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ABSTRACT 

SOFTWARE DEFINED RADIO-BASED TRANSCEIVER SYSTEM ON 

LOW POWER MULTI-PROCESSOR SYSTEM-ON-CHIP FOR 

INTERNET OF THINGS 

 

Dareen Kusuma Halim 

 

Low error rate wireless link is essential for Internet of Things (IoT) 

technology as it provides data integrity as well as the all important power saving 

due to the less retransmission required. A widely used method to reduce error 

rate is Forward Error Correction (FEC) code which adds parity to the data block, 

allowing self-correction of the received data. Turbo Code is a widely adapted 

FEC that provides near Shannon-limit correction capability but has relatively 

expensive computational requirement. Meanwhile, the growth of IoT 

applications has pushed the number of development and improvement for 

wireless standards suitable for IoT applications. Software-defined Radio (SDR) 

offers reconfigurability to the wireless system to adapt to these developments 

without the need of hardware change. 

In this research, a fully functional wireless transceiver system is built 

based on SDR implementation on a low power Multi-Processor System-on-

Chip (MPSoC), paired with a programmable radio frontend. The 
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implementation comprises of Turbo encoder/decoder paired with a physical 

layer stack of basic modulation and demodulation as the building blocks to 

realize a whole transceiver system. Both the Turbo Code and the 

modulation/demodulation parts are fully implemented in software through 

proper optimization of the processor’s architecture and resources. Preliminary 

studies and simulations on the modulation/demodulation, as well as the Turbo 

Code structure and parameters are also conducted before the actual deployment 

on the target hardware. 

Actual testing of wireless transmission and reception with the transceiver 

modules are performed in a simplex manner, comparing the system with and 

without Turbo Code. The testing shown that the system is fully functional with 

the desired behavior in terms of error rate, which goes down along with the 

transmit power increment and shorter transmission range. Likewise, 

significantly lower error rate is exhibited by the system with the Turbo Code. 

However, the lowest BER of 10-1 achieved by the system is far from the 

practical value of 10-6. This is affected by loss of computation accuracy in the 

simplified algorithm as well as numerous factors such as design of RF region, 

test environment which are not in the scope of this work. 

Despite having air time of 35-37%, the programmable RF frontend 

consumes five times the power consumed by the baseband processor. Hence, 

the system can be improved further by lowering the radio air time with faster 

baseband rate while still considering the error rate, or by prolonging the period 

of RF communication hence lowering the air time in long run.
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CHAPTER 1 

INTRODUCTION  

1.1 Background and Motivation 

Advancement in Integrated Circuit (IC) and wireless technology has 

enabled a new computing paradigm. Being tiny, inexpensive and powerful 

enough, computing devices can be deployed virtually anywhere in daily objects 

and environment. Paired with sensing and communication capabilities, these 

devices are working together to bring intelligence into daily objects and 

environment. This paradigm is better known as Internet of Things (IoT), where 

objects or environments are attached or embedded with smart nodes. A basic 

smart node should at least consist of processing unit, wireless module, power 

management system, and sensor. Low cost and ultra-low power are fundamental 

properties as these nodes will be deployed in large numbers and should last for 

years or decades on a small battery or harvested energy. 

Contrary to personal computing devices that could perform tasks 

individually, IoT devices work together by wirelessly communicating data and 

coordinating operations. As the communication backbone among devices, the 

wireless system needs to satisfy a few main requirements which are related one 

to another. It must cover long range, operate in low power, and be robust to 

interference (Kuo & Kung, 2014).  
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A wireless system’s range is defined by various factors such as operating 

frequency, receiver’s sensitivity, and transmission power. Higher receiver 

sensitivity allows better data reception from weak signal. This leads to lower 

transmission power over same range or longer range for the same transmission 

power, a property desired by every radio standard especially IoT. One of several 

significant factors affecting a receiver’s sensitivity is the modulation scheme. 

While lower Radio Frequency (RF) undoubtedly leads to longer propagation of 

signal, wideband and narrowband signal has been in constant comparison for 

their effectiveness in improving receiver sensitivity (Lassen, 2014).   

Compared to other smart node’s components such as processing unit and 

sensor which can easily operate in ultra-low power, low power operation of the 

wireless module yet remained a challenge (Burdett, Spring 2015). Wireless 

transceiver utilizes high power during transmission and reception operations, 

which are performed occasionally and swiftly in IoT application. IoT devices 

can exploit this operational characteristic by activating transmitter only when 

sending data is necessary, while intelligent protocol can be implemented in 

receiver to determine when it should receive. Such protocols are widely 

research, ranging from periodical receive (Dam & Langendoen, 2003) to 

channel sensing receive (Hu, Ma, & Sun, 2011), intending on maximizing 

wireless module sleep duration.  

Wireless system’s robustness against interference is commonly 

measured through its bit error rate. A low error rate wireless system provides 

better data integrity and requires less retransmission. This leads to longer sleep 

duration of the wireless module, thus saving power. Forward error correction 
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(FEC) code has been widely used to significantly reduce wireless system’s error 

rate. It adds parity to data payload, providing the system with self-error 

correction capability at the expense of additional data overhead. This trade-off 

is completely acceptable in IoT application where low error rate is necessary, 

while low data rate is sufficient  (Roth, Dore, Ros, & Berg, 2015). A particular 

FEC that has been extensively adapted into wireless standards due to its near-

Shannon limit correction capability is Turbo code (Berrou, Glavieux, & 

Thitimajshima, 1993). Being relatively computational expensive, numbers of 

works has been done to simplify Turbo code (Lin, et al., 2006; Li, et al., 2013), 

allowing implementation on low power Application-Specific Integrated Circuit 

(ASIC). 

The rapid growth and interest in IoT has pushed the development and 

improvement of wireless standards to satisfy the main requirements of IoT’s 

wireless system described above. Re-configurability of a wireless module is the 

key to accommodating these varying and evolving standards without the need 

of hardware change (Jondral, Wiesle, & Machauer, 2000). Software-defined 

radio (SDR) has been proposed as a solution for flexible signal processing 

(Becker, Luk, & Cheung, 2009), deployed in diverse processing unit such as 

Digital Signal Processor (DSP), Field-Programmable Gate Array (FPGA), 

general purpose Central Processing Unit (CPU), Graphic Processing Unit 

(GPU), and programmable Application Specific Integrated Circuit (ASIC). 

ASIC-based implementation of a wireless module has always been 

appealing due to its superiority in power efficiency, affordability, and size 

(Jalier, et al., 2010). These characteristics are highly desirable in every wireless 
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system, especially IoT. Implementations are usually realized in a fixed, single-

purpose System-on-Chip (SoC) which trades flexibility for power efficiency. 

However, recent advancement in semiconductor technology has allowed 

programmable-type SoC to pack much more processing capability while still 

maintaining its low cost, low power, and small size characteristic. Texas 

Instruments’ Keystone II SoC is an industrial-level example for such system 

(Instruments, 2012). This enables programmable ASIC as a compelling 

platform for SDR implementation which provides reconfigurable radio system 

while still maintaining all of ASIC benefits, such as SDR-based ZigBee protocol 

implementation (Ghazi, Boutellier, Hannuksela, Silvén, & Janhunen, 2013). 

While various SDR platforms are widely available, the design and 

implementation of an SDR-based wireless system particularly for IoT 

application poses many challenges. Consisting of at least a radio front-end and 

a digital baseband processor, SDR-based wireless system highly relies on the 

later part. Proper understanding of the digital processor’s architecture is 

required during implementation and optimization to achieve the necessary 

performance while still maintaining low-power operation. Choice of radio front-

end hardware also requires careful assessment, as its capability particularly in 

power management is inherently an inseparable factor for enabling low-power 

communication standards and protocols stack. 

1.2 Research Goals and Approach  

Driven by the need for a wireless system that is both programmable and 

adhering to IoT’s wireless link’s requirements described in the previous section, 
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a fully functioning SDR-based wireless transceiver system is proposed in this 

research. The SDR will be implemented in a low-power programmable Multi-

Processor System on Chip (MPSoC) and paired with a programmable radio 

front-end. The SDR-based wireless transceiver system built in this research 

functions at the physical layer. It consists of two identical modules, one as 

transmitter and the other as receiver, communicating in simplex manner. 

 In this work, the Lime LMS6002D Reference Development Kit is 

chosen as the programmable radio front-end, handling analog signal operations 

both in baseband and Radio Frequency (RF) region. Functioning as the digital 

baseband processor of the wireless module is the RUMPS401, a four-core ARM 

M0-based MPSoC fully designed by a team from the UTAR’s VLSI Research 

Center. The author is a member of the team. 

As described previously, a low error rate system provides benefits of 

data integrity and low power operation due to less retransmission required.  The 

Turbo coding hence will be implemented to provide lower error rate, along with 

IQ modulation/demodulation, pulse shaping, and receiver synchronization to 

provide a functional transceiver system working on a physical layer stack. 

Considering the RUMPS401 which naturally is a low-power MPSoC as the 

target hardware, the Turbo code and modulation/demodulation are relatively 

computational and resources expensive to implement. Complete understanding 

of the RUMPS401’s architecture is required to fully exploit its capability and 

achieve optimized performance, while comprehension on the Turbo coding and 

modulation/demodulation are as important for proper implementation on the 

target hardware. 
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As the modulation scheme, particularly bandwidth, affects the range of 

a wireless system, initial study and simulation will be carried out for modulation 

schemes, focusing on wideband versus narrowband. Turbo code structure and 

its sub-optimal approaches are also studied and simulated. These studies and 

simulations serve as the base for determining parameters to be implemented in 

the actual wireless transceiver system. The RUMPS401’s physical design 

process is a significant part of this work. Collaborative development and testing 

of the chip with the UTAR VLSI Research Center are also part of this work. 

These design and testing process play an important role towards deep 

understanding of the RUMPS401 architecture, which will serve as the base for 

the software implementation and optimization. While the RUMPS401 

architecture and silicon process inherently provides the capability of low power 

operation, it must be paired by proper software that is programmed to fully 

utilize its functionality, especially in complex application such as SDR.  

Albeit the optimization-oriented implementation, we are aware that due 

to its processing capability, the RUMPS401 would not be able to provide 

competitive performance in terms of speed. It however could provide 

reasonable performance, sufficient for the implementation of a fully functioning 

SDR-based transceiver system. Moreover, to our best knowledge there has not 

been any work done by utilizing SoC of processing power compatible to the 

RUMPS401 as a digital baseband processor. Comparison of implemented 

transceiver system against other works is therefore not a focus of this project. 

System performance however, is evaluated throughout the implementation and 

optimization process. 
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This research serves as a proof of concept for a flexible yet low-power 

wireless transceiver system by implementing SDR on a low-power MPSoC. 

Through proper comprehension and exploitation of its architecture, the 

RUMPS401 could function as a baseband processor with reasonable 

performance, even without any dedicated DSP hardware. Its usage also serves 

as an important step in UTAR VLSI Research Center’s long-term effort in 

development of the RUMPS401, by putting the SoC in a practical yet complex 

application. 

Objectives of this research are: 

• To acquire complete ASIC design methodology skills, accentuating on 

“First-time-success” design flow and practice. 

• To study the SDR concept and apply it to the physical layer stack of a 

wireless transceiver system. 

• To demonstrate the capability of UTAR VLSI research center’s MPSoC, 

the RUMPS401 in a critical, complex application with emphasis on 

parallel processing. 

• To design and implement a fully-functional SDR-based wireless 

transceiver system on a low-power programmable MPSoC, structured 

and adapted for low power IoT applications. 

 

1.3 Dissertation Outline 

This dissertation consists of seven chapters. The first chapter introduces 

the background and motivation of the research, along with its goals and 
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objectives. The second chapter reviews related past works and details about the 

hardware used in this work. Initial study and simulation of modulation schemes 

as well as Turbo coding are presented in Chapter Three. The fourth chapter 

presents and analyzes optimization process of Turbo decoding on the 

RUMPS401. Chapter Five describes the implementation of 

modulation/demodulation part of the transceiver system on target hardware. 

Testing and analysis of the full transceiver system is provided in Chapter Six. 

Finally, Chapter Seven concludes the project work and write-up. 



 

 

CHAPTER 2 

LITERATURE REVIEW  

In line with the research background and the proposed system 

described previously, this chapter reviews some past works on Software-

Defined-Radio (SDR) transceiver and Turbo coding implementation. The 

review on SDR implementations emphasizes on the widely varying hardware 

platforms particularly the digital processor’s architecture, while the review on 

Turbo coding implementations centers around works which hardware 

platforms are Application-Specific Integrated Circuit (ASIC) based. General 

Turbo coding structure and algorithm will also be discussed for a better and 

more coherent understanding of the fundamentals of the optimization process. 

Lastly, as the hardware used in this research, the RUMPS401 chip and Lime 

LMS6002D Reference Development Kit will be described in detail.       

2.1 SDR Implementation 

Digital signal processing technique represents real world analog 

signals as digital sampled data, then uses digital processors to analyze and 

process information from them (Ifeachor & Jervis, 2002). It has been widely 

used in various applications due to its attractive advantages of affordability and 

programmability. As described by (Ifeachor & Jervis, 2002), digital signal 

processing benefits from its reliance on digital domain processing and 

Integrated Circuits (IC) which are reprogrammable, consistent, low cost, low 

power, tiny, and fast. A significant amount of effort has been put into 
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researching SDR techniques which are implemented on various hardware 

platforms. While the choice of processor types varies widely, a common trend 

is the adoption of parallel processing schemes using multi-processor platforms. 

KUAR (Minden, et al., 2007) is a complete SDR platform, consisting 

of digital baseband processors and a radio front-end. Employing a multi-

processor system for digital baseband processing, it consists of a 1.4GHz 

Pentium-M Embedded PC as Control Processor Host (CPH) and a Xilinx Virtex 

II Pro P30 Field-Programmable Gate Array (FPGA), interconnected through 

Peripheral Component Interconnect-Express (PCIe) channels. The Xilinx 

FPGA possesses programmable logic gates and two PowerPC 405 processors. 

KUAR’s architecture provides design flexibility where communication system 

in most common cases can be deployed entirely in hardware or software, or a 

hybrid of both. Full hardware implementation can be done through the FPGA’s 

logic gates, while full software implementation is deployed in the CPH as it is 

powerful enough for significant signal processing. Hybrid implementation 

utilizes both CPH and FPGA, along with the two PowerPC 405 processors 

embedded in the FPGA.  

 FAUST is a Multi-Processor System-on-Chip (MPSoC) designed as a 

high-performance baseband processor (Lattard, et al., 2008). It consists various 

task-specific signal-processing hardware accelerators hardwired to a host 

Central Processing Unit (CPU) subsystem with the ARM946ES processor core, 

shown in Figure 2.1. Connections are achieved through their own high-

performance Network-on-Chip (NoC) interconnection, designed and optimized 

for telecom baseband application. 
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Figure 2.1 FAUST Chip Diagram (Lattard, et al., 2008) 

Lattard et al. (2008) highlighted the importance of NoC as the 

backbone of the MPSoC architecture, especially in a high data rate application 

such as baseband processing. FAUST implements architecture where data flows 

between functional blocks are administered in distributive manner, leaving the 

host CPU with only pipeline control task. This platform is reconfigurable by 

changing data path, in which some functional blocks may or may not be used 

depending on the implemented radio protocol. MAGALI (Clermidy, Lemaire, 

Popon, Kténas, & Thonnart, 2009) is designed on a similar architecture, with 

the addition of a Communication and Configuration Controller (CCC) on each 

NoC’s network interface, to dynamically accept and reconfigure functional 

blocks according to the host CPU’s instruction. Figure 2.2 illustrates 

MAGALI’s architecture of mesh interconnected components. 
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Figure 2.2 MAGALI Mesh-connected Baseband MPSoC (Clermidy, 

Lemaire, Popon, Kténas, & Thonnart, 2009) 

While the implementations mentioned above try to decentralize control 

through the design of data processing flow, their own heterogeneous 

architecture particularly the existence of the host CPU itself poses inherent 

central control characteristic, thus introducing bottlenecks. A homogeneous 

MPSoC for baseband application, GENEPY (Jalier, Lattard, Jerraya, Sassatelli, 

Benoit, & Torres, 2010) is built based on multiple instances of a Smart ModEm 

Processor (SMEP) unit connected by an NoC. The basic SMEP unit consists of 

a processing cluster of two Digital Signal Processors (DSPs), a memory unit 

called Smart Memory Engine (SME), an NoC interface, and a CCC. By 

replacing hardware processing blocks with programmable DSPs, GENEPY 

provides more flexibility during implementation. 

Analyzing performance between heterogeneous and homogeneous 

MPSoC platforms, Jalier et al. (2010) presented two versions of GENEPY 

platform namely v0 and v1, and compared them against the MAGALI platform 

(Clermidy, Lemaire, Popon, Kténas, & Thonnart, 2009). Compared to the 

MAGALI which utilizes various functional blocks for computations and a 
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global controlling host processor, GENEPY v0 employs multiple SMEP units 

for computing and a host processor to assume global control task, which is 

shown in Figure 2.3. GENEPY v1 implements a fully homogeneous structure 

based on multiple SMEPv1 units with no host processor as shown in Figure 2.4, 

allowing equally distributed control among all units thus improving flexibility 

and scalability. SMEPv1 is a basic SMEP unit with a 32-bit MIPS processor 

added, allowing individual control management on each unit. Comparison of 

these platforms for LTE application by Jalier et al. resulted in performance 

speed-up of 3%, silicon area reduction of 14%, and power saving of 18% in 

favor of the homogeneous platform GENEPY. Two versions of GENEPY are 

comparable with GENEPY v0 achieving smaller silicon area of 3% and 

GENEPY v1 consumes 8% less power. 

 

Figure 2.3 GENEPY v0 Architecture (Jalier, et al., 2010) 
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Figure 2.4 GENEPY v1 Architecture (Jalier, et al., 2010) 

GNU Radio (About GNU Radio) is an open source software library and 

toolkit for digital signal processing aimed for SDR implementation on General-

Purpose Processor (GPP) such as Intel x86, running mostly on Linux system. 

While GNU Radio with complementary radio front-end provides the daily 

computer the capability as a flexible radio, implementation on ASIC is still very 

desirable due to its size, efficiency, and power consumption. Ma, Marojevic, 

Balister, & Reed, (2014) proposed porting GNU Radio to run on ARM-based 

processor, with Texas Instrument Keystone II SoC as target hardware. Ma et al. 

set a long-term goal of a complete SDR software platform that would map 

functional block defined in GNU Radio library to any target hardware’s native 

instructions in an optimized manner. This long-term objective will enable the 

harnessing of matured and widely-used GNU Radio environment on MPSoC-

based SDR implementation.  

2.2 Turbo Coding 

Turbo code was first introduced as a new type of error correction 

scheme based on convolutional code (Berrou, Glavieux, & Thitimajshima, Near 
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Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes (1), 

1993). It concatenates in parallel two Recursive Systematic Convolutional 

(RSC) encoders. A binary rate RSC code has one systematic output equals to 

the input bit, and one parity bit as a function of the feedback loop. A Turbo code 

encoder consists of two RSC encoders, where the first encoder generates one 

systematic bit along with one or more parity bits from each input bit, while the 

second encoder accepts interleaved version of the input data and outputs the 

same number of parity bits, as shown in Figure 2.5. The output of the Turbo 

encoder for each input bit are the input bit itself, accompanied by one or more 

parity bits according to the encoder structure. The interleaving simply 

permutates the sequence of input bits pseudo-randomly.  

 

Figure 2.5 Turbo Encoder Architecture (Berrou, Glavieux, & 

Thitimajshima, 1993) 

On the decoding side, Turbo code employs two RSC decoders both 

running the BCJR algorithm (Bahl, Cocke, Jeinek, & Raviv, 1974) chained in 

serial, with a feedback loop from the second decoder to the first decoder as 
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depicted in Figure 2.6. Berrou et al. (1993) proposed the feedback loop to fully 

expose redundant information produced by the two encoders, to both decoders. 

Each decoder takes the systematic bit and the corresponding parity bits 

generated by its encoder counterpart, i.e. first decoder takes parity bits generated 

by the first encoder and so does the second decoder, which then calculates the 

Log-Likelihood Ratio (LLR) of the incoming bits value. 

 

Figure 2.6 Turbo Decoder Architecture (Berrou, Glavieux, & 

Thitimajshima, 1993) 

The LLR is exchanged between decoders as a priori LLR, to provide 

other decoder with additional parity information only available to the providing 

decoder, i.e. the second decoder gets parity information of the first encoder 

through this LLR. A single iteration Turbo decoding requires the input bits to 

be run through both decoders, where the LLR values from the second decoder 

are then used for deciding whether the originally sent bits were one or zero. The 

decoding is usually run in multiple iterations where the second decoder’s LLR 

values must be fed back to the first decoder to be used in the next iteration, or 

used for bit decision on the last iteration. 
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2.3 Turbo Coding Implementation on ASIC 

While providing a near-Shannon coding capacity limit, Turbo code 

imposes a relatively high computing resource requirement on its decoder, which 

primarily stems from the BCJR algorithm used in each decoder coupled with 

the iterative decoding process. In attempts to bring the BCJR algorithm into 

practical applications, there are a few important works on simplifying the 

original BCJR algorithm. The first work (Robertson, Hoeher, & Villebrun, 

1997) simplifies the BCJR algorithm by approximating its calculations in 

logarithmic domain, which translates multiplications into additions hence 

simplifying the computational load by a significant amount in expense of error 

rate. This approximation yields a suboptimal version of the original BCJR 

algorithm, widely known as Max-Log BCJR algorithm. Another crucial work is 

the introduction of sliding-window BCJR decoding (Marandian, Fridman, 

Zvonar, & Salehi, 2001), which divides the received data frame into smaller 

windows and decodes them separately thus significantly reducing the memory 

requirements. Most works on Turbo decoder implementation on real hardware 

are based on these two concepts of simplification. 

Some works implement Turbo decoder on powerful and power-hungry 

hardware such as DSP, CPU (Huang, et al., 2011), GPU (Liu, Bie, Chen, & Jiao, 

2013) due to the highly programmable property they possess. However, such 

implementation is not suitable for Internet of Things (IoT) nodes where cost and 

power consumption are critical. Other works attempt to satisfy both cost and 

power consumption aspect by sacrificing programmability through the design 
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of ASIC hardware decoder blocks, where the trade-off between its efficiency 

and programmability are varying across implementations. 

Condo, Martina, & Masera (2012) proposed an NoC-based Low-

Density Parity-Check (LDPC) / Turbo decoder block, offering an efficient yet 

rather flexible decoder block that could accommodate both LDPC and Turbo 

decoding on a single platform. The work focuses on the design of the NoC as 

the backbone between parallel processing elements, done by extensive studies 

and simulations of various network topologies and complex routing algorithm. 

Another work proposes a low complexity Turbo decoding block 

intended for wireless sensors (Li, Maunder, Al-Hashimi, & Hanzo, 2013) which 

exploits the simplification of the BCJR algorithm. The logarithmic domain 

approximation of the BCJR algorithm allows the block to be mostly composed 

of addition rather than multiplication circuit, which cuts down the number of 

logic gates required significantly. Meanwhile, the sliding window BCJR 

concept is adapted into parallel processing by pipelining different windows on 

different stage of the BCJR algorithm’s calculation, whose intra-processing 

elements communications relies on an NoC. As shown by the work and majority 

of ASIC-based Turbo decoder implementation (Li, et al., 2016; Ahmed, Awais, 

A. u. Rehman, Maurizio, & Masera, 2011), highly efficient and tiny hardware 

blocks are the results by trading off its programmability.     
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2.4 The RUMPS401 

The Rahman University Multi-Processor System 401 (RUMPS401) is 

a four-core MPSoC designed by the UTAR’s VLSI Research Center, which 

basic architecture is based on an MPSoC Register Transfer Level (RTL) 

modeling platform by (Hartono, 2014) and the corresponding verification 

platform (Lim, 2015). The UTAR Adaptive NoC (Lokananta, 2015) provides 

reliable connections among the cores. Each core is an ARM Cortex-M0, a small 

footprint and highly power efficient ARM processor (ARM, 2009), connected 

to various locally available peripherals through the ARM’s AHB Lite bus. 

Peripherals include flash memory, Static Random-Access Memory (SRAM), 

General Purpose Input Output (GPIO), timer, and others as depicted by the 

RUMPS401 architecture in Figure 2.7.  

Emphasizing on low power design, the RUMPS401 employs an on-

chip power management system that allows each core to be put to sleep 

independently and waken up through an NoC or GPIO interrupt. The quad-core 

MPSoC normally runs on an external 16MHz clock. When all the cores are put 

to sleep it ticks over on a locally generated 32kHz clock. The chip’s power 

consumption is 32mA in normal operation and 13uA in sleep mode. The clock 

source transition is managed by clock gating in the power management module. 

Each core in the RUMPS401 has identical flash memory of 32kB and 

SRAM of 8kB for program storage and execution. This allows each core to be 

programmed and run independently, which along with the locally available 

GPIO will be able to function as a single microcontroller. Multi-processor usage 
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scenario can be easily accommodated through the NoC connection among the 

cores. As can be seen from Figure 2.7, each core possesses an identical set of 

peripherals and another peripheral specifically available only to each of them. 

While the specific peripheral attached to each core defines the core’s intended 

functionality, this does not limit the usage of that core to any function. Due to 

the fact that most of peripherals are identical across all cores, a general program 

can be run identically on all cores. 

 

Figure 2.7 RUMPS401 Architecture 

The IO Control Core is designed to handle all communication between 

the RUMPS401 and any external devices, thus it is equipped with more GPIO 

pins and a parallel port. It also functions as the bootloader for the chip, hence 

has its flash memory divided into two program code partitions, one for its own 
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application code and another for the bootloader code. Application code for all 

cores are sent to the IO Control Core, which then are loaded to respective cores 

by the bootloader through an internal NoC bootload mechanism. Both the 

Normal Cores and the DSP Core have their flash memory fully usable for their 

own partition code and have less GPIO pins. They are however equipped with 

task-specific hardware accelerator thus are more suitable for computational 

function. The Normal Cores come with the 128-bit Advance Encryption 

Standard (AES) block and the DSP Core with the Multiply-Accumulate (MAC) 

block.   

2.5 Lime LMS6002D Reference Development Kit 

The Lime LMS6002D Reference Development Kit is a ready-to-use 

RF transceiver board based on the Lime LMS6002D transceiver chip. It is a 

fully-integrated, multi-band, multi-standard, programmable RF transceiver 

packed into a single IC solution (Microsystem, 2012). This transceiver covers 

the 0.3-3.8GHz frequency band and the 1.5-28MHz modulation bandwidth. The 

built-in Analog-digital-converter (ADC) and Digital-analog-converter (DAC) 

which sampling rates are programmable, provides digital In-phase & 

Quadrature (IQ) interface to the baseband region. This allows full control over 

the modulation scheme to be implemented in the RF application. 

Operating on either 1.8V or 3.3V power supply, the Lime LMS6002D 

is programmed by writing into its registers through the Serial Peripheral 

Interface (SPI). This enables on-the-fly adjustment, and most importantly 
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allows the transceiver to be turned-off when not in use and re-programmed right 

after power up.   

2.6 Summary 

While the past works on SDR implementation were done on widely 

varying hardware platforms, they all possess one common key feature, the use 

of multi-processor system along with the need for powerful and reliable 

connection among the processors. The multi-processor system is crucial as 

parallel processing that significantly improves performance, while the NoC is 

important in providing robust inter-core communications. This feature is also 

adopted in the works on ASIC-based Turbo code implementations, which stress 

on the design of highly parallel processing elements and the NoC that 

interconnects them. Parallelism in Turbo code implementation must be coupled 

with the simplification of the algorithm to allow practical deployment in ASIC 

for improved performance. Implementation on the RUMPS401 will be based on 

these key concepts. 

The past works of SDR implementation also highlighted the key trade-

off between flexibility and efficiency of the system. The more flexible 

approaches utilize highly programmable and powerful digital processor, where 

most of the transceiver functionality are implemented in software. On the other 

hand, an SDR system can be implemented using less powerful digital processors 

that are attached with specialized hardware accelerators. Configurability is the 

sacrifice. However, this approach offers more efficiency in which to achieve the 

same level of performance, the specialized hardware requires less logic gates 
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and can be operated at lower clock speeds, thus consuming less power compared 

to more powerful and flexible digital processors. 

