
BIS (Hons) Communications and Networking 

Faculty of Information and Communication Technology (Perak Campus), UTAR. 

i 

 

REPORT STATUS DECLARATION FORM 

 

 

 Title:  __________________________________________________________ 

    __________________________________________________________ 

    __________________________________________________________ 

 

Academic Session: _____________ 

 

 I   __________________________________________________________ 

(CAPITAL LETTER) 

 

 declare that I allow this Final Year Project Report to be kept in  

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows: 

1. The dissertation is a property of the Library. 

2. The Library is allowed to make copies of this dissertation for academic purposes. 

 

 

   Verified by, 

 

 

 _________________________  _________________________ 

 (Author’s signature)         (Supervisor’s signature) 

 

 Address: 

 __________________________ 

 __________________________   _________________________ 

 __________________________      

 Supervisor’s name 

 

 Date: _____________________   Date: ____________________ 



BIS (Hons) Communications and Networking 

Faculty of Information and Communication Technology (Perak Campus), UTAR. 

ii 

 

UNIVERSAL IOT DEVICES DISCOVERY SYSTEM USING 

PROTOCOL-INDEPENDENT NETWORK FLOWS 

CHARACTERISTICS 

BY 

LAI YAN LEUNG 

 

 

 

 

 

 

 

A REPORT 

SUBMITTED TO 

Universiti Tunku Abdul Rahman 

in partial fulfillment of the requirements 

for the degree of 

BACHELOR OF INFORMATION TECHNOLOGY (HONS) 

Faculty of Information and Communication Technology 

(Perak Campus) 

 

MAY 2018



BIS (Hons) Communications and Networking 

Faculty of Information and Communication Technology (Perak Campus), UTAR. 

i 

 

 

DECLARATION OF ORIGINALITY 

 

I declare that this report entitled “UNIVERSAL IOT DEVICES DISCOVERY SYSTEM 

USING PROTOCOL-INDEPENDENT NETWORK FLOWS CHARACTERISTICS” is my 

own work except as cited in the references. The report has not been accepted for any degree and 

is not being submitted concurrently in candidature for any degree or other award. 

 

 

 

Signature  : _________________________ 

 

Name   : _________________________ 

 

Date   : _________________________ 

  



BIS (Hons) Communications and Networking 

Faculty of Information and Communication Technology (Perak Campus), UTAR. 

ii 

 

ACKNOWLEDGEMENTS 

 

I would like to express my gratitude to my supervisor, Mr. Aun Yichiet for giving me the 

opportunity to take part in this IoT devices discovery project. IoT has been my passion and interest 

and this project means a lot to me. I’m extremely grateful for this chance to help further improve 

the technology.  

 

I would also like to thank Ch’ng Liu Yin for being with me at all times, giving me supportive 

advice and helping me stay strong through tough times during the process of completing this 

project. Finally, I would like to thank my parents for all the support they provide to aid me in the 

project.  



BIS (Hons) Communications and Networking 

Faculty of Information and Communication Technology (Perak Campus), UTAR. 

iii 

 

ABSTRACT 

This project is to develop an IoT device discovery system for academic purposes. It will provide 

students insights on network discovery concepts as well as methods and technology required to 

design it. This project aims to overcome cumbersome network management when dealing with 

IoT devices on multiple platforms. The cumbersome process roots from the heterogeneity nature 

of current IoT devices. Each IoT device supports a limited amount of platform. To craft an IoT 

ecosystem which best suits the requirements of a user, it is highly probable that more than one 

platform is used. This is because some platforms contain devices with functionalities which is not 

found in devices on another platform. For users to have a brief understanding about the number of 

devices or the number of a certain type of devices that exists in the network, users will need to 

access native platform application and combine the data obtained. The solution is a universal 

device discovery system which works across multiple platforms. The proposed solution requires 

knowledge about data packets for analysis on the network flow characteristics as well as 

programming languages for the construction of discovery and classification algorithms. Discovery 

of IoT devices is based on selected statistical features extracted from data packets being transmitted 

by devices within the network. These features are then combined to create a unique classification 

model to be used by a machine learning software to perform the classification. The result of the 

system is an accurate device classification model based on network flow characteristics. The result 

proves that, with further development, it is possible to produce a fully automated, self-updating 

device discovery system without requiring to periodically update the database.  
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1.0 INTRODUCTION 

1.1 Problem Statement 

 At the current stage of IoT development, IoT devices are getting increasingly accessible by 

the mass for different purposes such as research project, business entities or households. This is 

mainly due to the mass production of IoT devices which makes the cost for IoT devices being 

much cheaper. The participation of technological companies such as Broadlink, Logitech and Nest 

in the production of household IoT end devices has greatly expanded the market. However, all 

these end devices require a platform for them to communicate with each other. In the current 

market, big players in the technological industry such as Google, Amazon and XiaoMi have come 

up with their very own platform for example Google Home, Amazon Alexa and XiaoMi Home. 

However, in order to work in a particular platform, the end devices have to be designed to support 

the platform. 

 An ideal IoT implementation is achieved by having one IoT platform which all devices can 

be compatible with. However, in the real world, this ideal does not exist with the current state of 

technology. To fully automate a home, especially by doing it yourself, it often requires more than 

one platform. This is because not all IoT devices support the same platform and not all platforms 

are supported by the IoT devices which meets the requirements of the user. A problem arises where 

existing IoT end devices can only be discovered based on their inherent supported protocols. For 

example, a XiaoMi Air Purifier can only be discovered by XiaoMi MiJia. There are also IoT 

devices which supports multiple platforms such as the Sonoff Switch which supports both Google 

and Amazon. This makes it difficult for users to manage their IoT devices if each of their devices 

support different platforms. The current technology requires users to discover devices on per 

platform basis. This means that to discover a device on the Google ecosystem, users will need to 

access the Google Home application and to discover devices on the Amazon ecosystem, access the 

Alexa application so on and so forth. This can be very tedious to do. When users attempt to move 

their devices to a new environment, for example a friend’s house, it will be difficult to find out 

which ecosystem is available unless they ask about it. Furthermore, network analysis can be 

challenged by the heterogeneity of the IoT devices. Network statistics from the router does not 

have much information such as the device type. It is hard for users to identify how many devices 
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of the same type currently exists in the network. Without this information, it will inhibit the ability 

to optimize the network performance based on the type and number of devices connected to it. 

