

General platform for

Internet of Things Application

LEONG ZHE HAO

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.)Electrical & Electronics Engineering

Faculty of Engineering and Science

UniversitiTunku Abdul Rahman

January 2016

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Leong Zhe Hao

ID No. : 1301001

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “General platform for Internet of Things

Application” was prepared by LEONG ZHE HAO has met the required standard

for submission in partial fulfilment of the requirements for the award of Bachelor of

Engineering (Hons.) Electrical and Electronics at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2016, Leong Zhe Hao.All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Mr. See

Yuan Chark for his invaluable advice, guidance and his enormous patience

throughout the development of the research.

In addition, I would also like to express my gratitude to my loving parent and

friends who had helped and given me encouragement.

vi

GENERAL PLATFORM FOR

INTERNET OF THINGS APPLICATION

ABSTRACT

In this proposed application, the concept of Internet of Thing is used to develop the

framework for user application. The system is designed to collect and submit data to

the internet, control and monitor by the users remotely. A server is developed to

supply services to the healthcare devices and users, users can also access to the

server by using web browser and mobile application. The communication protocol

between the devices and server, the structure of the server framework and services of

the server are designed with the concept of the Internet of Thing to utilize the

resources. The protocol in this proposed application between the devices and server

is MQTT, the devices communicate with the server through MQTT packet. The data

published by the devices is stored in the server database and the database can be

accessed by using the web browser. The performance of the proposed framework is

also tested by using two different methods.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 15

1.1 Background 15

1.2 Aims and Objectives 16

1.3 Problem statement 16

2 LITERATURE REVIEW 18

2.1 Internet of Things 18

2.2 Network connectivity of devices 18

2.2.1 Wi-Fi 19

2.2.2 Zig-Bee 19

2.2.3 Bluetooth 19

2.3 Software 20

2.3.1 FreeRTOS 21

2.3.2 Contiki 21

viii

2.4 Hardware 22

2.4.1 ESP8266 22

2.5 IOT protocol 22

2.5.1 MQTT 22

2.5.2 CoAP 24

2.6 LAMP server 24

3 METHODOLOGY 25

3.1 System Framework 25

3.2 Hardware 26

3.2.1 SoC ESP8266EX 27

3.3 Cloud 30

3.3.1 HTTP server 30

3.3.2 Database 31

3.3.3 MQTT broker/ Web services 31

3.4 Block diagram 32

4 Result and Discussion 34

4.1 Testing and Background setting 34

4.1.1 ESP8266 Module 34

4.1.2 ESP8266 Firmware test 35

4.1.3 LAMP server configuration and testing 35

4.2 User Interfaces 41

4.2.1 ESP8266 Interfaces 41

4.2.2 Server Interface 43

4.2.3 Performance 45

4.3 Discussion 47

4.3.1 HTTP 47

4.3.2 Authentication and Authorisation 48

5 Conclusion and Recommendations 49

5.1 Conclusion 49

5.1.1 Personal Breakthrough 50

ix

5.2 Recommendations 50

5.2.1 MQTT in endpoint devices 50

5.2.2 MQTT security protocol 51

5.2.3 Email identification 51

5.2.4 AP mode of ESP8266 51

REFERENCES 52

APPENDICES 54

x

LIST OF TABLES

 TABLE TITLE PAGE

Table 2.1: Comparison between Wi-Fi, Zig-Bee and Bluetooth 20

Table 2.2 Control packet types 23

Table 4.1 Predefine order to enter flash mode 35

Table 4.2 Page Loading Benchmark 45

Table 4.3 Time taken and throughput benchmark 47

Table 4.4 Difference between GET and POST method 48

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 3-1: Proposed IOT framework 26

Figure 3-2: Embedded device system block diagram 27

Figure 3-3:ESP8266EX block diagram (Inc, 2016) 28

Figure 3-4: System architecture of Xtensa LX (Tensilica Xtensa

CS451, 2005) 29

Figure 3-5: Framework of Cloud 30

Figure 3-6: Procedure in block diagram 33

Figure 4-1 Schematic diagram ESP8266-01 34

Figure 4-2 Screenshot of UART terminal 35

Figure 4-3 Screenshot of Ping test 36

Figure 4-4 Screenshot of info.php 37

Figure 4-5 snippet of invalid protocol 37

Figure 4-6 Screenshot of MQTT version 37

Figure 4-7 Screenshot of PPA website 38

Figure 4-8 Screenshot of Python script result 38

Figure 4-9 Screenshot of MQTT server connection result 39

Figure 4-10 Screenshot of database tables and data 40

Figure 4-11 Database block diagram 41

Figure 4-12 Screenshot of initialization of ESP8266 42

file:///C:/Users/Leong/Desktop/FYP%20Leong/FYP%20Leong/New%20folder/FES-FYP-Report-Template-R4-Leong.docx%23_Toc461802294
file:///C:/Users/Leong/Desktop/FYP%20Leong/FYP%20Leong/New%20folder/FES-FYP-Report-Template-R4-Leong.docx%23_Toc461802295
file:///C:/Users/Leong/Desktop/FYP%20Leong/FYP%20Leong/New%20folder/FES-FYP-Report-Template-R4-Leong.docx%23_Toc461802298
file:///C:/Users/Leong/Desktop/FYP%20Leong/FYP%20Leong/New%20folder/FES-FYP-Report-Template-R4-Leong.docx%23_Toc461802299