As described in the previous section, the RUMPS401 is based on four 

ARM Cortex-M0 which is the smallest and the least complex processor in the 

ARM Cortex’s lineup. The M0 is intended for use in embedded application 

where complex calculations are not expected, thus it has no native hardware for 

multiplication or division, let alone floating point or complex signal processing 

block. In terms of peripherals, the DSP core is the most suitable for rather 

complex calculation due to its single-cycle Multiplier-Accumulator (MAC) 

hardware. In later chapters, it will be shown how the MAC significantly 

improved the RUMPS401’s performance for baseband processing. However, it 

should be noted that the existence of MAC hardware would not bring the 

RUMPS401 to a performance on par with any former works. A common DSP 

accelerator provides functionalities such as multiplication, division, 

exponential, logarithm, trigonometry, which are performed at high speed. While 

these functionalities can be approximated by MAC function, it can be inferred 

that these approximations would certainly take longer time compared to the 

common DSP accelerator. 

Being programmable yet low-power, the RUMPS401 is an interesting 

but challenging platform for SDR implementation. To our best knowledge, no 

work has been done thus far to implement SDR on such hardware. It will be 

shown in later chapters that a flexible yet low-power SDR implementation is 

feasible, particularly in IoT applications where data rate is less important than 

power consumption.   



 

 

CHAPTER 3 

INITIAL STUDY OF MODULATION SCHEMES AND TURBO CODE  

As described previously in the first chapter, the SDR-based wireless 

transceiver system built in this work consists of two parts. The first part is the 

implementation of Turbo code, while the second part is the implementation of 

IQ modulation/demodulation, pulse shaping, and receiver synchronization 

which provides the functionality of the basic physical layer stack. Both parts 

will be fully implemented in software which is developed specifically for the 

RUMPS401 as the digital baseband processor.  

 As discussed in Chapter 2, the more flexible SDR implementation 

generally employs most if not all of its radio functionality via software. While 

this kind of implementation provides broader choice of implementable radio 

system over a single hardware platform, it lacks the efficiency that the 

specialized hardware block offers. However, the lack of efficiency can be 

minimized by optimizing the software specifically for the target processor as 

shown by the past works. This is especially the case for the RUMPS401 due to 

its naturally low-performance hardware for ultimate power saving. 

The software optimization for SDR application requires proper 

understanding of the processor’s architecture and the wireless system. In-depth 

understanding of the processor’s architecture is necessary as the software must 

be able to fully utilize the hardware resources and must be coded as close as 

possible to the metal. Understanding of the RUMPS401’s architecture is given 
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because its design, development, and testing are parts of this research work. It 

will be shown in the following chapters that the SDR software is developed by 

capitalizing fully on RUMPS401’s hardware resources. On the other hand, 

understanding of the wireless system is as important to allow the breakdown of 

various signal processing functions into smaller and simpler tasks which can be 

performed in parallel. This enables the full exploitation of the RUMPS401’s 

multi-processor system.  

Preceding the actual development of the SDR software for the 

RUMPS401, an initial reference study and simulation regarding wireless system 

was carried out, which includes modulation scheme and Turbo code. This initial 

work provides the basis for deciding what wireless system to implement, along 

with its parameters.  The simulation model also plays an important role for 

developing the functional-level of the actual SDR software. It is built in the 

Matlab’s matured signal processing environment, which allows easier and faster 

development of the functional-level software. This initial study and high-level 

modeling are very important as the actual SDR software will deploy specific 

wireless system, which is coded precisely for the RUMPS401.  

This chapter covers the initial reference study and simulation performed 

in this work, which is organized into four parts. The first part discusses the 

reference study on various digital modulation method, while the second part 

provides the comparison of narrowband and wideband wireless system based 

on reference study and simulation model. Turbo coding simulation as well as 

the results are discussed in the third part of this chapter. The last part 

summarizes the initial study and simulation process. 
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3.1 Digital Modulation 

Modulation refers to the process of embedding information signal into 

much higher frequency carrier signal, to propagate the information wirelessly 

(Sklar, 2001). The modulation process serves two main purposes, which are to 

allow multiple transmissions and to allow the use of smaller antenna. When 

viewed in frequency domain the modulated signal occupies a spectrum with 

width equal to the information signal’s frequency and centered at the carrier’s 

frequency. This allows multiple signals to be transmitted at the same time over 

varying frequency range. Wireless transmission of an electromagnetic wave 

depends on the use of antenna designed to properly launch and receive the wave, 

allowing it to propagate through longer distance. The basic equation of 𝑐 = 𝜆𝑓, 

where 𝑓 is the frequency, 𝜆 is the wavelength, and 𝑐 is the speed of light defines 

the inverse relation between a signal’s frequency and wavelength i.e. the lower 

the frequency, the longer the wavelength and hence a larger antenna required to 

properly transmit and receive the signal. For example, a 10kHz information 

signal has a wavelength of around 30km, assuming the antenna size should be 

at least half of the wavelength, a 15km long antenna must be used to properly 

transmit this signal. Meanwhile, a 500MHz carrier signal only requires 30cm 

long antenna for proper transmission. ‘Piggy-backing’ the information signal to 

the higher frequency carrier allows the transmission to be done with drastically 

shorter antenna size. 

Digital modulation is the technique of embedding digital symbols, i.e. 

bits into the carrier signal. Sequences of digital bits are used to transform the 

carrier signal by means of manipulating the signal’s amplitude, frequency, 
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phase, or a combination of them (Sklar, 2001). Amplitude-Shift-Keying (ASK) 

modulation alter carrier signal’s amplitude according to the input bits which 

results in non-constant envelope signal. On the other hand, Frequency-Shift-

Keying (FSK) modulation uses input bits to modify the carrier signal’s 

frequency accordingly, yielding modulated signal which has constant envelope. 

Similarly, Phase-Shift-Keying (PSK) modulation yields constant envelope by 

altering the carrier signal’s phase. Figure 3.1 depicts the three most common 

digital modulation methods. 

As in analog modulation, the non-constant envelope modulation such 

as ASK is more prone to noise interference compared to the constant-envelope 

modulation such as PSK and FSK. If implementation simplicity is not an issue 

ASK loses out in error rate performance. PSK and FSK are equal in terms of 

error rate and spectral efficiency. PSK provides lower error rate for the same 

Signal-to-Noise Ratio (SNR) while yielding lower spectral efficiency compared 

to FSK (Mulally & Lefevre, 1991). Applications that emphasizes on low error 

rate would adapt PSK modulation, while FSK is more preferred when spectrum 

availability is scarce. As this research attempts to reduce the error rate through 

the implementation of Turbo Code, PSK is a more suitable choice compared to 

FSK.  
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Figure 3.1 Basic Digital Modulation Methods (Sklar, 2001) 

PSK itself can be further classified based on the demodulation method 

and the number of constellation points. Coherent receiver demodulates the 

received signal (Haykin, 2001) by utilizing its carrier’s phase information, while 

non-coherent receiver does not use this information. Coherent demodulation 

attempts to reproduce the same carrier frequency generated on the transmitter’s 

local oscillator. The reproduced carrier’s frequency is then used by the receiver 

to demodulate the incoming signal, converting it down to the baseband 

frequency. This leads to lower error rate in expense of more complex 

demodulation process compared to the non-coherent demodulation. Meanwhile, 

higher number of constellation points results in higher spectral efficiency, i.e. 

Quadrature PSK (QPSK) provides twice the data rate compared to Binary PSK 

(BPSK) for the same bandwidth by utilizing both I and Q channel (Sklar, 2001). 

QPSK however also result in two times worse symbol error rate compared to 

BPSK. Figure 3.2 depicts the constellation diagram for QPSK modulation. It is 

shown that the whole IQ plane is divided into four decision regions, one for 

PSK FSK 

ASK 
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each of the QPSK symbols. On higher MPSK modulation there are more 

constellation points which are spaced closer, narrowing the decision regions 

thus reducing the acceptable margin of error during demodulation process. 

 

Figure 3.2 QPSK Constellation Diagram and Decision Boundary (Sklar, 

2001) 

3.2 Narrowband and Spread Spectrum 

Spread spectrum modulation was first introduced to provide means of 

security for military’s wireless communication (Haykin, 2001). By spreading 

the transmitted signal over larger frequency band, spread spectrum provides 

resistance to signal jamming and interception by unwanted parties. The two 

most widely used spread spectrum technique, Direct Sequence Spread Spectrum 

(DSSS) and Frequency Hopping Spread Spectrum (FHSS) provide those 

resistances through different methods. 
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In DSSS modulation, the data sequence is multiplied by a 

pseudorandom sequence of higher data rate, resulting in a sequence containing 

multiple copies of every symbol, whose data rate matches the pseudorandom 

sequence’s. These copies of symbols are commonly referred as chips. 

Additionally, the resulting sequence is transmitted with lower transmission 

power so that the signal presence is difficult to be detected by unwanted parties. 

The data rate ratio between the pseudorandom sequence and original data 

sequence is commonly addressed as Spreading Factor (SF), which defines how 

many times the bandwidth expands. 

As shown in Figure 3.3, the original sequence is a narrowband signal 

with high power, which is transformed by DSSS modulation into a low power 

wideband signal. The DSSS signal is spread across wider frequency band thus 

is harder to jam since jammer normally does not operate over wide frequency 

band. Moreover, as mentioned earlier the DSSS signal has low power level 

hence is hard to detect. On the other hand, FHSS modulation spread the original 

signal over wider frequency band by hopping around several narrow frequency 

band during a transmission. Should unwanted parties try to intercept or jam the 

transmission, they must know every narrow frequency bands a single 

transmission uses, which is not easy. FHSS provides security and robustness 

through this very frequency switching mechanism. 
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Figure 3.3 DSSS Signal Spectrum (Sklar, 2001) 

There are two characteristics of DSSS which is of interest in Internet of 

Things (IoT) applications, that is the low power transmission and the 

redundancy from multiple copies of every bit in the original data sequence. In 

this work, the effect of DSSS modulation system on error rate will be evaluated 

through literature study and high-level model simulation built on Matlab 

platform. In practice DSSS is commonly implemented on the digital part of the 

data, in combination with any digital modulation technique such as PSK or FSK. 

Since BPSK provides the lowest error rate, a high-level model Matlab 

simulation of a simple BPSK-DSSS was performed and compared to a simple 

BPSK system. The simulation is performed to evaluate the receiver’s error rate 

for transmission over an Additive White Gaussian Noise (AWGN) channel on 

varying SNR value. Figure 3.4 depicts the BPSK-DSSS simulation system 

model, with Pseudo-Noise (PN) algorithm generating the spreading sequence. 

Before Spreading After Spreading 
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Figure 3.4 DSSS System Model 

The simulation result in Figure 3.5 shows that DSSS does not provide 

improvement to the error rate of a BPSK system during transmission over 

AWGN channel, regardless of the spreading sequence’s data rate. On a 

narrowband modulation each symbol is transmitted with power of 𝐸𝑏 which 

stands for energy per bit, while on DSSS modulation each chip is transmitted 

with lower power of 𝐸𝑏/𝑆𝐹. During transmission over AWGN channel whose 

noise power is constant over whole frequency band, the receiver of narrowband 

system receives symbols whose individual SNR is 𝐸𝑏/𝑁𝑜, where 𝑁𝑜 denotes 

the noise power. The more positive the SNR value gets, the better is the signal’s 

energy ratio against the noise energy, which leads to better reception and lower 

error rate. On DSSS modulation the receiver receives chips whose individual 

SNR is 𝐸𝑏/𝑆𝐹/𝑁𝑜, which then accumulates chips that belong to one symbol, 

yielding the same individual symbol’s SNR of 𝐸𝑏/𝑁𝑜. It is mathematically 

obvious that by having the same SNR, both narrowband and DSSS system will 

have the same bit error rate (BER) performance (Pickholtz, Schilling, & 

Milstein, 1982; Wang, Yang, & Ying, 2009). 
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Figure 3.5 Narrowband vs DSSS Simulation over AWGN 

Based on the reference study and simulation result, it can be deduced 

that DSSS system does not provide improvement for a transmission over 

AWGN channel, while adding extra complexity to the system through its 

spreading process. Moreover, based on receiver’s sensitivity equation, larger 

bandwidth results in lower receiver sensitivity (Lassen, 2014). A high 

sensitivity receiver is very desirable in every wireless system especially IoT, to 

allow the system to transmit with lowest possible power over longest possible 

distance. 

3.3 Turbo Code Structure 

To provide a reasonable trade-off between error rate and complexity for 

the actual implementation on the RUMPS401, Turbo coding in relation to the 

structure of the code used, the decoding process, and the parameters trade-off, 

must be well understood. As in the modulation/demodulation aspects of the 
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wireless system, the high-level model of Turbo code’s encoder and decoder is 

developed and simulated over various structure and parameters. The whole 

simulation process yields a high-level Turbo encoder and decoder model with 

fixed system parameters, which would be developed into an embedded software 

that is coded and optimized specifically for the RUMPS401. The rest of this 

section is arranged into four parts as follows. The first part describes the Bahl-

Cocke-Jeinek-Raviv (BCJR) algorithm (Bahl, Cocke, Jeinek, & Raviv, 1974), 

which is the main element of Turbo decoder. The second part discusses about 

sliding window decoder, a memory-efficient improvement to the BCJR 

algorithm. The third part describes the Turbo Code’s standard being adopted in 

this work. Finally, the last part presents in details the Turbo Code’s simulation 

setup and results. 

3.3.1 BCJR Decoding Algorithm 

Named after its inventors, the BCJR algorithm was proposed as an 

improvement over Viterbi decoding algorithm (Viterbi, 1967). Both Viterbi and 

BCJR decoding algorithm are based on maximum-likelihood estimation 

(Haykin, 2001) that attempts to find the original transmitted data from the noisy 

received data, with a goal that the prediction made has the highest probability 

of being correct. The process of finding the original data relies on extra 

information provided by the parity bits generated by the encoder. While Viterbi 

algorithm attempts to find the most likely transmitted bits sequence, BCJR 

algorithm tries to find the most likely transmitted bits individually. In a more 

particular way, given a block of received bits, Viterbi algorithm guesses the 

sequence of bits inside the block as one inseparable entity, while BCJR 
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algorithm finds the content by guessing the value of each individual bit in the 

block. In terms of the BER, the BCJR algorithm can be considered to yield a 

more optimal decoding result as it attempts to minimize the error probability of 

each bit, whilst the Viterbi algorithm minimizes the block error probability. 

However, the BCJR algorithm is more complex compared to Viterbi algorithm. 

 

Figure 3.6 Sample Convolutional Encoder and Trellis Diagram (Sklar, 

2001) 

The operation of BCJR decoding algorithm on the received codeword 

can be best explained as a process of traversing the trellis diagram of the 

corresponding encoder. Figure 3.6 shows a simple convolutional encoder of rate 

1/2 and depth 𝐾 = 3. It has two memory elements which are implemented as 

shift registers. The encoder depth is the number of memory elements plus the 

input bit. The encoder takes one input bit at a time, producing two output bits 

through a defined modulo-two addition between the input bits and the registers 
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value. The registers values are bits from previous timestamp, i.e. the output 

codeword for third bit depends on value of the first and second bits. The 

operation of this encoder can be represented in its trellis diagram which provides 

the relation between the encoder’s input, the values stored in the memory 

elements (commonly referred as the encoder’s state), and the encoder’s output. 

Each dot represents the encoder’s state at any given time 𝑘, while the dots-

connecting arrow represents the transition to the next state given a certain input 

bit. Solid arrow describes the transition for an input bit of 0, and dotted arrows 

for an input bit of 1. Number on the arrows defines the encoder’s output for a 

transition. In practice the trellis diagram can be implemented as a simple lookup 

table. 

During the traversal of the trellis diagram, BCJR algorithm constructs a 

complete trellis graph based on the encoder’s basic trellis diagram and most 

importantly, the received codeword. It then amends three metrics to each pair 

of nodes and the arrow connecting them. Figure 3.7 illustrates the calculation of 

forward state, reverse state, and branch metrics along with the formulas, 

assuming an encoder of rate 1/2 and noise variance 𝑁𝑜. They are also commonly 

referred as  𝛼, 𝛽, and 𝛿 metrics, respectively. These metrics are essential 

parameters for calculating the original data bits likelihood of having value 0 or 

1. Branch metric defines transition probability of each state to the next state, 

given the received codeword at time 𝑘. Forward state metric is the encoder’s 

likelihood to be in a certain state at time 𝑘, knowing the forward and branch 

metrics of the previous states at time 𝑘 − 1 that transitioned to the current state. 

Reverse state metric is the opposite of forward state metric, defining the 
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encoder’s likelihood to be in a certain state at time 𝑘, given the backward and 

branch metrics of the next states that the current state can transition to at time 

𝑘 + 1. 

Based on the equation provided in Figure 3.7, branch metric calculation 

is defined as a correlation function between the received codeword at time 𝑘 

denoted by 𝑥𝑘 𝑦𝑘, and the expected encoder’s output 𝑢𝑘 𝑣𝑘 for a certain 

transition between states. 𝜋𝑘
𝑖 denotes the a priori probability of the unencoded 

bit at time 𝑘 for having value 𝑖. Forward state metric is the sum of all transition 

probabilities to the current state. 𝛼𝑘
𝑚 denotes the forward state metric for current 

state 𝑚 at time 𝑘, while 𝛿𝑘−1
0,𝑏(0,𝑚)

 is the branch metric corresponding to the 

transition by bit 0 from the previous state 𝛼𝑘
𝑏(0,𝑚)

 to the current state. Reverse 

state metric equation is expressed similarly, except that it is a summation of all 

transition probabilities from the current state. 
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Figure 3.7 BCJR State and Branch Metrics (Sklar, 2008) 

Branch metrics are calculated individually, while state metrics are 

computed recursively, dependent of the branch metrics and the state metrics of 

adjacent timestamp 𝑘 − 1 and 𝑘 + 1. Forward state metrics of the first 

timestamp is commonly initialized by assuming that the encoder starts at state 

zero, while the reverse state metrics of the last timestamp are initialized 

according to the knowledge of what state the encoder’s going to end at. Once 

every branch and state metrics is calculated for every input codeword at time 

𝑘 = 1, … , 𝑛 where 𝑛 is the data block length, the data bits likelihood value 

𝐿(𝑑̂𝑘) can be calculated with equation 3.1a (Sklar, 2008). Referring to the 

equation, the likelihood value is expressed as the logarithmic of the ratio 

between all the probabilities of the bit having value 1 and probabilities of having 

value 0. That is, the more positive the likelihood value, the higher possibility 

the original transmitted bit of having value 1, and vice versa. When used in the 

a) Forward State Metric 

b) Reverse State Metric 

c) Branch Metric 
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iterative Turbo decoding, the last decoder output this likelihood value on the 

last iteration. However, during the iterative process where constituent decoders 

are still exchanging information, an extrinsic value 𝐿𝑒(𝑑̂𝑘) is calculated and 

exchanged instead of the likelihood value. The extrinsic value is defined by 

equation 3.1b. Since both the likelihood and extrinsic value computations serve 

similar purpose of defining the possibility of a bit having value 0 or 1, and for 

the sake of simplicity, those two will be referred as likelihood ratio from here 

onwards.  

𝑳(𝒅̂𝒌) = 𝐥𝐨𝐠 [
∑ 𝜶𝒌

𝒎
𝒎 𝜹𝒌

𝟏,𝒎𝜷𝒌+𝟏
𝒇(𝟏,𝒎)

∑ 𝜶𝒌
𝒎𝜹𝒌

𝟎,𝒎𝜷𝒌+𝟏
𝒇(𝟎,𝒎)

𝒎

]   (3.1a) 

𝑳𝒆(𝒅̂𝒌) = 𝐥𝐨𝐠 [
∑ 𝜶𝒌

𝒎
𝒎 𝒆𝒙𝒑(

𝒚𝒌𝒗𝒌
𝟏,𝒎

𝑵𝒐𝟐 )𝜷𝒌+𝟏
𝒇(𝟏,𝒎)

∑ 𝜶𝒌
𝒎𝒆𝒙𝒑(

𝒚𝒌𝒗𝒌
𝟎,𝒎

𝑵𝒐𝟐 )𝜷𝒌+𝟏
𝒇(𝟎,𝒎)

𝒎

]  (3.1b) 

Referring to the details of BCJR algorithm particularly its metrics 

calculation, it is obvious that in practice this algorithm would impose relatively 

high computational and memory requirements. Assume a convolutional encoder 

of rate 1/2 and two memory elements, which resulted in a trellis diagram with 

four states. In a case where there are received codeword for timestamp 𝑘 =

1, … , 3, a BCJR decoder would need to construct a trellis diagram with four 

states and three group of transitions corresponding to the received codeword 

such as shown in Figure 3.8. 
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Figure 3.8 Sample of BCJR Decoder Trellis Diagram (Sklar, 2008) 

It is noticeable that the trellis diagram constructed has four timestamps, 

whereas there are only three codeword timestamps received. The trellis diagram 

is initialized at timestamp 𝑘 = 1, undergoes states transition by the first 

codeword at timestamp 𝑘 = 2, and so on, resulting in the four timestamps. The 

encoder’s state at the last timestamp is referred as the termination state. Forward 

state metrics is not computed at the last timestamp 𝑘 = 4 since it is not needed 

by the bit likelihood calculation in equation 3.1a or the extrinsic information in 

equation 3.1b, and so does the reverse state metric for the first timestamp 𝑘 =

1. The decoder needs to compute and store twelve forward and twelve reverse 

state metrics, plus twenty-four branch metrics totaling in forty-eight metrics just 

for the decoding of three data bits. Coupled with the fact that the calculation of 

each metric involves numerous complex operations such as logarithmic, 

exponential, and especially multiplications, it is straightforward that the BCJR 

algorithm is relatively computational and memory expensive. 

𝛿𝑘
𝑖,𝑚 = ln(𝛿𝑘

𝑖,𝑚) = ln(𝜋𝑘
𝑖 ) + (𝑥𝑘𝑢𝑘

𝑖 + 𝑦𝑘𝑣𝑘
𝑖,𝑚)/𝑁𝑜     (3.2a) 
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𝛼̃𝑘
𝑚 = ln(𝛼𝑘

𝑚) = max (𝛼𝑘−1
𝑏(0,𝑚)

+ 𝛿𝑘−1
0,𝑏(0,𝑚)

, 𝛼𝑘−1
𝑏(1,𝑚)

+ 𝛿𝑘−1
1,𝑏(1,𝑚)

)   (3.2b) 

𝛽𝑘
𝑚 = ln(𝛽𝑘

𝑚) = max (𝛽𝑘+1
𝑓(0,𝑚)

+ 𝛿𝑘
0,𝑚, 𝛽𝑘+1

𝑓(1,𝑚)
+ 𝛿𝑘

1,𝑚)      (3.2c) 

𝐿̃(𝑑̂𝑘) = ln (𝐿(𝑑̂𝑘)) = 𝑚𝑎𝑥𝑎𝑙𝑙 𝑚 (𝛼𝑘
𝑚𝛿𝑘

1,𝑚𝛽𝑘+1
𝑓(1,𝑚)

) −

                                            𝑚𝑎𝑥𝑎𝑙𝑙 𝑚 (𝛼𝑘
𝑚𝛿𝑘

0,𝑚𝛽𝑘+1
𝑓(0,𝑚)

)   (3.2d) 

𝐿𝑒̃(𝑑̂𝑘) = ln (𝐿𝑒(𝑑̂𝑘)) = 𝑚𝑎𝑥𝑎𝑙𝑙 𝑚 (𝛼𝑘
𝑚

𝑦𝑘𝑣𝑘
1,𝑚

𝑁𝑜
2 𝛽𝑘+1

𝑓(1,𝑚)
) −

                                                𝑚𝑎𝑥𝑎𝑙𝑙 𝑚 (𝛼𝑘
𝑚

𝑦𝑘𝑣𝑘
0,𝑚

𝑁𝑜2 𝛽𝑘+1
𝑓(0,𝑚)

)  (3.2e) 

Among several algorithms proposed to solve the computational 

complexity of the BCJR algorithm, two widely used algorithms are Max-Log-

BCJR and Log-BCJR (Robertson, Hoeher, & Villebrun, 1997). Both algorithms 

modify the metrics and likelihood ratio calculation by taking their natural 

logarithm, i.e. 𝛼̃𝑘
𝑚 = ln(𝛼𝑘

𝑚) for forward state metric, and similarly for the other 

metrics and the likelihood ratio. Doing this reduces the number of 

multiplications due the logarithmic property ln(𝑎𝑏) = ln(𝑎) + 𝑙𝑛 (𝑏), while the 

removal of logarithm operation itself is possible through the approximation of 

ln(𝑎 + 𝑏 + 𝑐 + ⋯ ) = max (𝑎, 𝑏, 𝑐, … ), where 𝑚𝑎𝑥 function finds the 

maximum among its input. These two properties yield the restatement of the 

branch, forward state, reverse state metric, bit likelihood equations, and 

extrinsic information in 3.2a, 3.2b, 3.2c, 3.2d, and 3.2e, respectively. These 

equations are less complex, yielding simpler and computationally inexpensive 

implementation in expense of the error rate. In Log-BCJR algorithm the result 

of the 𝑚𝑎𝑥 function is added by a correction function (Sadjadpour, 2000) to 

compensate for the error rate. 
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While the Max-Log-BCJR and Log-BCJR algorithms reduce the 

computational complexity of the original algorithm, they do not improve the 

memory usage of the algorithm. Both algorithms still require the same memory 

resource as the original to store all the metrics required for each bit’s likelihood 

ratio calculation. A widely used solution is sliding-window decoding which is 

detailed in the next section. 

3.3.2 Sliding-Window BCJR Decoding Algorithm 

As discussed in the previous section, BCJR algorithm requires large 

storage for its metrics before a final likelihood ratio can be computed. Sliding-

window algorithm divides the received frame into several smaller chunks then 

performs the BCJR decoding on those chunks separately, greatly reducing the 

memory requirements. A window of fixed length 𝑤 is applied to the received 

data frame starting from the first data, then performs BCJR decoding only on 

data belonging to the window. The beginning of the window then is moved as 

far as its size 𝑤 to the right, and another round of BCJR decoding is performed 

on those data in the window. This operation is continued until all data in the 

frame has been decoded.  

Figure 3.9 illustrates the concept of sliding-window algorithm. The 

algorithm places the first window over the data of timestamp 𝑘 = 0,1, 2, … , 𝑤 −

1, decodes them then slides the window to the next group of data of timestamp 

𝑘 = 𝑤, 𝑤 + 1, … , 2𝑤 − 1, and so on. In this illustration, the first window’s 

reverse state metric calculation (backward recursion) is performed over data 

range of 𝑘 = 0,1, 2, … , 𝑤 + 𝑔 − 1 while the window only occupies and decodes 
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data up to 𝑘 = 𝑤 + 1. This few extra 𝑔 data (or bits) provide extra information 

to the current window to improve the error rate and are referred as the guard 

window. This is applied similarly for every window. 

 

Figure 3.9 Sliding Window Algorithm (Marandian, Fridman, Zvonar, & 

Salehi, 2001) 

Assume the same four-state encoder which produces trellis diagram in 

Figure 3.8. On the receiving side, the decoder requires forty-eight metrics for 

only three data bits, or sixteen metrics per data bit. Should the received frame 

contain a hundred bits, all 480 metrics must be stored before the final likelihood 

computation. If a sliding-window approach is used instead, the number of 

metrics to be stored can be reduced depending on the window (and guard 

window) size. Smaller window decreases the memory usage in expense of the 

performance loss. During implementation, the main trade-off between window 

size and error rate hence is the key to satisfy certain requirements of the wireless 

system, or to fit into the limitations imposed by the hardware. As the 

RUMPS401 is limited in terms of storage, the application of sliding-window 
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algorithm is essential. Its main trade-off will be studied through a simulation 

model whose details is covered on upcoming sections. 

3.3.3 3GPP UMTS Turbo Code Standard 

This work adapts Turbo Code structure used by the Universal Mobile 

Technology System (UMTS) standard for the third-generation cellular system. 

This standard was defined by Third-Generation Partnership Project (3GPP), an 

association of multiple organizations that develop and define 

telecommunications standard. Standards developed by 3GPP such as 3G, High 

Speed Downlink Packet Access (HSDPA), Long Term Evolution (LTE), are 

referred as 3GPP technologies, and has been widely adapted throughout the 

industry.  