1.2 Project Scope 

 In this project, I would like to propose a universal IoT device discovery system using 

protocol-independent network flows characteristics. Besides regular discovery, the proposed 

system will also be able to classify devices up to the device-type level. For example, the system is 

able to detect and tell that which device a bulb is, and which is a socket. This is achieved by 

capturing data packets sent by IoT devices to determine the type of the respective device. This is 

done by analyzing the data captured by the system and match it with a set of pre-defined metrics 

based on several different attributes of the data packet. The accuracy of device discovery will 

depend on the amount of data received and the degree of definition of metrics on the system. The 

system can only detect and identify devices with metrics that already exist within the system. The 

device type that are currently supported for the project includes a bulb, an IR blaster, media player 

and socket. In this project, it is assumed that the machine learning techniques used does not employ 

self-learning capability. Hence, an update in implementation by the device manufacturer that might 

alter the values of features used in this project will render the device undetectable until the machine 

learning software is being trained again after the new implementation. This can be achieved by 

future works and development. Finally, for the purpose of this project, this system is designed to 

work with the three major platforms available in the IoT market which is XiaoMi Home, Google 

Home and Amazon Alexa.  

1.3 Project Objectives 

 The main objective of this project is to produce a universal IoT device discovery system 

that is able to work across major smart home IoT platforms namely XiaoMi Home, Google Home 

and Amazon Alexa. Being cross-platform means that the system is capable of discovering and 

identifying devices regardless of which platform it does or does not support as long as it is one of 

the platforms supported by the system. These platforms were selected mainly due to its popularity 

and its large user base with each of them owning a huge piece of the market share. By working 

with these platforms, we are able to provide our system for the greatest number of users in the 

market.  
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 One of the sub-objectives of this project is to synthesize existing IoT devices discovery 

and fingerprinting methods. Methods adopted is the most crucial part of the system as it directly 

impacts the capability and accuracy of the system to discover and identify IoT devices. In order to 

select the best method, the system is installed with several methods during the testing. Network 

packets are then collected and fed into the system to be processed. A result of the device discovered 

and identified is produced. This result is used to select the method that best suits this application. 

 Next, this project aims to simulate and collect network packets from devices running on 

three popular IoT protocols, namely XioaMi, Alexa and Google. Simulation is done by collecting 

IoT devices which supports these platforms which were set up in a physical environment. A packet 

sniffer is then used to capture packets being transmitted and received by the devices. The packets 

will be used to train the system for discovery and classification. The number of packets captured 

will have an impact on the accuracy of the system. Hence, it is important to ensure that sufficient 

number of packets are collected to train the system to produce a high accuracy metric. 

 This project also intends to identify useful features for IoT devices discovery and 

classification. These features will be able to allow the system to classify IoT devices based on the 

type of devices instead of their platform. For example, the system is able to discover and recognize 

a device to be a light or an air purifier based on the features identified. Similarly, the number of 

features affects the accuracy of the system. A large number of features implies a more accurate 

discovery and classification.  

 Finally, this project aims to evaluate the effectiveness of the protocol independent features 

in detecting cross-protocols IoT devices. This evaluation is crucial to determine the accuracy of 

the system in discovering and identifying IoT devices. This evaluation also allows us to fine tune 

the system by removing features that are less effective and adding features that are more effective. 
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1.4 Contributions 

 The success of this project will realize a better IoT devices monitoring system 

which is a universal IoT devices discovery and classification system using protocol-independent 

network flows characteristics. The proposed system will be able to help users easily manage their 

IoT devices by allowing them to discover devices across multiple platform. With device 

classification feature, network management and optimization can be done more easily. Instead of 

discovering devices using 2 separate application, devices discovery can be done on 1 single 

system. This will allow users to know how many IoT devices exists in the network at a glance. 

Furthermore, discovered devices can be identified up to its device-level and allow users to further 

determine which device type has what number of devices. These statistics can be very useful for 

network optimization and helps users know what network performance to anticipate. 

 In terms of device migration, the proposed system is able to help users migrate to an 

unfamiliar environment such as a new building. Without prior knowledge of what platform exists 

within the new environment, the system helps users identify platforms being used within the 

environment. This is achieved by sampling data being transmitted by IoT devices that has already 

existed in the network and identify which platform does that device belong to. Sampling all devices 

in the environment will result in the detection of all existing platform in the environment. This 

way, users can immediately know which platform integration process to be used.  

 Finally, this system is able to aid in network performance troubleshooting especially in 

large enterprise network where there exists a huge number of IoT devices. This can be especially 

useful if IoT device manufacturers only provide device model as the device name. A scenario 

where a performance bottleneck is identified to be one of the IoT device within the network, it is 

hard to identify which device is it based merely on information provided by the router such as IP 

address, MAC address and device name. This system specifically identifies the respective MAC 

address as a device type so that users know which device within the building is the culprit and is 

able to quickly remove it from the network. Furthermore, users can also know in which area to 

look for the faulty device and troubleshoot it instead of looking for the whole building. For 

example, when a building consists of several types of IoT device, if the system identifies the faulty 

device to be an air purifier, users immediately know that they should only inspect air purifiers 
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instead of also inspecting other devices such as smart bulbs and smart sockets which can be a very 

tedious task to do.  

