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ABSTRACT

THE DESIGN OF AN FPGA-BASED PROCESSOR WITH
RECONFIGURABLE MICROARCHITECTURE PROCESSOR
EXECUTION STRUCTURE FOR INTERNET OF THINGS (IoT)
APPLICATIONS

Kiat Wei Pau

Low power consumption and high computational performance are two
important processor design goals for IoT applications. Achieving both design
goals in one processor architecture is challenging due to their conflicting
nature, whereby low power consumption tends to limit the computational
performance and high computational performance tends to consume higher
power. This research work introduces a micro-architectural level
reconfigurable technique that allows a Reduced Instruction Set Computing
(RISC) processor to support IoT applications with different performance
power trade-off requirements. The processor can be reconfigured into either
multi-cycle execution (low computational speed with low dynamic power
consumption) or pipeline execution (high computational speed at the expense
of high dynamic power usage), based on dynamic workload characteristics in
IoT applications. The switching is made possible through partial
reconfiguration (PR) feature offered by FPGAs. A RISC processor was

designed based on the proposed micro-architectural level technique and



implemented on FPGA as IoT sensor node. Experimental result demonstrates
that the proposed technique is able to reduce dynamic energy consumption by
4.63% and 21.47%, respectively, compared to multi-cycle and pipeline only
microarchitecture. In order to improve the dynamic energy consumption
without losing too much of computational performance, the energy-delay
product metric is used. Our proposed technique shows that the energy-delay
product is reduced by 8.81% (compared to multi-cycle) and 18.91%
(compared to pipeline) respectively. This implies that the proposed technique
can achieve better performance-energy trade-off for IoT applications

compared to conventional method that only have single microarchitecture.
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CHAPTER 1

INTRODUCTION

1.1  Background

Internet of Things (I0T) enable communication of a wide range of
physical objects without human intervention (Lazarescu, M. T., 2013), and
nowadays, sensors can be deployed everywhere. Sensor data can be accessed
at any time using a remote device, i.e. smartphone, computer etc. The
emerging of larger addressing space, i.e. Internet Protocol version 6 (IPv6),
allows each sensor node to have a unique Internet Protocol (IP) address and
directly access through the Internet. As a result, the physical objects are able
“to see, hear, think and perform jobs by having them ‘talk’ together, to share

information and to coordinate decisions.” (Al-fugaha, A. et al., 2015)

loT, which is evolved from Wireless Sensor Network (WSN), has the
advantages of dynamic network size, low devices cost, self-organize without
human intervention, querying data and re-tasking capabilities, multihop data
aggregation, and multi-environment deployment (Bhattacharyya, D., Kim, T.
and Pal, S., 2010; Gungor, V. C., Lu, B. and Hancke, G. P., 2010). WSN
consists of a group of sensor nodes. Each sensor node is responsible to collect
ambient environmental data, pre-process the data and transmit the data to
neighbouring nodes or sink nodes (Akyildiz, I. F. et al., 2002; Stankovic, J. A.,
2008). The basic components of a sensor node consist of a sensing unit,

processing unit, transceiver unit and power unit. Sensing unit composes of



sensor(s) (can be a module form) where sensor data can be collected through
I°C (Inter-integrated Circuit), SPI (Serial Peripheral Interface), UART
(Universal Asynchronous Receiver-Transmitter), GPIO (General-Purpose
Input/Output), ADC (analog-to-digital converter), etc. Sensor senses the
ambient environment data and the collected data will be forwarded to the
processing unit. The processing unit consists of processor and memory units,
which used for data processing and storing respectively. Lastly, the transceiver
unit is responsible to send the processed data to neighbouring nodes or sink
nodes. A power unit is used as the power source of the sensor node. The
power source can be from a battery, harvesting unit (collected from renewable
energy, e.g. vibrations, solar, heat or electromagnetic energy) or power supply.
The role of each node is different depends on the processing capabilities and
themselves take on specific functions and behaviors in the network (Kateeb, A.
El, Ramesh, A. and Azzawi, L., 2008). A common WSN consists of 2 types of
nodes, sensor nodes and sink nodes (Akyildiz, 1. F. et al., 2002). Sensor nodes
are capable to collect, process sensor data and transmit the data to another
sensor node or sink node via wireless (can be Bluetooth, Zigbee etc.), while
sink node has additional capability to forward the data to other networks, i.e.
Internet or Cellular networks (Buratti, C. et al., 2009). Figure 1.1 shows the

WSN architecture.



Internet and
satellite

Task manager
node

User

Sensor field Sensor nodes

Figure 1.1: WSN architecture

Source: Akyildiz, I. F. et al. (2002) ‘A survey on sensor networks’, IEEE
Communications Magazine, 40(8), pp. 102-114. doi:
10.1109/MCOM.2002.1024422.

For the on-field loT application, a stringent need for low power is the
fundamental requirement. “Low power design is an important topic of wireless
sensor network™ (Yongjun Xu et al., 2005). The main challenge of WSN is to
reduce the power consumption of the sensor node (Jawhar, I., Mohamed, N.
and Agrawal, D. P., 2011). From a survey conducted by de la Piedra, A. et al.
(2013), most of the 10T deployments require the sensor nodes to operate at
least for a few months. To achieve this requirement, the sensor nodes have to
be operated in low power mode to minimize the energy consumption.
However, reducing the power consumption usually will tend to reduce the
performance as well, as the common approach is by reducing the clock
frequency. Choi, K., Soma, R. and Pedram, M. (2004) demonstrated energy
saving by reducing the clock frequency and voltage, which resulted in 10 - 30%
performance loss for CPU-bound applications (bf, crc, djpeg and math) and 10
- 20% performance loss for memory-bound applications (gsort and gzip).
Processor with a fixed microarchitecture can cause oversupply of

computational speed for processing low computational requirement 10T tasks



and thus, energy is wasted. Furthermore, the operation at low computational
speed is able to save power, however it may not process high computational
requirement 10T tasks in certain period. Pande, V., ElImannai, W. and Elleithy,
K. (2013), Lloret, J. et al. (2009) and Xufeng Wei et al. (2014) showed a fire
detection application using temperature and image sensors on a high
computational speed processor in WSN. Image sensor was set to sleep mode
(Pande, V., Elmannai, W. and Elleithy, K., 2013; Lloret, J. et al., 2009) or with
longer sampling interval (Xufeng Wei, Yahui Wang and Yanliang Dong, 2014)
for power saving purpose, but temperature sensor has shorter sampling
interval. Since temperature sensor is still monitoring the environment
frequently, when it detects a rapid increase in temperature, the image sensor is
turned to active mode to further verify on such event triggered. In this case,
the power consumption can still be reduced, since low computational speed is
required to collect temperature sensor data, whereas high computational speed

is required on demand.

Violante, M. et al. (2011) had stated that hard macro or hard-core
processors, i.e. commercialize off-the-shelf microcontroller chip, for example,
ATmegal28L inside the MICAz mote, is neither configurable nor modifiable
by end user. Slight modification to be made in the manufacturing process
could end up costing millions. On the other hand, the soft IP core offers some
degrees of customization, which determined the functionalities and peripherals
that should be included in the design. This has made a valid issue when de la
Piedra, A. et al. (2013) and Qingping Chi et al. (2014) presented that lack of

standardized 1/O peripherals interface for wireless sensor node as one of the



open issues or limitations for the sensor nodes. The 1/0 peripherals are used as
the communication path between the external chip modules with the
processing unit inside the sensor node. Since external chip modules are not
always designed with either SPI or 1°C interface (de la Piedra, A. et al., 2013),
it will be a limitation when the off-the-shelf microcontroller does not provide a
sufficient number of interfaces, for example, off-the-shelf microcontroller
provides only UART interface while transceiver module is designed with SPI
interface. While struggling with this issue, Johnson, D. (2009) presented a
solution by using only the digital GP10O port to imitate the SPI, 1°C and UART
communication protocols, and thus solve the unstandardized 1/0 peripherals
issue. However, referring to the experimental result shown in (Mikhaylov, K.
and Tervonen, J., 2012), this solution consumes more energy and has lower
performance than the real hardware interface protocols. Apart from that,
Mikhaylov, K. and Tervonen, J. (2012) also showed that the power
consumption of SPI is far lower than UART and 1°C where UART is lower
than I1°C. Besides that, Qingping Chi et al. (2014) had also pointed out that the
applications are limited by the fixed hardware design and there is still no “one
size fits all” kind of solution. Hsieh, C.-M. et al. (2014) on the other hand had
experimented the Fast Fourier transform (FFT) function for both software and
hardware methods. The result shows that software method consumes 21%
more current than the hardware method. Inherently, it is a limitation if an off-
the-shelf microcontroller is used, i.e. ATmegal28L, since the hardware

accelerator is not able to customize or include into the microcontroller.



In our research work, we are motivated to develop a reconfigurable
soft-core processor on Field-Programmable Gate Array (FPGA) for the on-
field Internet of Things (IoT) application. The processor is developed to be
customizable and capable in switching between multi-cycle (to process low
computational speed requirement tasks while saving power) and pipeline (to
process high computational speed requirement task but consume more power)
microarchitectures to satisfy better performance-power tradeoff. Our research
has carried out on the processor microarchitecture level, which by experiment
the reconfiguration between multi-cycle and pipeline executions. Multi-cycle
execution is able to reduce the dynamic power consumption of the processor at
the expense of providing lower computational speed. In opposite, pipeline
execution provides higher computational speed but consume more dynamic
power than multi-cycle execution. The processor is implemented based on
FPGA technology, in which FPGA technology provides a key enabling feature
for our experiment, the partial reconfiguration (PR) feature. FPGA PR feature
allows only reconfiguring a small region, i.e. multi-cycle and pipeline

executions, without reconfiguring the whole FPGA chip.



1.2 Problem Statement

A deployed loT sensor node is expected to perform data aggregation,
data processing and data transmission, which require different computational
speeds and power consumption. Low power consumption is the fundamental
requirement for deploying IoT application because changing device’s battery
is a difficult task after the sensor nodes were deployed. Various power
reduction techniques, refer to Section 2.3, have been proposed to develop
energy efficient sensor nodes for 10T deployment, but sacrifice the
computational performance. The techniques mentioned were implemented at
gate-level or board-level to manipulate the voltage and clock frequency on a
fixed microarchitecture processor. Achieving low-power by manipulating the
micro-architectural design is, however, has not been well addressed.
Reconfigurable microarchitecture of processor offers a new low power
technique to be used in 10T sensor nodes. Interestingly, the design of such
processor was also accompanied by the following questions: (1) How to tune
the processor based on the computational needs from the environment
requirement to have the optimum power saving scheme? (2) How to verify the
performance of the design in terms of computational speed and power using
conventional FPGA chip? Therefore, there is a need to perform a systematic
research on the design of an energy efficient processor with reconfigurable

microarchitecture for 10T applications.



1.3

Objectives

The main goal of this research is to develop a reconfigurable soft-core

processor on FPGA for the on-field IoT application. The developed loT

processor is capable to collect, process and transmit the sensor data to another

sensor node. The developed 10T processor is also able to adjust at micro-

architectural level, the required computational speed to suit each loT

application and at the same time save power. More specifically, the objective

can be further divided into the following sub-objectives:

1)

2)

3)

To develop a reconfigurable soft-core 10T processor with essential 1/0
interfaces (SPI, UART and GPIO) and memory system for on-field 1oT
application. This work includes the development of a suitable CPU
structure, 1/Os and firmware, bus system and arbitration, volatile and
non-volatile memory controller and memory system arbitration.

To develop the microarchitecture that is able to perform PR between
multi-cycle and pipeline microarchitectures to satisfy the varying
performance-power tradeoff requirements from each 10T application.
The developed processor should be able to partial reconfigure itself
between multi-cycle and pipeline microarchitectures. This work
includes the determination of the CPU components involving in the PR
and the development of the PR system.

To synthesize the developed processor on a conventional Xilinx Artix-
7 XC7A100T FPGA chip. The computational speed and power
analysis for pipeline and multi-cycle microarchitectures based on AES-
128 encryption will be experimented to identify the performance of the

developed processor.
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Contributions

The contributions of this dissertation are:

1)

2)

3)

A customizable loT processor that is able to cope with rapidly
changing research functional needs required in 10T. Since the research
and development of 10T applications are constantly developing, where
extra functionalities may be introduced in the future, customizable
offers competitive advantages by shorten the development cycle, lower
the development cost and lower manufacturing turn-around time.

A reconfigurable soft-core loT processor to satisfy the varying
performance-power tradeoff requirements from each loT application
by PR between multi-cycle and pipeline executions. Multi-cycle
execution is used to reduce the dynamic power consumption of the
processor at the expense of providing lower computational speed,
while pipeline execution provides higher computational speed but
consume more dynamic power than multi-cycle execution.

An experiment result that highlights the quantitative differences
between multi-cycle and pipeline executions. The analysis on
computational speed and power consumption for both multi-cycle and
pipeline executions are gathered to highlight the strength of each

execution.



1.5  Dissertation Organization

This dissertation is organized as follows. Chapter 2 discusses the necessary
information prior to conduct our research. Chapter 3 describes the
reconfigurable 10T processor developed. Chapter 4 presents the verification
flow and compares the computational speed analysis and power analysis for
both pipeline and multi-cycle microarchitecture. Chapter 5 concludes the

dissertation and provides suggestion for the future work.

10



CHAPTER 2

LITERATURE REVIEW

2.1 Internet of Things (1oT)
2.1.1 10T Application

Buratti, C. et al. (2009) had classified the 10T application into 2
categories, namely event detection (ED) and spatial process estimation (SPE).
The ED application sensors are deployed to detect an event while SPE
application aims to estimate a given physical phenomenon, i.e. estimation of
the entire behavior of the spatial process based on the samples taken by the
sensor nodes. Borges, L. M. et al. (2014) had further expanded these
categories according to the applications area and its applications. Table 2.1
shows the characterization of the applications by Borges, L. M. et al. (2014),
with ED represents the event detection and PE represents the process

estimation (PE = SPE).

11



Table 2.1: Characterization of the applications
Source: Borges, L. M., Velez, F. J. and Lebres, A. S. (2014) ‘Survey on the
Characterization and Classification of Wireless Sensor Network
Applications’, IEEE Communications Surveys & Tutorials, 16(4), pp.
1860-1890. doi: 10.1109/COMST.2014.2320073.

Applications Area Applications Class Applications Area Applications Class
Metropolitan Operation| -Highway monitoring [82] [83] PE Industrial R -Commercial Spaces PE & ED
-Condition-based-monitoring  [84] PE ndustrial Automation -Smart Factory [118] PE & ED
Militar [85] [86] [87] ) -Pre-Flospital [119] PE & ED
Y ol
-Surveillance [33] ED -In-Hospital Emergency Care [120] | PE & ED
-Borders Monitoring [89] ) ED Health “Telemedicine [121] PE & ED
Civil Engineering -ftnlcluml Integrity  Monitoring |y ~(Tele)Rehabilitation [122] PE & ED
190] , Mood-based Services | -Personal Coaching [123] ED
—Bf}omgjlrmg Volcanic  Eruptions PE & ED “Dynamic Spaces [124] ED
[ ]-_[ 1 L I Entertainment -Gaming [125] ED
. -Habitat Monitoring [93] PE & ED -Gesture/body Tracking [126] ED
Environmental -Water Monitoring [94] [95] [96] | PE & ED Smart Office [|7'7] D
Monitoring -Weather Monitoring [97] [98] PE & ED - Sk =
“Forest Fire Detection [99] [100] | PE & ED Sports [128] D
s : N -Building Automation [129] ED
-Precision Agriculture [101] [102] [ PE & ED u 30 .
osivtion “Target Tracking [103] [104] D -Home Control [130] ED
gistics “Warchouse Tracking [105] PE & ED
“Tmmersive Roam [106] ED
Position & Animals | -Real-Time Relative Positioning ED
Tracking System [107]
-Wild-Life Tracking [108] [109] §
ED
[110]
Transportation -Smart Roads [111] [112] PE
-Automobile [113] PE
Sensor & Robots [114] [115] PE & ED
-Reconfigurable WSN [116] ED
“Nanoscopic Sensors [117] ED

However, the information shown in Table 2.1 is inefficient to identify
the computational requirement for each loT application. Borges, L. M. et al.
(2014) and Hempstead, M. et al. (2008) had classified the sampling rates of
the sensor nodes into 3 ranges, which are low sampling rate varies between
0.001 Hz and 100 Hz, medium sampling rate varies between 100 Hz and 1
kHz, and high sampling rate which is higher than 1 kHz. Hempstead, M. et al.
(2008) had pointed out that the computational requirement is defined by the
sampling rate for the measured phenomena and the amount of on-node data
filtering required. High performance processor is required to measure and
process high sampling data rate of the sensor node, while low sampling data
rate sensor node will be idle most of the time. Table 2.2 shows the sensors
sampling rate used in different phenomena identified by Hempstead, M. et al.

(2008).
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Table 2.2: Sensors sampling rate

Source: Hempstead, M. et al. (2008) ‘Survey of Hardware Systems for

Wireless Sensor Networks’, Journal of Low Power Electronics, 4(1), pp.
11-20. doi: 10.1166/jolpe.2008.156.

Phenomena Sample rate (in Hz)
Very low frequency
Atmospheric temperature 0.017-1
Barometric pressure 0.017-1
Low frequency
Heart rate 0.8-32
Volcanic infrasound 20-80
Natural seismic vibration 0.2-100
Mid frequency (100 Hz—1000 Hz)
Earthquake vibrations 100-160 Hz
ECG (heart electrical activity) 100-250
High frequency (=1 kHz)
Breathing sounds 100-5 k
Industrial vibrations 40 k
Audio (human hearing range) 1544 k
Audio (muzzle shock-wave) M
Video (digital television) 10 M

Furthermore, Hempstead, M. et al. (2008) further described the desired
lifetimes and the computational requirements in each application domain,

which is shown in Table 2.3.

Table 2.3: Applications lifetime and computation requirement

Source: Hempstead, M. et al. (2008) ‘Survey of Hardware Systems for
Wireless Sensor Networks’, Journal of Low Power Electronics, 4(1), pp.
11-20. doi: 10.1166/jolpe.2008.156.

Computation requirements

Application domain (Sample rates)

Desired lifetimes

Scientific applications

Habitat/weather monitoring Months/decades very low

Volcanic eruption detection Months/decades mid
Military and security applications

Building/border intrusion detection Years/decades low

Structural and earthquake monitoring Years/decade low/mid

Active battlefield sensing Months mid/high
Medical applications

Long-term health monitoring (pulse) Days low

Untethered medical instruments (ECG) Days med
Business applications

Supply chain management Months low

Expired/damaged goods tracking Months low

Factory/fab monitoring Months/years med/high
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Majority of the applications in Table 2.3 require the lifetime of the
sensor node to last for at least a few months. The research work conducted by
Hempstead, M. et al. (2008) is useful in identifying the lifetime and the
computation requirement of the sensor node, especially the targeted
application, environmental monitoring application, which would requires low

to medium computational speed and expected to last for several months.

In summary, we see an opportunity to save power consumption or
provide higher computational speed based on the need of an application as
indicated by the sensors sampling rate. For example, for sampling rates
between 0.001 Hz to 100 Hz which imply a low-speed processing, a multi-
cycle structure can be used to reduce the power consumption. If higher
sampling rates (more than 1 kHz) are required by an application, then a

pipeline structure can be employed.
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2.1.2 Existing 10T Platforms

Borges, L. M. et al. (2014) had presented the sensor node platform

used in each 10T application area, which is shown in Table 2.4.

Table 2.4: Application device’s current consumption
Source: Borges, L. M., Velez, F. J. and Lebres, A. S. (2014) ‘Survey on the
Characterization and Classification of Wireless Sensor Network
Applications’, IEEE Communications Surveys & Tutorials, 16(4), pp.
1860-1890. doi: 10.1109/COMST.2014.2320073.

local supply

Environmental Position & Industrial
Application Area Metropolitan Military monitoring animals tracking automation Health
Project Traflic Do [#2] WiBead [84] "nl:;l'::cgmq:l LEMe Room [106)] Anshan [118] MEMMSN [120]
- Highway Condition-hased Monitoring . . e b
Application Hnaaring maninang wolcanic eruptions Immersive roam Smust factory Telemedicine
o Collective QoS |  Collective Qo§ |  Callective QoS Collective QoS {gf’"’f‘l’j“?f-hi Collective QoS
i & {Event-Driven) {Event-Driven) {Event-Diaven) (Event-Diaven) Srent-iinen {Event-Driven)
Cruery-driven)
E '{Eh:: < 574 <5186 =576 =576 < 576 z 52
w
Trin= 15 Tmar= MME6T = Tmaz= 03 5 _ Tinin= 80 ms —
% Latency Tmazr=1s iper packet) {per hopl Tnax= 3 ms Trmar= 250 ms Tonr=7-8 s
2 Synchronization Sync Sync Syne Synec Bvine Sy
E Chss of service ED&CREE ISO&ECHE ISO&ECER IENEET-VER [S0ECER [ROERT-VBE
E Traffic classes HT& LT & Data OTELTE Tl DTELTEDam T L& TR OTELI& D RT&LT& Taln
3 Modulation FEE(D55R) DESE-0-0PSK FRK FRRIDS55) GFSKE or MSKDOE FSKE
Communication T 5 . 5 ] CIF . iF- X
divertion Hali-duplex Half-duplex Half-duplex Half-duplex Half-duplex Half-duplex
Type STV, LOD !
g of Traffic MED: HID LoD HID HID HID STV: HID
E- Packet delivery 1% fma.) 9 4.96% LA <100 6.3%
g failure ratio
Acquisition & . . - - . .
£ dissemination Event-deiven Event-deiven L)a.rn.lmi-.h-_mn Dtl'l'hll'lli-n.lr!\.‘!}ll F_,m?,nt-nirlycn ['.'IL“'.I.Iﬂﬂ-dll'l'nLﬂ
= L & event-driven & event-driven & time-driven & time-driven
Lifctime (hi > 25920 [T21; 259200 [24; T20] [24; 7201 ] MN.AL
Sealability [ 515 4007 nodes < 30 nodes <30 nodes < 50 nodes = A pedes <50 meoades
Thensity oA, MLAL 3 kme 450 e S m® N.A.
Sensing range MN.A. Laocal Local Im? < | local
- Entire Entire Entire Entire Entire Entire
Sell-organtzation network network network network network netwiork
Secority Lonw Low or mone Low Medium None None
Address-centric:
-E Addressi Address-gentric: Address-centric: Address-centrie: Address-centric: node 10, Address-centric:
z TEREIE MAC address MAC address MAC address e 103 growp (1, adidress nuimber
:_g_' eluster 1D
- Not Nt Mot [ Mot
mﬁmﬂblhq pnlgmlmnilhle pma;ramllluhlr prngrinnmahle Prorrumm:]hlc 'prngr:nnmahle |1r|1gr:|||1mi|l:|le
Maintainability Mainizinable Mainiainable Maintainable . Nl.“ Maintainable " Nl}t
maimazinzble muintainable
Homuogeneity | Hewerogeneous Heterogensous Heterogeneons Heterogeneous Heteropeneous Heteropeneous
Muohility Na Mo Mo Support No F—
support SUPpOT sUppoTt support =Rl support SUpp
ATMEL & Microchip
Microprocessor ATMEL n . ATMEL {ATMega 1281y ATMEL .
(ATMega 128L) (MEP430F 161 1) (AThega 1281 & [PICI6FET) (ATMega 128L) (MSP230F 1611
. CCInon CCInn0 connn -
Transceiver cetioo e 431 MHz) (900 MHz) (433 MHz) Cez4z0
- Overall encrgy 001044 A 00612 A 0058 A 00520 A 0072503 A 0955 A
k) ('4.ITI5I!'I'I'|]|IDI1 1
i Sampling rute [TOH; TOMOT He =1 kHz [ 10Kk TONIO] Hz =T kHz [ T0N5; TER0 Hiz [O.00T; T00] Hz
Sensor Sensor Aemsor Sensor aensor & sink Sensor
Trpe of fomction & sink & sink & sink & sink + gaieway & sink
Communication 55m 10 m 0.7 m 05 m = 1 m =5m
range
Power supply Battery Batrery Battery Bariery & Battery Banery
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Continued from Table 2.4: Application device’s current consumption

T . Clvil Environmental . - . a ,
Applivation Area engineering monitoring Laogistics Transporizlion Anstomwihile Sperts
Rustwinahle VigilNet [T03] AstroRoads Intelligent DexierNet
¥ 3] ] L
Project Bridzes [90)] FireBug [99]. [1000 | "1 1) [, 11121 Tires [113] [128]
- Strusctieral mlegrity Firest fime Targel St 1 h
Application TN g wracking ol Automobile Sports
. Collective QoS . .
- Collective (oS iy i Collective (oS f— Hyhrad maodel Collective QoS
& Qus {Eveni-Driven) II.\‘tnI-Dn_\ln & {Event-Driven) . 1_lL_1nI|nw.rLM_ . (Eveni-Driven)
g Dy -driven imlivicual specilic
E Bil rale - 5T T B oo ' b
= ikhps) = 576 [576; 115.2] = 115.2 = 576 - 576 > 1152
=]
) Tin= 40H) me Thin= Tmtn= = Twin=
i Latency Tinae= 1500 e Trnaz=2 % Tnar= - Trnac= 130 ¢ Tonar= 208
£ | Bynchronization Asvne Syne Svnc Syne Sync Sync and Async |
E’ Class of service IS0&RT-VRE 1508 CHE ISOLKT-VER ISO&RT-VER 150aCHE ISOLET-VER
E Trallic clisses AR IXT Ll ety A RE BT RIS LT & D DT Ll Dana LA TR
S Misdulathon FEKIDEES) FSKE [ES5-0-0F5K FSEITERS) FEKIDGEES) IISR5-0-0PEK
Communication . . . . . .
direction Half-duplex Half-cuplex Hulf-cuplex Half-chuplex Half-duplex Half-dhaplex
Type
% of Traffic HI» LoD LoD HI LoD HI
E | Packet delivery . - ) . )
£ Failure ratio 1% 0.0% 4%
= Acquisition & . . o B i . . . N
£ dissemination |'.\.|..nl-|lm:|.‘l1 & h‘”'m-dm:cn & Event-driven "'mm-d'm.m h\.m:u-dn“.n & Event-driven
z T Time-driven Time-driven & event-driven & time-driven
Lifetime (h) = 35430 [24; 730] [721; 25020] A, [24; 73] WA,
Scalability NLA. <= M0 s = J0W) nodes << 30 nodies < 50 nades < 30 modes
Diensity - 3 km? 50k N.A. 017 m? 16 m?*
Sensing range 1052 m? Local 200 m? N.A. = 1 m? = 1 m?
N A Entire Entire Entirz Entire Entire Entire
Sell-orgauization network nedwork network network network network
Seourity Lo Low Mone Mome Mone Mome:
Cieopraphic
z Addressi Adddresi-centnc: Address-ceniric Adddress-centric: Address-centric: addressing Address-cenric:
z Adgresing MAC addiess MAC adddress MAC address e 1D scheme node 1T}
I
“ Programmahilii Prograrmmahle Rt Progrimnuhle Programmahle Mot Progrimmahle
ara ¥ S programmible e Erommable programmible HErmmebIE |
Maintaimability Blainiainable Maintainahle Maintainahle Maintainable Mainiainable Maintainahle
Huormogre neity Helergeneous Hegerogeneons Hieterogenenes Heterogeneos Hererogeneous Heterogeneons
Flobility No Mo Mo Mo .
SuUppHt Supp support st support Su Support
Mieroprocessar m ATMEL I ::.::Ju.:: ATMEL ATMEL
i . grs i 3 y
(DSP 8-bith (ATMega 128L) (MSP430) (ATMega 125L) (ATMega 1281L) (ATMega 2)
Transceiver 2420 CC CC2420 CC I CCN OO0
. | Overall encrey 10153 A 0036 A 00351 A K5 A (136 A 01289 A
k- conammption | |
7 Sampling rate = 1 kHz [ 106k, 1000] Hz (0,000 T8 He N.A, MN.A, (03T 100 He
Sensor Sensor Senar Sensor Semsor Sensor
Type of function S e K sink & sk i K sink
e wink 4 sink + gateway + actuator A sink + paleway
Communication 1030 m .7 m 125 m WA m 140 m 10 m
range
attemy ; Battery ; ; e
Power supply Rartery Batery Solar panc! Batery Barery Baiery

This study shows the sampling rate that supported by each sensor node

platform. The sampling rate of the environmental monitoring application falls

under medium sampling rate range, i.e. varies from 100 Hz to 1 kHz.

ATMegal28L microcontroller is used to implement the environmental

monitoring application, with consumes 0.036A to 0.038A in overall energy

consumption. Besides that, Hempstead, M. et al. (2008) presented the

specification of the hardware system used in the WSN in Table 2.5.
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Table 2.5: Hardware system for WSN
Source: Hempstead, M. et al. (2008) ‘Survey of Hardware Systems for

Wireless Sensor Networks’, Journal of Low Power Electronics, 4(1), pp.
11-20. doi: 10.1166/jolpe.2008.156.

Data  Event
path  driven Circuit Memory Throughput Energy
System Arch style  width  (y/n) techniques Accelerators (KB) Process Voltage (V) (MIPS) (pl/ins)
Atmel GP Off-the- 8 N N N 132 KB 350 nm RIAY 7.3 MHz 3200
ATmegal2 shelf
8L
TI MSP430  GP Off-the- 16 N N N 10 KB NA 3.0 8§ MHz 750
shelf
SNAP/LE GP RISC 16 Y Asyncronous Timer, 8 KB 180 nm 18 200 218
message 0.6 23 24
interface
BitSNAP GP RISC. 16 Y Asyncronous Timer, 8 KB 180 nm 18 54 152
Bit-serial message 0.6 6 17
datapath interface
Smart Dust GP RISC 8 N Syncronous-two  None 3.125 KB 250 nm 1.0 0.5 (500 kHz) 12
clocks
Charm Protocol NA N Two power Custom radio 68 KB 130 nm 1.0V (high) 8§ MHz 150 W
processor domains stack 0.3-1.0 V (low) 53.6 uW
leakage
Michigan 1  GP 8 Y Subthreshold None 025 KB 130 nm 0.360 833 kHz 26
Michigan 2 GP 8 Y Subthreshold None 0.3125 130 nm 0.350 354 kHz 352
Harvard Event driven 8 Y VDD-gating Timer, filter, 4 KB 130 nm 0.55-12 125 MHz 680 pl/task
accelerator message
proc

ATMegal28L microcontroller is used by most of the IoT application

area as shown in Table 2.4. However, based on the information shown in

Table 2.5, the general purpose off-the-shelf microcontrollers (ATMegal28L

and T1 MSP430) consume the most energy, in which it is not the best solution

in implementing a low power loT application sensor node. By investigate

Table 2.5, the reasons for such high power usage is because of the memory

size and the process technology (350 nm). Another supporting research work

by Gajjar, S. et al. (2014), had made an analysis on the sensor node used in

WSN, which shown in Table 2.6.
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Table 2.6: Sensor node’s analysis

Source: Gajjar, S. et al. (2014) ‘Comparative analysis of wireless sensor
network motes’, in 2014 International Conference on Signal Processing
and Integrated Networks (SPIN). IEEE, pp. 426-431. doi:
10.1109/SPIN.2014.6776991.