 

Figure 3.10 Structure of 3GPP UMTS Turbo Encoder (Valenti & Sun, 

2001) 
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 Figure 3.10 shows the UMTS standardized Turbo encoder, which 

consists of two identical Recursive Systematic Convolutional (RSC) encoders, 

a single interleaver, and trellis termination mechanism. RSC code is a specific 

type of convolutional code with a feedback line to the input of the first memory 

element. For every input bit the encoder produces two type of output bits, that 

is the input bit itself (systematic bit) and the parity bit. RSC code was first 

introduced in the Turbo Code and has been widely adapted due to its superior 

error rate performance compared to the non-systematic and non-recursive 

convolutional code (Berrou, Glavieux, & Thitimajshima, 1993). Combining the 

two encoders, the UMTS standardized Turbo encoder has a total rate of 1/3, 

whose output are one systematic bit and two parity bits generated by each 

encoder. 

As in other types of convolutional code the operation of the RSC code 

can be described in a trellis diagram. In practice, polynomial description of a 

convolutional encoder is sometimes preferred over the trellis diagram for 

describing the encoder’s structure. It describes the connection among the 

memory elements (or shift registers in practical implementation) and the 

modulo-two adders as sequence of bits, represented in octal number format. For 

example, the rate 1/2 RSC encoder in Figure 3.10 has two lines of connection, 

one parity-generating line and one feedback line, each represented by a modulo-

two addition. The encoder has a depth of 𝐾 = 4, hence there are four elements 

with possible connection to the adder on each line. On the parity-generating 

line, the input bit, the first register, and the third register are connected to the 

adder. This connection can be represented as a binary number 1101 or its octal 
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format 15. Similarly, the feedback line is represented as binary 1011 or octal 

13. These numbers are referred as the generator polynomial of a convolutional 

encoder. Coupled with the encoder’s rate and depth, they can be used as a 

compact description of a convolutional encoder. 

The UMTS standard Turbo Code uses matrix interleaver to scatter data 

bits going into the second encoder (Valenti & Sun, 2001). It arranges data bits 

by writing the bits row by row in a matrix, then reads them back per column. 

The matrix size is adjusted according to the data frame size. While this 

interleaver is easy to implement, it requires an index mapping table whose size 

grows in linear to the frame size. Matrix interleaver also suffers from worse 

error rate performance compared to other type of pseudorandom interleaver, 

which will be shown by Matlab simulation in the next section.  

In the UMTS standard, Turbo Code’s trellis diagram must be zero-

terminated, which means that at the end of the encoding process every memory 

element must be reset to zero value. By always terminating the encoder to a 

known state, the reverse state metric can be initialized properly thus improving 

the decoding result (Bahl, Cocke, Jeinek, & Raviv, 1974). This is done by 

inserting few extra bits to the encoder after the last data bit. These bits are 

commonly referred as the termination bits, whose number equals the number of 

memory elements. The termination bits sequence is a function of the last state 

the encoder was at, which is depicted in Figure 3.10 by the connection formed 

when the switch in each encoder is tapped to the feedback line instead of input 

bit. 
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Decoding of the UMTS standardized Turbo encoder is performed by a 

common Turbo decoder shown in Figure 2.6, given that the decoder possesses 

the same trellis diagram. The high-level modeling and simulation of both 

encoder and decoder shall be covered in the following section.      

3.4 Turbo Code Modeling and Simulation in Matlab 

The high-level model of the Turbo encoder and decoder along with the 

BPSK modulator and demodulator will be built in Matlab. It is a matured 

numerical computing environment developed by Mathworks. Matlab provides 

numerous ready-to-use libraries for various applications such as complex 

mathematical computation, data analysis and representation, signal and image 

processing, communication system (Mathworks, n.d.). The enormous libraries 

coupled with Matlab’s high-level scripting language accelerates the model 

development and simulation process, allowing proper understanding of the 

system’s structure and parameters. Furthermore, the scripting language is 

procedural thus the model developed with it can be used the base for the 

practical implementation in other programming language such as C. 

This subchapter discusses the modeling and simulation of Turbo-coded 

system to study its characteristic. The Turbo code simulation is split into two 

steps. The first step employs full-frame decoder on the receive side to verify 

that the model works properly. Simulation is run by varying few basic 

parameters of Turbo code, that is the iteration number, the data frame size, the 

decoding algorithm. The second step takes the simulation model further for 

practical implementation by employing the sliding window decoder, with 
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window size and interleaving pattern as the study parameters. This two steps 

simulation resulted in a high-level model of sliding-window Turbo decoder with 

fixed parameters, upon which the RUMPS401’s Turbo Code implementation is 

based on.  

The rest of the subchapter is arranged into three sections as follow. The 

first section describes the model setup. The scenario and results for the first and 

second simulation steps are presented in section two and three, respectively. 

3.4.1 Simulation Setup 

 

Figure 3.11 System Model for Matlab Simulation 

Depicted in Figure 3.11 is the complete Turbo-coded system’s model 

consisting of a Turbo encoder and a BPSK modulator on the transmit side, as 

well as a Turbo decoder and a BPSK demodulator on the receive side. The 

model performs baseband half-duplex communication. Simulation is then 

carried out with the modelled system by transmitting random data and 

measuring the receiver error rate over AWGN channel with varying SNR. Every 
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simulation is performed on two hundred thousand bits per SNR value. The 

simulation is performed over various scenario by varying several key 

parameters of Turbo code to study their effect on the receiver’s error rate. A 

simple BPSK transmit-receive model is simulated too as the baseline for the 

error rate performance of non-coded system. This non-coded system model is 

identical to the Turbo-coded system model except it does not have the Turbo 

encoder and decoder block. 

As shown in Figure 3.11, the Matlab’s simulation model comprises of 

six key components: the BPSK modulator and demodulator, the Turbo encoder 

and decoder, the noisy AWGN channel, and the decision device. Matlab’s 

AWGN function is used to implement the noisy channel model. The function 

adds Gaussian noise to the input signal according to the SNR parameter as its 

output, as shown in Figure 3.12. As shown in Figure 3.13, the modulator is 

implemented with Matlab’s pskmod function, which accept the data signal, the 

modulation order M, and the constellation offset. In this simulation, a BPSK 

with zero-offset constellation is chosen, hence the pskmod function is run with 

the randomized data signal, the M of two, and the constellation offset of zero. 

The function outputs the modulated data for each bit which takes form of 

complex number. 

In practice, the coherent BPSK demodulator should perform various 

synchronization on the received signal to correct the timing and frequency 

experienced by the received signal. Since the simulation focuses on studying 

the Turbo Code characteristic, it simulates on an ideal baseband transmitter and 

receiver system. There is no frequency offset in baseband transmission, and the 
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demodulator is set to sample the signal at the exact same time as the transmitter. 

The demodulator then passes the sampled signal to the Turbo decoder, whose 

result is then used by the decision device to determine the bit value. 

 

Figure 3.12 Matlab's AWGN Function 

 

Figure 3.13 BPSK Modulator/Demodulator Model 

 

Figure 3.14 Turbo Encoder Model 
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Figure 3.14 shows the high-level model of the Turbo encoder. The 

encoder model takes the input sequence and provides this sequence along with 

its interleaved version as the input for the two parallel RSC encoders.  Matlab’s 

convolutional encoder function is used to model the RSC encoder. The function 

encodes input bits into codeword, provided the encoder’s trellis description as 

the input parameter. As discussed in previous section, polynomial description is 

much more compact and can also be used to describe an encoder’s structure. 

This can be leveraged by using Matlab’s poly2trel function to convert an 

encoder’s polynomial description into the corresponding trellis description. 

Outputs of both encoders are then indexed accordingly. 

As described earlier, the encoder structure referred in this work belongs 

to the UMTS standard which uses trellis termination mechanism to ensure that 

the encoder is terminated at a known state. However, on the receiver that uses 

sliding-window decoding, each window’s metrics are initialized separately, thus 

the improvement provided by the trellis termination at the end of the full frame 

is less significant as it only applies to the last chunk of a frame. As the real 

system implementation on the RUMPS401 uses sliding-window decoding, the 

trellis termination bits generation is removed from both simulation model and 

real system implementation. 
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Figure 3.15 Turbo Decoder Model 

The decoder model shown in Figure 3.15 comprises of two serially 

concatenated decoders, interleavers and an iteration control. Every component 

in the decoder model is self-coded, except for some interleaving algorithm. Both 

constituent decoders are identical and can be configured to run either BCJR 

algorithm or its suboptimal Max-BCJR algorithm. The interleavers and 

deinterleavers are black boxes which can be replaced with any specific 

interleaving pattern according to the simulation and parameter study needs. 

Each simulation scenario in both the first and second step uses Matlab’s 

pseudorandom interleaving pattern, except for the last scenario of the second 

step where interleaving patterns are compared. The iteration control block tracks 

the number of decoding loops performed. It outputs the extrinsic information of 

the received bits as feedback to the first decoder for next loop, and outputs the 

likelihood ratio of the received bits at the end of the last loop. 

3.4.2 Result of Full-window BCJR Decoding Simulation 

Figure 3.16 through Figure 3.18 shows the results of the first simulation 

step for which iteration number and data frame size are varied. These 

simulations were run with Matlab’s pseudorandom interleaving algorithm, and 
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BCJR algorithm on the decoder side. It is evident from these graphs that higher 

iteration number yields lower error rate. However, the error rate improvement 

provided per iteration number is deminishing as the iteration increases. For 

example, the amount of error rate improvement provided by increasing the 

iteration number from 3 to 4 is lower compared to increasing from 1 to 2. It is 

even less when increasing from 5 to 18 iterations. This is a common behavior 

of Turbo code where much higher iteration number provides very little or almost 

no error rate improvement compared to the lower iteration number (Berrou, 

Glavieux, & Thitimajshima, 1993), known as the saturation point of the Turbo 

code. The saturation point defines the optimal number of iterations needed by 

certain Turbo-coded system to provide the lowest possible error rate. More 

intelligent Turbo-coded system tracks the saturation behavior by monitoring the 

error rate improvement and decides when the iterative decoding should end. 

This allows the system to decode more efficiently by suppressing the number of 

decoding iterations performed whilst maintaining an optimal error rate 

improvement. 

Another observable behavior from Figure 3.16 through Figure 3.18 is 

the lower error rate provided by larger data frame size. The larger frame size 

provides more information to the decoder, allowing the BCJR algorithm to 

traverse over longer trellis graph (Bahl, Cocke, Jeinek, & Raviv, 1974) yielding 

a more confident decoding result. This is achieved at the expense of larger 

processing and memory resources to process more data bits. It should be noticed 

that the frame size starts to significantly affect the error rate on higher iteration 

number. The first iteration decoding for systems with frame sizes of 40, 256, 
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and 1024 bits provide similar error rate, while on the second and higher iteration 

the system with 1024 bits performs better than the other two. This behavior is 

more evident on Figure 3.19 which presents the simulation result when the 

system is set to run four decoding iterations and compared for varying frame 

size. 

 

Figure 3.16 Turbo Model Simulation – 40 bits Frame, Varying Iteration 
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Figure 3.17 Turbo Model Simulation – 256 bits Frame, Varying Iteration 

 

Figure 3.18 Turbo Model Simulation – 1024 bits Frame, Varying Iteration 
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Figure 3.19 Turbo Model Simulation - Frame Size Comparison 

As discussed in Chapter Two, one of main reasons the Turbo decoding 

process being relatively computational expensive is the use of BCJR algorithm 

in both of its constituent decoder. It was also reviewed that one of fundamental 

approaches for simplifying the Turbo decoding is by utilizing the suboptimal 

version of the BCJR algorithm instead of the original version. The BCJR 

algorithm performs better than its suboptimal version Max-Log-BCJR 

algorithm (Robertson, Hoeher, & Villebrun, 1997). This is illustrated in the 

simulation results shown in Figure 3.20 and Figure 3.21. It is evident from the 

graph that the model with original BCJR algorithm provides around 0.5 – 1 dB 

improvement over the suboptimal Max-Log-BCJR algorithm, and that the 

improvement is more significant on the model with frame size of 256 bits. 
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algorithm is used in most real application due to its modest complexity (Li, 

Maunder, Al-Hashimi, & Hanzo, 2013; Huang, et al., 2011). This last scenario 

completes the first of two steps simulation described earlier, and verifies that 

the system model functions in a proper way. The model then can be taken into 

the second simulation step, which requires modification on its decoder part. As 

the second part of the simulation intends to bring the model closer to practical 

implementation, Max-Log-BCJR algorithm is used for each simulation scenario 

in the second part. 

Change on the decoder model is made by modifying its Max-Log-BCJR 

algorithm which decodes a full frame at once into sliding-window version 

(Marandian, Fridman, Zvonar, & Salehi, 2001). A sliding-window decoder is 

commonly characterized by its window and guard-window size. Window size 

defines the number of bits being decoded at a time, while guard-window size 

describes the number of extra bits from the next window which is added to the 

current window to provide extra information to the decoder hence improving 

the decoding performance. These additional bits are not decoded when a 

specific window is being decoded, they are decoded when their own window is 

being decoded. The resulting sliding-window decoder model is then simulated 

for varying window and guard-window size, with the full frame size fixed at 

256 bits. Comparison of interleaving patterns will be performed on the same 

sliding-window decoder model as well. 
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Figure 3.20 Turbo Model Simulation - BCJR Compared, 40 bits Frame 

-3.5 -3 -2.5 -2 -1.5 -1

10
-1

Eb/No

B
E

R

Turbo code - blocksize=40, 18 iterations

 

 

uncoded

Turbo-MAP

Turbo-maxMAP

-10 -8 -6 -4 -2 0 2
10

-4

10
-3

10
-2

10
-1

Eb/No

B
E

R

Turbo code - blocksize=40, 18 iterations

 

 

uncoded

Turbo-MAP

Turbo-maxMAP

Turbo-BCJR 

Turbo-Max BCJR 

(a) Frame Size 40 bits, 18 iterations 

(b) Frame Size 40 bits, zoomed 

Turbo-BCJR 
Turbo-Max BCJR 



59 

 

 

Figure 3.21 Turbo Model Simulation - BCJR Compared, 256 bits Frame 

3.4.3 Result of Sliding-window BCJR Decoding Simulation 

Figure 3.22 through Figure 3.25 presents comparison of the sliding-

window model’s simulation results over various window and guard-window 
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to better error rate in expense of more bits to process, like the effect of frame 

size on the full frame decoding. Another observable behavior from the four 

graphs is the Figure 3.23 where the error rate declines in a flat manner on high 

SNR, as opposed to the expected curve manner. This flat slope behavior is 

commonly referred as the error floor of an error correction code (Garello, 

Chiaraluce, Pierleoni, Scaloni, & Benedetto, 2001). The error floor 

phenomenon is not acceptable for applications that requires low error rate, 

which can be mitigated by increasing minimum distance of the error correction 

code. In Turbo Code, this can be achieved by employing an interleaving pattern 

with good spreading property (Crozier & Guinand, 2001). 

The last part of the two steps high-level model verification and 

simulation works around another main component of a Turbo encoder and 

decoder, that is, the interleaver and deinterleaver. Interleaving scatters the data 

frame according to a specific pattern, the more scattered the data frame, the 

lower the error rate. Additionally, it has impact on diminishing the error floor 

phenomenon. On Turbo Code, the interleaving is performed on the data frame 

going into the second encoder or decoder. It should be recalled that the very 

reason Turbo Code utilizes two parallel encoders is to introduce redundancy 

into the transmitted frame. Should a burst error occur in a transmission, a block 

of consecutive data might get corrupted. While this kind of error may affect the 

first decoder, the second encoder is unaffected due to the interleaving process. 
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Figure 3.22 Turbo Model - Sliding Window Comparison, W=32 Itr=1 

 

Figure 3.23 Turbo Model - Sliding Window Comparison, W=32 Itr=3 
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Figure 3.24 Turbo Model - Sliding Window Comparison, W=64 Itr=1 

 

Figure 3.25 Turbo Model - Sliding Window Comparison, W=256 Itr=1 
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Relative Prime (DRP) interleaver satisfies both requirements (Crozier & 

Guinand, 2001). Its interleaving algorithm requires very little memory and 

performs simple calculations during the iterative interleaving process, while 

providing good data scattering pattern. Figure 3.26 and Figure 3.27 show the 

simulation result for comparison of three interleaving pattern, that is DRP 

interleaving, Matlab pseudorandom interleaving which runs Mersenne Twister 

algorithm (Matsumoto & Nishimura, 1998), and matrix interleaving. These 

simulations were performed on the system model with a frame size of 256 bits 

and runs sliding-window decoder with Max-Log-BCJR algorithm. It is evident 

that matrix interleaver is inferior to the other two, and that Matlab 

pseudorandom interleaver still exhibit error floor phenomenon. DRP interleaver 

provides lower error rate compared to the other two and no error floor at this 

range of error rate and SNR, thus is chosen for the real system implementation 

on the RUMPS401. 

 

Figure 3.26 Turbo Model - Interleaver Comparison W=32 Itr=3 
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Figure 3.27 Turbo Model - Interleaver Comparison W=64 Itr=3 

3.5 Summary 

In this chapter, extensive reference literature study and simulation have 

been performed, with the goal of deciding which wireless modulation scheme 

and the Turbo Coding structure to be implemented on the RUMPS401. As 

inferred from the study on digital modulation scheme, coherent BPSK is the 

suitable choice for a system where data rate and spectral efficiency is less of a 

concern compared to the system’s error rate. After a thorough study and 

simulation of the spread spectrum technique particularly DSSS, the narrowband 

system is chosen due to the fact that it exhibits the same error rate as the spread 

spectrum system and it is less demanding for implementation in the 

RUMPS401. This leads to the final decision to use a coherent BPSK as the 

digital modulation for the practical system implementation on the RUMPS401. 
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The coherent receiver requires proper synchronization. The implementation 

details will be covered in Chapter five. 

As described earlier, the Turbo Code simulations are intended to 

produce a high-level model upon which the practical system implementation 

will be based on. At the end of the two steps simulation, a high-level encoder 

and decoder system model has been built and verified. The decoder adopts the 

more practical Max-Log-BCJR implementation together with the sliding 

window decoding algorithm. In addition to providing a high-level model of a 

Turbo encoder and decoder, the simulation serves as the base for deciding on 

the necessary Turbo code parameters. The data frame size is fixed at 256 bits 

with window size of 32 bits. According to the simulation results, these numbers 

provide a good error rate performance without imposing memory and 

computational issues for the RUMPS401, which will be further detailed in 

Chapter four. Lastly, the DRP interleaving pattern will be used for its superior 

error rate performance and low complexity. 
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CHAPTER 4 

TURBO DECODER IMPLEMENTATION AND OPTIMIZATION ON 

THE RUMPS401  

The previous chapter covers in details reference literature studies and 

simulation of both the modulation scheme and the Turbo Code, which resulted 

in a high-level model with specific parameters. The high-level model of Turbo 

encoder and decoder which were written in Matlab’s language are ported to C-

based code, specifically optimized for the RUMPS401 with proper 

understanding of the chip’s architecture. It is obvious that the decoder’s 

operation is much more complex compared to the encoder which can be 

implemented with a simple lookup table. This chapter discusses the Turbo 

encoder and decoder software development on the RUMPS401, with focus on 

the decoder’s optimization. The rest of this chapter is arranged into three parts 

as follows. The first part describes the primary concept of the software design 

and the details of software development environment. In the second part, step-

by-step optimization process of the decoder software is presented in detail, 

along with execution time of each task involved in the decoding process. 

Finally, the last part summarizes the chapter.   

4.1 Turbo Decoder Software Implementation on the RUMPS401 

The extensive initial study and high-level simulation performed in the 

third chapter has resulted in a specific Turbo Code system that will be 

implemented in this project. The encoder adopts the Third Generation 
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Partnership Project (3GPP) Universal Mobile Telecommunication System 

(UMTS) standardized Turbo encoder structure, with no termination bits as it 

provides insignificant error rate improvement to the sliding window decoder. 

For practical deployment, the decoder runs suboptimal Max-Log-BCJR 

algorithm coupled with sliding window decoding. The size of the original data 

frame is fixed at 256 bits and decoded in chunks with sliding window of 32 bits. 

It was mentioned in Chapter Three that these numbers were chosen based on the 

error rate performance which has been established through the simulations, and 

the resource requirements which will be discussed in the rest of this chapter. 

Dithered Relative Prime (DRP) interleaving pattern is used due to its low 

computation and memory requirement, and its superior error rate improvement 

displayed in the simulation results. 

The rest of the chapter is arranged into three sections as follows. The 

first section specifies the toolchains used for the RUMPS401 software 

development and deployment. Section Two discusses the Turbo encoder and 

decoder software structure, particularly the parallelism employed on the 

decoder. Details regarding the variables used in the software along with their 

memory usage are presented in the third section. 

4.1.1 Implementation Setup 

As discussed in previous chapters, the Turbo encoder and decoder is 

fully implemented via software on the RUMPS401. Those software were fully 

developed from scratch without the use of any external signal processing 

libraries, except for a few complex mathematical functions and fixed-point data 
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type which shall be detailed as this chapter progresses. Close-to-metal coding 

approach is applied as the software intends on maximizing the RUMPS401’s 

resources to compensate for the low power and low-performance nature of the 

ARM Cortex-M0. The resulting program tends to directly access the hardware 

resources such as registers or specialized hardware to minimize the time 

overhead introduced by any function call, be it a self-written function or a 

function from external library.  

Since this work implements a simplex wireless system with exactly one 

transmitter and one receiver, there are two sets of software code, one each for 

the encoder and decoder. Each set contains four software codes. These codes 

are compiled separately into the four individual binary files which then is 

programmed into each core’s flash memory. As the RUMPS401 is fully custom 

designed by the UTAR VLSI’s Research Center, there is no ready-to-use 

software Integrated Development Environment (IDE) from other sources that 

provides a complete toolchain for developing the RUMPS401’s software.  

The software was written in the C programming language. The code can 

be written with any text editor software, but Sublime Text 3 was used due to 

personal preference (Sublime, n.d.). It provides essential features for the 

programmer such as syntax highlighting, code folding, multiple files view. The 

code is then cross-compiled with GNU Embedded Toolchain for ARM (ARM, 

GNU ARM Embedded Toolchain, n.d.), and targeted for the ARM Cortex-M0 

processor. The resulting binaries are then flashed into the RUMPS401 using a 

self-written Python-based program which reads the binary files and transfer 

them byte by byte into the RUMPS401 via the Universal Asynchronous 
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Receiver Transmitter (UART) interface. These bytes are received by a 

bootloader program running in the IO Control Core, which then distributes the 

bytes to each corresponding core through the internal Network-on-Chip (NoC). 

This bootloader program resides on a special region of the IO Control Core’s 

flash memory, while the rest of the memory are available for the program being 

flashed, hence they are not interfering. As for the other cores, the flash memory 

is fully available for the program being flashed. This process is performed based 

on the RUMPS401 software-bootloader protocol (Hartono, 2014). Figure 4.1 

depicts the RUMPS401 software development process.  

 

Figure 4.1 The RUMPS401 Program Development Setup 

During the development process, two Python-based programs were 

written to test the encoder and decoder software functionalities separately. The 

programs run on a PC and communicate with the RUMPS401 via the UART 
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interface. The encoder-testing program randomizes several pairs of unencoded 

frame and its corresponding codeword, drives the unencoded frames into the 

RUMPS401 which then encodes those frames and send the resulting codeword 

back to the Python program. The codeword sent back by the RUMPS401 is 

checked against the pre-computed codeword, where they should match. 

Inversely, the decoder is tested by driving codewords into the RUMPS401 

which decodes and returns the results back to the Python program. The decoding 

results is then compared against the unencoded frames. These functionality tests 

are performed without noisy data sets, i.e. codewords driven into the decoder 

software still contains its original value of either 1 or 0. The decoder will be 

tested against noisy data later in the full system test, after integration with the 

coherent-BPSK modulation and demodulation.  

4.1.2 Turbo Decoder Parallelism and Task Allocation 

It was shown in Chapter Two that previous works achieved practical 

implementation of Turbo Code especially the decoder through the design of 

highly parallel system and simplification of the algorithm. A previous work (Li, 

Maunder, Al-Hashimi, & Hanzo, 2013) particularly highlighted two interesting 

parallelism schemes for an Application Specific Integrated Circuit (ASIC)-

based Turbo decoder hardware. Both schemes decompose the Bahl-Cocke-

Jeinek-Raviv (BCJR) algorithm into several operations to be performed in 

parallel. The first scheme parallelized the algorithm based on the type of 

operation, i.e. metrics corresponding to a specific state and timestamp 𝑘 are 

computed in parallel. Meanwhile, the second scheme employs a data-centric 

parallelization where only one type of operation is performed at a time for 
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multiple data, i.e. forward state metric for one timestamp 𝑘 is performed for 

multiple states. For example, referring to the decoder trellis diagram in Figure 

3.8 and assuming the decoding for data at timestamp 𝑘 = 2, the first scheme 

may compute several metrics (branch, forward state, or reverse state) 

corresponding to a single state in parallel at once, while the second scheme 

computes one metric (branch metric for example) for four states at once. 

Figure 4.2 depicts the first parallelization scheme’s decoder architecture 

and the operation timeline. There are three separated processing lines, one for 

forward state metric computation of the current window, one for backward state 

metric computation of the next window, and the last one for backward state 

metric along with likelihood ratio (LLR) of the current window. The term 

‘recursion’ is often used to indicate the metrics recursive computation. The pre-

backward state metric is computed to assist with the initialization of the current 

window’s backward metric. It has the exact same function as the guard window 

in the sliding window algorithm - that is to bring up extra information from the 

next window to the current window, hence lowering the error rate. By using this 

decoder, three windows can be processed at once in a pipelined fashion 

assuming there are sufficient data arriving at the receiver. The pipelined process 

starts from the pre-backward recursion, followed by the forward recursion, then 

the backward recursion, and ends by computing the likelihood ratio.  It is shown 

in Figure 4.2 that at most three windows can be process in parallel by the three 

recursions, except for the first timestamp where the backward recursion is not 

performed since the preceding recursions for the first window is yet to finish. 
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Figure 4.2 Task-centric BCJR Parallelization (Li, Maunder, Al-Hashimi, 

& Hanzo, 2013) 

 While the first scheme improves the decoding throughput by processing 

multiple windows at once, it is evident that such architecture imposes a lot of 

(a) Hardware Structure 

(b) Window-based parallelization 
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hardware redundancy. There is a dedicated branch metric 𝛾 computation unit 

for each recursion line, and similarly for the pre-backward and backward 

recursion line with their dedicated backward state 𝛽 computation unit. This 

leads to the need for more hardware resources due to the multiple instances of 

the same unit, which ultimately increases the power consumption. 

Furthermore, it is evident from Figure 4.2 that each processing line does 

not possess the same number of computation units. While this number does not 

directly reflect the computational load of each processing line, from the BCJR 

algorithm breakdown discussed in Chapter Three it is obvious that the backward 

recursion line requires the longest time to complete. Although the three 

processing lines can carry parallel computation, still outputs of each line must 

be chained serially to ultimately produce the likelihood ratio. This means that 

the forward and pre-backward recursion lines must wait for the backward 

recursion line to finish before moving on to the next window. Provided that such 

decoder can be clocked at a high enough frequency, the waiting interval might 

be negligible. However, that is not good for power consumption. The faster 

processing lines stay idle waiting for the longer process to finish while still 

consuming power. An intelligent power management controller may be 

employed but it imposes additional complexity which may reduce the decoding 

throughput. 
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Figure 4.3 Data-centric BCJR Parallelization (Li, Maunder, Al-Hashimi, 

& Hanzo, 2013) 

Li et al. (2013) proposes a solution by introducing the second parallelism 

scheme, which was briefly explained earlier as a data-centric parallelization. It 

tackles both the duplicate units and uneven processing time problems by 

employing a group of 𝑚 identical Add-Compare-Select (ACS) units where 𝑚 

is the number of the encoder states, as shown in Figure 4.3. It was discussed that 

the BCJR algorithm can be represented by three metrics and likelihood ratio 

computations, which is performed for every bit received, and for every encoder 

trellis state and transition associated with the bit. This second scheme 

decomposes each of those computations further into sequence of simple 

operations that can be performed by a single ACS unit. The group of these units 

thus would be able to perform the same type of computation over 𝑚 number of 



75 

 

states or transitions. Since every BCJR computation can be performed with the 

same unit, the second scheme does not require duplicate computation units as 

in the first scheme which increases area and power consumption. By performing 

only one type of operation at one time over multiple identical units, the 

execution time of each unit will be similar with slight deviation due to the 

electrical properties, which is negligible. Hence, there is no time wasted on 

waiting on other processing lines to finish. 