xii

Figure 4-13 Screenshot of ESP8266 Interface 42

Figure 4-14 Snippet of Python script with MQTT 43

Figure 4-15 Screenshot of login page 43

Figure 4-16 Screenshot of registration form 44

Figure 4-17 Screenshot of user webpage 45

Figure 4-18 Screenshot of benchmark tool running in CMD 46

xiii

LIST OF SYMBOLS / ABBREVIATIONS

IOT Internet of Thing

CoAP Constraint Application Protocol

RTOS Real Time Operating System

LAMP Linux, Apache, MySQL, PHP/Python

PPA Personal Package Archives

MQTT MQ Telemetry Transport

HTTP Hypertext Transfer Protocol

HTML Hypertext Mark-up Language

RFID Radio-frequency Identification

NFC Near Field Communication

IP Internet Protocol

REST Representational Safe Transfer

xiv

LIST OF APPENDICES

 APPENDIX TITLE PAGE

APPENDIX A: Graphs 54

APPENDIX B: Computer Programme Listing 56

15

CHAPTER 1

1 INTRODUCTION

1.1 Background

Internet now not only connects people but things. Internet of Things (IOT) is a

device with computational intelligence which comes with network connection.

Computational intelligence can be an embedded system that consists of electronics,

micro-controller/processor, software and sensors. With the help of these components

and network connectivity, data are connected and exchanged.

 In the recent years, there was an enormous demand for portable health

monitoring devices. These devices are come in the form of wrist band, watch and

necklace which are able to measure heart rate, blood pressure, glucose level and so

on. With these devices, daily behaviour and health status can be tracked and

monitored by installing certain Apps in the smart phone. The Apps will collect and

store the data in the memory and form statistical information to users.

 With the Internet of Things, devices can be connected and communicated

over the internet. The devices can be connected to a router which connected to the

internet or form a network among themselves with the help of sensor network like

Zig-Bee, RFID, Bluetooth or NFC. Data that produced by these sensor network will

be sent to the local server to become information and then to the internet. This

information can be accessed from a desktop, smart devices or any equipment that is

connected to the internet in real time.

16

 By applying the Internet of Things, health monitoring system, home

automation system can be implemented. The health monitoring devices are

connected to the internet to reduce the efforts of doctor in rural areas; patients’ status

can be directly monitored from the central hospital. The improved system can reduce

the virtual distance between urban area and rural area, the patients in rural area can

get better healthcare services with the help of Internet of Things devices. The

embedded devices can be implemented into smart gadget to monitoring home status,

home automation and luminaire control. The power consumption, security switch,

camera and a personal status can be monitored through the system. With the help of

internet of thing concept, it can become a solution of smart home.

1.2 Aims and Objectives

The objectives of this project are

1. To identify the most suitable wireless module for IoT.

2. To design services and setup server to handle data and monitor, manage

information from the IOT devices.

3. To test the reliability and the performance of the proposed system.

1.3 Problem statement

In the recent years, the concept of internet of things is going into the technology

vision in the whole wide world due to the convergence of multiple technologies such

as RFID, low energy wireless IP networks, advance computational power in

embedded system, light-weighted internet protocol and so on. Vast number of

devices are enabled and connecting to the internet and the number is rapidly growing

in next few years.

17

 The IoT development is affected by two aspects, which are the market and

the technology. Several countries have started to embark and develop the IoT system

implementation into the projects that are focus in water, energy, building,

transportation and so on. The IoT opportunities bring an enormous global economic

value to the countries. Malaysia is just starting to take part in the IoT solution

implementation.

However, several challenges are stated to unleash the full potential of IoT

besides leveraging on existing technology strength in Malaysia. From the view of

technology, Malaysia has challenges to embark the IoT implementation with high

technology complexity, difficulty to replace the legacy systems that being used in

Malaysia and data accessibility and knowledge sharing availability in recent system.

("National Internet of Things (IoT) Strategic Roadmap: A Summary", 2015)

With the presence of wireless devices that available in market, robust and

complex machine to machine communication protocols that available in open source

community and complex operating software for wireless devices. An IoT system

framework is formed to lower down the barrier for IoT implementation in Malaysia

which can provide a complex system, compatible or easy to replace for legacy

system and increase the data accessibility and availability.

18

CHAPTER 2

2 LITERATURE REVIEW

2.1 Internet of Things

The internet of things (known as IOT) is the network formed by physical objects

such as embedded devices on vehicles, buildings and other applications. The devices

must have some basic requirements to be considered as IOT devices which are

software, sensors and network connectivity. These enable the objects to collect and

exchange data, share the data to the network.

The internet of things allows objects to be accessed and controlled remotely

across existing network infrastructure, creating opportunities for more direct

integration of the physical world into computer systems to improve accuracy,

efficiency and economic benefit.(Vermesan & Friess, 2013)

2.2 Network connectivity of devices

The IOT devices must have an ability to connect to network or form a personal area

network (PAN) by themselves, this feature is usually performed by using wireless

communications. In market, the devices are designed to come with a wireless module

and the modules have different spectrum and protocols such as Wi-Fi, Zig-Bee,

Blue-tooth and others.

19

 Due to the limitation of the power supply of the IOT devices, high power

consumption wireless protocol such as Wi-Fi and Bluetooth are not suitable and not

allow the device to run in long term. Low power versions of the protocols are then

developed to compete in the IOT market.