Parameter TelosB/Tmote Sky MICA2/MICAZ SHIMMER IRIS SunSpot #ZA30 F2500T Waspmotes
Coniroller TIMSP430F1611 AT Atmegal28L" | TIMSP430F1611 | AT Atmepal281” | AT Atmeza91RM 9200 [1MSP430E2174 | AT Alr:legallbl'
BUS size (Bits) 16 g 16 8 32 16 3
Frequency (MEz) ] 16 g 16 180 16 16
Wake-up fime (us) [} 180 [] 4300 Pin change wake up 1 16000
FLASH (Bytes) 45K 13K 45K 640K 4M 3K 128K
RAM (Bytes) 10K 1K 10K K 512K 1K 8K
EEPROM (Bytes) 1M 512K No support 4K No Support No support 4K
Serial Communication UART UART UART UART UART UART UART
Current Active mods (mA) 18 8 18 3 25 0270 §
Current Sleep (LA) 51 <15 51 8 500 0.7/0.1 (Standby/off) 8
Operating voltage (V) 1836 271033 18036 271033 3(+10%) 1836 27033
Power consumption active (mW) 3 33 5.04 216 92.5 0594 116
Power consumption sleep (uW) 2 30 16.83 216 1850 1.54/0.22(Standby of) 116
e Two 16 bt _I-l; :: 185111[ Two 16 bt FE\:: 1S 5?;:1 Two 16 bit Two 16 b1t }_l;\l\;: iﬁbﬁ:t
Watchdoz Ves Ves Yes Yes Ves Ves Ves
ADC 12-hat SAR 10-bit 12-b1t SAR 10-bat 10-bit 10-bit SAR 10-but
ADC channels 3 8 [ 8 8 12 8
Operating temperature range (°C) 40 to +83 -55 0 +125 -40 to +33 -55t0 +125 -40 to +85 40 to +105 -550+125
Package 64-pin QFN 64-lead TQFP. 64-pin QFN 64-pad. 208- PQFP. 38TSSOP. 64-Pad

64-Pad QFNMLE. 286-ball BGA 40VQEN, QFN/MLE,

QFN/MLF 64-lead TQEP 49DSBGA 64-lead TQFP
08 support Contiks, TOS TOS, Mantis OS | TOS Mote Runner Squawk VM (Tava) TOS NA

Mantis 05 T0S. MoteWorks

Programming and [DE 105. CCS. IAR "T0S TOS TOS JIME. JDK TOS, CCS. IAR C++. Waspmotes

*TOS=Tiny 0S Cross (le\'elbpmem t0ols with TOSSIM Simulator, AT=Atmel

From Table 2.6, TI MSP430 family series microcontroller consumes
the lowest power. Based on the information provided by Texas Instruments
(2006), MSP430 family series microcontrollers require multiple clock cycles
to execute an instruction, i.e. multi-cycle execution. However, due to the
nature of multi-cycle execution, it provides lower computational power as
compared to the pipeline execution, which makes the pipeline execution
popular in high performance processor design. So far, the discussed
microcontrollers are manufactured using ASIC technology. It would be costly
and requires longer development cycle to implement both the multi-cycle and
pipeline execution using ASIC technology in order to gain the advantage from
both design approaches. In the next subsection, we will discuss the benefits of

the FPGA technology which can help to achieve this goal.
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2.2 FPGA versus ASIC

Most of the soft-core processor design start in Register-Transfer Level
(RTL) modeling since it is technology-independent and hence the design can
be easily ported from FPGA to ASIC with only a few Hardware Description
Language (HDL) code changes (Abid, F. and Izeboudjen, N., 2015a; Abid, F.
and Izeboudjen, N., 2015b). In addition, HDL is at the center of modern digital
design practices, in which the building blocks or the entire processor can be
describe either in Very High-speed Integrated Circuit Hardware Description
Language (VHDL) or Verilog, and the overall design is much easier to
understand (Harris, D. M. and Harris, S. L., 2013; Tong, J. G., Anderson, I. D.
L. and Khalid, M. A. S., 2006). However, when it comes to the selection of the
implementation platform, there’s always an argument between the 2 major
technologies, ASIC or FPGA. FPGA is widely used in various designs and
diverse target applications (Abid, F. and Izeboudjen, N., 2015a). It has the
benefits of low manufacturing turn-around time, shorter the development cycle,
reduce the time-to-market and decrease the Non-Recurring Engineering (NRE)
cost. However, it comes with a price in higher power consumption, larger
design area and longer circuit delay which reduce the design logics
performance (Kuon, I. and Rose, J., 2007) and it only progressively used as
the final product platforms for low volume production (Abid, F. and
Izeboudjen, N., 2015a). For high volume production, ASIC is often chosen as
the implementation technology (Abid, F. and lzeboudjen, N., 2015b). Its
benefits are lower power consumption, smaller design area and higher design
logics performance compare with FPGAs (Kuon, I. and Rose, J., 2007).

However, longer development cycle which leads to delayed time-to-market,
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higher NRE cost and high manufacturing turn-around time are the drawbacks
of the ASIC implementation (Abid, F. and Izeboudjen, N., 2015b). For our
project, FPGA is chosen as our core technology to implement the 10T soft-
core processor, in order to take advantage in a shorter development cycle and
highly customizable. Since 10T data processing requirements, sensors and data
loggers interface and communications medium are not mature in
implementation, it is expected that the functional changes to take place
through the 10T processor development cycle (de la Piedra, A. et al., 2013).
For example, iterative experimental work on processor micro-architectural
level to achieve lower power consumption, adding or removing required 10s
etc. As stated in the previous section, the switching between multi-cycle and
pipeline executions is only possible with the help of partial reconfiguration
feature offered by FPGA. Besides that, since FPGA is potential to port to
ASIC in the future, we may identify the competitiveness of our design with the
existing microprocessor or microcontroller, which mostly fabricated in ASIC.
Kuon, 1. and Rose, J. (2007) had examined that the FPGA is approximately 35
times larger design area than the ASIC with between 3.4 to 4.6 times slower
and consumes 14 times more dynamic power. This statistical data will serve as
a reference for us to estimate the design performance when ported to ASIC

platform.

FPGA has been constructed in technologies ranging from 2.0 microns
in 1985 down to 20 nanometers today (Shannon, L. et al., 2015). Shannon, L.
et al. (2015) concluded that the FPGA technology has been closely following

Moore's law, where the numbers of transistors on an integrated circuit will
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double every two years. Table 2.7 shows the related information gathered by

Shannon, L. et al. (2015).

Table 2.7: FPGA chip overall analysis

Source: Shannon, L. et al. (2015) ‘Technology Scaling in FPGAs: Trends
in Applications and Architectures’, in 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing
Machines. IEEE, pp. 1-8. doi: 10.1109/FCCM.2015.11.

DSP

Feature | ) ) psp/Mutt| BrRAM | LUTs | wTs | Altera FPGA ) ALMs BRAM | Es/ | 1ES/
Year | gige |MilinxFPGAfamily]  Device W | blocks | kiits | /osp [/eram|  family Device (LEs) ;:‘;’: Kbits | DSP |BRAM
V| XCTVI0OOT| L221600] 2160 46512 See| 26
2011 Vitex7 | VK| XCTVKIla0T| 712,000 3,600 67,580] 198 11
VH| ®CTvHBTOT| Sa7e00]  2.520] Sog7e0|  217] 11
28 nm| GT 5SGTCT] 622000 513] S0000] 1215 12
o [ex 5SGXBB| 952,000 704| 52000[ 1352 18
2010 StrtixV =g 55G508| 695,000 3026 50000] 177 14
E SSEes| o52,000]  704] 52,000(1352] 18
x| XCeviea] _a7a2a0 B64] 25070] 549  1s)
2009 Vitex 6 | SX| NCBVSGATST| 297,600] 2016 38304] 148 B
0 HX[XCEVHXSEST] 354,240 B64| 32832] a10] 11

GT| EP4S100G5| 531,200) 1,024| 37376 519 19
2008 Stratix IV | GX| EP4SGX530[ 531,200 1,024| 37376 519 19
E EP4SERZ0| 813,050 960 337294| 847 k]

Lx[ XCSVLX330[ 207,360 192] 10,368] 1,080 20
Virtex 5 SX[XCEVSX240T| 149,760[  1,056] 18576] 142 B
2006| 65nm FX| XCSVP(200T| 122,880 384] 16416] 320 7
. L[ EP35L3a0] 337500] 576 16272 586 21
Stratix Il
E| EP3sE260| 255000]  768| 14688 332 17
90 nm . |Gx[EP2sGx130/G| 132540( 252] 6747 s26] 20
20051 20 | Stratixl Ep2s180] 179.400]  384| 0383 ae7| 19
LX[ XCavLx200[ 178,176 96]  6,048] 1,856 29
2004 90nm| Virtexa SX| XCAVSXSS| 49,152 512| 5,760 9 ]
FX| XCAVFX140[ 126,336 192] 9,936 658 13
. [GX] EP1SGX40D] 41,250] se] 3a23] 737 12
2002f 130 nm Stratix ™ EP1580] 79040 88| 7428 898 11
130 Pro] XC2VP10O] 88192 4] 7,992 199 11
2001 virtex!l | Prox| xcavex70| 66,176 308] 558| 215 12
0.15 um| V[ wczveooo| 93184 168 3,024 555 31| Mercury] | EPIM350]  14,400] o] 115] [ 1
2000] 0.18 um| Excalibur| | Erxato] 38400 of 1] [ 12
1999] 018 um|| Virtex E_| [ XCV3200E]  64,896] o] 851] 1 76|
Jozzum |Flex10ke] T epFiokzooe]  9,984] o sg] ] 1oz
“lozsum|| virtex | [ xcviooo]  24,576] o] 13] | ass]
1557] 0.35 um|| 4000 £/ | | xcapssxi| 12,544 o o ] -
1996] 03 um Flex 10KA EPF10K250A] 12,160 0 a1 | 297
1995 0.42 um Flex 10K EPFIO0K100| 4,992 0 25 200
1992| 06um Flex 8000 EPFE1500A] 1,296 0 0
1991]  0.Bum|[ 4000 series| [ HCAD25] 2,048] 1| 1| | -
1985] 2 um|| 2000 series| | xC2018] 400] o] o] |

As transistor size keeps scaling down, a bigger design can be
constructed within FPGA, ranging from small building blocks to a very
powerful System-on-Chip (Rodriguez-Andina et al., 2015). Moreover, the
maximum frequency achieved in the FPGA technology doubles every 8 years,
which offer a trend to design a high performance computing platform using
FPGA (Shannon, L. et al., 2015). Power consumption also reduces as

transistor size scaling down, which by offering lower operational voltage (de
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la Piedra et al., 2012). Table 2.8 and Table 2.9 show the related information

gathered by de la Piedra et al. (2012).

Table 2.8: Xilinx FPGA chip analysis
Source: de la Piedra, A., Braeken, A. and Touhafi, A. (2012) ‘Sensor

Systems Based on FPGAs and Their Applications: A Survey’, Sensors,
12(12), pp. 12235-12264. doi: 10.3390/s120912235.

Platform Model Core Voltage (V) Number of LUTs  Block RAM (KB) Static Power Consumption (mW)
Spartan-3  XC3S200 1.2 4,320 216 41
Spartan-3E XC38250E 1.2 5,508 216 51
Spartan-6  XC6SLX 100 1.2 101,261 4,824 67
Virtex-4 XC4VLX200 1.2 200,448 6,048 1.278
Virtex-5 XC5VLX220 1 138,240 6,012 1,985
Virtex-6 XC6VLX240T 1 241,152 14,976 1,977
Virtex-7 XCTVX330T 1 326,400 27,000 141
Kintex-7 XC7K160T 1 162,240 11,700 74
Artix-7 XC7A100T 1 101,440 4,860 41

Table 2.9: Altera FPGA chip analysis
Source: de la Piedra, A., Braeken, A. and Touhafi, A. (2012) ‘Sensor

Systems Based on FPGAs and Their Applications: A Survey’, Sensors,
12(12), pp. 12235-12264. doi: 10.3390/s120912235.

Platform  Model Core Voltage (V) Number of LUTs Block RAM (KB) Static Power Consumption (mW)
Cyclone EPI1C6 1.5 5,980 92 60
Cyclone I EP2C8 L5 8,256 165 40
Cyclone V. SCEFA9 1.10 301,000 12,200 206
Stratix EP1525 L5 25, 660 635 450
Stratix 11 EP230 L5 33,880 663 26
Startix V. 5SEE9 1 840,000 12,800 830
Arria V SIGXMAID 1 75,000 8,000 197

With the rapid evolution of semiconductor technology, FPGA
manufacturer often come out with extra hardware resources as competitive
advantages among competitor (Rodriguez-Andina, J. J., Valdes-Pena, M. D.
and Moure, M. J., 2015; Rodriguez-Andina, J. J., Moure, M. J. and Valdes, M.
D., 2007; Kuon, 1., Tessier, R. and Rose, J., 2007). One of the useful resources

are the memories, either volatile or non-volatile memory or both, where user’s
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program code or data may reside in the memory. Xilinx Analog-to-Digital
Converter (XADC) block, offered by Xilinx, allows high-quality analog-to-
digital conversion and customizable signal conditioning, Phase-locked loop
(PLL) and Delay-locked loop (DLL) can be used to compensate clock
propagation delays throughout the FPGA. A soft IP core (MicroBlaze soft-
core by Xilinx, Nios Il soft-core by Altera etc.) or hard-core processor was

integrated on the FPGA board.

With the improving of power consumption in FPGA, it allows turning
existing 1oT devices into a low power customizable FPGA-loT platform
(Gomes, T. et al., 2015). Several projects had been completed on FPGA
covering multimedia application, industrial control, environmental monitoring
and safety and security applications (de la Piedra, A. et al., 2012). An example
of the project is the development of a co-processor on FPGA (Garcia, R. et al.,
2009). This project implemented the Kalman filter for tracking environmental
targets, such as animals. Several Kalman filter configurations can be
developed depending on the type of objects and operation stages. Besides that,
partial reconfiguration feature offered by FPGAs is used to reduce the power
consumption. With this approach, power consumption is reduced by 5 - 25 %.
Another project using FPGA soft-core, MicroBlaze processor, is used as the
processing unit by Hongzhi Liu and Bergmann, N. W. (2010). This project
aimed to develop a platform that performs bird call detection. Besides that,
another project used the combination of the microcontroller and the FPGA,
which the FPGA serve as the co-processor, had been implemented by Vana

Jeli¢i¢ et al. (2011). An 8-bit AVR microcontroller with an FPGA based co-
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processor that is able to perform image processing is used for pest detection in
olive groves. This platform consumes 87.12 mW in active mode and 18.4 uW
in sleep mode at 3.3 V. The projects mentioned had shown a promising result
to convince more research on the development of 10T devices using FPGA as

the implementation technology.
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2.3 Low power techniques in FPGA

Kuon, I., Tessier, R. and Rose, J. (2007) stated that power consumption
in FPGAs is categorized into 2 types: static and dynamic power consumption.
Dynamic power is consumed by the transitioning of the signals logic level
(either 0 to 1 or 1 to 0). A large amount of energy is used to charge or
discharge the load capacitance of the transistors in the circuit. In contrast,
static power is consumed when using a relatively smaller amount of energy to

maintain the same logic level.

Conventional power reduction technique includes dynamic voltage
scaling (DVS), dynamic frequency scaling (DFS), dynamic voltage and
frequency scaling (DVFS), clock gating and power gating have been
implemented on FPGA-based soft-core design in the past. Power reduction
using dynamic voltage scaling (DVS) presented by Chow, C. T. et al. (2005)
shows a power saving between 4% to 54% is achieved on a 0.18 um Xilinx
Virtex 300E-8 FPGA chip. The internal supply voltage (VCCINT) source is
replaced by a voltage controller to dynamically adjust the supply voltage. Two
different clock frequencies (66 MHz and 100 MHz) have been used to test the
efficiency of the DVS, in which the VCCINT supply voltage is reduced to
meet the timing requirements and at the same time saving power. DVS
extended with dynamic frequency scaling (DFS) to formed dynamic voltage
and frequency scaling (DVFS) with extra capability of adaptive voltage
scaling has been implemented by Nunez-Yanez, J. L. (2015). The technique
proposed is capable of reducing both static and dynamic power consumptions.

The experimental work had been implemented on a Xilinx XUPV5-LX110T
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evaluation board, with a 65 nm Virtex-5 XC5VLX110T FPGA chip on board.
The author replaced the fixed voltage DC-to-DC module on the FPGA board
with a specially designed DC-to-DC module, which is able to scale the
VCCINT supplying to FPGA logic resources. The corresponding maximum
working frequency for the minimum voltage (0.62V) is 40 MHz and achieves
maximum power reduction up to 87% (from 615 mW to 80 mW). DVFS
extended with power gating and partial reconfiguration between one (ME1)
and six (MEG6) execution units of a motion estimation processor applies on
Xilinx Zyng board, with a 28 nm Xilinx Virtex-7 FPGA chip on board, has
been carried out by Luis Nunez-Yanez, J., Hosseinabady, M. and Beldachi, A.
(2016). This study shows a power reduction up to 62% (124 mW to 47 Mw)
for ME1 and 52% (285 mW to 137 mW) for MEG6. Since MEG6 is expensive
from the energy usage point of view, the author suggested using the ME6 to
complete the job fast while idling using MEL1 until a new request is received.
Furthermore, both studies (Nunez-Yanez, J. L., 2015; Luis Nunez-Yanez, J.,
Hosseinabady, M. and Beldachi, A., 2016) show a dramatically reduce in total
power consumption that has been achieved by the manufacturer, from 65 nm
to 28 nm process technology, which shows a competitive advantage in using

FPGASs to implement the design.

On the other hand, power gating also able to reduce the static and
dynamic power (Hosseinabady, M. and Nunez-Yanez, J. L., 2014;
Hosseinabady, M. and Nunez-Yanez, J. L., 2015). The research work by
Hosseinabady, M. and Nunez-Yanez, J. L. (2014) shows that the power gating

can reduce the power consumption up to 96%. The authors used the hard-core
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processor (Cortex A9) on the Xilinx ZYNQ device to power-off the FPGA
chip when it is idle with timing overhead (the time for turn-off, turn-on and
reconfiguration of the programmable logic) as low as 42.58ms. The authors
had extended their research work by applied a streaming application (MP3
player) on FPGA and perform up to 52.9% energy reduction (Hosseinabady,
M. and Nunez-Yanez, J. L., 2014). However, this technique (power gating)
requires an extra hard-core processor to serve as the watchdog core which

consumes extra power other than FPGA.

In contrast, clock gating technique in RTL modeling does not require a
hard-core processor or any physical modifications on hardware. Clock gating
(Oklobdzija, V. G. and Krishnamurthy, R. K., 2006) technique is a popular
technique that used to reduce the dynamic power consumption of the
processor. The design logic of the processor is made up of sequential circuits
and combinational logic. The sequential circuits do consume energy on every
pulses of the clock, even when it is not affecting the final output. The solution
to avoid this situation is by disabling the clock input of the sequential circuits.
Figure 2.1 illustrates the implementation of the clock gating technique on the

D Flip-flop (DFF).
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Figure 2.1: Clock gating technique illustration diagram

Source: Oklobdzija, V. G. and Krishnamurthy, R. K. (2006) High-
Performance Energy-Efficient Microprocessor Design. Edited by V. G.
Oklobdzija and R. K. Krishnamurthy. Boston, MA: Springer US (Series
on Integrated Circuits and Systems). doi: 10.1007/978-0-387-34047-0.

From Figure 2.1, input signals EnableA and EnableB perform AND
operation with the clock source of the DFF. When both EnableA and EnableB
are de-asserted, the clock pulse will not pass into the DFF and thus the DFF
stop functioning. Pandey, B. et al. (2013) proposed a Random Access Memory
(RAM) unit applied with clock gating technique implemented on a 40 nm
Xilinx Virtex-6 FPGA chip. This research work shows a power reduction by
38.89% on the 1 GHz system clock and 41.3% on the 10 GHz system clock,
which means the clock gating technique is more beneficial for higher clock
frequency. Yan Zhang, Roivainen, J. and Mammela, A. (2006) tested the clock
gating techniqgue with several benchmark circuits (CombFilter,
Ethernetinterface, FrequencyEstimator, Half-bandFilter and 1°C-Interface) and
resulting in power saving of 50% to 80% of the dynamic power consumption

on a 0.13 um Xilinx Virtex-11 FPGA chip.

The discussed power reduction techniques in FPGA had shown an
exceptional performance in reducing the power consumption. However, those

techniques to achieve low-power consumption or higher computational speed

28



by manipulating the voltage and operating frequency, are still confined to a
fixed microarchitecture. A real-time adaptive microarchitecture for low-power
consumption and higher computational speed has yet to be addressed. Our
intention is to provide a platform that is able to switch between multi-cycle
(low power) and pipeline microarchitectures (high computational power).
Thus, we shall adopt the partial reconfiguration (PR) feature offered by FPGA

to implement the proposed platform.
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2.4  Partial Reconfiguration

One of the noticeable features offer by the FPGA is the reconfiguration,
either partial or dynamic run-time self-reconfiguration (Becker, J. et al., 2007).
This feature allows the reconfiguration of a certain part of the hardware.
Meanwhile, the power constantly fed into the FPGA chip and no hardware
reset is required. Thus, increase the adaptation of a system with the actual
demands of the applications running on the FPGA chip. By using this feature,
it is possible to store part of the hardware functionality to an external non-
volatile memory and partial reconfiguration (PR) can be carry out on demand.
Thus, power dissipation is reduced since the overall design is smaller. Figure

2.2 shows Xilinx illustration on the partial reconfiguration (Xilinx, 2016a).

FPGA

Reconfig
Block “A”

Figure 2.2: Partial reconfiguration Illustration diagram
Source: Xilinx (2016a) ‘Vivado Design Suite User Guide Partial
Reconfiguration’

Reconfig Block A shown in Figure 2.2 can be replaced by copy over
any of the partial bitstream (Al.bit, A2.bit, A3.bit, or A4.bit) on the external
non-volatile memory to the FPGA. The partial bitstream is also possible to be
transfer from an external smart source through JTAG connection, e.g. a

computer (Xilinx, 2016b). Xilinx stated that partial reconfiguration is able to
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reduce the FPGA design area that required to implementing a functional
hardware, and thus reduce the cost and the power consumption since the cost
per unit and the power consumption of the external non-volatile memory is
lesser than the FPGA chip. Partial reconfiguration also provides the flexibility
in the choices of the algorithms and the protocol for an application, improves

FPGA fault tolerance and lastly accelerate configurable computing.

In order to perform PR, a PR controller is required to trigger and
control the action of read over the partial bitstream from an external non-
volatile memory and write to the FPGA (data loading) through Internal
Configuration Access Port (ICAP) based on Xilinx technology (Xilinx, 2016b;
Cardona, L. A. and Ferrer, C., 2015). Data loading on the FPGA requires
specific timing requirement, generally categorize as continuous data loading
and non-continuous data loading. Continuous data loading provides an
uninterrupted stream of partial bitstream loading to the FPGA while non-
continuous data loading allows an interrupted stream of partial bitstream
loading to the FPGA. Continuous data loading requires extra design area and
hardware, i.e. FPGA Block RAMs (BRAMsS), to use as the temporary buffer to
store the partial bistream copied from the external non-volatile memory and
write to FPGA in a bunch, in order to reduce the overhead and complete the
PR faster (Cardona, L. A. and Ferrer, C., 2015). However, extra design area
and hardware used tends to increase the power consumption when the PR
takes place. In opposite, non-continuous data loading can reduce the hardware
used by directly read the partial bitstream from the external non-volatile

memory and write to FPGA through ICAP word by word (32-bits). However,
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a lower performance is achieved since the data reading from the external non-
volatile memory is usually in serial form. Our experimental work will be
based on non-continuous data loading, so that to reduce the design area and

the hardware used, which can help to save power when PR takes place.

An example of the reconfigurable system that had been carried out by
McDonald, E. (2008), is by constructed a software-defined radio system on the
FPGA. The reconfigurable system allows a simplex transceiver to be
reconfigured, where either transmit or receive capability is used at any given
time and never used at the same time. However, due to the lack of information
in power analysis of the proposed reconfigurable system, we cannot predict on
how much the improvement of the energy consumption achieved. Krasteva, Y.
E. et al. (2008) used the FPGA as a reconfigurable coprocessor that used for
sensor data aggregation and data processing. There are 4 partial bitstreams
created, which are temperature sensor nodes with the multiplier
(TMPS_HW _v2), temperature sensor nodes without the multiplier
(TMPS_HW _v1), accelerometer sensor nodes with the multiplier
(ACCS_HW_v2), and accelerometer sensor nodes without the multiplier
(ACCS_HW _v1). The design areas and the bitstream file size are shown in

Table 2.10 and Table 2.11.
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Table 2.10: Reconfigurable system hardware resources usage

Source: Krasteva, Y. E. et al. (2008) ‘Remote HW-SW reconfigurable
Wireless Sensor nodes’, in 2008 34th Annual Conference of IEEE
Industrial Electronics. IEEE, pp. 2483-2488. doi:
10.1109/IECON.2008.4758346.

Desien Used Used Used Used % of Slot
= MULs Slices FFs LUTs Slices
ACCS HW vl 0 170 68 311 29
TMPS_HW_vl 0 71 40 127 12
ACCS_HW_v2 2 127 68 232 22
TMPSI_HW_v2 2 63 40 111 10

Table 2.11: Reconfigurable system file size

Source: Krasteva, Y. E. et al. (2008) ‘Remote HW-SW reconfigurable
Wireless Sensor nodes’, in 2008 34th Annual Conference of IEEE
Industrial Electronics. IEEE, pp. 2483-2488. doi:
10.1109/IECON.2008.4758346.

Design bit (KB) xsvi(KB)
ACCS HW vl 249 252
TMPS HW vl 249 25.2
ACCS HW v2 413 43.5
TMPSI HW v2 41.3 435

One of the brilliant features of this project is that the PR bitstreams do
not reside in the external non-volatile memory on FPGA board. Instead, the
authors using wired or wireless remote to send over the partial reconfiguration
bitstream to the 8052 microcontroller to initiate the FPGA PR. The authors
had tested with several remote connections, which are cable with 8-bytes
packet size (Cable 8B), ZigBee with 8-bytes packet size (ZigBee 8B), cable
with 16-bytes packet size (Cable 16B) and ZigBee with 16-bytes packet size
(ZigBee 16B). However, the result for the power consumption was not

provided by the authors.
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Another project by Hinkelmann, H., Zipf, P. and Glesner, M. (2007)
used the reconfigurable feature of the FPGA to construct a coarse-grained,
domain-specific reconfigurable function unit (RFU). The RFU allows a
functional task to perform only certain hardware module to exist on the FPGA.
The non-related hardware module will reside in the external non-volatile
configuration memory to save power. The RFU is aimed to perform
lightweight error detection and correction (CRC-8 checksum calculation and
BCH decoding), AES key generation and AES encryption. Table 2.12 shows
the energy comparison of the software approach versus the RFU of the given

reconfigurable system.

Table 2.12: Reconfigurable system power analysis

Source: Hinkelmann, H., Zipf, P. and Glesner, M. (2007) ‘A Domain-
Specific Dynamically Reconfigurable Hardware Platform for Wireless
Sensor Networks’, in 2007 International Conference on Field-
Programmable Technology. IEEE, pp. 313-316. doi:
10.1109/FPT.2007.4439274.

Task Version | Execution | Reconf. Gain
[n]] [n] factors
CRC-8 software 387,6 - 1
CRC-8 RFU 4,8 1232 81 (23)
AES key gen. | software 234,6 - 1
AES key gen. | RFU 39,2 22,5 6,0 (3,8)
AES encrypt. | software 640,6 - 1
AES encrvpt. | RFU 104,9 43,1 6,1 (4,3)
BCH decod. software 1208.7 - 1
BCH decod. RFU 2455 34.4 4.9 (4,3)

From Table 2.12, we can conclude that the reconfigurable system gain
more power efficiency compare with the software implementation of a given
task. However, the authors only provide the power consumption comparison
between the software method and the reduced hardware implementation of a
given task, which is insufficient, since our main concern is to identify the
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difference of the non-reconfiguration system (i.e. all the hardware module
exist on FPGA) versus the reconfigurable system with RFU (i.e. only certain
hardware module exist on FPGA). A reconfigurable instruction set extensions
has been presented by Koch, D. et al. (2012). They pointed out that the custom
instruction, for example, an instruction that used to permuting all bits in a 32-
bit operand, can reside as a small reconfigurable slot, which consists of a
bunch of CPU instructions, instead of constructing the circuitry for the custom
instruction. This allows an expensive algorithm to be executed with only one
instruction call. Hansen, S. G., Koch, D. and Torresen, J. (2013) show a case
study using a 32-bit Microprocessor without Interlocked Pipeline Stages
(MIPS) soft-core processor to implement with the reconfigurable instruction
set extensions. Figure 2.3 shows the microarchitecture of the reconfigurable

instruction set extensions.

AB— Result

Register file|

OP_A-W¥ Wr-OP_B |

'”Strucmnw i _

Static CPU Configurable instructions

Figure 2.3: Reconfigurable instruction set extension architecture
Source: Hansen, S. G., Koch, D. and Torresen, J. (2013) ‘Simulation
framework for cycle-accurate RTL modeling of partial run-time
reconfiguration in VHDL’, in 2013 8th International Workshop on
Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC). IEEE, pp. 1-8. doi: 10.1109/ReC0S0C.2013.6581519.
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There are 4 reconfigurable slots, where each slot stores a bunch of
CPU instructions to form a function or an algorithm (AES encryption, CRC
checksum etc.). This approach can reduce the effort on creating the hardware
dedicated to perform special function or algorithm. The design area also

reduced, which consequently reduce the power consumption.

We intended to develop a PR system that covers the processor general
purpose instructions. Our work is different from the existing work, in which
the existing works require the development of the dedicated hardware
component (e.g. AES encryption hardware), extra instruction to invoke the

usage, and only use for specific purpose (e.g. AES data encryption).
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2.5 MIPS ISA

The Microprocessor without Interlocked Pipeline Stages instruction set
architecture (MIPS ISA) has been widely used in the research and experiment
by many researchers in the past decades (Hennessy, J. L. and Patterson, D. A.,
2012; Patterson, D. A. and Hennessy, J. L., 2013). MIPS ISA is developed
based on the Reduced Instruction Set Computing (RISC) philosophy, which
strongly emphasizes in reduce instruction support and simple hardware
structure to increase the processor performance while decreasing the power
consumption. In contrast, the Complex Instruction Sets Computing (CISC)
processor emphasizes on maximizing the performance by increasing the
hardware parallelism and complexity, but increase the power consumption.
Thus, a MIPS ISA compatible processor is developed in our project due to its
simple hardware structure, which helps to shorten the development cycle
while aimed for low power consumption. Each MIPS ISA compatible
instruction has 32-bit in data length. The MIPS ISA compatible instructions
are classified into 3 instruction format as shown in Figure 2.4. Each instruction
format is further divided into several addressing modes, which shown in Table

2.13.

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op | rs | o | rd | shamt| funct ‘ R-format
| op [ s | rt | immediate (16-bit) | I-format
’ op | jump address (26-bit) ‘ J-format

R-format: Instruction operation involving registers only
I-format: Instruction operation involving register and immediate value
J-format: Unconditional branching to 26-bit address specify in machine code

Figure 2.4: MIPS ISA compatible instruction format bit allocation.
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Table 2.13: MIPS instruction addressing modes

Instruction format Addressing Mode
R-format Register Addressing
I-format Immediate Addressing
Base Addressing
PC-Relative Addressing
J-format Pseudodirect Addressing

The MIPS ISA compatible processor illustrates in Figure 2.5 consists

of 5-stage instruction execution cycle, which corresponds to 5 hardware stages:

Instruction Fetch (IF), Instruction Decode and Register File Read (ID),

Execution or address calculation (EX), Data Memory Access (MEM) and

Write Back (WB).