Although the two schemes discussed were hardware-based 

implementation of Turbo Code, the parallelism concept can be adopted into 

software-based implementation. While the original paper (Li, Maunder, Al-

Hashimi, & Hanzo, 2013) clearly favors the second scheme due to better power 

usage, its adoption into software must be reevaluated properly. The second 

parallelism scheme stresses on the use of multiple identical units whose number 

scales accordingly to the number of encoder states. This kind of implementation 

may pose a problem to software-based Turbo Code. Software-based 

implementation typically employs ready-to-use Multi-Processor System-on-

Chip (MPSoC) whose number of processing elements is fixed and may not 

match the number of encoder states. Additionally, the MPSoC may employ 

heterogeneous architecture where each processing elements are different in 

terms of resources and processing speed. In such a system, the first parallelism 

scheme is more suitable. However, there are also homogeneous MPSoC systems 

that employ a large number of uniform processing units which is fit for the 

second scheme. Hence, both parallelism scheme may find their own adoption in 

a software-based Turbo Code system depending on the MPSoC being used.  
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In terms of computing resources, the RUMPS401 can be considered as 

a heterogeneous system due to the different hardware accelerator possessed by 

each core. The DSP Core clearly excels in complex mathematical computations 

due to its Multiply-Accumulate (MAC) hardware. Moreover, this work 

implements the UMTS Turbo Code standard whose number of states is eight, 

while the RUMPS401 has only four cores. This obviously limits the adoption 

of the data-centric parallelization scheme. Hence, the first scheme which is an 

operation-centric parallelization is adopted in this work. The Turbo Code 

implementation thus revolves on the proper task breakdown, simplification, and 

assignment to each of the RUMPS401 cores.  

 

Figure 4.4 The RUMPS401 Encoder Implementation 

 Figure 4.4 depicts the Turbo encoder software implementation on the 

RUMPS401, which is entirely deployed in the IO Control Core. As discussed 

in the previous chapter, the Turbo encoder consists of two identical 

convolutional encoders whose operation can be represented by the trellis 

diagram. The encoder thus can be implemented by a simple lookup table 

consisting of every combination of current encoder state and input bit, along 

with the corresponding output and state transition. During the encoding process, 
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the software can simply use the table to produce the output codeword and track 

the state transition. 

 

Figure 4.5 The RUMPS401 Decoder Implementation 

Since the two convolutional encoders are parallel and operates 

independently, they can be implemented either in one or two cores. A single 

(a) BCJR Decoder Implementation 

(b) Complete Turbo Decoder Implementation 
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core implementation is chosen based on two reasons. First, the dual core 

implementation requires additional time for exchanging the data frame and the 

resulting codeword via the NoC, while on single core implementation those data 

are retained in a local memory and can be accessed rapidly. Encoding is a very 

simple lookup function that can be performed quickly, thus the overhead 

introduced by NoC access may negate the improvement made by the parallel 

encoding. 

Similarly, the DRP interleaving function is also a simple operation 

whose parallel deployment will not provide significant improvement. Secondly, 

the Turbo Code complexity lies on its decoding process which as discussed in 

previous chapters, is the target of the optimization process for practical 

implementation. The IO Control Core first operates as the first convolutional 

encoder with the original data frame, save the output codeword, then operates 

as the second encoder with the interleaved data frame and again save the 

resulting codeword. Codeword from both encoders are then arranged into the 

final Turbo encoder’s codeword in a similar manner to the Matlab model shown 

in Figure 3.14. 
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Figure 4.6 Sliding Window-based Parallelism 

Since the Turbo decoder consists of two identical decoders that are 

serially chained, it can be implemented with only one actual BCJR decoder 

along with a control system for managing data interleaving and transfer between 

the two decoders. As shown in Figure 4.5, the BCJR decoder software is 

implemented in all of the RUMPS401 cores. The BCJR decoding is divided into 

four tasks, that is the three metrics and the likelihood ratio computations. Along 

(a) General Sliding-Window Parallelization Idea 

(b) The RUMPS401 Sliding-Window Parallelization 
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with the control system, these four computations are distributed into the four 

cores which then perform the tasks in parallel. The IO Control Core stores the 

received frame, splits it into smaller windows, and send them to the DSP Core. 

It also keeps track on the number of iterative loops performed along with the 

likelihood ratio computed by each decoder. The DSP Core then cooperates with 

the Normal Cores to perform the BCJR decoding algorithm and returns the 

results back to the IO Control Core. The branch metric and likelihood ratio 

calculation are performed by the DSP Core, while the forward and reverse state 

metrics are calculated by the Normal Cores. All data transfers among cores are 

performed via the NoC. Note that the task distribution shown in Figure 4.5 is at 

the initial stage, and is refined through a detailed optimization process covered 

in the following sub-chapter. 

Figure 4.6a illustrates the idea of parallelism for these computations. 

The windowed data are fed into a pipeline. Its ordered computation stages are 

the branch metric, the forward and reverse state metric, and the likelihood ratio. 

The actual implementation of the sliding window-based parallelism on the 

RUMPS401 is depicted in Figure 4.6b. Each group of rows labelled with the 

RUMPS401 core names represents tasks performed by that specific core, whilst 

each column represents the timestamp. Notice that in the actual implementation 

there are only two windows being processed in parallel, while the original idea 

could process three windows at a time. This is evident in Figure 4.6b where the 

third window data bits are not sent to the DSP Core before it returns the 

likelihood ratio values. Similar thing happens with the other windows, such as 

the fourth window which is not sent until the second window is fully decoded. 
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This limitation is imposed by the RUMPS401 memory resources which shall be 

discussed in detail in the next section. 

4.1.3 Decoder Memory Usage 

Regardless of the target hardware, PC, mobile phones, or embedded 

controller, any proper software development would carefully consider the 

software performance and the resources it takes up. Every real system has 

limited amount of memory, and the software should be developed with this in 

mind. This is especially the case for low power MPSoC such as the RUMPS401 

where the Random-Access Memory (RAM) is integrated and very limited in 

size. As described in Chapter two, the RUMPS401 has four cores with their own 

set of Static RAM (SRAM) and Flash memory, sized at 8KB and 32KB 

respectively. The Flash memory stores the software binary and necessary large-

sized lookup tables, while the SRAM stores the software variables.  

The Turbo Code being implemented in this work employs two identical 

convolutional encoders each with three memory elements, which means that it 

has eight states. The Turbo encoder’s total rate is 1/3, encoding the original 

frame of 256 bits into codeword of 768 bits. Sliding window BCJR decoder is 

employed with a window size of 32 bits and no guard window, and processes at 

most two windows in parallel. Based on these configurations and tasks 

distribution in Figure 4.5, the numbers of variables required by the BCJR 

decoder are listed in Table 4.1.  
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Table 4.1 RUMPS401 BCJR Decoder Variables List 

 

For the decoder functionality, the IO Control Core must allocate two 

one-dimensional arrays for the received codeword and the likelihood ratio 

values from each decoding iteration. It separates and deinterleave the received 

codeword of rate 1/3 into two codewords of rate 1/2 for the two BCJR decoders. 

The properly sequenced data then is split per window size and passed on to the 

DSP Core, which computes the branch metric. Note that there are redundancies 

in the arrays of metric spanned across the DSP and Normal Cores. The Normal 

Cores require the branch metric for state metrics calculation, while the DSP 

Core requires the state metrics for likelihood ratio computation. Each core 

receives the necessary metrics from the other cores and keeps those as a local 

copy in their own SRAM. This method allows faster decoding speed since 

accessing local SRAM is much faster compared to querying through NoC, at 

the expense of more memory resources. However, this redundancy does not 

apply to the received codeword. The DSP Cores does not keep a local copy of 

the windowed codeword, since it is only needed for branch metric computation. 
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The whole decoding process on the RUMPS401 is performed using 

fixed-point arithmetic with S16.15 number format - a 32-bit signed fixed-point 

data type, 16 integer bits and 15 fractional bits. It supports an integer value from 

-65536 to +65536 and decimal precision of 3 × 10−5. This fixed-point data type 

is defined as part of an extension added to the GNU Compiler Collection (GCC) 

for supporting fixed-point operation on embedded software. The documentation 

for this fixed-point extension is described in the International Organization for 

Standardization (ISO) document with reference number ISO/IEC TR 18037 

(Standardization, 2006). 

 

Figure 4.7 Fixed-point Multiplication 

The extension is ready-to-use, providing necessary functionalities of 

fixed-point data type such as floating-point to fixed-point conversion, addition, 

multiplication, division. These functionalities are utilized by the decoder 

software, except for the multiplication. Since the software intends to maximize 

the use of the RUMPS401 hardware accelerator, the fixed-point multiplication 

function is implemented using the single cycle multiplication of the MAC 

hardware. The addition does not require hardware acceleration, and there is no 

hardware accelerator for division in the RUMPS401. Figure 4.7 shows the 

multiplication function’s pseudocode. It treats the 32-bit signed fixed-point 

operands as 32-bit integers and performs integer multiplication using the MAC 

hardware. Bit-shifting is applied to the multiplication result to adjust its decimal 

point, which then is treated as a signed fixed-point data type again. 
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Table 4.2 RUMPS401 BCJR Decoder Memory Requirement 

 

Since the whole decoding operation is performed with 32-bits data type, 

the Table 4.1 can be amended with the exact value of required memory in bytes, 

shown in Table 4.2. It is evident that the BCJR algorithm consumes relatively 

huge amount of memory considering that the RUMPS401 only has 8KB of 

SRAM per core. The IO Control Core has half of its SRAM consumed for 

storing the received codeword and decoding result, while the DSP Core has 6KB 

consumed for parallel processing of only two windows. Note that while the DSP 

Core stores branch metrics of two windows, it only stores state metrics for one 

window. Once the DSP Core receives the state metrics, it sends the next 

window’s branch metrics to the Normal Cores then computes the likelihood 

ratio immediately. Therefore, the current window’s state metrics are only 

necessary until the likelihood ratio computation is finished. 

Should the software arrange parallel computation of three windows, for 

the branch metric alone the DSP Core requires extra 1 × 16 × 32 variables for 
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the additional window, which is an extra 2048 bytes of memory. This added to 

the 6KB usage would lead to memory overflow in the DSP Core, rendering the 

software unable to run. A possible alternative is storing these variables in the 

flash memory, but this would slow down the overall processing speed due to the 

much slower access to flash memory. 

The same applies to the alternative of storing some of the DSP Core 

arrays in the Normal Cores SRAMs, due to the additional overhead for 

accessing the NoC coupled with the control complexity of managing separated 

variables database. Moreover, the variables retrieval process limits the 

parallelism, i.e. DSP Core will not be able to compute before the Normal Cores 

send the required variables. The Normal Cores may be performing other 

computation. Hence, the decoder can only process two windows in parallel 

while still leaving memory space for another essential part of the complete 

wireless system, the coherent-BPSK demodulation. 

4.2 Turbo Decoder Software Optimization for the RUMPS401 

Based on the initial structure described in Figure 4.5, the decoder 

software is speed-optimized by analyzing each of its essential tasks execution 

time. A Register-Transfer-Level (RTL) model of the RUMPS401 (Hartono, 

2014; Lim, 2015) runs the decoder software in a cycle-accurate simulation, 

allowing detailed logging of each tasks execution time. As discussed in previous 

chapters, improvements are made by adhering to the idea of parallel processing 

and simplification of the tasks. The parallel processing stresses on distributing 

the tasks evenly among the cores, i.e. if a certain core is assigned with a task 
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that takes long time to complete, the task should be split and distributed among 

the cores. Simplification takes place on tasks with complex mathematical 

operation which is either not supported by the RUMPS401 or inefficient when 

performed on the RUMPS401.  

The tasks being observed are the computation of the branch metric, the 

forward state metric, the reverse state metric, and the likelihood ratio. The NoC 

transfer of branch and state metrics are also analyzed, while the transfer of the 

likelihood ratio values is not analyzed as its volume is insignificant compared 

to the three metrics. Recall from the BCJR decoder trellis diagram in Figure 3.8, 

for a single timestamp 𝑘 there are 2𝑛 branch metrics, 𝑛 forward state metrics, 

and 𝑛 reverse state metrics, where 𝑛 is the number of states. In comparison, 

there is only one likelihood ratio for a single timestamp. Being specific to the 

code structure used in this work, there are only 256 NoC transfers of the 

likelihood ratio values for a single frame, compared to 256 forward state metric 

transfers for a single window, or 512 transfers of the branch metric.  

Figure 4.8 illustrates the initial task distribution of BCJR decoding and 

communication among the RUMPS401 cores. For convenience sake, changes 

made to the software during the optimization are tracked and referred by a 

version number in the format of 1.X. The first working software is versioned as 

1.0, any significant change to the software is marked as version 1.1, 1.2, and so 

on. Since the Turbo decoder software development and optimization process is 

performed on data sets without noise, the noise variance estimation is not 

performed either. Instead, the BCJR decoding is performed with noise variance 

value set to 𝑁𝑜 = 1. Recall from the BCJR algorithm equations in Chapter 
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Three, the noise variance value is necessary to the branch metric and likelihood 

ratio computations thus cannot be omitted. The noise variance estimation is 

implemented during the integration with the coherent-BPSK demodulation 

which works on real signals and shall be covered in Chapter Five. 

 

Figure 4.8 Decoder Software 1.0's Structure 

This initial software structure in software version 1.0 is similar to the 

general idea shown in Figure 4.5. The IO Control Core performs demultiplexing 

to divide the incoming codeword of rate 1/3 into two codewords of rate 1/2 for 

each decoder, and tracks the number of decoding result. Since the branch metric 

and likelihood ratio computations include multiplications, they are loaded to the 

DSP Core. The forward and backward state metrics are computed by the two 

Normal Cores. The metrics and likelihood ratio computations implemented in 

the RUMPS401 are based on the Max-Log-BCJR algorithm formula presented 

in equations (3.2a) to (3.2d). Every communication in and out of the 

RUMPS401 is performed by the IO Control Core.  
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Presented in Figure 4.9 is the detailed graph of the tasks execution time 

in software version 1.0 in comparison to version 1.1. The execution time is 

measured in milliseconds, and represents the time taken by the respective core 

to perform certain task per timestamp 𝑘. Task calc_d represents the sixteen 

branch metric calculations, two for each of the eight decoder states. Task 

calc_a represents the eight forward state metric calculations, one for each of 

the eight decoder states. Task calc_b is similar to task calc_a except that it 

performs the reverse state metric calculations. Task calc_llr represents the 

likelihood ratio calculation for a single timestamp. Task trans_a, trans_b, and 

trans_d each represents the NoC transfer of forward state, reverse state, and 

branch metrics, respectively. Consequent task load figures are presented in the 

same way. 

 

Figure 4.9 Task Load - Software Version 1.0 
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Analyzing the tasks load graph of software version 1.0, it is 

straightforward that the NoC transfers of each metric only consumes tiny 

portion of time compared to the calculation part. Execution time of the NoC 

transfer tasks are consistent, shown by the sixteen transfers of branch metric 

taking twice as long as the eight transfers of forward state metric or reverse state 

metric. It is evident that the computations of the branch metric and the 

likelihood ratio are much slower compared to the forward and reverse state 

metrics computations. Each of the state metrics takes around 0.24ms to finish, 

while the branch metric and likelihood ratio computation finishes in around 

2.42ms and 1.78ms, respectively. That is tenfold and sevenfold of the state 

metrics computation time. Coupled with the fact that both computations are 

performed by the DSP Core, it can be directly inferred that a performance 

bottleneck happens in the DSP Core. The total time taken by the Turbo decoder 

to process one frame for one iteration on this version is 1.88 seconds. 

It was discussed in previous sections that the branch metric and 

likelihood ratio calculation tasks are loaded to the DSP Core due to both tasks 

involving multiplications. The ARM Cortex-M0 processor used in the 

RUMPS401 cores possesses hardware multiplier which only able to perform 

multiplication over 32 cycles, and this is mitigated by utilizing the single-cycle 

MAC hardware in the DSP Core. However, both the branch metric and 

likelihood ratio calculations also involve division operation, which is not 

supported by either the ARM Cortex-M0 native hardware or the RUMPS401 

hardware accelerator. Moreover, the branch metric calculation also involves 

logarithm operations which has no hardware support. The lack of hardware 
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implementation for these time-critical functions forces implementation via 

software, which naturally is not as efficient as specialized hardware block. 

Mitigations for the division and logarithm operations are discussed separately, 

started by the division. 

The division operation is implemented by using the standard routine 

provided by the ARM C and C++ Libraries (ARM, GNU ARM Embedded 

Toolchain, n.d.), whose execution cycle count depends on the input values and 

the division quotient. The longer the quotient, the longer it takes to finish a 

single division routine. For example, a division with 32-bit quotient might get 

as long as 96 cycles to complete, while a lower 4-bit quotient may require only 

12 cycles to complete. However, considering the computation of the 32-bit 

fixed-point number in the BCJR algorithm, the quotient will tend to have more 

bits to preserve its accuracy, hence yielding more cycle count. 

Mathematically, a division can be performed as a multiplication by 

simply taking the reciprocal of the divider as the multiplier, i.e. 
𝑎

5
 is computed 

as 𝑎 × 0.2. On most embedded processor, multiplication is usually faster than 

division, and especially so for the RUMPS401 due to the single-cycle 

multiplication by the MAC hardware. Depending on the scenario, this property 

can either reduces the number of division or actually making it worse. Assume 

a case where there are 𝑛 number of divisions required. If every division is 

divided by a single constant, the constant’s reciprocal can be precomputed and 

hardcoded into the software as a multiplication by another constant. This 

scenario is the most efficient since there is no division performed at all. 
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Similarly, if all the divisions are divided by a number which is variable but holds 

its value through all the divisions, the number’s reciprocal can be calculated 

with a single division operation while the rest of the 𝑛 divisions are replaced by 

multiplications. Should the variable only hold its value for 𝑛/2 number of 

divisions, while on the other half the variable holds different value, there are 

two divisions required in addition to the 𝑛 multiplications. When the variable 

values are random over 𝑛 numbers of division, there is no point in applying the 

reciprocal property since it would need 𝑛 reciprocals and 𝑛 multiplication, 

which is even worse than directly performing the 𝑛 divisions. 

The Turbo decoder software version 1.1 applies the simple mathematical 

property above to its branch metric and likelihood ratio calculation. It can be 

observed from the Max-Log-BCJR equations (3.2a) and (3.2e) that both 

calculations involved a division by the noise variance value. Due to the 

RUMPS401 low processing speed, the incoming frame must be completely 

received and stored before further processing. While this may seem like a 

disadvantage, the store-then-process mechanism offers a benefit that the 

division reciprocal property can be utilized. 
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Figure 4.10 Decoder Software 1.1’s Structure 

The noise variance value is indispensable from the BCJR algorithm 

calculation and is obtained by finding variance of the incoming data in a frame. 

Should the software implementation choose to perform BCJR decoding while 

receiving data of a frame, the noise variance value would have variable values 

across the frame because the variance estimations are performed over different 

data sets. Thus, the branch metric computations at different timestamps are 

divided by different noise variance value. Assuming that the varying noise 

variance values still deviates in an acceptable margin without causing any loss 

in calculation accuracy, it still results in varying divider values which reduces 

the effectiveness of the division reciprocal property. 
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Figure 4.11 Task Load - Software Version 1.1 

Hence, the RUMPS401 can utilize the store-then-process mechanism by 

estimating the noise variance over the whole received frame for just one time, 

then computes and stores the reciprocal of the noise variance. Later during the 

whole BCJR decoding process, every division by the noise variance is replaced 

by a single-cycle multiplication performed by the MAC hardware. This new 

task assignment is shown in Figure 4.10. Improvement made by applying this 

simple property is observable through the tasks execution time of software 

version 1.1 in Figure 4.11. The branch metric computation improves by twenty 

percent from 2.42ms to 1.92ms, while the likelihood ratio computation went 

twenty-eight percent faster from 1.78ms to 1.28ms. In total, the software version 

1.1 cuts down 0.29 seconds from version 1.0, finishing the single iteration Turbo 

decoding in 1.59 seconds.  
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Despite the twenty and twenty-eight percent faster computations of the 

branch metric and likelihood ratio on software version 1.1, both computations 

are still significantly slower compared to the state metrics computation. It can 

be naturally inferred through equations (3.2b) and (3.2c) that state metrics fast 

computation stems from the absence of any complex operation beside addition 

and comparison. As discussed in the beginning of this chapter, the optimization 

focuses on balancing the task load assigned to each core. Further optimization 

on the branch metric and likelihood ratio computation hence is required.  

As mentioned above, the branch metric calculation still involves 

logarithm function which must be implemented via software on the 

RUMPS401. On the other hand, the likelihood ratio still involves division by 

arbitrary number which is performed on the likelihood values sent to the other 

decoder. The likelihood ratio calculation resulted in a value 𝜋𝑘 which is a ratio 

between the probability of the bit being 1 or 0. For this value to be utilized by 

the other decoder as a priori probability value, it must be split into two 

probability values instead of a ratio, that is the probability of the bit being 1, 𝜋𝑘
1, 

and probability of being 0, 𝜋𝑘
0. The conversion can be performed by equation 

(4.1), where the division by arbitrary number takes place.  

𝜋𝑘
1 =

𝜋𝑘

1+𝜋𝑘
;    𝜋𝑘

0 = 1 − 𝜋𝑘
1

   (4.1) 

 The logarithm function is approximated by an algorithm which only 

involves addition, bit shift, and lookup table (Owen).  The key to this algorithm 

is the multiplication of ‘good’ numbers which are power of two such as 4, 16, 
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256, 3/2, 5/4. Any arbitrary number can be multiplied by these ‘good’ numbers 

via simple bit shifting operation, i.e. (a<<2) multiplies a by 2, while a+(a>>1) 

multiplies a by 3/2. Before finding the logarithm of an arbitrary number, the 

algorithm first prepares a precomputed lookup table which consists of pairs of 

a ‘good’ number and its logarithm value, as shown in Figure 4.12. The algorithm 

then prepares two variables, say x and y, initialized with the arbitrary number 

value and zero, respectively. There are only two operations performed in the 

algorithm. The first operation multiplies x by any number k, while the second 

operation substract log(k)from y. These two operations are performed 

repetitively to get x value as close as possible to 1. The pair of k and log(k)can 

be obtained from the precomputed lookup table prepared earlier. Since the 

lookup table consists of only ‘good’ numbers, the multiplication can be replaced 

with bit shift operation. 

k log(k) 

16 2.7726 

4 1.3863 

2 0.6931 

3/2 0.4055 

5/4 0.2231 

 

Figure 4.12 Logarithm Approximation Table 

Since the logarithm approximation function does not contain any 

multiplication and division, it can be executed by other cores without any 

performance different compared to execution by the DSP Core. In software 

version 1.2 whose structure is shown in Figure 4.13, the logarithm computation 

is loaded into the IO Control Core. Referring to the branch metric computation 
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in equation (3.2a), the logarithm computation is performed on the a priori 

probabilities of the bit. These probabilities values are the likelihood result 

output by the other decoder, which is stored and indexed by the IO Control Core. 

Hence, it is best to let the IO Control Core computes the logarithm and send it 

to the DSP Core, along with the received data. Assigning the logarithm 

computation to the Normal Cores would be inefficient since the a priori 

probabilities must be sent to the Normal Cores first, introducing additional 

overhead by the NoC access and control complexity. Moreover, in both software 

version 1.0 and 1.1, after sending over received data to the DSP Core, the IO 

Control Core idles while waiting for the likelihood ratio value. This idle time 

can be utilized by computing the logarithm. 

Figure 4.14 shows the tasks execution time of software version 1.2. It is 

evident that the logarithm function consumes a lot of time compared to the rest 

of branch metrics computation. The logarithm function itself consumes 

1.51277ms to perform and cannot be split due to the repetitive and continuous 

process. Software version 1.2 improves the total decoding time significantly, by 

being able to decode a full frame in just 0.88 seconds, almost twice as fast as 

software version 1.1. 
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Figure 4.13 Decoder Software 1.2's Structure 

 

Figure 4.14 Task Load - Software Version 1.2 

It was shown by the software version 1.2 that the basic idea of simple 

task splitting and distribution leads to a significant improvement to the total 

decoding speed. The same concept is applied to the division by arbitrary number 
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in the likelihood ratio conversion performed by the DSP Core. This change is 

applied in software version 1.3 whose structure shown in Figure 4.15, where the 

likelihood ratio conversion process is split from the likelihood ratio calculation 

and assigned to one of the Normal Cores. Earlier in software version 1.0 through 

1.2, the decoding flow starts by the IO Control Core sending the received data 

and the corresponding a priori probabilities to the DSP Core. Branch metrics are 

computed and sent by the DSP Core to both Normal Cores, which then compute 

the state metrics and send the results back to the DSP Core. The decoding flow 

ends by the DSP Core computing and returning the likelihood ratio to the IO 

Control Core. 

 

Figure 4.15 Decoder Software 1.3's Structure 

In software version 1.3, there are changes involving the main tasks 

distribution among the cores and its data flow. The IO Control Core’s and the 

DSP Core’s tasks are not changed except that the DSP Core does not perform 

the likelihood ratio conversion. That task instead is assigned to the Normal Core 
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1. Both forward and reverse state metrics are now computed by the Normal Core 

0 since they are simple and is still fast enough to be computed in serial. The 

decoding flow still starts with the IO Control Core sending the received data 

and the a priori probabilities to the DSP Core, which then computes and sends 

the branch metric to Normal Core 0. The Normal Core 0 computes both state 

metrics and send them back to the DSP Core, which then calculates the 

likelihood ratio. The Normal Core 1 receives the likelihood ratio from the DSP 

Core, converts the value, and ends the decoding process by sending the results 

to the IO Control Core. 

 

Figure 4.16 Task Load - Software Version 1.3 

 Figure 4.16 shows the tasks execution time of software version 1.3. The 

task calc_llr is split into two parts, the first part denoted llr_r is the 

likelihood ratio computation task, and the second part which solely perform the 

conversion from ratio to probability value denoted as task llr_p. It is evident 
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that the likelihood ratio conversion task llr_p imposes longer execution time of 

0.84 seconds than the actual likelihood ratio computation which takes 0.41 

seconds to perform. Software version 1.3 improves the total decoding time by 

0.15 seconds, completing the decoding of single frame in 0.73 seconds.  

It was clear from previous task load graphs that complex mathematical 

operations such as logarithm and division are relatively expensive to perform 

on such low power processor without specialized hardware accelerators. 

Approximation and simplification are applicable to these operations, but only 

to a certain degree, especially on software implementation. Similarly, reducing 

the number of those operations are possible only to a certain extent, as shown 

in the replacement of division operation by multiplication which is only 

effective if the dividers are the same. An alternative is to process those multiple 

operations in parallel. 

 

Figure 4.17 Decoder Software 1.4's Structure 
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Software version 1.4 is built based on the idea of distributing multiple 

complex operations to multiple cores for parallel processing. As shown by the 

software structure in Figure 4.17, the main tasks distribution is similar to version 

1.2. The IO Control Core manages the data sequence and decoding iteration, 

along with the logarithm calculation to relief the calculation burden from the 

DSP Core. It also performs one divide operation to find the noise variance 

reciprocal. The DSP Core calculates the branch metric and likelihood ratio, 

while both Normal Cores calculate the forward and reverse state metrics. In this 

version, instead of dedicating one core solely for converting the likelihood ratio, 

the task is evenly distributed to each core. 

The decoding flow in software version 1.4 is a mix between version 1.2 

and 1.3. Decoding starts from the IO Control Core that sends out received data 

and a priori probability to the DSP Core, which then computes and sends the 

branch metric to the Normal Cores. Both Normal Cores compute the forward 

and reverse state metric and return the result to the DSP Core. The DSP Core 

computes the likelihood ratio, and evenly sends out the result to other cores and 

itself for the value conversion. Since the frame size is fixed at 256 bits, for a 

single BCJR decoding, in software version 1.4 each core only needs to perform 

sixty-four conversions, while in software version 1.3 all 256 conversions are 

performed by only one core. 
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Figure 4.18 Task Load - Software Version 1.4 

Software version 1.4 completes a full frame decoding in 0.98 seconds, 

which is 0.25 seconds slower than previous version. The individual tasks 

execution time of software version 1.4 is shown in Figure 4.18, which shows 

almost no difference compared to version 1.3. Since software version 1.4 only 

distributes the multiple tasks into each core without changing how the individual 

tasks are performed, it is straightforward that the execution time of each task 

will not be affected. However, the transfers of each metric are noticeably slower 

than previous versions, which is caused by the additional complexity of message 

passing among the cores. 