1.5 Proposed Approach 

 

Figure 1-5-1: System work flow 

The work flow of the proposed system is as illustrated in figure 1-5-1. The system works 

by feeding it packets captured from the network. The packets will then go through packet 

classification process done by a selected classification algorithm. The results will then be matched 

with existing devices to determine its device type. If there are no matching device type, the device 

database will have to be updated with the new device type. Finally, the system will show what 

device type does the input data packets belong to. At the current stage of development, the system 

is able to accurately classify devices that I own.  
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1.6 Report organization 

 The report is organized to make it easy to understand using a step-by-step approach. The 

first chapter highlights the field of study as well as problem and solutions this project can solve. It 

is then followed by providing a brief introduction of how the system will work. The following 

chapter highlights related works done by researchers with respect to solve similar problem.  

 Further sections of the paper detail the information about the system design, how it is being 

developed and how it works. Detailed explanation on the system will be provided in the sequence 

of the proposed work flow so that it is easy to understand. The paper then shows the results 

obtained from the project. Finally, the paper wraps up with a conclusion obtained from conducting 

the project.  
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2.0 LITERATURE REVIEW 

In the current world where everything starts to be automated, Internet of Things emerges 

as an inevitable trend not only among the industry but also among households. As of now, an IoT 

system may consists of more than tens of nodes which may start to make the system hard to 

manage.  

It is crucial to make the system easily manageable if we wish to use it efficiently. To 

achieve it, device identification and classification methods adapted by the system becomes one of 

the determining factor. A lot of efforts have been put by researchers across the globe to realize this 

by proposing their respective method of device identification and classification.  

This study will discuss about previous related works and analyses the strength and 

weaknesses of each of them. This will be able to aid with the development of improved methods 

in the future. 

2.1 Application Fingerprinting 

 In the world of information technology, fingerprinting refers to the process in which all 

information about a device available in the network is obtained and analysed to determine the 

hardware and software that exists in the network. This is usually done by network engineers to 

better monitor the network.  

 Currently there are two types of fingerprinting being practiced, namely active 

fingerprinting and passive fingerprinting. The first method is done by sending challenges to target 

hosts and analyse the replies from the host (Bartlett, Heinemann and Papadopoulos, 2007). Tools 

that can be utilized to perform active fingerprinting includes Nmap. Nmap contains a growing 

database of up to 2200 popular services port scanning being one of the most important function. 

When reply packets are received by Nmap, Nmap determines the type of services by comparing 

the packet with existing data on the database.  

 Another tool used for application fingerprinting is AMAP which also contains a database 

of known data signatures to determine the type of service (Rana, 2014). The differences between 

AMAP and Nmap is that AMAP is able to scan for services running on non-standard ports. 
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 The second method is called a passive fingerprinting because it does not get in contact with 

the host. Instead, it captures packets being sent by a certain host in the network. One passive 

fingerprinting tool includes ETTERCAP which is most widely used to determine operating system 

and open ports. ETTERCAP examines packet headers of the packets sent by a host and also 

matches it with data signature stored on a database (Ko, Kang and Sim, 2007).  

 Besides the above types of fingerprinting, hybrid fingerprinting is currently being studied 

by many in terms of usability. This method combines active and passive fingerprinting by using 

Nmap and ETTERCAP simultaneously. This method allows application fingerprinting to be much 

more flexible. This method of hybrid fingerprinting is Hybrid Application Detection (HAD) which 

involves a two-phase process. 

 In this method, the purpose of phase 1 is to build a signature database. The process can be 

summarized as shown in figure 2-1. The first step collects results from tools such as NMAP 

ETTERCAP and AMAP and import it into a file for later use. Before importing the  

 

Figure 2-1-1: Phase 1 process. 

results, only strings crucial for the process will be extracted and evaluated by conducting a real-

time feedback for accuracy comparison. The next step generates signature for each extracted string. 

Finally, these signatures will be stored on the database. The next phase consists of evaluation 

process where accuracy of the system is being verified through benchmarking by performing stress 

tests on the tools. Sample sets and signature stored on the database is being matched with the 

requirement of an exact match and an inexact match. Exact matching involves direct lookup while 

inexact match involves algorithm which defines the condition in which a match is found. The 

system is being tested in comparison with NMAP, AMAP and ETTERCAP. The accuracy of this 
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project is defined by the formula (# hits / # runs) * 100. From the results, HAD performed better 

than all 3 fingerprinting methods with an accuracy of 94.06% in detecting service only and an 

87.13% in detecting service plus version (Ghanem and Belaton, 2013). 

 In a nutshell, application fingerprinting is a decent device discovery and identification 

method as it is able to provide high accuracy in device identification due to its massive database 

of data signature. However, it is not able to automatically update its database. This downside 

happens when network devices undergoes software update and changed their data signature. In 

such cases, the device will fail to be identified as the new data signature does not exist on the 

database. 

2.2 Universal Plug and Play (UPnP) 

 UPnP is a protocol that aims to allow UPnP devices to search for each other and connects 

seamlessly. It works on a basic principle which considers announcement and discovery as 

essentials in service discovery. This is a huge plus for unmanaged networks as it largely improves 

the manageability of the network. UPnP is designed for all peer-to-peer (P2P) network 

connectivity of all PCs, wireless devices and smart appliances. For this to work, the fundamental 

requirement is that it requires all devices to be installed with all UPnP protocols before using it. 

UPnP is built on an open, internet-based communication standard for example SSDP, XML and 

HTTP (Jin, et al., 2014).  

 Among all communication standards supported by UPnP, XML has a large advantage over 

the other standards because it can contain detailed information about the device. One major 

drawback is that it requires adequate memory and processing power to support it. Simple Service 

Discovery Protocols was included in UPnP to easily discover devices within a network without 

any prior knowledge of it. It works by using HTTP to search for services available within the 

network and advertising the availability of the service (Jin, et al., 2014). 

 UPnP is a very powerful method in determining services and devices without prior 

knowledge. However, a few requirements had to be met such as sufficient storage space and 

processing power. Pre-installation of UPnP is also required on all involved devices. As UPnP relies 

heavily on multicast for advertising services, it is not scalable as the network will be saturated with 

advertisement traffics of UPnP when the amount of UPnP device reached a large scale.  
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2.3 Efficient Probing of Heterogeneous IoT Networks 

 IoT networks often exhibit the nature of being heterogeneous with each device originating 

from different manufacturer, different operating system, and naturally different network 

technology is used. This poses a huge challenge in term of device discovery and identification. 

