

THE DESIGN OF AN FPGA-BASED PROCESSOR WITH
RECONFIGURABLE PROCESSOR EXECUTION
STRUCTURE FOR INTERNET OF THINGS (IoT)

APPLICATIONS

KIAT WEI PAU

MASTER OF SCIENCE (COMPUTER SCIENCE)

FACULTYOF INFORMATION AND COMMUNICATION
TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN
DECEMBER 2018

THE DESIGN OF AN FPGA-BASED PROCESSOR WITH

RECONFIGURABLE PROCESSOR EXECUTION STRUCTURE FOR

INTERNET OF THINGS (IoT) APPLICATIONS

By

KIAT WEI PAU

A dissertation submitted to the Department of Computer and Communication

Technology,

Faculty of Information and Communication Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

December 2018

ii

ABSTRACT

THE DESIGN OF AN FPGA-BASED PROCESSOR WITH

RECONFIGURABLE MICROARCHITECTURE PROCESSOR

EXECUTION STRUCTURE FOR INTERNET OF THINGS (IoT)

APPLICATIONS

 Kiat Wei Pau

Low power consumption and high computational performance are two

important processor design goals for IoT applications. Achieving both design

goals in one processor architecture is challenging due to their conflicting

nature, whereby low power consumption tends to limit the computational

performance and high computational performance tends to consume higher

power. This research work introduces a micro-architectural level

reconfigurable technique that allows a Reduced Instruction Set Computing

(RISC) processor to support IoT applications with different performance

power trade-off requirements. The processor can be reconfigured into either

multi-cycle execution (low computational speed with low dynamic power

consumption) or pipeline execution (high computational speed at the expense

of high dynamic power usage), based on dynamic workload characteristics in

IoT applications. The switching is made possible through partial

reconfiguration (PR) feature offered by FPGAs. A RISC processor was

designed based on the proposed micro-architectural level technique and

iii

implemented on FPGA as IoT sensor node. Experimental result demonstrates

that the proposed technique is able to reduce dynamic energy consumption by

4.63% and 21.47%, respectively, compared to multi-cycle and pipeline only

microarchitecture. In order to improve the dynamic energy consumption

without losing too much of computational performance, the energy-delay

product metric is used. Our proposed technique shows that the energy-delay

product is reduced by 8.81% (compared to multi-cycle) and 18.91%

(compared to pipeline) respectively. This implies that the proposed technique

can achieve better performance-energy trade-off for IoT applications

compared to conventional method that only have single microarchitecture.

iv

ACKNOWLEDGEMENTS

I would like to give a very deep appreciation to my supervisors, Dr. Goh Hock

Guan and Mr. Mok Kai Ming, for the guidance, inspiration and enthusiasm

that bring towards the completion of the research project. I would also like to

give a special appreciation to our research team member, Dr. Lee Wai Kong,

for his advice on the practical IoT application and the experimental flows prior

the completion of the experimental work. Last but not least, I like to thank to

my family for their full support in order for me to pursue my interest.

v

APPROVAL SHEET

This dissertation entitled “THE DESIGN OF AN FPGA-BASED

PROCESSOR WITH RECONFIGURABLE MICROARCHITECTURE

PROCESSOR EXECUTION STRUCTURE FOR INTERNET OF

THINGS (IoT) APPLICATIONS” was prepared by KIAT WEI PAU and

submitted as partial fulfillment of the requirements for the degree of Master of

Science (Computer Science) at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Goh Hock Guan)

Date:

Supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

(Mr. Mok Kai Ming)

Date:

Co-supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

vi

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __________________

SUBMISSION OF DISSERTATION

It is hereby certified that KIAT WEI PAU (ID No: _16ACM01206) has

completed this dissertation entitled “THE DESIGN OF AN FPGA-BASED

PROCESSOR WITH RECONFIGURABLE MICROARCHITECTURE

PROCESSOR EXECUTION STRUCTURE FOR INTERNET OF THINGS (IoT)

APPLICATIONS ” under the supervision of Dr. Goh Hock Guan (Supervisor) from

the Department of Computer and Communication Technology, Faculty of Information

and Communication Technology , and Mr. Mok Kai Ming (Co-Supervisor) from the

Department of Computer and Communication Technology, Faculty of Information and

Communication Technology.

I understand that University will upload softcopy of my dissertation in pdf format into

UTAR Institutional Repository, which may be made accessible to UTAR community

and public.

Yours truly,

(KIAT WEI PAU)

vii

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare

that it has not been previously or concurrently submitted for any other degree

at UTAR or other institutions.

Name: KIAT WEI PAU

Date:

viii

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGEMENTS iv

APPROVAL SHEET v

SUBMISSION SHEET vi

DECLARATION vii

LIST OF TABLES xi

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xviii

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 7

1.3 Objectives 8

1.4 Contributions 9

1.5 Dissertation Organization 10

CHAPTER 2 LITERATURE REVIEW 11

2.1 Internet of Things (IoT) 11
2.1.1 IoT Application 11
2.1.2 Existing IoT Platforms 15

2.2 FPGA versus ASIC 19

2.3 Low power techniques in FPGA 25

2.4 Partial Reconfiguration 30

2.5 MIPS ISA 37

2.6 Summary 40

CHAPTER 3 HARDWARE DEVELOPMENT 41

3.1 System Overview 41

3.2 CPU 46
3.2.1 MIPS ISA compatible 46
3.2.2 Pipeline microarchitecture 49
3.2.3 Multi-cycle microarchitecture 55
3.2.4 Consistent I/O Interface for Partial Reconfiguration Unit 63
3.2.5 Partial Reconfiguration 65

3.3 Memory System 69
3.3.1 Memory Map 73
3.3.2 Cache Unit 76
3.3.3 Memory Arbiter Unit 79
3.3.4 Flash Controller Unit 81
3.3.5 Boot ROM Unit 87
3.3.6 Data and Stack RAM Unit 88

ix

3.4 I/O System 89
3.4.1 UART controller 91
3.4.2 SPI controller 100
3.4.3 GPIO controller 107
3.4.4 Priority Interrupt Controller 109
3.4.5 General Purpose Register 113

3.5 Polling and Single Vector Nested Interrupt Serving 115

3.6 Summary 119

CHAPTER 4 SYSTEM VERIFICATION 120

4.1 Physical Functional Test 124
4.1.1 GPIO 126
4.1.2 UART and SPI 128
4.1.3 Interrupt Handling 131

4.2 Power Analysis 133
4.2.1 Simulation 133
4.2.2 Physical Power Analysis 140

4.3 Summary 150

CHAPTER 5 CONCLUSIONS & FUTURE WORK 151

5.1 Conclusions 151

5.2 Future work 154

REFERENCES 155

APPENDIX A 161

x

LIST OF TABLES

Table 2.1: Characterization of the applications 12
Table 2.2: Sensors sampling rate 13
Table 2.3: Applications lifetime and computation requirement 13
Table 2.4: Application device’s current consumption 15
Table 2.5: Hardware system for WSN 17
Table 2.6: Sensor node’s analysis 18
Table 2.7: FPGA chip overall analysis 21
Table 2.8: Xilinx FPGA chip analysis 22
Table 2.9: Altera FPGA chip analysis 22
Table 2.10: Reconfigurable system hardware resources usage 33
Table 2.11: Reconfigurable system file size 33
Table 2.12: Reconfigurable system power analysis 34
Table 2.13: MIPS instruction addressing modes 38
Table 3.1: Specification of multi-cycle and pipeline executions 45
Table 3.2: Instruction field information [refer to Patterson, D. A. and Hennessy, J. L. (2013)
for the information on the instruction usage] 46
Table 3.3: Pipeline microarchitecture design hierarchy 51
Table 3.4: Multi-cycle microarchitecture design hierarchy 56
Table 3.5: Instruction cycles and corresponding state required by instruction 60
Table 3.6: State definition of the multi-cycle microarchitecture Control-path unit FSM 61
Table 3.7: Corrupted signals to be de-coupled when PR is in progress 67
Table 3.8: State definition of the Memory Arbiter Unit 80
Table 3.9: Supported flash memory command instructions 82
Table 3.11: Configuration Register-1 of S25FL128S flash memory 84
Table 3.12: Wishbone standard signals for master and slave device 89
Table 3.13: SPI communication mode information 102
Table 3.14: $stat and $cause register description 117
Table 4.1: FPGA resources used in pipeline and multi-cycle microarchitectures. 120
Table 4.2: Critical path delay of each hardware component in multi-cycle microarchitecture
(generated from Xilinx Vivado) 120
Table 4.3: Critical path delay of each hardware component in pipeline microarchitecture
(generated from Xilinx Vivado) 122
Table 4.4: Design pin allocation on Nexys 4 DDR FPGA development board 124
Table 4.5: Average switching rate (millions of transitions per seconds) based on Artix-7
XC7A100T 136
Table 4.6: Power and performance analysis based on Artix-7 XC7A100T 139
Table 4.7: Combination of test 141
Table A.1: PR Unit I/O description 161
Table A.2: Cache unit I/O description 171
Table A.3: Memory Arbiter Unit I/O description, where x = 0, 1, 2 and 3 172
Table A.4: Flash Controller Unit I/O description 173
Table A.5: Boot ROM Unit I/O description 174
Table A.6: Data and Stack RAM Unit I/O description 175
Table A.7: UART Controller I/O description 175
Table A.8: SPI Controller I/O description 177
Table A.9: GPIO Controller unit I/O description 178
Table A.10: Priority Interrupt Controller unit I/O description 179
Table A.11: General Purpose Register unit I/O description 180

xi

LIST OF FIGURES

Figure 1.1: WSN architecture 3
Figure 2.1: Clock gating technique illustration diagram 28
Figure 2.2: Partial reconfiguration Illustration diagram 30
Figure 2.3: Reconfigurable instruction set extension architecture 35
Figure 2.4: MIPS ISA compatible instruction format bit allocation. 37
Figure 2.5: Hardware stages of MIPS ISA compatible processor. 38
Figure 3.1: Reconfigurable IoT processor architecture 42
Figure 3.2: Selected reconfigurable components from CPU. 44
Figure 3.3: Abstract view of 5-stage pipeline processor 49
Figure 3.4: 5-stage pipeline processor microarchitecture (functional view) 53
Figure 3.5: Design restructuring of 5-stage pipeline processor microarchitecture for PR
purposes 54
Figure 3.6: Difference between multi-cycle and pipeline executions 55
Figure 3.7: Multi-cycle processor microarchitecture 58
Figure 3.8: Design restructuring of multi-cycle processor microarchitecture for PR purposes
 59
Figure 3.9: 20 states of the multi-cycle microarchitecture Control-path unit FSM 60
Figure 3.10: Connection of the Control-path unit FSM with the Main Control Block and the
Arithmetic Logic Control Block for Multi-cycle microarchitecture 62
Figure 3.11: Partition pins of Partial Reconfiguration top module 64
Figure 3.12: Sample test program to initiate the PR 65
Figure 3.13: PR process flow 66
Figure 3.17: Memory system architecture 70
Figure 3.18: Memory system microarchitecture 71
Figure 3.19: Virtual to physical memory mapping based on 32-bit MIPS architecture. The
mapped memory segment is mapped to the Memory Management Unit (MMU) while the
cached segment used the cache memory to enhance the data accessing speed. 73
Figure 3.20: Memory allocation on kseg0 and kseg1 74
Figure 3.21: Cache unit chip interface 76
Figure 3.22: Direct mapped cache organization with a cache block size of 8-words 77
Figure 3.23: Cache read operation 77
Figure 3.24: Internal connection of the Cache unit 78
Figure 3.25: Memory Arbiter unit chip interface 79
Figure 3.26: Memory Arbiter Unit state diagram 80
Figure 3.27: Flash Controller unit chip interface 81
Figure 3.28: RDSR1 command sequence of S25FL128S flash memory 83
Figure 3.29: WRR command sequence of S25FL128S flash memory 84
Figure 3.30: WREN command sequence of S25FL128S flash memory 85
Figure 3.31: Wiring connection of S25FL128S flash memory with Flash Controller Unit 85
Figure 3.32: QOR command sequence of S25FL128S flash memory 85
Figure 3.33: Flash Controller unit microarchitecture 86
Figure 3.34: Boot ROM Unit chip interface 87
Figure 3.35: Data and Stack RAM Unit chip interface 88
Figure 3.36: I/O system architecture at MEM stage [PR unit (upr) pins is simplified for
illustration purpose] 90
Figure 3.37: UART Controller chip interface 91
Figure 3.38: UART data communication protocol 92
Figure 3.39: Process of data sampling when receiving data through UART controller 93
Figure 3.40: Internal connection of the UART Controller 96
Figure 3.41: SPI Controller chip interface 100
Figure 3.42: Mode 0 serial data communication 102
Figure 3.43: Mode 1 serial data communication 102
Figure 3.44: Mode 2 serial data communication 102
Figure 3.45: Mode 3 serial data communication 102