IF: Instruction fetch l 1D: Instruction decoda/ l EX: Exacuta/ l MEM: Memory access l WB: Write back
| register file read | address calculation | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
} Add -8 T | |
| | | |
4] | | |
| | | |
| I | |
| 1 | |
| | | |
) | | | |
Lo ™ I I | |
o ! o[ Read Read | | I !
register 1 datz 1 |
u | P || Addrass. | el | Zero - |
; X | RE:?d 5 | AU a1y | |
) | register | _ t Address | N
\_/ Instruction —{—0 Registers i -/C_\ result | F;:I?t; ! 0
| Write Read | | : Data | M
Instruction | register datz 2 | | memory | u
memen |1 | wite el 1 | P
| data | p— | Write I b/
I I + data I
I ~ | ' I
I 1 "f/ \" I I I
& . \32
[ | Sign- |\ | I [
| | extend I | | |
| 4 / | | |
| N i |
| | | |
| | | |
| | | |
| | | |

Figure 2.5: Hardware stages of MIPS ISA compatible processor.

Source: Hennessy, J. L. and Patterson,

D. A. (2012) Computer

architecture: a quantitative approach, Elsevier. doi: 10.1.1.115.1881.
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IF stage is responsible to fetch an instruction from the instruction
memory according to the address stored in the Program Counter (PC) register.
ID stage decodes the instruction from IF stage and at the same time fetch the
operands from the Register File. EX stage perform the operation or address
calculation when load or store instruction is executed. A load or store
instruction will access the data memory in the MEM stage. The processed

result may store back to the Register File in WB stage.
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2.6

1)

2)

3)

4)

5)

6)

Summary

This chapter is summarized as follows:

The computational speed required for each loT application is
determined by the sampling rate of the sensor node, where high
computational speed is required to measure and process the data for
high sampling rate loT application, while low computational speed is
used to measure and process the data for low sampling rate loT
application.

General purpose off-the-shelf microcontroller is popular in
implementing loT application. However, several limitations restrict the
general purpose off-the-shelf microcontroller in providing the best
solution in implementing a low power 10T application.

Both ASIC and FPGA show respective advantages in design
implementation. However, with the improvement in transistor scaling
technology, FPGA provides a better choice in implementing a low
power customizable FPGA-IoT platform.

Several low power techniques in FPGA are discussed, including DVS,
DVFS, power gating and clock gating.

Partial Reconfiguration (PR) feature offered by FPGA provides a
better energy efficient solution in design implementation and several
projects are discussed.

MIPS ISA has been widely used in the research. Its simple hardware
structure increases the processor performance while decreasing the

power consumption.
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CHAPTER 3

HARDWARE DEVELOPMENT

3.1  System Overview

The proposed reconfigurable soft-core 10T processor is made up of 3
major parts: Central Processing Unit (CPU), memory system and 1/O system.
The developed CPU is compatible to the 5-stage 32-bit MIPS Instruction Set
Architecture (ISA). It supports up to 50 instructions, covering arithmetic,
logical, data transfer, program control and system instruction classes. The
memory system consists of a 2-level memory hierarchy. The first level
consists of cache, Boot ROM and Data and Stack RAM, and the second level
consists of flash memory. The cache (high speed FPGA Block RAM) is used
to enhance the speed of instructions and data accessing from the non-volatile
memory (low speed flash memory). A duplicated set of data from the flash
memory are present in the cache after the processor power up. Flash memory
is used to store FPGA configuration bitstream, program code, constant
variables and partial reconfiguration bitstream. Data and Stack RAM,
implemented from the FPGA BRAM, is used to store runtime variables (e.g.
variables generated by function call and dynamic data structures), while Boot

ROM store the bootloader program.

I/O system consists of GPIO controller, SPI controller, UART
controller, Priority Interrupt controller and General Purpose Register (GPR)

unit. They were integrated with CPU through Wishbone B4 standard bus
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interface (OpenCores, 2010). GPIO, SPI and UART controllers are used to
communicate with external devices, such as, sensors, wireless modules,
personal computers etc. The Priority Interrupt controller is used as an external
interrupt controller (Co-processor 0 (CPO) is the internal interrupt controller)
to handle multiple interrupt sources based on priority. GPR unit is used to
store the PR information including current microarchitecture identification bit,
PR bitstream size, and PR bitstream start address for both multi-cycle and
pipeline executions in the flash memory. Figure 3.1 shows the architecture of

the developed reconfigurable soft-core 10T processor.

LEDs,
ZigBee EEPROM  Sensors

SPI UART GPIO
CPU Controller| |Controller Controller

PR
instance

I Stack Priority

[-CACHE | |D-CACHE| | RAM RAM || interrupt

I 1 controller

Memory arbiter ﬁ Flash Flash

Controller Memor
PR controller ﬁ Y

1l

System Bus

Figure 3.1: Reconfigurable 10T processor architecture

Our research target is to satisfy the varying performance-power

tradeoff requirements of the 10T applications. Achieving both design goals
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(low power and high computational speed) in one processor architecture is
non-trivial due to their conflicting requirements. With the emergence of FPGA
technology, PR feature offered by FPGA allows reconfiguration between
pipeline (high computational speed at the expense of high power usage) and
multi-cycle executions (low computational speed with low dynamic power

consumption) according to each 10T application requirement needs.

Figure 3.1 illustrates the categorization of the hardware components in
both static and PR regions (a.k.a PR instance) in an overall view. The
proposed technique classifies the reconfigurable soft-core 10T processor into 2
regions: static and PR regions. The static region consists of hardware that does
not change regardless of the pipeline or multi-cycle microarchitectures. In
contrast, the PR region consists of only pipeline or multi-cycle
microarchitecture at a time, i.e. multi-cycle microarchitecture executing in the
PR region while pipeline microarchitecture is kept in bitstream format which
resides in the flash memory, and vice versa. The scope of the PR region limits
within the CPU (Memory system and 1/O system are not included) since both
multi-cycle and pipeline microarchitectures are the implementation technique
in modifying the processor execution structure. The detailed view of the CPU

components being reconfigured is shown in Figure 3.2.
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CPU CPU
PR instance Register File PR instance | Register File
Multi-cycle Co-processor 0 : Pipeline Co-processor 0
data-path ALU || data-path ALU
€gisters Multiplier : ———————| | Multiplier
—— | Hazard circuitry || ———— —— — |
Address Decoder —|/Branch predictor || |[Address Decoder

|: Control unit FSM

Flash |
| PR controller QController |

Flash ||
PR controller QConlt::;IIer |

Flash
Memory

Flash
Memory

Multi-cycle Pipeline

Figure 3.2: Selected reconfigurable components from CPU.

The partial bitstream size is determined by the design area of the PR
region, i.e. large design area produces a large size of the partial bitstream, and
vice versa. Besides that, large partial bitstream size will incur longer PR time.
Although the hazard circuitries (data forwarding block and interlock block) are
only used by the pipeline microarchitecture, it is possible to allocate the
hazard circuitries to the static region in order to reduce the PR time. We could
deactivated the hazard circuitries during multi-cycle execution, by wired the
inputs of the hazard circuitries to the ground and the outputs left unconnected
and thus, no dynamic power is consumed by the hazard circuitries during
multi-cycle execution. Table 3.1 shows the specification of both multi-cycle

and pipeline executions.
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Table 3.1: Specification of multi-cycle and pipeline executions

Multi-cycle Pipeline
Frequency (MHz) 20 20
Instruction’s cycle 3-5 5, overlapping
Branch predictor - 64 entries 4  ways
associative
Hardware differences. Data-path unit, Data-path unit,
Place in reconfigurable region | Control unit Finite State | branch predictor,
(PR instance) Machine pipeline registers,
hazard circuitry
Memory 4kBytes Boot ROM,
128kBytes user access flash,
8kBytes RAM (Data & Stack),

1kBytes i-cache,
128Bytes d-cache,
512Bytes Memory Mapped I/O Register

Common features
(Static Region)

Communication UART,
interface SPI,
32 GPIO pins
Partial Bitstream start address | 0x00A0 0000 | 0x00A8 0000
Bitstream size 1,404,992 bits / 43906 words
FPGA board Nexys 4 DDR (XC7A100T)
% LUT 7643 8561
& — | LUTRAM 127 311
2 T | FF 5464 5812
fé & | BRAM 3.50 3.50
g ~ | 10 45 45
= BUFG 1 1
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32 CPU

3.2.1 MIPS ISA compatible

The processor is compatible with MIPS ISA. It is fixed to support up to

50 MIPS ISA compatible basic core instructions, including 1 special

instruction, Toggle Microarchitecture (tma), added for PR purposes. The

supported instruction format and addressing modes have been shown in Figure

2.4 and Table 2.13, respectively. Referring to the instruction format and

addressing modes supported, the instruction field of the instruction supported

is shown in Table 3.2.

Table 3.2: Instruction field information [refer to Patterson, D. A. and
Hennessy, J. L. (2013) for the information on the instruction usage]

opcodersize) | ISas:a1g I20:16] rdpsag; | shamtpge | functysg
No | Instruction | opcodepsizs | ISpzs:21] rt20:16] immediate;s.o

opcodess | addressps.
1 add 000000 Dxxxxx] | xxxxx] | [xxxxx] | 00000 100000
2 addu 000000 Dxxxxx] | xxxxx] | [xxxxx] | 00000 100001
3 sub 000000 Dxxxxx] | xxxxx] | [xxxxx] | 00000 100010
4 subu 000000 Doxxxx] | Doxxxx] | [xxxxx] | 00000 100011
5 mult 000000 Doxxxx] | Doxxxx] | [xxxxx] | 00000 011000
6 multu 000000 Doxxxx] | Doxxxx] | [xxxxx] | 00000 011001
7 mfhi 000000 00000 00000 [xxxxx] | 00000 010000
8 mflo 000000 00000 00000 [xxxxx] | 00000 010010
9 and 000000 Doxxxx] | Doxxxx] | [xxxxx] | 00000 100100
10 | or 000000 Doxxxx] | Doxxxx] | [xxxxx] | 00000 100101
11 | xor 000000 Doxxxx] | Doxxxx] | [xxxxx] | 00000 100110
12 | nor 000000 Doxxxx] | Doxxxx] | [xxxxx] | 00000 100111
13 | sl 000000 00000 Dooxxx] | Doxxxx] | [xXxxxx] 000000
14 | srl 000000 00000 Dooxxx] | Doxxxx] | [xXxxxx] 000010
15 | sra 000000 00000 Dooxxx] | Doxxxx] | [xXxxxx] 000011
16 | slt 000000 Doxxxx] | Doxxxx] | [xxxxx] | 00000 101010
17 | sltu 000000 Doxxxx] | Doxxxx] | [xxxxx] | 00000 101011
18 | jr 000000 [xxxxx] | 00000 00000 00000 001000
19 | jalr 000000 [xxxxx] | 00000 [xxxxx] | 00000 001001
20 | syscall 000000 00000 00000 00000 00000 001100
21 | mtcO 010000 00100 Doxxxx] | [xxxxx] | 00000 000000
22 | mfc0 010000 00000 Doxxxx] | [xxxxx] | 00000 000000
23 | eret 010000 00001 00000 00000 00000 011000
24 | addi 001000 DOXXXX] | DOOKKX] | XOOOKOOOOOKCOOCKK ]
25 | addiu 001001 DOXXXX] | DOOKKX] | XOOOKOOOOOKCOOCKK ]
26 | andi 001100 DOXXXX] | DOOKKX] | XOOOKOOOOOKCOOCKK ]
27 | ori 001101 DOXXXX] | DOOKKX] | XOOOKOOOOOKCOOCKK ]
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Continued from Table 3.2

opcodepsize) | MSpsia Mr20:16] rdps:a) shamtpoe | functisg
No | Instruction | opcodefsiog) | ISps:21) rtr20:16] immediateps.g)

opcodepzzs | addressps.
28 | xori 001110 DOXXXXT | DOXXX] | DXOXXXXXXXXXXXXXXX]
29 | lui 001111 00000 DOXXXX] | DXOXOXXXXXXXXXXXXXX]
30 | Iw 100011 DOXXXXT | DOXXX] | DXOXXXXXXXXXXXXXXX]
31 | Iwl 100010 DOXXXXT | DOXXX] | DXOXXXXXXXXXXXXXXX]
32 | Iwr 100110 DOXXXXT | DOXXX] | DXOXXXXXXXXXXXXXXX]
33 | Ih 100001 DOXXXXT | DOXXX] | DXOXXXXXXXXXXXXXXX]
34 |lhu 100101 DOXXXXT | DOXXX] | DXOXXXXOXOXXXXXXXXXX]
35 |1Ib 100000 DOXXXXT | DOOXXX] | POXXXXOOOXXXXKXXXX]
36 | Ibu 100100 DOXXXXT | DOOXXX] | POXXXXOOOXXXXKXXXX]
37 | sw 101011 DOXXXX] | DOXXX] | PXOXXOXOOXXXXXXXXX]
38 | swl 101010 DOXXXX] | DOXXX] | PXOXXOXOOXXXXXXXXX]
39 | swr 101110 DOXXXX] | DOXXX] | PXOXXOXOOXXXXXXXXX]
40 | sh 101001 DOXXXX] | DOXXX] | PXOXXOXOOXXXXXXXXX]
41 | sb 101000 DOXXXX] | DOXXX] | PXOXXOXOOXXXXXXXXX]
42 | slti 001010 DOXXXX] | DOXXX] | PXOXXOXOOXXXXXXXXX]
43 | sltiu 001011 DOXXXX] | DOXXX] | PXOXXOXOOXXXXXXXXX]
44 | beq 000100 DOXXXX] | DOXXX] | PXOXXOXOOXXXXXXXXX]
45 | bne 000101 DOXXXX] | DOXXX] | PXOXXOXOOXXXXXXXXX]
46 | blez 000110 [xxxxx] | 00000 DOXXXXXXXXXXXXX]
47 | botz 000111 [xxxxx] | 00000 [XXXXXXXXXXXXXXXX]
48 | j 000010 [XOXOXXXXEXXXXXXXXXXXXXXXXXXX]
49 | jal 000011 [XOOXXXXEXXXXXXXXXXXXXXXXXXX]
50 | tma 000000 00000 | 00000 | 00000 | 00000 | 111111

The developed processor consists of 5 hardware stages, which is
illustrated in Figure 2.5. The IF stage is responsible to fetch an instruction
from the instruction memory according to the address stored in the Program
Counter (PC) register. The instruction memory is a 2-level memory hierarchy
memory consists of Boot ROM, I-CACHE and flash memory. The ID stage
decodes the instruction from IF stage and at the same time fetch the operands
from the Register File (RF). The EX stage performs the execution or address
calculation for load and store instructions. A load or store instruction will

access the D-CACHE, Data and Stack RAM or 1/Os registers in the MEM
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stage. The result of the execution will be store back to the Register File (RF)

in WB stage.

To allow PR between multi-cycle or pipeline microarchitectures, two
versions of processor microarchitectures were developed: pipeline and multi-
cycle microarchitectures. In pipeline microarchitecture, every instruction
requires 5 clock cycles to complete its execution. Every instruction in the
pipeline microarchitecture occupies a single stage for only one clock cycle and
compulsory to run through the 5 hardware stages prior to the end of its
execution. Multi-cycle microarchitecture also used the same concept of 5
hardware stages structure, except that each instruction takes 2 to 5 clock
cycles to execute, which correspond to 2 to 5 hardware stages. Each
instruction in the multi-cycle microarchitecture must complete its execution

cycle before the consecutive instruction begins to execute.
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3.2.2 Pipeline microarchitecture

\ Interlock block

Branch Branch _ ™
predictor| |predictor " = Data and
p— wn o
Boot 3o ALU LS B | E2ART T stack
ROM 2| ¢| | Register 22 GPIO || RrAM Reglster
228 File D-CACHE File
olle m
I-CACHE S| 5
s g g CPO Multiplier| |Multiplier
PR kc) S § Stage 1 Stage 2
Controller T |g
= = =
L \ Forwarding block \

IF ID EX MEM WB

Figure 3.3: Abstract view of 5-stage pipeline processor

Figure 3.3 illustrates the hardware components allocate in each
pipeline stages of the 5-stage pipeline processor. At IF stage, an instruction is
fetched from the Boot ROM or I-CACHE and registered to the IF/ID pipeline
registers. If a cache miss occurs in the IF stage, the I-CACHE will send a
signal to stall the processor execution. The execution continues when the
respective instruction successfully copied from the flash memory to the I-
CACHE. At ID stage, the instruction that registered in the IF/ID pipeline
registers will be decoded by the Main Control block and the Arithmetic Logic
Control block. Signals output from both hardware components will be
registered to the ID/EX pipeline registers and also pass to the remaining
hardware components in the ID stage, i.e. Register File block, Forwarding
block, CPO block, Branch Predictor block and Interlock block. At the same
time, IF stage continues to fetch the consecutive instruction from the I-
CACHE. At EX stage, ALU block covers all the operation except the
multiplication operation. Multiplier block starts the multiplication operation at

EX stage and requires 2 clock cycles (EX and MEM stages) to perform a
49



multiplication operation on two 32-bit operands. At the MEM stage, only load
and store instructions are permitted to perform the operation, in which other
instructions are bypassing this stage. Load or store instruction access the
memory components, i.e. D-CACHE, Data and Stack RAM and 1/Os registers,
at the MEM stage. At WB stage, the result of the operation is updated at the

second clock edge (negative edge).

Branch predictor is included in the pipeline microarchitecture to
enhance the performance of conditional and unconditional branch instructions.
The second reason to include the branch predictor is to reduce the program
code size, i.e. no branch delay slot (e.g. nop instruction) is required after every
conditional and  unconditional  jump instructions.  Multi-cycle
microarchitecture does not need a branch delay slot since the instruction must
complete its execution prior to the start of executing the consecutive
instruction. Hence, the third reason in using a branch predictor is to allow the
same code (without the branch delay slots) to be used in both pipeline and
multi-cycle executions which can reduce field work on re-programming the
loT sensor nodes. Adding the unnecessarily branch delay reduces the

computational speed of the multi-cycle microarchitecture.

Data hazards always exist in a pipeline processor. It can cause a
computational error. Data hazard occurs due to Read-after-Write (RAW) data
dependencies, which involve accessing the processor’s system registers, i.e.
Register File, CPO registers and HILO register. Extra circuitries (forwarding

block and interlock block) are required to resolve the data hazards arise.
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However, the high computational speed achieved by pipelined processor still

outweighs its counterparts and remains a popular choice in processor design

(Kiat, W. P. etal., 2017).

Figure 3.4 shows the microarchitecture of the 5-stage pipeline

processor while the design hierarchy is shown in Table 3.3. To enable PR in

pipeline microarchitecture, design restructuring is performed, as shown in

Figure 3.5, to reduce the PR overhead.

Table 3.3: Pipeline microarchitecture design hierarchy

Chip Level Unit Level . .
(Microarchitecture Block Level (Microarchitecture Sub-block
Level)
Level)
crisc Data-path unit Branch Predictor block

(udata_path)

(bbp_4way)

Register File block (brf)

Forwarding block (bfw_ctrl)

Interlock block (bitl_ctrl)

CPO block (bcp0)

ALU block (balb)

Multiplier Block (bmult32)

adder_IvI1_firstrow

adder_Ivil

add_Ivl1_lastrow

sub_IvI1_lastrow

adder_IvI2

adder_IvI2_lastrow

adder_IviI3

adder_Ivl4

adder_IvI5

Address Decoder block
(baddr_decoder)

Control-path unit
(uctrl_path)

Main Control block
(bmain_ctrl)

Arithmetic Logic Control block
(balb_ctrl)

Cache unit (ucache)

Cache Controller block
(bcache_ctrl)

Cache RAM block
(bcache_ram)

Flash Controller Unit
(ufc)

Flash Controller Clock
Generator block (bfc_clk_gen)

Flash Controller FSM block
(bfc_fsm)
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Continued from Table 3.3

Chip Level (Migg;rclz_ﬁi\t/iture Block Level (Microarchitecture Sub-block
Level)
Level)
Flash Controller Transmitter
block (bfc_TX)
Flash Controller Receiver
block (bfc_RX)
FIFO block (bfc_FIFO)
Data and Stack RAM
unit (uram)
UART Controller unit | UART Baud Clock Generator
(uuart) block (bclketr)
UART Receiver block (brx) sbrx_ctr
asynfifo_rl_3
fifomem_bl_1

graycntr_rl_3

synchronizer

UART Transmitter block (btx)

shtx_ctr

asynfifo_rl_3

fifomem_bl_1

graycntr_rl_3

synchronizer

SPI Controller unit
(uspi)

SPI Clock Generator block
(bclk_gen)

SPI Receiver block (bRX)

SPI Transmitter block (bTX)

FIFO block (bFIFO)

SPI Input Output Control block
(bio_ctrl)

GPIO Controller unit
(ugpio)

Priority Interrupt
Controller unit
(upi_ctrl)

Priority Resolver block
(bpic_resolver)

General Purpose
Register unit (ugpr)

Boot ROM unit
(uboot_rom)

Memory Arbiter unit
(umem_arbiter)

PR controller unit
(upr_ctrl)

De-coupler unit
(udecoupler)
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Figure 3.4: 5-stage pipeline processor microarchitecture (functional view)
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Figure 3.5: Design restructuring of 5-stage pipeline processor microarchitecture for PR purposes
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3.2.3 Multi-cycle microarchitecture

Multi-cycle microarchitecture is developed based on the same 5-stage
instruction execution cycle as the pipeline microarchitecture. However, it
requires an instruction to execute in several clock cycles prior to the end of its
execution, which varies from 2 to 5 clock cycles. Each instruction in the multi-
cycle execution must complete its execution before the consecutive instruction
start its execution, i.e. non-overlapping in execution. Figure 3.6 illustrates the

difference between both multi-cycle and pipeline executions.

2 3 4 5 6 7 8 9 o0 11 12 13 14 15 18 17 18 15 20

S ininininigipinipipininingininiginininininl

MULTI-CYCLE

lw | [F [ o] ex [vem ws

sub F [ o] ex[ws

ljump | IF [ 0 ] Ex

ladd | F [ o] ex[ws

lsub_| t iF [0 ][ px]ws
PIPELINE

w | [F [ D[ ex [men] ws

sub iF | 0 | Ex |mEmM wa

ljump | IF_ | 0 | Ex |mem we

add iF | 0 | Fx [mEmM wa

|sub_| IF | o | ex |mem we]

Figure 3.6: Difference between multi-cycle and pipeline executions

From Figure 3.6, multi-cycle execution requires 20 clock cycles to
complete a set of 5 instructions, whereas pipeline execution takes only 9 clock
cycles. Since instruction execution is non-overlapping, there is no data hazard
and hence, no extra circuitries (Forwarding block and Interlock block used in
the pipeline microarchitecture) are required. Besides that, the characteristic of
the multi-cycle microarchitecture, i.e. only one stage is active at every clock
cycle, allows some components to be reused. This leads to lesser components

used and hence, lesser signals switching, which dramatically reduces the
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design area and dynamic power consumption. To process varying instruction
execution stages (from 2 to 5 clock cycles), a Moore Model Finite State
Machine (FSM) based Control-path unit is developed, which will be discussed
in Section 3.2.3.1. The reason to use a Moore model FSM instead of a Mealy
model FSM is due to the design behavior exists of glitches in the Mealy model
FSM. Glitches are the unnecessary signal switching that will consume
dynamic power. A glitches output will be used by the other hardware modules
in the reconfigurable 10T processor and thus, creating more glitches. This is
opposite to our intention as to reduce the dynamic power of the multi-cycle
microarchitecture. The design hierarchy of the multi-cycle processor is shown
in Table 3.4. Figure 3.7 shows the microarchitecture of the multi-cycle
processor. The design restructuring of the multi-cycle processor

microarchitecture for PR purposes is shown in Figure 3.8.

Table 3.4: Multi-cycle microarchitecture design hierarchy

Chip Level (Miéiggrchﬁ\t/ee(I:ture Block Level I(_Microarchitecture Sub-block
evel)
Level)
crisc Data-path unit Register File block (brf)
(udata_path) Forwarding block (bfw_ctrl)
Interlock block (bitl_ctrl)
CPO block (bcp0)
ALU block (balb)
Multiplier Block (bmult32) adder_IvI1_firstrow
adder_Ivil

add_Ivl1_lastrow

sub_IvI1_lastrow

adder_IviI2

adder_IvI2_lastrow

adder_IviI3

adder_Ivl4

adder_IvI5

Address Decoder block
(baddr_decoder)

Control-path unit FSM | Main Control block
(uctrl_path) (bmain_ctrl)

Avrithmetic Logic Control block
(balb_ctrl)
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Continued from Table 3.4

Cache unit (ucache)

Cache Controller block
(bcache_ctrl)

Cache RAM block
(bcache_ram)

Flash Controller Unit
(ufc)

Flash Controller Clock
Generator block (bfc_clk_gen)

Flash Controller FSM block
(bfc_fsm)

Flash Controller Transmitter
block (bfc_TX)

Flash Controller Receiver
block (bfc_RX)

FIFO block (bfc_FIFO)

Data and Stack RAM
unit (uram)

UART Controller unit
(uuart)

UART Baud Clock Generator
block (bclketr)

UART Receiver block (brx)

sbrx_ctr

asynfifo_rl_3

fifomem_bl_1

graycntr_rl_3

synchronizer

UART Transmitter block (btx)

shtx_ctr

asynfifo_rl_3

fifomem_bl_1

graycntr_rl_3

synchronizer

SPI1 Controller unit
(uspi)

SPI Clock Generator block
(bclk_gen)

SPI Receiver block (bRX)

SPI Transmitter block (bTX)

FIFO block (bFIFO)

SPI Input Output Control block
(bio_ctrl)

GPIO Controller unit
(ugpio)

Priority Interrupt
Controller unit
(upi_ctrl)

Priority Resolver block
(bpic_resolver)

General Purpose
Register unit (ugpr)

Boot ROM unit
(uboot_rom)

Memory Arbiter unit
(umem_arbiter)

PR controller unit
(upr_ctrl)

De-coupler unit
(udecoupler)
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Figure 3.7: Multi-cycle processor microarchitecture
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Figure 3.8: Design restructuring of multi-cycle processor microarchitecture for PR purposes
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3.2.3.1 Control-path unit FSM (for multi-cycle microarchitecture)

There are a total of 20 states in the Control-path unit FSM as shown in
Figure 3.9. Each instruction has its own instruction flow to follow as shown in
Table 3.5. The information of each state is described in Table 3.6, while
Figure 3.10 illustrates the connection of the Control-path unit FSM with the

Main Control Block and the Arithmetic Logic Control Block.

reset

Wlﬁ Cycle 1

LD | Cycle 2

[Ex_BR ] [ExJ | [Ex_IR] [EX_ER ] [Ex_M][EX_Ls] [ Ex | [Ex_co][wB_co]| [wB_aL|[we_jAR] | Cycle 3
| | I ] [ | I I

1
[we_imm] [MEm_S|  [wB_HL| [wB] Cycle 4
[ | I
Cycle 5

Figure 3.9: 20 states of the multi-cycle microarchitecture Control-path
unit FSM

Table 3.5: Instruction cycles and corresponding state required by
instruction

No | Instruction Instruction State
cycles 1 2 3 4 5
1 add 4 IF ID EX WB
2 addu 4 IF ID EX WB
3 sub 4 IF ID EX WB
4 subu 4 IF ID EX WB
5 mult 5 IF ID EX_ M MEM WB_M
6 multu 5 IF ID EX_ M MEM WB_M
7 mfhi 4 IF ID EX WB_HL
8 mflo 4 IF ID EX WB_HL
9 and 4 IF ID EX WB
10 or 4 IF ID EX WB
11 | xor 4 IF | ID EX WB
12 | nor 4 IF | ID EX WB
13 |l 4 IF | ID EX WB
14 | srl 4 IF | ID EX WB
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Continued from Table 3.5

15 | sra 4 IF | ID EX WB

16 | slt 4 IF | ID EX WB

17 | sl 4 IF | ID EX WB

18 | jr 3 IF | ID EX_JR

19 | jalr 3 IF | ID | WB_JALR

20 | syscall 2 IF | ID

21 | mtcO 3 IF | ID EX_CO

22 | mfc0 3 IF | ID WB_C0

23 | eret 3 IF | ID EX_ER

24 | addi 4 IF | ID EX_LS

25 | addiu 4 IF | ID EX_LS

26 | andi 4 IF | ID EX LS

27 | ori 4 IF | ID EX LS WB_IMM

28 | xori 4 IF | ID EX LS WB_IMM

29 | lui 4 IF | ID EX LS WB_IMM

30 | Iw 5 IF | ID EX LS MEM WB_L
31 | Iwl 5 IF | ID EX LS MEM WB_L
32 | lwr 5 IF | ID EX LS MEM WB_L
33 |1Ih 5 IF | ID EX LS MEM WB_L
34 | lhu 5 IF | ID EX LS MEM WB_L
35 |1Ib 5 IF | ID EX LS MEM WB_L
36 | Ibu 5 IF | ID EX LS MEM WB_L
37 | sw 4 IF | ID EX LS MEM_S

38 | swl 4 IF | ID EX LS MEM_S

39 | swr 4 IF | ID EX LS MEM_S

40 | sh 4 IF | ID EX LS MEM_S

41 | sh 4 IF | ID EX LS MEM_S

42 | slti 4 IF | ID EX LS WB_IMM

43 | sltiu 4 IF | ID EX LS WB_IMM

44 | beq 3 IF | ID EX_BR

45 | bne 3 IF | ID EX_BR

46 | blez 3 IF | ID EX_BR

47 | bgtz 3 IF | ID EX_BR

48 | j 3 IF | ID EXJ

49 | jal 3 IF | ID WB_JAL

50 |tma 2 IF | ID

Table 3.6: State definition of the multi-cycle microarchitecture Control-
path unit FSM

State Definition

Name

IF Instruction fetch from instruction memory

ID Instruction Decode and Register File Read

EX_BR Determine branch taken or untaken. Copy branch target address calculated to
the PC register if branch taken

EX_J j instruction detected. Copy jump address to PC register

EX_JR jrinstruction detected. Copy $rs register value to PC register

EX_ER eret instruction detected. Copy the exception return address, $epc to PC
register

EX_CO mtcO instruction detected. Move a data from Register File to CPO register

WB_C0 mfcO instruction detected. Copy a data from CPQ register to Register File
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Continued from Table 3.6

WB_JAL jal instruction detected. Copy PC register to $ra register in the Register File
and copy jump address to PC register
WB_JALR | jal instruction detected. Copy PC register to $ra register in the Register File
and copy $rs register data to PC register
EX M jal instruction detected. Activate multiplier
EX LS I-type instruction detected. Further decode whether load, store or immediate
instruction is issued
EX R-type instruction detected. Activate ALU.
MEM Load data from data memory (D-CACHE, RAM or 1/Os register) or perform as
dummy cycle for multiplication operation
WB_IMM | Write back immediate instruction result to Register File
MEM_S Store data to data memory (D-CACHE, RAM or 1/Os register)
WB_HL Write back HI or LO register to Register File
WB Write back R-type instruction result to Register File
WB_M Reserved for write back multiplication result to HILO register
WB_L Write back data memory (D-CACHE, RAM or 1/Os register) data to Register
File
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Figure 3.10: Connection of the Control-path unit FSM with the Main
Control Block and the Arithmetic Logic Control Block for Multi-cycle
microarchitecture
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3.2.4 Consistent 1/0 Interface for Partial Reconfiguration Unit

PR unit (a.k.a PR instance), either multi-cycle or pipeline
microarchitecture, is model as a module in RTL modeling. The I/O pins of the
PR instance, known as partition pins (Xilinx, 2016a), must be consistent for
both multi-cycle and pipeline microarchitectures. The partition pins serve as
the static interconnection pins between the static region’s logic and the PR
region’s logic. The partition pins can be: 1) user defined by including the (*
keep = "true" *) command in the RTL modeling of the PR unit to avoid the
optimization of the partition pins; 2) automatically created by Xilinx Vivado,
where routing congestion may occur when the PR unit has a large amount of
partition pins. For our reconfigurable soft-core 10T processor, the first method
is used in order to gain control on the routing and the logic resources
placement. Figure 3.11 illustrates the PR unit partition pins that are consistent
for both multi-cycle and pipeline microarchitectures. Each partition pin’s

function is described in Table A.1.
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Figure 3.11: Partition pins of Partial Reconfiguration top module
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3.2.5 Partial Reconfiguration
PR is initiated when a tma instruction is detected in the user program

code, which as shown in the program code in Figure 3.12.