The fact that most IoT networks consists of large number of devices makes this issue even worse. 

To solve this issue, an approach utilising Round Trip Time (RTT) measurements with variable 

network size and probing speed is proposed.  

 In this approach, differentiation of IoT devices can be performed by the scanner using RTT 

based on the network technology used. The first step involves fast probing of an entire selected IP 

address range. To do this, it is reasonable to use a high scan rate technique. This is able to provide 

an insight on what to expect of the scanned network. The following step involves probing with 

variable network sizes. The purpose of this step is to find out what network technologies used by 

the devices in the network which had been discovered in the first step. This step is done by dividing 

the discovered devices into smaller sub-sets and perform a slow scan on each of the sub-sets. As 

IEEE 802.15.4 standards only yield a maximum of 250kbit/s speed while IEEE 802.11 standards 

have a whooping 11Mbit/s, it is obvious that devices using IEEE 802.15.4 standards will result in 

a longer RTT for data packets larger than 128 bytes compared to IEEE802.11 due to its smaller 

physical layer service data unit (PSDU) of 127 bytes compared to 1280 bytes of MTU on the latter. 

Finally, a slow re-probing of the network is performed on address range identified in the previous 

step. This is done as a precautionary step to identify devices that are probably missed out by the 

first step.  

 This approach has been tested on IEEE 802.11 only networks, IEEE 802.15.4 only 

networks and a mix of these 2 networks as a representation of the heterogeneous nature of IoT. 

IEEE 802.11 only networks proved to be tolerable on probing size. The network is probed using 

inter-probing time (T) of 10ms, 20ms and 80ms with light and normal background traffic. From 

the results obtained, this approach successfully discovered 100% of the devices with the network 

(Metongnon, Ezin and Sadre, 2017).  
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Figure 2-3-1: RTT for IEEE 802.11 normal background,   Figure 2-3-2: RTT for IEEE 802.11 normal background, 

T=80ms (Metongnon, Ezin and Sadre, 2017. p. 1055)               T=20ms (Metongnon, Ezin and Sadre, 2017. p. 1055) 

 

 Figure 2-3-3: RTT for IEEE 802.11 normal background, T=10ms 

(Metongnon, Ezin and Sadre, 2017, p.1055) 

Based on the figures above, probe size of 1024 bytes are required to queue when sent at T=10ms.  

 In networks with IEEE 802.15.4 devices, similar tests are being carried out yielding the 

results in the figures below. 
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Figure 2-3-4: RTT for IEEE 802.15.4;             Figure 2-3-5: RTT for IEEE 802.15.4; normal 

normal background; T=80ms                     background; T=20ms 

(Metongnon, Ezin and Sadre, 2017, p.1056)   (Metongnon, Ezin and Sadre, 2017, p.1056) 

 

Figure 2-3-6: RTT for IEEE 802.15.4; normal background; T=10ms 

(Metongnon, Ezin and Sadre, 2017, p.1056) 

As observed from figures 2-2-4, 2-2-5 and 2-2-6, IEEE 802.15.4 devices exhibits very high RTT 

with large fluctuations for all probe sizes when probing intervals T=20ms and 10ms. It is also 

observed that the probing suffers from quite a number of losses. However, when T=80ms, the 

probe successfully discovers more than 95% of devices. 

 In a mixed network where IEEE 802.11 and 802.15.4 devices exists, this approach is used 

to perform probing. The first step using high speed probing of T=10ms and size of 32 bytes yields 
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the result in figure 2-2-7. As the probe size is not that large, there is little concern about it. As for 

the low inter-probing time, it achieved the desired result of a low scan period.  

 

Figure 2-3-7: Mixed network; Normal background; T=10ms 

(Metongnon, Ezin and Sadre, 2017, p.1057) 

Based on the results, it can be seen that the first half of the network consists of high number of 

IEEE 802.15.4 devices as there are a lot of fluctuations and loss while the second half has no 

problem with the probes implying that it might contain a high number of IEEE 802.11 devices. A 

second scan is conducted by randomly selecting small number of devices and perform slow probes 

on these devices. The scan is done using different probe size of 32 bytes and 512 bytes with probe 

speed of T=80ms.  

   

Figure 2-3-8: RTT for selected devices; Normal background Figure 2-3-9: RTT for selected devices; Normal  

T=80ms; 32 bytes      background; T=80ms; 512 bytes 

(Metongnon, Ezin and Sadre, 2017, p.1057)   (Metongnon, Ezin and Sadre, 2017, p.1057) 
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Based on figures 2-2-9, it is observed that probe size of 512 bytes caused a large increase in RTT 

which implies that these are IEEE 802.15.4 devices. Finally, the last step to rescan address range 

containing IEEE 802.15.4 devices are performed using slow speed probing with small probes of 

32 bytes. This scan yields the result in figure 2-2-10. It is shown that the scan was able to discover 

96% of the IEEE 802.15.4 devices. This indicates that results of slow scan are achieved without 

needing to perform a slow scan on the entire network.  

 

Figure 2-3-10: RTT for mixed network; normal background; T=80ms; 32 bytes 

(Metongnon, Ezin and Sadre, 2017, p.1057) 
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 In conclusion, this approach has successfully performed fast probing on networks 

consisting of high speed and low speed devices without needing to sacrifice on probing speed as 

long as the appropriate probe size is selected. This approach aces in high discovery of devices that 

exists in the network as well as active response to newly added devices. Although it does classify 

devices based on their network technology, it does not perform more specific classifications such 

as operating system or services running on devices.  