xii

Figure 3.46: GPIO Controller unit chip interface 107
Figure 3.47: Internal operation of GPIO Controller unit 107
Figure 3.48: Priority Interrupt Controller unit chip interface 109
Figure 3.49: Internal operation of Priority Interrupt Controller unit 109
Figure 3.50: Timing requirement of Priority Interrupt Controller unit 110
Figure 3.51: General Purpose Register unit chip interface 113
Figure 3.52: Graphical view of CP0 $stat and $cause registers 117
Figure 3.53: Nested interrupt service routine flow 118
Figure 4.1: Demonstration of GPIO test set up 127
Figure 4.2: SPI uiorisc_spi_miso and uiorisc_spi_mosi connection 129
Figure 4.3: Data received on the computer through UART. 130
Figure 4.4: Pseudo code of interrupt handling test program 131
Figure 4.5: Demonstration of interrupt handling 132
Figure 4.6: Power analysis procedure 133
Figure 4.7: AES128 encryption pseudo code (Nk=4, Nb=4, Nr=10) 135
Figure 4.8: High side current measurement circuit 142
Figure 4.9: Dynamic power consumption for 64 bytes data size. 144
Figure 4.10: Dynamic power consumption for 128 bytes data size. 144
Figure 4.11: Dynamic power consumption for 256 bytes data size. 144
Figure 4.12: Dynamic power consumption for 512 bytes data size. 145
Figure 4.13: Dynamic power consumption for 1024 bytes data size. 145
Figure 4.14: Task time used by MM, MP, PP and PM for 64, 128, 256, 512 and 1024 bytes
data size. 146
Figure 4.15: Dynamic energy consumption of MM, MP, PP and PM for 64, 128, 256, 512 and
1024 bytes data size. 146
Figure 4.16: Energy-delay product of MM, MP, PP and PM for 64, 128, 256, 512 and 1024
bytes data size. 148

xiii

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

AES-128 Advanced Encryption Standard – 128 bytes

ASIC Application Specific Integrated Circuit

BCH Bose–Chaudhuri–Hocquenghem

BRAM Block RAM

CISC Complex Instruction Sets Computing

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DFF D Flip-flop

DFS Fynamic Frequency Scaling

DLL Delay-Locked Loop

DVFS Dynamic Voltage and Frequency Scaling

DVS Dynamic Voltage Scaling

ED Event Detection

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array

GPIO General-Purpose Input/Output

HDL Hardware Description Language

I
2
C Inter-Integrated Circuit

ICAP Internal Configuration Access Port

IoT Internet of Things

IP Internet Protocol

ISA Instruction Set Architecture

I/O Input/Output

xiv

MIPS Microprocessor without Interlocked Pipeline Stages

NRE Non-Recurring Engineering

PLL Phase-Locked loop

PR Partial Reconfiguration

RAM Random Access Memory

RFU Reconfigurable Function Unit

RISC Reduced Instruction Set Computing

RTL Register-Transfer Level

SoC System-on-Chip

SPE Spatial Process Estimation

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver-Transmitter

VHDL Very High-speed Integrated Circuit Hardware

 Description Language

WSN Wireless Sensor Network

XADC Xilinx Analog-to-Digital Converter

1

CHAPTER 1

INTRODUCTION

1.1 Background

 Internet of Things (IoT) enable communication of a wide range of

physical objects without human intervention (Lazarescu, M. T., 2013), and

nowadays, sensors can be deployed everywhere. Sensor data can be accessed

at any time using a remote device, i.e. smartphone, computer etc. The

emerging of larger addressing space, i.e. Internet Protocol version 6 (IPv6),

allows each sensor node to have a unique Internet Protocol (IP) address and

directly access through the Internet. As a result, the physical objects are able

“to see, hear, think and perform jobs by having them „talk‟ together, to share

information and to coordinate decisions.” (Al-fuqaha, A. et al., 2015)

IoT, which is evolved from Wireless Sensor Network (WSN), has the

advantages of dynamic network size, low devices cost, self-organize without

human intervention, querying data and re-tasking capabilities, multihop data

aggregation, and multi-environment deployment (Bhattacharyya, D., Kim, T.

and Pal, S., 2010; Gungor, V. C., Lu, B. and Hancke, G. P., 2010). WSN

consists of a group of sensor nodes. Each sensor node is responsible to collect

ambient environmental data, pre-process the data and transmit the data to

neighbouring nodes or sink nodes (Akyildiz, I. F. et al., 2002; Stankovic, J. A.,

2008). The basic components of a sensor node consist of a sensing unit,

processing unit, transceiver unit and power unit. Sensing unit composes of

2

sensor(s) (can be a module form) where sensor data can be collected through

I
2
C (Inter-integrated Circuit), SPI (Serial Peripheral Interface), UART

(Universal Asynchronous Receiver-Transmitter), GPIO (General-Purpose

Input/Output), ADC (analog-to-digital converter), etc. Sensor senses the

ambient environment data and the collected data will be forwarded to the

processing unit. The processing unit consists of processor and memory units,

which used for data processing and storing respectively. Lastly, the transceiver

unit is responsible to send the processed data to neighbouring nodes or sink

nodes. A power unit is used as the power source of the sensor node. The

power source can be from a battery, harvesting unit (collected from renewable

energy, e.g. vibrations, solar, heat or electromagnetic energy) or power supply.

The role of each node is different depends on the processing capabilities and

themselves take on specific functions and behaviors in the network (Kateeb, A.

El, Ramesh, A. and Azzawi, L., 2008). A common WSN consists of 2 types of

nodes, sensor nodes and sink nodes (Akyildiz, I. F. et al., 2002). Sensor nodes

are capable to collect, process sensor data and transmit the data to another

sensor node or sink node via wireless (can be Bluetooth, Zigbee etc.), while

sink node has additional capability to forward the data to other networks, i.e.

Internet or Cellular networks (Buratti, C. et al., 2009). Figure 1.1 shows the

WSN architecture.

3

Figure 1.1: WSN architecture

Source: Akyildiz, I. F. et al. (2002) „A survey on sensor networks‟, IEEE

Communications Magazine, 40(8), pp. 102–114. doi:

10.1109/MCOM.2002.1024422.

For the on-field IoT application, a stringent need for low power is the

fundamental requirement. “Low power design is an important topic of wireless

sensor network” (Yongjun Xu et al., 2005). The main challenge of WSN is to

reduce the power consumption of the sensor node (Jawhar, I., Mohamed, N.

and Agrawal, D. P., 2011). From a survey conducted by de la Piedra, A. et al.

(2013), most of the IoT deployments require the sensor nodes to operate at

least for a few months. To achieve this requirement, the sensor nodes have to

be operated in low power mode to minimize the energy consumption.

However, reducing the power consumption usually will tend to reduce the

performance as well, as the common approach is by reducing the clock

frequency. Choi, K., Soma, R. and Pedram, M. (2004) demonstrated energy

saving by reducing the clock frequency and voltage, which resulted in 10 - 30%

performance loss for CPU-bound applications (bf, crc, djpeg and math) and 10

- 20% performance loss for memory-bound applications (qsort and gzip).

Processor with a fixed microarchitecture can cause oversupply of

computational speed for processing low computational requirement IoT tasks

4

and thus, energy is wasted. Furthermore, the operation at low computational

speed is able to save power, however it may not process high computational

requirement IoT tasks in certain period. Pande, V., Elmannai, W. and Elleithy,

K. (2013), Lloret, J. et al. (2009) and Xufeng Wei et al. (2014) showed a fire

detection application using temperature and image sensors on a high

computational speed processor in WSN. Image sensor was set to sleep mode

(Pande, V., Elmannai, W. and Elleithy, K., 2013; Lloret, J. et al., 2009) or with

longer sampling interval (Xufeng Wei, Yahui Wang and Yanliang Dong, 2014)

for power saving purpose, but temperature sensor has shorter sampling

interval. Since temperature sensor is still monitoring the environment

frequently, when it detects a rapid increase in temperature, the image sensor is

turned to active mode to further verify on such event triggered. In this case,

the power consumption can still be reduced, since low computational speed is

required to collect temperature sensor data, whereas high computational speed

is required on demand.

Violante, M. et al. (2011) had stated that hard macro or hard-core

processors, i.e. commercialize off-the-shelf microcontroller chip, for example,

ATmega128L inside the MICAz mote, is neither configurable nor modifiable

by end user. Slight modification to be made in the manufacturing process

could end up costing millions. On the other hand, the soft IP core offers some

degrees of customization, which determined the functionalities and peripherals

that should be included in the design. This has made a valid issue when de la

Piedra, A. et al. (2013) and Qingping Chi et al. (2014) presented that lack of

standardized I/O peripherals interface for wireless sensor node as one of the

5

open issues or limitations for the sensor nodes. The I/O peripherals are used as

the communication path between the external chip modules with the

processing unit inside the sensor node. Since external chip modules are not

always designed with either SPI or I
2
C interface (de la Piedra, A. et al., 2013),

it will be a limitation when the off-the-shelf microcontroller does not provide a

sufficient number of interfaces, for example, off-the-shelf microcontroller

provides only UART interface while transceiver module is designed with SPI

interface. While struggling with this issue, Johnson, D. (2009) presented a

solution by using only the digital GPIO port to imitate the SPI, I
2
C and UART

communication protocols, and thus solve the unstandardized I/O peripherals

issue. However, referring to the experimental result shown in (Mikhaylov, K.

and Tervonen, J., 2012), this solution consumes more energy and has lower

performance than the real hardware interface protocols. Apart from that,

Mikhaylov, K. and Tervonen, J. (2012) also showed that the power

consumption of SPI is far lower than UART and I
2
C where UART is lower

than I
2
C. Besides that, Qingping Chi et al. (2014) had also pointed out that the

applications are limited by the fixed hardware design and there is still no “one

size fits all” kind of solution. Hsieh, C.-M. et al. (2014) on the other hand had

experimented the Fast Fourier transform (FFT) function for both software and

hardware methods. The result shows that software method consumes 21%

more current than the hardware method. Inherently, it is a limitation if an off-

the-shelf microcontroller is used, i.e. ATmega128L, since the hardware

accelerator is not able to customize or include into the microcontroller.

6

In our research work, we are motivated to develop a reconfigurable

soft-core processor on Field-Programmable Gate Array (FPGA) for the on-

field Internet of Things (IoT) application. The processor is developed to be

customizable and capable in switching between multi-cycle (to process low

computational speed requirement tasks while saving power) and pipeline (to

process high computational speed requirement task but consume more power)

microarchitectures to satisfy better performance-power tradeoff. Our research

has carried out on the processor microarchitecture level, which by experiment

the reconfiguration between multi-cycle and pipeline executions. Multi-cycle

execution is able to reduce the dynamic power consumption of the processor at

the expense of providing lower computational speed. In opposite, pipeline

execution provides higher computational speed but consume more dynamic

power than multi-cycle execution. The processor is implemented based on

FPGA technology, in which FPGA technology provides a key enabling feature

for our experiment, the partial reconfiguration (PR) feature. FPGA PR feature

allows only reconfiguring a small region, i.e. multi-cycle and pipeline

executions, without reconfiguring the whole FPGA chip.

7

1.2 Problem Statement

 A deployed IoT sensor node is expected to perform data aggregation,

data processing and data transmission, which require different computational

speeds and power consumption. Low power consumption is the fundamental

requirement for deploying IoT application because changing device‟s battery

is a difficult task after the sensor nodes were deployed. Various power

reduction techniques, refer to Section 2.3, have been proposed to develop

energy efficient sensor nodes for IoT deployment, but sacrifice the

computational performance. The techniques mentioned were implemented at

gate-level or board-level to manipulate the voltage and clock frequency on a

fixed microarchitecture processor. Achieving low-power by manipulating the

micro-architectural design is, however, has not been well addressed.

Reconfigurable microarchitecture of processor offers a new low power

technique to be used in IoT sensor nodes. Interestingly, the design of such

processor was also accompanied by the following questions: (1) How to tune

the processor based on the computational needs from the environment

requirement to have the optimum power saving scheme? (2) How to verify the

performance of the design in terms of computational speed and power using

conventional FPGA chip? Therefore, there is a need to perform a systematic

research on the design of an energy efficient processor with reconfigurable

microarchitecture for IoT applications.

8

1.3 Objectives

The main goal of this research is to develop a reconfigurable soft-core

processor on FPGA for the on-field IoT application. The developed IoT

processor is capable to collect, process and transmit the sensor data to another

sensor node. The developed IoT processor is also able to adjust at micro-

architectural level, the required computational speed to suit each IoT

application and at the same time save power. More specifically, the objective

can be further divided into the following sub-objectives:

1) To develop a reconfigurable soft-core IoT processor with essential I/O

interfaces (SPI, UART and GPIO) and memory system for on-field IoT

application. This work includes the development of a suitable CPU

structure, I/Os and firmware, bus system and arbitration, volatile and

non-volatile memory controller and memory system arbitration.

2) To develop the microarchitecture that is able to perform PR between

multi-cycle and pipeline microarchitectures to satisfy the varying

performance-power tradeoff requirements from each IoT application.

The developed processor should be able to partial reconfigure itself

between multi-cycle and pipeline microarchitectures. This work

includes the determination of the CPU components involving in the PR

and the development of the PR system.

