

HUMAN FOLLOWING ROBOT USING IMAGE PROCESSING

FOR MEDICAL APPLICATION

GOH KUAN CHEIN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Electrical and Electronic Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

January 2016

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Goh Kuan Chein

ID No. :

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “HUMAN FOLLOWING ROBOT USING

IMAGE PROCESSING FOR MEDICAL APPLICATION” was prepared by

GOH KUAN CHEIN has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Engineering (Hons.)

Electrical and Electronic Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Mr. Teoh Boon Yew

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2016, Goh Kuan Chein. All right reserved.

v

HUMAN FOLLOWING ROBOT USING IMAGE PROCESSING

FOR MEDICAL APPLICATION

ABSTRACT

This paper presents a project of designing and building a human following robot.

This project is related to human following robot using image processing for medical

application. The aim of this project is to assist and tracking a specific patient in a

hospital. This system is mainly run in indoor application. A human tracking

algorithm will be designed to run the human following robot on tracking a target

person. A camera is used to capture image that will be process by the Raspberry Pi

which will control the robot to follow the target person. On the other hand,

ultrasonic sensor is used to perform the task of safe distance tracking, obstacles

avoidance and precision tracking. Raspberry Pi is used as a platform of processing

the data that collected from the sensors then execute the command on controlling the

movement of the human following robot. The robot was made sure to have an

accuracy on tracking the target person and avoid the obstacles during the following

period. The idea of the system was experimentally verified with the ease of the

prototype in which all the proposed ideas are implemented and the outcome was

successfully obtained.

vi

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Aims and Objectives 2

2 LITERATURE REVIEW 3

2.1 Introduction 3

2.2 Challenges on Human Following Robot 4

2.3 Example Techniques on Human Following Robot 5

2.3.1 S. Shaker, 2008 5

2.3.2 Z. Chen, 2007 6

2.3.3 J. Satake, 2012 7

2.3.4 B. Ilias, 2014 8

2.3.5 K.S. Nair, 2014 9

2.3.6 Comparison and Summary 9

3 METHODOLOGY 11

vii

3.1 Processing Unit 11

3.2 Safe Distance Tracking and Obstacle Avoidance 12

3.3 Object Tracking 13

3.4 DC Geared Motor 14

3.5 DC Motor Driver 16

4 RESULTS AND DISCUSSION 17

4.1 Introduction 17

4.2 Results 17

4.2.1 Mechanical Development 17

4.2.2 Programming Development 20

4.3 Discussion 26

5 CONCLUSION AND RECOMMENDATIONS 27

5.1 Conclusion 27

5.2 Recommendations 27

REFERENCES 29

APPENDICES 30

viii

LIST OF TABLES

 TABLE TITLE PAGE

Table 2.1: Processing Time for Different Production Line 10

ix

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 2.1: Main parts of Human Following Robot 4

Figure 2.2: Human Following Robot Developed by S. Shaker 5

Figure 2.3: The Flow Diagram of The System (Z. Chen, 2007) 7

Figure 3.1: Overall system of the human following robot 12

Figure 3.2: HRLV-MaxSonar EZ Series Ultrasonic Sensor 13

Figure 3.3: 30cm Ultrasonic Module 13

Figure 3.4: Raspberry Pi with Picamera 14

Figure 3.5: The Logo of The Tracking System 14

Figure 3.6: DC Geared Motor, SPG30-60 15

Figure 3.7: The Base of Robot with Mounted DC Geared

Motor and Free Wheel 15

Figure 3.8: Dual Channel 10A DC Motor Driver, MDD10A 16

Figure 4.1: The Chassis of The Human Following Robot 18

Figure 4.2: The Overall Setup of The Robot 20

Figure 4.3: The Coding of The Video Stream 21

Figure 4.4: Coding of The Tracking System 22

Figure 4.5: The Tracking Logo which Position to the Right. 22

Figure 4.6: The Tracking Logo which Position to the Left. 23

Figure 4.7: The Tracking Logo which Position in the Center. 23

x

Figure 4.8: Picture (a) shows the coding of forward movement

and the reverse movement. Picture (b) shows

the coding of turn left and turn right. Picture (c)

shows the coding of pivot left and pivot right. 24

Figure 4.9: Picture (a) and (b) shows the coding of sensing the

obstacles in front of the robot. Picture (c)

shows the coding of the tracking distance of the

robot and the target person. 25

xi

LIST OF APPENDICES

 APPENDIX TITLE PAGE

APPENDIX A: Coding 30

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

As the robotic industry growing rapidly, human following robot is also one of the

robotic scope that many people has taken as a research project. Human following

robot has wide scope of usage and many type of application can be applied into the

robot in daily life. It can be linked in many fields such as medical, logistic, defence,

underwater, and even as household robot. There are many researches have propose

to use sensors like ultrasonic sensor, Infra-red sensor, PIR sensor, laser rangefinder,

stereo camera, Kinect sensor and so on in this human following robot system. The

human following robot usually have a few basic application system which are target

person tracking system, static and motion obstacle sensing and avoiding system and

the robot movement control system.