2.4 IoT Eye 

  IoT Eye is a two phase IoT device auto-discovery protocol. Phase one is a high-speed TCP 

scanning of IP segment of active hosts within the network. In this phase, a high-speed scan is 

performed to discover active hosts along with their respective open ports on the network. This is 

done by combining Zero-Copy Socket and TCP SYN probe. Phase two consists of equipment 

fingerprint identification and data interaction. Based on open ports on the active host, the system 

is capable of learning details about the device such as device type, operating system info, brand 

and supported services by deploying further data interactions via corresponding protocols. Since 

the system uses high-speed IP address scanning and active protocol fingerprinting, the system is 

able to detect devices once the device is exposed within the shortest time period. 

 In order to have an accurate real-time equipment fingerprinting, PI-AC algorithm is used. 

PI-AC is a multi-pattern matching algorithm which supports parallel matching and incremental 

modification of matching automata. Due the heterogeneous nature of IoT, keyword sets used to 

generate matching automata becomes very large because it is being continuously updated to ensure 

accurate device detection. The system also includes a quick emergency response rule in order to 

detect devices that expose themselves suddenly in the network. This involves quick responses 

towards keyword set updates. This is done my adopting a PI-AC algorithm that supports dynamic 

incremental modification of model built on Aho-Corasick (AC) algorithm. 

 The first step of IoT Eye involves a network probe using TCP SYN scan. The usual TCP 

port scan is good for determining status of IP host whether it is alive or dead as well as open ports 

on each host. As TCP is connection-oriented which involves a three-way handshake to establish a 

connection, it proves to be a reliable protocol to be used for network scan. However, it is tedious 

to repeatedly establish a TCP connection. This results in great delay in the discovery of live hosts 

in the network. Hence, a high-speed TCP SYN scan is introduced. Using this method, a host is 
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determined to be alive as long as the scanner sends a SYN message to the host and it replies with 

a SYN+ACK message. In this method, there is no requirement for a complete establishment of the 

TCP connection. This allows for a much faster network probe. 

 To achieve a much faster data processing rate, zero-copy socket is used. In most operating 

system, architecture is designed in a hierarchical method. This makes copy operation very 

cumbersome. Copy operations are performed by having the kernel read data from the memory, 

transfer the read data to an application which is operating in a user-level, then the application 

transfers the same data back to the socket which is in kernel-level and finally the data is passed 

from the kernel to the network interface in order to be sent out a physical link. This process is 

illustrated in figure 2.0.  

 

Figure 2-4-1: Copy process of NIC data 

From this process, it can be seen that the user-level application is an extra intermediate medium 

that does not contribute much to the purpose of the process. Zero-copy socket solves this issue by 

avoiding redundant system calls. It is achieved by skipping system kernel and access storage 

hardware directly.  

 PI-AC algorithm takes the initial characters of each string from a pattern set and constructs 

an index array. Each string in the pattern set is divided into subsets according to their first character 

and only characters of each subset is taken. This allows the elimination of repeated characters in 
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the array. To check if the string already existed previously, the character is converted into its 

relevant integer and used to access the array element of that integer. If the element is non-null, this 

means that this character had already existed, and other pending characters will be inserted as a 

sub-tree of the initial character. If the element is a null, this means other pending characters is new 

and is inserted into the array. All other pending characters will be added as a sub-tree of the new 

character. PI-AC algorithm is designed to perform parallel pattern matching. This implies that all 

matching tasks runs simultaneously, and each data being processed does not affect the or interfere 

with each other. This allows for high-speed data processing which contributes to the emergency 

update response of the IoT Eye.  

 From the above methods, IoT Eye managed to complete a single port scan on 131072 IPs 

within 16.33s while multi-port scans took 534.62s. Based on this result, it is considered that IoT 

Eye is able to complete a port scan within a significantly short period of time. In terms of pattern-

matching, PI-AC algorithm is able to achieve a total of 50000 pattern matching in 185.92s. This is 

a very short period of time considering the large number of patterns being matched. From the 

result, IoT Eye proved to be a highly efficient and reliable system to conduct automatic device 

discovery in real time (Shen, et al., 2017).  
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2.5 Automatic Discovery and Classifications of IoT 

Currently in the advancement of IoT technology, many devices are being manufactured for 

many different distinct goals that would result in different modes of connection in reality (Pedro 

& Luis, 2017). This is because every mode of connection has its own advantages and disadvantages 

which if properly used can be able to effectively achieve its goals. This is also true for the many 

different platform that exists within the IoT industry namely Alljoyn, IoTivity, Apple HomeKit 

and Google Brillo. To achieve the sole purpose of IoT which is to (Pedro & Luis, 2017) allow 

communication among device within a network such as a local area network (LAN) and the 

Internet, a simple application is developed to perform automatic discovery and classification of 

IoT devices.  

The primary function of the application is to analyze captured data packets and classify 

these packets to its respective device and device type. For example, the application is able to tell 

that a captured packet belongs to a SmartLife smart bulb. To achieve this, the process if broken 

down into 3 phases – capture, analyze, classify. 

During the first phase, data packets exchanged by devices within the network is being 

captured by a HTTP proxy server placed at the access point. This proxy server will then allow the 

data exchanged to be viewed including those with SSL certificate. The proxy server is also 

responsible of extracting communication files in the form of XML or JSON as input data for the 

system. Figure 2-5-1 shows the network topology setup for the project. 

 

Figure 2-5-1: Network Topology (Pedro & Luis, 2017) 
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 In the analysis phase, four different algorithms, which is the TF-IDF Table, Levenshtein 

Algorithm, Synonyms Match and Multi-property Matching is selected for the classification 

process. During this phase, all data collected will be fed to the algorithm to perform classification 

based on its device type. Finally, the application displays all devices discovered according to its 

device type.  

 This approach is being tested using devices already on the database and devices that does 

not exist in the database. Table 2-5-1 shows the comparison of average precision in the algorithms 

applied. According to the table, it can be observed that Levenshtein algorithm is good in 

performing classifications on devices already on the database. Whereas Multi-property Matching 

algorithm aced the precision in classification of devices not on the database. 