3) To synthesize the developed processor on a conventional Xilinx Artix-

7 XC7A100T FPGA chip. The computational speed and power

analysis for pipeline and multi-cycle microarchitectures based on AES-

128 encryption will be experimented to identify the performance of the

developed processor.

9

1.4 Contributions

The contributions of this dissertation are:

1) A customizable IoT processor that is able to cope with rapidly

changing research functional needs required in IoT. Since the research

and development of IoT applications are constantly developing, where

extra functionalities may be introduced in the future, customizable

offers competitive advantages by shorten the development cycle, lower

the development cost and lower manufacturing turn-around time.

2) A reconfigurable soft-core IoT processor to satisfy the varying

performance-power tradeoff requirements from each IoT application

by PR between multi-cycle and pipeline executions. Multi-cycle

execution is used to reduce the dynamic power consumption of the

processor at the expense of providing lower computational speed,

while pipeline execution provides higher computational speed but

consume more dynamic power than multi-cycle execution.

3) An experiment result that highlights the quantitative differences

between multi-cycle and pipeline executions. The analysis on

computational speed and power consumption for both multi-cycle and

pipeline executions are gathered to highlight the strength of each

execution.

10

1.5 Dissertation Organization

This dissertation is organized as follows. Chapter 2 discusses the necessary

information prior to conduct our research. Chapter 3 describes the

reconfigurable IoT processor developed. Chapter 4 presents the verification

flow and compares the computational speed analysis and power analysis for

both pipeline and multi-cycle microarchitecture. Chapter 5 concludes the

dissertation and provides suggestion for the future work.

11

CHAPTER 2

LITERATURE REVIEW

2.1 Internet of Things (IoT)

2.1.1 IoT Application

 Buratti, C. et al. (2009) had classified the IoT application into 2

categories, namely event detection (ED) and spatial process estimation (SPE).

The ED application sensors are deployed to detect an event while SPE

application aims to estimate a given physical phenomenon, i.e. estimation of

the entire behavior of the spatial process based on the samples taken by the

sensor nodes. Borges, L. M. et al. (2014) had further expanded these

categories according to the applications area and its applications. Table 2.1

shows the characterization of the applications by Borges, L. M. et al. (2014),

with ED represents the event detection and PE represents the process

estimation (PE = SPE).

12

Table 2.1: Characterization of the applications

Source: Borges, L. M., Velez, F. J. and Lebres, A. S. (2014) „Survey on the

Characterization and Classification of Wireless Sensor Network

Applications‟, IEEE Communications Surveys & Tutorials, 16(4), pp.

1860–1890. doi: 10.1109/COMST.2014.2320073.

 However, the information shown in Table 2.1 is inefficient to identify

the computational requirement for each IoT application. Borges, L. M. et al.

(2014) and Hempstead, M. et al. (2008) had classified the sampling rates of

the sensor nodes into 3 ranges, which are low sampling rate varies between

0.001 Hz and 100 Hz, medium sampling rate varies between 100 Hz and 1

kHz, and high sampling rate which is higher than 1 kHz. Hempstead, M. et al.

(2008) had pointed out that the computational requirement is defined by the

sampling rate for the measured phenomena and the amount of on-node data

filtering required. High performance processor is required to measure and

process high sampling data rate of the sensor node, while low sampling data

rate sensor node will be idle most of the time. Table 2.2 shows the sensors

sampling rate used in different phenomena identified by Hempstead, M. et al.

(2008).

13

Table 2.2: Sensors sampling rate

Source: Hempstead, M. et al. (2008) „Survey of Hardware Systems for

Wireless Sensor Networks‟, Journal of Low Power Electronics, 4(1), pp.

11–20. doi: 10.1166/jolpe.2008.156.

Furthermore, Hempstead, M. et al. (2008) further described the desired

lifetimes and the computational requirements in each application domain,

which is shown in Table 2.3.

Table 2.3: Applications lifetime and computation requirement

Source: Hempstead, M. et al. (2008) „Survey of Hardware Systems for

Wireless Sensor Networks‟, Journal of Low Power Electronics, 4(1), pp.

11–20. doi: 10.1166/jolpe.2008.156.

14

Majority of the applications in Table 2.3 require the lifetime of the

sensor node to last for at least a few months. The research work conducted by

Hempstead, M. et al. (2008) is useful in identifying the lifetime and the

computation requirement of the sensor node, especially the targeted

application, environmental monitoring application, which would requires low

to medium computational speed and expected to last for several months.

In summary, we see an opportunity to save power consumption or

provide higher computational speed based on the need of an application as

indicated by the sensors sampling rate. For example, for sampling rates

between 0.001 Hz to 100 Hz which imply a low-speed processing, a multi-

cycle structure can be used to reduce the power consumption. If higher

sampling rates (more than 1 kHz) are required by an application, then a

pipeline structure can be employed.

15

2.1.2 Existing IoT Platforms

 Borges, L. M. et al. (2014) had presented the sensor node platform

used in each IoT application area, which is shown in Table 2.4.

Table 2.4: Application device‟s current consumption

Source: Borges, L. M., Velez, F. J. and Lebres, A. S. (2014) „Survey on the

Characterization and Classification of Wireless Sensor Network

Applications‟, IEEE Communications Surveys & Tutorials, 16(4), pp.

1860–1890. doi: 10.1109/COMST.2014.2320073.

16

Continued from Table 2.4: Application device‟s current consumption

This study shows the sampling rate that supported by each sensor node

platform. The sampling rate of the environmental monitoring application falls

under medium sampling rate range, i.e. varies from 100 Hz to 1 kHz.

ATMega128L microcontroller is used to implement the environmental

monitoring application, with consumes 0.036A to 0.038A in overall energy

consumption. Besides that, Hempstead, M. et al. (2008) presented the

specification of the hardware system used in the WSN in Table 2.5.

17

Table 2.5: Hardware system for WSN

Source: Hempstead, M. et al. (2008) „Survey of Hardware Systems for

Wireless Sensor Networks‟, Journal of Low Power Electronics, 4(1), pp.

11–20. doi: 10.1166/jolpe.2008.156.

ATMega128L microcontroller is used by most of the IoT application

area as shown in Table 2.4. However, based on the information shown in

Table 2.5, the general purpose off-the-shelf microcontrollers (ATMega128L

and TI MSP430) consume the most energy, in which it is not the best solution

in implementing a low power IoT application sensor node. By investigate

Table 2.5, the reasons for such high power usage is because of the memory

size and the process technology (350 nm). Another supporting research work

by Gajjar, S. et al. (2014), had made an analysis on the sensor node used in

WSN, which shown in Table 2.6.

18

Table 2.6: Sensor node‟s analysis

Source: Gajjar, S. et al. (2014) „Comparative analysis of wireless sensor

network motes‟, in 2014 International Conference on Signal Processing

and Integrated Networks (SPIN). IEEE, pp. 426–431. doi:

10.1109/SPIN.2014.6776991.

From Table 2.6, TI MSP430 family series microcontroller consumes

the lowest power. Based on the information provided by Texas Instruments

(2006), MSP430 family series microcontrollers require multiple clock cycles

to execute an instruction, i.e. multi-cycle execution. However, due to the

nature of multi-cycle execution, it provides lower computational power as

compared to the pipeline execution, which makes the pipeline execution

popular in high performance processor design. So far, the discussed

microcontrollers are manufactured using ASIC technology. It would be costly

and requires longer development cycle to implement both the multi-cycle and

pipeline execution using ASIC technology in order to gain the advantage from

both design approaches. In the next subsection, we will discuss the benefits of

the FPGA technology which can help to achieve this goal.

19

2.2 FPGA versus ASIC

 Most of the soft-core processor design start in Register-Transfer Level

(RTL) modeling since it is technology-independent and hence the design can

be easily ported from FPGA to ASIC with only a few Hardware Description

Language (HDL) code changes (Abid, F. and Izeboudjen, N., 2015a; Abid, F.

and Izeboudjen, N., 2015b). In addition, HDL is at the center of modern digital

design practices, in which the building blocks or the entire processor can be

describe either in Very High-speed Integrated Circuit Hardware Description

Language (VHDL) or Verilog, and the overall design is much easier to

understand (Harris, D. M. and Harris, S. L., 2013; Tong, J. G., Anderson, I. D.

L. and Khalid, M. A. S., 2006). However, when it comes to the selection of the

implementation platform, there‟s always an argument between the 2 major

technologies, ASIC or FPGA. FPGA is widely used in various designs and

diverse target applications (Abid, F. and Izeboudjen, N., 2015a). It has the

benefits of low manufacturing turn-around time, shorter the development cycle,

reduce the time-to-market and decrease the Non-Recurring Engineering (NRE)

cost. However, it comes with a price in higher power consumption, larger

design area and longer circuit delay which reduce the design logics

performance (Kuon, I. and Rose, J., 2007) and it only progressively used as

the final product platforms for low volume production (Abid, F. and

Izeboudjen, N., 2015a). For high volume production, ASIC is often chosen as

the implementation technology (Abid, F. and Izeboudjen, N., 2015b). Its

benefits are lower power consumption, smaller design area and higher design

logics performance compare with FPGAs (Kuon, I. and Rose, J., 2007).

However, longer development cycle which leads to delayed time-to-market,

20

higher NRE cost and high manufacturing turn-around time are the drawbacks

of the ASIC implementation (Abid, F. and Izeboudjen, N., 2015b). For our

project, FPGA is chosen as our core technology to implement the IoT soft-

core processor, in order to take advantage in a shorter development cycle and

highly customizable. Since IoT data processing requirements, sensors and data

loggers interface and communications medium are not mature in

implementation, it is expected that the functional changes to take place

through the IoT processor development cycle (de la Piedra, A. et al., 2013).

For example, iterative experimental work on processor micro-architectural

level to achieve lower power consumption, adding or removing required IOs

etc. As stated in the previous section, the switching between multi-cycle and

pipeline executions is only possible with the help of partial reconfiguration

feature offered by FPGA. Besides that, since FPGA is potential to port to

ASIC in the future, we may identify the competitiveness of our design with the

existing microprocessor or microcontroller, which mostly fabricated in ASIC.

Kuon, I. and Rose, J. (2007) had examined that the FPGA is approximately 35

times larger design area than the ASIC with between 3.4 to 4.6 times slower

and consumes 14 times more dynamic power. This statistical data will serve as

a reference for us to estimate the design performance when ported to ASIC

platform.

FPGA has been constructed in technologies ranging from 2.0 microns

in 1985 down to 20 nanometers today (Shannon, L. et al., 2015). Shannon, L.

et al. (2015) concluded that the FPGA technology has been closely following

Moore's law, where the numbers of transistors on an integrated circuit will

21

double every two years. Table 2.7 shows the related information gathered by

Shannon, L. et al. (2015).

Table 2.7: FPGA chip overall analysis

Source: Shannon, L. et al. (2015) „Technology Scaling in FPGAs: Trends

in Applications and Architectures‟, in 2015 IEEE 23rd Annual

International Symposium on Field-Programmable Custom Computing

Machines. IEEE, pp. 1–8. doi: 10.1109/FCCM.2015.11.

 As transistor size keeps scaling down, a bigger design can be

constructed within FPGA, ranging from small building blocks to a very

powerful System-on-Chip (Rodriguez-Andina et al., 2015). Moreover, the

maximum frequency achieved in the FPGA technology doubles every 8 years,

which offer a trend to design a high performance computing platform using

FPGA (Shannon, L. et al., 2015). Power consumption also reduces as

transistor size scaling down, which by offering lower operational voltage (de

22

la Piedra et al., 2012). Table 2.8 and Table 2.9 show the related information

gathered by de la Piedra et al. (2012).

Table 2.8: Xilinx FPGA chip analysis

Source: de la Piedra, A., Braeken, A. and Touhafi, A. (2012) „Sensor

Systems Based on FPGAs and Their Applications: A Survey‟, Sensors,

12(12), pp. 12235–12264. doi: 10.3390/s120912235.

Table 2.9: Altera FPGA chip analysis

Source: de la Piedra, A., Braeken, A. and Touhafi, A. (2012) „Sensor

Systems Based on FPGAs and Their Applications: A Survey‟, Sensors,

12(12), pp. 12235–12264. doi: 10.3390/s120912235.

With the rapid evolution of semiconductor technology, FPGA

manufacturer often come out with extra hardware resources as competitive

advantages among competitor (Rodriguez-Andina, J. J., Valdes-Pena, M. D.

and Moure, M. J., 2015; Rodriguez-Andina, J. J., Moure, M. J. and Valdes, M.

D., 2007; Kuon, I., Tessier, R. and Rose, J., 2007). One of the useful resources

are the memories, either volatile or non-volatile memory or both, where user‟s

23

program code or data may reside in the memory. Xilinx Analog-to-Digital

Converter (XADC) block, offered by Xilinx, allows high-quality analog-to-

digital conversion and customizable signal conditioning, Phase-locked loop

(PLL) and Delay-locked loop (DLL) can be used to compensate clock

propagation delays throughout the FPGA. A soft IP core (MicroBlaze soft-

core by Xilinx, Nios II soft-core by Altera etc.) or hard-core processor was

integrated on the FPGA board.