 In this paper, the human following robot is in the field of medical application

where the priority of this robot is to improve the service in medical field. The human

following robot system here utilize ultrasonic sensors, camera and other sensors.

The ultrasonic sensor is use for obstacle tracking and target person tracking while the

camera is to ensure the right target is followed. The Bluetooth module is use for

indoor positioning system. It is necessary to integrate a few sensors together to get a

precise location of the target person and can avoid obstacles during the following

period.

2

1.2 Aims and Objectives

The main objective of this project is as following:

 To design and build a human following robot

 To assist and tracking a specific patient in a safe distance

 To make sure that the human following robot follow the right person

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In this chapter, five techniques of human following robot from the papers were

researched and reviewed. Different techniques of human following robot is used in

this five paper where each technique has its own pros and cons. Every human

following robot that the researchers built have their own limitation, however the

limitation can be improved and solved in the future by other designers or researchers

where this process is endless until the best solution of human following robot is

invented.

A basic human following robot consists of three main parts, which the most

important part is the processor of the robot. The remaining two parts is the robot

body which consist of the chassis, motor and the wheel, and the detection device

which is used to detect the person. Figure 2.1 shows the main parts that build up

human following robot.

Processor
Eg. Laptop,

Microcontroller,
etc.

Robot Body
Detection Device

Human Following Robot

Figure 2.1: Main parts of Human Following Robot

2.2 Challenges on Human Following Robot

When designing a human following robot, there are many challenges that the

researchers and designers has to face. The researchers has to consider many kinds of

situation that will be faced during the robot following period. The researchers have

to think of ways to overcome the challenges.

One of the challenges is in a certain crowded area, the human following robot

should be able to function well. When there is a lot of obstacles and movement

around, it should not be lost in tracking the person. Besides that, the robot should be

able to avoid obstacles either that the obstacles are moving or static. The design of

the human following robot should be consider that the robot will operate on the floor

that is uneven. The human following robot should be able to follow and distinguish

the right person during the tracking. Furthermore, the robot should follow the person

in a safe distance and know when to stop to avoid collision with the person.

5

2.3 Example Techniques on Human Following Robot

The following is some journal researched which contain different technique of

human following robot. These human following robot information with different

kind of tracking systems can be used as the reference in this human following robot

project development.

2.3.1 S. Shaker, 2008

Based on the journal (S. Shaker, 2008), the researchers implement laser range finder

into their robot. They detect and follow a person movement by using leg tracking

algorithm. The laser range finder provides the data to the algorithm to detect the

targeted person’s leg. The algorithm can calculate out the velocity of the targeted

person’s leg movement with the respect to the human following robot. The

information that generated by the algorithm is then passed to a fuzzy controller

which will control the follow speed of the robot when following the targeted person’s

leg. Fuzzy interference system is to deal with the problem which is humanistic,

complex and situation that the use of mathematical is too precise, but is imprecise

with nature. This system is to control and smoothen the human following robot’s

motion when following the targeted person. This system also ensure that the robot

follow the targeted person in a safe distance. Figure 2.2 shows the Human following

robot that is developed by S. Shaker

Figure 2.2: Human Following Robot Developed by S. Shaker

6

2.3.2 Z. Chen, 2007

In the journal (Z. Chen, 2007), the researchers use two stereo camera for image

capturing. The two captured images are then being analysed using stereo based

Lucas-Kanade approach. Binocular Sparse Feature Segmentation (BSFS) algorithm

is use in the human following robot for vision-based capture. This algorithm uses

Lucas-Kanade approach to detect and track the feature points in the images and

calculate the sparse disparity map and then remove the disparity from the images.

Random sample consensus approach is a technique that calculate the motion of the

target in a static background using the match point of the two images. The stereo and

motion information that obtained from the approaches are fused, then the BSFS

algorithm separates the moving target from the static background. This entire system

does not use color-based approach, it uses only gray level information and the

targeted person does not necessary have to wear different color clothes to differ from

the background. Face detection algorithm is also included into the robot to increase

the accuracy of tracking, although the target person does not necessary facing the

human following robot. The Figure 2.2 shows that the process flow of the system on

processing the information and tracking the target person.

7

Figure 2.3: The Flow Diagram of The System (Z. Chen, 2007)

2.3.3 J. Satake, 2012

As for the research (J. Satake, 2012), the researchers built a human following

robot which uses motion stereo camera that tracking the targeted person using depth

templates. The depth template is a template mainly for the human upper body. In

this system, the researchers uses three types of template which is in different

direction to the body. The depth templates use the depth image which captures by the

camera where the targeted person is 2m away. The depth template consist of a

binary template that the foreground and background value are adjusted according to

the tracking status and the input data. Extended Kalman filter (EKF) tracker is being

used for tracking a target person by providing predicted scene positions. This tracker

will check continuously whether there is new objects appear in the image. Besides

that, support vector machine (SVM) based is being used to remove the false

detection from other object with similar characteristic to the target person.