2.2.1 Wi-Fi

Wi-Fi is a wireless technology that intends for computer to computer communication.

It has a higher data rate compare to others. It allows maximum number of 2007

devices to form a network. It provides a stable connection and complexity for

different devices and applications. The disadvantage is it has a large power demand

and not suitable for power limit devices.(Lee, Su, & Shen, 2007)

2.2.2 Zig-Bee

Zig-Bee is a wireless protocol that special designed for the internet of thing devices

that have high mobility and monitoring or measuring simple parameter. It has lower

data rate compare to Wi-Fi. It allows large number of devices connected to the

network, the Zig-Bee protocol provides the devices can form different network

topology such as mesh, star and cluster tree topologies, the connection is not as

stable as Wi-Fi. The Zig-Bee is widely used for internet of thing devices application

due to its extremely low power consumption.(Lee et al., 2007)

2.2.3 Bluetooth

Bluetooth is frequently used as wireless protocol for file transfer between two mobile

phones; its data rate is between Wi-Fi and Zig-Bee. Bluetooth can only allow 8

devices to form a network and has a stable connection. It provides the Piconet and

20

scatternet topologies to the devices which are working in master slave mode. The

power consumption of Bluetooth is as low as Zig-Bee. It is widely used as wearable

devices with IOT features that can be connected to mobile phone. Bluetooth provides

a large number of RF channels that allow many users in same place without

interference. (Lee et al., 2007)

Table 2.1: Comparison between Wi-Fi, Zig-Bee and Bluetooth

Standard Wi-Fi Zig-Bee Bluetooth

IEEE spec. 802.11a/b/g 802.15.4 802.15.1

Max Signal rate 54Mb/s 250Kb/s 1Mb/s

Number of RF

channels

14 16 79

Topology BSS. ESS Star, Cluster tree,

Mesh

Piconet,

Scatternet

Number of cell

nodes

2007 65000 8

Nominal range 100 10-100 10

2.3 Software

Software is playing a main role for the internet of thing devices, most of the devices

are operating in real time and doing more than one task, a light weighted real time

operating system (RTOS) is ported into the devices to let them operate multi-task or

multi-thread in real time. The IOT devices need a capable system to manage the

network protocol, transmitting and receiving information while doing a certain task.

There are a lot of open source RTOS which are suitable for IOT devices that

can be obtained from internet. Some elements are considered when choosing a RTOS

for the devices such as scalability, modularity, connectivity and reliability. For

scalability, a developed software may not only run in a certain type of device, the

software must have an ability to run in different devices without a huge modifying in

code or effortless when porting to other device.

21

For modularity, the RTOS must able to fit in the devices while most of the

IOT devices have small RAM and ROM memory. Sometimes, the devices have very

low processing power and cannot perform complex calculation. RTOS must have a

simple structure in order to scheduling the task without giving too much effort to the

devices.

The operating system also needs to provide the ability to maintain the

network protocol to remain connectivity and provide stable and safety system in

normal condition for reliability. (Milinković, Milinković, & Lazić)

2.3.1 FreeRTOS

FreeRTOS is a real time operating system that is designed to run on microcontroller

platform. It has a small ROM and RAM size requirement and has few operating

modes. It is supported by different communities and able to port and run in various

devices. It is widely used as RTOS of MCU devices. The disadvantage is FreeRTOS

does not has a mechanism to avoid priority inversion which may increase the effort

for software development.(Milinković et al.)

2.3.2 Contiki

Contiki OS is not a real time operating system, due to its system structure, it is able

to perform similar performance compare with RTOS. The simple system structure is

also used in MCU platform and slowly become dominant in market. The OS has

implement IPv6 stack for IEEE 802.15.4 specification and support different type of

application protocol such as Constrained Application Protocol (CoAP) and light

weighted M2M protocol (Lwm2m). The simplicity to form IOT structure and

hardware network simulation are the main reason to make it popular.(Österlind, 2006)

22

2.4 Hardware

2.4.1 ESP8266

ESP 8266 is a system on chip mounted with Wi-Fi function. The chip is special

designed for internet of thing applications. It is usually function as a Wi-Fi module; it

is flashed with AT command firmware while the chips are manufactured. Users can

directly use the module by giving the AT-command through serial communication.

The AT-command has provided a simple function to become a Wi-Fi module and

perform connection with host or client.

The ESP 8266 is designed that it can be flashed in firmware easily; users can

flash in specific firmware into the module and become a standalone device, which is

independent from AT commands. The open sourced code for internet of thing

application can be obtained from the communities, which have implemented the IOT

protocols such as MQTT, CoAP, and Lwm2m.

2.5 IOT protocol

The IOT protocol provide the devices and cloud in the platform able to communicate

to each other. Using the standard protocol may increase the interoperability to the

devices, the devices can exchange data without any translator or interpreter in

between. Various IOT specific communication protocols are designed to overcome

the interoperation problem.

2.5.1 MQTT

MQTT is called as Message Queue Telemetry Transport, it is a messaging

framework that designed by the IBM and Eurotech. The MQTT is designed to be

light-weighted for the client and there is a MQTT broker which is running as a

service provider. The client can subscribe or publish data with a reference topic.