Referring to the message passing of software version 1.0 in Figure 4.8, 

there is only one type of message sent from one core to another core. Data flow 

originating from the IO Control Core to the DSP Core only consists of the 



103 

 

received data, while the reverse flow only consists of the likelihood ratio. 

Similarly, the DSP Core sends only the branch metric to the Normal Cores, each 

then replies with either forward or reverse state metric. Similar message passing 

behavior can also be observed from software version 1.1 to 1.3, while in version 

1.4 there are some communication links that consists of more than one type of 

message. For example, the DSP Core sends the IO Control Core both the 

likelihood ratio that has and has not been converted into its probability values. 

The DSP Core is also required to send the likelihood ratio to the Normal Cores 

in addition to the branch metric. 

In software version 1.0 through 1.3, the message can be sent in a batch 

since each core knows what type of data to receive from another core, while 

software version 1.4 requires each message to be encapsulated with a packet 

identifier. Consider a situation where the IO Control Core receives data from 

the DSP Core. Without a packet identifier, the IO Control Core would not be 

able to differentiate whether the data is the likelihood ratio that has or has not 

been converted, hence disrupting its operation. Consider another situation of 

multiple windows processing. The first window is still being decoded and has 

reached the likelihood ratio calculation and conversion value, and at the same 

time the DSP Core has computed the second window’s branch metric and need 

to send them to the Normal Cores for state metrics computation. The Normal 

Cores would need a packet identifier to differentiate whether the data being 

received from the DSP Core is the likelihood value or the branch metric. 

The need for packet header thus introduces additional data overhead and 

additional control complexity for the message identifying process. In the 
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RUMPS401, every core has separated NoC buffers for receiving packet from 

other cores, whose size is limited to 8 packets, i.e. the IO Control Core has three 

separated NoC receive buffers for receiving packets from the DSP Core and the 

Normal Corers, and so does the others. In every software version built during 

this optimization process, acknowledgement scheme is implemented to avoid 

receive buffer overflow. A maximum of eight packets can be sent to a certain 

core before waiting for acknowledgement. 

Recall that branch metric and state metric for a single timestamp consists 

of sixteen and eight values, respectively. In software versions 1.0 to 1.3 the 

branch metric can be simply split into two batches of transfers, while each state 

metric only requires one batch of transfer. Each batch consists of eight values 

of the corresponding metric. In software version 1.4, the branch metric must be 

split into four batches of transfer, each consisting of a packet identifier and four 

branch metric values. Similarly, the state metric must be split into two batches 

of transfer of the same size. Compared to previous versions, for the same 

number of values being sent, software version 1.4 requires four and two extra 

packets for the branch metric and each state metric, respectively. That is twenty-

five percent data overhead which is quite significant.  

Despite the arbitrary division being performed in parallel by all cores, 

its improvement is offset by the complex message passing scheme. In software 

version 1.0 and 1.3, since every core is assigned with a specific task, the metrics 

or data required by a certain core for computation can be sent by other cores 

consecutively, i.e. the DSP Core sends sixteen branch metric values in two 

consecutive batches with only a single wait for the acknowledgement in 
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between. On the other hand, in software version 1.4 these batches are not sent 

consecutively which would cause performance drop. Consider a case where the 

DSP Core sends out a part of branch metric for the second window, while the 

likelihood ratio conversion of the first window is still being performed by the 

Normal Cores. Since the scheduler in each core performs the tasks in round-

robin fashion, the transfer of branch metric values would be held up by the 

likelihood ratio conversion, thus the second window cannot be decoded in 

parallel. More complex scheduler may solve the problem but would again 

impose additional logic complexity.  

4.3 Summary 

The Turbo Code implementation on the RUMPS401 was discussed in 

great details, with focus on the decoder counterpart. It was shown during 

the optimization process that the basic concept of proper task distribution 

and simplification has significantly increased the decoding performance.  

Table 4.3 summarizes the total time required by each software version 

to perform the Turbo decoding with single iteration on a single frame. The first 

software version completed the decoding in 1.88 seconds and was optimized 

down to 0.73 seconds decoding time on software version 1.3. Further attempt to 

distribute a single task to all cores in software version 1.4 resulted in a worse 

performance of 0.98 seconds compared to the version 1.3 due to the additional 

complexity of data transfer and identification. The comparison of each tasks 

execution time between software versions is summarized in Figure 4.19.  

 

Table 4.3 Full-frame Decoding Time for Each Software Version 
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During the software optimization process it was observed that, reducing 

or simplifying complex mathematical operations, together with the use of 

available hardware accelerator for some operations significantly improves the 

execution speed. It was also observed that in the RUMPS401, splitting a bigger 

task into smaller parallel tasks provides better improvement than distributing a 

same type of task across multiple cores. Splitting the algorithm from branch 

metric calculation and splitting likelihood ratio conversion from its computation 

improves the decoding speed. In contrary, distributing the same conversion task 

across all cores degrades the decoding speed. This confirms that task-centric 

parallelism scheme suits the RUMPS401 better than the data-centric parallelism 

scheme. This chapter thus concludes the adoption of software version 1.3 as the 

decoder implementation on the RUMPS401, together with the coherent-BPSK 

modulation scheme, the implementation of which is detailed in the next chapter. 

Pseudocode of Turbo decoder software version 1.3 for can be found in 

Appendix A. 
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Figure 4.19 Individual Task Load Comparison Between Versions 

  



 

 

CHAPTER 5 

SOFWARE-BASED IMPLEMENTATION OF COHERENT BPSK 

TRANSCEIVER ON THE RUMPS401   

From the study of digital modulation schemes in Chapter Three, 

coherent-BPSK is chosen as the digital modulation in this work, due to its 

simplicity and low error rate. As with the Turbo Code, both the BPSK modulator 

and coherent demodulator are implemented in the RUMPS401 in software. The 

implementation faces the same principal challenge as the Turbo Code, which is 

the low-power hardware architecture with no hardware support for fast and 

complex mathematical operations except multiplication. This chapter discusses 

the software implementation of the BPSK modulator and demodulator in the 

RUMPS401, divided into four parts.  

Paired together with the RUMPS401 is a programmable radio frontend 

from Lime Microsystem, the Lime LMS6002D (Microsystem, 2012) that is 

required for the actual wireless transmission and reception. The first section 

describes in detail the usage of the Lime LMS6002D for this work. The second 

section describes the BPSK modulator implementation, while the third section 

details the BPSK demodulator implementation. Lastly, the fourth section 

summarizes this chapter. 
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5.1 Programmable Radio Frontend Lime LMS6002D 

As described in the first chapter, the wireless system in this work 

consists of the one transmitter and one receiver, each composed of the 

RUMPS401 as the digital processor and the Lime LMS6002D as the radio front 

end. Both the RUMPS401 and the Lime LMS6002D are packed into their own 

development board, which shall be connected to form a complete wireless 

module. This subchapter breaks down the usage of the Lime LMS6002D in this 

work into three sections. Section one discusses the wireless system’s structure 

along with the functionalities partition between the RUMPS401 and the Lime 

LMS6002D. Section two presents the hardware and software setup for 

integrating the Lime LMS6002D and the RUMPS401. The third section 

represents how the RUMPS401 interfaces with the Lime LMS6002D for the 

data transmission and reception. This includes the details of both chips 

development boards and their hardware connection along with the signaling 

protocol.  

5.1.1 Complete Picture of the Wireless System 

Figure 5.1 depicts the wireless system functional diagram. The 

RUMPS401 works fully on digital baseband domain, while the Lime 

LMS6002D works in the analog domain. Conversion between digital and 

analog domain is also performed by the Lime LMS6002D. On the transmit side, 

the RUMPS401 processes the digital data received from application processor 

and feeds the processed data to the Lime LMS6002D, which converts the signal 
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to analog domain then mixes it with carrier signal before wirelessly transmitting 

it. 

The reverse happens on the receiving side where the Lime LMS6002D 

separates the information signal from the carrier, then feeds the received data to 

the RUMPS401 after converting the signal back to digital domain. The 

RUMPS401 processes the digital data prior to passing it to application 

processor. The application processor could be any digital processor that utilizes 

the wireless transmission service. In this work, the Central Processing Unit 

(CPU) of a laptop or personal computer is the application processor that 

communicates with the RUMPS401 via a Universal Asynchronous Receive 

Transmit (UART) interface. 

 

Figure 5.1 Complete Wireless System Diagram 

The application processor passes original data to the RUMPS401 for 

wireless transmission. Before the actual transmission process, every wireless 

standard encapsulates the data into a fix-sized frame consisting of the data and 

preambles. If the original data size is larger than the frame size, it is split into 

several smaller packets. On the other hand, the wireless standard pads extra bits 

to the original data if the size is smaller than the defined frame size. Both the 

splitting and padding process is straightforward and shall not be further 
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discussed. It is assumed that the application processor on the transmitting side 

generates a frame of exactly 256 bits to be sent over wirelessly, which is 

identical to the frame size derived through the Turbo Code simulation in 

Chapter Three. The RUMPS401 encodes the original data frame into a 

codeword of 768 bits with the procedure defined in Chapter Four. The 

RUMPS401 constructs a transmit frame by adding preambles to the codeword, 

then perform BPSK modulation and pulse shaping to produce the baseband 

signal, which shall be detailed in the next subchapter about the BPSK modulator 

implementation. The RUMPS401 then drives the baseband signal into the Lime 

LMS6002D for the wireless transmission.  

On the receiving end, the Lime LMS6002D receives the signal and 

passes the down-converted digital data to the RUMPS401. As in the transmit 

side, the received frame consists of a 768-bit codeword and preambles. The 

RUMPS401 then performs receiver synchronization by utilizing the preambles, 

to correct any timing or frequency offset experienced by the frame during the 

reception process. This synchronization is the most essential part of the 

coherent-BPSK demodulator and is detailed in the third subchapter. The Turbo 

decoder then takes the corrected data frame as an input, decodes and outputs a 

256-bit data frame to the application processor. 

5.1.2 Lime LMS6002D Implementation Setup 

As discussed in the previous section, the Lime LMS6002D performs two 

essential operations of a wireless transceiver. The first one is the conversion of 

signal between the analog and digital domain. The second one is the up/down-
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conversion of the analog signal along with the signal wireless transmission and 

reception. Figure 5.2 depicts the Lime LMS6002D block diagram. The chip has 

separated lanes for the transmit and receive path. Each path composed of four 

main components, the Analog-to-Digital Converter (ADC) / Digital-to-Analog 

Converter (DAC), the lowpass filter, the Phase-Locked-Loop (PLL) frequency 

synthesizer along with the signal mixer, and the Voltage Gain Amplifier (VGA) 

(Microsystem, 2012). These main components collectively provide the two 

wireless transceiver operations. 

 The 12-bit ADC/DAC performs signal conversion between the analog 

and digital domain, providing 4096 signal levels ranging from -2047 to +2048. 

Its sampling rate is based on the clock signal driven by the RUMPS401, which 

is detailed in the next section. The lowpass filter removes any out of band 

components from the analog baseband signal. The PLL frequency generator 

produces local carrier signal whose frequency ranges from 0.3 to 3.8GHz. On 

the transmitter side this generated carrier signal is mixed with the analog 

baseband signal for up-conversion, while on the receive side it is mixed with 

the received signal for down-conversion to baseband signal. Lastly, the VGA 

adjust the signal strength to a desired level.  

Combinations of every Lime LMS6002D component’s parameters 

define the functionality performed by the wireless transceiver. The Lime 

LMS6002D allows user to fully configure the parameters of these components 

by modifying the Lime LMS6002D internal registers values through the SPI 

interface, as shown on the bottom right part of the chip in Figure 5.2. These 

registers are volatile, thus must be reconfigured on every power cycle. The 
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configurable parameters include, but not limited to ADC/DAC sampling rate, 

lowpass filter bandwidth, carrier signal’s frequency, and VGA’s amplifying 

factor. SPI communication between the Lime LMS6002D and the RUMPS401 

is performed by the IO Control Core, based on the signaling rule defined in the 

Lime LMS6002D datasheet (Microsystem, 2012). 

 

Figure 5.2 Lime LMS6002D Functional Block Diagram (Microsystem, 

2012) 

Digital baseband data transfer into and out of the Lime LMS6002D is 

provided through the digital data interface shown on the left part of the chip in 

Figure 5.2. As in the analog signal path, the digital data interface also consists 

of two separated groups for transmit and receive. Each group composed of a 12-

bit data line and a control line. The data line is a 12-bit parallel bus carrying the 

multiplexed In-phase & Quadrature (IQ) data samples. The control line consists 
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of two signals, the IQ_SEL which controls the multiplexing of IQ components, 

and the CLK signal which dictates the ADC/DAC sampling speed. On transmit 

side the RUMPS401 writes into both the data line and the control line, while on 

receive side the RUMPS401 drives the CLK signal and reads from both the data 

line and the IQ_SEL signal. For both cases, the write and read operation must 

be done with proper signaling protocol and timing defined in the datasheet, 

which shall be detailed in the next section.  

Referring to Figure 5.2, shown on right side of the Lime LMS6002D are 

the Radio Frequency (RF) signal interfaces. There are two output lines and three 

input lines which are prepared for multi-band operation. Since this work 

operates on one frequency band, only one of each input and output line is used. 

The Lime LMS6002D also provides access to analog baseband signals via the 

TXINI, TXINQ, RXINI, and RXINQ interfaces. TXINI and TXINQ are the in-

phase and quadrature components of the transmit signal, respectively. These 

signals can either be driven by the DAC output or an external source. Similarly, 

RXINI and RXINQ are the in-phase and quadrature components of the receive 

signal, which are passed to the ADC. Like the transmit counterpart, these signals 

can either be driven by external source or the output of the down-conversion 

mixer. 

In this work, both transmit and receive signals must be processed 

digitally by a software running in the RUMPS401. The RUMPS401 drives 

digital signal into the DAC, producing the TXINI and TXINQ signals. On the 

receiving side, the RXINI and RXINQ signals are sourced from the mixer 

output, which are then converted into digital signal by the ADC for further 
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processing by the RUMPS401. The TXINI, TXINQ, RXINI, and RXINQ 

signals are not meddled by any external source. Instead, they are used during 

the development process for monitoring the transmit and receive signal in 

analog baseband region. 

The two PLL frequency generators allow the Lime LMS6002D to 

transmit and receive at different frequency. Both generators require a reference 

frequency as the PLLs input, supplied by external source through the PLLCLK 

interface. The reference frequency can be set to any value between 23MHz and 

41MHz. However, 40MHz is recommended for easier calibration process 

(Microsystem, 2012). In this work, a programmable clock generator from the 

Silicon Labs Si5356-EVB clock generator is used for producing the reference 

frequency for the Lime LMS6002D’s PLLs. The board can easily be 

programmed via USB by a Windows-based program supplied by Silicon Labs. 

It is capable of producing clock signal whose frequency ranges from 1MHz to 

200MHz (Labs).  

 

Figure 5.3 Complete Wireless Module Diagram 
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Figure 5.3 depicts the block diagram of a complete wireless module 

which consists of the RUMPS401, the Lime LMS6002D, and the Si5356-EVB. 

Connections between the RUMPS401 and the Lime LMS6002D are classified 

into two groups, the digital baseband connection consisting of signal values and 

ADC/DAC control signals, and the SPI connection for the Lime LMS6002D 

parameters configuration. The Si5356-EVB supplies a 40MHz clock signal as 

the Lime LMS6002D’s PLL reference clock. 

As mentioned earlier, the Lime LMS6002D configurations are stored in 

a set of registers that must be set on every power cycle by the RUMPS401. After 

the registers configuration, the Lime LMS6002D will operate in the desired 

setting, e.g. 2.4GHz center frequency and filter bandwidth of 1.5MHz. 

Following the register configurations, the Lime LMS6002D must be calibrated 

to produce optimum settings. Like the operation parameters configuration, the 

Lime LMS6002D calibrations are also performed by the RUMPS401 via the 

SPI interface by accessing certain registers dedicated for calibration purpose. 

The calibration sequence is split into three steps, the PLL frequency generator 

calibration, the Direct-Current (DC) offset cancellation of various processing 

blocks, and the transmit path Local Oscillator (LO) leakage calibration. 

The calibration on the PLL frequency generator is required to improve 

the accuracy of the carrier’s signal frequency. Prior to the calibration, the 

produced carrier signal normally drifts from the desired frequency. The Lime 

LMS6002D allows fine tuning of the resulting frequency by choosing the PLL’s 

internal capacitor’s value which ranges over preset numbers. This value can be 

changed by simply modifying a register value. The correct capacitor value 



117 

 

results in a carrier signal with least frequency drift. The calibration objective 

thus is to find the suitable value by cycling over those preset values and 

checking the outcome via another register, which tells if the capacitor value is 

too high, too low, or just fine. The RUMPS401 thus needs to find two capacitor 

values which are started to be considered too high, or too low. The suitable value 

is the middle of those two values. The DC offset calibration is performed on 

various processing blocks of the Lime LMS6002D chip shown in Figure 5.2 to 

cancel the DC effect on the analog components. This calibration is performed 

by accessing certain registers to start the autonomous calibration process and 

waiting for a certain time before the calibration finishes.  

Prior to the calibration, the transmit path exhibits a power leakage 

sourcing from the local oscillator, or the PLL frequency generator itself. The 

Lime LMS6002D allows the cancellation of this power leakage by applying DC 

offset on the DAC output, whose offset amount can be chosen from a set of 

predefined values. There are two separate offset values for the I and Q signal 

components. As in the configurations and other calibrations, these values are set 

by modifying certain registers through the SPI interface. The calibration process 

thus is performed by cycling over the predefined DC offset values and checking 

the RF output signal in the frequency domain. For this purpose, the RF transmit 

output must be connected to a spectrum analyzer. 
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Figure 5.4 Transmit Path LO Leakage Calibration 

Shown in Figure 5.4a is the power spectrum of the signal coming out 

from the RF transmit output before the LO leakage calibration, with the DAC 

(a) Pre-calibration RF output signal spectrum 

(b) Post-calibration RF output signal spectrum 
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turned off and no analog signal going into the TXINI and TXINQ. The DAC is 

turned off to avoid any arbitrary data signal affecting the output signal spectrum. 

The sanitization of TXINI and TXINQ from any input serves the same purpose, 

which is to analyze only the carrier’s signal spectrum. The calibration process 

looks for DC offset values that result in the signal spectrum with lowest peak 

power. Figure 5.4b shows the post-calibration signal spectrum, where the peak 

power is noticeably lower compared to the pre-calibration measurement. 

After the configuration and calibration processes, the two devices can 

function as transmitter and receiver as described in an earlier section. If the same 

configuration is used on every power cycle, the calibration process can be 

speeded up by logging down the exhaustively searched calibration values such 

as the PLL’s capacitor and DC offset values. These values can be set directly 

on every power cycle instead of performing the calibration again. 

5.1.3 The RUMPS401 and Lime LMS6002D Interfacing 

As described in earlier section, connections between the RUMPS401 

and the Lime LMS6002D are split into two parts, the digital baseband and the 

SPI connection. Figure 5.5 shows the exact pin-to-pin connection between the 

RUMPS401 and the Lime LMS6002D, where most connections on the 

RUMPS401 side are handled by the IO Control Core. As described in Chapter 

Two, the IO Control Core is equipped with thirty-two input-output (IO) pins, 

while the other cores each is equipped with only eight.  
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Figure 5.5 RUMPS401 and Lime LMS6002D Pins Diagram 

Thirty of the IO Control Core pins are used for the connection as shown 

in Figure 5.5, denoted by GPIO0_x. It indicates the xth IO pin of the IO Control 

Core, the first core of the RUMPS401. IO pins of Normal Core 0, Normal Core 

1, and DSP Core are indexed as GPIO1_x, GPIO2_x, and GPIO3_x, 

respectively. This notation format will be carried for referencing the 

RUMPS401’s IO pins throughout this writing. The first twenty-four pins of IO 

Control Core denoted by GPIO0_0 to GPIO0_23 are used to connect with the 

Lime LMS6002D’s 12-bit transmit and receive data buses, denoted by TXD and 

RXD, respectively. As described before, the RUMPS401 drives the digital data 

to be transmitted through the transmit data bus, which will be converted by the 

Lime LMS6002D internal DAC for further processing in the transmit chain. 

Conversely, the Lime LMS6002D receives signal from the air, down-converts 

and passes to the internal ADC which then drives the converted digital signal to 

the RUMPS401 via the receive data bus. 

While the transmit and receive data buses are completely separated and 

works individually, each bus does not have distinguished line between I and Q 

signal components. Instead, the I and Q components are multiplexed into the 
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data bus that can only carry one component at a time. TX_IQSEL and 

RX_IQSEL are the signals controlling the multiplexer for the transmit and 

receive path, indicating whether the bus is carrying I or Q component at a certain 

time. 

 

Figure 5.6 Lime LMS6002D TX Timing Diagram 

Figure 5.6 shows the signals required by the Lime LMS6002D for 

transmission purpose, along with their timing. All three signals are driven by 

the RUMPS401 via its IO pins. TX_CLK is a clock signal supplied into the 

Lime LMS6002D internal DAC, dictating the DAC sampling rate which is half 

of the clock frequency. The halving of TX_CLK into the DAC sampling clock 

is performed internally by the Lime LMS6002D. TX_IQSEL takes the form of 

a clock signal whose frequency is half of the TX_CLK. As depicted by the 

timing diagram, data must already be written to the TXD bus along with the 

TX_IQSEL signal at least 1ns before TX_CLK clock edge arrives, which then 

latches the data into the DAC. In this timing diagram, TX_IQSEL flags I 

component with high signal level and Q component with low signal level. It 

should be noted that the flagging is interchangeable, i.e. I marked with low 

signal level and Q with high, as well as the choice of latching the data on 

positive or negative clock edge.  
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Signals timing diagram for the receive line is depicted in Figure 5.7. As 

in the transmit line, RX_CLK is a clock signal driven by the RUMPS401 into 

the Lime LMS6002D internal ADC to control its sampling frequency. The Lime 

LMS6002D outputs the received data into the RXD bus, along with the 

RX_IQSEL signal to indicate whether the data on RXD bus is the I or the Q 

component. In this diagram, the data is read on every RX_IQSEL clock edge 

while the RX_CLK level is held high. Positive clock edge indicates I component 

on the RXD bus, while negative clock edge indicates Q component. Identical to 

the transmit line, the trigger level and clock edge are fully configurable.     

 

Figure 5.7 Lime LMS6002D RX Timing Diagram 

Adhering to the signaling diagrams above, to properly transmit and 

receive with the Lime LMS6002D, the RUMPS401 is required to produces two 

clock signals, the T/RX_CLK signal and the TX_IQSEL signal. These clock 

signals are provided by the RUMPS401 via its IO pins, and produced by 

utilizing the RUMPS401’s internal timer to periodically toggle the pins value. 

The timer supports hardware toggling that automatically toggles the pin value 

each time the timer reaches desired ticks. providing a more stable clock 

compared to software toggling. The timer provides two hardware-toggled pins 

with separated timer comparator hence the two pins can be toggled at different 
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time. However, those comparators share the same counter which can only be 

reset or stopped upon reaching a certain value. Hence, despite the two hardware-

toggled pins, a single timer would not be able to produce two different clock 

signals. 

Since each of the RUMPS401 cores is equipped with individual timer, 

two cores can be used instead. The IO Control Core does not participate in 

producing these clock signals because its internal timer is responsible for timing 

the write and read into and from the data buses. Other cores can be used without 

any concern, and the choice of which cores generating the clock signals poses 

no issue. In this work, the Normal Core 0 produces T/RX_CLK via its GPIO1_2 

pin, while TX_IQSEL is produced by the DSP Core via its GPIO3_2 pin. As 

described earlier, during the read operation the RUMPS401 requires 

RX_IQSEL signal to distinguish between I and Q data as well as timing the 

operation properly, which is received by the IO Control Core via GPIO0_27 

pin. Likewise, the RUMPS401 must align the data write operation properly with 

the TX_IQSEL, hence the IO Control Core also receives the TX_IQSEL signal 

via the GPIO0_26 pin. There is no need for the IO Control Core to align with 

the T/RX_CLK signals directly since the T/RX_IQSEL signals is already 

aligned to those.  

For registers access purpose, the RUMPS401 interfaces with the Lime 

LMS6002D via the IO Control Core’s SPI hardware, whose pins are provided 

through GPIO0_28 to GPIO0_31. The SPI pins connection is straightforward 

with the RUMPS401 as master, and the Lime LMS6002D as slave. The use of 

timer and SPI hardware greatly relieves processing burden from the RUMPS401 
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software. Only a tiny amount of the software time is spent for initiating the timer 

or SPI transfer process, and for checking the SPI transfer result.  

 

Figure 5.8 RUMPS401 Development Board 

The physical connection between the two chips is straightforward. Both 

the RUMPS401 and the Lime LMS6002D are packed in their own development 

board which gives access to its IO and allows them to be used out of the box. 

Design of the RUMPS401 development board which is also a part of this work 

is shown in Figure 5.8. This board basically provides the RUMPS401 

connections to an on-board external crystal oscillator, several push-buttons and 

LEDs, and routes the RUMPS401 IO pins out to group of male pin headers to 

allow convenient access to other external devices. 
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Figure 5.9 Lime LMS6002D Reference Development Kit 

 

Figure 5.10 RUMPS401-Lime LMS6002D Interface Board 

The Lime LMS6002D is packed in the Myriad RF Reference 

Development Kit, shown in Figure 5.9. It provides access to the RF signal 

interfaces via SubMiniature version A (SMA) coaxial connectors and access to 

PLL reference clock via Micro Miniature Coaxial (MMCX) connector, while 

access to the digital baseband signals is provided through a compact and high-

speed Hirose FX10A-80P0 connector (MyriadRF, 2013). An antenna is 

connected to each of the transmit and receive RF signal connector, while input 

to the PLL reference clock is directly connected to the Si5356-EVB clock 
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generator. Figure 5.10 shows a simple interface board designed to connect the 

RUMPS401 IO pins to the Lime LMS6002D digital baseband interface 

provided via the Hirose FX10A-80P0 connector. 

5.2 Software-based BPSK Transmitter on the RUMPS401 

As described in the previous subchapter, the Lime LMS6002D is a 

programmable RF transceiver which only works on raw baseband signal. It does 

not provide any means of modulation or demodulation, hence the baseband 

processor must perform the signal processing itself on both transmit and receive 

ends. On the transmit side, the baseband signal supplied by the RUMPS401 into 

the TXD bus is directly converted to analog signal and mixed with the carrier 

frequency for transmission. Thus, for a proper transmission the RUMPS401 

needs to transform the data frame which is in binary bits into a baseband signal, 

which is then passed to the Lime LMS6002D. 

The transmission involves three steps, preambles augmentation, IQ 

modulation, and pulse shaping which are all performed by the IO Control Core. 

Since this work implements coherent-BPSK, the receiver is required to perform 

synchronization on the received data before further processing. The 

synchronization utilizes sequence of bits whose values are known by the 

receiver. These bits are augmented to the beginning of the data frame and sent 

along with the data. For convenience, this augmented frame will be referred as 

the transmit frame throughout the chapter. BPSK modulation is then carried on 

the transmit frame by simply deriving I and Q value for every bit in the frame 

based on the defined IQ modulation scheme. This modulation process yields 
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two baseband signals, the I and the Q signals which collectively represents the 

transmit data frame. Lastly, pulse shaping filter is applied to both the I and Q 

signals to limit the signal bandwidth and to reduce inter symbol interference 

(ISI) on the receiving end.  

This subchapter is arranged into three sections as follow. The first 

section presents the IQ modulation scheme, while section two describes the 

pulse shaping function. Lastly, third section discusses the transmit frame 

format. 

5.2.1 BPSK IQ Modulation Scheme 

To perform BPSK IQ modulation, the RUMPS401 is required to feed 

the I and Q values corresponding to each bit in the transmit frame in a defined 

rate. This means that RUMPS401 must be able to provide the necessary signals 

on TX_CLK, TX_IQSEL, and TXD according to the timing diagrams in Figure 

5.6 and Figure 5.7 for every bit in the transmit frame and every transmission. 

Generating stable clock signals for TX_CLK and TX_IQSEL is completely 

feasible for the RUMPS401 due to the timer-based hardware toggling described 

in the previous subchapter.  