In this research, the laser rangefinder is used for obstacle avoidance. The

color detection is included, but when the human following robot is in a low light

8

surroundings, the robot cannot detect and differentiate between two or more person

with similar color clothes. To overcome this problem, scale invariant feature

transform (SIFT) is being introduced. SIFT feature is an image feature that is

powerful in scaling and rotation in the image plane and also resistant to lighting

condition. The error point from the SIFT in the image is being filtered by the

Random Sample Consensus. The SIFT feature decreases when the distance of the

target person with the camera increases. To solve this problem, the distance of the

camera and the target person is being set to limit the decrease of SIFT features.

Figure 2.4 shows the structure of the human following robot developed by J. Satake.

Figure 2.2: Structure of Human Following Robot by J. Satake

2.3.4 B. Ilias, 2014

The research done by (B. Ilias, 2014) uses Kinect high speed sensor to detect

and track the movement of the target person. When initialize state, the target person

needs to raise his hands in front of the Kinect sensor in order to calculate the human

skeleton. Then the information is passed to the Processing.Org software by using

laptop. After the human skeleton is being traced out by the software the command is

sent to the BASIC stamp 2 Kinect to execute the direction of movement of the robot,

then the BASIC stamp 2 ultrasonic will check out for obstacles. If there is no

9

obstacles in front the robot, the BASIC stamp 2 motor will move the robot to the

target person. However there is an issue when using Kinect sensor outdoor where

the sensor unable to operate due to the ultraviolet rays. To overcome this issue, they

uses four layers of 5% tinted film cover at the Infra-red depth sensor.

2.3.5 K.S. Nair, 2014

In this research (K.S. Nair, 2014), the researchers uses the ultrasonic sensor as the

key element in detecting the target. The ultrasonic sensor module will sense the

presence of the target human and the robot will move according to the direction of

the target person. As for the obstacle detection, the Infrared sensor is used to detect

the obstacles and the robot will avoid the obstacle by changing the direction for static

obstacle or by stopping to wait for the motion obstacles to move away. The system

uses AVR Atmega 32 as the processor on controlling the human following robot.

2.3.6 Comparison and Summary

The human following robot of the research can be different in various aspects such as

the sensor it used, the tracking method and the part of the target person being track.

Comparison of the techniques of human following robot from all the paper is in

Table 2.1.

10

Table 2.1: Processing Time for Different Production Line

Author Detection and

Tracking Devices

Methods Which part of the

target person being

detected

S. Shaker,

J.J.Saade,

D.Asmar(2008)

Laser range finder Leg detection

algorithm, Fuzzy

inference system

Leg

Z. Chen, S.T.

Birchfield(2007)

Two stereo

cameras

Lucas Kanade

approach, Random

Sample Consensus,

face detection

algorithm

Face

J. Satake, M.Chiba,

J. Miura(2012)

Laser range finder,

and stereo camera

Random Sample

Consensus, SIFT

features, SVM-

based verifier, EKF

Tracker

Upper body

B. Ilias, S.A.Abdul

Shukor, S.Yaacob,

A.H. Adom and

M.H.Razali(2014)

Kinect sensor Human skeleton

Method

Human skeleton

method

K.S. Nair, A.B.

Joseph, J.I.

Kuruvilla(2014)

Ultrasonic sensor,

IR sensor

Obstacle detection,

human target

detection

Leg

11

CHAPTER 3

3 METHODOLOGY

3.1 Processing Unit

In this project, Raspberry Pi is chosen as the main processing unit that is going to run

the whole system of human following robot. The Raspberry Pi will be receiving the

input information from the sensors where all aspect of situation will be take in

consideration. A human following algorithm will be implement in this system where

to ensure the robot follows the target person. The input information from the sensor

included the safe distance tracking of the robot, the obstacles avoidance of the robot

and the precise tracking system. Different input from the sensors gives out different

movement of the robot while tracking the target person. The motor controller control

the direction of the motor and the speed of the motor when following the target

person. The camera is use to confirm whether the robot follows the right target

person. All the system are integrated together to ensure the robot works perfectly.

Figure 3.1 shows the overall system of the human following robot.

12

Raspberry Pi

Motor Controller

Sensors

Picamera

Safe Distance

Sensor

Object Avoidance

Sensor

Precision Tracking

Sensor

Figure 3.1: Overall system of the human following robot

3.2 Safe Distance Tracking and Obstacle Avoidance

For safe distance tracking and obstacle avoidance, ultrasonic sensor is chosen as the

sensor to achieve them. About three ultrasonic sensor will be place in front of the

human following robot. One of them is placed in the center of the robot, while the

other two is placed at the side of both end of the robot. The center ultrasonic sensor

will be a 5m range precision ultrasonic sensor which will act as the safe distance

tracking from the leg of the target person. Approximate of 1m of safe distance

tracking will be set as the range for the robot to follow the target person. While the

both corner front ultrasonic sensor is a 30cm range ultrasonic sensor which is use as

obstacle avoidance guide. When the obstacle is sense by one of the corner, the robot

will move to the other direction to avoid the obstacles. Figure 3.2 shows the 5m

range high precision ultrasonic sensor that use for safe distance tracking. Figure 3.3

shows the 30cm ultrasonic module for the obstacles avoidance.