With the improving of power consumption in FPGA, it allows turning

existing IoT devices into a low power customizable FPGA-IoT platform

(Gomes, T. et al., 2015). Several projects had been completed on FPGA

covering multimedia application, industrial control, environmental monitoring

and safety and security applications (de la Piedra, A. et al., 2012). An example

of the project is the development of a co-processor on FPGA (Garcia, R. et al.,

2009). This project implemented the Kalman filter for tracking environmental

targets, such as animals. Several Kalman filter configurations can be

developed depending on the type of objects and operation stages. Besides that,

partial reconfiguration feature offered by FPGAs is used to reduce the power

consumption. With this approach, power consumption is reduced by 5 - 25 %.

Another project using FPGA soft-core, MicroBlaze processor, is used as the

processing unit by Hongzhi Liu and Bergmann, N. W. (2010). This project

aimed to develop a platform that performs bird call detection. Besides that,

another project used the combination of the microcontroller and the FPGA,

which the FPGA serve as the co-processor, had been implemented by Vana

Jeličić et al. (2011). An 8-bit AVR microcontroller with an FPGA based co-

24

processor that is able to perform image processing is used for pest detection in

olive groves. This platform consumes 87.12 mW in active mode and 18.4 uW

in sleep mode at 3.3 V. The projects mentioned had shown a promising result

to convince more research on the development of IoT devices using FPGA as

the implementation technology.

25

2.3 Low power techniques in FPGA

 Kuon, I., Tessier, R. and Rose, J. (2007) stated that power consumption

in FPGAs is categorized into 2 types: static and dynamic power consumption.

Dynamic power is consumed by the transitioning of the signals logic level

(either 0 to 1 or 1 to 0). A large amount of energy is used to charge or

discharge the load capacitance of the transistors in the circuit. In contrast,

static power is consumed when using a relatively smaller amount of energy to

maintain the same logic level.

Conventional power reduction technique includes dynamic voltage

scaling (DVS), dynamic frequency scaling (DFS), dynamic voltage and

frequency scaling (DVFS), clock gating and power gating have been

implemented on FPGA-based soft-core design in the past. Power reduction

using dynamic voltage scaling (DVS) presented by Chow, C. T. et al. (2005)

shows a power saving between 4% to 54% is achieved on a 0.18 um Xilinx

Virtex 300E-8 FPGA chip. The internal supply voltage (VCCINT) source is

replaced by a voltage controller to dynamically adjust the supply voltage. Two

different clock frequencies (66 MHz and 100 MHz) have been used to test the

efficiency of the DVS, in which the VCCINT supply voltage is reduced to

meet the timing requirements and at the same time saving power. DVS

extended with dynamic frequency scaling (DFS) to formed dynamic voltage

and frequency scaling (DVFS) with extra capability of adaptive voltage

scaling has been implemented by Nunez-Yanez, J. L. (2015). The technique

proposed is capable of reducing both static and dynamic power consumptions.

The experimental work had been implemented on a Xilinx XUPV5-LX110T

26

evaluation board, with a 65 nm Virtex-5 XC5VLX110T FPGA chip on board.

The author replaced the fixed voltage DC-to-DC module on the FPGA board

with a specially designed DC-to-DC module, which is able to scale the

VCCINT supplying to FPGA logic resources. The corresponding maximum

working frequency for the minimum voltage (0.62V) is 40 MHz and achieves

maximum power reduction up to 87% (from 615 mW to 80 mW). DVFS

extended with power gating and partial reconfiguration between one (ME1)

and six (ME6) execution units of a motion estimation processor applies on

Xilinx Zynq board, with a 28 nm Xilinx Virtex-7 FPGA chip on board, has

been carried out by Luis Nunez-Yanez, J., Hosseinabady, M. and Beldachi, A.

(2016). This study shows a power reduction up to 62% (124 mW to 47 Mw)

for ME1 and 52% (285 mW to 137 mW) for ME6. Since ME6 is expensive

from the energy usage point of view, the author suggested using the ME6 to

complete the job fast while idling using ME1 until a new request is received.

Furthermore, both studies (Nunez-Yanez, J. L., 2015; Luis Nunez-Yanez, J.,

Hosseinabady, M. and Beldachi, A., 2016) show a dramatically reduce in total

power consumption that has been achieved by the manufacturer, from 65 nm

to 28 nm process technology, which shows a competitive advantage in using

FPGAs to implement the design.

On the other hand, power gating also able to reduce the static and

dynamic power (Hosseinabady, M. and Nunez-Yanez, J. L., 2014;

Hosseinabady, M. and Nunez-Yanez, J. L., 2015). The research work by

Hosseinabady, M. and Nunez-Yanez, J. L. (2014) shows that the power gating

can reduce the power consumption up to 96%. The authors used the hard-core

27

processor (Cortex A9) on the Xilinx ZYNQ device to power-off the FPGA

chip when it is idle with timing overhead (the time for turn-off, turn-on and

reconfiguration of the programmable logic) as low as 42.58ms. The authors

had extended their research work by applied a streaming application (MP3

player) on FPGA and perform up to 52.9% energy reduction (Hosseinabady,

M. and Nunez-Yanez, J. L., 2014). However, this technique (power gating)

requires an extra hard-core processor to serve as the watchdog core which

consumes extra power other than FPGA.

In contrast, clock gating technique in RTL modeling does not require a

hard-core processor or any physical modifications on hardware. Clock gating

(Oklobdzija, V. G. and Krishnamurthy, R. K., 2006) technique is a popular

technique that used to reduce the dynamic power consumption of the

processor. The design logic of the processor is made up of sequential circuits

and combinational logic. The sequential circuits do consume energy on every

pulses of the clock, even when it is not affecting the final output. The solution

to avoid this situation is by disabling the clock input of the sequential circuits.

Figure 2.1 illustrates the implementation of the clock gating technique on the

D Flip-flop (DFF).

28

Figure 2.1: Clock gating technique illustration diagram

Source: Oklobdzija, V. G. and Krishnamurthy, R. K. (2006) High-

Performance Energy-Efficient Microprocessor Design. Edited by V. G.

Oklobdzija and R. K. Krishnamurthy. Boston, MA: Springer US (Series

on Integrated Circuits and Systems). doi: 10.1007/978-0-387-34047-0.

From Figure 2.1, input signals EnableA and EnableB perform AND

operation with the clock source of the DFF. When both EnableA and EnableB

are de-asserted, the clock pulse will not pass into the DFF and thus the DFF

stop functioning. Pandey, B. et al. (2013) proposed a Random Access Memory

(RAM) unit applied with clock gating technique implemented on a 40 nm

Xilinx Virtex-6 FPGA chip. This research work shows a power reduction by

38.89% on the 1 GHz system clock and 41.3% on the 10 GHz system clock,

which means the clock gating technique is more beneficial for higher clock

frequency. Yan Zhang, Roivainen, J. and Mammela, A. (2006) tested the clock

gating technique with several benchmark circuits (CombFilter,

EthernetInterface, FrequencyEstimator, Half-bandFilter and I
2
C-Interface) and

resulting in power saving of 50% to 80% of the dynamic power consumption

on a 0.13 um Xilinx Virtex-II FPGA chip.

The discussed power reduction techniques in FPGA had shown an

exceptional performance in reducing the power consumption. However, those

techniques to achieve low-power consumption or higher computational speed

29

by manipulating the voltage and operating frequency, are still confined to a

fixed microarchitecture. A real-time adaptive microarchitecture for low-power

consumption and higher computational speed has yet to be addressed. Our

intention is to provide a platform that is able to switch between multi-cycle

(low power) and pipeline microarchitectures (high computational power).

Thus, we shall adopt the partial reconfiguration (PR) feature offered by FPGA

to implement the proposed platform.

30

2.4 Partial Reconfiguration

 One of the noticeable features offer by the FPGA is the reconfiguration,

either partial or dynamic run-time self-reconfiguration (Becker, J. et al., 2007).

This feature allows the reconfiguration of a certain part of the hardware.

Meanwhile, the power constantly fed into the FPGA chip and no hardware

reset is required. Thus, increase the adaptation of a system with the actual

demands of the applications running on the FPGA chip. By using this feature,

it is possible to store part of the hardware functionality to an external non-

volatile memory and partial reconfiguration (PR) can be carry out on demand.

Thus, power dissipation is reduced since the overall design is smaller. Figure

2.2 shows Xilinx illustration on the partial reconfiguration (Xilinx, 2016a).

Figure 2.2: Partial reconfiguration Illustration diagram

Source: Xilinx (2016a) „Vivado Design Suite User Guide Partial

Reconfiguration‟

Reconfig Block A shown in Figure 2.2 can be replaced by copy over

any of the partial bitstream (A1.bit, A2.bit, A3.bit, or A4.bit) on the external

non-volatile memory to the FPGA. The partial bitstream is also possible to be

transfer from an external smart source through JTAG connection, e.g. a

computer (Xilinx, 2016b). Xilinx stated that partial reconfiguration is able to

31

reduce the FPGA design area that required to implementing a functional

hardware, and thus reduce the cost and the power consumption since the cost

per unit and the power consumption of the external non-volatile memory is

lesser than the FPGA chip. Partial reconfiguration also provides the flexibility

in the choices of the algorithms and the protocol for an application, improves

FPGA fault tolerance and lastly accelerate configurable computing.

In order to perform PR, a PR controller is required to trigger and

control the action of read over the partial bitstream from an external non-

volatile memory and write to the FPGA (data loading) through Internal

Configuration Access Port (ICAP) based on Xilinx technology (Xilinx, 2016b;

Cardona, L. A. and Ferrer, C., 2015). Data loading on the FPGA requires

specific timing requirement, generally categorize as continuous data loading

and non-continuous data loading. Continuous data loading provides an

uninterrupted stream of partial bitstream loading to the FPGA while non-

continuous data loading allows an interrupted stream of partial bitstream

loading to the FPGA. Continuous data loading requires extra design area and

hardware, i.e. FPGA Block RAMs (BRAMs), to use as the temporary buffer to

store the partial bistream copied from the external non-volatile memory and

write to FPGA in a bunch, in order to reduce the overhead and complete the

PR faster (Cardona, L. A. and Ferrer, C., 2015). However, extra design area

and hardware used tends to increase the power consumption when the PR

takes place. In opposite, non-continuous data loading can reduce the hardware

used by directly read the partial bitstream from the external non-volatile

memory and write to FPGA through ICAP word by word (32-bits). However,

32

a lower performance is achieved since the data reading from the external non-

volatile memory is usually in serial form. Our experimental work will be

based on non-continuous data loading, so that to reduce the design area and

the hardware used, which can help to save power when PR takes place.

An example of the reconfigurable system that had been carried out by

McDonald, E. (2008), is by constructed a software-defined radio system on the

FPGA. The reconfigurable system allows a simplex transceiver to be

reconfigured, where either transmit or receive capability is used at any given

time and never used at the same time. However, due to the lack of information

in power analysis of the proposed reconfigurable system, we cannot predict on

how much the improvement of the energy consumption achieved. Krasteva, Y.

E. et al. (2008) used the FPGA as a reconfigurable coprocessor that used for

sensor data aggregation and data processing. There are 4 partial bitstreams

created, which are temperature sensor nodes with the multiplier

(TMPS_HW_v2), temperature sensor nodes without the multiplier

(TMPS_HW_v1), accelerometer sensor nodes with the multiplier

(ACCS_HW_v2), and accelerometer sensor nodes without the multiplier

(ACCS_HW_v1). The design areas and the bitstream file size are shown in

Table 2.10 and Table 2.11.

33

Table 2.10: Reconfigurable system hardware resources usage

Source: Krasteva, Y. E. et al. (2008) „Remote HW-SW reconfigurable

Wireless Sensor nodes‟, in 2008 34th Annual Conference of IEEE

Industrial Electronics. IEEE, pp. 2483–2488. doi:

10.1109/IECON.2008.4758346.

Table 2.11: Reconfigurable system file size

Source: Krasteva, Y. E. et al. (2008) „Remote HW-SW reconfigurable

Wireless Sensor nodes‟, in 2008 34th Annual Conference of IEEE

Industrial Electronics. IEEE, pp. 2483–2488. doi:

10.1109/IECON.2008.4758346.

 One of the brilliant features of this project is that the PR bitstreams do

not reside in the external non-volatile memory on FPGA board. Instead, the

authors using wired or wireless remote to send over the partial reconfiguration

bitstream to the 8052 microcontroller to initiate the FPGA PR. The authors

had tested with several remote connections, which are cable with 8-bytes

packet size (Cable 8B), ZigBee with 8-bytes packet size (ZigBee 8B), cable

with 16-bytes packet size (Cable 16B) and ZigBee with 16-bytes packet size

(ZigBee 16B). However, the result for the power consumption was not

provided by the authors.

34

Another project by Hinkelmann, H., Zipf, P. and Glesner, M. (2007)

used the reconfigurable feature of the FPGA to construct a coarse-grained,

domain-specific reconfigurable function unit (RFU). The RFU allows a

functional task to perform only certain hardware module to exist on the FPGA.