The RUMPS401 runs on 16MHz oscillator clock, thus the internal timer 

ticks on every clock cycle which is 62.5ns. This limits the maximum frequency 

of clock signal the RUMPS401 can generate at 8MHz. While it is possible to 

generate 8MHz clock signal for TX_CLK and 4MHz clock signal for 

TX_IQSEL, the RUMPS401 could not drive the transmit data in such a short 
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time. Due to the use of pulse shaping, for each bit in the transmit frame the 

RUMPS401 needs to choose proper IQ value, calculate the pulse response for 

that value then drives it to the TXD bus in time. Likewise, the data rate is also 

limited on the receive side as the RUMPS401 must read the value in RXD bus 

synchronization in time then performs the timing for each arriving bit. Coupled 

with the fact that these are performed via software, it is reasonable to lower the 

data rate to match the RUMPS401 processing capability.  

To decide on a suitable data rate, adjustments are carried with the 

RUMPS401 performing the calculation and data bus access required for the 

transmit and receive as mentioned above at various rate. The T/RX_CLK, 

T/RX_IQSEL, and T/RXD outputs from the RUMPS401 are monitored with a 

logic analyzer. During the adjustments, instead of doing the real read or write 

operation, the data bus value is toggled. This toggle represents at which time 

the data bus access operation occurs and compared to the write or read with real 

data, the toggling edges are easier to track with the logic analyzer. Adjustments 

for the transmit and receive processes are performed separately, each to find the 

fastest data rate the RUMPS401 operate at while keeping the signals timing 

correct. The suitable data rate is the lowest data rate between those two.  

The simple adjustment process derived that the RUMPS401 can stably 

toggles the data bus, producing up to 8 KHz clock signal while performing the 

necessary calculation for either transmit or receive. Any attempt on setting the 

RUMPS401 to toggle the data bus at frequency higher than 8 kHz resulted in 

incorrect signals timing, i.e. the RUMPS401 could not access the data bus in 

time as required by the timing diagrams of Figure 5.6 and Figure 5.7. Since 8 
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kHz is the frequency of clock signal, this translates to 16kbps of data rate. 

However, this 16kbps data rate is a raw data rate where pulse shaping and 

receiver’s Nyquist sampling rate have not been taken into considerations. 

Table 5.1 Digital Baseband Rate Summary 

Baseband data rate 2 kbps 

TX pulse shaping rate 8 kbps 

RX Nyquist sampling rate 16 kbps 

ADC/DAC sampling rate 32 kHz 

TX_IQSEL 32 kHz 

T/RX_CLK 64 kHz 

 

Table 5.1 presents the fixed data rate and signaling frequency for the 

digital baseband interface between the RUMPS401 and the Lime LMS6002D. 

According to the Nyquist theorem (Jr, Sethares, & Klein, 2011) the received 

data must be sampled at least at twice the transmit data rate. Since the 

RUMPS401 can only read or write at fastest rate of 16kbps, the receiver is set 

to read from data bus at that rate. The Nyquist theorem thus limits the transmit 

rate to be at most half of the receiver sampling rate, which is 8kbps. 

Additionally, the use of pulse shaping also limits the actual data rate since each 

bit must be oversampled to produce smoother pulse response. The pulse shaping 

filter used in this work oversamples the original data signal by four times, hence 

lowering the actual data rate further to 2kbps. As described above, the pulse 

shaping function and the receiver is detailed in the next section and subchapter, 

respectively. Lastly, the Lime LMS6002DADC/DAC is set to sample the data 

at higher rate of 32 kHz by generating 64 kHz and 32 kHz clock signals for the 

T/RX_CLK and TX_IQSEL, respectively.  
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Figure 5.11 BPSK Constellation Diagrams 

Figure 5.11 depicts constellation diagrams of two BPSK modulation 

schemes, which differ in the symbol phase offset. In the first scheme, the BPSK 

symbols only occupies I channel which is shown by the bit 1 and bit 0 

represented as (1,0) and (-1,0) respectively. In the second scheme, 45˚ phase 

offset is applied to the BPSK symbols, thus occupying both I and Q component, 

shown by the bit 1 and bit 0 represented as (0.707, 0.707) and (-0.707, -0.707) 

respectively. Both schemes provide equal error rate, with the first 0˚ offset 

BPSK scheme being more common since the BPSK basically only need one 

channel to represent the two distinct symbols. In terms of demodulation, the 

first scheme provides a slight advantage since the decision device is only 

required to demodulate based on the I component, while the second scheme 

requires checking on both I and Q component. 

Additionally, depending on the wireless system stack, there may be 

other processing elements before the demodulator which is designed to work 

only on the I component, assuming the more common form of BPSK with 0˚ 

phase offset. This is the case with the Turbo decoder in this work which only 

(a) BPSK - 0˚ offset (b) BPSK - 45˚ offset 



131 

 

accepts the I component as inputs. From this aspect alone, the 0˚ phase offset 

scheme is more suitable for pairing with the Turbo decoder. However, taking 

the digital line timing diagram described above into consideration, the second 

scheme with 45˚ phase offset is more feasible to implement in the RUMPS401. 

Recall that based on Figure 5.6, the TX_IQSEL’s frequency must be half of the 

TX_CLK’s, which is also reflected in the signaling rate defined for this work in 

Table 5.1. 

TX_IQSEL is set at 32 kHz, and it was discussed that the RUMPS401 

software could not access the data bus at that rate. If the 0˚ phase offset BPSK 

is implemented, the RUMPS401 must be able to provide different value for the 

I and Q component by accessing the data bus at the same rate as the TX_IQSEL. 

This is not affordable with signaling rate defined in Table 5.1. Implementing 

the 0˚ phase offset BPSK is possible by lowering the signaling rate, which in 

turn increases the radio air time. On the opposite, the implementation of 45˚ 

phase offset BPSK conserves the signaling rate since the I and Q components 

possess the same value, allowing the RUMPS401 to perform data bus access at 

any rate lower than the TX_IQSEL. The only drawback of implementing the 

45˚ offset BPSK in this work is the Turbo decoder which assumes input of 

BPSK symbols with 0˚ phase offset. This problem is solved at the receiver by 

re-rotating the received symbols by 45˚. Although this solution imposes 

additional complex number calculation for the symbol rotation, it is more 

suitable since the higher data rate allows lower radio air time. 

The RUMPS401 is a naturally low-power Multi-Processor System-on-

Chip (MPSoC) which only draws 32mA current, while the Lime LMS6002D 
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consumes around 260mA when activated for either transmission or reception. 

Rather than having the Lime LMS6002D to transmit over longer period, it is 

more reasonable to receive and buffer the data, turn the Lime LMS6002D off 

and let the RUMPS401 consumes the extra time for the symbol re-rotation. 

The IQ modulator is implemented in the IO Control Core since its 

functionality is to simply choose the I and Q component value based on the data 

bit. As described earlier in this chapter, the Lime LMS6002D internal 

ADC/DAC uses 12-bit two’s complement number format, covering integer 

value of -2047 to +2048. In this work, the value of +1 and -1 in the IQ plane is 

represented by +1024 and -1024. The reason for choosing these middle values 

instead of the maximum values of +2048 and -2047 is related to the pulse 

shaping filter response which is detailed in the following section. 

5.2.2 Raised-Cosine Pulse Shaping Filter Implementation 

In practical wireless system, pulse shaping filter is commonly employed 

on the transmit side in pair with the IQ modulator. In case of plain digital IQ 

modulation, the I and Q baseband signals are square waves with sharp edge 

transitions, resulting in frequency response of a sinc function with high 

sidebands power (Instruments, 2014). Such waveform is not suitable for 

practical use due to two reasons. First, frequency spectrum is a scarce resource 

and it is expected that any transmission would only occupy the allocated 

channel. 
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A transmission with frequency response mentioned above will have its 

sidebands interfere with other adjacent channels. Second, signal sent by the 

transmitter may arrive at the receiver in several time-delayed versions due to 

multipath interference. This cause the delayed symbol to drift from its sampling 

time, and instead overlaps with the adjacent symbol. Since square wave 

amplitude is constant for the whole symbol or bit duration, the overlapping part 

contains the maximum power of the delayed symbol, causing interference 

during sampling of the next symbol, a phenomenon known as ISI (Instruments, 

2014). 

The two problems above can be mitigated by a pulse shaping filter. The 

filter basically shapes the impulse response of each symbol which was in form 

of square pulse into sine pulse. Sine pulse is chosen because it holds properties 

which are the opposite of the square pulse’s (Proakis & Salehi, 2001). 

Frequency response of a square function is a sine function, and so does the 

reverse. As shown in Figure 5.12, contrary to the sine function that consumes 

large bandwidth due to the sidebands, square function consumes limited amount 

of bandwidth. Moreover, in time domain the symbol value is contained only at 

the peak of the sine pulse at the sampling instance. Hence, assuming that a 

symbol delay does not exceed the sampling instance, ISI can be reduced since 

the overlapping part does not contain the maximum power of the pulse. Figure 

5.13 depicts the ISI for square and sine pulses. It is evident that interference 

produced by the delayed symbol is less pronounced on sine pulse since the 

overlapping part does not contain the peak power of the pulse (Jr, Sethares, & 

Klein, 2011). 
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Figure 5.12 Sinc and Square Pulse 

(a) Sinc Function 

(b) Square Function 
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Figure 5.13 ISI for Various Pulse Shapes 

A filter that has been widely used to produce such impulse response is 

raised cosine filter (Proakis & Salehi, 2001). In this work, a raised cosine pulse 

shaping filter is implemented with a simple lookup table and addition 

operations. The filter has a roll-off factor of 0.5 and oversamples the original 

IQ square pulses by four times. The pulse transmit rate hence is capped to 8kbps 

to satisfy the minimum Nyquist sampling rate as described earlier, yielding the 

original data rate of 2kbps. The roll-off factor is any decimal value between 0 

and 1, which defines two things. In frequency domain, it defines how much 

excess bandwidth the pulse frequency response occupies compared to the ideal 

squared-shape frequency response. In time domain, it determines how quick the 

(b) ISI for Sine Pulse 
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pulse sidebands energy goes to zero (Proakis & Salehi, 2001). As shown in 

Figure 5.14, the closer the roll-off factor to 1, the more excess bandwidth 

occupied, and the quicker the sidebands energy goes to zero. The oversampling 

factor here provides common tradeoff where higher oversampling gives 

smoother signal shape in expense of more computing and memory resources. 

 

Figure 5.14 Raised Cosine Filter Response (Proakis & Salehi, 2001) 

As described in previous section regarding the 45˚ offset BPSK 

modulation and the implementation in the RUMPS401, it can be concluded that 

the modulator is only required to output IQ value of either +0.707 or -0.707 to 

represent bit 1 or 0. It was also defined that the scaling ratio between IQ value 

and ADC/DAC 12-bit integer is 1:1024, i.e. IQ value of +1 and -1 are 

represented as +1024 and -1024, respectively. Hence, the two necessary IQ 

values are driven by the RUMPS401 into the Lime LMS6002D as +723 and -

(a) Raised Cosine Impulse 

(b) Raised Cosine Frequency 
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723, representing bit 1 and bit 0. The pulse shaping filter is implemented by pre-

calculating the filter response for those two values and storing them in a lookup 

table (LUT).  

 

Figure 5.15 Finite Impulse Response for LUT 

Figure 5.15 depicts the finite impulse responses of the raised cosine filter 

for the two values. The impulse responses were acquired by feeding the two 

values into Matlab’s built-in rcosine function which was configured 

accordingly, i.e. roll-off factor of 0.5 and oversampling by factor of four. Output 

(a) FIR for bit 1 (value +723) 

(b) FIR for bit 0 (value -723) 
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of the rcosine function is then trimmed, resulting in the two impulse responses 

over finite points, each containing nine points of the main lobe. These impulse 

response values are stored in a simple LUT which is used during the 

transmission for calculating values to be driven to the data bus. It is evident that 

the points are spaced rather far away since the filter only oversamples by factor 

of four. As mentioned earlier, it is possible to have smoother finite impulse 

responses by increasing the oversampling factor in expense of much lower 

actual data rate. Additionally, more sampling points imposes the need for larger 

LUT size on the RUMPS401 limited memory, an issue which has been detailed 

in Chapter Four. 

 

Figure 5.16 RUMPS401 Pulse Shaping Implementation 

During transmission, the RUMPS401 is required to perform calculation 

based on the filter response LUT and the data bits to produce sequence of 

sampling points that represents the baseband signal. The RUMPS401 performs 
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this pulse shaping by calculating the value just in time before that certain 

sampling point must be transmitted. Figure 5.16 illustrates the pulse shaping 

calculation process. Each row of yellow and red blocks represents the FIR for 

each data bit, while each column represents the sampling time on which the 

RUMPS401 must write the signal value to the ADC/DAC. 

As shown in the figure, adjacent FIR peak points represented by the red 

blocks are spaced by four sampling points since the filter uses oversampling 

factor of four. The value written by the RUMPS401 on each sampling time is 

the sum of FIR value that belongs to the same column. For example, at sampling 

time 𝑡 = 1 the sent value contains only the first point of the first data bit’s 

impulse response. At time 𝑡 = 9, the sent value is the summation of FIR points 

from the first, second, and third data bit. This calculation is carried in the same 

fashion until the last FIR point of the last data bit is sent, i.e. the ninth FIR point 

corresponding to the 768th data bit.  

Output of the RUMPS401 pulse shaping function is shown in Figure 

5.17. In this example, bits sequence of 1110 is used as the input. As shown in 

the figure, there are output values whose amplitude reach over the individual 

FIR peak value of +723 and -723, which is expected since the output is the sum 

of individual FIR points. This happens when there are consecutive bits with 

same value, i.e. consecutive 1s. Referring to Figure 5.16, due to the limited 

number of FIR points coupled with the oversampling factor, at one sampling 

time there are at most only three FIR points, whose sum does not exceed +1024 

or -1024. From the transmitter point of view, these amplitude values pose no 
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problem since they fall within the range of values supported by the Lime 

LMS6002D internal ADC/DAC. 

 

Figure 5.17 Example of the RUMPS401 Pulse Shaping Output 

Assuming the ADC/DAC only ranges between +1024 and -1024, there 

is still no problem for the transmitter side since the values are still in the 

ADC/DAC range hence the pulse shape can still be conserved. However, this 

may pose problem for the receive side since the received signal amplitude 

changes during the wireless transmission. If the received signal is amplified, the 

pulse values may exceed the ADC/DAC range, yielding in signal whose peak is 

flattened. This is undesirable since pulse shaping filter is used so that the output 

signal only contains the actual IQ value at the peak which is the bit sampling 

instance. To avoid this the scaling between IQ values and the internal 

ADC/DAC values is set at 1:1024 instead of 1:2048. 
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5.2.3 Transmission Frame Format 

As mentioned earlier, the transmit frame consists of the 768-bits Turbo 

encoded codeword and a few additional bits known as preambles, which aids 

the receiver in the synchronization process. Figure 5.18 describes the transmit 

frame format, which consists of the detection and timing preamble, the 

frequency preamble, and the codeword. Both frequency and timing preamble 

are fixed and known to the transmitter and receiver. The timing preamble is used 

by the receiver to correct the timing of signal sampling, as well as allowing the 

receiver to detect the start of the frame. The frequency preamble is used to 

correct the frequency offset experienced by the received signal due to the 

frequency difference between the transmitter and receiver local oscillator.  

 

Figure 5.18 Transmit Frame Format 

The detection and timing preamble is a sequence of 16 bits alternating 

between 1 and 0, while the frequency preamble is a pair of 1s. Reasoning for 

the preamble format is related to the receiver synchronization process which is 

detailed in the next subchapter. As shown by the frame format, the timing and 

detection preamble is only augmented to the beginning of the frame while the 

frequency preamble is inserted between the codeword. The insertion frequency 

is flexible depending on the trade-off between correction accuracy and 

computational load, which shall be detailed in the next subchapter as well. 
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5.3 Software-based BPSK Receiver on the RUMPS401 

Like the transmit side, to retrieve the digital baseband data from the 

Lime LMS6002D, the RUMPS401 is required to access the digital interface 

according to the timing diagram in Figure 5.7. The RUMPS401 must generate 

a clock signal to drive the RX_CLK and read from the RXD data bus right after 

every positive edge of the RX_CLK. At the same time, the RUMPS401 has to 

monitor the RX_IQSEL generated by the Lime LMS6002D to determine 

whether the data being read belongs to the I or Q component of the signal. This 

signaling requirement is analogous to the signaling done on the transmit side, 

except that the IQSEL signal is driven by the Lime LMS6002D, and that the 

RUMPS401 must read from the data bus at twice the rate the RUMPS401 write 

into the data bus. As described in Table 5.1, clock signals frequency for both 

transmit path’s DAC and receive path’s ADC are identical, except the data bus 

read rate which is set at 16kbps to satisfy the Nyquist sampling rate. 

For signal reception, the Lime LMS6002D down-converts the received 

signal into baseband analog signal, which is then converted to digital sampling 

points by the internal ADC based on the defined rate. Ideally, assuming the 

absence of noise, the down-conversion process should separate the baseband 

data signal from the carrier, hence perfectly recovering the original baseband 

signal generated by the transmitter. This can only be achieved if the local 

oscillators in transmitter and receiver are perfectly synchronized and generate 

carrier signals with the exact same frequency. Such a condition is impractical 

since each oscillator has characteristic variations that affect the generated 

frequency, resulting in signals whose frequency slightly differs. The frequency 
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mismatch between the transmitter and the receiver causes imperfect down-

conversion, yielding baseband data signal that is shifted in frequency (Jr, 

Sethares, & Klein, 2011). The frequency shift affects the signal in a way that 

the signal’s IQ values are rotated in the IQ plane by certain angle at certain 

rotation rate, which is undesirable. It is possible to synchronize the two 

oscillators, but again it is impractical as in real world the wireless transmitter 

and receiver are spaced apart with no reliable means for synchronization (Jr, 

Sethares, & Klein, 2011).  

As mentioned above, the down-converted analog baseband signal is 

sampled by the ADC based on the RX_CLK signal, which is controlled by the 

RUMPS401. Ideally, the RUMPS401 in the receiver is expected to sample the 

baseband signal at the exact same time as the transmit sampling point at twice 

the rate. This way, assuming the absence of noise, the original transmitted 

signal’s shape and values can be recovered at the receiver. However, such a 

thing requires the clock of baseband processors at both transmit and receive 

ends to be synchronized. Like the frequency mismatch case, there is no reliable 

means of synchronization in a real application where the wireless transmitter 

and receiver are spaced apart. This mismatch between sampling instances at the 

transmitter and receiver is known as the timing offset (Jr, Sethares, & Klein, 

2011), causing the receiver to miss the correct sampling point of the symbol’s 

pulse, which should be at the peak of the pulse. 

In this work, both offsets arise. Frequency offset happens due to slight 

frequency variation of the carrier signals generated by the two Lime LMS6002D 

internal PLL frequency generators, coupled by the slight frequency difference 



144 

 

of the PLL reference clocks which are sourced by two separated Si5356-EVB 

clock generator board. Similarly, the timing offset happens due to slight 

variation of the RUMPS401 clock source, which is the 16MHz crystal oscillator. 

Hence, frequency and timing offset recovery must be performed by the 

RUMPS401 on the received signal. The recovery process, widely known as 

receiver synchronization attempts to estimate the frequency and timing offset 

between the receiver and the transmitter, and correct the signal based on the 

estimation (Haykin, 2001). 

The complete reception process thus is arranged as follows. After the 

down-conversion by the Lime LMS6002D, the analog baseband signal is 

sampled by the RUMPS401 via the Lime LMS6002D internal ADC. This 

sampling process runs in real time as the analog baseband signal is not buffered. 

During the sampling process, the RUMPS401 also estimates the timing offset 

based on the received samples and adjust the sampling instance accordingly. 

This timing offset correction process is performed only for the first 16 bits of 

the transmit frame, which as described in Figure 5.18 is the preamble augmented 

specifically for that process. By then, the RUMPS401 is assumed to have the 

correct sampling instance. The RUMPS401 then proceed with the reception and 

buffers the rest of the frame, which as shown by Figure 5.18 consists of the 

frequency preambles and the data bits. The amount of frequency offset 

experienced by the signal is estimated with the help of frequency preambles, 

which is then used to correct the data bits. 

Note that timing offset recovery is carried in real time along with the 

sampling of the received data, while frequency recovery is performed on the 
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buffered data. For each received pulse corresponding to a single symbol in the 

frame, the timing offset recovery requires multiple sampling points of that pulse 

to calculate and decide on the best sampling point. On the other hand, the 

frequency recovery only requires the symbol value, represented by one 

sampling point assumed to be the peak of the pulse. From Table 5.1 it is evident 

that the actual data rate of 2kbps is oversampled at the receiver by eight times 

at 16kbps. If the whole frame is buffered first before the timing offset correction, 

the memory requirement would be at least eight times the number of bits in the 

frame, which is unaffordable for the RUMPS401. Hence, the sampling instance 

correction must be done as the data is being received. 

Recall from Chapter Four that the Turbo decoder software operates in 

fixed-point arithmetic with S16.15 number format. The same fixed-point data 

type is also used in the frequency offset recovery process. The frame detection 

and timing offset recovery do not require any decimal point number, thus can 

be performed with integer data type.  The rest of this subchapter describes in 

detail the coherent BPSK receiver implementation, broken into several sections 

as follows. The first section discusses the frame detection. Section two describes 

the timing offset recovery, while the frequency offset recovery is described in 

section three. The fourth section presents the LUT-based sine and cosine 

functions which are essential for the frequency offset recovery. Lastly, section 

five discusses the BPSK receiver memory requirements. 
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5.3.1 Frame Detection 

In this work, the transmission is done in burst, i.e. a transmit frame is 

constructed at the sending side and transmitted over the air without informing 

the receiver beforehand about the transmission. The receiver must be able to 

detect the transmission correctly at the beginning of the frame and perform the 

reception process as described above. In this work, once configured the Lime 

LMS6002D will continue to monitor transmission on the desired frequency and 

perform the down-conversion into baseband signal. Should transmission occur, 

the Lime LMS6002D will receive the transmitted signal and provide the 

digitally sampled signal to the RXD data bus. The RUMPS401 as the baseband 

processor hence must monitor the data bus and trigger the reception process 

accordingly. 

A simple instantaneous power-based frame detection mechanism is 

implemented in the RUMPS401. As mentioned earlier, the sampling is done at 

16kbps, producing eight samples for each pulse corresponding to a single 

symbol in the transmit frame. Each sampling point consists of an I and a Q 

values read from the RXD data bus. The start of a transmit frame is detected if 

the sum of the instantaneous power for three consecutive sampling points reach 

a certain threshold. Instantaneous power for an IQ sample is defined by the sum 

of its squared magnitude, 𝐼2 + 𝑄2. Recall from Figure 5.18 that the first 16 bits 

preambles in the transmit frame alternate between one and zero. The detection 

goal is to find the first slope of the pulse corresponding to the first preamble, as 

shown in Figure 5.19. 
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Figure 5.19 Frame Detection and Timing Offset Correction Points 

 This detection task is jointly performed by the IO Control Core and the 

DSP Core. Role of both cores in the task is straightforward. The IO Control 

Core is responsible for reading the I and Q value from RXD data bus, summing 

the instantaneous power of each sample point, and comparing them to the 

detection threshold. Instantaneous power computation is done by the DSP Core 

since it involves multiplications which can be performed quickly with the 

Multiply-Accumulator (MAC) hardware. Data transfers between the IO Control 

Core and the DSP Core are carried through the internal Network-on-Chip 

(NoC). As shown in Figure 5.19, once the detection threshold is reached the IO 

Control Core triggers the next step of the reception process, the timing offset 

correction which starts at the next sampling point. The frame detection process 

is summarized in Figure 5.20. 
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Figure 5.20 RUMPS401 Frame Detection Flow 

5.3.2 Timing Offset Recovery 

As discussed earlier, the timing offset recovery process must be done 

while the RUMPS401 is sampling the digital data from RXD bus at 16kbps rate. 

Considering the computational resource of the RUMPS401, the timing recovery 

method should be kept simple while providing reasonable performance. 

Gardner timing error detection (Gardner, 1986) satisfies these requirements, 

hence is adopted in this work. Figure 5.21 depicts the original algorithm of 

timing offset estimation developed for BPSK and QPSK. The algorithm only 

requires sampling rate of at least two samples per symbol. 

The estimation formula uses three strobe points of the signal, each 

spaced by half of single symbol duration. These three strobe points are referred 

as the start, mid, and end points. As shown by the figure, should the sampling 

happen right at the peak of each symbol, the mid-point 𝑦𝐼(𝑟 − 1/2 ) should be 

zero hence yielding the offset estimation zero. Should the sampling happen 

before or after the peak, the offset estimation formula results in negative or 
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positive value which indicate whether the sampling happen too early or too late. 

In the calculation, offset for the I and Q signals are estimated separately and 

summed to yield the symbol offset estimation. The Gardner estimation works 

the best on a periodic signal, which explains the arrangement of the timing 

preamble in this work. 

 

Figure 5.21 Gardner Timing Error Estimation (Boschen, 2016)  

As mentioned before, the timing detection starts at the next sampling 

points following the successful frame detection. The IO Control Core uses this 

sampling point as the start strobe point. Since the receiver oversamples the 

symbol by eight times, the mid and end strobe points are two sampling instances 

which are four and eight points away from the start strobe point, respectively. 

These three strobe points are sent to the DSP Core for calculation, which then 

return the result back to the IO Control Core. Adjustment of the sampling point 

is done by the IO Control Core based on the result in the following fashion. 

Positive estimation result indicates late sampling, hence the sampling of the next 

symbol is adjusted to be one sampling point earlier than the current point. 
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Figure 5.22 RUMPS401 Implementation of Gardner Timing Correction 

Inversely, negative estimation result indicates early sampling, thus the 

IO Control Core moves the next symbol sampling to one sampling point later 

than the current point. Figure 5.22 illustrates the timing correction process. For 

the first pair of the timing preamble, the Gardner algorithm estimates a late 

sampling hence adjusts the strobe points of the next pair to be one sampling 

point earlier than the current one. The estimation is performed for all pairs of 

one-zero in the timing preamble, whose cumulative correction defines the 

sampling instance for the rest of the frame. Figure 5.23 summarizes the timing 

offset recovery process. 

 

Figure 5.23 RUMPS401 Timing Offset Recovery Flow 
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5.3.3 Frequency Offset Recovery 

As mentioned earlier, frequency offset experienced by the received 

signal results in rotation of the symbols in IQ plane by a certain angle. The 

amount of rotation experienced by the symbols are unknown to the receiver. To 

correct the frequency offset on received symbols, the receiver must estimate the 

amount of rotation and act accordingly. In this work, a simple cross-product 

phase detector is implemented, depicted in Figure 5.24. The detector works by 

comparing angle between two vectors, in which one vector is the received 

symbol and another one is the referenced symbol. In this case, the referenced 

symbol is the frequency preambles.  

 

Figure 5.24 Cross-product Phase Detector (Boschen, 2016) 

The angle between the two vectors is obtained using the formula in 

equation 5.1a, which only involves two multiplications and one subtraction. 

However, the phase detector imposes two problems. First, it can only detect 

accurately up to angle difference of 90°. Second, the 𝑎𝑟𝑐𝑠𝑖𝑛 function is 

expensive to implement. For larger angle, such approximation cannot be used. 

The first problem is solved by moving the received symbol to the correct 

quadrant of the IQ plane before running the detector. In this work, the bits in 
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frequency preamble are known to be 1s, whose corresponding symbol based on 

the BPSK modulation scheme is located at the first quadrant.  