Once a client publishes a data to MQTT broker, the broker copies the data to the

subscribed client with a certain topic. So it is a publish/subscribe model where it

distinguishes the client with topic.

23

 The protocol of MQTT is working behind with a series of exchanging MQTT

control packet in a pre-defined way. The MQTT control packet consist of three

elements which are fixed header, variable header and payload. The fixed header is

the specific header that is used to distinguish type of MQTT control packet. The

variable header is used to send MQTT packet identifier to identify the packet types

with other packets. The payload is used to store data, payload may not necessary in

some situation. ("MQTT Version 3.1.1", 2015) The type of control packets for fixed

header is listed in table 2.2.

Table 2.2 Control packet types

24

2.5.2 CoAP

CoAP is called as constraint application protocol, the protocol is transferring

massages with UDP layer. The protocol is designed for machine to machine

applications, the devices can directly communicate to each other by using one of

their URL. Clients can access to the resources or data by using the REST model like

method such as GET, PUT, POST and DELETE.

2.6 LAMP server

LAMP is a software bundle that is used to become the web service solution stack.

The LAMP is named as an acronym of four open source components, which is Linux

operating system, Apache web server, MySQL database and PHP server side

scripting language. The combination of the software is used to build a dynamic

website and web applications.

25

CHAPTER 3

3 METHODOLOGY

3.1 System Framework

The framework of the Internet of Things is decided by the types of application, such

as REST, MQTT, XMPP architectures. The proposed application framework of IOT

consists of a main server that keeps subscribing the devices information, the router

act as an interpreter between the server and IOT devices. The proposed IOT

framework is shown in figure 3.1.

 In the proposed application, the IOT devices are connected to the server with

the help of router. The router acts as a gateway to connect the IOT devices to the

Internet and allows these devices to communicate with the server.

 The server which is usually called cloud provides services to the users. The

obtained data from the devices are stored in the database of the server.

Users can access the cloud server through the user application; the application

provides an interface between the cloud and the user. This means the application acts

as a middleware between the cloud and user.

26

 Figure 3.1: IOT application framework

3.2 Hardware

In order to achieve a power efficient and feasible monitoring system, an intergrated

Wi-Fi chip is selected. The chip should interpret with Wi-Fi module, micro-

controller, filters, amplifiers and power management modules. The chip should small

enough to fit into the proposed system. Based on these criteria, ESP8266EX by

Espressif system is selected. This chip will be further discussed in section 3.2.1.

 In the proposed application, the ESP8266 chip collects data from sensor and

processed by the microcontroller. In order to ensure devices to communicate

efficiently, a light weighted protocol is used in the application. The light weighted

implemented protocol is MQTT. For example, the ESP chip is designed to publish

the data periodically to the broker. The broker will send the data to the related topic

subscribed client.

IOT Cloud

Database Service

s

Router

IOT

devices

User’s

application

Figure 3.1: IOT application framework Figure 3-1: Proposed IOT framework

27

 The ESP chip and other components are used to form the IOT devices. The

components consist of LED, USB to UART converter, button, switches and

EEPROM. The EEPROM flash acts as a memory device to the ESP chip and used to

store the firmware of IOT devices. The IOT device in block diagram is shown as

figure 3.2.

3.2.1 SoC ESP8266EX

The system on chip (SoC) ESP8266EX is selected as the core element of the

embedded device. The ESP8266EX provides a microcontroller (3.2.1.1) and Wi-Fi

(3.2.1.2) on a single chip. The system block diagram of ESP8266EX is shown as

figure 3.3.

 Embedded Device

SoC

Data Storage

Sensor or

sensor

device

Microcontroller Wi-Fi

module

Router

Figure 3-2: Embedded device system block diagram

28

Figure 3-3:ESP8266EX block diagram (Inc, 2016)

 The ESP8266EX integrates the enhanced version of Tesilica’s LX106

diamond series 32 bit MCU with on chip SRAM which is the MAC part on the block

diagram. The ESP8266EX has 32 pins, the interfaces of the SoC are 16 GPIO pins,

I2C, SPI, on pin I2S, UART and a 10bit ADC. The ESP8266EX does not have flash

memory for user and operate at 3.3V. External flash and power regulator is required

to operate this chip.

 The ESP8266EX also interpret the antenna switches, RF filter, power

amplifier, low noise receive amplifier filter, power management modules in the

single chip with the micro-controller.

3.2.1.1 Microcontroller

The ESP8266EX integrate TensilicaXtensa LX106, 32bit micro-controller. The

controller is using 16bit RISC with Harvard Architecture and operates at 80MHz

frequency. The design architecture of the Xtensa LX MCU is shown as figure 3.4.

29

Figure 3-4: System architecture of Xtensa LX (Tensilica Xtensa CS451, 2005)

 The system has 80 core instructions set and the instructions are in 16bit and

24bit. It contains 64 general purpose physical registers and 6 special purpose register.

The data memory and instruction memory are separated and the memory sizes are

96KiB and 64KiB respectively.

3.2.1.2 Wi-Fi module

The Wi-Fi module is integrated in the chip and using 2.4GHz band with

WPA/WPA2 support. The specifications are 802.11 b/g/n, integrated TCP/IP

protocol stack, TR switch, balun, LNA, power amplifier and matching network. It

also has phase locked loop (PLL), regulators and power management unit (PMU) for

wireless signal capture. It needs an external antenna to capture wireless signal.