The non-related hardware module will reside in the external non-volatile

configuration memory to save power. The RFU is aimed to perform

lightweight error detection and correction (CRC-8 checksum calculation and

BCH decoding), AES key generation and AES encryption. Table 2.12 shows

the energy comparison of the software approach versus the RFU of the given

reconfigurable system.

Table 2.12: Reconfigurable system power analysis

Source: Hinkelmann, H., Zipf, P. and Glesner, M. (2007) „A Domain-

Specific Dynamically Reconfigurable Hardware Platform for Wireless

Sensor Networks‟, in 2007 International Conference on Field-

Programmable Technology. IEEE, pp. 313–316. doi:

10.1109/FPT.2007.4439274.

From Table 2.12, we can conclude that the reconfigurable system gain

more power efficiency compare with the software implementation of a given

task. However, the authors only provide the power consumption comparison

between the software method and the reduced hardware implementation of a

given task, which is insufficient, since our main concern is to identify the

35

difference of the non-reconfiguration system (i.e. all the hardware module

exist on FPGA) versus the reconfigurable system with RFU (i.e. only certain

hardware module exist on FPGA). A reconfigurable instruction set extensions

has been presented by Koch, D. et al. (2012). They pointed out that the custom

instruction, for example, an instruction that used to permuting all bits in a 32-

bit operand, can reside as a small reconfigurable slot, which consists of a

bunch of CPU instructions, instead of constructing the circuitry for the custom

instruction. This allows an expensive algorithm to be executed with only one

instruction call. Hansen, S. G., Koch, D. and Torresen, J. (2013) show a case

study using a 32-bit Microprocessor without Interlocked Pipeline Stages

(MIPS) soft-core processor to implement with the reconfigurable instruction

set extensions. Figure 2.3 shows the microarchitecture of the reconfigurable

instruction set extensions.

Figure 2.3: Reconfigurable instruction set extension architecture

Source: Hansen, S. G., Koch, D. and Torresen, J. (2013) „Simulation

framework for cycle-accurate RTL modeling of partial run-time

reconfiguration in VHDL‟, in 2013 8th International Workshop on

Reconfigurable and Communication-Centric Systems-on-Chip

(ReCoSoC). IEEE, pp. 1–8. doi: 10.1109/ReCoSoC.2013.6581519.

36

There are 4 reconfigurable slots, where each slot stores a bunch of

CPU instructions to form a function or an algorithm (AES encryption, CRC

checksum etc.). This approach can reduce the effort on creating the hardware

dedicated to perform special function or algorithm. The design area also

reduced, which consequently reduce the power consumption.

We intended to develop a PR system that covers the processor general

purpose instructions. Our work is different from the existing work, in which

the existing works require the development of the dedicated hardware

component (e.g. AES encryption hardware), extra instruction to invoke the

usage, and only use for specific purpose (e.g. AES data encryption).

37

2.5 MIPS ISA

 The Microprocessor without Interlocked Pipeline Stages instruction set

architecture (MIPS ISA) has been widely used in the research and experiment

by many researchers in the past decades (Hennessy, J. L. and Patterson, D. A.,

2012; Patterson, D. A. and Hennessy, J. L., 2013). MIPS ISA is developed

based on the Reduced Instruction Set Computing (RISC) philosophy, which

strongly emphasizes in reduce instruction support and simple hardware

structure to increase the processor performance while decreasing the power

consumption. In contrast, the Complex Instruction Sets Computing (CISC)

processor emphasizes on maximizing the performance by increasing the

hardware parallelism and complexity, but increase the power consumption.

Thus, a MIPS ISA compatible processor is developed in our project due to its

simple hardware structure, which helps to shorten the development cycle

while aimed for low power consumption. Each MIPS ISA compatible

instruction has 32-bit in data length. The MIPS ISA compatible instructions

are classified into 3 instruction format as shown in Figure 2.4. Each instruction

format is further divided into several addressing modes, which shown in Table

2.13.

R-format: Instruction operation involving registers only
I-format: Instruction operation involving register and immediate value
J-format: Unconditional branching to 26-bit address specify in machine code

Figure 2.4: MIPS ISA compatible instruction format bit allocation.

38

Table 2.13: MIPS instruction addressing modes

Instruction format Addressing Mode

R-format Register Addressing

I-format Immediate Addressing

Base Addressing

PC-Relative Addressing

J-format Pseudodirect Addressing

The MIPS ISA compatible processor illustrates in Figure 2.5 consists

of 5-stage instruction execution cycle, which corresponds to 5 hardware stages:

Instruction Fetch (IF), Instruction Decode and Register File Read (ID),

Execution or address calculation (EX), Data Memory Access (MEM) and

Write Back (WB).

Figure 2.5: Hardware stages of MIPS ISA compatible processor.

Source: Hennessy, J. L. and Patterson, D. A. (2012) Computer

architecture: a quantitative approach, Elsevier. doi: 10.1.1.115.1881.

39

IF stage is responsible to fetch an instruction from the instruction

memory according to the address stored in the Program Counter (PC) register.

ID stage decodes the instruction from IF stage and at the same time fetch the

operands from the Register File. EX stage perform the operation or address

calculation when load or store instruction is executed. A load or store

instruction will access the data memory in the MEM stage. The processed

result may store back to the Register File in WB stage.

40

2.6 Summary

 This chapter is summarized as follows:

1) The computational speed required for each IoT application is

determined by the sampling rate of the sensor node, where high

computational speed is required to measure and process the data for

high sampling rate IoT application, while low computational speed is

used to measure and process the data for low sampling rate IoT

application.

2) General purpose off-the-shelf microcontroller is popular in

implementing IoT application. However, several limitations restrict the

general purpose off-the-shelf microcontroller in providing the best

solution in implementing a low power IoT application.

3) Both ASIC and FPGA show respective advantages in design

implementation. However, with the improvement in transistor scaling

technology, FPGA provides a better choice in implementing a low

power customizable FPGA-IoT platform.

4) Several low power techniques in FPGA are discussed, including DVS,

DVFS, power gating and clock gating.

5) Partial Reconfiguration (PR) feature offered by FPGA provides a

better energy efficient solution in design implementation and several

projects are discussed.

6) MIPS ISA has been widely used in the research. Its simple hardware

structure increases the processor performance while decreasing the

power consumption.

41

CHAPTER 3

HARDWARE DEVELOPMENT

3.1 System Overview

 The proposed reconfigurable soft-core IoT processor is made up of 3

major parts: Central Processing Unit (CPU), memory system and I/O system.

The developed CPU is compatible to the 5-stage 32-bit MIPS Instruction Set

Architecture (ISA). It supports up to 50 instructions, covering arithmetic,

logical, data transfer, program control and system instruction classes. The

memory system consists of a 2-level memory hierarchy. The first level

consists of cache, Boot ROM and Data and Stack RAM, and the second level

consists of flash memory. The cache (high speed FPGA Block RAM) is used

to enhance the speed of instructions and data accessing from the non-volatile

memory (low speed flash memory). A duplicated set of data from the flash

memory are present in the cache after the processor power up. Flash memory

is used to store FPGA configuration bitstream, program code, constant

variables and partial reconfiguration bitstream. Data and Stack RAM,

implemented from the FPGA BRAM, is used to store runtime variables (e.g.

variables generated by function call and dynamic data structures), while Boot

ROM store the bootloader program.

 I/O system consists of GPIO controller, SPI controller, UART

controller, Priority Interrupt controller and General Purpose Register (GPR)

unit. They were integrated with CPU through Wishbone B4 standard bus

42

interface (OpenCores, 2010). GPIO, SPI and UART controllers are used to

communicate with external devices, such as, sensors, wireless modules,

personal computers etc. The Priority Interrupt controller is used as an external

interrupt controller (Co-processor 0 (CP0) is the internal interrupt controller)

to handle multiple interrupt sources based on priority. GPR unit is used to

store the PR information including current microarchitecture identification bit,

PR bitstream size, and PR bitstream start address for both multi-cycle and

pipeline executions in the flash memory. Figure 3.1 shows the architecture of

the developed reconfigurable soft-core IoT processor.

D-CACHE

Memory arbiter Flash
Controller

SPI
Controller

UART
Controller

GPIO
Controller

Sy
st

e
m

 B
u

s

Stack
RAM

Data
RAM

Priority
interrupt
controller

PR controller

Flash
Memory

I-CACHE

ZigBee EEPROM
LEDs,

Sensors

CPU
PR

instance

Figure 3.1: Reconfigurable IoT processor architecture

 Our research target is to satisfy the varying performance-power

tradeoff requirements of the IoT applications. Achieving both design goals

43

(low power and high computational speed) in one processor architecture is

non-trivial due to their conflicting requirements. With the emergence of FPGA

technology, PR feature offered by FPGA allows reconfiguration between

pipeline (high computational speed at the expense of high power usage) and

multi-cycle executions (low computational speed with low dynamic power

consumption) according to each IoT application requirement needs.

Figure 3.1 illustrates the categorization of the hardware components in

both static and PR regions (a.k.a PR instance) in an overall view. The

proposed technique classifies the reconfigurable soft-core IoT processor into 2

regions: static and PR regions. The static region consists of hardware that does

not change regardless of the pipeline or multi-cycle microarchitectures. In

contrast, the PR region consists of only pipeline or multi-cycle

microarchitecture at a time, i.e. multi-cycle microarchitecture executing in the

PR region while pipeline microarchitecture is kept in bitstream format which

resides in the flash memory, and vice versa. The scope of the PR region limits

within the CPU (Memory system and I/O system are not included) since both

multi-cycle and pipeline microarchitectures are the implementation technique

in modifying the processor execution structure. The detailed view of the CPU

components being reconfigured is shown in Figure 3.2.

44

Figure 3.2: Selected reconfigurable components from CPU.

The partial bitstream size is determined by the design area of the PR

region, i.e. large design area produces a large size of the partial bitstream, and

vice versa. Besides that, large partial bitstream size will incur longer PR time.

Although the hazard circuitries (data forwarding block and interlock block) are

only used by the pipeline microarchitecture, it is possible to allocate the

hazard circuitries to the static region in order to reduce the PR time. We could

deactivated the hazard circuitries during multi-cycle execution, by wired the

inputs of the hazard circuitries to the ground and the outputs left unconnected

and thus, no dynamic power is consumed by the hazard circuitries during

multi-cycle execution. Table 3.1 shows the specification of both multi-cycle

and pipeline executions.

45

Table 3.1: Specification of multi-cycle and pipeline executions

 Multi-cycle Pipeline

Frequency (MHz) 20 20

Instruction‟s cycle 3 - 5 5, overlapping

Branch predictor - 64 entries 4 ways

associative

Hardware differences.

Place in reconfigurable region

(PR instance)

Data-path unit,

Control unit Finite State

Machine

Data-path unit,

branch predictor,

pipeline registers,

hazard circuitry

C
o

m
m

o
n

 f
ea

tu
re

s

(S
ta

ti
c

R
eg

io
n

)

Memory 4kBytes Boot ROM,

128kBytes user access flash,

8kBytes RAM (Data & Stack),

1kBytes i-cache,

128Bytes d-cache,

512Bytes Memory Mapped I/O Register

Communication

interface

UART,

SPI,

32 GPIO pins

Partial Bitstream start address 0x00A0_0000 0x00A8_0000

Bitstream size 1,404,992 bits / 43906 words

FPGA board Nexys 4 DDR (XC7A100T)

F
P

G
A

 R
es

o
u

rc
es

(O
v

er
al

l)

LUT 7643 8561

LUTRAM 127 311

FF 5464 5812

BRAM 3.50 3.50

IO 45 45

BUFG 1 1

46

3.2 CPU

3.2.1 MIPS ISA compatible

 The processor is compatible with MIPS ISA. It is fixed to support up to

50 MIPS ISA compatible basic core instructions, including 1 special

instruction, Toggle Microarchitecture (tma), added for PR purposes. The

supported instruction format and addressing modes have been shown in Figure

2.4 and Table 2.13, respectively. Referring to the instruction format and

addressing modes supported, the instruction field of the instruction supported

is shown in Table 3.2.