13

Figure 3.2: HRLV-MaxSonar EZ Series Ultrasonic Sensor

Figure 3.3: 30cm Ultrasonic Module

3.3 Object Tracking

For object tracking, the Raspberry Pi camera is chosen for capturing the image of the

logo that indicates the target person. Which then the image of the certain logo will

be image processed by using the OpenCV software with the Python interface. The

specific logo will be identified whether is the correct target person on following. The

logo will be customized to be only recognized the robot as the correct target person. .

Figure 3.4 shows the Raspberry Pi with the Pi camera module. Figure 3.5 shows the

tracking logo that is used for the human following robot.

14

Figure 3.4: Raspberry Pi with Picamera

Figure 3.5: The Logo of The Tracking System

3.4 DC Geared Motor

The DC motor that used in this human following robot is SPG30-60 DC geared

motor. This motor is a 1.1W DC Brushed motor and its rated voltage is 12V with

stall torque of 254.8mNm. It has a speed pf 58rpm at free run, 70mA current at no

15

load and maximum rating of 410mA of current at loaded. Besides that, the DC

motor has a gear ratio of 60:1. Two SPG30 DC geared motor is used in this project.

Figure 3.6 shows the 1.1W SPG30-60 DC geared motor that used in the project,

while Figure 3.7 shows the Mounting of the SPG30-60 DC geared motor and the free

wheel on the base of the robot.

Figure 3.6: DC Geared Motor, SPG30-60

Figure 3.7: The Base of Robot with Mounted DC Geared Motor and Free Wheel

16

3.5 DC Motor Driver

The motor driver used in the project is MDD10A. This motor driver is a dual channel

which designed to drive two DC brushed motor with the current up to 10A

continuously and 30A peak current for 10 second for each channel. The speed of the

DC motor can be controlled with the motor driver through the PWM signal that

provided by the microcontroller. It supports motor voltage from 5V to 25V. This

motor driver also supports sign-magnitude PWM signal and locked-antiphase.

Besides that, this motor driver uses full solid state components which gives faster

response in time. It eliminates the wear and tear of the motor driver mechanical

relay. Figure 3.8 shows the MDD10A dual channel DC motor driver.

Figure 3.8: Dual Channel DC Motor Driver, MDD10A

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the results obtained and the problem encountered throughout the

project development process are discussed. The functionality of the human

following robot hardware is tested in an indoor environment to ensure the robot is

fully operating indoor. The test results are then be evaluated and has become the

benchmarks for the robot operation. This evaluation is important where it ensures

the objectives is being achieved.

4.2 Results

In this part, the project involves in both mechanical part and programming part. The

mechanical part is consist of the robot base and the speed control of the motor. As fpr

the programming part, the image processing is processed by the Raspberry Pi by

using the software Python with OpenCV and the motor controlling part.

4.2.1 Mechanical Development

Firstly, the material that mostly used in this project to build the robot chassis is

acrylics. Acrylic is a type of plastic that has good durability and support for the robot

body. The two motors is placed in the front of the robot and a free wheel is placed at

the back. The reason that the motors are placed in front of the robot is that the drag

force of two motor in front is better than putting two free wheel and two motors

pushing at the back. Less friction and weight for the free wheel to contact the ground

by comparing placing two free wheel in front of the robot. The reason which there

are only two motor is used in this project is that the two motor has the enough torque

to support the robot total weight and saves battery power by comparing on using four

motor to run the robot. Figure 4.1 shows the human following robot chassis with

mounted DC motor and the free wheel.

Figure 4.1: The Chassis of The Human Following Robot

Secondly, the Raspberry Pi camera is installed at the highest spot of the robot

chassis. This is to ensure that the Pi camera get a better view in tracking the logo

without any obstructions from the surroundings and the hardware. Besides that, a 5m

high range precision ultrasonic sensor is placed just below the Pi camera which

allows the ultrasonic sensor to keep track the distance of the targeted person and the

robot which fixed at least 1m in distance. Then two 30cm distance ultrasonic sensor

is placed in front of the robot which sense the front corner of the robot whether there

are any obstacles in front and avoid them.

Thirdly, 12V lead acid battery is placed on the robot body to power up the

motor driver and runs the motor. Asides that, a spare 12V battery is used to power a

up a high power LED light below the high range ultrasonic sensor which act as the

lighting for the camera to run at a low lighting environment. A mobile power bank is

used as the supply for powering up the Raspberry Pi where the power bank supplies

5V at 2A. Power bank is used to power up Raspberry Pi because the processor of the

Raspberry pi needs more power to process data that collected from the image

processing. The ideal case for the power supply for powering up Raspberry Pi is 5V,

2.5A which the Raspberry Pi draws many current when there is a high usage of the

processing speed in the processing unit. Figure 4.2 shows the overall setup of the

human following robot.