30

3.3 Cloud

Cloud computing provides a platform to perform the computer task for the users

which is connected to internet. It is the setup to provide services to the user and

devices. So, the cloud and internet of thing are inseparable. It gives a great

advantages when involve large amounts of data, where cloud computing has virtually

unlimited storage.

 On the cloud side, a PC which is connected to the internet, it is setup to

provide service to the user and devices. The PC is running with Linux OS and

executing some software, the software is web server software, database software,

python server and so on. The framework of the cloud is shown in figure 3.5.

3.3.1 HTTP server

HTTP server provides an interface between user and cloud, the software is Apache

web server. The software allows the PC to work as a HTTP server, handle request

from the user and send back webpage, the user can visit the cloud through a web

browser.

Figure 3-5: Framework of Cloud

Cloud

MQTT/Web

Services

Database

HTTP

server

Devices
User

User

Application

31

3.3.2 Database

Database will be used to store the data upload from devices and store the analytical

data for user. The database software is MariaDB. The MariaDB is an open source

database framework that provide the feature same as MySQL. The client software

like phpMyAdmin is used to configure, setting and organize the structure of the

database.

3.3.3 MQTT broker/ Web services

The web services in cloud are done by using python and MQTT broker, the web

service will become an interpreter between database, devices and HTTP server. The

web service also processes the data into analytical data and become statistical

information for user.

 In this proposed application, the MQTT is chosen between various lwm2m

protocols such as Co-AP, REST and so on. In this project, the IoT devices are

assumed to be run on a stable environment, the devices are able to connect to the

internet with a Wi-Fi router through internet service provider. The Wi-Fi system used

in normal operation is not lossy network available. So, the MQTT that rely on TCP is

more reliable than CoAP (UDP), the TCP provide a safer and loss-proof environment

to the transferred packet.

 Besides that, the architecture of the MQTT is publish-subscribe model, while

the CoAP is request response or resource observe model. The publish-subscribe

model has more advantages on this proposed application as the user application and

other devices can subscribe to same topic to get the certain message, the message

queue structure is well developed as a part of MQTT function. While using CoAP,

the message queue structure is needed to be developed in the python services.

32

3.4 Block diagram

The interface of ESP8266 is designed with LED, a few push buttons and USB to

serial converter. With these components, the ESP8266 chip is able to communicate

with the PC. This is followed by the deployment of the SDK in PC. Here, the

firmware is designed and developed.

 On the server side, the router is setup to direct the incoming request to the

server port. The LAMP server is used to run IOT services with python script. The

database, http server and PHP services are activated in the LAMP server. After

setting up, IOT services can be designed using python accordingly.

 An android app is developed to access through the database of the server.

33

Hardware setup for ESP8266

Set up SDK for ESP8266

Design, porting and implement the

ESP8266 firmware

Set up and configure the router

Set up and configure the IOT

server

Design user application

Add services and features on IOT

server

Figure 3-6: Procedure in block diagram

34

CHAPTER 4

4 Result and Discussion

4.1 Testing and Background setting

4.1.1 ESP8266 Module

In order to test the functionality of ESP8266 module, the testing circuit is constructed.

The testing circuit is shown in figure 4-1. The circuit consists of two push buttons

which use in firmware flashing in a predefine order as shown in table 4.1.

Figure 4-1 Schematic diagram ESP8266-01

35

Stages 1 2 3 4

Button order Hold RST Hold FLSH Release RST Release FLSH

Table 4.1 Predefine order to enter flash mode

4.1.2 ESP8266 Firmware test

The ESP8266 is flashed by using the communication through USB port. A USB to

UART converter is used to convert the signal between UART and USB. The UART

function is tested with windows’ serial COM software. Other wireless functions are

also tested such as Wi-Fi host, Wi-Fi client, HTTP get and post. The screenshot of

ESP8266 with scan network function and the messages were shown on the UART

terminal is shown in the figure below.

Figure 4-2 Screenshot of UART terminal

4.1.3 LAMP server configuration and testing

The operating system Linux Ubuntu is chosen and configured as LAMP server.

There are several packages needed for the LAMP server configuration process. For

example, apache web server package and MariaDB package. The python and Php are

installed in the system and act as communication tools between the LAMP software.

4.1.3.1 Server Ping Test

 To ensure the Apache server is working well, a server ping test is done from

another PC in LAN. The ping function in another PC is used to test the connection of

36

the server, the PC is the in the same local area network with the server, the PC will

receive the reply from server. The server is assigned an address of 192.168.1.26 by

the router. The screenshot of ping test is shown as below.

Figure 4-3 Screenshot of Ping test

4.1.3.2 PHP test

A PHP webpages are created and stored in the server webpages directory. The

webpage was accessed from another PC with the web browser. The PHP server read

the PHP script in the webpage, transcript the script to HTML type and then sends to

the request address. If the PHP is not working, the web browser will receive a blank

webpage. A function of phpinfo() is used in the PHP script for testing purposes. The

working screenshot of PHP (info.php) is shown in figure 4-4.

37

Figure 4-4 Screenshot of info.php

4.1.3.3 MQTT broker setup and testing

In order to verify the compatibility of the python MQTT protocol, ESP8266 protocol

and MQTT broker protocol, a MQTT broker service is run in frontend mode. This is

shown in figure 4-5.