Table 3.2: Instruction field information [refer to Patterson, D. A. and

Hennessy, J. L. (2013) for the information on the instruction usage]

No Instruction

opcode[31:26] rs[25:21] rt[20:16] rd[15:11] shamt[10:6] funct[5:0]

opcode[31:26] rs[25:21] rt[20:16] immediate[15:0]

opcode[31:26] address[25:0]

1 add 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100000

2 addu 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100001

3 sub 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100010

4 subu 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100011

5 mult 000000 [xxxxx] [xxxxx] [xxxxx] 00000 011000

6 multu 000000 [xxxxx] [xxxxx] [xxxxx] 00000 011001

7 mfhi 000000 00000 00000 [xxxxx] 00000 010000

8 mflo 000000 00000 00000 [xxxxx] 00000 010010

9 and 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100100

10 or 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100101

11 xor 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100110

12 nor 000000 [xxxxx] [xxxxx] [xxxxx] 00000 100111

13 sll 000000 00000 [xxxxx] [xxxxx] [xxxxx] 000000

14 srl 000000 00000 [xxxxx] [xxxxx] [xxxxx] 000010

15 sra 000000 00000 [xxxxx] [xxxxx] [xxxxx] 000011

16 slt 000000 [xxxxx] [xxxxx] [xxxxx] 00000 101010

17 sltu 000000 [xxxxx] [xxxxx] [xxxxx] 00000 101011

18 jr 000000 [xxxxx] 00000 00000 00000 001000

19 jalr 000000 [xxxxx] 00000 [xxxxx] 00000 001001

20 syscall 000000 00000 00000 00000 00000 001100

21 mtc0 010000 00100 [xxxxx] [xxxxx] 00000 000000

22 mfc0 010000 00000 [xxxxx] [xxxxx] 00000 000000

23 eret 010000 00001 00000 00000 00000 011000

24 addi 001000 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

25 addiu 001001 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

26 andi 001100 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

27 ori 001101 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

47

Continued from Table 3.2

No Instruction

opcode[31:26] rs[25:21] rt[20:16] rd[15:11] shamt[10:6] funct[5:0]

opcode[31:26] rs[25:21] rt[20:16] immediate[15:0]

opcode[31:26] address[25:0]

28 xori 001110 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

29 lui 001111 00000 [xxxxx] [xxxxxxxxxxxxxxxx]

30 lw 100011 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

31 lwl 100010 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

32 lwr 100110 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

33 lh 100001 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

34 lhu 100101 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

35 lb 100000 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

36 lbu 100100 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

37 sw 101011 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

38 swl 101010 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

39 swr 101110 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

40 sh 101001 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

41 sb 101000 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

42 slti 001010 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

43 sltiu 001011 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

44 beq 000100 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

45 bne 000101 [xxxxx] [xxxxx] [xxxxxxxxxxxxxxxx]

46 blez 000110 [xxxxx] 00000 [xxxxxxxxxxxxxxxx]

47 bgtz 000111 [xxxxx] 00000 [xxxxxxxxxxxxxxxx]

48 j 000010 [xxxxxxxxxxxxxxxxxxxxxxxxxx]

49 jal 000011 [xxxxxxxxxxxxxxxxxxxxxxxxxx]

50 tma 000000 00000 00000 00000 00000 111111

The developed processor consists of 5 hardware stages, which is

illustrated in Figure 2.5. The IF stage is responsible to fetch an instruction

from the instruction memory according to the address stored in the Program

Counter (PC) register. The instruction memory is a 2-level memory hierarchy

memory consists of Boot ROM, I-CACHE and flash memory. The ID stage

decodes the instruction from IF stage and at the same time fetch the operands

from the Register File (RF). The EX stage performs the execution or address

calculation for load and store instructions. A load or store instruction will

access the D-CACHE, Data and Stack RAM or I/Os registers in the MEM

48

stage. The result of the execution will be store back to the Register File (RF)

in WB stage.

To allow PR between multi-cycle or pipeline microarchitectures, two

versions of processor microarchitectures were developed: pipeline and multi-

cycle microarchitectures. In pipeline microarchitecture, every instruction

requires 5 clock cycles to complete its execution. Every instruction in the

pipeline microarchitecture occupies a single stage for only one clock cycle and

compulsory to run through the 5 hardware stages prior to the end of its

execution. Multi-cycle microarchitecture also used the same concept of 5

hardware stages structure, except that each instruction takes 2 to 5 clock

cycles to execute, which correspond to 2 to 5 hardware stages. Each

instruction in the multi-cycle microarchitecture must complete its execution

cycle before the consecutive instruction begins to execute.

49

3.2.2 Pipeline microarchitecture

Multiplier
Stage 2

I-CACHE

ALU

CP0 Multiplier
Stage 1

A
d

d
re

ss

D
ec

o
d

er

D-CACHE

Data and
Stack
RAM

SPI

UART

GPIO Register
File

Register
File

Branch
predictor

IF ID EX MEM WB

M
ai

n
 C

o
n

tr
o

l B
lo

ck

A
ri

th
m

et
ic

 L
o

gi
c

C
o

n
tr

o
l B

lo
ck

Forwarding block

Interlock block

PR
Controller

Boot
ROM

Branch
predictor

Figure 3.3: Abstract view of 5-stage pipeline processor

 Figure 3.3 illustrates the hardware components allocate in each

pipeline stages of the 5-stage pipeline processor. At IF stage, an instruction is

fetched from the Boot ROM or I-CACHE and registered to the IF/ID pipeline

registers. If a cache miss occurs in the IF stage, the I-CACHE will send a

signal to stall the processor execution. The execution continues when the

respective instruction successfully copied from the flash memory to the I-

CACHE. At ID stage, the instruction that registered in the IF/ID pipeline

registers will be decoded by the Main Control block and the Arithmetic Logic

Control block. Signals output from both hardware components will be

registered to the ID/EX pipeline registers and also pass to the remaining

hardware components in the ID stage, i.e. Register File block, Forwarding

block, CP0 block, Branch Predictor block and Interlock block. At the same

time, IF stage continues to fetch the consecutive instruction from the I-

CACHE. At EX stage, ALU block covers all the operation except the

multiplication operation. Multiplier block starts the multiplication operation at

EX stage and requires 2 clock cycles (EX and MEM stages) to perform a

50

multiplication operation on two 32-bit operands. At the MEM stage, only load

and store instructions are permitted to perform the operation, in which other

instructions are bypassing this stage. Load or store instruction access the

memory components, i.e. D-CACHE, Data and Stack RAM and I/Os registers,

at the MEM stage. At WB stage, the result of the operation is updated at the

second clock edge (negative edge).

 Branch predictor is included in the pipeline microarchitecture to

enhance the performance of conditional and unconditional branch instructions.

The second reason to include the branch predictor is to reduce the program

code size, i.e. no branch delay slot (e.g. nop instruction) is required after every

conditional and unconditional jump instructions. Multi-cycle

microarchitecture does not need a branch delay slot since the instruction must

complete its execution prior to the start of executing the consecutive

instruction. Hence, the third reason in using a branch predictor is to allow the

same code (without the branch delay slots) to be used in both pipeline and

multi-cycle executions which can reduce field work on re-programming the

IoT sensor nodes. Adding the unnecessarily branch delay reduces the

computational speed of the multi-cycle microarchitecture.

Data hazards always exist in a pipeline processor. It can cause a

computational error. Data hazard occurs due to Read-after-Write (RAW) data

dependencies, which involve accessing the processor‟s system registers, i.e.

Register File, CP0 registers and HILO register. Extra circuitries (forwarding

block and interlock block) are required to resolve the data hazards arise.

51

However, the high computational speed achieved by pipelined processor still

outweighs its counterparts and remains a popular choice in processor design

(Kiat, W. P. et al., 2017).

Figure 3.4 shows the microarchitecture of the 5-stage pipeline

processor while the design hierarchy is shown in Table 3.3. To enable PR in

pipeline microarchitecture, design restructuring is performed, as shown in

Figure 3.5, to reduce the PR overhead.

Table 3.3: Pipeline microarchitecture design hierarchy

Chip Level Unit Level

(Microarchitecture

Level)

Block Level (Microarchitecture

Level)
Sub-block

crisc Data-path unit

(udata_path)

Branch Predictor block

(bbp_4way)

Register File block (brf)

Forwarding block (bfw_ctrl)

Interlock block (bitl_ctrl)

CP0 block (bcp0)

ALU block (balb)

Multiplier Block (bmult32) adder_lvl1_firstrow

adder_lvl1

add_lvl1_lastrow

sub_lvl1_lastrow

adder_lvl2

adder_lvl2_lastrow

adder_lvl3

adder_lvl4

adder_lvl5

Address Decoder block

(baddr_decoder)

Control-path unit

(uctrl_path)

Main Control block

(bmain_ctrl)

Arithmetic Logic Control block

(balb_ctrl)

Cache unit (ucache) Cache Controller block

(bcache_ctrl)

Cache RAM block

(bcache_ram)

Flash Controller Unit

(ufc)

Flash Controller Clock

Generator block (bfc_clk_gen)

Flash Controller FSM block

(bfc_fsm)

52

Continued from Table 3.3

Chip Level Unit Level

(Microarchitecture

Level)

Block Level (Microarchitecture

Level)
Sub-block

 Flash Controller Transmitter

block (bfc_TX)

Flash Controller Receiver

block (bfc_RX)

FIFO block (bfc_FIFO)

Data and Stack RAM

unit (uram)

UART Controller unit

(uuart)

UART Baud Clock Generator

block (bclkctr)

UART Receiver block (brx) sbrx_ctr

asynfifo_r1_3

fifomem_b1_1

graycntr_r1_3

synchronizer

UART Transmitter block (btx) sbtx_ctr

asynfifo_r1_3

fifomem_b1_1

graycntr_r1_3

synchronizer

SPI Controller unit

(uspi)

SPI Clock Generator block

(bclk_gen)

SPI Receiver block (bRX)

SPI Transmitter block (bTX)

FIFO block (bFIFO)

SPI Input Output Control block

(bio_ctrl)

GPIO Controller unit

(ugpio)

Priority Interrupt

Controller unit

(upi_ctrl)

Priority Resolver block

(bpic_resolver)

General Purpose

Register unit (ugpr)

Boot ROM unit

(uboot_rom)

Memory Arbiter unit

(umem_arbiter)

PR controller unit

(upr_ctrl)

De-coupler unit

(udecoupler)

53

Figure 3.4: 5-stage pipeline processor microarchitecture (functional view)

54

Figure 3.5: Design restructuring of 5-stage pipeline processor microarchitecture for PR purposes

55

3.2.3 Multi-cycle microarchitecture

 Multi-cycle microarchitecture is developed based on the same 5-stage

instruction execution cycle as the pipeline microarchitecture. However, it

requires an instruction to execute in several clock cycles prior to the end of its

execution, which varies from 2 to 5 clock cycles. Each instruction in the multi-

cycle execution must complete its execution before the consecutive instruction

start its execution, i.e. non-overlapping in execution. Figure 3.6 illustrates the

difference between both multi-cycle and pipeline executions.

Figure 3.6: Difference between multi-cycle and pipeline executions

From Figure 3.6, multi-cycle execution requires 20 clock cycles to

complete a set of 5 instructions, whereas pipeline execution takes only 9 clock

cycles. Since instruction execution is non-overlapping, there is no data hazard

and hence, no extra circuitries (Forwarding block and Interlock block used in

the pipeline microarchitecture) are required. Besides that, the characteristic of

the multi-cycle microarchitecture, i.e. only one stage is active at every clock

cycle, allows some components to be reused. This leads to lesser components

used and hence, lesser signals switching, which dramatically reduces the

56

design area and dynamic power consumption. To process varying instruction

execution stages (from 2 to 5 clock cycles), a Moore Model Finite State

Machine (FSM) based Control-path unit is developed, which will be discussed

in Section 3.2.3.1. The reason to use a Moore model FSM instead of a Mealy

model FSM is due to the design behavior exists of glitches in the Mealy model

FSM. Glitches are the unnecessary signal switching that will consume

dynamic power. A glitches output will be used by the other hardware modules

in the reconfigurable IoT processor and thus, creating more glitches. This is

opposite to our intention as to reduce the dynamic power of the multi-cycle

microarchitecture. The design hierarchy of the multi-cycle processor is shown

in Table 3.4. Figure 3.7 shows the microarchitecture of the multi-cycle

processor. The design restructuring of the multi-cycle processor

microarchitecture for PR purposes is shown in Figure 3.8.

Table 3.4: Multi-cycle microarchitecture design hierarchy

Chip Level Unit Level

(Microarchitecture

Level)

Block Level (Microarchitecture

Level)
Sub-block

crisc Data-path unit

(udata_path)

Register File block (brf)

Forwarding block (bfw_ctrl)

Interlock block (bitl_ctrl)

CP0 block (bcp0)

ALU block (balb)

Multiplier Block (bmult32) adder_lvl1_firstrow

adder_lvl1

add_lvl1_lastrow

sub_lvl1_lastrow

adder_lvl2

adder_lvl2_lastrow

adder_lvl3

adder_lvl4

adder_lvl5

Address Decoder block

(baddr_decoder)

Control-path unit FSM

(uctrl_path)

Main Control block

(bmain_ctrl)

Arithmetic Logic Control block

(balb_ctrl)

57

Continued from Table 3.4

 Cache unit (ucache) Cache Controller block

(bcache_ctrl)

Cache RAM block

(bcache_ram)

Flash Controller Unit

(ufc)

Flash Controller Clock

Generator block (bfc_clk_gen)

Flash Controller FSM block

(bfc_fsm)

Flash Controller Transmitter

block (bfc_TX)

Flash Controller Receiver

block (bfc_RX)

FIFO block (bfc_FIFO)

Data and Stack RAM

unit (uram)

UART Controller unit

(uuart)

UART Baud Clock Generator

block (bclkctr)

UART Receiver block (brx) sbrx_ctr

asynfifo_r1_3

fifomem_b1_1

graycntr_r1_3

synchronizer

UART Transmitter block (btx) sbtx_ctr

asynfifo_r1_3

fifomem_b1_1

graycntr_r1_3

synchronizer

SPI Controller unit

(uspi)

SPI Clock Generator block

(bclk_gen)

SPI Receiver block (bRX)

SPI Transmitter block (bTX)

FIFO block (bFIFO)

SPI Input Output Control block

(bio_ctrl)

GPIO Controller unit

(ugpio)

Priority Interrupt

Controller unit

(upi_ctrl)

Priority Resolver block

(bpic_resolver)

General Purpose

Register unit (ugpr)

Boot ROM unit

(uboot_rom)

Memory Arbiter unit

(umem_arbiter)

PR controller unit

(upr_ctrl)

De-coupler unit

(udecoupler)

58

Figure 3.7: Multi-cycle processor microarchitecture

59

Figure 3.8: Design restructuring of multi-cycle processor microarchitecture for PR purposes

60

3.2.3.1 Control-path unit FSM (for multi-cycle microarchitecture)

There are a total of 20 states in the Control-path unit FSM as shown in

Figure 3.9. Each instruction has its own instruction flow to follow as shown in

Table 3.5. The information of each state is described in Table 3.6, while

Figure 3.10 illustrates the connection of the Control-path unit FSM with the

Main Control Block and the Arithmetic Logic Control Block.