1 #define SETTING OxBFFFFEQOQ

2 $define PSADDR OxBFFFFEQ4

3 #define MSADDR OxBFFFFEQO2

5 woid main(){

& SETTING = Ox0ABFD400; OxCTER << 9

7 PSADDR = 0Ox00AB0000;

8 M5ADDR = OxO0O0ROOD000;

: while (1} {
10 /f 1st job - multi-cycle execution
11 f=
12 data collection: acquire sensor data
*/
_asm_ ("pma:r"):

//2nd job - pipeline execution

18 f*
15 data processing:
20 band pass filter
21 AES encryption
22 *f
_asm__ ("tmar"):

26 data transmission: Send through wireless module

Figure 3.12: Sample test program to initiate the PR

PR will reconfigure the processor:
1) When current microarchitecture is multi-cycle microarchitecture, PR
will reconfigure the processor to pipeline microarchitecture
2) When current microarchitecture is pipeline microarchitecture, PR will
reconfigure the processor to multi-cycle microarchitecture
The currently configured processor will halt its execution and pass the control
to the PR controller, which shown in Figure 3.1. The PR controller obtains the
partial bitstream which was earlier stored in the flash memory (on the Nexys 4

DDR board). Each 32-bits word of bitstream will be written to the FPGA

65



through Internal Configuration Access Port (ICAP). The process finishes when
the last bitstream word writes into the FPGA, perform a soft reset on the
reconfigurable region and continue to fetch the instruction following the tma
instruction in the user program code. The flow chart of the PR process is

shown in Figure 3.13.

T PR controller send
TMA instructi‘(‘i‘ﬁ“\\ bitstream start Flash controller get data
T~_detected? ,.f"”HYESH addresstoflash | | from flash memory
T controller
Write bitstream word to
FPGA through ICAP
Recor?flgurable Pl 43906—'(\']5“’1iSH?:II)—< 43906
logic reset words — words

Figure 3.13: PR process flow

In pipeline microarchitecture, when tma instruction is detected at the
ID stage, the execution of the instruction following tma instruction, which is
already in IF stage, will be halt by the PR controller. At the same time, the
instructions in MEM and WB stages (instructions prior to tma instruction) will
continue to execute. Once both instructions in MEM and WB stages end its
execution, the PR controller proceeds to partial reconfigure the processor. In
the multi-cycle microarchitecture, the PR controller starts to partial

reconfigure the processor once tma instruction is detected in ID state.

One problem arises when PR is reconfiguring the logic circuits: the
output signals from the PR unit will be corrupted. The corrupted signals will
be passed to the static region’s components. The corrupted signals will affect

any data stored before the PR could be completed. However, the data stored

66



should remain consistent when the PR is in progress. One of the root cause of
the issue we have identified occurred in the Main Control block, where
bimc_rs[4:0], bimc_funct[5:0] and bimc_opcode[5:0] obtained from the
instruction is passed from the PR unit to the Main Control block for
instruction decoding. There are 2 possible solutions to resolve the issue: 1)
deassert the 17-bit inputs of Main Control block (bimc_rs[4:0],
bimc_funct[5:0] and bimc_opcode[5:0]); 2) deassert the output signals from
the Main Control block that can affect the data stored (data in the Register File,
CPO registers, Data and Stack RAM, 1/O controller registers). We used the
second solution since lesser signals were identified (bomc_eret and
bomc_tma), which shown in Table 3.7. Besides that, several signals (no. 2 to
no. 13 in Table 3.7) from the PR unit were identified to have affected the data
stored when PR is in progress. This is due to the signals are output from the
pipeline registers (pipeline microarchitecture) or produce by the internal
circuitry, i.e. uctrl_path (multi-cycle microarchitecture). We have also found
that the ALU block will output a corrupted signal (boalb_ovfs) that will trigger
an exception. Therefore, a de-coupler block is developed to deassert the
corrupted signals to ground when PR is in progress. Table 3.7 shows the

corrupted signals that will be connected to the de-coupler block.

Table 3.7: Corrupted signals to be de-coupled when PR is in progress

No | Signal name Source Destination Signal function
1 | bomc_eret Main Control | CPO block Indicate eret instruction is
block executing
2 | bomc_tma Main Control | PR controller Indicate tma instruction is
block executing, PR will take
place to reconfigure the
PR unit
3 uopr_mem_Iw | PR unit Address Decoder | Indicate Iw, Iwl or Iwr
block instruction in MEM stage
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Continued from Table 3.7

4 | uopr_mem_lh PR unit Address Decoder | Indicate |h  or lhu
block instruction in MEM stage
5 | uopr_mem_lIb PR unit Address Decoder | Indicate Ib or Ibu
block instruction in MEM stage
6 | uopr_mem_sw PR unit Address Decoder | Indicate sw, swl or swr
block instruction in MEM stage
7 | uopr_mem_swi PR unit Address Decoder | Indicate swl instruction in
block MEM stage
8 | uopr_mem_swr PR unit Address Decoder | Indicate swr instruction in
block MEM stage
9 | uopr_mem_sh PR unit Address Decoder | Indicate sh instruction in
block MEM stage
10 | uopr_mem_sb PR unit Address Decoder | Indicate sb instruction in
block MEM stage
11 | uopr_rf_wr_en PR unit Register File | Enable write to Register
block File
12 | uopr_cpO_all_branch | PR unit CPO block Indicate eret, beq, bne,
blez, bgtz, j, jr, jal or jalr
instruction is executing
13 | uopr_cpORegWr PR unit CPO block Enable write to CPO
register
14 | boalb_ovfs ALU block CPO block Indicate sign overflow has

occur

Since PC register is placed in the PR region to decrease the net delay

(longer net routing used by the Xilinx Place and Route tool when PC register

is place in the static region), the PC register value (PC register holds the

address of the instruction next to tma instruction) in the PR unit should not

change when the PR is in progress. This will allow the processor to re-execute

the consecutive instruction after the PR is done. In order to resolve this issue,

when tma instruction is detected, the PC register value will be sent to the PR

controller. The PR controller holds the PC register value so that no

consecutive instruction is fetched when the PR is in progress.
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3.3 Memory System

The developed memory system is a 2-level memory hierarchy. First
level consists of the caches (I-CACHE with 1-kBytes RAM and D-CACHE
with 128-Bytes RAM), Data and Stack RAM and Boot ROM, while second
level consists of the flash memory. The flash memory is a non-volatile
memory that used to store data (data content include FPGA configuration
bitstream, program code, constant variables and PR bitstream) when the power
is shut off. In contrast, RAM based cache losses all the data when the power is
shut off. Cache benefits in fast memory access, which can be used to enhance
the speed of memory access from the flash memory by buffered part of the

data in the cache.

Caching the runtime data (.data and .stack segments) in flash memory
is avoided. The flash memory has some limitation, in which a minimum sector
size of 4-kBytes must be erase (the data in the respective 4-kBytes sector will
be reset to 1 and the data is update by changing the related bit from 1 to 0)
prior to data updating. This requires the use of an additional RAM of at least
4-kBytes just only for swapping purpose (to temporary hold the flash memory
data before the sector is erased for updating purpose). Also, it consumes
additional clock cycles for the data to be read out from the flash memory and
write back. To overcome this issue, an 8-kBytes of Data and Stack RAM are
created using the FPGA Block RAM to hold the runtime data (refer
to .data, .bss, .stack and .heap segments in Section 3.3.1) without the need to
write back to the flash memory. If needed to store the runtime data, the data

will be directed to an external non-volatile memory via UART or SPI. We
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employed a D-CACHE with 128-Bytes of RAM to read the .data and .rodata
segments (refer to .data and .rodata segment in Section 3.3.1) from the flash
memory. A Boot ROM (Read-only memory, the bootloader program is pass to
the Boot ROM using “$readmemh ("ROM_FILE PATH, rom data)” in the
Verilog HDL) is integrated with the CPU for bootloading purposes. The
architecture and the microarchitecture of the developed memory system are

shown in Figure 3.14 and Figure 3.15.
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Figure 3.14: Memory system architecture
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Figure 3.15: Memory system microarchitecture

The development of the memory system covers 5 RTL components, an
FPGA component (STARTUPE2) and a main memory (flash memory). The
RTL components include the development of Data and Stack RAM, Boot
ROM, caches (I-CACHE and DCACHE), memory arbiter and Flash controller.
Memory arbiter is used to handle the data communication of the highest
priority cache with the flash memory among multiple caches. Flash Controller
with quad SPI interface is developed for the ease of flash memory
(S25FL128S) data access. The FPGA component (STARTUPEZ2) in the Xilinx
XC7A100T FPGA is hardwired connected to the S6 output pin of the
XC7A100T FPGA chip. The user defined SCLK from the Flash Controller is
meant to drive the S25FL128S flash memory, indirectly via STARTUPE2 (S6

pin). When the FPGA board is powered up, the S25FL128S flash memory is
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automatically controlled by the FPGA for configuration purposes. 3 dummy
SCLK cycles are required to send to the STARTUPE2 component before the
SCLK, which was earlier controlled by the FPGA, can be passed back to user

controlled. Thereby, users can fully control the S25FL128S flash memory.
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3.3.1 Memory Map

This section starts with introducing MIPS memory space convention
(D. Sweetman, 2006). MIPS with 32-bits addresses, is allowed to support up
to 4GB memory space. The MIPS memory address space is implemented in
two ways: virtual and physical addresses. Virtual addresses are used by the
CPU for the instruction and data accessing. While physical addresses are used
to allocate with physical memory such as flash memory, Data and Stack RAM,
Boot ROM and 1/O registers. Figure 3.16 shows the virtual to physical

memory mapping.

OXFFFF_FFFF OXFFFF_FFFF
kseg3
= - kseg3
mapped,cached
0xE000_0000 0xE000_0000
kseg2
- kseg2
mapped,cached g
0xC000_0000 0xc000_0000
ksegl

unmapped,uncached
0xA000_0000

kseg0
unmapped,cached

0x8000_0000 kuseg

kuseg
mapped,cached

reserved

ksegO, ksegl

0x2000_)

0x0000_0000 0x0000_0000

Virtual Memory Physical Memory

Figure 3.16: Virtual to physical memory mapping based on 32-bit MIPS
architecture. The mapped memory segment is mapped to the Memory
Management Unit (MMU) while the cached segment used the cache
memory to enhance the data accessing speed.

From Figure 3.16, the virtual memory is distributed into 5 segments:

kernel user segment (kuseg), kernel segment 0 (kseg0O), kernel segment 1
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(ksegl), kernel segment 2 (kseg2) and kernel segment 3 (kseg3). kuseg, kseg2
and kseg3 are mapped segment, which includes the address translation using
Memory Management Unit (MMU). D. Sweetman (2006) suggested avoid
using the mapped segment for the processor with no Memory Management
Unit (MMU), which left ksegO and ksegl for our implementation. The kseg0
and ksegl have the same physical addresses with different virtual addresses,
except that the ksegO is accessed through the cache. Figure 3.17 shows our

implementation of memory allocation on kseg0 and kseg1.

Virtual Memory
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OxBFFF_FEOO
0xBFCO_1000

OxBFCO_0000

1/0 peripherals register

Boot code

Physical Memory

0x2000_0000
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1/0 peripherals register

Boot code

KSEG1
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0xA002_0000 BOOT ROM
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0x8001_FFFF
0x8001_F800
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.rodata

0x8001_F400

Exception handler
0x8001_B400

User program code

0x8000_0000

KSEGO

0x0002_2000

0x0002_1000
0x0002_0800
0x0002_0000
0x0001_F800
0x0001_F400

0x0001_B400

0x0000_0000

.stack

+ .heap

.bss

.data

.data

.rodata

Exception handler

User program code

Figure 3.17: Memory allocation on kseg0 and ksegl

A C program memory separates into user program (.text), initialized

data (.data), uninitialized data (.bss), read-only constant data (.rodata), stack
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data (.stack) and heap data (.heap) (Gu, C., 2016 and I. C. Bertolotti and
Tingting Hu., 2015). The .text used to store the user program code addressed
using the PC register. The .data is used to store the initialized data, i.e. the
variables that are initialized with values. When CPU power start, the
bootloader is responsible to copy the .data content in the flash memory to
the .data segment in the Data RAM. In contrary, .bss segment stores the
uninitialized data and is allocated only in the Data RAM. The .stack is a Last-
In-First-Out (LIFO) queue used to store a procedure or function information
and local variables. The .heap is used as the dynamically allocated memory

space requested using malloc() function.

When a processor startup, the bootloader program stored in the Boot

ROM should perform the following actions:

1) Set up the Register File block registers value

2) Copy .data content from flash memory to the Data RAM

3) Jump to user program code located at 0x8001_B400 (virtual address)
Accessing .data from the Data RAM instead of the flash memory is to enhance
the data accessing performance (flash memory data access is in serial form,
while Data RAM is in parallel). The data in .data, .bss, .stack, .heap and 1/0

peripherals registers can be accessed using load and store instructions.
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3.3.2 Cache Unit

The developed Cache unit is a direct mapped cache. The cache is used
to store the copy of data (virtual memory address location from 0x8001_F400
to 0x8001 F7FF for D-CACHE) or instructions (virtual memory address
location from 0x8000_0000 to 0x8001 F3FF for I-CACHE) with the size of
8-words per block from the flash memory. Figure 3.18 shows the chip

interface of the Cache unit and Table A.2 describes the function of each pin.

ucache

——> uicac_cpu_addr[31:0]
——> uicac_reg_cpu_addr[31:0]

e u!cac_cpu_read[Z:O] uocac_cpu_data[31:0]
~—» uicac_mem_data_rd[31:0] uocac_mem_addr[31:0] >
———> uicac_mem_ack uocac_cpu_stall —>
—— uicac_io_intr uocac_miss >

—— uicac_mem_busy
——» uicac_rst
— uicac_clk

uocac_mem _read —>
uocac_mem_sel[3:0]

Figure 3.18: Cache unit chip interface
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3.3.2.1 Cache protocol

The Cache unit is organized in a multiword block (8-words in one
block) as shown in Figure 3.19 (the I-CACHE has 32 indexes while the D-
CACHE has 4 index). Each index carries a tag of the address, 1 valid bit and 8
words of data. The tag is used as the unique identifier of the address so that to
reduce the size of the comparator circuit instead of comparing 32-bit of the
input address. The valid bit is used to identify the validity of the block of data.
All the valid bit of the block in the cache is de-asserted when the processor
reset and each bit is asserted after performing a read operation. Figure 3.19

illustrates the cache organization, with assuming with 32 indexes.

Index Valid Tag Data Data Data Data Data Data Data Data
0
1
2

30
31
5-bit 1-bit  22-bit  32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit

Figure 3.19: Direct mapped cache organization with a cache block size of
8-words

The cache operation is divided into 2, i.e. read hit and read miss. The

flow and description for each operation are described in Figure 3.20.

Read Hit Read Miss
N I N | I_ Request the I
Read input Check cache’s Tow No Check FIFO'’s
address | | valid bitand tag I :“R\Ead HI}J’ valid bit and tag Sl L
~ flash memory

I
| YesI | | I
Output the | |

|| Outeutsne | 11 sor he lock
I data to CPU | I O cache I

1 [ d

Figure 3.20: Cache read operation
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3.3.2.2 Design Partitioning

The Cache unit consists of Cache Controller (bcache_ctrl) and Cache
RAM (bcache_ram). The Cache Controller is used to control the data flow and
the activity of the Cache unit. Since FPGA is used as the design platform, the
FPGA Block RAM is used to implement the memory array (Cache RAM) of
the Cache unit. The internal connection of the cache unit is shown in Figure

3.21.

Cache unit

uicac_mem_data_rd[31:0]
uicac_cpu_addr[31:0]

bicac_ctrl_hit bocac_ctrl_cpu_data_output_en bca C h e_ ra
bicac_ctrl_cpu_read bocac_ctrl_counter{2:0] bicr_din[31:0]
bicac_ctrl_mem_ack bocac_ctrl_cache_data_select bicr_addr[BIT_NB-1:0]
icac_ctrl | sa bocac_ctrl_mem_write 1
bicac_ctrl_Imc_same _ctrl_mem_ bicr_sel[3:0]
e crl o mr bocac_ctrl_mem_read e bocr_dout[31:0] = uocac_cpu_data[31:0]
bicac_ctrl_mem_busy bocac_ctrl_mem _sel[3:0] bicr_rd_en
bicac_ctrl_rst bocac_ctrl_update_en bicr_clk
bicac_ctrl_clk bocac_ctrl_buffer_cac_en T

Figure 3.21: Internal connection of the Cache unit
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3.3.3 Memory Arbiter Unit

Memory Arbiter unit is used to control the data communication of the
multiple caches with the flash memory. Memory Arbiter unit permits the data
communication of the highest priority cache with the flash memory while
limiting the data communication of the other caches. The chip interface of the
Memory Arbiter unit is shown in Figure 3.22 and Table A.3 describes the

function of each pin.

umem_arbiter

— uima_cac_read3

— uUima_cac_miss3

— uima_cac_sel3[3:0]
— uima_cac_addr3[31:0]
<—— uoma_cac_ack3
«——|uoma_cac_data_rd3[31:0]

— uima_cac_read2
—> uima_cac_miss2
— uima_cac_sel2[3:0] .
—— uima_cac_addr2[31:0] uima_fc_data[31:0]
<«<—— uoma_cac_ack2 uoma fc read ———
<«—— uoma_cac_data_rd2([31:0] o

uima_fc_ack [«——

uoma_fc_write —>

— uima_cac_readl uoma_fc_host_Id_mode ——
— uima_cac_miss1 uoma_fc_sel[3:0] —
— uima_cac_sel1[3:0]

— uima_cac_addr1[31:0]
<—— uoma_cac_ackl uoma_fc_data[31:0] —
«—— uoma_cac_data_rd1[31:0]

uoma_fc_addr[31:0] ——>

— uima_cac_read0

—— uima_cac_missO

— uima_cac_sel0[3:0]
—— uima_cac_addr0[31:0]
<—— uoma_cac_ack0

«—— uoma_cac_data_rd0[31:0]

— uima_io_intr
—> uima_rst
— uima_clk

Figure 3.22: Memory Arbiter unit chip interface
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The Memory Arbiter Unit is a FSM that consists of 5 states, which is
shown in Figure 3.23. The information of each state and the correspondence

output of the state are described in Table 3.8.

CACHE_1

N

Goe () o)

3

CACHE_3

Figure 3.23: Memory Arbiter Unit state diagram

Table 3.8: State definition of the Memory Arbiter Unit

State Name | Definition Remark
cache3 Highest priority cache given to perform | Extra ports for  future
operation development on Translation
Lookaside  Buffer (TLB),
cache2 Second priority cache given to perform | Memory Management Unit
operation (MMU) and Operating System
(GS)
cachel Third priority cache given to perform | Connected to D-CACHE
operation
cache0 Lowest priority cache given to perform | Connected to I-CACHE
operation
idle No operation -
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3.3.4 Flash Controller Unit
The Flash Controller wunit is able to perform the following
functionalities:

1) Transmit command instructions to the flash memory serially.

2) 32-bit serial data receiving buffer.

3) 4 SPI modes selectable and 16 speed selectable with up to 10MHz SPI
serial  communication through RTL/hardware modification. This
feature is not software programmable.

4) Act as master device (flash memory as slave device). In the SPI
modules connection, master device is responsible to initiate the
communication by assert the slave select signal (SS_n), pass the clock
signal (SCLK) and transmit the serial data to the slave device (MOSI).
Slave device is activated when received the SS_n signal and then pass
the serial data to the master device (MISO). The SPI data
communication is in full duplex mode, in which data transmission and
receiving occur at the same time.

The chip interface of the Memory Arbiter unit is shown in Figure 3.24 and

Table A.4 describes the function of each pin.

<«—>»MIO0

— M f SS——»
—> M2 u C SCLK ———
—>» MI3

— > uifc_read

— ¥ uifc_addr[31:0]

—— uifc_cpol uofc_busy ——»
—— > uifc_cpha uofc_dout[31:0] ———»
—— > uifc_baud[3:0] uofc_ack——»
—— 9 uifc_reconfig uofc_RXFF ——>»
—— > uifc_reconfig_nwords[31:0]

— > uifc_clk

— | uifc_rst

Figure 3.24: Flash Controller unit chip interface
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3.3.4.1 Flash Controller Protocol

Typically, flash memory uses SPI interface. Hence, the design of the
Flash Controller unit is based on the conventional SPI serial communication
protocol shown in Section 3.4.2.1. The Flash Controller unit is developed with
quad (one for bi-directional and three for receive) serial data line instead of
dual (one for transmit and one for receive) serial data line, to increase the
speed of data accessing from the flash memory. The Flash Controller unit is

developed to support the flash memory command shown in Table 3.9.

Table 3.9: Supported flash memory command instructions
Source: Cypress (2017) ‘128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V
SPI flash memory’

Command Name | Command Description Instruction Value (Hex)
RDSR1 Read Status Register-1 05
WRR Write Register (Status-1, Configuration-1) | 01
WREN Werite Enable 06
QOR Read Quad Out (3- or 4-byte address) 6B

The RDSR1 command is used to read the Status Register-1 of the
S25FL128S flash memory. Of particular interest is the Write in Progress (WIP)
bit, which shown in Table 3.10. It is used to determine if the user
configuration setting has been successfully loaded into the S25FL128S flash
memory (to configure the S25FL128S flash memory to quad serial data output
mode). The command sequence of the RDSR1 command is shown in Figure

3.25.
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Table 3.10: Status Register-1 of S25FL128S flash memory
Source: Cypress (2017) ‘128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V
SPI flash memory’

Bits Field Name Function Type Default State Description
Status Register 1 = Locks state of SRWD, BP, and configuration register bits when

7 SRWD ‘mee Dlzgable Maon-Volatile a 'WP# is low by ignoring WRR command

0 = Mo protection, even when WP#is low
Programming Error — 1= Error accurred.
6 P_ERR Occurred Volatile, Read only 0 0= No Error
Erase Error il 1 = Error occurred

5 E_ERR Occurred Volatile, Read only [} 0= No Error

: = Volatile if CR1[3]=1, N, 1 CRIBF,

3 BP1 Block Protection | /© 32;[‘"6 i C[R]1E3]'_D°”' 0 when shipped | Protects selected range of sectors (Black) from Program or Erase

2 BFD from Cypress
1 = Device accepts Write Registers (WRR), program or erase
commands

1 WEL \Write Enable Latch Volatile 0 0 = Device ignores Write Registers (WRR), program or erase
commands
This bit is not affected by WRR, only WREN and WRDI commands
affect this bit
1= Device Busy, a Write Registers (WRR), program, erase or other

] WIP ‘Write in Progress olatile, Read only 0 operation is in progress
0 = Ready Device is in standby mode and can accept commands

Cs#
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

sl

N\
SCK —|
D

o

AVAS 0000 808000

80

Status Register-1 Out Status Register-1 Out

A
S 00100/0/0/0/00,000/0000'¢

MSB

MSB MSB

Figure 3.25: RDSR1 command sequence of S25FL128S flash memory
Source: Cypress (2017) ‘128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V
SPI flash memory’

The WRR command is used to writes a new values into the Status

Register-1 and the Configuration Register-1 in Table 3.10 and Table 3.11

respectively. In our case, to configure the S25FL128S flash memory to quad

serial data output mode, the WRR command follows by the configuration

setting, i.e. 0x0002, should be transmit to the S25FL128S flash memory. Table

3.11 shows the register information of the Configuration Register-1 and Figure

3.26 shows the communication sequence of the WRR command.
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Table 3.11: Configuration Register-1 of S25FL128S flash memory
Source: Cypress (2017) ‘128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V

SPI flash memory’

Bits Field Name Function Type Default Description
State
T LC1 0 5 initi o
Latency Code Nen-Volatile Selects number of initial read latency cycles

] LCo [i] See Latency Code Tables

Configures Start of Block 1= BP starts at botiom (Low address)
5 TBRROT Protection oTe 0 0 = BP starts at top (High address)
4 RFU RFU oTP 0 Reserved for Future Use

N Configures BP2-0 in 1 = Volatile
3 BPNV Status Reqgister ot o 0 = Non-Volatile
- 1 = 4-kB physical sectors at top, (high address)
2 TBPARM C"”oﬁg‘:’e"lpa“t‘“‘e‘e’ oTP 0 0= 4B physical sectors at bottom (Low address)
=ectors focation RFU in uniform sector devices

Puts the device into Quad . 1= Quad
1 Quap IfO operation Non-Volatile o 0 = Dual or Senal

Lock cument state of BP2-

0 bits in Status Register, _ -
] FREEZE TBPROT and TBPARM in Volatile 0 a = S:“: gﬁ‘”:"" a”g gx '°°'fedk "

Configuration Register, = Black Protection an un-locke
and OTP regions

ost -

a 1 2 3 4 B B 7 8 8

0 11 12 13 14 16 46 {7 18 18 20 21 22 23

Status Register In 4.‘4— Configuration Resgistar In 4"
“5 e

h

Instruction -—l

0x01h

=0 High impedance

Figure 3.26: WRR command sequence of S25FL.128S flash memory
Source: Cypress (2017) ‘128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V
SPI flash memory’

Next, the WREN command is used to set the Write Enable Latch
(WEL) bit of the Status Register-1. For our case, the WEL bit must be set to 1
prior issuing a WRR command. The communication sequence of the WREN

command is shown in Figure 3.27.
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Cs# /

0 1 2 3 4 5 8 7

« struction 4.‘
S U/ A e

Figure 3.27: WREN command sequence of S25FL.128S flash memory
Source: Cypress (2017) ‘128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V
SPI flash memory’

SCK

Lastly, the QOR command is used to get the data from the S25FL.128S
flash memory to the cache (I-CACHE or D-CACHE) through 100-103 pins of
the S25FL128S flash memory, which is shown in Figure 3.28. The

communication sequence of the QOR command is shown in Figure 3.29.

LL UfC S25FL128S J
MIOO
MI1l SS » CS SI/100

MI2 SCLK SCLK S0/101
is STARTUPE2 J—' wrHI02
—>|uifc_read USRCCLKO E6 HOLD#/103
—>
>
>
>

—>|uifc_addr[31:0]
—> uifc_cpol
—>uifc_cpha
—>uifc_baud[3:0]
—>» uifc_reconfig
—»|uifc_reconfig_nwords[31:0] U0fc_RXFF

uofc_busy
uofc_dout[31:0]
uofc_ack

—> uifc_clk
—>{ uifc_rst

Figure 3.28: Wiring connection of S25FL128S flash memory with Flash
Controller Unit

R R AR AR R R R

Instruction 24 Bit Address 8 Dummy Cycles Data 1 Data 2

S IDED TP EDERED Z A SR {2 oyayo
\0140*6813—” {5 X1 X5 x 1)
02 55 {8 X 2 X6 X2
103 {f (7 X BN T N3

Figure 3.29: QOR command sequence of S25FL.128S flash memory
Source: Cypress (2017) ‘128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V
SPI flash memory’
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3.3.4.2 Design Partitioning

The Flash Controller unit is developed with 5 major blocks: Flash
Controller FSM, Flash Controller Receiver, Flash Controller Transmitter,
FIFO and Flash Controller Clock Generator. Figure 3.30 shows the

microarchitecture of the Flash Controller unit.

ufc
bfc_fsm bfcRX
N0 7%=z RSR[31:0] —RDR[31:0]— FIFO e gt
T &2
MI3 —— fatk
uifc_read——>| [/ W\‘ F beTX
uifc_EOS—— f |
uifc_cpol—— g % |
uifc_cpha 1 ( |
\ |
uifc_addr[31:0] L— . TSR[31:0] MIoo
uifc_reconfig——{ y ! A
uifc_reconfig_nwords[31:0]=>| xL\N,/ : L‘jggg’:glfy
1 - -
uifc_cpha[3:0]——| be_Cl k_ge n > ggfc—RXFF
—>SCLK

Figure 3.30: Flash Controller unit microarchitecture
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3.3.5 Boot ROM Unit

The Boot ROM unit is used to store the bootloader program. The Boot
ROM unit is for read-only, i.e. no write data bus, and the bootloader program
is pass to the Boot ROM unit using “$readmemh ('ROM_FILE PATH,
rom_data)” in the Verilog HDL. A block wrapper module is designed, as
shown in Figure 3.31, for the ease of using the FPGA Block RAM and Table

A.5 describes the function of each pin.

uboot rom

— birom_wb_addr[SIZE:0]
—> birom_wb_stb borom_wb_dout[31:0] ——
——{ birom_wb_clk borom_wb_ack —
— birom_wb_rst

Figure 3.31: Boot ROM Unit chip interface

87



3.3.6 Data and Stack RAM Unit

The Data and Stack RAM Unit is created to store the runtime data
(refer to .data, .bss, .stack and .heap segments in Section 3.3.1). The Data and
Stack RAM is created using FPGA Block RAM, in which both read and write
access of the data must be synchronous to the clock source. A block wrapper
module is designed, as shown in Figure 3.32, for the ease of using the FPGA

Block RAM and Table A.6 describes the function of each pin.

uram

——> uiram_wb_din[31:0]
—{ uiram_wb_addr[SIZE:0]
—— uiram_wb_sel[3:0]
—> uiram_wb_we

— uiram_wb_stb

— uiram_wb_clk

——> uiram_wb_rst

uoram_wb_dout[31:0] ——
uoram_wb_ack —»

Figure 3.32: Data and Stack RAM Unit chip interface
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3.4  1/O System

I/O system components consist of SPI controller, UART controller,
GPIO controller, Priority Interrupt Controller and General Purpose Register
(GPR) unit, are connected to the CPU through Wishbone B4 standard bus
interface (OpenCores, 2010). CPU is treated as the master device while the
I/Os connected are treated as the slave devices. Based on the Wishbone
standard, Table 3.12 shows the specific signals are required by both master
and slave devices while Figure 3.33 shows the 1/0 system architecture at the

MEM stage (remark: Address Decoder Block is in EX stage).