Figure 4.2: The Overall Setup of The Robot

4.2.2 Programming Development

As for the programming development, it consists of two part which are the object

tracking and the robot movement controlling part.

4.2.2.1 Object Tracking

For the object tracking, OpenCV with Python coding is used. This OpenCV is used

to use the pi camera to capture frames and process the frames to trace the tracking

logo out of the frames and keep track of the logo. The tracking position of the logo is

sent to the movement controller coding of the robot. The tracking position is

basically separated into three position which is center , left and right. The OpenCV

coding tracks down the tracking logo and then identify the position of the logo. The

resolution of the camera is lowered down to 320x240 of width and height. Figure 4.3

shows the coding of live video stream while the logo is being tracked. Figure 4.4

shows the coding of the tracing logo from the frames capture. Figure 4.5 shows the

logo being track which the position is to the right. Figure 4.6 shows the logo is at the

left position. Figure 4.6 shows that the logo at the center of the footage.

Figure 4.3: The Coding of The Video Stream

Figure 4.4: Coding of The Tracking System

Figure 4.5: The Tracking Logo which Position to the Right.

Figure 4.6: The Tracking Logo which Position to the Left.

Figure 4.7: The Tracking Logo which Position in the Center.

4.2.2.2 Robot Movement

For the robot movement, it involves the Python coding that controls the direction of

the DC geared motor through the motor driver. Besides that, the tracking position

that obtained from the image processing tracking also gives the direction of the robot

movement the follow the targeted person. Figure 4.8 shows the coding of the

movement of the human following robot. Figure 4.9 shows the coding of checking

the surroundings obstacles and the tracking distance of the robot and the targeted

person.

(a) (b)

(c)

Figure 4.8: Picture (a) shows the coding of forward movement and the reverse

movement. Picture (b) shows the coding of turn left and turn right. Picture (c)

shows the coding of pivot left and pivot right.

(a) (b)

(c)

Figure 4.9: Picture (a) and (b) shows the coding of sensing the obstacles in front

of the robot. Picture (c) shows the coding of the tracking distance of the robot

and the target person.

26

4.3 Discussion

Based on the results obtained, there are many problems that faced for the tracking

system. The first problem is the programming language of the software. The

software that are used in the project is Python. The problem encountered when

sorting out the Open CV coding where many aspect are needed to consider. One of

the aspects is the coordinates of the tracking frame.

Besides that, the other challenge is to trace out the logo where in some point

the logo count not be track out properly which many condition that affects the

efficiency on tracking the logo. The quality of the frame captured by the Pi camera

is not good enough where the frame captured has a colour defect which the overall

colour of the picture is yellowish. The one of factors that affects the quality of the

frame and the tracking logo efficiency is the lighting of the surroundings. A high

power LED is added to the robot to improve the lighting effect when the lighting

surroundings are not so good.

 Next problem encountered is the combination of the coding of the object

tracking and the robot movement takes times and there is still some error when both

of the coding is run together. A few improvement is needed to add into the coding to

improve the overall system.

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Human following robot can give a lot of benefits to the society. In the future

development, the usage of different types of robot in helping human’s task in any

aspects will be massive. Human following robot will be one of the robot that will

take over simple task, such as being a following assistant, maid, goods carrier or

guider. Some application that can be useful to the hospital where the human

following robot can be attached to the nurse cart and to the airport where it can

become a luggage cart which brings the passenger luggage and follows the passenger.

It is necessary for human to explore the knowledge of the robotics as it knows as no

boundaries.

5.2 Recommendations

For future development, there are a few improvement that needed to make to

enhance the robot’s tracking and following system. Firstly, a better tracking camera

is needed to improve the image quality of the frames capture, where the current

camera that uses in this project is not in a good condition. The image that captured

from this camera shows a bit yellowish background. Secondly, a better processor is

needed to run the image processing system. The Raspberry Pi is a good small size

processor which can runs the system on doing image processing, but there is a

limitation on the Raspberry Pi where the image process cannot be a high resolution

image. When the Raspberry Pi runs image processing in high resolution the

processor will be occupied by the processing and it slows down the processing speed

of the other features. So a better processor is needed to run high revolution image

processing.

 Besides that, other tracking system can be implement into the human

following robot such as Indoor Bluetooth Positioning System. This system covers the

weakness of the Global Positioning System (GPS) that GPS is not available indoor

where the satellites cannot track or trace the device indoor where the building blocks

the signal waves. The Indoor Bluetooth Positioning System can track and trace out

the robot position indoor and increases the efficient of the human following robot on

tracking the targeted person.

29

REFERENCES

Service Robot Statistics. (n.d.). Retrieved April 12, 2016, from

http://www.ifr.org/service-robots/statistics/

S. Shaker, J.J. Saade, D. Asmar. Fuzzy Inference-Based Person-Following Robot. In

Proceedings of International Journal of Systems Applications, Engineering &

Development, Issue 1, Volume 2, 2008, pp. 29-34.