Figure 4-5 snippet of invalid protocol

The version of MQTT can be shown by using the Linux command in terminal

window. The screenshot of the installed MQTT info is shown in Figure 4-6.

Figure 4-6 Screenshot of MQTT version

In the server side, a python MQTT script is used to test the MQTT server.

This is done by connecting to the server and subscribe MQTT topic. The snippet

result is shown in figure 4-5. The results indicated incompatible protocol error.

38

To solve the protocol compatibility problem, the MQTT broker has to be

latest version. The “apt-get update” and “upgrade” command is called to update and

install all the outdated software that are recorded in the repo. After upgrade, the

MQTT broker still remain the old version, it is because the admin of the Linux repo

has not updated the PPA to the latest version. From the official MQTT broker

website, the latest version is 1.4.9 and there is no binary installation for Linux

platform. The only way to get the latest version MQTT broker is to build from its

source code. Before building the software, Mosquitto PPA website is visited to

ensure the package has been built in the current Linux version of the Server. The

figure 4-7 show that the source code of 1.4.9-0 Mosquitto is built by the maintainer

of MQTT.

Figure 4-7 Screenshot of PPA website

After that, the source code of MQTT server is “git clone” from the official

Github, and then the code is built by using the “make” command in the source code

directory. After compiling, the compiled software is installed to root directory by

“make install” command.

The Mosquitto broker server is opened again in the frontend mode and the

python script is opened to test the MQTT server connection. The screenshot of the

test results is shown in figure 4-8 and figure 4-9.

Figure 4-8 Screenshot of Python script result

39

Figure 4-9 Screenshot of MQTT server connection result

 From the figure 4-8, the testing python script is connecting successfully to the

MQTT broker and a debug message is dumped into the terminal. In figure 4-9, the

MQTT broker run in frontend mode is showing that a new client is successfully

connected from localhost with port 1833 as a specific client ID.

4.1.3.4 Database configuration

In this proposed project, a database is created using MySQL command in Linux

terminal, the created database is named as secure_login. Once the database is created,

a new database account is created with a limited privilege for web user access. The

tables are formed and the data is stored inside the tables, the data includes user

information, devices name, topic and collected data. The database and tables are

shown in the figure 4-10.

40

Figure 4-10 Screenshot of database tables and data

 From the figure 4-10, the tables in the database are data, devices, login

attempts and members. The table login attempts are users’ login record that store the

user login status to enhance the server security. The members’ table is used to store

the information of member, such as username, E-mail and hashed password. The

table devices record the devices added by the user and the data is the data submitted

by the devices. The tables members, devices and data are normalized from each other

which is shown as figure 4-11.

41

Figure 4-11 Database block diagram

4.2 User Interfaces

In this proposed project, user can login to the server through the web browser,

configure ESP8266 to submit data, connect to internet by using the COM terminal.

Once, the device is turned on, the user can control the devices, access the information

through the interfaces.

 The ESP8266 interfaces, Server interface and their procedures are discussed

in the section 4.2.1 and section 4.2.2.

4.2.1 ESP8266 Interfaces

When the ESP8266 is plugged in to a PC USB port, the COM terminal of the PC is

opened, the ESP8266 will show the available networks to user and waiting for SSID

and password to login. The starting status of ESP8266 is shown in figure 4-12, there

are four Wi-Fi network available to be connected by ESP8266 after performing

network scan in this demonstration.

Members

ID

Username

Name

…

Devices

Device ID

ID

Device name

…

Data

Device ID

data

time

42

Figure 4-12 Screenshot of initialization of ESP8266

After the user keying the SSID and the password, the ESP8266 is connected

to the chosen network. Connecting to the network may need for a few seconds.

When connection is established, the IP address of device is shown and start

connecting to the MQTT server and a dummy data (humidity) is published

periodically in this demonstration. The interface in the COM terminal is shown in

figure 4-13.

Figure 4-13 Screenshot of ESP8266 Interface

At the server side, a python script is running on the front mode to subscribe

the topic and print onto the terminal for testing purposes. The data obtained is then

43

stored into the database. A screenshot of the MQTT python script run on terminal is

shown as figure 4-14.

Figure 4-14 Snippet of Python script with MQTT

4.2.2 Server Interface

In the LAN, a PC is used to browse to the server webpage. The address of the server

is entered into the web browser and the login page is appeared. In this project, the

PHP hypertext pre-processor is installed above the apache web server to serve the

webpages request, therefore all the webpages are PHP files and have the extension of

“.php”.

In the main page, there are forms and button to let user to login with their

account. Besides that, the account can be registered by clicking the register button.

The login status is recorded and is shown on the webpage, user can logout from this

webpage. The screenshot of the login page is shown in the figure 4-15.

Figure 4-15 Screenshot of login page

44

 An account is created in the register page, by clicking the register link in the

login page, a register webpage is directed to the user. The screenshot of the

registration page is shown in the figure 4-16.

Figure 4-16 Screenshot of registration form

 An account is used to login to the server, the data is shown in a table of the

webpage. The name of device, last updated time, topic and latest submit data is

shown in this table. The data is requested from the server database. User can delete

the device by clicking the delete button. The user can also add devices by submit the

topic and device name to the server.

In figure 4-17, two devices are added and only one topic is submitted by the

device, the latest update time and latest data are shown.