Figure 3.9: 20 states of the multi-cycle microarchitecture Control-path

unit FSM

Table 3.5: Instruction cycles and corresponding state required by

instruction

No Instruction Instruction

cycles

State

1 2 3 4 5

1 add 4 IF ID EX WB

2 addu 4 IF ID EX WB

3 sub 4 IF ID EX WB

4 subu 4 IF ID EX WB

5 mult 5 IF ID EX_M MEM WB_M

6 multu 5 IF ID EX_M MEM WB_M

7 mfhi 4 IF ID EX WB_HL

8 mflo 4 IF ID EX WB_HL

9 and 4 IF ID EX WB

10 or 4 IF ID EX WB

11 xor 4 IF ID EX WB

12 nor 4 IF ID EX WB

13 sll 4 IF ID EX WB

14 srl 4 IF ID EX WB

61

Continued from Table 3.5

15 sra 4 IF ID EX WB

16 slt 4 IF ID EX WB

17 sltu 4 IF ID EX WB

18 jr 3 IF ID EX_JR

19 jalr 3 IF ID WB_JALR

20 syscall 2 IF ID

21 mtc0 3 IF ID EX_C0

22 mfc0 3 IF ID WB_C0

23 eret 3 IF ID EX_ER

24 addi 4 IF ID EX_LS

25 addiu 4 IF ID EX_LS

26 andi 4 IF ID EX_LS

27 ori 4 IF ID EX_LS WB_IMM

28 xori 4 IF ID EX_LS WB_IMM

29 lui 4 IF ID EX_LS WB_IMM

30 lw 5 IF ID EX_LS MEM WB_L

31 lwl 5 IF ID EX_LS MEM WB_L

32 lwr 5 IF ID EX_LS MEM WB_L

33 lh 5 IF ID EX_LS MEM WB_L

34 lhu 5 IF ID EX_LS MEM WB_L

35 lb 5 IF ID EX_LS MEM WB_L

36 lbu 5 IF ID EX_LS MEM WB_L

37 sw 4 IF ID EX_LS MEM_S

38 swl 4 IF ID EX_LS MEM_S

39 swr 4 IF ID EX_LS MEM_S

40 sh 4 IF ID EX_LS MEM_S

41 sb 4 IF ID EX_LS MEM_S

42 slti 4 IF ID EX_LS WB_IMM

43 sltiu 4 IF ID EX_LS WB_IMM

44 beq 3 IF ID EX_BR

45 bne 3 IF ID EX_BR

46 blez 3 IF ID EX_BR

47 bgtz 3 IF ID EX_BR

48 j 3 IF ID EX_J

49 jal 3 IF ID WB_JAL

50 tma 2 IF ID

Table 3.6: State definition of the multi-cycle microarchitecture Control-

path unit FSM

State

Name

Definition

IF Instruction fetch from instruction memory

ID Instruction Decode and Register File Read

EX_BR Determine branch taken or untaken. Copy branch target address calculated to

the PC register if branch taken

EX_J j instruction detected. Copy jump address to PC register

EX_JR jr instruction detected. Copy $rs register value to PC register

EX_ER eret instruction detected. Copy the exception return address, $epc to PC

register

EX_C0 mtc0 instruction detected. Move a data from Register File to CP0 register

WB_C0 mfc0 instruction detected. Copy a data from CP0 register to Register File

62

Continued from Table 3.6

WB_JAL jal instruction detected. Copy PC register to $ra register in the Register File

and copy jump address to PC register

WB_JALR jal instruction detected. Copy PC register to $ra register in the Register File

and copy $rs register data to PC register

EX_M jal instruction detected. Activate multiplier

EX_LS I-type instruction detected. Further decode whether load, store or immediate

instruction is issued

EX R-type instruction detected. Activate ALU.

MEM Load data from data memory (D-CACHE, RAM or I/Os register) or perform as

dummy cycle for multiplication operation

WB_IMM Write back immediate instruction result to Register File

MEM_S Store data to data memory (D-CACHE, RAM or I/Os register)

WB_HL Write back HI or LO register to Register File

WB Write back R-type instruction result to Register File

WB_M Reserved for write back multiplication result to HILO register

WB_L Write back data memory (D-CACHE, RAM or I/Os register) data to Register

File

Figure 3.10: Connection of the Control-path unit FSM with the Main

Control Block and the Arithmetic Logic Control Block for Multi-cycle

microarchitecture

63

3.2.4 Consistent I/O Interface for Partial Reconfiguration Unit

 PR unit (a.k.a PR instance), either multi-cycle or pipeline

microarchitecture, is model as a module in RTL modeling. The I/O pins of the

PR instance, known as partition pins (Xilinx, 2016a), must be consistent for

both multi-cycle and pipeline microarchitectures. The partition pins serve as

the static interconnection pins between the static region‟s logic and the PR

region‟s logic. The partition pins can be: 1) user defined by including the (*

keep = "true" *) command in the RTL modeling of the PR unit to avoid the

optimization of the partition pins; 2) automatically created by Xilinx Vivado,

where routing congestion may occur when the PR unit has a large amount of

partition pins. For our reconfigurable soft-core IoT processor, the first method

is used in order to gain control on the routing and the logic resources

placement. Figure 3.11 illustrates the PR unit partition pins that are consistent

for both multi-cycle and pipeline microarchitectures. Each partition pin‟s

function is described in Table A.1.

64

upr
uipr_rd_src
uipr_mult_en

uipr_tma

uipr_sign_mult

uipr_alb_src

uipr_rf_wr
uipr_sw
uipr_swl
uipr_swr
uipr_lw

uopr_opcode[5:0]
uopr_funct[5:0]

uipr_sh
uipr_lh

uipr_lwl

uipr_lhu

uipr_lwr

uipr_sb
uipr_lb
uipr_lbu
uipr_load_sign_ext
uipr_sign_ext

uipr_lo_wr
uipr_alb_to_rf

uipr_mem_to_rf

uipr_hi_to_rf

uipr_hi_wr

uipr_hilo_acc
uipr_jump
uipr_jr
uipr_jal
uipr_jalr

uipr_blez
uipr_bgtz

uipr_beq
uipr_bne

uipr_mfc0
uipr_mtc0
uipr_eret
uipr_syscall
uipr_undef_inst
uipr_rtype

uipr_alb_ctrl[5:0]

uipr_rf_rs32[31:0]

uipr_IRQ

uipr_rf_rt32[31:0]

uopr_rf_rs5[4:0]
uopr_rf_rt5[4:0]

uipr_id_fw_rs32_ctrl[2:0]
uipr_id_fw_rt32_ctrl[2:0]
uipr_ex_fw_hilo_ctrl[2:0]
uipr_ex_fw_mem

uipr_itl_pc_en

uipr_itl_exmem_en
uipr_itl_memwb_en

uipr_itl_ifid_en

uipr_itl_id_flush_ex

uipr_itl_idex_en

uipr_cp0_flush_id

uipr_cp0_eret_addr[31:0]
uipr_cp0_read_data[31:0]

uipr_cp0_flush_ex
uipr_cp0_flush_mem

uopr_rf_wr_data[31:0]
uopr_rf_wr_addr[4:0]

uopr_rf_wr_en

uopr_id_rtype
uopr_id_itype
uopr_id_mfc0

uopr_ex_jal
uopr_ex_jalr

uopr_ex_rf_wr
uopr_ex_hilo_acc
uopr_ex_hi_to_rf

uopr_mem_jal
uopr_mem_jalr

uopr_mem_rf_wr
uopr_mem_load

uopr_mem_mult_en
uopr_ex_rt5_rd5[4:0]

uopr_mem_rt5_rd5[4:0]

uopr_id_load
uopr_id_store

uopr_itl_ex_load
uopr_ex_rt5[4:0]

uopr_id_rd5[4:0]
uopr_id_fw_rt32[31:0]

uopr_cp0RegWr
uopr_if_pc[31:0]
uopr_id_pc[31:0]
uopr_ex_pc[31:0]

uopr_id_undef_inst
uopr_id_syscall

uopr_cp0_all_branch

uipr_ex_alb_out[31:0]
uopr_ex_rs32[31:0]

uopr_ex_op_b[31:0]
uopr_ex_alb_ctrl[5:0]

uopr_ex_shamt

uipr_mem_mult_result[63:0]
uipr_mem_mult_valid
uipr_mem_mult_busy

uopr_mult_mulcn[31:0]
uopr_mult_mulpl[31:0]

uopr_ex_sign_mult
uopr_ex_mult_en

uopr_mem_lw
uopr_mem_lh
uopr_mem_lb

uopr_mem_sw
uopr_mem_swl
uopr_mem_swr

uopr_mem_sh
uopr_mem_sb

uopr_mem_alb_out[31:0]

uipr_cp0_exc_flag

uipr_mem_stall

uipr_instr[31:0]
uipr_loaded_data[31:0]

uopr_pseudo_pc[31:0]

uopr_store_addr[31:0]
uopr_store_data[31:0]

uipr_reconf_store_pc[31:0]

uipr_reconf_stall_if
uipr_reconf_release_pc

uipr_clk
uipr_sys_rst

Main control block

Arithmetic logic control block

Register File

Forwarding block

Interlock block

CP0 block

ALU block

Multiplier block

Address Decoder block

ICACHE & DCACHE

Partial Reconfiguration Controller

uopr_next_pc[31:0]

Figure 3.11: Partition pins of Partial Reconfiguration top module

65

3.2.5 Partial Reconfiguration

 PR is initiated when a tma instruction is detected in the user program

code, which as shown in the program code in Figure 3.12.

Figure 3.12: Sample test program to initiate the PR

 PR will reconfigure the processor:

1) When current microarchitecture is multi-cycle microarchitecture, PR

will reconfigure the processor to pipeline microarchitecture

2) When current microarchitecture is pipeline microarchitecture, PR will

reconfigure the processor to multi-cycle microarchitecture

The currently configured processor will halt its execution and pass the control

to the PR controller, which shown in Figure 3.1. The PR controller obtains the

partial bitstream which was earlier stored in the flash memory (on the Nexys 4

DDR board). Each 32-bits word of bitstream will be written to the FPGA

66

through Internal Configuration Access Port (ICAP). The process finishes when

the last bitstream word writes into the FPGA, perform a soft reset on the

reconfigurable region and continue to fetch the instruction following the tma

instruction in the user program code. The flow chart of the PR process is

shown in Figure 3.13.

Figure 3.13: PR process flow

 In pipeline microarchitecture, when tma instruction is detected at the

ID stage, the execution of the instruction following tma instruction, which is

already in IF stage, will be halt by the PR controller. At the same time, the

instructions in MEM and WB stages (instructions prior to tma instruction) will

continue to execute. Once both instructions in MEM and WB stages end its

execution, the PR controller proceeds to partial reconfigure the processor. In

the multi-cycle microarchitecture, the PR controller starts to partial

reconfigure the processor once tma instruction is detected in ID state.

 One problem arises when PR is reconfiguring the logic circuits: the

output signals from the PR unit will be corrupted. The corrupted signals will

be passed to the static region‟s components. The corrupted signals will affect

any data stored before the PR could be completed. However, the data stored

67

should remain consistent when the PR is in progress. One of the root cause of

the issue we have identified occurred in the Main Control block, where

bimc_rs[4:0], bimc_funct[5:0] and bimc_opcode[5:0] obtained from the

instruction is passed from the PR unit to the Main Control block for

instruction decoding. There are 2 possible solutions to resolve the issue: 1)

deassert the 17-bit inputs of Main Control block (bimc_rs[4:0],

bimc_funct[5:0] and bimc_opcode[5:0]); 2) deassert the output signals from

the Main Control block that can affect the data stored (data in the Register File,

CP0 registers, Data and Stack RAM, I/O controller registers). We used the

second solution since lesser signals were identified (bomc_eret and

bomc_tma), which shown in Table 3.7. Besides that, several signals (no. 2 to

no. 13 in Table 3.7) from the PR unit were identified to have affected the data

stored when PR is in progress. This is due to the signals are output from the

pipeline registers (pipeline microarchitecture) or produce by the internal

circuitry, i.e. uctrl_path (multi-cycle microarchitecture). We have also found

that the ALU block will output a corrupted signal (boalb_ovfs) that will trigger

an exception. Therefore, a de-coupler block is developed to deassert the

corrupted signals to ground when PR is in progress. Table 3.7 shows the

corrupted signals that will be connected to the de-coupler block.