∆∅ = arcsin (𝐼1𝑄2 − 𝐼2𝑄1)         (5.1a) 

∆∅ = (𝑛𝐿𝑜𝑜𝑝 − 1) ∙ (
𝜋

32
) + ∆∅𝑛𝐿𝑜𝑜𝑝         (5.1b) 

𝐼(𝑖)𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐼(𝑖)𝑟𝑒𝑐𝑣. cos(∆∅) + 𝑄(𝑖)𝑟𝑒𝑐𝑣. sin(∆∅) 

 (5.1c) 

𝑄(𝑖)𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐼(𝑖)𝑟𝑒𝑐𝑣. sin(∆∅) − 𝑄(𝑖)𝑟𝑒𝑐𝑣. cos(∆∅) 

 

 

The second problem is solved by exploiting the properties where the 

𝑎𝑟𝑐𝑠𝑖𝑛 operation can be neglected for small angle since the angle and its sine 

values are almost equivalent. The phase detection hence is improved by setting 

it in a loop with a subtractor and deciding on any small angle value satisfying 

the properties above. In this work, 𝜋/32 is chosen. The loop runs phase 

detection on the received symbol, and if the detected angle is larger than 𝜋/32, 

it loops back to the phase detector with input of the detected angle subtracted 

by 𝜋/32. The loop continues until the detected angle is equal or lower than 

𝜋/32. The total angle between the two vectors thus can be stated as equation 

5.1b, where 𝑛𝐿𝑜𝑜𝑝 is the number of loops performed and ∆∅𝑛𝐿𝑜𝑜𝑝 is the angle 

detected at the last loop. This way, the actual 𝑎𝑟𝑐𝑠𝑖𝑛 operation is avoided while 

still retaining the calculation accuracy since the angle detection is performed in 

small angle step of 𝜋/32. The correction hence is performed on the IQ value of 

the received symbol based on equation 5.1c. 

Assuming that the frequency offset experienced by the signal is 

constant, it causes the symbols to be rotated by certain angle with certain speed, 
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e.g. 5° per second. For example, if the symbol rate is one symbol per second 

then the first symbol will be rotated by 5°, the second by 10°, the third by 15°, 

and so on. If the first symbol is rotated one time, the second symbol experienced 

two rotations, the third symbol experienced three, and so on. Based on this 

behavior, the frequency offset experienced by the symbols can be defined by 

two rotation angles. The first is the certain angle that rotates the symbols over 

time, denoted as ∅𝑓𝑖𝑥. The second is the amount of random rotation experienced 

by the first symbol, denoted as ∅𝑟𝑎𝑛𝑑. 

While it is true that the constant frequency offset results in each symbol 

being rotated with the same angle over time, by the time the symbols phase 

offset is calculated there is no information of how many times those symbols 

have been rotated. The frequency offset experienced by the symbols thus can be 

restated as follows. The first symbol is rotated by ∅𝑟𝑎𝑛𝑑, while the second 

symbol is also rotated by ∅𝑟𝑎𝑛𝑑 plus ∅𝑓𝑖𝑥. Likewise, the third symbol is rotated 

by ∅𝑟𝑎𝑛𝑑 plus 2∅𝑓𝑖𝑥. This pattern of ∅𝑟𝑎𝑛𝑑 + 𝑘. ∅𝑓𝑖𝑥 continues for the rest of 

the symbols, where 𝑘 denotes the symbol index. 

This work implements a simple frequency recovery scheme based on the 

phase detector and the two fixed rotation angles described above. The first and 

the second bit in the frequency preambles is used by the phase detector to obtain 

∅𝑟𝑎𝑛𝑑 and ∅𝑓𝑖𝑥, respectively. These two angles are then used for correcting the 

rest of the symbols in the frame. This correction method is quite reliable for a 

small number of symbols, and deviates for larger number of symbols as the 

frequency offset also fluctuates over longer time. Large deviation causes error 
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during correction which in turn causes the increment of error rate. It can be 

resolved by recalculating the ∅𝑟𝑎𝑛𝑑 and ∅𝑓𝑖𝑥 every 𝑛 symbols, which also 

requires re-insertion of frequency preamble after every 𝑛 symbols. The multiple 

frequency preambles in the transmit frame format serves this exact purpose, 

where the choice of 𝑛 defines the trade-off between data rate and correction 

accuracy. 

 

Figure 5.25 RUMPS401 Frequency Offset Recovery Flow 

Figure 5.25 summarizes the frequency offset recovery process. As in the 

frame detection and timing offset recovery, the task is split between the IO 

Control Core and the DSP Core. The IO Control Core performs the data retrieval 

and indexing while the phase estimation and correction is loaded to the DSP 

Core due to the multiplications. This frequency offset recovery process requires 

fast operation, but not timing critical as the data has been buffered by the 

RUMPS401 during the receive process. Note that the phase correction 

computation involves trigonometry functions which are not natively supported 
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by the ARM Cortex-M0 nor the RUMPS401 hardware accelerators. 

Implementation of the trigonometry function is detailed in the next section. 

5.3.4 Lookup Table-based Sine and Cosine Function 

As the RUMPS401 is not equipped with any hardware supporting 

trigonometry function, the sine and cosine operations are implemented with a 

simple lookup table and the corresponding mapping function. The lookup table 

consists of 256 points, storing the sine values for angle zero to 2𝜋 in step of 

𝜋/128. For every input angle, the mapping function finds the sine of that angle 

by looking for an index in the lookup table which contains the best approximate 

of its real sine value. Equation 5.2a defines the mapping function. 𝐿𝑈𝑇𝑠𝑖𝑧𝑒 

defines the lookup table size which is 256, while 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐴𝑛𝑔𝑙𝑒𝑉𝑎𝑙𝑢𝑒 

defines the largest angle whose sine value is stored in the lookup table which is 

2𝜋. 𝐿𝑈𝑇𝑠𝑖𝑧𝑒 and 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐴𝑛𝑔𝑙𝑒𝑉𝑎𝑙𝑢𝑒 hence can be substituted with fixed 

value of 256 and 205887, respectively. The value of 256 is the number of points 

in the lookup table, while 205887 is the integer representation of 2𝜋 in S16.15 

fixed-point number format. Substituting these two values, equation 5.2a thus 

can be restated as equation 5.2b. This mapping function consists of only two 

operands, the 𝑖𝑛𝑝𝑢𝑡𝐴𝑛𝑔𝑙𝑒 and a constant of 0.0012434. 

𝐿𝑈𝑇 𝑖𝑛𝑑𝑒𝑥 =
𝑖𝑛𝑝𝑢𝑡𝐴𝑛𝑔𝑙𝑒 × 𝐿𝑈𝑇𝑠𝑖𝑧𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐴𝑛𝑔𝑙𝑒𝑉𝑎𝑙𝑢𝑒
   (5.2a) 

𝐿𝑈𝑇 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑝𝑢𝑡𝐴𝑛𝑔𝑙𝑒 × 0.0012434  (5.2b) 
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The 𝑖𝑛𝑝𝑢𝑡𝐴𝑛𝑔𝑙𝑒 value is the integer representation of any angle 

between zero and 2𝜋 in S16.15 fixed-point format. For example, angle zero, 𝜋, 

and 2𝜋 are represented as zero, 102943, and 205887, respectively. Thus, the 

fixed-point data type should support an integer value whose value ranges from 

zero to 205887 and a small decimal value of 0.0012434. These two numbers are 

clearly out of the S16.15 data type range. Its integer part only supports 

amplitude up to 65536, while the fractional part only provides precision of 

0.00003. These values hence must be stored in a 64-bit variable, arranged as 

unsigned 32.32 fixed-point number. Both the integer and fractional parts can 

cover the number amplitude and precision requirements, while the sign is 

unnecessary for the sine function lookup. 

The GNU Compiler Collection (GCC) fixed-point extension does not 

provide this data type. Additionally, the MAC hardware could only support up 

to 32-bit multiplication, hence the 64-bit multiplication is performed by splitting 

it into four 32-bit multiplications, as shown by pseudocode in Figure 5.26. It 

simply splits the operands to their lower and upper half bits and calculates the 

multiplications among them accordingly. The multiplication only calculates the 

upper half of the result since the lower half only contains the fractional part 

which is not significant for finding the lookup table index. 
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Figure 5.26 64-bit Multiplication Pseudocode 

The lookup table only contains sine value for positive angle between 

zero and 2𝜋, hence mapping function must also consider various inputs such as 

negative values or values larger than 2𝜋. These problems are solved by utilizing 

the same lookup table and trigonometry properties. Likewise, cosine of any 

input angle can be derived in the same way. Due to the number of 

multiplications involved in the mapping function, the LUT-based sine and 

cosine functions are also performed by the DSP Core. 

5.3.5 Memory Requirements of the Complete Receiver 

As in the Turbo decoder implementation, the memory requirement of 

the BPSK receiver is also computed to allow the whole software to fit into the 

RUMPS401 memory resources. Table 5.2 lists the memory usage of the receiver 

program. As shown by the table, the largest memory usage is imposed by the 

buffering of the received signal, which consists of both the I and Q components. 

It is evident that if the I and Q components are stored in only a single core, the 

memory required for the signal alone almost consumes the whole the 8kB 
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SRAM of that core, where in this case is the IO Control Core. Hence, the 

received signal is buffered in two different cores.  

Table 5.2 RUMPS401 BPSK Receiver Memory Usage 

 

The sine lookup table also consumes a considerable amount of memory 

from the DSP Core. For this case, the sine lookup table is not stored in other 

cores such as the Normal Core 1 due to performance consideration. If the lookup 

table is stored in another core, there will be overhead required by the DSP Core 

to get the lookup values via the NoC. Likewise, storing the lookup table in the 

local flash memory also introduces delay since the RUMPS401 flash access 

time is much slower compared to the RAM access. Coupled with the Turbo 

decoder memory usage as presented in Table 4.2, both the BPSK receiver and 

Turbo decoder fits into the RUMPS401 memory resources. 

5.4 Summary 

This chapter presented in detail the implementation of coherent-BPSK 

transmitter and receiver software in the RUMPS401 quad ARM M0 cores SoC. 

Connection and digital signaling between the RUMPS401 as the digital 
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baseband processor and the Lime LMS6002D as the programmable radio 

frontend are discussed as well. It was shown that based on the signaling required 

by the Lime LMS6002D, a digital baseband modulation-demodulation scheme 

can be implemented in the RUMPS401. The transmitter provides actual data 

rate of 2kbps, which is oversampled by four times during the pulse shaping 

process. The receiver satisfies the Nyquist criteria by sampling the signal at 

16kbps which is twice the pulse shaping rate. To support these rates, 45° offset 

BPSK is implemented as the I and Q values are equal, hence lowering the 

signaling rate at which the RUMPS401 needs to cope.  

The wireless system built in this work is designed to transmit in 

separated frames, where each frame consists of data bits augmented with 

synchronization preambles. A preamble-aided receiver synchronization scheme 

was devised, consisting of the transmit frame detection, the timing offset 

recovery, and the frequency offset recovery. The synchronization scheme 

stresses on simple computations and approximations by utilizing the 

RUMPS401 resources judicially. The analysis of memory consumed by the 

BPSK receiver is also provided, which shows that it can co-exist with the Turbo 

decoder software. This allows possible integration into a complete receiver 

system which shall be detailed in the next chapter.  



 

 

CHAPTER 6 

COMPLETE TRANSCEIVER SYSTEM INTEGRATION AND 

TESTING  

Implementation and optimization of Turbo Code software on the 

RUMPS401 has been discussed in Chapter Four. The fifth chapter has detailed 

the software implementation of the BPSK modulator and demodulator based on 

the Lime LMS6002D signaling requirement and the RUMPS401 processing 

capability. This chapter presents the integration of both parts into a complete 

wireless transceiver system, along with the verification of its functionality 

through real wireless transmission and reception test. As discussed in the first 

chapter, this work utilizes the RUMPS401 as the baseband processor, which due 

to its inherently low processing power would not yield competitive performance 

on both the Turbo Code and the BPSK modulation-demodulation scheme. 

Hence, the testing is performed to verify that the SDR-based transceiver system 

built in this work is fully functional on the physical layer level with reasonable 

performance. 

The rest of this chapter is arranged into three sections as follows. Section 

one describes the software-side integration of the Turbo Code and the BPSK 

modulator-demodulator, along with the physical setup of the complete 

transceiver module. The second section presents the system testing procedures 

as well as its results and analysis. Lastly, section three summarizes the chapter. 
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6.1 Transceiver System Integration 

As mentioned in previous chapters, a single transceiver module is 

composed of the RUMPS401 as the baseband processor and the Lime 

LMS6002D which performs all necessary analog signal processing and 

transmission. The Turbo Code software runs regardless of the Lime LMS6002D 

specification, while the BPSK modulator-demodulator software was designed 

with interfacing against Lime LMS6002D in mind. However, both software was 

developed with the RUMPS401 resources as the most crucial consideration. 

To allow the transceiver module to function, the RUMPS401 is required 

to run the Turbo Code alongside the BPSK modulator-demodulator software, 

while also interfaces with an application processor on which the transmit data 

is generated and received. The two software as well as the interface to the 

application processor therefore must be integrated to allow a fluent and 

repetitive function of data transmission and reception. Furthermore, the 

hardware setup is as important to allow the actual over the air wireless 

transmission and reception. This subchapter discusses these things in separate 

sections presented below. 

6.1.1 Software Integration of Turbo Encoder and BPSK Modulator 

Figure 6.1 depicts the complete flow of the software running on the 

RUMPS401 for the transmitter module. As shown in the figure, the software 

comprises of two phases, the setup process and the transmitter loop. The setup 

starts with the RUMPS401 initializing its internal timer and variables required 
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for both the Turbo Code and BPSK modulation-demodulation. It then waits for 

a signal from the application processor instructing the configuration and 

calibration of the Lime LMS6002D, which are carried according to the 

procedure discussed in Chapter Five and the Radio Frequency (RF) 

specification of the wireless system. Specification details such as the carrier 

frequency and transmission bandwidth shall be discussed in the next subchapter 

during the system test setup. Once the Lime LMS6002D is initialized, the 

software goes into the transmitter loop. 

 

Figure 6.1 Transmitter Software Flow 

The transmitter loop comprises of three main states, which are the idling 

state, the encoding state, and the transmitting state. Idling state is the first state 

entered by the transmitter software after the Lime LMS6002D initialization. In 

this state, the RUMPS401 waits for 256-bit data frame from the application 

processor, which upon its reception causes the software to transition into the 
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encoding state. In the encoding state, the data frame is Turbo-encoded into a 

768-bit codeword and augmented with the synchronization preambles to form 

the transmit frame. The RUMPS401 then enters the transmitting state where it 

starts its internal timer, performs the in-time pulse shaping calculation 

according to the transmit frame, and drives the pulse values into the Lime 

LMS6002D for transmission as described in Chapter Five. Once the last pulse 

of the transmit signal is sent, the RUMPS401 turns off its timer and re-enters 

the idling state, in which it is ready for the next data frame. The loop continues 

until the transmitter module is reset or powered off. 

 

Figure 6.2 Transmit Side RUMPS401-Application Communication 

The transmitter software only accepts data frame from the application 

processor in the idling state and treats each transmitted frame as completely 

separated data, i.e. it does not retain information regarding past transmissions. 

Should a transmission of two identical frames is required, the application 

processor must send the original data frame to the RUMPS401 twice which then 

send them on two distinct burst transmissions, even if the retransmissions are 

consecutive. The RUMPS401 and the application processor which in this case 

is a Python-based program running on a desktop PC are communicating based 

on a simple protocol defined in Figure 6.2. 
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The protocol requires data exchange to be done with a set of defined 

codes known to both parties. As shown by the figure, the codes are simply the 

RUMPS401 software state represented by 8-bit values, except for one. The 

state-based codes are used by the RUMPS401 to update its current state to the 

desktop program hence it can act accordingly, i.e. keeping track of the 

transmission and sending the data frame only when the RUMPS401 is in idle 

state. The only code that is not based on the RUMPS401 state is the data frame 

header which is sent by the application processor to the RUMPS401, indicating 

the start of the 256-bit data frame transfer. Communication between the 

RUMPS401 and the desktop program is performed via Universal Asynchronous 

Receiver-Transmitter (UART) interface, which is part of the transceiver 

hardware detail described in later section. 

6.1.2 Software Integration of Turbo Decoder and BPSK Demodulator 

Shown in Figure 6.3 is the complete flow of the receiver software 

running on the RUMPS401. Similar to the transmit side, the software consists 

of two phases, the setup process which is identical to the transmit side and the 

receiver loop. The only difference of the setup process between the transmitter 

and the receiver modules is the active chain. The transmitter module only 

activates the Lime LMS6002D transmit chain, while the receiver module only 

activates the receive chain. This is straightforward since the wireless system 

implements one-way communication. Additionally, activating only one chain 

reduces power usage by half since each chain consumes around 260mA. After 

the Lime LMS6002D configuration and calibration, the receiver software enters 

the receiver loop. 
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Figure 6.3 Receiver Software Flow 

The receiver loop consists of six distinct states, which are the detection 

state, the timing correction state, the payload retrieval state, the frequency 

correction state, the decoding state, and the sending state. Upon the Lime 

LMS6002D initialization process, the RUMPS401 enters the detection state 

where it monitors start of any transmission through the signal received by the 

Lime LMS6002D. Once the start of a frame or transmission is detected, the 

RUMPS401 enters the timing correction state for synchronizing the receiver 

sampling instance. As described in Chapter Five, the timing correction is 

performed with the help of 16 bits of timing preambles located in the beginning 

of the frame. The RUMPS401 then enters the payload retrieval state where it 

samples and buffers the rest of the frame based on the timing corrected on the 

previous state. Operations within these three states are timing critical since they 

are performed while receiving the signal. 
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𝑁𝑜𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
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      (6.1) 

The other three states in the receiver loop operates around the buffered 

data and have less timing constraint. In the frequency correction state, the 

buffered data is re-rotated based on the phase offset calculated from the 

frequency preambles, as described in Chapter Five. The RUMPS401 then enter 

the decoding state where it decodes the frequency-corrected data based on the 

Turbo decoder software discussed in Chapter Four, preceded by estimation of 

noise variance based on those data. The noise variance estimation is performed 

using a simple formula provided in equation 6.1 (Reed & Asenstorfer, 1997), 

where 𝑥𝑘 denote the 𝑘𝑡ℎ data bit and N denote the total data bit, which in this 

case is 256.  Since the formula includes a number of multiplications, it is 

cooperatively performed by the IO Control Core and the DSP Core in a similar 

fashion to the joint-calculation described in previous chapters, i.e. the 

multiplications are loaded to the DSP Core’s MAC hardware. The estimated 

noise variance value is then used for the rest of decoding process. Continuing 

to the sending state, the RUMPS401 uses the resulting likelihood ratio for hard-

decision of the bits value and passes those values to the desktop program via 

UART interface before returning to the detection state. 

 

Figure 6.4 Receive Side RUMPS401-Application Communication 
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As in the transmit side, the application processor is a simple Python 

program running on a desktop PC. Contrary to the transmit side that requires 

protocol for communication between the RUMPS401 and the application 

processor, the receive side is much simpler since the communication is only one 

way, i.e. from the RUMPS401 to the desktop program. The only feedback from 

the application processor to the RUMPS401 is the acknowledgement for flow 

control during transfer of the received data bit. Figure 6.4 depicts the simple 

communication between the RUMPS401 and the desktop program on the 

receiver side, which implements no protocol. Details of the desktop program for 

both transmitter and receiver end are presented in the next subchapter as the 

programs are developed for testing purpose. 

6.1.3 Transceiver Hardware Setup 

Figure 6.5 depicts a detailed single transceiver module setup. The 

RUMPS401 connects with the Lime LMS6002D’s digital baseband line through 

the compact Hirose FX10A-80A connector, along with the 4-pins SPI 

connection for register configuration. Silicon Lab’s Si5356-EVB clock 

generator board supplies a 40MHz clock signal to the Lime LMS6002D as the 

PLL reference clock. The RUMPS401 is connected to the PC via a USB-to-

UART module, which provides translation between the transistor-transistor-

logic (TTL) signal on the RUMPS401 side and USB signal on the PC side. This 

facilitates communication between the RUMPS401 and the Python-based 

transmitter or receiver program, based on the UART signaling protocol. 
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Figure 6.5 Wireless Module and Application Processor Setup 

The PC also runs Silicon Labs ClockBuilder Desktop Software which 

allows simple management of the clock signal generated by the Si5356-EVB 

over the USB connection. This software provides graphical user interface (GUI) 

in which user can configure the output clock frequency by simply specifying 

the desired frequency. Two separated power supplies unit provides 3.3V and 5V 

power to the RUMPS401 and the Lime LMS6002D, respectively. Lastly, the 

Lime LMS6002D RF interface connects to a 433MHz stub antenna from Siretta. 

The antenna has a 50 ohms input impedance and provides gains of 3dB. The 

carrier frequency is fixed at the license-free 433MHz due to the widely available 

antenna support and considering the testing environment, it would have less 

interference compared to the other 2.4GHz. More details on the testing 

environment is provided in the next subchapter. 

6.2 Transmit and Receive Testing 

As discussed previously, testing carried on the transceiver system built 

in this work is intended for functionality verification. The test measures and 
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compares the system’s receiver error rate under two setups, with and without 

Turbo Code. This subchapter describes the testing setup and results in three 

sections. Section one describes the testing environment and the Python-based 

desktop application developed for the testing. The second section presents the 

test result of the system without Turbo Code. Finally, section three presents the 

test result of the system with Turbo Code along with the comparison against the 

result of section two. 

6.2.1 Transceiver Test Environment Setup 

The test was carried in a simplex configuration with two wireless 

modules, each set up with a PC as shown in Figure 6.5. One module acts as 

transmitter while the other acts as receiver, both running the respective software 

as described previously. In this test, the error rate is measured by calculating the 

bit error rate of forty 256-bit data frames that has been pre-randomized and 

stored by both the transmitter and receiver. The transmitter desktop application 

loads those frames and send them over on forty burst transmissions. Upon a 

complete reception process, the receiver desktop application compares the 

received frames against the stored frames and computes the bit error rate. 

Due to the receiver requiring more time for the frequency correction and 

Turbo decoding, the transmitter should insert sufficient delay between 

transmission of each frame to assure that each frame is received. Note that the 

transmission and reception are performed on a physical level without any 

automatic flow control or re-transmission between the modules. Hence, delay 

between frame transmissions is inserted manually by instructing the transmitter 
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desktop application to transmit on a keystroke. Figure 6.6 and Figure 6.7 depicts 

the flow of the transmitter and receiver desktop application, respectively. The 

two applications are developed to match the software running on the 

RUMPS401 and the testing scenario. 

The transmitter desktop application starts by instructing the RUMPS401 

to initialize the Lime LMS6002D. It then waits for a user keystroke before 

sending a frame to the RUMPS401 for transmission. The application tracks the 

RUMPS401 software state before allowing the initiation of another frame 

transmission. This loop continues until all forty pre-randomized frames has 

been sent. The receiver desktop application starts in the same way by instructing 

the Lime LMS6002D initialization process. It then waits for the received data 

frame from the RUMPS401 and calculates the bit error rate based on the 

comparison against the stored frame. 

 

Figure 6.6 Transmitter Desktop Application Flow 
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Figure 6.7 Receiver Desktop Application Flow 

The two wireless modules operate on 433MHz center frequency and 

transmission bandwidth of 1.5MHz in a line-of-sight (LoS) configuration. The 

communication test was performed in a computer lab, in an empty condition out 

of normal office hour to minimize any interference from other devices. Rather 

than the license-free 2.4GHz frequency band, 433MHz frequency was chosen 

as it suffers less interference than the more common 2.4GHz band used by Wi-

Fi, Bluetooth, or any wireless peripherals. Throughout the test, the receiver error 

rate was measured under varying transmit power and modules distance, as well 

as the number of frequency preambles. Details regarding the test schemes and 

results are presented in the following sections. 

6.2.2 Test of Transceiver System without Turbo Code 

The transceiver system test was performed gradually in two steps. First, 

the BPSK modulator-demodulator functionality was tested by varying the 

transmit power, the LoS range between modules, and the number of frequency 

preambles inserted between data. The transmit power is varied by changing the 
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first stage amplifier of the Lime LMS6002D transmit chain, the TXVGA1 

through registers configuration (Microsystem, 2012). Changing the LoS 

distance is straightforward, as well as the number of frequency preambles 

insertion. 

At this point, Turbo encoder and decoder block was excluded from the 

transmitter and receiver. The test was performed to verify that the transceiver 

system behaves properly, such as the error rate dropping as transmit power 

increase. The second step of the test intends to verify whether the Turbo Code 

can provide improvement over the non-coded system as the number of iteration 

increases. This section covers the first test step, while the second is presented in 

the next section. 

 

Figure 6.8 Non-coded Test Result for Varying Data Bit Chunk Size 

As described in Chapter Five, the transmit frame supports flexible 

number of frequency correction preambles which provides trade-off between 
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the correction accuracy and the data rate. Figure 6.8 presents the test result of 

the varying number of frequency preambles. Each point in the figure represents 

the cumulative bit error rate for forty frames of 256 bits data. As shown by the 

figure, the receiver bit error goes down as the data chunk size decreases. Chunk 

size is the number of data bits between every insertion of the two bits frequency 

correction preamble. Chunk size of forty-eight means there are sixteen pairs of 

frequency preamble, each inserted every forty-eight data bits. 

The amount of phase offset computed at certain pair frequency 

preambles is used to correct the consequent data bits in a cumulative manner. 

The computation introduces certain degree of inaccuracy which accumulates if 

used for continuous correction and in turn causes the increment of error rate. 

Hence, it is straightforward that the smaller chunk size yields better error rate 

due to the more frequent computation of phase offset, which is shown by the 

test result. In this test, the transmitter transmits with the TXVGA1 fixed at -

17dB to the receiving module at one-meter LoS distance. 
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Figure 6.9 Non-coded Test Result for Varying Transmit Power 

The test continues by verifying the receiver error rate against varying 

transmit power, whose result is shown in Figure 6.9. It is evident from the graph 

that the transceiver system is behaving properly since the error rate goes down 

as the transmit power increases. In this test, the chunk size is fixed at 24 bits 

and the distance between the two modules are kept in one-meter LoS distance. 

Figure 6.10 presents the test result in which the distance between the two 

modules is varied. The transmitter transmits with the TXVGA1 fixed at -17dB, 

while the chunk size is fixed at 48 bits. As shown by the graph, the system 

demonstrated proper behavior of the diminishing error rate as the modules are 

spaced closer. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-25 -23 -21 -19 -17 -15 -13

B

E

R

Tx VGA1 (dB)

Non-coded System Test (BER vs Transmit power)

Unencoded
frame



175 

 

 

Figure 6.10 Non-coded Test Result for Varying Transmit Range 

6.2.3 Test of Transceiver System with Turbo Code 

Figure 6.11 shows the test result of the Turbo-coded transceiver system 

for varying transmit power. The Turbo-coded system error rate performance is 

tested for one and three Turbo decoding iterations and compared against the 

non-coded transceiver system under the same setup, i.e. chunk size of 48 bits 

and one-meter LoS transmit range. As in the non-coded system test, the error 

rate is calculated as the bit error rate percentage of total of forty 256-bits frames 

received. As shown by the figure, at the lower TXVGA1 power of -25dB the 

Turbo-coded system performs better than the non-coded system by 1.6 and 8.4 

percent on the first and third iteration, respectively. The improvement is more 

significant at higher TXVGA1 power of -13dB, where the Turbo-coded system 

has 23.2 and 45.7 percent better error rate than the non-coded system. On 

average, throughout the four different TXVGA1 power, the Turbo-coded 
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system provides error rate improvement of 12.4 and 33.8 percent on the first 

and third iteration, respectively. 

 

Figure 6.11 Comparison of Turbo-coded and non-coded Transceiver for 

Varying Transmit Power 

Similarly, test result for the varying transmission range is presented in 

Figure 6.12, where the error rate of Turbo-coded system at the first and three 

iterations are compared against the non-coded system. For this test, the chunk 

size is fixed at 48 bits and TXVGA1 power of -13dB. It is evident from the 

graph that the Turbo-coded system starts to perform better on transmit range of 

two meters, improving the error rate by 13.5 and 31 percent on the first and third 

iteration, respectively. The Turbo-coded system of one decoding iteration 

performs worse compared to the non-coded system at longer transmit range of 

three and four meters. At the same range, the Turbo-coded system at the third 

iteration provides almost no improvement. This behavior is a common 

characteristic of the Turbo Code, which is also shown by the Turbo Code system 

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

-25 -21 -17 -13

B

E

R

Tx VGA1 (dB)

Turbo-coded System Test and Comparison (BER vs 
Transmit Power)

Uncoded

Turbo itr 1

Turbo itr 3



177 

 

simulation discussed in Chapter Three, where the Turbo decoding provides 

equal or worse error rate performance at low SNR. 