Table 3.12: Wishbone standard signals for master and slave device

Master Device Slave Device

Input | clock input (CLK_I), clock input (CLK_I),
reset input (RST_I), reset input (RST_I),
data input array (DAT_I) data input array (DAT _I),

address input array (ADR_I),
select input array (SEL_]I),
strobe input (STB_I),

write enable input (WE_I)

Output | data output array (DAT_O), data output array (DAT_O),
address output array (ADR_0), | acknowledge output (ACK_O)
select output array (SEL_O),
strobe output (STB_O),
write enable output (WE_O)
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baddr_decoder

biad_mem_lw
biad_mem_lh
biad_mem_lb
biad_mem_sw
biad_mem_swl
biad_mem_swr

boad_byte_sel[3:0] ———

boad_dcache_rd
boad_dmem_en
boad_io_we

boad_io_en[7:0] |

biad_mem_sh
biad_mem_sb

—>| biad_mem_cpu_addr[31:0]
biad_stall

uogpr_recont_setting[31.0]
uegpr_pipeline_reconf_addr{31.0]
uogpr_multicycle_reconf_sddr[31:0]

uigpr_update_ma

uigpr_wh_addr[1.0]

frsh 3 uigpr_whb_din[31:0]
] uigpr_wo_seif20]
b wizpr_wb_we uogpr_wb_
[ N TOTIN b
sigpr_wb_sth wogpr_wh_ack

vigpr_wh_clk
uopr_mem_lw — i
uopr_mem_lh —
uopr_mem_lb ——
uopr_mem_sw ——
uepr_mem_swl ——
uopr_mem_swr

_wb_rst

ugpio
—P uipr_loaded_data[31:0] gpu.a,p.c_mm_,.nm o)

uipr_mem_stall

_wh_addr{1:0)
uigpie_wb_din[31:0]

uj Bl uopr_mem_sh uigpio_wh_sel[3.0] uogpio_wh_dout[310]
ulpr_sys_rst uopr_mem_sb T I woggio_wh_sck
uopr_mem. alb_out[31:0] 9 N NIEY N e

uigpio_wh_clk

uigpio_wh_rst

uopr_dmem_addr[31:0]
uopr_store_data[31:0]

upi_ctrl
uipi_ctri_intr_vector7:0]
uipi_etrl_stat_PL{L:0] uopi_ctr_10_IE[7:0)
wipi_ctrl_cpu_stall uopl_ctrl_|RQ

ipi_ctd_wb_din[31:0]
wipi_etri_wh_sei[3:0]

P> wip_etrl_wh_we uopi_ctrl_wh_deut[31:0]

J‘—’E—v ipi_etrl_wi_stb: wopi_ctrl_wh_ack
uipi_ctrl_uh_clk
wipi_ctrl_wb_rst

© vospMOSI

USPI  wowonso

uispi_SPIE uiospl_SCLX

uiozpi_$5_n

uospi_IRQ,

uispi_wb,_sin|7:0]

uospl_wh_dout]31:0]

uispi_wb._ ospi_wh_ack
uispl_wb_clk
ispi_wb_rst
uia_RxD uoua_To
aeteee uuart  were
wiva_wh._din[7.0]
wiva_wh._sel[3:0]
uiva_wb_we uoua_u_dout[31
BL ] e b s woua_w_ack
uiva_w_cik
uita_ub_st

Figure 3.33: 1/O system architecture at MEM stage [PR unit (upr) pins is
simplified for illustration purpose]
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3.4.1 UART controller
The UART controller is used for serial data communication between
the UART interface devices. The UART controller is designed to provide the
following features:
1) Half-duplex asynchronous transmitting and receiving, where only
transmit or receive data can take place at any time
2) Performs serial-to-parallel data conversions on data received from
another device via uiua_RxD
3) Performs parallel-to-serial data conversions and transmit the data to
another device via uoua_TxD
4) Programmable baud rate with 8 speed selection (300 baud -> 38400
baud)
5) Selectable parity bit
6) Parity error (PE) and framing error (FE) detection
7) Received complete and transmit FIFO empty interrupt support
Figure 3.34 shows the chip interface of the UART controller and Table A.7

describes the function of each pin.

—»| uiua_RxD t uoua_TxD —>
—»| uiua_UARTIE u u a r uoua_IRQ —>»
———| uivua_wb_din[7:0]
——»| uiua_wb_sel[3:0]
—» uiua_wb_we uoua_wb_dout[7:0] H—>

—>| uiua_wb_stb uoua_wb_ack [—>

—| uiva_wb_clk

—»| uiua_wb_rst

Figure 3.34: UART Controller chip interface
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3.4.1.1 UART protocol
UART data communication protocol is divided into 4 parts: start, data,

parity and stop bit. Figure 3.35 illustrates the UART data communication

protocol.
Start bit Word data Parity Stop bit
logic 0 | bit  logic 1

o | (eotgna) |

M Do D1 D2 D3 D4 D5 D6 D7 FB m

Figure 3.35: UART data communication protocol

1) Start bit: This bit is set to LOW to initiate bit synchronization of the
message at the receiver.

2) Data: Represent the data that will be transmitted. The least significant
bit (LSB) will be sent out first followed by next bit until the most
significant bit (MSB).

3) Parity Bit: This bit represents even or odd parity if parity is enabled.
The CPU is in charge of manipulating the even or odd parity.

4) Stop Bit: This bit is set to HIGH to provide the message-framing

indication for use in bit synchronization at the receiver.

When receiving the data from the UART controller, the start bit will be
sampled for 5 times, where the serial bit at the 5th sample will be indicated as
the start bit. When the start bit detected, the UART controller will sample the

next serial bit for 10 times and the serial bit at the 10th sample will be
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recorded and treated as the LSB of the receiving data. The data receiving
process will continue until the stop bit is received. The sequence of the data
sampling will be 5 (Start bit), 10 (LSB), 10, 10, 10, 10, 10, 10, 10 (MSB), 10
(Parity bit-optional) and 10 (Stop bit). Figure 3.36 illustrates the process of

data sampling when receiving data from the UART controller.

T TTWTWTTTTTTTTWTTTTTTTWTT

Figure 3.36: Process of data sampling when receiving data through UART
controller

A parity bit is used for error detection when in UART serial data
transmission. Odd parity create an odd count of 1’s in a stream of data (8-bits
data and 1 parity bit) while even parity creates an even count of 1’s in a stream
of data. A parity error occurs when the count of 1’s is not as agreed by both
UART devices, where even parity will have 0, 2, 4, 6 or 8 of 1’s in a stream of
data while odd parity will have 1, 3, 5, 7 or 9 of 1’s in a stream of data. Parity
error may occur due to the transmission line corrupted. However, no
correction can be done by the UART controller except notify the user by
sending an interrupt request. Such condition can only be resolved by re-

sending the data.
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Each stream of data consists of a start and a stop bit to indicate the start
and the stop of one byte data communication. Start bit initiate the
communication while stop bit terminates the communication. The framing
error occurs when no stop bit is detected. Such condition may occur due to the
transmission line corrupted, different baud rate for both devices and parity
setting of both devices. UART controller will send an interrupt request to
notify this condition had arisen and the user is required to resolve it by
checking the wire connection or the configuration setting of both UART

devices.
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3.4.1.2 Design Partitioning

UART controller consists of Baud Clock Generator (bclkctr), Receiver
(brx) and Transmitter (btx) blocks. 4 registers, UARTCR (UART
Configuration Register), UARTSR (UART Status Register), UARTRDR
(UART Receive Data Register) and UARTTDR (UART Transmit Data
Register), are available for user access while 2 shift registers, Transmitter
Shift Register (TSR) and Receiver Shift Register (RSR), are used for parallel-
to-serial and serial-to-parallel data conversion respectively. UARTCR and
UARTSR are used for configuration setting and status monitoring purposes.
UARTTDR holds the data that will be transmitted to another UART device.
UARTTDR is a 4 x 1-byte FIFO memory, where up to 4 bytes of data can be
inserted by user and queue for data transmitting. UARTRDR is also a 4 x 1-
byte FIFO memory, where up to 4 bytes of data can be received and buffered.
UART Receiver block used a 9-bit shift register (RSR) to receive each bit
serially from another UART device. Once the 9-bit data received (8 data bit
and 1 stop bit), the data in the RSR data will be passed to the UARTRDR.
UARTRDR holds the data while RSR can continue to receive another byte of
data. For data transmitting, UART Transmitter block used a 10-bit shift
register (TSR) to transmit the data (8 data bit, 1 parity bit and 1 stop bit)
serially to another UART device. Figure 3.37 shows the internal connection of

the UART Controller.
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uoua_lRQ._;?W Rp; 777777777777777777777777777777777

uoua_wb_ack

uoua_TxD

—+—uiua_RxD

1 L UARTCR
uiua_wb_sel[3:0] ——> | [7:0]
. UARTEN | RXCIE | TXEIE | PRTEN | PRT |BAUD|BAUD|BAUD
uiua_wb_w : { P H
uiua_wb_stb—:—» JRe // ﬁ UARTSR
} K s 7 // [7:0] RXFF TXEF FE PE X ‘ X ‘ RXFIM }4*
uiua_wb_din[7:0] : I7" Dk
| [/ > g btx
[ VN . FIFO
I | [7:0] A 1|
uoua_wb_dout[7:0]4—l—€‘/ 4x1 @ TSR[9:0]
! S BYTE
| N
I (VNN brx
} ; h X/‘ 7.0l FIFO -
uiua_UARTIE D ax1 @ RSR[8:0] [
! S belketr Si ;
! b ) || I

uiva_wb_clk—L———————> bicc_sysc =

! bicc_reset

Figure 3.37: Internal connection of the UART Controller
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3.4.1.3 Register sets
4 registers are used to allow the data communication between the CPU
and the UART controller.

1) UART Configuration Register (UARTCR) — 8-bit (OXBFFFFE28)

[UARTEN] RxCIE | TXEIE | PrTEN | PRT |  BAUD[2:0] |

a. UARTEN - UART enable control. It is used to deactivate the
UART controller when it is not in use. When activated, even
not transmitting a byte of data, the UART controller is capable
to receive a byte of data from another device. To have better
control on power consumption, the UART controller is
recommended to be deactivated when not in use.

i. Set to activate the UART controller
ii. Clear to deactivate the UART controller

b. RXCIE - Receive Complete Interrupt enable control. It can
only be used if and only if UARTIE (UART global interrupt
enable) bit in PICMASK (0xBFFFFE22) is set. This bit is used
for interrupt enable control (to select interrupt method instead
of polling) after data has been completely received (as
indicated by the RXDF bit in UARTSR (OxBFFFFE29)).

i. Setto enable Receive Complete Interrupt
ii. Clear to disable Receive Complete Interrupt

c. TXEIE - Transmit FIFO Empty Interrupt enable control. It can
only be used if and only if UARTIE (UART global interrupt
enable) bit in PICMASK (0OxBFFFFE22) is set. This bit is used

for interrupt enable control (to select interrupt method instead
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of polling) when the transmitter FIFO (UARTTDR) is empty
(as indicated by the TXEF bit in UARTSR (OxBFFFFE29)).
I. Set to enable Transmit Empty Interrupt
ii. Clear to disable Transmit Empty Interrupt
d. PRTEN — Parity enable control
e. PRT — Parity bit, to select either odd or even parity
f. BAUD[2:0] - UART Baud Rate
i. 000: 38400 baud
ii. 001: 19200 baud
iii. 010: 9600 baud
iv. 011: 4800 baud
v. 100: 2400 baud
vi. 101: 1200 baud
vii. 110: 600 baud
viii. 111: 300 baud

2) UART Status Register (UARTSR) — 8-bit (OXBFFFFE29)

| RxoF | mxeF | FE | PE | RESERVED([3:]] | RXFM |

a. RXDF — Receive Done flag. This bit when set by UART,
indicates 1-byte or 4-byte of data have been completely
received. It is used in conjunction with RXFM bit in UARTSR
(OXBFFFFE29) to determine if the receive data is 1-byte
(RXFM = 0) or 4-byte (RXFM = 1 i.e. FIFO full).

b. TXEF — Transmit FIFO Empty flag. This bit is set to 1 by the
UART if the transmit FIFO is empty.

c. FE —Framing error. It is set when not detecting a stop bit.
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d. PE — Parity error. It is set when parity bit mismatch.

e. RXFM — Receive FIFO Full Mode. It is part of UARTCR. It is
placed in UARTSR (OxBFFFFE29) to avoid creating longer
bytes of UARTCR.

i. Setto 1 by user to indicate a 4-byte (FIFO full) data is
expected to be read by CPU.

ii. Clear to 0 by user to indicate a 1-byte data is expected
to be read by CPU.

3) UART Transmit Data Register (UARTTDR) — 8-bit (OXBFFFFE2A)

UARTTDR [7:0]

a. This register holds the data that will transmit to another UART
device

4) UART Receive Data Register (UARTRDR) — 8-bit (OxBFFFFE2B)

UARTRDR [7:0]

a. This register holds the data received from another UART

device
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3.4.2 SPI controller
The SPI controller is used for high speed serial data communication
between the SPI interface devices. It is developed with 4 wires, which are
Master out Serial in (MOSI), Master in Serial out (MISO), Slave Select (SS)
and SPI clock (SCLK), and 4 modes of serial data communication (some of
the SPI interface module support only certain mode of serial data
communication, e.g. The CC2420 from Texas Instruments only support mode
0 and 3). The SPI controller is able to perform the following functionalities.
1) Full duplex 8-bit data (8 SCLK cycles) communication, which serial
data transmission and receiving can take place at the same time
2) Selectable 16 transmission speed (305 Hz -> 10 MHz)
3) Selectable 4 mode of transmission (mode 0, 1, 2 and 3)
4) Mode Fault error detection
5) Received buffer full and transmit buffer empty interrupt support
Figure 3.38 shows the chip interface of the SPI controller and Table A.8

describes the function of each pin.

. uiospi_MOSI «—»
u S p I uiospi_MISO [«—>»

—»| uispi_SPIE uiospi_SCLK [«<—>»
uiospi_SS_n [«—»

uospi_IRQ —>

———»| uispi_wb_din[7:0]
——»| uispi_wb_sel[3:0]
————>| uispi_wb_we uospi_wb_dout[7:0] —H—>
———»| uispi_wb_stb uospi_wb_ack ——>

—— | uispi_wb_clk

——»| uispi_wb_rst

Wishbone standard interface

Figure 3.38: SPI Controller chip interface
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3.4.2.1 SPI protocol

To allow serial data communication among SPI devices, in which only
one master device is allowed to exist in the same connection, whereas other
SPI devices must be configured by the user as slave devices. To avoid 2 or
more master devices exist in the same connection, the user can check the
MSTR bits from all the connected SPI devices to ensure only one MSTR bit is
set. The SPI controller also have the capability to check the uiospi_SS_n pin
for 2 or more master devices existing in the same connection and will generate

an interrupt signal (Mode Fault error) to the CPU to notify the user.

To initiate the SPI serial data communication, master device pull low
the uiospi_SS_n pin for 8 uiospi_SCLK cycles. A clock pulse is sent from the
master to the slave devices, through the uiospi_SCLK pin, for serial data
synchronization purposes. After the uiospi_SS_n pin is pulled low, 8-bit serial
data is transmitted from the uiospi_MOSI pin of the master device to the
uiospi_MOSI pin of the slave device. At the same time, uiospi_MISO pin of
the master device can receive 8-bit data from the uiospi_MISO pin of the slave
device. This makes SPI device capable of performing full duplex data
communication. The serial 8-bit data communication is completed after 8
uiospi_SCLK cycles followed by pull high the uiospi_SS n pin. Four
communication modes (mode 0, 1, 2 and 3), defined by Clock polarity (CPOL)
and Clock phase (CPHA), are available to identify the uiospi_SCLK edges to
be used for data transmit and sampling. Table 3.13 shows the SPI mode 0, 1, 2
and 3 with respect to CPOL and CPHA and Figure 3.39 to Figure 3.42

illustrates the SPI serial data communication for each communication mode.
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Table 3.13: SPI communication mode information

mode | CPOL | CPHA | Data transmit at Data sample at (Receive)
0 0 0 half clock before the rising edge rising edge
1 0 1 rising edge falling edge
2 1 0 half clock before the falling edge | falling edge
3 1 1 falling edge rising edge
ss_n \ /
SCLK / \ / \ 1'1‘ / \ / \
MOSI X b7 bite [ J/i X b1 X bit-0 ¥
MISO sample T T T T
Figure 3.39: Mode 0 serial data communication
ss_n \ /
sk [\ [\ [/
MOSI X bit7 Y bt X J/A X bit1 X bt X
MISO sample T ] T T
Figure 3.40: Mode 1 serial data communication
ss_n \ /
SCLK \ / \ / /i \ / \ /
MOSI X b7 X bite X J/i X b1 X kit ¥
MISO sample T T T T
Figure 3.41: Mode 2 serial data communication
ss_n \ /
sk T\ / ./ [ [\ [
MOSI A bit7 X bt X J/! X bit1 X bit0 X

s 1 1

Figure 3.42: Mode 3 serial data communication
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3.4.2.2 Design Partitioning

SPI controller consists of Clock Generator (bspiclk_gen), Input Output
Control (bspilO_ctrl), Receiver (bspiRX) and Transmitter (bspiTX) blocks. 4
registers, SPICR (SPI Configuration Register), SPISR (SPI Status Register),
SPIRDR (SPI Receive Data Register) and SPITDR (SPI Transmit Data
Register), are available for user access while 2 shift registers, Transmitter
Shift Register (TSR) and Receiver Shift Register, are used for parallel-to-
serial and serial-to-parallel data conversion respectively. SPICR and SPISR
are used for configuration setting and status monitoring purposes. SPITDR
holds the data that will be transmitted to another SPI device. SPITDR is a 16 x
1-byte FIFO memory, where up to 16 bytes of data can be inserted by user and
queue for data transmitting. SPIRDR is also a 16 x 1-byte FIFO memory,
where up to 16 bytes of data can be received and buffered. SPI Receiver block
used an 8-bit shift register (RSR) to receive each bit serially from another SPI
device. Once the 8-bit data received, the data in the RSR data will be passed to
the SPIRDR. SPIRDR holds the data while RSR can continue to receive
another byte of data. For data transmitting, SP1 Transmitter block used an 8-bit

shift register (TSR) to transmit the data serially to another SPI device.
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3.4.2.3 Register sets
4 registers are used to allow the data communication between the CPU
and the SPI controller.

1) SPI Configuration Register (SPICR) — 8-bit (OXBFFFFE24)

| spE | msTR | cpoL | cpHA | SCR[3:0] |

a. SPE — SPI enable control. It is used to deactivate the SPI
controller when it is not in use. To have better control on power
consumption, the SPI controller is recommended to be
deactivated when not in use. Set to activate SPI controller, else
otherwise.

b. MSTR — Master/Slave device. Set to indicate as master device,
else otherwise.

c. CPOL - Clock Polarity

a. CPHA - Clock Phase

b. SCR]3:0] — SPI Clock Rate (CPU clock speed is 20 MHz)

i. 0000: 10 MHz
ii. 0001:5 MHz
iii.

xv. 1111: 305 Hz

2) SPI Status Register (SPISR) — 8-bit (OXBFFFFE25)

| RXDF | TXEF | MODF | RXFM | RXFIE | TXEIE | RXFHE | TXEHE

a. RXDF — Receive Done flag. This bit when set by SPI, indicates
1-byte or 16-byte of data have been completely received. It is

used in conjunction with RXFM bit in SPISR (OXxBFFFFE25) to
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determine if the receive data is 1-byte (RXFM = 0) or 16-byte
(RXFM = 1 i.e. FIFO full).
. TXEF — Transmit FIFO Empty flag. This bit is set to 1 by the
SPI if the transmit FIFO is empty.
MODF — Mode Fault error. When SPI unit is set as the master
device, the uiospi_SS_n pin must pull high by the master device.
If there existed two master devices, any attempt to pull low the
uiospi_SS_n pin will trigger the mode fault error. This is to avoid
two master devices exist in the same connection and avoid
damage to the hardware.
RXFM — Receive FIFO Full Mode. It is part of SPICR. It is
placed in SPISR (OXxBFFFFE25) to avoid creating longer bytes of
SPICR.

i. Set to indicate a 16-byte (FIFO full) data is expected to

be read by CPU.
ii. Clear to indicate a 1-byte data is expected to be read by
CPU.

RXFIE — Receive Complete Interrupt enable. It is part of SPICR.
It is placed in SPISR (OxBFFFFE25) to avoid creating longer
bytes of SPICR. It can only be used if and only if SPIE (SPI
global interrupt enable) bit in PICMASK (OxBFFFFE22) is set.
This bit is used for interrupt enable control (to select interrupt
method instead of polling) after data has been completely
received (as indicated by the RXDF bit in SPISR (OXBFFFFE25)).

Set to enable Receive Complete Interrupt, else otherwise.
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f.

h.

TXEIE — Transmit FIFO Empty interrupt enable. It is part of
SPICR. It is placed in SPISR (OxBFFFFE25) to avoid creating
longer bytes of SPICR. It can only be used when SPIE (SPI
global interrupt enable) bit in PICMASK (OxBFFFFE22) is set.
This bit is used for interrupt enable control (to select interrupt
method instead of polling) when the transmitter FIFO (SPITDR)
is empty (as indicated by the TXEF bit in SPISR (OXxBFFFFE25)).
Set to enable Transmit Empty Interrupt, else otherwise.
RXFHE — Receive-Byte Halt enable. It is part of SPICR. It is
placed in SPISR (OxBFFFFE25) to avoid creating longer bytes of
SPICR.

i. Set to enable FSM stall when received one byte of data

ii. Clear to disable FSM stall
TXEHE — Transmit FIFO Empty Halt enable. It is part of SPICR.
It is placed in SPISR (OxBFFFFE25) to avoid creating longer
bytes of SPICR.

I. Set to enable FSM stall when a full stream of data
stored in the FIFO memory is transmitted

ii. Clear to disable FSM stall

3) SPI Transmit Data Register (SPITDR) — 8-bit (OXBFFFFE26)

SPITDR [7:0]

a.

Holds the data that will be transmitted to another SPI device

4) SPI Receive Data Register (SPIRDR) — 8-bit (OXBFFFFE27)

SPIRDR [7:0]

a.

Holds the data received from another SPI device
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3.4.3 GPIO controller

The General Purpose Input/Output (GP1O) Controller is developed
with 32-bits 1/0 port, where each pin can be set as either input or output. The
GPIO Controller can be used for controlling the external devices, blinking
LEDs, debugging, digital input reading etc. Figure 3.43 shows the chip
interface of the GP1O Controller unit and Table A.9 describes the function of

each pin. Figure 3.44 illustrates the internal operation of the GPIO Controller

unit.
u g puilogo_PORT_pin[Sl:O] S —
- . - - - — = A
—l—» uigpio_wb_din[31:0]
———>| uigpio_wb_addr[1:0] I
4"' uigpio_whb_sel[3:0] uogpio_wb_dout[31:0] —'—»
—'—» uigpio_wb_we uogpio_wb_ack ——>
——>| uigpio_wb_stb I
—l—» uigpio_wb_clk I
R -

Wishbone standard interface

Figure 3.43: GPIO Controller unit chip interface

————————————————————————————————————————

|
wogpio_wb_ack "™ GPIODIR

uigpiofwadin[31:0]—%—);{-.._%’dm [31:0] doy
} ‘/"““‘ “",.,
)
! .

Y
uigpio_wb_addr[1:0]————> ". kY Jq -

uigpio_wb_sel[3:0] ; \ A . GPIOEN
uigpio_wb_weglvf “, “ (} [31:0]
uigpio_wb_stb ! '-‘ *t et Pdi o= dlout

[ T Y U S
. [P S PPl
uogp.o_wb_dout[31z0]<—g—@:.:‘ ]

GPIODIR[31:0] &
GPIOEN[31:0]

uiogpio_PORT_pin[31:0]

Figure 3.44: Internal operation of GPIO Controller unit
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3.4.3.1 Register sets
3 registers are used to allow the data communication between the CPU
and the GPI10 controller.

1) GPIO Direction Control Register (GPIODIR) — 32-bits (OxBFFFFE10)

GPIODIR[31:0]

a. GPIODIR[31:0] — GPIO Direction. It is used to configure each
pin either as input or output. When system restarts, all the pins
are preset as output pins.

i. 1=input pin; 0 = output pin

2) GPIO Enable Control Register (GPIOEN) — 32-bit (OXBFFFFE14)

GPIOEN [31:0]

a. GPIOEN[31:0] — GPIO pins enable control. It is used to
enable or disable each pin.
i. 1 =pinenable; 0 = pin disable

3) GPIO Data Register (GPIODATA) — 32-bit (OXBFFFFE18)

GPIODATA [31:0]

a. GPIODATAJ[31:0] — GPIO data. It is used store the data of
each pin. Each bit is set by the user if respective bit is defined
as an output pin, which user may write 1 into the respective bit
in GPIODATA register and respective pins will output logic
high. 1f a GPIO pin is defined as the input pin, the respective
bit in GPIODATA register should store the digital data that

received from an external device.
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3.4.4  Priority Interrupt Controller

The developed Priority Interrupt Controller unit is an external interrupt
controller (CPO is the internal interrupt controller). Priority Interrupt
Controller unit assist CPO block to identify the highest priority interrupt source
from 8 interrupt sources. The currently connected interrupt sources are SPI
controller, UART controller and CPO timer. Four interrupt priority levels (IPL)
can be set for each interrupt source, where the highest level gains the highest
priority. Figure 3.45 shows the chip interface of the Priority Interrupt
Controller unit and Table A.10 describes the function of each pin. Figure 3.46

illustrates the internal operation of the Priority Interrupt Controller unit.

——»{ uipi_ctrl_intr_vector[7:0] .
IV o] ctrl  voricnoero—
—>| uipi_ctrl_intr_en_n f— uopi_ctrl_req_IPL[1:0] —>
—>| uipi_ctrl_cpu_stall uopi_ctrl_IRQ —>
4L uipi_ctrl_wb_din[31:0] |
—t» uipi_ctrl_wb_sel[3:0] |
—»{ uipi_ctrl_wb_we uopi_ctrl_wb_dout[31:0] ——>
uipi_ctrl_wb_stb uopi_ctrl_wb_ack <|—>
—'-» uipi_ctrl_wb_clk |
‘r_uipi?ctrliwbirst

Wishbone standard interface

Figure 3.45: Priority Interrupt Controller unit chip interface

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —————————————*uopi_ctrl_IO_IE[7:0]

m uopi_ctrl_wb_ack
di dout

uipi_ctrl_wb_din[31:0] —e—jm_:_':"’ .
| o) [TPcmaskizal ‘ it uopi_ctrl_wb_dout[31:0]
! —>(din dout o
! SN B
uipi_ctrl_wh_sel[3:0)—F el | !
uipi_ctrl_wb_we — \ din dout
uipi_ctrl_wh_stb ! N ‘
PICIPLLO[7:0]
." dout
uipi_ctrl_intr_vector[7:0] v

uipi_ctrl_stat_IPL[1:0]
uipi_ctrl_intr_en_n
uipi_ctrl_cpu_stall

»uopi_ctrl_req_IPL[1:0]

+uopi_ctrl_IRQ

Figure 3.46: Internal operation of Priority Interrupt Controller unit
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3.4.4.1 Interrupt protocol
The priority scheme is implemented with respect to two rules:
1) Always serve the highest IPL interrupt source
2) When same IPL, serve the interrupt source with lowest vector number,
for example: served uipi_ctrl_intr_vector[2] first followed by
uipi_ctrl_intr_vector[3] when both interrupt the CPU at the same time
The uopi_ctrl_IRQ should only assert for 1 clock cycle, in which it will
instruct the CPU to jump to the exception handler. Figure 3.47 shows the

timing requirement of the Priority Interrupt Controller, in which the condition

shown demonstrate the nested interrupt request from 8 interrupt sources.

] ! ] I ] ] ]
JEheD R JERFE JERE JERfe JERFE JERfe JER JEREE JEhE R JEhed

Ehcd

|
| I
.
1

+) 2 upi_crlstat P 2

Figure 3.47: Timing requirement of Priority Interrupt Controller unit
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3.4.4.2 Register sets

4 registers are used to allow the data communication between the CPU

and the Priority Interrupt Controller.

1) Interrupt Priority Level Low-byte Register (PICIPLLO) — 8-hit

(OXBFFFFE20)

IPL3

IPL2

IPL1

IPLO

PICIPLLO

User sets the interrupt priority level of the 1/0s. For example,

PICIPLLOJ[7:0] = 8b00 00_11 11, this means 1/00 has the higher

priority than 1/01 because 1/00 has the lowest vector number.

i

b. 1PL1[1:0] — Interrupt Priority Level of interrupt source 1

o

d. IPL3[1:0] — Interrupt Priority Level of SPI

IPL2[1:0] — Interrupt Priority Level of UART

IPLO[1:0] — Interrupt Priority Level of interrupt source 0

2) Interrupt Priority Level High-byte Register (PICIPLHI) — 8-bit

(OXBFFFFE21)

IPL7

IPL6

IPLS

IPL4

PICIPLHI

o

b. IPL5[1:0] — Interrupt Priority Level of interrupt source 5

o

d. IPL7[1:0] — Interrupt Priority Level CPO timer

3) Interrupt Sources Masking Register (PICMASK)
(OXBFFFFE22)
I07 | 106 | 105 | 104 | SPIE |UARTIE| 101 | 100
PICMASK

111

IPL4[1:0] — Interrupt Priority Level of interrupt source 4

IPL6[1:0] — Interrupt Priority Level of interrupt source 6

8-hits



It is used as the global interrupt enable control of each 1/0.

a.

b.

g.
h.

100 — Interrupt source O Interrupt Enable
101 — Interrupt source 1 Interrupt Enable
UARTIE — UART Interrupt Enable
SPIE — SPI Interrupt Enable

104 — Interrupt source 4 Interrupt Enable
105 — Interrupt source 5 Interrupt Enable
106 — Interrupt source 6 Interrupt Enable

107 — Interrupt source 7 Interrupt Enable

4) Status Register (PICSTAT) — 8-bits (OXBFFFFE23)

X | X | X | X | X | vec_num

PICSTAT

Stored the currently I/O information being served by the CPU. The

exception handler reads the PICSTAT to identify which 1/0 and hence,

which Interrupt Service Routine (ISR) to jump to.

a.

vec_num[2:0] — store the vector number of Interrupt source
that currently handles

000 — Interrupt source 0

001 — Interrupt source 1

010 - UART

011 - SPI

100 — Interrupt source 4

101 — Interrupt source 5

110 — Interrupt source 6

111 — CPO timer
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3.4.5 General Purpose Register

The General Purpose Register unit is developed to store the current
microarchitecture identification bit, multi-cycle microarchitecture partial
bitstream start address, pipeline microarchitecture partial bitstream start
address and the partial bitstream size. Figure 3.48 shows the chip interface of

the General Purpose Register unit and Table A.11 describes the function of

each pin.
ugpr
uogpr_reconf_setting[31:0] ——>
~—»| uigpr_update_ma uogpr_pipeline_reconf_addr[31:0] —>
- __ __ __uogpr _multicycle_reconf_addr[31:0] —>
4'* uigpr_wb_din[31:0] |
——»| uigpr_wb_addr[1:0]
—L uigpr_wb_sel[3:0] |
4" uigpr_wb_we uogpr_wb_dout[31:0]<|—>
— | vigpr_wb_stb uogpr_wb_ack >
—L uigpr_wb_clk |
—'* uigpr_whb_rst |

— c— c— — — — — — — —— — —

Wishbone standard interface

Figure 3.48: General Purpose Register unit chip interface
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3.4.5.1 Register sets
3 registers are included in the General Purpose Register unit.