Z. Chen, S.T Birchfield, Person Following with a Mobile Robot Using Binocular

Feature-Based Tracking, IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) San Diego, California, October 2007

J. Satake, M. Chiba, J. Miura. A SIFT-Based Person Identification using a Distance-

Dependent Appearance Model for a Person Following Robot. Proceedings of the

2012 IEEE International Conference on Robotics and Biomimetics, December 11-

14, 2012, Guangzhou, China, pp. 962-967.

B. Ilias, S.A. Abdul Shukor, S. Yaacob, A.H. Adom and M.H. Mohd Razali. A Nurse

Following Robot with High Speed Kinect Sensor. ARPN Journal of Engineering

and Applied Sciences, vol. 9. No 12, December 2014, pp. 2454-2459.

K. S. Nair, A. B. Joseph, & J. I. Kuruvilla (2014). Design of a low cost human

following porter robot at airports. International Journal on Advanced Computer

Theory and Engineering (IJACTE), 3(2), 34-37.

30

APPENDICES

APPENDIX A: Coding

import io

import time

import cv2

from picamera.array import PiRGBArray

from picamera import PiCamera

from threading import Thread

from operator import itemgetter

import numpy as np

#---

Global Variable Settings

debug = True # Set to False for no data display

window_on = True # Set to True displays opencv windows (GUI desktop reqd)

fps_on = False # Display fps (not implemented)

OpenCV Settings

WINDOW_BIGGER = 2.0 # increase the display window size

MAX_SEARCH_THRESHOLD = .97 # default=.97 Accuracy for best search result

of search_rect in stream images

MIN_SEARCH_THRESHOLD = .45 # default=.45 Accuracy for worst search result

of search rect in stream images

LINE_THICKNESS = 1 # thickness of bounding line in pixels

31

CV_FONT_SIZE = .25 # size of font on opencv window default .5

SHOW_CIRCLE = True # show a circle otherwise show bounding rectancle on

window

CIRCLE_SIZE = 8 # diameter of circle to show motion location in window

Camera Settings

CAMERA_WIDTH = 320

CAMERA_HEIGHT = 240

CAMERA_HFLIP = True

CAMERA_VFLIP = True

CAMERA_ROTATION=0

CAMERA_FRAMERATE = 35 # framerate of video stream. Can be 100+ with new

R2 RPI camera module

FRAME_COUNTER = 1000 # used by fps

#---

Create a Video Stream Tread

class PiVideoStream:

 def __init__(self, resolution=(CAMERA_WIDTH, CAMERA_HEIGHT),

framerate=CAMERA_FRAMERATE, rotation=0, hflip=False, vflip=False):

 # initialize the camera and stream

 self.camera = PiCamera()

 self.camera.resolution = resolution

 self.camera.rotation = rotation

 self.camera.framerate = framerate

 self.camera.hflip = hflip

 self.camera.vflip = vflip

 self.rawCapture = PiRGBArray(self.camera, size=resolution)

 self.stream = self.camera.capture_continuous(self.rawCapture,

 format="bgr", use_video_port=True)

 # initialize the frame and the variable used to indicate

 # if the thread should be stopped

 self.frame = None

32

 self.stopped = False

 def start(self):

 # start the thread to read frames from the video stream

 t = Thread(target=self.update, args=())

 t.daemon = True

 t.start()

 return self

 def update(self):

 # keep looping infinitely until the thread is stopped

 for f in self.stream:

 # grab the frame from the stream and clear the stream in

 # preparation for the next frame

 self.frame = f.array

 self.rawCapture.truncate(0)

 # if the thread indicator variable is set, stop the thread

 # and resource camera resources

 if self.stopped:

 self.stream.close()

 self.rawCapture.close()

 self.camera.close()

 return

 def read(self):

 # return the frame most recently read

 return self.frame

 def stop(self):

 # indicate that the thread should be stopped

 self.stopped = True

#---

33

Currently not used but included in case you want to check speed

def show_FPS(start_time,frame_count):

 if debug:

 if frame_count >= FRAME_COUNTER:

 duration = float(time.time() - start_time)

 FPS = float(frame_count / duration)

 print("Processing at %.2f fps last %i frames" %(FPS, frame_count))

 frame_count = 0

 start_time = time.time()

 else:

 frame_count += 1

 return start_time, frame_count

#---

def get_center(x,y,w,h):

 return int(x+w/2), int(y+h/2)

#---

def cam_shift():

 # Process steam images to find camera movement

 # using an extracted search rectangle in the middle of one frame

 # and find location in subsequent images. Grap a new search rect

 # as needed based on nearness to edge of image or percent probability

 # of image search result Etc.

 # Setup Video Stream Thread

 vs = PiVideoStream().start()

 vs.camera.rotation = CAMERA_ROTATION

 vs.camera.hflip = CAMERA_HFLIP

 vs.camera.vflip = CAMERA_VFLIP

 time.sleep(2.0)