 

  

Algorithm Devices already on database Devices not on database 

Direct Match  0.83 0.39 

Levenshtein 

Algorithm 
0.70 0.46 

TF-IDF Table 0.68 0.42 

Synonyms Match 0.66 0.48 

Multi-property 

Matching 
- 0.91 

Table 2-5-1: Comparison of average precision for device classification among selected algorithms 
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2.6 Comparison 

 In this section, all discussed methods are compared against one another based on attributes 

related to our works. Each of these attributes play an important role in the proposed system. Table 

2.0 shows the comparison of the results obtained from the above studies. 

 

Attributes 

Methods 
Scan Speed Classification Level Network Size 

Application 

Fingerprinting 
Normal Service Normal 

UPnP Normal Device Small 

TCP Probing Fast Network Technology Large 

IoT Eye Fast Device Large 

Automatic Discovery 

and Classifications of 

IoT 

Normal Device Medium 

Table 2-6-1: Comparison of results 
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3.0 METHODS 

3.1 Design Specification and Overview 

 The realization of the project involves the four standard phases which includes 

environmental setup, data collection, training process and evaluation. Each phase is crucial in 

determining the quality of outcome of the project. The fundamental concept of the project is to 

produce a device classification model which is able to differentiate and identify IoT devices at the 

device level within a network. This is typically achieved by differentiating a combination of 

features that are unique to a certain device such as network behavior, payload size and protocol 

used. 

 A brief work flow of the model starts by obtaining datasets by capturing communication 

traffic being exchanged between devices within the network. These data are then processed into 

useful information via data processing. A set of data packet features or attributes are being 

identified and used for feature extraction of the corresponding data packet. The dataset is then split 

into training data and testing data respectively. The training data is to be fed to a machine learning 

software which performs data classification. The classified data will then yield a model to identify 

IoT devices within a network. The work flow of the model is illustrated in figure 3-1-1. 
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Figure 3-1-1: Flow chart 

IoT environment has to be setup prior to the data collection process. To achieve this, a 

network of IoT devices are being setup in a room. The IoT devices are being setup using a star 

topology to ease the data collection process. The network topology is illustrated in figure 3-1-2. A 

star network topology will guarantee all IoT devices which wishes to communicate with each other 
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or access the Internet must have their packets passed through the central node. This will ensure no 

communication packets are missed during data collection.  

 

Figure 3-1-2: Network topology 

 After the environment is being setup, data collection is performed at the central node. 

Wireshark is the software used to perform packet capture due to its large amount of predefined 

protocol which eases the process of packet analysis in the later stage. During data collection, each 

device is being stimulated to generate data packets and communicate among devices. This is done 

by triggering a node to communicate with another node to perform an action. Before each device 

is being stimulated, packet capture is started. After the desired action has been performed by the 

devices, the packet capture is stopped. The same process is being repeated for all devices and 

platforms available. The resulting captured packet will include all background traffic and the 

traffic required for feature engineering. The packets captured is then filtered by the IP address of 

the relevant devices to produce a clean dataset without any traffic noise. These packets are then 

labelled based on the devices involved for storing.  

 The next step is the feature engineering. In this step, the datasets acquired is being analysed 

to identify combination of features unique to each devices and platform. This process is done based 

on the domain knowledge available to the analyser. Features to take note includes packet 

transmission frequency, packet time, payload size, protocol used and so on. After the features had 
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been identified, a feature selection is performed so that only feasible features are used to build the 

classification model during the next step.  

 With the available set of features, device classification can now be performed. This 

involves training a machine learning software, Weka and have it classified the devices based on a 

certain model. First of all, Weka is configured with classification parameters which will be used 

to differentiate the devices. Weka classifies the devices using the following steps: 

1. Weka takes input data packets and put it through a classification algorithm. 

2. The classification algorithm decides if the input packets belongs to a specific device 

3. If yes, Weka successfully classifies the packet. 

4. If no, Weka indicates it as incorrectly classified instances. 

5. Finally, Weka will show the type of devices being classified and its respective accuracy 

matrix. 

The process is illustrated in figure 3-1-3. 

 

Figure 3-1-3: Pattern matching flow 
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 Finally, the model is being evaluated using the same method with testing data captured 

previously using Wireshark. The machine learning software performs a pattern matching based on 

the constructed feature model and classifies the testing data into its respective device and platform. 

The model is said to be accurate if the classification results matches the expected outcome. Else, 

finetuning of the classification parameters is done by altering the feature model to improve the 

accuracy of the model.  

3.2 Issues and Challenges 

 Each of the stages comes with its own issues and challenges. Most of it is due to the 

requirement of utilizing a mobile hotspot created by the laptop for the other IoT devices to be 

connected to. The issue a rise during data collection when a node is triggered to communicate with 

another node. Communication within the local network was not an issue, but with unknown 

reasons, the communication involving Internet access was not possible, making it unable to 

generate the packet required for the dataset. NAT was suspected to be the reason. However, it was 

not verified. This issue has been resolved successfully by obtaining a third-party software which 

turns the laptop into a Wi-Fi repeater, subnetting the router network instead of creating a whole 

new network.  

 The next challenge happens due to monetary constraints in obtaining IoT devices to setup 

the environment. This has caused the difficulty to obtain an Echo Dot to provide the Amazon Alexa 

platform which is one of the most important part of the project. To resolve this issue, a previously 

owned Raspberry Pi is being setup with an external speaker and microphone to take over the role 

of Echo Dot. The Raspberry Pi is then installed with an unofficial open-source Alexa smart 

assistant called the EchoPi. It was able to access most of the functions of Echo Dot including 

communicating with other supported IoT devices.  

 The final issue is encountered during dataset filtering. A laptop being used as a mobile 

hotspot to work as a medium of communication between nodes introduces a lot of traffic noise due 

to background services running on Windows making it very difficult to filter. It gets even more 

difficult when there is no known port number used for communication between the nodes. To solve 

this issue, intensive analysis of the network traffic is performed to distinguish noise from the 

required traffic.  
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4.0 SYSTEM DESIGN 

4.1 Data Collection 

 The initial phase in designing the system is the data collection phase. This phase involves 

two parts. The first part is to set up the required IoT integration environment. The second part 

involves capturing data packets being sent and received by the IoT devices within the network.  