1) Setting Register (SETTING) — 32-bit (OxBFFFFEQOQ)

MABS[31:9] CMA | SYSCLK[7:0]

a. MABS[31:9] — Microarchitecture PR Bitstream Size (Word).
Store the PR bitstream word size. Multi-cycle and pipeline
microarchitectures have the same PR bitstream word size. This
information is used to prevent fetching the wrong PR bitstream
from flash memory

b. CMA — Current Microarchitecture. Set when current
microarchitecture is pipeline microarchitecture while reset when
it is multi-cycle microarchitecture

c. SYSCLK]7:0] — System clock frequency

2) Pipeline Microarchitecture PR Bitstream Start Address Register

(PSCADDR)- 32-bit (OXBFFFFE04)

RESERVED[31:24] PS5CADDR[23:0]

a. P5CADDR]23:0] — Pipeline microarchitecture PR bitstream start
address. The 24-bits value stored indicates the address location of
pipeline microarchitecture in the flash memory

3) Multi-cycle Microarchitecture PR Bitstream Start Address Register

(M5CADDR) — 32-hit (OXBFFFFE0S)

RESERVED[31:24] M5CADDR[23:0]

a. M5CADDR[23:0] — Multi-cycle microarchitecture PR bitstream
start address. The 24-bits value stored indicates the address

location of multi-cycle microarchitecture in the flash memory
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3.5 Polling and Single Vector Nested Interrupt Serving
Interrupt sources include UART, SPI and CPO timer can be served
through polling or interrupt method. Polling access repeatedly checks the
interrupt source to determine whether it is ready for data transfer. The
following example shows the flow of the UART’s transmits FIFO is empty
using the polling method:
1) Disable the UART global interrupt through resetting the UARTIE bit
in the EXPIC register, of the priority interrupt controller
2) UART configuration through UARTCR
a. Set baud rate (BAUD[2:0] = 010, 9600 baud)
b. Start UART by setting the UARTEN bit.
3) Load UARTSR register value to Register File’s register to check the
TXEF bit of the UARTSR register
a. When TXEF=1, break the loop and continue with further
process
b. When TXEF=0, repeat step 3 to continue polling
The polling method occupies the processing capability of the CPU. Instead,
the interrupt method allows the CPU to proceed with other tasks while waiting
for interrupt sources to interrupt the CPU for special attention. The following
example shows the flow of the UART’s transmit FIFO is empty using
interrupt method:
1) Enable the UART global interrupt by setting the UARTIE bit to 1 in
the EXPIC register of the Priority Interrupt Controller

2) UART configuration through UARTCR
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a. Set baud rate (BAUD[2:0] = 010, 9600 baud) and set the
TXEIE bit to enable the transmit FIFO is empty interrupt
enable.
b. Start UART by setting the UARTEN bit.
3) Move on to process other tasks
4) When interrupt occurs, jump to exception handler, 0x8001 B400
virtual address (we will discuss this in detailed later)
Even if the interrupt method can achieve higher computation than the polling
method, however, it needs higher effort in program flow design. The problem
would come when the multiple interrupts occur at the same time or interrupt
occurs when the CPU is serving an interrupt. Thus, we had developed a
scheme (single vector nested interrupt) that includes the hardware and

firmware to overcome the problem.

Single vector interrupt allows every interrupts jump to a single general
routine (exception handler) rather than jump to the specific interrupt source’s
interrupt service routine (ISR). The hardware parts (Priority Interrupt
Controller and CPO block) responsible to send an interrupt signal to the CPU
for interruption based on priority (higher priority gets served first), set EXL bit
of the $stat register in the CPO block to disable further exception and reset
EXL bit of the $stat when the exception return (eret instruction). The related
register information of the CPO block is shown in Figure 3.49 and described in

Table 3.14.
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Sstat

Scause |BD| Tl

31

12 11 10 9 5 4 3 2 1 0

IPL Iﬂﬂ EL | IE

31 30 29 28 27 26 1211 10 9 7 6 2 1 0

B

Figure 3.49: Graphical view of CPO $stat and $cause registers

Table 3.14: $stat and $cause register description

Register | bit usage
$stat [31:12] RESERVED
IPL[11:10] store current interrupt priority level
[9:5] RESERVED
UM[4] 1=user mode, O=kernel mode
[3:2] RESERVED
EL[1] Exception level
1=exception occurs, disable further exception to occur
0=no exception occurs
IE[O] 1=Interrupt enable
O=Interrupt disable
$cause BD[31] Indicate branch delay
TI[30] 1=enable timer interrupt
O=disable timer interrupt
[29:28] RESERVED
TEN[27] CPO Timer, $count disable control
[26:12] RESERVED
RIPL[11:10] Request interrupt priority level
[9:7] RESERVED
Exception encodes reasons for the exception
code [6:2] O=Interrupt
4=AdEL, address error trap (load or instruction fetch)
5= AdES, address error trap (store)
6=IBE, bus error on instruction fetch trap
7=DBE, bus error on data load or store trap
8=Sys, syscall trap
9=Bp, breakpoint trap
10=RI, undefined instruction trap
12=0v, arithmetic overflow trap
[1:0] RESERVED

The firmware part performs the program flow shown in Figure 3.50 to

allow the nested interrupt to occur. The firmware (exception handler program

located at 0x8001_B400 virtual address) decodes the exception and jump to

the sub-routine accordingly. The nested interrupt program flow makes used of

117




the stack memory to store the register information so that to allow another

interrupt to occurs.

Exception frame, EF

i
Reset Sstat.EXL bit
y

If(interrupt){
Copy S$cause.RIPL to Sstat.IPL

//to prevent lower priority interrupt occurs

Store register to stack

}

Set Sstate.EXL bit
and reset Sstat.IE bit

v

Load previous
information from
stack back to
registers

Set Sstate.|E bit

Exception Return
(ERET)

Figure 3.50: Nested interrupt service routine flow
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3.6

1)

2)

3)

4)

5)

6)

Summary

This chapter is summarized as follows:

MIPS ISA compatible multi-cycle and pipeline processors are
developed for experimental purpose.

A 2-level memory hierarchy memory system consists of caches, Boot
ROM, Data and Stack RAM and flash memory is integrated with the
CPU to provide CPU bootloading, fast instruction and data access and
runtime variable storage.

I/O system consists of SPI controller, UART controller, GPIO
controller, Priority Interrupt Controller and GPR unit is connected to
the CPU through Wishbone standard bus interface.

The PR controller is developed and integrated with CPU to perform the
required action for PR. De-coupler unit is used to de-couple the
corrupted signals from the static region’s logic when PR is in progress.
Memory system consists of flash memory, Data and Stack RAM, Boot
ROM and 1/0 registers are map to ksegO and kseg1l.

A single vector nested interrupt protocol is developed to allow for

nested interrupt support.
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CHAPTER 4

SYSTEM VERIFICATION

The developed reconfigurable soft-core 10T processor is synthesized
based on Xilinx Artix-7 XC7A100T FPGA chip on Digilent Nexys 4 DDR
board. The FPGA resources used in both multi-cycle and pipeline
microarchitectures are shown in Table 4.1. The critical path delay of each

hardware component in the reconfigurable soft-core 10T processor of both

multi-cycle and pipeline microarchitecture is shown in Table 4.2 and Table 4.3.

Table 4.1: FPGA resources used in pipeline and multi-cycle
microarchitectures.
Microarchitecture
FPGA Resources Multi-cycle Pipeline
LUT 7643 8561
LUTRAM 127 311
FF 5464 5812
BRAM 3.50 3.50
10 45 45
BUFG 1 1

Table 4.2: Critical path delay of each hardware component in multi-cycle

microarchitecture (generated from Xilinx Vivado)

Hardware component Delay (ns)

logic | net | total
Partial Reconfiguration
PR unit (pr_inst) 4.070 | 8.203 | 12.273
PR controller unit (upr_ctrl) 3.830 | 6.478 | 10.308
CPU
Data-path unit (udata_path) 4.070 | 8.203 | 12.273
Control-path unit FSM (uctrl_path) 4.070 | 8.203 | 12.273
Main Control block (bmain_ctrl) 3.616 | 8.130 | 11.746
Arithmetic Logic Control block (balb_ctrl) 1123 | 2.438 | 3561
Register File block (brf) 1846 | 2515 | 4.361
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Continued from Table 4.2

Hardware component Delay (ns)

logic | net total
CPO block (bcp0) 4.070 | 8.203 | 12.273
Interlock block (bitl_ctrl) ; ; 0.000
Forwarding block (bfw_ctrl) ; - 0.000
ALU block (balb) 4.070 | 8.203 | 12.273
Multiplier Block (bmult32) 6.258 | 5.957 | 12.215
Address Decoder block (baddr_decoder) 4.070 | 7.455 | 11.525
1/0 System
UART Controller unit (uuart) 3.954 | 6.993 | 10.947
- UART Baud Clock Generator block (bclkctr) 1563 | 1.736 | 3.299
- UART Receiver block (brx) 3.946 | 6.960 | 10.906
- UART Transmitter block (btx) 3.946 | 6.993 | 10.939
SPI Controller unit (uspi) 4.070 | 7.455 | 11.525
- SPI Clock Generator block (bclk_gen) 1.801 | 2.688 | 4.489
- SPI Receiver block (bRX) 1.261 | 2.745 | 4.006
- SPI Transmitter block (bTX) 1.801 | 2.688 | 4.489
- SPI Input Output Control block (bio_ctrl) 1.385 | 2.652 | 4.037
GPI10O Controller unit (ugpio) 3.830 | 6.524 | 10.354
Priority Interrupt Controller unit (upi_ctrl) 3.830 | 6.547 | 10.377
General Purpose Register unit (ugpr) 3.830 | 6.483 | 10.313
Memory System
Boot ROM unit (uboot_rom) 4.078 | 8.185 | 12.263
Data and Stack RAM unit (bsram) 3.706 | 6.837 | 10.543
Cache unit (icache) 4.070 | 8.203 | 12.273
- Cache Controller block (bcache_ctrl) 3.706 | 6.802 | 10.508
- Cache RAM block (bsram) 4.070 | 8.203 | 12.273
Cache unit (dcache) 3.830 | 7.097 | 10.927
- Cache Controller block (bcache_ctrl) 3.238 | 6287 | 9525
- Cache RAM block (bsram) 3.830 | 7.097 | 10.927
Memory Arbiter unit (umem_arbiter) 2411 | 7.031 | 9.442
Flash Controller Unit (ufc) 2411 | 7.031 | 9.442
- Flash Controller Clock Generator block (bfc_clk_gen) 1.021 | 2131 | 3.152
- Flash Controller FSM block (bfc_fsm) 2411 | 7.031 | 9.442
- Flash Controller Transmitter block (bfc_TX) 1393 | 2811 | 4.204
- Flash Controller Receiver block (bfc_RX) 1319 | 3385 | 4.704
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Table 4.3: Critical path delay of each hardware component in pipeline
microarchitecture (generated from Xilinx Vivado)

Hardware component Delay (ns)

logic [ net | total
Partial Reconfiguration
PR unit (pr_inst) 3.858 | 10.024 | 13.882
PR controller unit (upr_ctrl) 3.087 | 7.255 | 10.342
CPU
Data-path unit (udata_path) 3.858 | 10.024 | 13.882
Branch Predictor block (bbp_4way) 3.540 | 6.789 | 10.329
Main Control block (bmain_ctrl) 3.083 | 8.374 | 11.457
Arithmetic Logic Control block (balb_ctrl) 1.123 | 2.439 | 3.562
Register File block (brf) 3540 | 6.789 | 10.329
CPO block (bcp0) 4.068 | 7.983 | 12.051
Interlock block (bitl_ctrl) 1.763 | 6.647 | 8.410
Forwarding block (bfw_ctrl) 3.357 | 8.705 | 12.062
ALU block (balb) 5.398 | 8.715 | 14.113
Multiplier Block (bmult32) 7.096 | 7.325 | 14.421
Address Decoder block (baddr_decoder) 4.068 | 6.964 | 11.032
1/O System
UART Controller unit (uuart) 3.610 | 8.269 | 11.879
- UART Baud Clock Generator block (bclketr) 1563 | 1.736 | 3.299
- UART Receiver block (brx) 3.944 | 6.469 | 10.413
- UART Transmitter block (btx) 3.486 | 8.183 | 11.669
SPI Controller unit (uspi) 3.734 | 8.718 | 12.452
- SPI Clock Generator block (bclk_gen) 1.801 | 2.688 | 4.489
- SPI Receiver block (bRX) 1.261 | 2.745 | 4.006
- SPI Transmitter block (bTX) 1.801 | 2.688 | 4.489
- SPI Input Output Control block (bio_ctrl) 1385 | 2.652 | 4.037
GPI10O Controller unit (ugpio) 3.610 | 8.582 | 12.192
Priority Interrupt Controller unit (upi_ctrl) 3.610 | 8.582 | 12.192
General Purpose Register unit (ugpr) 3.363 | 8.400 | 11.763
Memory System
Boot ROM unit (uboot_rom) 3.548 | 6.774 | 10.322
Data and Stack RAM unit (uram) 5.416 | 9.044 | 14.460
Cache unit (icache) 4.076 | 7.968 | 12.044
- Cache Controller block (bcache_ctrl) 3.704 | 6.323 | 10.027
- Cache RAM block (bcache_ram) 3.540 | 6.789 | 10.329
Cache unit (dcache) 5.084 | 10.864 | 15.948
- Cache Controller block (bcache_ctrl) 5.084 | 10.864 | 15.948
- Cache RAM block (bcache_ram) 4.257 | 11.649 | 15.906
Memory Arbiter unit (umem_arbiter) 4257 | 11.649 | 15.906
Flash Controller Unit (ufc) 4.257 | 11.649 | 15.906
- Flash Controller Clock Generator block (bfc_clk_gen) 1.021 | 21311 3.152
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Continued from Table 4.3

Hardware component Delay (ns)

logic net total
- Flash Controller FSM block (bfc_fsm) 4.257 | 11.649 | 15.906
- Flash Controller Transmitter block (bfc_TX) 1393 | 2811 | 4.204
- Flash Controller Receiver block (bfc_RX) 1293 | 3422 | 4715

Our experiment was conducted in 2 phases: physical functional test
and power analysis. The first phase verifies the 1/O controller functionality
while the second phase performs the power analysis through: 1) the switching
activity extracted from the Switching Activity Interchange Format (.saif) file
from Xilinx Vivado post-implementation simulation; 2) the physical power

analysis.
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4.1

Physical Functional Test

The Xilinx Design Constraints (XDC) shown in Table 4.4 has been set

for the implementation of our reconfigurable IoT processor on the Xilinx

Nexys4 DDR FPGA development board.

Table 4.4: Design pin allocation on Nexys 4

DDR FPGA development

board
Group Design pin Xilinx Nexys 4 | Remark
DDR FPGA pin
Global uirisc_clk_100mhz | E3
uirisc_rst C12
Quad SPI Flash | uorisc_fc_sclk E6 E6 pin hard-wired to Xilinx
Memory STARTUPE2 module
uiorisc_fc MOSI K17
uirisc_fc_MISO1 K18
uirisc_fc_ MISO2 L14
uirisc_fc_ MISO3 M14
uorisc_fc_ss L13
SPI Controller uiorisc_spi_miso F6
uiorisc_spi_mosi K1
uiorisc_spi_sclk J2
uiorisc_spi_ss n G6
UART uorisc_ua tx data | D4
Controller uirisc_ua_rx_data | C4
GPIO urisc_GPIO[0] C17 PMOD JA
Controller urisc_GPIO[1] D18
urisc_GPI0[2] E18
urisc_GPIO[3] G17
urisc_GPIO[4] D17
urisc_GPIO[5] E17
urisc_GPIO[6] F18
urisc_GPIO[7] G18
urisc_GPI0[8] D14 PMOD JB
urisc_GPIO[9] F16
urisc_GPI10[10] G16
urisc_GPIO[11] H14
urisc_GPI0[12] E16
urisc_GPI0O[13] F13
urisc_GPI10[14] G13
urisc_GPIO[15] H16
urisc_GPI10[16] H17 LEDs
urisc_GPIO[17] K15
urisc_GPI10[18] J13
urisc_GPI0[19] N14
urisc_GP10][20] R18
urisc_GPI10[21] V17
urisc_GPI10[22] u17
urisc_GPI10][23] U16
urisc_GP10[24] J15 Switches
urisc_GPI10[25] L16
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Continued from Table 4.4

Group Design pin Xilinx Nexys 4 | Remark
DDR FPGA pin
urisc_GP10[26] M13
urisc_GPI10[27] R15
urisc_GP10[28] R17
urisc_GPI10[29] T18
urisc_GPI10[30] uU18
urisc_GPIO[31] R13
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411 GPIO
A test program was designed to test the functionality of the GPIO

controller. Each GPIO pin can be set as either input or output pins. The GPIO
test program flow is as follows:

1) Setup GPIO controller

2) Get inputs from switches (urisc_GP10[24] to urisc_GPIO[31])

3) Turn on LEDs (urisc_GPIO[16] to urisc_GPIO[23]) when switches

turn upward, off when switches turn downward

4) Repeat step 2't0 3
The first step setup the GPIO controller by configure bit-24 to bit-31
(urisc_GPIO[24] to urisc_GPIO[31]) as input pins and bit-16 to bit-23
(urisc_GPIO[16] to urisc_GPIO[23]) as output pins through the GPIODIR
register located at OXBFFFFE10. After configure the direction of the GPIO
pins, bit-16 to bit-31 in the GPIOEN register located at OxBFFFFE14 are set.
When the GPIO received the input signals as in step 2, the input data is
recorded in GPIODATA register located at OxBFFFFE18. The GPIO test
program will copy the input data to its respective output data field in the
GPIODATA register, i.e. urisc_ GPIO[16] as the output data of
urisc_GPI0O[24], urisc_GPIO[17] as the output data of urisc_GPIO[25] etc.
Figure 4.1 demonstrates the GPIO test set up. The GPIO test program is

running in loop, it is repeated until the power source is shut off.
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GPI0O[31] -> GPIO[23]

Figure 4.1: Demonstration of GPIO test set up
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4.1.2

UART and SPI

A test program was designed to test the functionality of the UART and

SPI controllers. Data is being passed from the SPI transmitter to the SPI

receiver, then to the computer (via UART). The UART and SPI test program

flow are as follows:

1)

2)

3)

4)

5)

6)

7)

8)

Create a variable in the Register File which will holds the values of
0x41 (ASCII = “A”) and to 0x5A (ASCII = “Z”). The value is changed
in ascending order on every 500 ms.
Setup UART controller through UARTCR register

a. Set baud rate (BAUD[2:0] = 010, 9600 baud)

b. Start UART by setting the UARTEN bit.
Setup SPI controller through SPICR register

a. Set SPI clock rate (SCR[2:0] = 0100, 625 kHz)

b. Start SPI by setting the SPE bit
Start sending the wvariable through SPI  uiorisc_spi_mosi
(uiorisc_spi_miso at pin F6 and uiorisc_spi_mosi at pin K1 are
connected together). Refer to Figure 4.2 for the connection.
Deactivate SPI by resetting the SPE bit in SPICR register
The received data from SPI uiorisc_spi_miso is sent to computer
through UART.
Variable value counting up and reset the variable’s value to 0x41 when
hits the upper bound (0x5A).

Delay 500 ms and then repeat step 3 to 8.

The first step set the variable that will be transmitted through SPI controller.

Alphabet ‘A’ to ‘Z’ is loaded into the SPITDR register located at
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OxBFFFFE26 every 500 ms. The same SPI controller was used for data
receiving by connecting MISO pin (data receiving) to MOSI pin (data
transmitting). The data received is loaded in the SPIRDR register located at
OxBFFFFE27 and the test program will transfer the respective data to
UARTTDR located at OXBFFFFE2A. UART controller will then transmit the
data loaded in the UARTTDR register to the computer for debugging purposes.
Figure 4.2 and Figure 4.3 show the board wire connection on Nexys4 DDR

board and the value prompt on computer received through UART.

Figure 4.2: SPI uiorisc_spi_miso and uiorisc_spi_mosi connection
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COM4 - PuTTY bt - O X

Figure 4.3: Data received on the computer through UART. The data is
displayed using Putty.
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4.1.3 Interrupt Handling

Interrupt-driven 1/O access can helps to increase the throughput of the
processor, in which the processor can perform extra tasks while waiting for an
I/O to request (to interrupt the CPU) for data transfer. On the contrary,
constantly checking 1/0O condition in polling 1/0 access scheme consumes the
CPU cycle that is useful for executing more tasks. However, the program code
developed for polling 1/0O access is relatively simple as compared with
interrupt-driven 1/0O access. The development of the program code for
interrupt-driven 1/O access requires special handling in 1/0 configuration.

Figure 4.4 illustrates the interrupt handling test program.

void main () {

setupUART () ;

while (1) {
4 uart send("HELLO WELCCME TC NEXYS4 DDR!\n\r");
5 delay ms(500);

L b

7 1
S // UART interrupt the CPU when received a byte from external device
10 void UART RXC ISR() |

uvart_send ("\n\rCATCH\n\r") ;
clear RXC flag();

I
R

13 }

Figure 4.4: Pseudo code of interrupt handling test program

From Figure 4.4, the test program starts with UART configuration. The
UART configuration includes enable UART interrupt (set UARTIE) through
PICMASK register located at OXBFFFFE21, enable UART Receive Complete
Interrupt (set RXCIE) through UARTCR register located at OxBFFFFE28, set

the baud rate of the UART controller and activate the UART controller. A
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message (“HELLO WELCOME TO NEXYS4 DDR!\n\r”’) was transmitted to
a computer through UART controller every 500 ms. When user strikes a key
on the keyboard, a byte of data in the scan code form is sent from the
computer to the loT processor. The UART controller on our 10T processor
will receive the data and interrupts the processor to jump to the exception
handler (refer Section 3.5). Exception handler decodes the source of interrupt
and then jump to the UART Receive Complete Interrupt Service Routine
(RXCISR). The RXCISR send a message (“\n\rCATCH\n\r”) back to
computer which will be displayed on the Putty. Then the UART’s ISR will
clear the RXFF bit in the UARTSR register located at OXBFFFFE29 to
indicate the interrupt has been served. Figure 4.5 shows the message prompt

on the computer screen.

EP COMA4 - PuTTY hd - ] X

Figure 4.5: Demonstration of interrupt handling
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4.2  Power Analysis
4.2.1 Simulation
4.2.1.1 Experiment Setup
The power analysis of both multi-cycle and pipeline microarchitectures
is carried out separately from the simulation perspective, where the procedure

flow is shown in Figure 4.6.

jm======== ===~
| Write | Place & Route Place & Route - Write

| | Bitstream (PR region) (PR region) Bitstream
| 1 D
: Fost-Implementation Simulation Post-Implementation Simulation

| . '

| T ! _ |

I

L

Figure 4.6: Power analysis procedure

Since the hardware components in the static region are shared by the
multi-cycle and pipeline microarchitectures, it is only synthesized once to
ensure its consistency. The difference comes when perform place and route
process in the PR region. Imagine the PR region as a black box that contains
the reconfigurable logic, once the place and route process in the static region is
completed, the PR region’s place and route process fused the PR region’s

logic with the static region’s logic. Since the logic within PR region are
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different for both multi-cycle and pipeline microarchitectures and thus, the

place and route for the PR region is performed separately.

For a common loT task, the task time consists of active time (T active)
and idle time (Tigie). Tactive defines the performance of the processor while Tige
creates delay used to align with the user target task period. The task period
will vary among the loT application. Some of the 10T application may not
have the Tige due to high computational power is required to run a heavy
workload task. Thus, our experiment focuses on the power analysis based on

the full capability of the processor, i.e. the total time of a task consists of only

Tactive-

The post-implementation simulation simulates the program flow as
follows with referring to the pseudo code of AES-128 encryption shown in
Figure 4.7.

1) Get 16-bytes of data from SPI EEPROM (data collection)

2) Encrypt data received using AES-128 (data processing)

3) Send the encrypted data through UART (data transmission)

4) Toggle urisc_GPIO[0] pin to indicate the end of current loop and start
of the new loop

5) Repeat step 1 to 4.
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Cipher (byte in[4*Nb], byte out[4*Nb], word w[Nb* (Nr+l)])
begin

byte state[4,Nb]

state = in

AddRoundKey (state, w[0, Nb-1]) // See Sec. 5.1.4

for round = 1 step 1 to Nr-1

SubBytes (state) // See Sec. 5.1.1
shiftRows (state) // See Sec. 5.1.2
MixColumns (state) // See Sec. 5.1.3
AddRoundRey (state, wlround*Nb, (round+l)*Nb-11])

end for

SubBytes (state)
ShiftRows (state)
AddRoundRey (state, w[Nr*Nb, (Nr+l)*Nb-11])

out = state
end

Figure 4.7: AES128 encryption pseudo code (Nk=4, Nb=4, Nr=10)

Source: National Institute of Standards and Technology (2001) ‘FIPS 197:

Advanced Encryption Standard’

The post-implementation simulation used an SPI EEPROM simulation

model in place of the sensor data storage. The test program was executed in

loop for 200 ms, with switching activities and power consumption data

collected (through the information gather from .saif file) at every 20ms

interval. Every loop of the test program will be recorded with the start time

and the stop time by monitoring urisc_GPIO[0] pin. The result collected will

be discussed in the next subsection.
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4.2.1.2 Result & Discussion
Table 4.5 and Table 4.6 are the results collected from the phase 2

experiment.

Table 4.5: Average switching rate (millions of transitions per seconds)
based on Artix-7 XC7A100T

sim. time Mqlti-gycle Pip_eliqe
(ms)' S\_N|tch|ng rqte (Mtr/s) S\_Nltchlng rzflte (Mtr/s)
signal | logic | BRAM | 1/0 | signal | logic | BRAM | I/O

20 1.09 |0.38 | 0.87 1401 |7.69 |1.00 |0.96 14.16
40 1.09 |0.40 | 0.93 13.938.38 |1.08 | 1.02 14.03
60 1.08 |0.41 |0.94 13.86 | 8.60 |1.10 | 1.03 13.99
80 1.09 |0.41 |0.95 13.85/8.61 |1.11 | 1.04 13.98
100 1.09 |0.41 |0.95 13.84 1 8.61 |1.11 | 1.04 13.98
120 1.08 |0.41 | 0.96 13.8218.62 |1.11 |1.05 13.98
140 1.08 |0.41 |0.96 13.838.69 |1.12 | 1.05 13.97
160 1.08 |0.41 | 0.96 13.82 18.72 |1.12 |1.05 13.96
180 1.08 |0.41 |0.96 13.82 | 8.77 |1.13 | 1.05 13.95
200 1.08 |0.41 |0.96 13.82 1879 |1.13 | 1.05 13.95

Based on the results shown in Table 4.5, the average switching rate of
the multi-cycle execution is lesser than the pipeline execution. This condition
explained why the dynamic power consumption of the multi-cycle execution is
lesser than the pipeline execution as shown in Table 4.6. From the data shown
in Table 4.6, the task completed by the multi-cycle and pipeline executions are
1.88 and 2.39 tasks respectively, which consume 85.11 mJ and 108.79 mJ of
dynamic energy per task respectively. The multi-cycle execution processes
slower by 21.38% but reduces 21.77% dynamic energy than the pipeline
execution. At 40 ms simulation time, multi-cycle and pipeline executions have
completed 4.04 and 5.13 tasks respectively. The task completed is more than

twice as compared to the 20 ms simulation time. The system resetting,
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bootloading, flash memory initialization and cache miss consume a start-up
overhead of simulated 2.5 ms, which explained the task completed at 40 ms is
more than twice than 20 ms. Multi-cycle and pipeline executions at 40 ms
simulation time consume 79.21 mJ and 109.16 mJ of dynamic energy per task
respectively. The multi-cycle execution is slower than pipeline execution by
21.27%, but consuming 27.44% lesser dynamic energy. The remaining
simulations (60 - 200ms) show 32.33% to 33.06% dynamic energy reduction
for the pipeline versus multi-cycle execution with a corresponding

computational performance reduction of 20.31% - 21.16%.

The developed reconfigurable soft-core 10T processor always starts up
with the multi-cycle microarchitecture as the default microarchitecture for
power saving purpose. When PR occurs, an overhead of 44 ms (at 20 MHz
system clock) is required, which should be taken into consideration when
developing program with time-critical tasks. The PR overhead can be reduced
by: 1) Increasing the clock frequency up to 100 MHz (based on ICAP
requirement); 2) Buffer the partial bitstream in an FPGA Block RAM; 3)
Using a Direct Memory Access (DMA) controller when copying the partial
bitstream. But all are at the expense of more energy and resources used

(Pezzarossa, L., Schoeberl, M. and Sparsg J., 2017).

The static power consumption (about 90% of the total power) shown in
Table 4.6 was not taken into account in our analysis since it is technology
dependent, which our implemented technique has no direct relationship with

the technology. As the technology in transistor scaling is improving, the static
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power will be reduced. This will provide extra benefit to our platform (total
power will be reduced when static power reduce). The result from Table 4.5
and Table 4.6 are based on 20MHz operating frequency. The typical operating
frequencies used by a variety of sensor nodes cover a wide range from 8MHz
to 180MHz (Gajjar, S. et al., 2014). As the operating frequency increased,
dynamic power consumption is expected to dominate the total power
consumption. Hence, a significant amount of dynamic power reduction result
can be observed in Table 4.6. This makes our target focuses on analyzing the

dynamic power consumption.

The simulation based power analysis has presented the quantitative
differences between multi-cycle and pipeline microarchitectures, in terms of
the computational speed and the dynamic energy consumption per task.
However, the physical power analysis must be performed based on the
following justifications:

1) The simulation experiment is unable to shows the competitive
advantages of using the combination of multi-cycle and pipeline
microarchitectures to perform an loT task, i.e. the simulation
experiment only shows the IoT task running in each microarchitecture
independently. Thus, the energy used for PR cannot be measured.

2) Xilinx Vivado is unable to simulate the behavior of PR (currently
unsupported for Xilinx Vivado 2017.2). Thus, the energy used for PR

is unknown.
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Table 4.6: Power and performance analysis based on Artix-7 XC7A100T

Multi-cycle

Pipeline

S_im. Power Dynamic Power Dynamic Dynamic Computational
Elrrr?sg Static | Dynamic Cont]asllé ted energy/task | Static | Dynamic corrt1asil:: teq | ENETOY /task red Sgt?g?]y(% ) rggrjgtrir:r?r(]g/: )
W) | (W) P m) | W) | W) P (m))

20 | 0.097 0.008 1.88 85.11 0.097 0.013 2.39 138.30 21.77 21.38

40 | 0.097 0.008 4.04 79.21 0.097 0.014 5.13 138.61 27.44 21.27

60 | 0.097 0.008 6.21 77.29 0.097 0.015 7.88 144.93 32.33 21.16

80 | 0.097 0.008 8.37 76.46 0.097 0.015 10.58 143.37 32.59 20.86
100 | 0.097 0.008 10.54 75.90 0.097 0.015 13.29 142.31 32.75 20.67
120 | 0.097 0.008 12.71 75.53 0.097 0.015 15.99 141.62 32.90 20.53
140 | 0.097 0.008 14.88 75.27 0.097 0.015 18.69 141.13 33.01 20.36
160 | 0.097 0.008 17.04 75.12 0.097 0.015 21.39 140.85 33.05 20.36
180 | 0.097 0.008 19.19 75.04 0.097 0.015 24.10 140.70 33.02 20.35
200 | 0.097 0.008 21.36 74.91 0.097 0.015 26.81 140.45 33.06 20.31

Notes:

1) Dynamic energy reduction = (Dynamic energy/task of pipeline - Dynamic energy/task of multi-cycle) / Dynamic energy/task of pipeline x 100%
2) Computational performance reduction = (Task completed in pipeline - Task completed in multi-cycle) / Task completed in pipeline x 100%
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4.2.2 Physical Power Analysis
Due to the limitation of the simulation based power analysis, as

mentioned in Section 4.2.1.2, we have carried out the physical power analysis.
Our hypothesis in this experiment is that using the combination of pipeline
microarchitecture to  perform data processing and  multi-cycle
microarchitectures to perform data transmission part of an loT task can
provide better energy usage. Thus, both multi-cycle and pipeline
microarchitectures will be used to test the following conditions:

1) Multi-cycle microarchitecture for data collection and processing

2) Pipeline microarchitecture for data collection and processing

3) Multi-cycle microarchitecture for data transmission

4) Pipeline microarchitecture for data transmission

The physical power analysis experiment used the same I0T program
flow as the simulation based power analysis. However, we have used various
data sizes (64, 128, 256, 512 and 1024 bytes) for collect, process and transmit.
We need to consider the PR overhead (44 ms) since this is directly translated
into energy consumption. The PR of the microarchitecture is only
advantageous in energy saving if processing and transmitting the data size
takes longer time than the PR overhead time. Otherwise, triggering the PR
process unnecessarily will waste energy. The combination of the tests is
summarized in Table 4.7. MM and PP combinations represents the common
practice in designing IoT sensor nodes by using single microarchitecture for
fast computational performance (PP combination) or low power (MM

combination) design goal. PM combination represents our proposed technique
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to reconfigure the microarchitecture based on different workload
characteristics to further optimize the energy usage while achieving acceptable

computational speed performance.