 # initialize the search window (rect) variables

 if WINDOW_BIGGER > 1: # Note setting a bigger window will slow the FPS

34

 big_w = int(CAMERA_WIDTH * WINDOW_BIGGER)

 big_h = int(CAMERA_HEIGHT * WINDOW_BIGGER)

 sw_w = int(CAMERA_WIDTH/4) # search window width

 sw_h = int(CAMERA_HEIGHT/4) # search window height

 sw_buf_x = int(sw_w/4) # buffer to left/right of image

 sw_buf_y = int(sw_h/4) # buffer to top/bot of image

 sw_cx = int(CAMERA_WIDTH/2) # x center of image

 sw_cy = int(CAMERA_HEIGHT/2) # y center of image

 sw_x = (sw_cx - sw_w/2) # top x corner of search rect

 sw_y = (sw_cy - sw_h/2) # top y corner of search rect

 sw_maxVal = MAX_SEARCH_THRESHOLD # Threshold Accuracy of search

in image

 sw_minVal = MIN_SEARCH_THRESHOLD # Threshold of worst search result

in image

 # Grab a Video Steam image and initialize search rectangle

 cam_cx1 = sw_cx

 cam_cy1 = sw_cy

 cam_cur_cx = cam_cx1

 cam_cur_cy = cam_cy1

 image1 = vs.read() # initialize first image

 img = cv2.imread("cam.jpg")

 search_rect = img[sw_y:sw_y+sw_h, sw_x:sw_x+sw_w] # Initialize centre search

rectangle

 cam_track_cx = 0 # initialize cam horizontal cam movement tracker

 cam_track_cy = 0 # initialize cam vertical cam movement tracker

 while True:

 image1 = vs.read() # capture a image from video stream thread

 # Look for search_rect in this image and return result

 result = cv2.matchTemplate(image1, search_rect, cv2.TM_CCORR_NORMED)

 # Process result to return probabilities and Location of best and worst image

match

 minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(result) # find search rect

match in new image

35

 # Get the center of the best matching result of search

 cam_cx2, cam_cy2 = get_center(maxLoc[0], maxLoc[1], sw_w, sw_h)

 # Update cumulative camera tracking data

 cam_track_cx = cam_track_cx + cam_cur_cx - cam_cx2

 cam_track_cy = cam_track_cy + cam_cur_cy - cam_cy2

 # Check if search rect is near edges and meets search accuracy threshold

 if not (maxLoc[0] > sw_buf_x and maxLoc[0] + sw_x + sw_buf_x <

CAMERA_WIDTH and

 maxLoc[1] > sw_buf_y and maxLoc[1] + sw_y + sw_buf_y <

CAMERA_HEIGHT

 and maxVal > sw_maxVal):

 # check value of lowest matching result and reset search rectangle

 if minVal < sw_minVal:

 if debug:

 print(" Reset search_rect cur_cx=%i cam_track_cx=%i cur_cy=%i

cam_track_cy=%i"

 % (cam_cur_cx, cam_track_cx, cam_cur_cy, cam_track_cy))

 search_rect = img[sw_y:sw_y+sw_h, sw_x:sw_x+sw_w]

 cam_cx2, cam_cy2 = get_center(maxLoc[0], maxLoc[1], sw_w, sw_h)

 cam_track_cx = cam_track_cx + cam_cur_cx - cam_cx2

 cam_track_cy = cam_track_cy + cam_cur_cy - cam_cy2

 cam_cx1 = sw_cx

 cam_cy1 = sw_cy

 cam_cx2 = cam_cx1

 cam_cy2 = cam_cy2

 cam_cur_cx = cam_cx2

 cam_cur_cy = cam_cy2

 if debug:

 #print(" Cam at (%i,%i) cam_track_cx, cam_track_cy" % (cam_track_cx,

cam_track_cy,))

 print(" maxLoc maxVal minLoc minVal")

36

 print maxLoc, "{0:0.4f}".format(maxVal) ,

minLoc ,"{0:0.4f}".format(minVal)

 if maxLoc[0] > 140:

 print(" Right")

 if maxLoc[0] < 100:

 print(" Left")

 if maxLoc[0] > 100 & maxLoc[0] < 140:

 print(" Center")

 image2 = image1

 if window_on:

 # Display openCV window information on RPI desktop if required

 cv2.imshow('search rectangle', search_rect)

 # cv2.circle(image2,(sw_x+sw_w/2,sw_y+sw_h/2),CIRCLE_SIZE,(0,0,255),

2)