 In setting up the environment, the mobile hotspot functionality of the laptop is used as the 

internet access point for all devices of interest. In this project, IoT devices used will be the Amazon 

Echo Dot, Google Home Mini, Broadlink RMPro+ smart remote, Broadlink SP2 smart socket, 

XiaoMi Second Generation Air Purifier and the SmartLife smart bulb. All devices have Wi-Fi 

installed in order to be able to connect to the Internet and the laptop.  

 To join all the devices to the same network, all devices are set up using its respective 

process. For example, use the Google Home app to connect to the Google Home Mini to the 

network and use the Amazon Alexa app to do the same for the Amazon Echo Dot. Similar process 

applies to all the other devices with manufacturer specific instructions. Once all devices are being 

connected to the network, it is now possible to link these devices to its respective platform. As all 

devices used in the project supports both Amazon Alexa and Google Home platform, these devices 

can be linked directly to each platform from within the platform app which is the Amazon Alexa 

and the Google Home app. Once these are done, setting up of the environment is now complete. 

 The second part requires a special software to be installed in the laptop in order to collect 

the data. In this project, Wireshark is used as the data packet capture software. This is because 

Wireshark has promiscuous mode enabled. This mode allows it to capture any data packets going 

through it regardless of their destination. This allows it to capture data packets not destined to be 

sent to the laptop. In order to only capture the packets of interest, capturing of data packets is done 

at the mobile hotspot network interface only. This ensures clean packet capture with minimum 

amount of noise introduced in the data collection process. Promiscuous mode can be enabled by 

accessing the packet capture option as shown in figure 4-1-1. 
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Figure 4-1-1: Enable promiscuous mode 

 Upon starting capture, data packet generation can be sped up by continuously execute 

commands to the Google Home and Amazon Alexa to perform some actions such as turning on 

the light or turning on the sockets depending on what device you have. This will trigger the IoT 

devices to generate command specific data packets which will significantly improve the accuracy 

of the system if it is used to perform the training. Once the number of captured data packets hit the 

requirement. This concludes the data collection process of the system. Figure 4-1-2 shows the data 

collection process using Wireshark to capture data packets being exchanged within the network. 
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Figure 4-1-2: Data packet capturing using Wireshark 

 

4.2 Data Processing 

 This process aims to produce useful dataset that can be later used as training and test 

materials for our machine learning model later in the final process. The first part involves 

extracting packets of interest from the large block of data packets being captured. The data packets 

are being extracted should be distinguishable from other devices. To do so, simply apply a filter 

on Wireshark to produce the required data packets. In the project, as each individual device is our 

data interest, packet filtering is done by filtering MAC address. This guarantees that all data 

packets to be extracted belongs to that specific device. To do so, the command “eth.addr==<Device 

MAC Address>” is entered into the filter field in Wireshark where <Device MAC Address> is 

replaced by the real MAC address of each device of interest. This is illustrated by figure 4-2-1. 
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Figure 4-2-1: Device filtering process in Wireshark 

 In order to extract these packets of interest, it is possible to export specified packets and 

label it as the device name for dataset annotation. This process is illustrated in figure 4-2-2. 
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Figure 4-2-2: Exporting specified packets in Wireshark 

In order to prepare the dataset for the final process, the data packets are saved as a text file in its 

hex dump form. This can be done using the “save as” function from within Wireshark. Each file 

saved is labelled with its respective device name. The data processing process is complete once all 

data packets that belongs to each individual device has gone through the same process. This results 

in six files. One .pcapng file which is the original Wireshark capture file and 5 .txt files which is 

the individual data packet hex dump of each device. This completes the data processing process. 

Figure 4-2-3 show an example of hex dump in text. 
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Figure 4-2-3: Wireshark packet hex dump in text. 

 

4.3 Feature Extraction 

 This process involves programming of specialized software to perform the feature 

extraction from the dataset processed in the previous process. In this project, a few network flows 

statistical feature is being identified in order to be used for the machine learning software to 

classify each device. In this sense, these features selected must have values unique to that packet 

only. In the project, the features selected includes interarrival time, total packet length, packet 

header length and packet payload length of each packet. An additional feature which is the average 

payload length of packets being captured within one second is used to further distinguish the 

packets based on network flow feature.  

 The program in the project is writing in C++ using Microsoft Visual Studio as C++ is most 

efficient when running on a Windows laptop. The designed program is written to extract all 

mentioned feature values from the input dataset and output as a .csv file for use with the machine 

learning software. Upon extracting all feature values for all devices, these values are then 
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combined into one single .csv file using Microsoft Excel. It is also required to label each feature 

value with its respective device name as shown in figure 4-3-1 

 

Figure 4-3-1: combined .csv file 

The resulting .csv file is then converted into a machine learning input .arff file. This can be 

done from within Weka, the machine learning software to be used in this project. The following 

steps explains the conversion process. 

1. Select “Tools” from the top menu in Weka GUI Chooser. 

2. Choose “ARFF Viewer” 

3. In the new windows, go to “Files” and choose save as. 

4. In the pop-up windows, select “.arff” from the file format drop down list. 

5. Finally, provide a file name and save the file. 

This process is being illustrated in figure 4-3-2.  
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Figure 4-3-2: Conversion of .csv to .arff 

 

4.4 Model Training 

 This marks the final process of producing the system. In this process, Weka is used to 

perform the training and testing of the classification model using the prepared dataset. The first 

step involves selection of classification algorithm to be used. This is crucial because these 

algorithms will directly impact the performance of the system in terms of time efficiency. A good 

algorithm will be able to perform the classification process in a short period of time. This is because 

time delay can be noticeable on large scale network.  