45

Figure 4-17 Screenshot of user webpage

4.2.3 Performance

The performance of server is tested in this proposed project which includes

performance of webpages server and MQTT broker. They are further discussed in

section 4.2.3.1 and section 4.2.3.2.

4.2.3.1 Webpages Server

Various factors can affect the performance of a page loading request, one of the

important elements to determine the performance is loading time. The time taken of

loading the webpages is tested by Firebug. The Firebug is a useful tool for web

development which can track the page load time with in depth details of loading

process.The data obtained is tabulated in the table 4.2.

Page Number of request Total document size

(kB)

Total loading time

(ms)

Main page 4 7.1 94

Registration page 4 7.4 49

User page 2 0.651 36

Add devices 1 0 91

Logout 1 0 1

Table 4.2 Page Loading Benchmark

46

 From the results in table 4.2, few webpages have zero document size. It is

because a PHP technique that perform web service as a webpage is used in this

proposed project and the webpage itself is acting like a request. When the browser is

requesting for the webpage, the webserver send nothing but a final data and

redirecting hyperlink. The loading time used by the zero size webpage is the time

taken for the server to process the data and perform services.

4.2.3.2 MQTT broker

An open source benchmark tools is used to test the performance of the MQTT broker.

The tool is designed to estimate the throughput of the MQTT broker.

("takanorig/mqtt-bench", 2015)

Figure 4-18 Screenshot of benchmark tool running in CMD

47

 From figure 4-18, the benchmark tools application is running in the Windows’

CMD console. The command is inserted with the application and the results are

shown out after few seconds.

 A flood test is performed with one subscribe one publish. The publisher is

continuously publishing 1kB data to flood the MQTT broker. On other hand, a

subscriber is subscribing all the data from the MQTT broker. The test is performed

with an increasing count of data, the data is tested with multiple times and the

average data is tabulated in table 4.3.

 Publish Subscribe

Count Time taken

(ms)

Throughput

(Messages/s)

Time taken

(ms)

Throughput

(Messages/s)

1000 90.333 11245.4 4217 237.333

2000 242.666 8494.223 4608.333 436.5967

3000 461 6758 4871.333 616.4567

4000 642 6367.037 4787 835.6433

5000 1052 4900.183 5195.333 926.4833

6000 1006.33 5967.83 5456 1099.963

Table 4.3 Time taken and throughput benchmark

 The obtained data is plotted in graph 5-1 and graph 5-2 as shown in

Appendix-A.

4.3 Discussion

4.3.1 HTTP

GET method and POST method are the most frequently used request method in

HTTP. The request method is used to transfer data between server and client. The

GET method is requesting data from a specified resource and POST method is

submitting data to be processed. The differences between these two methods are

shown in the table 4-4.

48

 GET POST

Reload/Back button Harmless Data will be resubmitted

Bookmarked Can be bookmarked Cannot be bookmarked

Cached Can be cached Not cached

Restriction on length Yes No

Data type ASCII only No restriction

Data visibility Data is shown in URL Data is not displayed

Table 4.4 Difference between GET and POST method

From the table 4-4, the HTTP GET appends all the data to the end of the

request URL, limited length and lower power of security when sending data to the

server. The method has limitation when sending important info between the server

and the client.

 HTTP POST is also used to transmit data from web browser to web server.

There is no limitation in transmit length at the browser side. The method is used as

the data submit from user to server in this proposed project.

4.3.2 Authentication and Authorisation

In this project, users are required to login by entering the login form in login page.

The entered E-mail and password are required, in order to be authenticated by the

server. When user load the page, a JavaScript is run on the client side, the JavaScript

is used to hash the user password using MD5 algorithm. The hashed string will be

sent back to the server for verification.

 Once the hash is matched, the server will send the user page to the client, and

the login attempt and session of the user is recorded. If the hash string does not

match, the server will redirect user back to the login page again.

49

CHAPTER 5

5 Conclusion and Recommendations

5.1 Conclusion

The goal and objectives of the proposed project are achieved. The ESP8266 wireless

module is programed to become an IOT system endpoint devices and data is

submitted to the server. At the server side, software is setup and the services are

designed to handle the submitted data from the endpoint devices. User can access to

the server through HTML.

 In this proposed project, the MQTT protocol is used to send and receive the

data between users and devices. The broker is required to run on the server in order

to execute the protocol. The MQTT broker is built from the latest source code which

is from the Git repository of Mosquitto and the source code version is version 1.4.9,

the protocol version is version 3.1 and version 3.1.1. The broker is required to be

built from the source code, it is because the repository of the software that provided

by the Linux Ubuntu is outdated and the protocol version is not version 3.1 and 3.1.1.

 The webpages are designed by using HTML and PHP. Most of the

information from the database is pre-processed by the PHP before send to the users.

The PHP is also used to manage the user login session and form handler. The

interfaces of the webpages are designed by using HTML.

50

5.1.1 Personal Breakthrough

Software and networking knowledge was gained in the process of completing this

project. Database design, computer networking and other programming language

than C were not introduced in curriculum activities. Database configuration, router

port forwarding configuration, PHP webpages design and python programming were

performed.

 Besides that, I was given an opportunity to design a firmware for a Wi-Fi

module. Conventionally, the firmware in the wireless module is fixed and not open to

change the firmware, user need to follow the protocol in order to use the wireless

module such as AT commands. By using ESP8266, the firmware of the module can

be designed by using provided SDK library.