 

Figure 6.12 Comparison of Turbo-coded and non-coded Transceiver for 

Varying Transmit Range 

It is observable from both Figure 6.11 and Figure 6.12 that the both the 

non-coded and Turbo-coded system are exhibiting poor error rate, with the third 

iteration Turbo-coded system achieving only around 10-1 BER. This BER value 

is much higher than the desired practical value of at least 10-6 (Li, Maunder, Al-

Hashimi, & Hanzo, 2013). The poor BER performance is defined by a lot of 

factors which can be grouped into three domains, which are the digital 

computation accuracy, the analog RF design, and the testing environment. 

In this work, the digital computation suffers from numerous degradation 

due to the use of various approximations which exists throughout the Turbo 

Code and BPSK modulator/demodulator implementation, such as the Max-
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BCJR algorithm and receiver synchronization method. Moreover, the 32-bit 

fixed-point data type used also suffers from inaccuracy due to the more limited 

precision compared to floating point type of the same size. The analog RF 

design includes numerous factors such as carrier frequency, bandwidth, antenna 

design, receiver sensitivity, internal thermal noise. These factors are just 

couples of dozen factors affecting the link quality, which are yet to be 

considered in the scope of this work. Lastly, the testing was performed in a 

normal room with no means of measuring or controlling the channel condition, 

especially its SNR. These factors altogether contribute to the error rate exhibited 

by the wireless system.  

6.2.4 Transceiver Data Rate and Power Usage Analysis 

Based on the variable-sized transmission frame format, data rate of 

2kbps, and Turbo decoding time of 0.73s, the radio air time as well as the actual 

data rate can be derived in Table 6.1 below.  

Table 6.1 Transceiver Data Rate and Air Time 

Chunk size 
(bits) 

No of 
freq-pilot 

pairs 

Total 
bits 

Air time 
(s) 

Air time 
percentage 
(Rx-decode) 

Actual data rate 
(bps) 

48 16 816 0.408 35.85% 224.9560633 

32 24 832 0.416 36.30% 223.3856894 

24 32 848 0.424 36.74% 221.8370884 

16 48 880 0.44 37.61% 218.8034188 

 

The number of frequency preamble pairs equals to the number of 

chunks, which is the 768 bits in codeword divided by the chunk size. The total 

bits in the frame hence is defined by 768 bits codeword, 16 bits detection and 
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timing preamble, and number of frequency preamble times two bits. With 

symbol rate of 2kbps, the radio air time for each configuration of chunk size can 

be derived as well. Assuming a continuous operation of receive-decode on the 

receiver end, the Lime LMS6002D is active for 35-37% of the operation time, 

which allows the device to be temporarily turned off while the RUMPS401 is 

processing the frame. If a periodical transmit-receive scheme is considered, the 

transmitter would have a similar air time to the receiver and in fact consumes 

less power as the RUMPS401 can be turned off as well after the frame is sent. 

The transceiver actual data rate is defined for the 256 original data bits 

transmission over a single receive-decode cycle. 

Table 6.2 RUMPS401 Current Consumption Under Idle Loop 

Cores active Current consumption (mA) 

All 32.1 

IO Core 3.4 

Normal Core 0 6.5 

Normal Core 1 6.8 

DSP Core 3.3 

NoC 12.1 

 

Table 6.2 lists the RUMPS401 current consumption measurement on 

3.3V power supply with all cores running in an idle loop, and alternatively 

putting only one core doing idle loop while others are put to sleep. On the other 

hand, the Lime LMS6002D operates on 5V power supply and consumes 260mA 

when turned on. Table 6.3 presents the transceiver energy consumption in terms 

of transceiver active time, which is the variable air time plus the decoding time 

of 0.73s. The energy consumption is derived under the same repetitive receive-

decode cycle as Table 6.1, in which none of the cores are put to sleep. 
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Table 6.3 RUMPS401-LMS6002D Transceiver Energy Consumption 

Chunk 
size 

Air 
time 
(s) 

Active time 
(air + 

decoding) 
(s) 

LMS6002D energy 
consumption 

(Watt-air time) 

RUMPS401 energy 
consumption 

(Watt-active time) 

Total energy 
consumption 
(Watt-active 

time) 

48 0.408 1.138 0.530 0.120 0.651 

32 0.416 1.146 0.541 0.121 0.662 

24 0.424 1.154 0.551 0.122 0.673 

16 0.44 1.17 0.572 0.124 0.696 

 

Despite being active for the whole receive-decode cycle which is almost 

three times the air time, the RUMPS401 consumes much less power compared 

to the Lime LMS6002D at only one fifth of the later. A preferable 

countermeasure to reduce the whole transceiver energy consumption is by 

keeping the radio air time as low as possible. This can be achieved by increasing 

the baseband data rate with proper considerations. As discussed in Chapter Two, 

the use of higher degree of modulation such as QPSK or 8-PSK can greatly 

increase the data rate while keeping spectral efficiency, but in expense of the 

error rate. Another possible approach is to stick with BPSK and simply increase 

the data rate, e.g. doubling the data rate would reduce the radio air time and 

energy consumption by half. 

In practice, the energy limited IoT devices (Bormann, Ersue, & Keranen, 

2014) generally operates under two scenarios. The simplest method is to have 

the device normally turned off and turned on periodically for transmit-receive 

operation. A more complex approach set the devices in low-power mode while 

still maintaining a connection to the wireless network, either by some wake-up 

signal or other intelligent receive method, commonly implemented in higher 

communication layer. Assuming a periodical wireless operation of five seconds, 

for chunk size of 48 bits the LMS6002D and the RUMPS401 only needs to be 
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turned on for 8.16 and 22.76 percent of the time, respectively. In terms of 

continuous operation for long duration, larger wireless operation period will 

obviously lead to lower energy consumption as the radio is only turned on for 

smaller fraction of time. To lower energy consumption further, partial sleep can 

be integrated into the RUMPS401 decoding process.  

6.3 Summary 

This chapter has covered the integration of the Turbo encoder-decoder 

and BPSK modulator-demodulator as well as the interfacing to the desktop 

program into a complete functioning transmitter and receiver software running 

on the RUMPS401 MPSoC. The transmitter software accepts input of 256-bits 

data frame from the desktop program via the UART, Turbo-encodes the data 

and augments necessary synchronization preambles before sending it 

wirelessly. On the other hand, the receiver software monitors for any wireless 

transmission, receive the frame and performs necessary timing and frequency 

correction before passing it to the Turbo decoder. The decoder frame is then 

sent to the desktop program via the UART. The Python-based desktop program 

for both the transmitter and receiver was also described, along with the 

communication protocol between the programs and the RUMPS401. The 

complete set of functioning wireless module and the application processor was 

presented, upon which the testing was carried out. 

Testing for the transceiver system was carried out by simple one-way 

communication setup in a LoS configuration. Unit of measurement is the 

receiver error rate of the forty 256-bit frames, each transmitted over separated 
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burst transmission. The forty frames are pre-randomized and stored by the 

transmitter as well as the receiver and used throughout all test scenarios. Test 

on non-coded system has verified the functionality and behavior of the BPSK 

modulator-demodulator part. The error rate diminishes as the transmission 

power increases and as the modules are communicating in shorter range. The 

test result also shows the system range limitation at four meters, which is 

affected by numerous factors that are not in the scope of this work. Effect of the 

number of frequency preambles in the frame format described in Chapter Five 

was also verified here, where more frequency preambles results in better 

correction accuracy as the cumulative error introduced by phase offset 

estimation inaccuracy is suppressed.  

As shown by the test result, the Turbo-coded system works properly as 

well, providing significant improvement over the non-coded system at the third 

decoding iteration. At the best setup of this test, i.e. TXVGA1 power of -13dB 

and range of one meter, the Turbo-coded system provides 23.2 and 45.7 percent 

better error rate than the non-coded system. At longer transmission range of 

three meters and above, the Turbo-coded system provides equal or worse error 

rate than the non-codes system, which is similar to the behavior observed during 

the Turbo Code simulation presented in Chapter Three. 

On the other hand, the wireless system is performing poorly in terms of 

BER, with the third iteration of Turbo Code reaching only 10-1 BER, which is 

far from the practically desirable BER of 10-6  (Li, Maunder, Al-Hashimi, & 

Hanzo, 2013). This poor performance is affected by computation inaccuracy of 

various algorithm approximations, the design of RF region which is beyond the 
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scope of this project, and the test environment which has not been measured and 

characterized. As mentioned in the fourth and fifth chapters, implementing 

specialized hardware block as processor’s peripheral can increase the 

computation speed as well as the accuracy, which will serve as an interesting 

study for future work. Furthermore, more future work can be done around the 

design of RF region along with proper setup of test environment to realize a 

practical programmable wireless transceiver system with desirable error rate. 

 Based on the baseband data rate of 2kbps, the transceiver system has 

around 0.4s air time that slightly varies depending on the frame’s chunk size. 

For a complete receive-decode cycle of around 1.1s, the Lime LMS6002D RF 

frontend need to be active only for around 35-37% of the total time, while the 

RUMPS401 is active the whole time. Depending on the application with 

periodical receive-decode over larger period, the Lime LMS6002D active time 

percentage will drop further. In the long run, the RUMPS401 energy 

consumption can be decreased further by integrating partial sleep into its 

decoding process. 

Compared to the Lime LMS6002D, the RUMPS401 is active for almost 

three times longer whilst consuming only one fifth energy during the receive-

decode cycle. As the programmable RF frontend is dominating the power 

consumption, reduction of the transceiver’s energy consumption can be 

achieved by lowering the air time, either by using higher degree of modulation 

or simply increasing the raw data rate with proper consideration of its effect 

against error rate. This opens the development of low-power programmable 

SDR as another interesting area of research for future work. 



 

 

CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS  

As described in the beginning of this writeup, the ultimate goal of this 

work is to contribute to the development of wireless system that is suitable for 

Internet of Things (IoT) applications, mainly considering the ultra-low power 

operation and high programmability aspects of the wireless system. Low power 

performance is critical as IoT devices must last as long as possible on a given 

battery power source. This leads to the comparative study of narrowband and 

spread spectrum system as well as the use of Turbo Code in attempt to 

significantly reduce the receiver error rate, hence resulting in lower power 

consumption. The wireless module programmability is as important to allow 

multitude of devices to adapt to the rapid development of the IoT wireless 

protocol, by implementing the radio functionality in software rather than 

hardware. The digital processor on which the software runs must be 

programmable and with low power consumption but computationally powerful 

enough for the required radio operation. The RUMPS401 is chosen as it satisfies 

the first two requirements, while the computation performance aspect was 

achieved through proper optimization of the radio software.  

This chapter highlights the major contributions of the project and 

presents the conclusions drawn from the results and analysis given in Chapter 4 

and 6. Extending from this some recommendations are proposed as directions 

for further works.   
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7.1 Summary of Contributions 

A significant amount of time and efforts in this work is equally spent 

into the study of ASIC design principle as well as the comprehension of wireless 

communication system with emphasis on the physical layer which includes 

modulation and Turbo Code. The baseband processor used in this work, the 

RUMPS401 is the product of UTAR VLSI research center resulted from the 

application of First-Time-Success ASIC design methodology. The design, tape-

out, and verification of the four-core Multi-Processor System-on-Chip 

(MPSoC) is a joint-effort of the VLSI research center’s members, in which this 

author is fully responsible for the whole chip physical design. The chip is 

designed with industrial-standard EDA tools and fully functional in the first 

fabrication attempt. This work has demonstrated the chip functionality and 

capability for a complex, real-world application as a baseband processor. 

The wireless transceiver system built in this work has served as a proof 

of a fully functional wireless transmitter and receiver based on software-defined 

radio (SDR) implementation on a low-power and programmable MPSoC. The 

RUMPS401 is not equipped with any hardware accelerator that aids signal 

processing except a single-cycle multiplier hardware. Two main building 

elements of the wireless system, the Turbo Code and the BPSK modulator-

demodulator were fully implemented in software, which is designed with the 

RUMPS401 quad ARM M0 cores and UTAR NoC architecture and resources 

in mind. Despite the software being developed and optimized specifically for 

the RUMPS401, the simplification and parallel processing method devised for 

the Turbo Code can be generally adapted to other platforms. Likewise, the 
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BPSK modulator-demodulator implementation in this work proposes an 

approach that is suitable for low-power platforms where computational and 

memory resources is scarce.  

As a part of VLSI Research Center’s project, this work has contributed 

to the research center long-term goals of buildings human design resources, 

platforms and tools in form of hardware and software, as well capabilities to 

design and explore MPSoCs in the wider IoT settings. In terms of human 

resources, individuals involved in this research work as well as the RUMPS401 

development has nurtured capabilities in complete ASIC design methodology 

along with its use for IoT applications. The use of RTL platform from former 

works, and the application-level hardware and software designed in this work 

for the RUMPS401 has implied the research center eagerness towards long-term 

and continuous development cycle. 

Specifically, here are some major contributions and benefits from the 

development and implementation of SDR on low-power platforms: 

• The Turbo decoder optimization method that emphasizes around the 

reduction and simplification of complex mathematical operations can be 

adapted into other low-complexity processors with limited 

computational hardware resource. Most of the simplified operations 

consist of addition and subtraction, along with several multiplications. 

Fast multiplicator hardware can be commonly found in modern 

processors, even for the low-power variant.  
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• The Turbo decoder parallelism scheme devised for the RUMPS401 can 

be used as the reference for implementation on heterogeneous MPSoC 

platforms. The decoding algorithm is split into smaller tasks and 

assigned to the cores based on each core capabilities. Analysis on the 

use of sliding window for parallel processing as well as the memory 

requirements also provides a useful insight. 

• Gardner-based timing correction on the BPSK demodulator uses a 

simple approach for readjustment of the sampling time by the step of the 

receiver oversampling points. This allows the correction to be done only 

by the digital processor without changing the RF receiver’s Analog-to-

Digital Converter (ADC) sampling time. Furthermore, the interpolation 

that is usually required to predict the value at correct sampling time can 

be avoided by using multiple pairs of preamble bits.  

• The frequency correction method that estimates phase offset only on 

preambles and cumulatively correct the consequent data bits demands 

very simple calculations as well as relaxing the system from real-time 

calculation. The method trades off complexity for data rate and is 

suitable for low-power platforms. 

• Design of the wireless system software is modular. The Turbo Code, the 

BPSK modulator/demodulator, the Lime LMS6002D interfacing, and 

the desktop program interface are implemented as separated modules. 

This allows reusability of those components in other SDR-based 

transceiver systems. 
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7.2 Conclusion 

The cycle-accurate simulation performed on the Turbo decoder software 

during the optimization process, as well as the testing of the complete 

transceiver system yields several conclusions as follows: 

• Software implementation of Turbo decoding in low-power MPSoC 

could achieve significant speed improvement through simplification of 

calculations and parallel tasks distribution. The simplification focuses 

on reducing the number of mathematical operations that is expensive to 

carry such as multiplication, division, exponential, logarithm, etc. In the 

case of the RUMPS401, the multiplication is not a problem due to the 

multiplicator hardware available to the DSP Core. Parallel processing of 

the Turbo decoding can be achieved by splitting the algorithm into 

smaller tasks which are performed in parallel on the same or different 

chunks of the frame. 

• For heterogeneous MPSoC such as the RUMPS401, it is better to assign 

different tasks to each core rather than having them performing the same 

type of task over different data sets. Data-centric task assignment 

requires each core to perform multiple type of tasks, which results in 

complex communication among the cores as they must identify which 

task’s data is being communicated now. This complex communication 

introduces data overhead and additional control system, which, as 

shown by the simulation, produces slower decoding performance. 

• The BPSK modulator/demodulator implementation adheres to the same 

concept observed during the Turbo Code optimization process, which 
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are the simplification of complex calculations and task parallelization 

by over different processing elements according to their resources. This 

demonstrates that the same concept can be adopted in any software 

implementation where hardware resources are limited for the given 

application. 

• Pulse shaping function of the BPSK modulator, along with the receiver 

synchronization performed on the BPSK demodulator is proven to work 

through a real wireless transmit and receive testing. Despite the 

compromised and simple calculations on the synchronization part, the 

wireless system demonstrates proper behavior in which the receiver 

error rate diminishes as the transmit power increase and the wireless 

range gets closer. Likewise, the trade-off in the proposed frequency 

correction scheme was also verified, where the correction accuracy 

increases as preambles insertion increases. 

• Compared to the ideal algorithm, the Turbo decoding implementation in 

this work suffers from many accuracy degradations. The use of the Max-

BCJR algorithm, the sliding window method, the approximation of 

logarithmic function, and the use of fixed-point arithmetic contribute to 

the loss of decoding accuracy. The tests result shows that the Turbo-

coded system provides quite significant improvement over the non-

coded system, which is 23.2 and 45.7 percent at the first and third 

iteration.  

• The transceiver system exhibits BER of 10-1 at the third iteration of 

Turbo Code, which is poor compared to the practically desired BER of 

10-6. This stems from the accuracy degradations in the Turbo Code and 
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receiver synchronization, the design of RF region which is beyond this 

work’s scope, and the test environment. 

• The transceiver system’s energy consumption is dominated by Lime 

LMS6002D despite being active for only 35-37% of a receive-decode 

period. Lower energy consumption over longer period can be achieved 

by increasing the periodical transmit-receive duration or reducing the air 

time with higher baseband data rate. Further power saving can be done 

by integrating partial sleep into the RUMPS401 decoder software. 

7.3 Recommendations 

Based on the conclusions, below are some recommendations for future 

works:  

• A significant speed improvement on the whole SDR software which 

includes Turbo Code and BPSK modulator/demodulator can be 

achieved by enhancing the RUMPS401 with additional divisor or 

logarithmic hardware accelerator. As shown during the Turbo decoder 

optimization process, most of the performance bottleneck lies in the 

logarithmic operation and the arbitrary division. This allows fast 

performance improvement with very little change on the RUMPS401 

hardware and allows the reuse of most of the current software. 

Additionally, hardware accelerator for certain operation commonly 

provides better accuracy than the approximated version.   
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• Implementation of the transceiver system on other MPSoC platforms 

with similar characteristic and resources can be performed and 

compared against the current work.  

• More study can be performed on the design of the radio specifications 

such as the choice of antenna, carrier frequency, modulation technique 

to provide longer transmission range and better robustness against 

interference. Study of the system error rate on properly set and measured 

environment can be carried out as well, along with the implementation 

of the countermeasures. 

• The whole transceiver system can be further improved by incorporating 

power management system. The RUMPS401 is capable of individual 

core sleep-wake, while the Lime LMS6002D can work straight after 

power on by simply configuring the registers. The design of a periodical 

transmit-receive or wake-on-carrier-detect protocol would further 

complement the pursuit of a power saving transceiver module which is 

only powered up during use. 

• The complete transceiver module built in this work stresses on the 

RUMPS401 usage as the baseband processor for handling wireless 

communication. The module can be directly implemented as a complete 

IoT node by adding sensors and actuators with the RUMPS401 as the 

microcontroller unit. This eliminates the need of additional 

microcontroller unit.   
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APPENDIX A 

RUMPS401 SOFTWARE-BASED TURBO DECODER PSEUDOCODE 

/*  

  IO Core - RUMPS401 Turbo Decoder Pseudocode 

  V1.4 

*/ 

 

constant frameSize = 256 

constant windowSize = 32 

constant maxIteration = variableValue 

 

while decoder is on 

{ 

  get systematicBit[frameSize] from RX_buffer 

  get parityBit1[frameSize] from RX_buffer 

  get parityBit2[frameSize] from RX_buffer 

 

  init LLRarray[frameSize] = 0 

  init pktType = null // track multiple type of transfer 

  init bitSent = 0 // tracks no of bit-parities sent to dspcore 

  init bitDecoded = 0 // tracks no of decoded bits 

  init bitSendHold = false // flag, control bit transfer to dspcore 

  init decoderNo = first // identify 1st or 2nd decoder 

  init halfIterationCtr = 0 // track no of decoding iteration (half) 

  init calcLLRorLe = Le // flag, control calculation of LLR/Le 

 

  noiseVar = co-calculate received frame's noise variance with dspCore 

  noiseVar = 1 / noiseVar 

 

  loop until last bit and last iteration reached 

  { 

    if thereIs NocPkt from dspCore && pktType == null 

      pktType = getNocPkt from dspCore 

     

    if thereIs NocPkt from normalCore0 

    { 

      if decoderNo == first 

        index = bitDecoded 

      else if decoderNo == second 

        index = drpInterleave(bitDecoded) 

         

      LLRarray[index] = getNocPkt from normalCore0 

      increment bitDecoded 

      nocSend(ACK) to normalCore0 

       

      if bitSent < frameSize && 

         bitSendHold == trueWaitDecoding && 

         bitDecoded is multiple of windowSize && 

         numberOfWindowSent - numberOfWindowDecoded < 2 

      { 

        bitSendHold = false 

      } 
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      if bitDecoded = frameSize 

      { 

        reset bitSent = bitDecoded = 0 

        bitSendHold = false 

         

        toggle decoderNo = first to second or second to first 

         

        increment halfIterationCtr 

         

        if halfIterationCtr == one iteration before the last 

          calcLLRorLe = LLR 

         

        if halfIterationCtr == the last iteration 

        { 

          clear RX_buffer 

          re-allow data reception // blocked after a frame received 

          reset halfIterationCtr = 0 

          calcLLRorLe = Le 

           

          frame fully decoded, break loop 

        } 

      } 

       

    } 

     

    if pktType == PktHeader_bitACK && thereIs NocPkt from dspCore 

    { 

      pktType = null 

      read ACK from dspCore 

      bitSendHold = false 

       

      if bitSent == frameSize ||  

        (bitSent is multiple of windowSize && 

         numberOfWindowSent - numberOfWindowDecoded >= 2) 

      { 

         bitSendHold = trueWaitDecoding 

      } 

          

    } 

     

    if bitSent < frameSize && bitSendHold == false 

    { 

      if bitSent ==0 

      { 

        nocSend(PktHeader_channelControlInfo) to dspCore 

        nocSend(calcLLRorLe) to dspCore 

        nocSend(noiseVar) to dspCore 

        wait for ACK from dspCore before starting the decoding 

      } 

           

      if decoderNo == first 

      {    

        index = bitSent 

        parity = parityBit1[bitSent] 

      } 

      else if decoderNo == second 

      { 

        index = drpInterleave(bitSent) 
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        parity = parityBit2[bitSent] 

      } 

       

      nocSend(PktHeader_Bits) to dspCore 

      nocSend(systematicBit[index]) to dspCore 

      nocSend(parity) to dspCore 

       

      if halfIterationCtr == 0 

      { 

        nocSend(logn(0.5)) to dspCore 

        nocSend(logn(0.5)) to dspCore 

      } 

      else 

      { 

        nocSend(logn(LLR[index])) to dspCore 

        nocSend(logn(1-LLR[index])) to dspCore 

      } 

 

      increment bitSent 

      bitSendHold = trueWaitACK 

    } 

  } 

} 
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/*  

  Normal Core 0 - RUMPS401 Turbo Decoder Pseudocode 

  V1.4 

*/ 

 

constant frameSize = 256 

constant windowSize = 32 

 

init deltaBuffer[windowSize] 

init alphaBuffer[windowSize] 

init betaBuffer[windowSize] 

 

init bitDeltaRecvd = 0 // count number of complete d metric received 

 

while decoder is on 

{  

  if bitDeltaRecvd == 0 

    init alphaBuffer[0] according to trellis 

  else 

    init alphaBuffer[0] from last window's iteration 

   

  for i=1 to windowSize 

  { 

    wait for noc transfer from dspCore 

    deltaBuffer[i] = getNocPkt from dspCore 

     

    increment bitDeltaRecvd 

    bitDeltaRecvd MOD frameSize // keep number in range of frameSize 

     

    nocSend(ACK) to dspCore 

  } 

 

  calculate alpha for a window 

  calculate beta for a window 

   

  nocSend(alphaBuffer) to dspCore 

  nocSend(betaBuffer) to dspCore 

} 
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/*  

  Normal Core 1 - RUMPS401 Turbo Decoder Pseudocode 

  V1.4 

*/ 

 

constant frameSize = 256 

constant windowSize = 32 

 

init calcLLRorLe = unknown 

init llrConverted = 0 

 

while decoder is on 

{  

  if calcLLRorLe == unknown && thereIs NocPkt from dspCore 

  { 

    calcLLRorLe = getNocPkt from dspCore 

    nocSend(ACK) to dspCore 

  } 

   

  if calcLLRorLe != unknown && thereIsNocPkt from dspCore 

  { 

    LLR = getNocPkt from dspCore 

     

    if calcLLRorLe == Le 

      convert LLR from ratio to probability value 

     

    if llrConverted+1 is multiple of 8 

      nocSend(ACK) to dspCore 

     

    nocSend(LLR) to ioCore 

    wait for ACK from ioCore 

     

    increment llrConverted 

     

    if llrConverted == frameSize 

    { 

      reset calcLLRorLe = unknown 

      reset llrConverted = 0 

    } 

  } 

} 
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/*  

  DSP Core - RUMPS401 Turbo Decoder Pseudocode 

  V1.4 

*/ 

 

constant frameSize = 256 

constant windowSize = 32 

 

init pktType = null 

init bitRecvd = 0 // tracks number of bit received from ioCore 

init bitDeltaSent = 0 // tracks number of bit sent to NC0 for delta 

calc 

init deltaSendHold = false // flag, control transfer to NC0 

 

init calcLLRorLe = unknown 

init llrSent = 0 

init llrSendHold = false  

init noise_var = 0 

 

init deltaBuffer[2*windowSize] 

init alphaBuffer[windowSize] 

init betaBuffer[windowSize] 

 

init alphaRecvd = false 

init betaRecvd = false 

 

while decoder is on 

{ 

  co-calculate received frame's noise variance with ioCore 

   

  loop until last bit and last iteration reached 

  { 

    if pktType == null && thereIs NocPkt from ioCore 

      pktType = getNocPkt from ioCore 

       

    if pktType == PktHeader_channelControlInfo && 

       thereIs NocPkt from ioCore && 

       number of NocPkt from ioCore >= 2 

    { 

      pktType = null 

      calcLLRorLe = getNocPkt from ioCore 

      noise_var = getNocPkt from ioCore 

      nocSend(ACK) to ioCore 

    } 

     

    if pktType == PktHeader_Bits && 

       thereIs NocPkt from ioCore && 

       number of NocPkt from ioCore >= 4 

    { 

      temp_systematicBit = getNocPkt from ioCore 

      temp_parityBit = getNocPkt from ioCore 

      temp_apriori1 = getNocPkt from ioCore 

      temp_apriori0 = getNocPkt from ioCore 

       

      calculate_delta with above's parameter 

      save result to deltaBuffer[bitRecvd] 

      increment bitRecvd 
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      nocSend(PktHeader_bitACK) to ioCore 

      nocSend(ACK) to ioCore 

       

      pktType = null          

    } 

     

    if bitRecvd > bitDeltaSent && 

       deltaSendHold == false && 

       bitRecvd is multiple of windowSize 

    { 

      for i=1 to windowSize 

      { 

        nocSend(deltaForSingleBit) to normalCore0 

        increment bitDeltaSent 

        wait for ACK from normalCore0 

      } 

       

      deltaSendHold == true 

    } 

     

    if thereIs NocPkt from normalCore0 && 

       alphaRecvd == false && betaRecvd == false && 

       number of NocPkt from normalCore0 >= 8 

    { 

      alphaBuffer = getNocPkt from normalCore0 

      betaBuffer = getNocPkt from normalCore0    

    } 

     

    if llrSendHold == true && thereIs NocPkt from normalCore1 

    { 

      read ACK from normalCore1 

      llrSendHold = false 

    } 

     

    if alphaRecvd == true && betaRecvd == true && llrSendHold == false 

    { 

      calculate LLR for bit index [llrSent] 

       

      if llrSent == 0 

      { 

        nocSend(calcLLRorLe) to normalCore1 

        wait for ACk from normalCore1 

      } 

       

      nocSend(LLR) to normalCore1 

      increment llrSent 

       

      if llrSent is multiple of 8 

        llrSendHold = true 

       

      if bitDeltaSent is multiple of windowSize && 

         numberOfDeltaWindowSent - numberOfLLRWindowSent < 2 

      { 

        deltaSendHold = false 

      } 

       

      if llrSent is multiple of windowSize 

        reset alphaRecvd = betaRecvd = false 
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      if llrSent == frameSize 

      { 

        bitRecvd = bitDeltaSent = llrSent = 0 

         

        if calcLLRorLe == LLR 

        { 

          wait ACK for last bit's LLR from normalCore1 

          read ACK from normalCore1 

           

          frame fully decoded, break loop 

        } 

      } 

    } 

     

  } 

} 
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