Table 4.7: Combination of test

- . . Data size (bytes)
Combination of microarchitectures 62 178 256 512 1004
MM MM64 | MM128 | MM256 | MM512 | MM1024
MPpLAE] MP64 | MP128 | MP256 | MP512 | MP1024
PP PP64 | PP128 | PP256 [ PP512 | PP1024
PMIAET PM64 | PM128 | PM256 | PM512 | PM1024

Notes:

[1] MM - Data collection, processing and transmission using multi-cycle microarchitecture

[2] MP — Data collection and processing using multi-cycle microarchitecture and data transmission
using pipeline microarchitecture

[3] PP - Data collection and processing using pipeline microarchitecture and data transmission using
pipeline microarchitecture

[4] PM - Data collection and processing using pipeline microarchitecture and data transmission using
multi-cycle microarchitecture

[5] PRisrequire, PR overhead take into account in the energy usage
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4.2.2.1 Experiment Setup

Since a fixed voltage supply (1V) is used, our intention in this
experiment is to measure the current consumption and the power consumption
can be calculate using the electric power formula, P=VI. A high side current
measurement circuit is constructed to measure the current consumption of the
developed soft-core 10T processor running at 20 MHz system clock over a

certain period. Figure 4.8 shows the current measurement circuit connection.
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Figure 4.8: High side current measurement circuit

Current consumption is measured through measuring the voltage drop
across the 10 mQ with 1% tolerance shunt resistor. A Tektronix TBS1000B-
EDU oscilloscope is used to measure and collect the current consumption
sampling data for further analysis. However, based on our investigation, the
differences in current consumption measured from both multi-cycle and
pipeline microarchitecture is relatively small, which is in terms of mA range.
Thus, an extra Tl INA-213 current-shunt monitor is used to amplify the

measured signal by 50 times before pass into the oscilloscope.
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4.2.2.2 Result & Discussion
The dynamic power consumptions of the combination of tests for

varying data from 64 Bytes to 1024 Bytes as shown in Table 4.7 are shown in

Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.12 and Figure 4.13, with

following denotations:

MM: Data collection and processing and data transmission using multi-cycle
microarchitecture

MP:  Data collection and processing using multi-cycle microarchitecture and
data transmission using pipeline microarchitecture

PP:  Data collection and processing using pipeline microarchitecture and
data transmission using pipeline microarchitecture

PM: Data collection and processing using pipeline microarchitecture and
data transmission using multi-cycle microarchitecture

Anm:  Data processing using multi-cycle microarchitecture

Twm:  Data transmission using multi-cycle microarchitecture

Ap:  Data processing using pipeline microarchitecture

Tp:  Data transmission using pipeline microarchitecture

PR: Partial Reconfiguration
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Dynamic Power Consumption for 512 Bytes Data Size
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Figure 4.12: Dynamic power consumption for 512 bytes data size.
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Figure 4.13: Dynamic power consumption for 1024 bytes data size.

From Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.12 and Figure 4.13,
we observed that the area occupied on the graph (energy consumption) for PR
is decreasing as the data size increases from 64 bytes to 1024 bytes. This is
due to the dynamic energy consumed for PR is constant whenever invoking
the PR process. PR has a significant effect on the total energy used per task for
smaller data size (i.e. 64 bytes and 128 bytes), but relatively less significant in
larger data size (i.e. 256 bytes onwards) since energy consumed by the data

collection, processing and transmitting works are far greater. The time taken
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for the task (task time) to complete for each combination is shown in Figure

4.14, while Figure 4.15 show the dynamic energy consumed by each

combination.
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Figure 4.14: Task time used by MM, MP, PP and PM for 64, 128, 256, 512
and 1024 bytes data size.
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From Figure 4.14, for 1024 bytes data size, PP combination shows the

highest computational performance with the least task time while MP
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combination is the least performing combination that requires longer time to
compute due to PR overhead. We can safely omit the use of MP combination
due to its conflicting usage, whereby low computational multi-cycle
microarchitecture is used for data collection and processing while power
hungry pipeline microarchitecture is used for low computational requirement
data transmission. PM combination is always faster (despite having PR
overhead) than MM combination because the most time consuming part (data
collection and processing) is executed with pipeline microarchitecture. PM
combination is 4.38% faster than MM combination but 3.27% slower than PP

combination.

Despite the superiority of PP combination in computational
performance, Figure 4.15 shows that PP combination requires significantly
more energy to complete the task as compared to PM and MM combinations.
Fast speed performance and low dynamic energy consumption are two
contradicting design goals that cannot be achieved by utilizing single
microarchitecture. However, using PM combination can achieve the lowest
energy consumption among the micro-architectural configurations.
Considering the case for 1024 bytes data size, PM combination is 4.63% and
21.47% more energy efficient compared to MM and PP combinations
respectively. Our proposed technique, PM combination can achieve better
energy efficiency when the data size increases. PM combination is preferred
over MM combination for data size that is larger than 256 Bytes due to its
superiority in terms of energy efficiency and performance. This finding is

important as many wireless sensor networks actually employ multi-hop
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techniques (S. Y. Liew, C. K. Tan, M. L. Gan, H. G. Goh., 2018) in practical
on-field deployment, wherein the sensor nodes collect large amount of data
and take turn (based on the designed protocol) to transmit it. Under such
scenario, the data size can be much larger than 1024 bytes, which highlights
the potential energy reduction of our proposed technique. In order to improve
the dynamic energy consumption without losing too much of computational
performance, the energy-delay product metric is used, which as shown in

Figure 4.16.
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Figure 4.16: Energy-delay product of MM, MP, PP and PM for 64, 128,
256, 512 and 1024 bytes data size.

PM combination only achieves moderate timing performance as
compared to PP and MM combinations. But it consumes the least energy,
which is 8.81% and 18.91% lesser as compared to MM and PP combinations
respectively. Thus, it has the least energy-delay product. This makes PM
combination the most optimized option when taking into accounts both energy

and computational performance for on-field 10T application. This also implies
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that the proposed technique achieved better performance-energy trade-oft for
IoT applications compared to conventional method (DVS, DFS, DVFS, clock
gating and power gating) that only have single microarchitecture. On the other
hand, if computational performance is required by an loT task, then PP

combination will be used.
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4.3 Summary

In this chapter, we have presented our verification on the developed
reconfigurable soft-core 10T processor. The developed reconfigurable soft-
core loT processor is able to perform data aggregation, data processing and
data transmission. The experimental result shows that, for 1024 bytes data size,
PM combination can achieve the least energy-delay product, which is 8.81%
and 18.91% lesser compared to multi-cycle (MM combination) and pipeline
(PP combination) microarchitectures respectively. For sensor nodes that
process larger data sizes, which larger than 1024 bytes, the energy-delay

product can be further reduced.
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CHAPTER 5

CONCLUSIONS & FUTURE WORK

51  Conclusions

An FPGA-based soft-core IoT System on a Chip (SoC) has been
developed to provide rapid customization and reconfigurable based on the
need of an 10T application. The development cost for FPGA-based soft-core
products are justifiable for small to medium scale production volume. It has
the cost advantage over ASIC approach for coping with designs that are still

undergoing development.

In summary, the dissertation has provided robust evidence with which
to answer the three main research challenges as following:

1) For on-field 10T application, the 10T sensor node is expected to
perform data aggregation, data processing and data transmission. Our
first issue is to establish the basic requirement (computation speed,
power consumption and functionality) of an 10T processor suitable to
be used as an 10T sensor node.

e This dissertation has reviewed the specification of the existing
loT platform required by each 10T application. From the review,
an FPGA based soft-core 10T SoC is proposed and developed
which has the advantage in highly customizability that is able
to cope with the basic requirement needs in each loT

application.
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2) In 10T application, low power consumption is the essential issue. Our

next issue will be on what is the technique used and how to enable the

developed reconfigurable soft-core 10T processor to tune based on the

computational needs from the environment requirement to have the

optimal power saving scheme?

The PR between multi-cycle and pipeline executions has been
proved to satisfy the varying performance-power tradeoff
requirements from each IoT application. Multi-cycle execution
is used to reduce the dynamic power consumption of the
processor at the expense of providing lower computational
speed, while pipeline execution provides higher computational

speed but consume more dynamic power.

3) How to verify the performance of the design in terms of computational

speed and power using conventional FPGA chip?

An loT program that consists of intensive data processing
requirement, i.e. AES-128, has been used to identify the
computational speed and power of the developed FPGA-based
soft-core 10T SoC. The experimental result shows that for 1024
bytes data size, PM combination is able to reduce dynamic
energy consumption by 4.63% and 21.47% respectively,
compare to multi-cycle (MM combination) and pipeline (PP
combination) only microarchitectures. Moreover, PM
combination can achieve the least energy-delay product, which
is 8.81% and 18.91% lesser compared to multi-cycle (MM

combination) and pipeline (PP combination) microarchitectures
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respectively. For sensor nodes that process larger data sizes,
which larger than 1024 bytes, the energy-delay product can be

further reduced.

As the technology in transistor scaling is improving steadily over the
past few vyears, the static power consumption of FPGA also reduces
dramatically (Tajalli, A. and Leblebici, Y., 2011). Hence, the bottleneck of the
low power design has shifted towards the reduction of dynamic power
consumption. We have presented a novel technique to further reduce the
dynamic power consumption based on micro-architectural level design. This
research work showed a proof of concept prototype whereby, with the PR
feature offered by FPGAs, multi-cycle and 5-stage pipeline executions are
designed to run intermittently in a processor core to achieve better
performance-power tradeoff. Other combinations, for example, multi-cycle, 5-
stage and 8-stage pipeline executions can also be used for more refined
performance-power tradeoff. The proposed technique can be applied to other

FPGA platforms as well. Therefore, all objective that stated were met.
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5.2 Future work

Currently, the system test programs are developed in assembly
language. In fact, it requires extra effort when it comes to debug and trace for
the test program code since long test program in assembly form is generated.
The existing GNU Compiler Collection (GCC) may help to resolve the issue.
High level programming languages help to reduce the programming
complexity when developing a test program and increase the program code
readability. However, due to the limited MIPS ISA compatible instruction
support in our research work, GCC may generates the unsupported MIPS ISA
compatible instructions. The developed reconfigurable soft-core 10T SoC will
serve the unsupported instruction as reserved instruction, which will trigger an
Undefined Instruction exception. Besides that, the pre-built high-level
programming language (HLL) test program code has to be manually converted
to the assembly form that suits to our system when without the use of a
compiler. Thus, an Original Equipment Manufacturer (OEM) compiler is

required.

Other useful existing work such as DVFS and clock gating can be
integrated with our proposed technique to achieve better power efficiency.
DVFS technique scales down the system frequency and voltage level of the
processor when low computation is required. Thus, it is expected to have
lower static and dynamic power consumption. Clock gating in another side
reduces dynamic power consumption by deactivating the clock source of the

idle hardware components.
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APPENDIX A

Table A.1: PR Unit I/O description

Pin name: uipr_tma Pin direction; input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: indicate tma instruction is executing, PR will take place to reconfigure the PR unit
0: indicate tma instruction is not execute

Pin name: uipr_alb_src Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: Register File data or forwarding data is selected
0: Immediate data is selected

Pin name: uipr_rd_src Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: $rd as destination register
0: $rt as destination register

Pin name: uipr_mult_en Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: indicate mult or multu instruction is executing
0: indicate mult and multu instructions are not execute

Pin name: uipr_sign_mult Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Indicate sign multiplication, MSB of the operands as the sign bit.
1: indicate mult instruction is executing

0: indicate mult instruction is not execute

Pin name: uipr_rf_wr Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: enable write to Register File
0: disable write to Register File

Pin name: uipr_sw Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

Store word (32-bit data)
1: indicate sw, swl or swr instruction is executing
0: indicate sw, swl and swr instructions are not execute

Pin name: uipr_swl Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function: Unaligned store word left (32-bit data)

1: indicate swl instruction is executing

0: indicate swl instruction is not execute

Pin name: uipr_swr Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function: Unaligned store word right (32-bit data)

1: indicate swr instruction is executing

0: indicate swr instruction is not execute

Pin name: uipr_Ilw Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function: Load word (32-bit data)

1: indicate lw, Iwl or lwr instruction is executing

0: indicate lw, lwl and lwr instructions are not execute
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Continued from Table A.1

Pin name: uipr_Iwl Pin direction; input
Source -> Destination: Main Control Block -> PR Unit

Pin function: Unaligned load word left (32-bit data)

1: indicate Iwl instruction is executing

0: indicate lwl instruction is not execute

Pin name: uipr_lwr Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function: Unaligned load word right (32-bit data)

1: indicate lwr instruction is executing

0: indicate lwr instruction is not execute

Pin name: uipr_sh Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function: Store half-word (16-bit data)

1: indicate sh instruction is executing

0: indicate sh instruction is not execute

Pin name: uipr_lh Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Load half-word (16-bit data), sign extend required (refer uipr_load_sign_ext)
1: indicate Ih instruction is executing

0: indicate Ih instruction is not execute

Pin name: uipr_lhu Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function: Load half-word unsigned (16-bit data)

1: indicate lhu instruction is executing

0: indicate lhu instruction is not execute

Pin name: uipr_sb Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function: Store byte (8-bit data)

1: indicate sb instruction is executing

0: indicate sb instruction is not execute

Pin name: uipr_Ib Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function: Load byte

Load byte (8-bit data), sign extend required (refer uipr_load_sign_ext)
1: indicate b instruction is executing

0: indicate Ib instruction is not execute

Pin name: uipr_Ibu Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function: Load byte unsigned (8-bit data)

1: indicate lbu instruction is executing

0: indicate Ibu instruction is not execute

Pin name: uipr_load_sign_ext Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: indicate lh or Ib instruction is executing, sign extend 16-bit for Ih or 24-bit for Ib
0: indicate Ibu instruction is not execute

Pin name: uipr_sign_ext Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: Immediate data sign extend
0: Immediate data zero extend

Pin name: uipr_mem_to_rf Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: Data memory data to Register File
0: ALU block result to Register File
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Continued from Table A.1

Pin name: uipr_hi_wr Pin direction; input
Source -> Destination: Main Control Block -> PR Unit

Pin function: reserved for future development

Pin name: uipr_lo_wr Pin direction; input
Source -> Destination: Main Control Block -> PR Unit

Pin function: reserved for future development

Pin name: uipr_alb_to_rf Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function: reserved for future development

Pin name: uipr_hi_to_rf Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate HI register data to Register File

0: indicate LO register data to Register File

Pin name: uipr_hilo_acc Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate mflo or mfhi instruction is executing

0: indicate mflo and mfhi instructions are not execute

Pin name: uipr_jump Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate j instruction is executing

0: j instruction is not execute

Pin name: uipr_jr Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate jr instruction is executing

0: indicate jr instruction is not execute

Pin name: uipr_jal Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate jal instruction is executing

0: indicate jal instruction is not execute

Pin name: uipr_jalr Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate jalr instruction is executing

0: indicate jalr instruction is not execute

Pin name: uipr_beq Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate beq instruction is executing

0: indicate beq instruction is not execute

Pin name: uipr_bne Pin direction: input
Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate bne instruction is executing

0: indicate bne instruction is not execute

Pin name: uipr_blez Pin direction: input

Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: indicate blez instruction is executing

0: indicate blez instruction is not execute
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Continued from Table A.1

Pin name: uipr_bgtz Pin direction; input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: indicate bgtz instruction is executing
0: indicate bgtz instruction is not execute

Pin name: uipr_mfc0 Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: indicate mfcO instruction is executing
0: indicate mfc0 instruction is not execute

Pin name: uipr_mtcO Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: indicate mtcO instruction is executing
0: indicate mtcO instruction is not execute

Pin name: uipr_eret Pin direction: input
Source -> Destination: Main Control Block -> PR Unit/ CPO Block
Pin function:

1: indicate eret instruction is executing

0: indicate eret instruction is not execute

Pin name: uipr_syscall Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: indicate syscall instruction is executing
0: indicate syscall instruction is not execute

Pin name: uipr_undef_inst Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: indicate an undefined instruction is detected
0: indicate supported instruction is detected

Pin name: uipr_rtype Pin direction: input
Source -> Destination: Main Control Block -> PR Unit
Pin function:

1: indicate R-type instruction is issued
0: indicate I-type or J-type instruction is issued

Pin name: uopr_opcode[5:0] Pin direction: output
Source -> Destination: PR Unit -> Main Control Block
Pin function: Instruction opcode field

Pin name: uopr_funct[5:0] Pin direction: output
Source -> Destination: PR Unit -> Main Control Block / Arithmetic Logic Control Block
Pin function: Instruction funct field

Pin name: uipr_alb_ctrl[5:0] Pin direction: input
Source -> Destination: Arithmetic Logic Control Block -> PR Unit
Pin function: ALU operation to perform

Pin name: uipr_rf_rs32 [31:0] Pin direction: input
Source -> Destination: Register File Block -> PR Unit
Pin function: 32-bit $rs data from Register File

Pin name: uipr_rf_rt32 [31:0] Pin direction: input
Source -> Destination: Register File Block -> PR Unit
Pin function: 32-bit $rt data from Register File

Pin name: uopr_rf_rs5[4:0] Pin direction: output
Source -> Destination: PR Unit -> Register File Block
Pin function: Instruction rs field

Pin name: uopr_rf_rt5[4:0] Pin direction: output
Source -> Destination: PR Unit -> Register File Block
Pin function: Instruction rt field
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Continued from Table A.1

Pin name: uopr_rf_wr_data[31:0] Pin direction: output
Source -> Destination: PR Unit -> Register File Block
Pin function: Data to be written into Register File

Pin name: uopr_rf_wr_addr[4:0] Pin direction: output
Source -> Destination: PR Unit -> Register File Block
Pin function: Register to be updated in Register File

Pin name: uopr_rf_wr_en Pin direction: output
Source -> Destination: PR Unit -> Register File Block
Pin function:

1: enable write to Register File
0: disable write to Register File

Pin name: uipr_id_fw_rs32_ctrl[2:0] Pin direction: input

Source -> Destination: Forwarding Block -> PR Unit

Pin function:

Only use in pipeline microarchitecture, used as the forward control signal for the rs path

Pin name: uipr_id_fw_rt32_ctrl[2:0] Pin direction: input

Source -> Destination: Forwarding Block -> PR Unit

Pin function:

Only use in pipeline microarchitecture, used as the forward control signal for the rt path

Pin name: uipr_ex_fw_hilo_ctrl[2:0] Pin direction: input

Source -> Destination: Forwarding Block -> PR Unit

Pin function:

Only use in pipeline microarchitecture, used as the forward control signal for the HILO path

Pin name: uipr_ex_fw_mem Pin direction: input
Source -> Destination: Forwarding Block -> PR Unit

Pin function: Only use in pipeline microarchitecture

1: Forward data from MEM stage

0: No data forwarding is require

Pin name: uopr_id_rtype Pin direction: output
Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture

1: indicate a R-type instruction is in ID stage

0: indicate a J-type or I-type instruction is in ID stage

Pin name: uopr_id_itype Pin direction: output
Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture

1: indicate an I-type instruction is in 1D stage

0: indicate a R-type or J-type instruction is in ID stage

Pin name: uopr_id_mfcO Pin direction: output
Source -> Destination: PR Unit -> Forwarding Block
Pin function: Only use in pipeline microarchitecture, indicate a mfc0 instruction is in 1D stage

Pin name: uopr_ex_jal Pin direction: output
Source -> Destination: PR Unit -> Forwarding Block
Pin function: Only use in pipeline microarchitecture, indicate a jal instruction is in EX stage

Pin name: uopr_ex_jalr Pin direction: output
Source -> Destination: PR Unit -> Forwarding Block
Pin function: Only use in pipeline microarchitecture, indicate a jalr instruction is in EX stage

Pin name: uopr_ex_rf_wr Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture, indicate enable write to Register File
operation is in EX stage

Pin name: uopr_ex_hilo_acc Pin direction: output
Source -> Destination: PR Unit -> Forwarding Block
Pin function:

Only use in pipeline microarchitecture, indicate a mflo or mfhi instruction is in EX stage
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Continued from Table A.1

Pin name: uopr_ex_hi_to_rf Pin direction: output
Source -> Destination: PR Unit -> Forwarding Block
Pin function: Only use in pipeline microarchitecture, indicate a mfhi instruction is in EX stage

Pin name: uopr_mem_jal Pin direction: output
Source -> Destination: PR Unit -> Forwarding Block
Pin function: Only use in pipeline microarchitecture, indicate a jal instruction is in MEM stage

Pin name: uopr_mem_jalr Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function:

Only use in pipeline microarchitecture, indicate a jalr instruction is in MEM stage

Pin name: uopr_mem_rf_wr Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture, indicate enable write to Register File
operation in MEM stage

Pin name: uopr_mem_load Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture, indicate a lw, Iwl, Iwr, Ih, Ihu, Ib or lbu
instruction is in MEM stage

Pin name: uopr_mem_mult_en Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function:

Only use in pipeline microarchitecture, indicate a mult or multu instruction is in MEM stage

Pin name: uopr_ex_rt5 rd5[4:0] Pin direction: output
Source -> Destination: PR Unit -> Forwarding Block
Pin function:Only use in pipeline microarchitecture, destination register address is in EX stage

Pin name: uopr_mem_rt5_rd5[4:0] Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function:

Only use in pipeline microarchitecture, destination register address is in MEM stage

Pin name: uipr_itl_pc_en Pin direction: input
Source -> Destination: Interlock Block -> PR Unit

Pin function: Only use in pipeline microarchitecture

1: no stall on PC register

0: stall PC register

Pin name: uipr_itl_ifid_en Pin direction: input
Source -> Destination: Interlock Block -> PR Unit

Pin function: Only use in pipeline microarchitecture

1: no stall on IF/ID pipeline register

0: stall IF/ID pipeline register

Pin name: uipr_itl_idex_en Pin direction: input
Source -> Destination: Interlock Block -> PR Unit
Pin function: Reserved for future development, temporary always enable

Pin name: uipr_itl_exmem_en Pin direction: input
Source -> Destination: Interlock Block -> PR Unit
Pin function: Reserved for future development, temporary always enable

Pin name: uipr_itl_memwb_en Pin direction: input
Source -> Destination: Interlock Block -> PR Unit
Pin function: Reserved for future development, temporary always enable

Pin name: uipr_itl_id_flush_ex Pin direction: input
Source -> Destination: Interlock Block -> PR Unit

Pin function: Only use in pipeline microarchitecture

1: flush ID/EX stage pipeline register

0: no pipeline register flush is requires

Pin name: uopr_id_load Pin direction: output

Source -> Destination: PR Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, indicate a lw, lwl, lwr, Ih, lIhu, 1b or Ibu
instruction is in ID stage
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Continued from Table A.1

Pin name: uopr_id_store Pin direction: output

Source -> Destination: PR Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, indicate a sw, swl, swr, sh or sh
instruction is in ID stage

Pin name: uopr_itl_ex load Pin direction: output

Source -> Destination: PR Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, indicate a Iw, Iwl, Iwr, Ih, Ihu, Ib or Ibu
instruction is in EX stage

Pin name: uopr_ex_rt5[4:0] Pin direction: output
Source -> Destination: PR Unit -> Interlock Block
Pin function: Only use in pipeline microarchitecture, the $rt address in EX stage

Pin name: uipr_cp0_flush_id Pin direction: input
Source -> Destination: CPO Block -> PR Unit
Pin function:

1: Flush IF/ID pipeline registers
0: no pipeline register flush is requires

Pin name: uipr_cp0_flush_ex Pin direction: input
Source -> Destination: CP0 Block -> PR Unit
Pin function:

1: Flush ID/EX pipeline registers
0: no pipeline register flush is requires

Pin name: uipr_cp0_flush_mem Pin direction: input
Source -> Destination: CPO Block -> PR Unit
Pin function:

1: Flush EX/MEM pipeline registers
0: no pipeline register flush is requires

Pin name: uipr_cp0_eret_addr[31:0] Pin direction: input
Source -> Destination: CP0 Block -> PR Unit
Pin function: Exception return address

Pin name: uipr_cp0_read_data[31:0] Pin direction: input
Source -> Destination: CP0 Block -> PR Unit
Pin function: CPO register output data

Pin name: uipr_cp0_exc_flag Pin direction: input
Source -> Destination: CP0 Block -> PR Unit
Pin function:

1: an exception has occur
0: no exception occur

Pin name: uopr_id_rd5[4:0] Pin direction: output
Source -> Destination: PR Unit -> CP0O Block
Pin function: $rd address in ID stage, the address to read or write in the CPO register

Pin name: uopr_id_fw_rt32[31:0] Pin direction: output
Source -> Destination: Partial Reconfiguration Unit -> CPO Block
Pin function: Data to be updated in CPO register

Pin name: uopr_cpORegWr Pin direction: output
Source -> Destination: PR Unit -> CP0 Block
Pin function:

1: enable write to CPO register
0: disable write to CPO register

Pin name: uopr_if_pc[31:0] Pin direction: output
Source -> Destination: PR Unit -> CP0 Block
Pin function:

pipeline microarchitecture: PC register address in IF stage
multi-cycle microarchitecture: Previous PC value when uipr_IRQ=1; current PC value when
uipr_IRQ=0
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Continued from Table A.1

Pin name: uopr_id_pc[31:0] Pin direction: output
Source -> Destination: PR Unit -> CP0 Block
Pin function:

pipeline microarchitecture: PC register address in ID stage
multi-cycle microarchitecture: Previous PC value when uipr_IRQ=1; current PC value when
uipr_IRQ=0

Pin name: uopr_ex_pc[31:0] Pin direction: output

Source -> Destination: PR Unit -> CP0O Block

pipeline microarchitecture: PC register address in EX stage

multi-cycle microarchitecture: Previous PC value when uipr_IRQ=1; current PC value when
uipr_IRQ=0

Pin name: uopr_id_undef _inst Pin direction: output
Source -> Destination: PR Unit -> CP0O Block
Pin function:

1: indicate an undefined instruction is detected
0: indicate supported instruction is detected

Pin name: uopr_id_syscall Pin direction: output
Source -> Destination: PR Unit -> CP0 Block
Pin function:

1: indicate syscall instruction is executing
0: indicate syscall instruction is not execute

Pin name: uopr_cp0_all_branch Pin direction: output
Source -> Destination: PR Unit -> CP0 Block
Pin function:

1: indicate eret, beq, bne, blez, bgtz, j, jr, jal or jalr instruction is executing
0: indicate eret, beq, bne, blez, bgtz, j, jr, jal and jalr instruction is not execute

Pin name: uipr_ex_alb_out[31:0] Pin direction: input
Source -> Destination: ALU Block -> PR Unit
Pin function: ALU output result

Pin name: uopr_ex_rs32[31:0] Pin direction: output
Source -> Destination: PR Unit -> ALU Block
Pin function: ALU operand

Pin name: uopr_ex_op_b[31:0] Pin direction: output
Source -> Destination: PR Unit -> ALU Block
Pin function: ALU operand

Pin name: uopr_ex_alb_ctrl[5:0] Pin direction: output
Source -> Destination: PR Unit -> ALU Block
Pin function: ALU operation to perform

Pin name: uopr_ex_shamt[4:0] Pin direction: output
Source -> Destination: PR Unit -> ALU Block
Pin function: Instruction shamt field in EX stage

Pin name: uipr_mem_mult_result[63:0] Pin direction: input
Source -> Destination: Multiplier Block -> PR Unit
Pin function: Multiplier output result

Pin name: uipr_mem_mult_valid Pin direction: input
Source -> Destination: Multiplier Block -> PR Unit
Pin function:

1: indicate multiplier result is valid
0: indicate multiplier result is not ready to use

Pin name: uipr_mem_mult_busy Pin direction: input
Source -> Destination: Multiplier Block -> PR Unit
Pin function: reserved for future development

Pin name: uopr_mult_mulcn[31:0] Pin direction: output
Source -> Destination: PR Unit -> Multiplier Block
Pin function: Multiplier operand
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Continued from Table A.1

Pin name: uopr_mult_mulpl[31:0] Pin direction: output
Source -> Destination: PR Unit -> Multiplier Block
Pin function: Multiplier operand

Pin name: uopr_ex_sign_mult Pin direction: output
Source -> Destination: PR Unit -> Multiplier Block

Pin function:

1: indicate mult instruction in EX stage

0: indicate no mult instruction in EX stage

Pin name: uopr_ex_mult_en Pin direction: output
Source -> Destination: PR Unit -> Multiplier Block

Pin function:

1: indicate mult or multu instruction in EX stage

0: indicate no mult and multu instructions in EX stage

Pin name: uopr_mem_Iw Pin direction: output
Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate lw, Iwl or lwr instruction in MEM stage

0: indicate no lw, Iwl and Iwr instructions in MEM stage

Pin name: uopr_mem_Ilh Pin direction: output
Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate lh or Ihu instruction in MEM stage

0: indicate no Ih and lhu instructions in MEM stage

Pin name: uopr_mem_Ib Pin direction: output
Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate Ib or Ibu instruction in MEM stage

0: indicate no Ib and Ibu instructions in MEM stage

Pin name: uopr_mem_sw Pin direction: output
Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate sw, swl or swr instruction in MEM stage

0: indicate no sw, swl and swr instructions in MEM stage

Pin name: uopr_mem_swl Pin direction: output
Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate swl instruction in MEM stage

0: indicate no swl instruction in MEM stage

Pin name: uopr_mem_swr Pin direction: output
Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate swr instruction in MEM stage

0: indicate no swr instruction in MEM stage

Pin name: uopr_mem_sh Pin direction: output
Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate sh instruction in MEM stage

0: indicate no sh instruction in MEM stage

Pin name: uopr_mem_sb Pin direction: output
Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate sb instruction in MEM stage

0: indicate no sb instruction in MEM stage

Pin name: uopr_mem_alb_out[31:0] Pin direction: output
Source -> Destination: PR Unit -> Address Decoder Block
Pin function: ALU output result in MEM stage
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Continued from Table A.1

Pin name: uipr_instr[31:0] Pin direction; input
Source -> Destination: ROM / ICACHE Block -> PR Unit
Pin function: Instruction machine code to be decoded

Pin name: uipr_loaded_data[31:0] Pin direction; input
Source -> Destination: DCACHE Block / 1/O controller -> PR Unit
Pin function: Data from memory device or 1/O registers

Pin name: uipr_mem_stall Pin direction: input
Source -> Destination: ICACHE / DCACHE Block -> PR Unit
Pin function:

1: halt operation, processor stalling for cache miss
0: no processor stalling is requires

Pin name: uopr_next_pc[31:0] Pin direction: output

Source -> Destination: PR Unit -> ROM / ICACHE

Pin function: This bus carries the address of the next instruction to be fetched from the ROM /
ICACHE

Pin name: uopr_pseudo_pc[31:0] Pin direction: output

Source -> Destination: PR Unit -> ROM / ICACHE / Partial Reconfiguration Controller
Pin function: The PC value in IF stage. It is used by I-CACHE to generate the cache hit and
cache miss signals.