 In this project, RandomForest is selected to be the classification algorithm due to its 

accuracy. To run the training, simply import the prepared dataset in the form of .arff into Weka by 
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using the “Open file” button. Next, keep only the feature of interest from the attributes field.  To 

start training and testing the model, use the classify tab from the top menu. Here, we can select the 

classifier to be used to perform the classification. The dataset can be set to be split into 70% for 

training and the remaining for testing. Upon starting the training, Weka will produce the result of 

the classification indicating its precision for each device as well as its average precision. Upon 

obtaining results, feature sets can be fine-tuned at the “Select Attributes” tab. This iteration is 

repeated to obtain the most essential feature set to build the feature model. 

 

5.0 FEATURE SELECTION 

 This section explains the feature selection process for building the machine learning model 

which will be used to classify network devices into their respective types. As network traffic 

classification is being used to determine the device that exists within the network, features of 

network data packets are being observed on per packet basis in order to identify the most useful 

feature. 

5.1 Payload Feature 

 From the works done by Shen, et al. (2017) and Pedro and Luis (2017), payload level 

inspection is used to build the machine learning model and classification is done on packet payload. 

At the current state of technology where security issue is a huge concern, these methods are being 

limited by encryption algorithm used by device manufacturers to convey information within the 

network from device to device. When encryption is used, payload information immediately 

becomes unreadable rendering their works limited to device which does not use encryption. When 

encryption is applied, only those devices that are able to be decrypted by standard decryption tools 

such as OpenSSL can be used. For this reason, this feature is excluded in the project as future data 

packets will adopt mode complex encryption algorithm for security purposes especially in the field 

of IoT.  
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5.2 Packet Feature 

 Packet features are network packet characteristics that can be used to distinguish packets 

from different devices which can be found in the header itself. Unlike payload feature, it is not 

affected by encryption as most information stored in the packet header is required to be readily 

processed by network routers for routing purposes. However, not all packet header information is 

required to build the machine learning model as many of them only provide information about 

network performance instead of their originating device such as roundtrip time, time to live and 

header checksum. The device source and destination IP and MAC address is also not used because 

this can be easily spoofed for security purposes like what is being implemented in Windows 10. 

Finally, we are left with the lengths and arrival time. From these information, statistical features 

can be crafted to provide a better picture of the differences of each packet sent by their respective 

device.  

 From the remaining information, it is possible to induce statistical features which will be 

used to build the machine learning model. From the lengths information, it is possible to find out 

the total packet length, the header length and the payload length. From the arrival time, it is also 

possible to find out interarrival times of each packet. When combined, more complex feature is 

possible. For example, number of packets sent or received in one second and the average payload 

size of packets sent or received so far within one second. As a result, we have a feature set which 

is comprised of interarrival time, total packet length, header length, payload length, packet count 

in one second and average payload length so far in one second.  

5.3 Feature Improvement 

 In order to reduce the workload of the classification process, only essential features are 

being used to perform the classification. To do so, we use the “Select Attribute” feature of Weka. 

In this context, we use “CfsSubsetEval” as our attribute evaluator as this method attempts to 

identify a subset of features which are most closely related to the class used which in our case is 

the device type. 
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6.0 RESULT ANALYSIS 

 The accuracy of the system is defined by the average accuracy in classifying all devices 

within the network. For each device, the accuracy is determined by the True Positive (TP) rate in 

classifying the respective device. False Positive (FP) rate marks the proportion of falsely classified 

instances which were reported to be positive. For instance, these packets are classified as x but is 

actually part of y. For the purpose of this project, it is not acceptable that FP rate is high. This is 

because information used for network monitoring must always be true or else it will lead to 

ineffective network performance improvement efforts. It is also important that TP rate is high as 

it indicates a truly classified instance.  
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Figure 6-0-1: Classification result 

Based on figure 6-0-1, it can be observed that the selected feature set successfully obtained 

a classification precision of 93.4% on average. With this set of features, 4.31 seconds is used to 

train the model while 0.42 seconds are used to perform classification on the test set. This is 

considered quite high in terms of device classification.  

 

Figure 6-0-2: Select attribute result 

 As mentioned in chapter 5, we attempt to improve the classification time by reducing the 

number features used to classify the data packets. According to figure 6-0-2, we ran the attribute 

evaluator function of Weka and found that only total packet length, header length, payload length 

and the average payload length so far in one second is more essential relative to our class which is 

the device type. 
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Figure 6-0-3: Classification result after removing non-useful feature 

 Based on figure 6-0-3, it is shown that the classification precision of the model is high 

enough that removing non-essential features from the model only have the slightest effect on the 

classification precision of the model. However, the time taken to build the model has been reduced 

to only 3.29 seconds while the time taken to perform classification on test set is reduced to 0.38 

seconds. This might not seem much on paper but it will have a significant impact on large networks 

with over hundreds of IoT devices.  
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7.0 CONCLUSION 

 In the current stage of IoT development, many platforms still lack functionality that other 

platform can provide. For example, Amazon Alexa is able to make phone calls while Google Home 

is not able to do so. XiaoMi Home has support from very affordable electronics such as the Phillips 

Smart LED bulb which is much cheaper than Phillips Hue which supports Google Home. There is 

also platform such as the Apple Home that is limited to its Apple ecosystem only. Users who wish 

to customize the integration of IoT device to suit their needs and desires will often need to integrate 

more than one platform.  

The adoption of multiple platform makes network management more challenging 

especially for power users who wish to optimize their network performance based on the devices 

on the network. In order to obtain device type information for IoT devices, accessing the router 

interface does not suffice as router interface only shows the device name and IP address. Devices 

with distinguishable names can be used to determine the device type. However, IoT devices often 

use code names as device name which makes it more indistinguishable. It is required to access 

each platform separately using the native application of the platform in order to accurately 

determine the device type of each IoT device. 

The solution to this issue is to have a universal IoT devices discovery and identification 

system using protocol-independent network flows characteristics. This allows users to quickly 

identify the total number of IoT devices in the network without needing to check separate 

application. This makes network device management a bit easier. Using this system also provides 

statistics such as number of devices of a certain type that exists in the network as the system is 

able to classify devices based on its type such as a bulb, a media streamer or a plug.  
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