1.1. Results of fully connected and autoencoder models. 
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Results show that FC_3 perform better than all the other models, where three FC_3 

with different hidden units have the lowest RMSE. There are two trends that can be 

observed from this result. First, as the number of hidden layer in fully connected 

model increases, their RMSE increases too. Second, RMSE decreases as the number 

of hidden units increases. 

Both autoencoder models performed the worst in this experiment with 9.82 and 10.24. 

This result is to be expected, as the autoencoder model is essentially the same as the 

fully connected model, with the difference being autoencoder model has less hidden 

units in the middle layers. 

To investigate further on why fully connected model performs worse when it has 

more than 5 hidden layers, we examine the gradients of the hidden layers. First, we 

examined the magnitude of gradients for units in the hidden layers by plotting a graph. 

The sum of magnitude of gradients can be used as a heuristic to measure how fast the 

layer is learning (Socher, 2016). Intuitively, if the sum of magnitude of gradients is 

large, then the layer is learning faster.   

 

Figure 4.1.3. Plot of sum of magnitude of gradients in first layer for FC_3, FC_6 and 

FC_7. 
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Based on the graph, we can observe that the sum of magnitude of gradients is lower 

for deeper fully connected model, such as FC_6 and FC_7. This indicates that first 

layer of deeper fully connected models is learning relatively slower. This is one of the 

possible explanations that fully connected models have a higher RMSE when number 

of hidden layers increases. 

 

4.2 Fully connected models with convolutional layer 

With the input layer and output layer having 58243 units, it is difficult to increase the 

number of units in hidden layers to more than 2500, as it will take tremendous amount 

of GPU memory to train the model. Hence, we used 1D convolutional layers to reduce 

the number of units in the input layer. 

We experiment with two different number of 1D convolutional layers added to fully 

connected model, these combinations of 1D convolutional layers will be referred to as 

CONV_1 and CONV_2. The configuration of each of them is shown in the following 

table: 

Combination Layer Input size Filter 

size 

Stride Output 

size 

CONV_1 1D convolu-

tion 

58243 3 2 29121 

1D convolu-

tion 

29121 3 2 14560 

CONV_2 1D convolu-

tion 

58243 3 2 29121 

1D convolu-

tion 

29121 3 2 14560 

1D convolu-

tion 

14560 3 2 7280 

Table 4.2.1. Configuration of 1D convolutional layers. 
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As shown in Table 4.2.1., the input size got reduced to 29121, 14560 or 7280. These 

reduced size input are then feed into FC model.  

FC Model with 

1000 hidden units 

 

Without Conv 

 

With CONV_1 

 

With CONV_2 

FC_3 1.425 1.489 1.756 

FC_4 1.444 1.742 1.843 

FC_5 1.489 1.596 1.774 

FC_6 5.502 1.729 1.677 

FC_7 5.310 1.567 1.647 

Table 4.2.2. Comparison of results of FC model with and without CONV. 

Based on the results shown in Table 4.2.2., we can see that shallower fully connected 

models such as FC_3, FC_4 and FC_5 has a worse performance when CONV_1 or 

CONV_2 is added to the model. However, deeper fully connected models such as 

FC_6 and FC_7 are able to perform better with CONV_1 or CONV_2 added 

compared to without any convolutional layer added. Again, we examined the 

gradients of the hidden units in the first layer.  
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Figure 4.2.1. Plot of sum of magnitude of gradients in first layer for FC_3, FC_6, 

FC_7, FC_6 with CONV_1 and FC_7 with CONV_1. 

Based on Figure 4.2.1., sum of magnitude of gradients on first layer for FC_6 and 

FC_7 with CONV_1 is larger than FC_6 and FC_7 without any convolutional layer. 

This might be the reason that deeper fully connected models with convolutional layers 

are performing better than deeper fully connected models without convolutional 

layers. 

 

4.3 Greedy layer-wise trained models 

We used greedy layer-wise supervised training algorithm to train fully connected with 

convolutional layer models as well. The training of the models can be described as 

follow: 

1) Train a base network which consists of two 1D convolutional layers and three 

fully connected layers. 

2) Add an additional fully connected layer to the trained network. The new layer 

is added in between the trained second last and last fully connected layer. 

3) Train the resulted network.  

4) Repeatedly add new fully connected layer as described in Step 2 and 3. 

 

The architecture of base network and resulted network with 1 fully connected layer 

added is shown in the following figure. 
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Figure 4.3.1. Architecture of base network and base network with 1 fully connected 

layer added. 

 

FC Model with 

1000 hidden units 

Without Conv and 

greedy layer-wise 

training 

With CONV_1 and 

greedy layer-wise 

training 

FC_3 1.425 1.490 

FC_4 1.444 1.387 

FC_5 1.489 1.370 

FC_6 5.502 1.371 

FC_7 5.310 1.360 

FC_8 - 1.351 

Table 4.3.1. Results of greedy layer-wise trained models. 

Based on the results shown in Table 4.3.1., it shows that with convolutional layer and 

greedy layer-wise training, we are able further reduce the RMSE to 1.351. 
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5.1 Project Review 

RNA-seq has gained a lot of interests from researchers lately due to its superiority 

compared to microarray data. The level of coverage of the RNA-seq data will affects 

the application of the data, as high coverage RNA-seq data is able to reveal rarely ex-

pressed genes. However, higher cost of high coverage RNA-seq data has hinder the 

progress of researches. Thus, it is important that we can impute low coverage RNA-

seq data into high coverage RNA-seq data.  

In this project, we experimented with different deep neural network architectures to 

impute gene expression. By applying both convolutional layer and greedy layer-wise 

supervised training algorithm, we are able to train deep neural networks that are able 

to achieve better performance than the baseline model. 

 

5.2 Future Work 

In this project, we studied the effects of different deep neural network architectures on 

a dataset of only 81 unique RNA-seq data. However, deep neural networks require 

massive amounts of data to achieve a better performance. Therefore, we expect that a 

larger dataset will be able to fully utilize the power of deep neural networks.  
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