5.2 Recommendations

There are some additional features not included in this project. The features may be

added in the future for further system enhancement. The features are listed in the

subsection below.

5.2.1 MQTT in endpoint devices

In this project, the ESP8266 can only submit the data with certain topic to the server.

In additional feature, user can also submit the signal with certain topic to ESP8266,

in order to control the devices, such as input/output control. The ESP8266 can

receive the data with certain topic and react correspondingly to the signal data.

 The enhancement can be used as home automation system, the ESP8266 is

installed in a dimmer circuit, the dimming signal can be sent from the user to control

the dimmer circuit.

51

5.2.2 MQTT security protocol

In this project, the security mode of MQTT broker is disables. Any devices can

submit data to the MQTT broker without any restriction. To enable the security

service, user need username and password in order to submit data with topic.

In this project, user can subscribe any topic they want, this can violate the

user privacy. The topic should be personalized and restricted to certain user. The

submitted topic need to be process with a header to identify the topic belong to which

user to prevent repeat topic and privacy violation.

5.2.3 Email identification

During the register session, the E-mail is not verified by the server. User can

randomly fill in anything to finish the register session. In this project, an account can

be created by submit any character in the E-mail form.

To further enhance the system, the server may verify the email to prevent the

account is created directly.

5.2.4 AP mode of ESP8266

In this project, the ESP8266 can only be initialized by using COM terminal.

Without COM terminal, user cannot modify which network to connect and what

topic to publish. To solve the problem, when the ESP8266 is not initialized or failed

to initialize, the ESP8266 will change to AP mode.

In AP mode, ESP8266 become a Wi-Fi host and user can connect to

ESP8266 using Wi-Fi. By access to the address of the ESP8266 with browser, user

can change the setting and restart the device through HTML interfaces.

52

REFERENCES

Lee, J. S., Su, Y. W., & Shen, C. C. (2007, 5-8 Nov. 2007). A Comparative Study of Wireless
Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. Paper presented at the Industrial
Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE.

Milinković, A., Milinković, S., & Lazić, L. Choosing the right RTOS for IoT platform.

National Internet of Things (IoT) Strategic Roadmap: A Summary. (2015). Mimos. Retrieved
27 April 2016, from
http://mimos.my/iot/National_IoT_Strategic_Roadmap_Summary.pdf

MQTT Version 3.1.1. (2015). Docs.oasis-open.org. Retrieved 14 April 2016, from
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

Organization, W. H. (2012). Malaysia health system review.

Ö sterlind, F. (2006). A sensor network simulator for the Contiki OS. SICS Research Report.

Vermesan, O., & Friess, P. (2013). Internet of things: converging technologies for smart
environments and integrated ecosystems: River Publishers.

Inc, E. (2016, August 10). ESP8266EX Datasheet. Retrieved August 22, 2016, from
https://espressif.com/sites/default/files/documentation/0a-
esp8266ex_datasheet_en.pdf

Tuan Huynh, Kevin Peek & Paul Shumate (November 15, 2005). Tensilica Xtensa
CS451 - Advanced Processor Architecture

PHP 5 Tutorial. (n.d.). Retrieved August 21, 2016, from

http://www.w3schools.com/php/default.asp

PHP: Hypertext Preprocessor. (n.d.). Retrieved August 21, 2016, from http://php.net/

MQTT. (n.d.). Retrieved August 21, 2016, from http://mqtt.org/

Mosquitto. (n.d.). Retrieved August 21, 2016, from https://mosquitto.org/

Eclipse/mosquitto. (n.d.). Retrieved August 21, 2016, from

https://github.com/eclipse/mosquitto

53

Learn - MariaDB.org. (n.d.). Retrieved August 21, 2016, from

https://mariadb.org/learn/

MySQL Improved Extension. (n.d.). Retrieved August 21, 2016, from

http://php.net/manual/en/book.mysqli.php

PHP 5 MySQLi Functions. (n.d.). Retrieved August 21, 2016, from

http://www.w3schools.com/php/php_ref_mysqli.asp

MySQLi. (n.d.). Retrieved August 21, 2016, from

https://en.wikipedia.org/wiki/MySQLi

takanorig/mqtt-bench. (2015). GitHub. Retrieved 14 June 2016, from

https://github.com/takanorig/mqtt-bench

54

APPENDICES

APPENDIX A: Graphs

Graph 5-1 Time taken of Publish and Subscribe for MQTT server

90.33 242.667
461

642
1052 1006.333

4217
4608.333

4871.333 4787
5195.333

5456

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000

Ti
m

e
ta

ke
n

 (
m

s)

Number of counts

Time taken versus Number of Counts

Publish

Subscribe

55

Graph 5-2 Throughput of Publish and Subscribe for MQTT broker

11245.4

8494.233

6758
6367.037

4900.183

5967.83

237.333 436.897 616.457 835.644 926.483 1099.963

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000 6000 7000

Th
ro

u
gh

p
u

t
(M

sg
/s

)

Number of counts

Throughput versus Number of Counts

Publish

Subscribe

56

APPENDIX B: Computer Programme Listing

The Computer programme is listed and submitted in softcopy

Web server

PHP webpages: file in Html directories

Python service source code: datalogger.py

MQTT mosquito source code

MQTT-bench source code