Pin name: uopr_store_addr[31:0] Pin direction: output
Source -> Destination: PR Unit -> DCACHE Block / RAM / 1/O Controller
Pin function: address of data memory or 1/O registers to be access

Pin name: uopr_store_data[31:0] Pin direction: output
Source -> Destination: PR Unit -> DCACHE Block / RAM / 1/O Controller
Pin function: Data to be store in data memory or /O registers

Pin name: uipr_reconf_stall_if Pin direction: input
Source -> Destination: PR Controller -> Partial Reconfiguration Unit
Pin function:

1: stall IF/ID pipeline register
0: no processor stalling is requires

Pin name: uipr_reconf_release_pc Pin direction: input
Source -> Destination: PR Controller -> Partial Reconfiguration Unit
Pin function:

1: indicate to copy the PC register address stored in GPR unit to current PC register
0: No copy require

Pin name: uipr_reconf_store_pc[31:0] Pin direction: input
Source -> Destination: PR Controller -> Partial Reconfiguration Unit
Pin function: PC register address stored in GPR unit

Pin name: uipr_IRQ Pin direction: input

Source -> Destination: Priority Interrupt Controller -> PR Unit / CPO Block
Pin function:

1: Interrupt request from 1/0 controller

0: No interrupt request

Pin name: uipr_clk Pin direction: input
Source -> Destination: Global clock -> PR Unit
Pin function: Global clock

Pin name: uipr_sys_rst Pin direction: input
Source -> Destination: Global reset -> PR Unit

Pin function:

1: reset

0: no reset require
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Table A.2: Cache unit 1/O description

Pin name: uocac_cpu_data[31:0] Pin direction: output
Source -> Destination: Cache Unit -> PR Unit -> Data-path Unit
Pin function: 32-bits data to CPU (instruction for I-CACHE, data for D-CACHE)

Pin name: uocac_mem_addr[31:0] Pin direction: output
Source -> Destination: Cache Unit -> Memory Arbiter Unit -> Data-path Unit
Pin function: 32-bits address that indicates which location in the flash memory to be accessed

Pin name: uocac_cpu_stall Pin direction: output
Source -> Destination: Cache Unit -> PR Unit -> Data-path Unit
Pin function: Indicate a halt operation, processor stalling for cache miss

Pin name: uocac_miss Pin direction: output
Source -> Destination: Cache Unit -> Memory Arbiter Unit
Pin function: indicates cache miss.

Pin name: uocac_mem_read Pin direction: output
Source -> Destination: Cache Unit -> Memory Arbiter Unit
Pin function:

1: request read data from the flash memory
0: read disable from the flash memory

Pin name: uocac_mem_sel[3:0] Pin direction: output
Source -> Destination: Cache Unit -> Memory Arbiter Unit
Pin function: 4-bit byte select control, to select any one or more bytes to be accessed

Pin name: uicac_cpu_addr[31:0] Pin direction: input
Source -> Destination: PR Unit -> Cache Unit
Pin function: 32-bit address from CPU

Pin name: uicac_reg_cpu_addr[31:0] Pin direction: input

Source -> Destination: PR Unit -> Cache Unit

Pin function: The registered 32-bit address from CPU. This address bus is used to generate the
cache hit and cache miss signals

Pin name: uicac_cpu_read[2:0] Pin direction: input
Source -> Destination: PR Unit -> Cache Unit
Pin function:

1xx: read word
01x: read half-word
001: read byte

Pin name: uicac_mem_data_rd[31:0] Pin direction: input
Source -> Destination: Memory Arbiter Unit -> Cache Unit
Pin function: 32-bits data from the flash memory that will transfer to the Cache Unit

Pin name: uicac_mem_ack Pin direction: input

Source -> Destination: Memory Arbiter Unit -> Cache Unit

Pin function: Acknowledge signal (HIGH) to indicate read data is ready to be transfer from
flash memory to Cache Unit

Pin name: uicac_io_intr Pin direction: input
Source -> Destination: CPO block -> Cache Unit

Pin function:

1: I-CACHE stop operation, CPU jump to exception handler

0: run normal

Pin name: uicac_mem_busy Pin direction: input
Source -> Destination: Flash Controller unit -> Cache Unit

Pin function:

1: flash memory is busy
0: flash memory is ready to use

Pin name: uicac_rst Pin direction: input
Source -> Destination: Global reset -> Cache Unit

Pin function:

1: reset

0: no reset require

Pin name: uicac_clk Pin direction: input

Source -> Destination: Global clock -> Cache Unit
Pin function: Global clock
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Table A.3: Memory Arbiter Unit I/O description, where x =0, 1, 2 and 3

Pin name: uoma_cac_ackx Pin direction: output

Source -> Destination: Memory Arbiter Unit-> Cache Unit

Pin function: Acknowledge signal (HIGH) to indicate read data is ready to be transfer from
flash memory to Cache Unit

Pin name: uoma_cac_data_rdx[31:0] Pin direction: output
Source -> Destination: Memory Arbiter Unit-> Cache Unit
Pin function: 32-bits data that from flash memory

Pin name: uima_cac_readx Pin direction: input
Source -> Destination: Cache Unit-> Memory Arbiter Unit
Pin function:

1: request read data from the flash memory
0: read disable from the flash memory

Pin name: uima_cac_missx Pin direction: input
Source -> Destination: Cache Unit-> Memory Arbiter Unit
Pin function: indicates cache miss.

Pin name: uima_cac_selx[3:0] Pin direction: input
Source -> Destination: Cache Unit-> Memory Arbiter Unit
Pin function: 4-bit byte select control, to select any one or more bytes to be accessed

Pin name: uima_cac_addrx[31:0] Pin direction: input

Source -> Destination: Cache Unit-> Memory Arbiter Unit

Pin function: 32-bits address location to be access in the flash memory (only lower 24-bit is
used, higher 8-bit is allocated for future expansion)

Pin name: uoma_fc_data[31:0] Pin direction: output
Source -> Destination: Memory Arbiter Unit -> Flash Controller Unit
Pin function: 32-bits data to be write to flash memory (RESERVED, all caches are read-only)

Pin name: uoma_fc_addr[31:0] Pin direction: output

Source -> Destination: Memory Arbiter Unit -> Flash Controller Unit

Pin function: 32-bits address location to be access in the flash memory (only lower 24-bit is
used, higher 8-bit is allocated for future expansion)

Pin name: uoma_fc_sel[3:0] Pin direction: output
Source -> Destination: Memory Arbiter Unit -> Flash Controller Unit
Pin function: 4-bit byte select control, to select any one or more bytes to be accessed

Pin name: uoma_fc_read Pin direction: output
Source -> Destination: Memory Arbiter Unit -> Flash Controller Unit
Pin function: Request read operation from the flash memory

Pin name: uima_fc_ack Pin direction: input

Source -> Destination: Flash Controller Unit -> Memory Arbiter Unit

Pin function: Acknowledge signal (HIGH) to indicate read data is ready to be transfer from
flash memory to Cache Unit

Pin name: uima_fc_data[31:0] Pin direction: input
Source -> Destination: Flash Controller Unit -> Memory Arbiter Unit
Pin function: 32-bits data from flash memory

Pin name: uima_io_intr Pin direction: input
Source -> Destination: CPO Block -> Memory Arbiter Unit
Pin function:

1: An exception has occurred. CPU will jump to exception handler at the next clock cycle
0: run normal

Pin name: uima_rst Pin direction: input
Source -> Destination: Global reset -> Memory Arbiter Unit
Pin function:

1: reset

0: no reset require

Pin name: uima_clk Pin direction: input

Source -> Destination: Global clock -> Memory Arbiter Unit
Pin function: Global clock
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Table A.4: Flash Controller Unit 1/O description

Pin name: SS Pin direction: output
Source -> Destination: Flash Controller Unit -> flash memory
Pin function: SPI protocol Slave Select

Pin name: SCLK Pin direction: output
Source -> Destination: Flash Controller Unit -> flash memory
Pin function: SPI protocol clock signal

Pin name: MIOO Pin direction: bi-directional

Source -> Destination: flash memory -> Flash Controller Unit or Flash Controller Unit ->
flash memory

Pin function: : SPI protocol serial input output pin

Pin name: MI1 Pin direction: input
Source -> Destination: flash memory -> Flash Controller Unit
Pin function: SPI protocol serial input pin

Pin name: MI2 Pin direction: input
Source -> Destination: flash memory -> Flash Controller Unit
Pin function: SPI protocol serial input pin

Pin name: MI3 Pin direction: input
Source -> Destination: flash memory -> Flash Controller Unit
Pin function: SPI protocol serial input pin

Pin name: uofc_busy Pin direction: output
Source -> Destination: Flash Controller Unit -> Cache Unit
Pin function: Indicate flash memory is busy, data fetching from the flash memory in operation

Pin name: uofc_dout [31:0] Pin direction: output
Source -> Destination: Flash Controller Unit -> Memory Arbiter Unit / PR Controller Unit
Pin function: 32-bits data from flash memory

Pin name: uofc_ack Pin direction: output
Source -> Destination: Flash Controller Unit -> Memory Arbiter Unit / PR Controller Unit
Pin function: Indicate data is ready to be fetched

Pin name: uofc_RXFF Pin direction: output
Source -> Destination: Flash Controller Unit -> PR Controller Unit
Pin function:

1: 1-word (uifc_reconfig=1) or 8-words (uifc_reconfig=0) of data has been received
0: Data receiving is in progress

Pin name: uifc_read Pin direction: input
Source -> Destination: Memory Arbiter Unit -> Flash Controller Unit
Pin function:

1: request read data from the flash memory
0: read disable from the flash memory

Pin name: uifc_addr[31:0] Pin direction: input
Source -> Destination: Memory Arbiter Unit / PR Controller Unit -> Flash Controller Unit
Pin function: flash memory address location to be access

Pin name: uifc_cpol Pin direction: input
Pin function: SPI clock polarity, default to 1 (set in HDL) to align with the SPI
communication mode supported by the flash memory

Pin name: uifc_cpha Pin direction: input
Pin function: SPI clock phase, default to 1 (set in HDL) to align with the SPI communication
mode supported by the flash memory
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Continued from Table A.4

Pin name: uifc_baud[3:0] Pin direction; input
Pin function: the clock speed of the SCLK, default 4’b0000 (set in HDL)
0000: uifc_clk /2

0001: uifc_clk/ 4

0010: uifc_clk /8

0011: uifc_clk / 16

0100: uifc_clk / 32

0101: uifc_clk /64

0110: uifc_clk / 128

0111: uifc_clk / 256

1000: uifc_clk / 512

1001: uifc_clk / 1024

1010: uifc_clk / 2048

1011: uifc_clk / 4096

1100: uifc_clk / 8192

1101: uifc_clk / 16384

1110: uifc_clk / 32768

1111: uifc_clk / 65536

Pin name: uifc_reconfig Pin direction: input
Source -> Destination: PR Controller Unit -> Flash Controller Unit
Pin function:

1: Partial reconfiguration has taken place to read the partial bitstream from the flash memory
0: Normal run

Pin name: uifc_reconfig_nwords[31:0] Pin direction: input
Source -> Destination: PR Controller Unit -> Flash Controller Unit
Pin function: Partial bitstream size (number of words)

Pin name: uifc_clk Pin direction: input
Source -> Destination: Global clock -> Flash Controller Unit
Pin function: Global clock

Pin name: uifc_rst Pin direction: input
Source -> Destination: Global reset -> Flash Controller Unit
Pin function:

1: reset

0: no reset require

Table A.5: Boot ROM Unit I/O description

Pin name: borom_wb_dout[31:0] Pin direction: output
Source -> Destination: Boot ROM unit -> PR Unit -> Data-path Unit
Pin function: 32-bits data output

Pin name: borom_wb_ack Pin direction: output
Source -> Destination: Boot ROM unit -> PR Unit
Pin function: Indicate data is ready to be fetched

Pin name: birom_wb_addr[SIZE:0] Pin direction: input
Source -> Destination: Data-path Unit -> PR Unit -> Boot ROM unit
Pin function: Address location of the data in the Boot ROM unit

Pin name: birom_wb_stb Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> Boot ROM unit

Pin function: Strobe control

1: Boot ROM unit is activated to perform read access for new address location
0: Boot ROM unit is de-activated to perform read access

Pin name: birom_wb_clk Pin direction: input
Source -> Destination: Global clock -> Boot ROM unit
Pin function: Global clock
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Continued from Table A.5

Pin name: birom_wb_rst Pin direction; input
Source -> Destination: Global reset -> Boot ROM unit

Pin function:

1: reset

0: no reset require

Table A.6: Data and Stack RAM Unit I/O description

Pin name: uoram_wb_dout[31:0] Pin direction: output
Source -> Destination: Data and Stack RAM Unit -> PR Unit -> Data-path Unit
Pin function: 32-bits data output

Pin name: uoram_whb_ack Pin direction: output
Source -> Destination: Data and Stack RAM Unit -> PR Unit
Pin function: Indicate data is ready to be fetched

Pin name: uiram_wb_din[31:0] Pin direction: input
Source -> Destination: Data-path Unit -> PR Unit -> Data and Stack RAM Unit
Pin function: 32-bits data input

Pin name: uiram_wb_addr[SIZE:0] Pin direction: input
Source -> Destination: Data-path Unit -> PR Unit -> Data and Stack RAM Unit
Pin function: Address location of the data in the Data and Stack RAM Unit

Pin name: uiram_whb_sel[3:0] Pin direction: input

Source -> Destination: Address Decoder Block -> Data-path Unit -> Data and Stack RAM
Unit

Pin function: 4-bit byte select control, to select any one or more bytes to be accessed

Pin name: uiram_wb_we Pin direction: input

Source -> Destination: Address Decoder Block -> Data-path Unit -> Data and Stack RAM
Unit

Pin function: write control

1: Enable to write to the Data and Stack RAM Unit

0: No operation

Pin name: uiram_wb_stb Pin direction: input

Source -> Destination: Address Decoder Block -> Data-path Unit -> Data and Stack RAM
Unit

Pin function: Strobe control

1: Data and Stack RAM Unit is activated to perform read or write access for new address
location

0: Data and Stack RAM Unit is de-activated to perform read or write access

Pin name: uiram_whb_clk Pin direction: input
Source -> Destination: Global clock -> Data and Stack RAM Unit
Pin function: Global clock

Pin name: uiram_wb_rst Pin direction: input
Source -> Destination: Global reset -> Data and Stack RAM Unit
Pin function:

1: reset

0: no reset require

Table A.7: UART Controller 1/O description

Pin name: uoua_TxD Pin direction: output
Source -> Destination: device 0’s uoua_TxD -> device 1’s uiua RxD
Pin function: UART standard pin — transmit serial data
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Continued from Table A.7

Pin name: uoua_IRQ Pin direction; output

Source -> Destination: UART controller Unit -> Priority Interrupt Controller Unit

Pin function: To request an interrupt (uiua_UARTIE must pull high before can send an
interrupt)

1: Request to interrupt

0: No interrupt request

Pin name: uoua_wb_dout [7:0] Pin direction: output
Source -> Destination: UART controller Unit -> PR Unit -> Data-path Unit
Pin function: Wishbone standard data output bus

Pin name: uoua_wb_ack Pin direction: output

Source -> Destination: UART controller Unit -> PR Unit -> Data-path unit

Pin function:

Wishbone standard acknowledge signal - indicates the termination of a normal bus cycle
1: normal bus cycle termination

0: no bus cycle termination

Pin name: uiua_RxD Pin direction: input
Source -> Destination: device 0’s uiua_RxD <- device 1’s uoua_TxD
Pin function: UART standard pin — receive serial data

Pin name: uiua_UARTIE Pin direction: input

Source -> Destination: Priority Interrupt Controller Unit-> UART controller Unit
Pin function: allow UART to interrupt

1: enable UART global interrupt

0: disable UART global interrupt

Pin name: uiua_wb_din [7:0] Pin direction: input
Source -> Destination: Data-path unit -> PR Unit -> UART controller Unit
Pin function: Wishbone standard data input bus

Pin name: uiua_wb_sel [3:0] Pin direction: input

Source -> Destination: Address Decoder Block -> UART controller Unit
Pin function: Wishbone standard byte select signal — data granularity control
1111: word selected

1100: upper half-word selected

0011: lower half-word selected

1000: 4th byte selected

0100: 3rd byte selected

0010: 2nd byte selected

0001: 1st byte selected

Pin name: uiua_wb_we Pin direction: input

Source -> Destination: Address Decoder Block -> UART controller Unit

Pin function:

Wishbone standard write enable signal — indicate current bus cycle is for READ or WRITE
1: WRITE cycle — Write to UART controller

0: READ cycle — Read from UART controller

Pin name: uiua_wb_stb Pin direction: input

Source -> Destination: Address Decoder Block -> UART controller Unit

Pin function: Wishbone standard strobe signal — indicate valid data transfer cycle
1: activate UART controller for read or write access

0: deactivate UART controller for read or write access

Pin name: uiua_wb_clk Pin direction: input
Source -> Destination: Global clock -> UART controller Unit
Pin function: Global clock

Pin name: uiua_whb_rst Pin direction: input
Source -> Destination: Global reset -> UART controller Unit
Pin function:

1: reset

0: no reset require
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Table A.8: SPI Controller 1/O description

Pin name: uiospi_MOSI Pin direction: bi-directional

Source -> Destination: device 0’s uiospi MOSI <-> device 1’s uiospi_ MISO

Pin function: SPI standard pin — Master out Serial in

If the SPI is configure as a master, then uiospi_MOSI will become an output, else otherwise.

Pin name: uiospi_MISO Pin direction: bi-directional

Source -> Destination: device 0’s uiospi MISO <-> device 1’s uiospi MOSI

Pin function: SPI standard pin — Master in Serial out

If the SP1 is configure as a master, then uiospi_ MISO will become an input, else otherwise.

Pin name: uiospi_SCLK Pin direction: bi-directional

Source -> Destination: device 0’s uiospi_SCLK <-> device 1’s uiospi_ SCLK

Pin function: SPI standard pin — SPI clock signal for data synchronization across devices

If the SPI is configure as a master, then uiospi_ SCLK will become an output, else otherwise.

Pin name: uiospi_SS_n Pin direction: bi-directional

Source -> Destination: device 0’s SS_n <-> device 1’s SS_n

Pin function: SPI standard pin — SPI slave select control signal

If the SPI is configure as a master, then uiospi_ SS_n will become an output, else otherwise.

Pin name: uospi_IRQ Pin direction: output

Source -> Destination: SPI controller Unit -> Priority Interrupt Controller Unit

Pin function: To request an interrupt (uispi_SPIE must pull high before can send an interrupt)
1: Request to interrupt

0: No interrupt request

Pin name: uospi_wb_dout [7:0] Pin direction: output
Source -> Destination: SPI controller Unit -> PR Unit -> Data-path Unit
Pin function: Wishbone standard data output bus

Pin name: uospi_wh_ack Pin direction: output

Source -> Destination: SPI controller Unit -> PR Unit -> Data-path Unit

Pin function:

Wishbone standard acknowledge signal - indicates the termination of a normal bus cycle
1: normal bus cycle termination

0: no bus cycle termination

Pin name: uispi_SPIE Pin direction: input

Source -> Destination: Priority Interrupt Controller Unit-> SPI controller Unit
Pin function: allow SPI to interrupt

1: enable SPI global interrupt

0: disable SPI global interrupt

Pin name: uispi_wb_din[7:0] Pin direction: input
Source -> Destination: Data-path Unit -> PR Unit -> SPI controller Unit
Pin function: Wishbone standard data input bus

Pin name: uispi_whb_sel[3:0] Pin direction: input

Source -> Destination: Address Decoder Block -> SPI controller Unit

Pin function: Wishbone standard byte select signal — data granularity control
1111: word selected

1100: upper half-word selected

0011: lower half-word selected

1000: 4th byte selected

0100: 3rd byte selected

0010: 2nd byte selected

0001: 1st byte selected

Pin name: uispi_wb_we Pin direction: input
Source -> Destination: Address Decoder Block -> SPI controller Unit
Pin function:

Wishbone standard write enable signal — indicate current bus cycle is for READ or WRITE
1: WRITE cycle — Write to SPI controller
0: READ cycle — Read from SPI controller
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Continued from Table A.8

Pin name: uispi_wb_stb Pin direction; input

Source -> Destination: Address Decoder Block -> SPI controller Unit

Pin function: Wishbone standard strobe signal — indicate valid data transfer cycle
1: activate SPI controller for read or write access

0: deactivate SPI controller for read or write access

Pin name: uispi_wb_clk Pin direction: input
Source -> Destination: Global clock -> SPI controller Unit
Pin function: Global clock

Pin name: uispi_wb_rst Pin direction: input
Source -> Destination: Global reset -> SPI controller Unit

Pin function:

1: reset

0: no reset require

Table A.9: GPIO Controller unit 1/0O description

Pin name: uiogpio_PORT_pin Pin direction: inout
Source -> Destination: GPIO Controller Unit <-> External device (LEDs, switches etc.)
Pin function: GPIO pins

Pin name: uogpio_wb_dout [31:0] Pin direction: output
Source -> Destination: GPIO Controller Unit -> PR Unit -> Data-path Unit
Pin function: Wishbone standard data output bus

Pin name: uogpio_wb_ack Pin direction: output

Source -> Destination: GPIO Controller Unit -> PR Unit -> Data-path Unit

Pin function:

Wishbone standard acknowledge signal - indicates the termination of a normal bus cycle
1: normal bus cycle termination

0: no bus cycle termination

Pin name: uigpio_wb_din [31:0] Pin direction: input
Source -> Destination: Data-path Unit -> PR Unit -> GPIO Controller Unit
Pin function: Wishbone standard data input bus

Pin name: uigpio_wb_addr[1:0] Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> GP10 Controller Unit
Pin function: Used to select which register to be access

00: GPIODIR

01: GPIOEN

10: GPIODATA

11: RESERVED

Pin name: uigpio_wb_sel [3:0] Pin direction: input

Source -> Destination: Address Decoder Block -> GPIO Controller Unit

Pin function: Wishbone standard write enable signal — data granularity control
1111: word selected

1100: upper half-word selected

0011: lower half-word selected

1000: 4th byte selected

0100: 3rd byte selected

0010: 2nd byte selected

0001: 1st byte selected

Pin name: uigpio_wb_we Pin direction: input
Source -> Destination: Address Decoder Block -> GP10O Controller Unit
Pin function:

Wishbone standard write enable signal — indicate current bus cycle is for READ or WRITE

1: WRITE cycle — write to GPIO controller
0: READ cycle — read from GPIO controller
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Continued from Table A.9

Pin name: uigpio_wb_stb Pin direction; input

Source -> Destination: Address Decoder Block -> GP10O Controller Unit

Pin function: Wishbone standard strobe signal — indicate valid data transfer cycle
1: activate UART controller for read or write access

0: deactivate UART controller for read or write access

Pin name: uigpio_wb_clk Pin direction: input
Source -> Destination: Global clock -> GPIO Controller Unit
Pin function: Global clock

Pin name: uigpio_wb_rst Pin direction: input
Source -> Destination: Global reset -> GPIO Controller Unit
Pin function:

1: reset

0: no reset require

Table A.10: Priority Interrupt Controller unit 1/O description

Pin name: uopi_ctrl_IO_IE[7:0] Pin direction: output

Source -> Destination: Priority Interrupt Controller Unit -> UART / SPI Controller Unit
Pin function: Interrupt sources masking bit

1: Enable the interrupt source

0: Disable the interrupt source

Pin name: uopi_ctrl_req_IPL[1:0] Pin direction: output

Source -> Destination: Priority Interrupt Controller Unit -> CPO Block

Pin function: indicate the IPL of the interrupt source. This value will be store in the CPO
$cause register to prevent lower IPL interrupt sources to interrupt the CPU

Pin name: uopi_ctrl_IRQ Pin direction: output

Source -> Destination: Priority Interrupt Controller Unit -> PR Unit -> Data-path Unit

Pin function: Interrupt request signal. Pull high for 1 clock cycle to interrupt the CPU to stop
current process and jump to exception handler (0x8001_B140).

1: Interrupt request from one of the interrupt sources

0: No interrupt request

Pin name: uopi_ctrl_wb_dout [31:0] Pin direction: output
Source -> Destination: Priority Interrupt Controller Unit -> PR Unit -> Data-path Unit
Pin function: Wishbone standard data output bus

Pin name: uopi_ctrl_wb_ack Pin direction: output

Source -> Destination: Priority Interrupt Controller Unit -> PR Unit -> Data-path Unit
Pin function:

Wishbone standard acknowledge signal - indicates the termination of a normal bus cycle
1: normal bus cycle termination

0: no bus cycle termination

Pin name: uipi_ctrl_intr_vector[7:0] Pin direction: input
Source -> Destination: CPO Timer, SPI and UART Controller Unit -> Priority Interrupt
Controller Unit

Pin function: Connect up to 8 interrupt sources
uipi_ctrl_intr_vector[7]: CPO timer

uipi_ctrl_intr_vector[6]: 1’b0

uipi_ctrl_intr_vector[5]: 1’b0

uipi_ctrl_intr_vector[4]: 1°b0

uipi_ctrl_intr_vector[3]: SPI Controller Unit
uipi_ctrl_intr_vector[2]: UART Controller Unit
uipi_ctrl_intr_vector[1]: 1°b0

uipi_ctrl_intr_vector[0]: 1°b0
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Continued from Table A.10

Pin name: uipi_ctrl_stat_IPL Pin direction; input

Source -> Destination: CP0 Block -> Priority Interrupt Controller Unit

Pin function: Indicate the Interrupt Priority Level that currently handle. This is to prevent the
lower IPL interrupt sources to interrupt the CPU.

Pin name: uipi_ctrl_intr_en_n Pin direction; input
Source -> Destination: CPO Block -> Priority Interrupt Controller Unit
Pin function: Interrupt enable signal

1: disable interrupt

0: enable interrupt

Pin name: uipi_ctrl_cpu_stall Pin direction: input

Source -> Destination: Cache Unit -> Priority Interrupt Controller Unit

Pin function: stall the Priority Interrupt Controller when memories (I-CACHE/D-CACHE)
stall. This is to ensure that no interrupt request can occur during memories stall

Pin name: uipi_ctrl_wb_din[31:0] Pin direction: input
Source -> Destination: Data-path Unit -> PR Unit -> Priority Interrupt Controller Unit
Pin function: Wishbone standard data input bus

Pin name: uipi_ctrl_wb_sel[3:0] Pin direction: input

Source -> Destination: Address Decoder Block -> Priority Interrupt Controller Unit
Pin function: Wishbone standard write enable signal — data granularity control
1111: word selected

1100: upper half-word selected

0011: lower half-word selected

1000: 4™ byte selected

0100: 3" byte selected

0010: 2" byte selected

0001: 1% byte selected

Pin name: uipi_ctrl_wb_we Pin direction: input

Source -> Destination: Address Decoder Block -> Priority Interrupt Controller Unit

Pin function:

Wishbone standard write enable signal — indicate current bus cycle is for READ or WRITE
1: WRITE cycle — Write to Priority Interrupt Controller

0: READ cycle — Read from Priority Interrupt Controller

Pin name: uipi_ctrl_whb_stb Pin direction: input

Source -> Destination: Address Decoder Block -> Priority Interrupt Controller Unit
Pin function: Wishbone standard strobe signal — indicate valid data transfer cycle

1: activate Priority Interrupt controller for read or write access

0: deactivate Priority Interrupt controller for read or write access

Pin name: uipi_ctrl_wb_clk Pin direction: input
Source -> Destination: Global clock -> Priority Interrupt Controller Unit
Pin function: Global clock

Pin name: uipi_ctrl_wb_rst Pin direction: input
Source -> Destination: Global reset -> Priority Interrupt Controller Unit
Pin function:

1: reset

0: no reset require

Table A.11: General Purpose Register unit 1/0O description

Pin name: uogpr_reconf_setting[31:0] Pin direction: output
Source -> Destination: General Purpose Register Unit -> PR Controller Unit
Pin function: Output the SETTING register of the General Purpose Register Unit

Pin name: uogpr_pipeline_reconf_addr[31:0] Pin direction: output
Source -> Destination: General Purpose Register Unit -> PR Controller Unit
Pin function: Pipeline microarchitecture partial bitstream start address
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Continued from Table A.11

Pin name: uogpr_multicycle_reconf_addr[31:0] Pin direction: output
Source -> Destination: General Purpose Register Unit -> PR Controller Unit
Pin function: Multi-cycle microarchitecture partial bitstream start address

Pin name: uogpr_wb_dout[31:0] Pin direction: output
Source -> Destination: General Purpose Register Unit -> PR Unit -> Data-path Unit
Pin function: Wishbone standard data output bus

Pin name: uogpr_wb_ack Pin direction: output

Source -> Destination: General Purpose Register Unit -> PR Unit -> Data-path Unit

Pin function:

Wishbone standard acknowledge signal - indicates the termination of a normal bus cycle
1: normal bus cycle termination

0: no bus cycle termination

Pin name: uigpr_update_ma Pin direction: input
Source -> Destination: PR Controller Unit -> General Purpose Register Unit
Pin function: Indicate to update the current microarchitecture status in SETTING register

Pin name: uigpr_wb_din[31:0] Pin direction: input
Source -> Destination: Data-path Unit -> PR Unit -> General Purpose Register Unit
Pin function: Wishbone standard data input bus

Pin name: uigpr_wb_addr[1:0] Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> General Purpose Register Unit
Pin function: Used to select which register to be access

00: SETTING

01: PSADDR

10: M5ADDR

11: RESERVED

Pin name: uigpr_wb_sel[3:0] Pin direction: input
Source -> Destination: Address Decoder Block -> General Purpose Register Unit
Pin function:

Pin function: Wishbone standard write enable signal — data granularity control
1111: word selected

1100: upper half-word selected

0011: lower half-word selected

1000: 4th byte selected

0100: 3rd byte selected

0010: 2nd byte selected

0001: 1st byte selected

Pin name: uigpr_wb_we Pin direction: input

Source -> Destination: Address Decoder Block -> General Purpose Register Unit

Pin function:

Wishbone standard write enable signal — indicate current bus cycle is for READ or WRITE
1: WRITE cycle — write to General Purpose Register Unit

0: READ cycle — read from General Purpose Register Unit

Pin name: uigpr_wb_stb Pin direction: input

Source -> Destination: Address Decoder Block -> General Purpose Register Unit
Pin function: Wishbone standard strobe signal — indicate valid data transfer cycle
1: activate General Purpose Register for read or write access

0: deactivate General Purpose Register for read or write access

Pin name: uigpr_wb_clk Pin direction: input
Source -> Destination: Global clock -> General Purpose Register Unit
Pin function: Global clock

Pin name: uigpr_wb_rst Pin direction: input
Source -> Destination: Global reset -> General Purpose Register Unit
Pin function:

1: reset

0: no reset require
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