 # cv2.rectangle(image2,(sw_x,sw_y),(sw_x+sw_w,sw_y+sw_h),(0,0,255),

LINE_THICKNESS)

 cv2.rectangle(image2,(maxLoc[0], maxLoc[1]),(maxLoc[0] + sw_w,

maxLoc[1] + sw_h),(0,255,0), LINE_THICKNESS) # show search rect

 # cv2.rectangle(image2,(cam_cx1 - sw_w/2, cam_cy2 -

sw_h/2),(cam_cx1+sw_w/2, cam_cy2+sw_h/2),(0,0,255), LINE_THICKNESS) #

show current rect

 m_text = ("CAM POS (%i %i) " % (maxLoc))

 cv2.putText(image2, m_text, (int(CAMERA_WIDTH/2) - len(m_text) * 3,

CAMERA_HEIGHT - 30), cv2.FONT_HERSHEY_SIMPLEX, CV_FONT_SIZE,

(255,255,255), 1)

 if WINDOW_BIGGER > 1:

 image2 = cv2.resize(image2,(big_w, big_h))

 cv2.imshow('Cam-Track (q in window to quit)',image2)

37

 if cv2.waitKey(1) & 0xFF == ord('q'):

 cv2.destroyAllWindows()

 print("End Cam Tracking")

 break

#---

if __name__ == '__main__':

 try:

 cam_shift()

 finally:

 print("")

 print("+++++++++++++++++++++++++++++++++++")

 print("%s %s - Exiting" % (progname, ver))

 print("+++++++++++++++++++++++++++++++++++")

 print("")

import RPi.GPIO as gpio

import time

import sys

import Tkinter as tk

from sensor1 import distance1

from sensor2 import distance2

from sensor3 import distance3

import random

def init():

 gpio.setmode(gpio.BOARD)

 gpio.setup(13, gpio.OUT)

 gpio.setup(15, gpio.OUT)

 gpio.setup(16, gpio.OUT)

 gpio.setup(18, gpio.OUT)

def forward(tf):

38

 gpio.output(13, True)

 gpio.output(15, False)

 gpio.output(16, True)

 gpio.output(18, False)

 time.sleep(tf)

 gpio.cleanup()

def reverse(tf):

 gpio.output(13, False)

 gpio.output(15, True)

 gpio.output(16, False)

 gpio.output(18, True)

 time.sleep(tf)

 gpio.cleanup()

def turn_left(tf):

 gpio.output(13, False)

 gpio.output(15, False)

 gpio.output(16, True)

 gpio.output(18, False)

 time.sleep(tf)

 gpio.cleanup()

def turn_right(tf):

 gpio.output(13, True)

 gpio.output(15, False)

 gpio.output(16, False)

 gpio.output(18, False)

 time.sleep(tf)

 gpio.cleanup()

def pivot_left(tf):

 gpio.output(13, False)

 gpio.output(15, True)

39

 gpio.output(16, True)

 gpio.output(18, False)

 time.sleep(tf)

 gpio.cleanup()

def pivot_right(tf):

 gpio.output(13, True)

 gpio.output(15, False)

 gpio.output(16, False)

 gpio.output(18, True)

 time.sleep(tf)

 gpio.cleanup()

def check_left():

 init()

 dist = distance1()

 if dist < 15:

 print('too close,',dist)

 init()

 turn_left(3)

 dist = distance1()

 if dist < 15:

 print('too close,',dist)

 init()

 pivot_left(3)

 dist = distance1()

 if dist < 15:

 print('too close,',dist)

 sys.exit()

def check_right():

 init()

 dist = distance2()

40

 if dist < 15:

 print('too close,',dist)

 init()

 turn_right(3)

 dist = distance1()

 if dist < 15:

 print('too close,',dist)

 init()

 pivot_right(3)

 if dist < 15:

 print('too close,',dist)

 sys.exit()

def check_front():

 init()

 dist = distance3()

 if dist < 100:

 print('too close,',dist)

 init()

 reverse(1)

 dist = distance1()

 if dist < 100:

 print('too close,',dist)

 init()

 reverse(2)

 dist = distance1()

 if dist < 100:

 print('too close,',dist)

 sys.exit()

def autonomy():

 tf = 0.030

41

 x = random.randrange(0,4)

 gpio.cleanup()

 if x == 0:

 for y in range(30):

 check_left()

 check_right()

 check_front()

 init()

 forward(tf)

 elif x == 1:

 for y in range(30):

 check_left()

 check_right()

 check_front()

 init()

 pivot_left(tf)

 elif x == 2:

 for y in range(30):

 check_left()

 check_right()

 check_front()

 init()

 pivot_right(tf)

 elif x == 3:

 for y in range(30):

 check_left()

 check_right()

 check_front()

 init()

 pivot_left(tf)

for z in range(10):

autonomy()

42

import RPi.GPIO as gpio

import time

def distance(measure = 'cm'):

 try:

 gpio.setmode(gpio.BOARD)

 gpio.setup(11, gpio.IN)

 gpio.setup(12, gpio.OUT)

 gpio.output(12, False)

 while gpio.input(11) == 0:

 nosig = time.time()

 while gpio.input(11) == 1:

 sig = time.time()

 t1 = sig - nosig

 if measure == 'cm':

 distance = t1 / 0.000058

 elif measure == 'in':

 distance = t1 / 0.000148

 else:

 print('error')

 distance = None

 gpio.cleanup()

 return distance

 except:

 distance = 100

 gpio.cleanup()

 return distance

43

print(distance('cm'))