Table 3.7: Corrupted signals to be de-coupled when PR is in progress

No Signal name Source Destination Signal function

1 bomc_eret Main Control

block

CP0 block Indicate eret instruction is

executing

2 bomc_tma Main Control

block

PR controller Indicate tma instruction is

executing, PR will take

place to reconfigure the

PR unit

3 uopr_mem_lw PR unit Address Decoder

block

Indicate lw, lwl or lwr

instruction in MEM stage

68

Continued from Table 3.7

4 uopr_mem_lh PR unit Address Decoder

block

Indicate lh or lhu

instruction in MEM stage

5 uopr_mem_lb PR unit Address Decoder

block

Indicate lb or lbu

instruction in MEM stage

6 uopr_mem_sw PR unit Address Decoder

block

Indicate sw, swl or swr

instruction in MEM stage

7 uopr_mem_swl PR unit Address Decoder

block

Indicate swl instruction in

MEM stage

8 uopr_mem_swr PR unit Address Decoder

block

Indicate swr instruction in

MEM stage

9 uopr_mem_sh PR unit Address Decoder

block

Indicate sh instruction in

MEM stage

10 uopr_mem_sb PR unit Address Decoder

block

Indicate sb instruction in

MEM stage

11 uopr_rf_wr_en PR unit Register File

block

Enable write to Register

File

12 uopr_cp0_all_branch PR unit CP0 block Indicate eret, beq, bne,

blez, bgtz, j, jr, jal or jalr

instruction is executing

13 uopr_cp0RegWr PR unit CP0 block Enable write to CP0

register

14 boalb_ovfs ALU block CP0 block Indicate sign overflow has

occur

 Since PC register is placed in the PR region to decrease the net delay

(longer net routing used by the Xilinx Place and Route tool when PC register

is place in the static region), the PC register value (PC register holds the

address of the instruction next to tma instruction) in the PR unit should not

change when the PR is in progress. This will allow the processor to re-execute

the consecutive instruction after the PR is done. In order to resolve this issue,

when tma instruction is detected, the PC register value will be sent to the PR

controller. The PR controller holds the PC register value so that no

consecutive instruction is fetched when the PR is in progress.

69

3.3 Memory System

 The developed memory system is a 2-level memory hierarchy. First

level consists of the caches (I-CACHE with 1-kBytes RAM and D-CACHE

with 128-Bytes RAM), Data and Stack RAM and Boot ROM, while second

level consists of the flash memory. The flash memory is a non-volatile

memory that used to store data (data content include FPGA configuration

bitstream, program code, constant variables and PR bitstream) when the power

is shut off. In contrast, RAM based cache losses all the data when the power is

shut off. Cache benefits in fast memory access, which can be used to enhance

the speed of memory access from the flash memory by buffered part of the

data in the cache.

 Caching the runtime data (.data and .stack segments) in flash memory

is avoided. The flash memory has some limitation, in which a minimum sector

size of 4-kBytes must be erase (the data in the respective 4-kBytes sector will

be reset to 1 and the data is update by changing the related bit from 1 to 0)

prior to data updating. This requires the use of an additional RAM of at least

4-kBytes just only for swapping purpose (to temporary hold the flash memory

data before the sector is erased for updating purpose). Also, it consumes

additional clock cycles for the data to be read out from the flash memory and

write back. To overcome this issue, an 8-kBytes of Data and Stack RAM are

created using the FPGA Block RAM to hold the runtime data (refer

to .data, .bss, .stack and .heap segments in Section 3.3.1) without the need to

write back to the flash memory. If needed to store the runtime data, the data

will be directed to an external non-volatile memory via UART or SPI. We

70

employed a D-CACHE with 128-Bytes of RAM to read the .data and .rodata

segments (refer to .data and .rodata segment in Section 3.3.1) from the flash

memory. A Boot ROM (Read-only memory, the bootloader program is pass to

the Boot ROM using “$readmemh (`ROM_FILE_PATH, rom_data)” in the

Verilog HDL) is integrated with the CPU for bootloading purposes. The

architecture and the microarchitecture of the developed memory system are

shown in Figure 3.14 and Figure 3.15.

Figure 3.14: Memory system architecture

71

D-CACHE
uicac_cpu_read[2:0]

uicac_cpu_addr[31:0]

uicac_mem_data_rd[31:0]

uocac_miss
uocac_mem_sel[3:0]

uocac_mem_addr[31:0]

uicac_cpu_data[31:0]

uicac_mem_ack

uicac_io_intr
uicac_mem_busy
uicac_rst
uicac_clk

uocac_cpu_data[31:0]
uocac_cpu_stall

uocac_mem_read

umem_arbiter
uima_cac_miss3
uima_cac_read3

uima_cac_sel3[3:0]
uima_cac_addr3[31:0]
uoma_cac_ack3
uoma_cac_data_rd3[31:0]

uima_cac_miss2
uima_cac_read2

uima_cac_sel2[3:0]
uima_cac_addr2[31:0]
uoma_cac_ack2
uoma_cac_data_rd2[31:0]

uima_cac_miss1
uima_cac_read1

uima_cac_sel1[3:0]
uima_cac_addr1[31:0]
uoma_cac_ack1
uoma_cac_data_rd1[31:0]

uima_cac_miss0
uima_cac_read0

uima_cac_sel0[3:0]
uima_cac_addr0[31:0]
uoma_cac_ack0
uoma_cac_data_rd0[31:0]

uima_clk

uima_io_intr
uima_rst

uima_fc_ack

uima_fc_data[31:0]

uoma_fc_read

uoma_fc_write

uoma_fc_host_ld_mode

uoma_fc_sel[3:0]

uoma_fc_addr[31:0]

uoma_fc_data[31:0]

STARTUPE2
USRCCLKO E6

S25FL128S
SI/IO0

SO/IO1
CS
SCLK

ufc
MIO0
MI1 SS

SCLK

uifc_read

uifc_cpol
uifc_addr[31:0]

MI2
MI3

uofc_busy
uofc_dout[31:0]

uofc_ack

uifc_cpha
uifc_baud[3:0]

uifc_clk
uifc_rst

WP#/IO2
HOLD#/IO3

uifc_reconfig
uifc_reconfig_nwords[31:0] uofc_RXFF

I-CACHE
uicac_cpu_read[2:0]

uicac_cpu_addr[31:0]

uicac_mem_data_rd[31:0]

uocac_miss
uocac_mem_sel[3:0]

uocac_mem_addr[31:0]

uicac_cpu_data[31:0]

uicac_mem_ack

uicac_io_intr
uicac_mem_busy
uicac_rst
uicac_clk

uocac_cpu_data[31:0]
uocac_cpu_stall

uocac_mem_read

Data RAM
bisram_wb_sel[3:0]
bisram_wb_we

bisram_wb_din[31:0]

bisram_wb_stb

bisram_wb_addr[SIZE:0]

bisram_wb_clk

bisram_wb_rst

bosram_wb_dout[31:0]

Xilinx Artix-7 FPGA

upr
uipr_mem_stall

uipr_loaded_data[31:0]

uopr_dmem_addr[31:0]
uopr_store_data[31:0]

uipr_clk
uipr_sys_rst

uboot_rom

borom_wb_ack

birom_wb_stb
birom_wb_addr[SIZE:0]

birom_wb_clk

birom_wb_rst

borom_wb_dout[31:0]

uipr_instr[31:0]

uopr_pc[31:0]

Stack RAM
bisram_wb_sel[3:0]
bisram_wb_we

bisram_wb_din[31:0]

bisram_wb_stb

bisram_wb_addr[SIZE:0]

bisram_wb_clk

bisram_wb_rst

bosram_wb_dout[31:0]

uicac_reg_cpu_addr[31:0]

uicac_reg_cpu_addr[31:0]

Figure 3.15: Memory system microarchitecture

The development of the memory system covers 5 RTL components, an

FPGA component (STARTUPE2) and a main memory (flash memory). The

RTL components include the development of Data and Stack RAM, Boot

ROM, caches (I-CACHE and DCACHE), memory arbiter and Flash controller.

Memory arbiter is used to handle the data communication of the highest

priority cache with the flash memory among multiple caches. Flash Controller

with quad SPI interface is developed for the ease of flash memory

(S25FL128S) data access. The FPGA component (STARTUPE2) in the Xilinx

XC7A100T FPGA is hardwired connected to the S6 output pin of the

XC7A100T FPGA chip. The user defined SCLK from the Flash Controller is

meant to drive the S25FL128S flash memory, indirectly via STARTUPE2 (S6

pin). When the FPGA board is powered up, the S25FL128S flash memory is

72

automatically controlled by the FPGA for configuration purposes. 3 dummy

SCLK cycles are required to send to the STARTUPE2 component before the

SCLK, which was earlier controlled by the FPGA, can be passed back to user

controlled. Thereby, users can fully control the S25FL128S flash memory.

73

3.3.1 Memory Map

 This section starts with introducing MIPS memory space convention

(D. Sweetman, 2006). MIPS with 32-bits addresses, is allowed to support up

to 4GB memory space. The MIPS memory address space is implemented in

two ways: virtual and physical addresses. Virtual addresses are used by the

CPU for the instruction and data accessing. While physical addresses are used

to allocate with physical memory such as flash memory, Data and Stack RAM,

Boot ROM and I/O registers. Figure 3.16 shows the virtual to physical

memory mapping.

kseg0
unmapped,cached

kuseg
mapped,cached

kseg2
mapped,cached

kseg1
unmapped,uncached

kseg3
mapped,cached

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0xFFFF_FFFF

Virtual Memory

kseg3

kuseg

reserved

kseg2

kseg0, kseg1

0xFFFF_FFFF

0xE000_0000

0xc000_0000

0x4000_0000

0x2000_0000

0x0000_0000

Physical Memory

Figure 3.16: Virtual to physical memory mapping based on 32-bit MIPS

architecture. The mapped memory segment is mapped to the Memory

Management Unit (MMU) while the cached segment used the cache

memory to enhance the data accessing speed.

From Figure 3.16, the virtual memory is distributed into 5 segments:

kernel user segment (kuseg), kernel segment 0 (kseg0), kernel segment 1

74

(kseg1), kernel segment 2 (kseg2) and kernel segment 3 (kseg3). kuseg, kseg2

and kseg3 are mapped segment, which includes the address translation using

Memory Management Unit (MMU). D. Sweetman (2006) suggested avoid

using the mapped segment for the processor with no Memory Management

Unit (MMU), which left kseg0 and kseg1 for our implementation. The kseg0

and kseg1 have the same physical addresses with different virtual addresses,

except that the kseg0 is accessed through the cache. Figure 3.17 shows our

implementation of memory allocation on kseg0 and kseg1.

I/O peripherals register

Boot code

Exception handler

User program code

.rodata

.bss

FLASH

RAM

Physical Memory

KSEG1

KSEG0

Virtual Memory

0xA000_0000

0x8000_0000

0xC000_0000

0x8001_B400

0x8001_F400

0xA002_0800

.stack

.heap0xA002_1000

0xA002_2000

0x8001_FFFF

0xBFFF_FE00

0xBFC0_0000

0xBFC0_1000

.data

.data

0xA002_0000

0x8001_F800

KSEG0/
KSEG1

0x0000_0000

0x2000_0000

User program code

.rodata
.data

0x0001_B400

0x0001_F400
0x0001_F800

.bss0x0002_0800

.stack

.heap0x0002_1000

0x0002_2000

.data0x0002_0000

Exception handler

I/O peripherals register

Boot code

0x1FFF_FE00

0x1FC0_0000

0x1FC0_1000

BOOT ROM

Exception handler

User program code

.rodata
.data

User program code

.rodata
.data

Exception handler

Figure 3.17: Memory allocation on kseg0 and kseg1

 A C program memory separates into user program (.text), initialized

data (.data), uninitialized data (.bss), read-only constant data (.rodata), stack

75

data (.stack) and heap data (.heap) (Gu, C., 2016 and I. C. Bertolotti and

Tingting Hu., 2015). The .text used to store the user program code addressed

using the PC register. The .data is used to store the initialized data, i.e. the

variables that are initialized with values. When CPU power start, the

bootloader is responsible to copy the .data content in the flash memory to

the .data segment in the Data RAM. In contrary, .bss segment stores the

uninitialized data and is allocated only in the Data RAM. The .stack is a Last-

In-First-Out (LIFO) queue used to store a procedure or function information

and local variables. The .heap is used as the dynamically allocated memory

space requested using malloc() function.

When a processor startup, the bootloader program stored in the Boot

ROM should perform the following actions:

1) Set up the Register File block registers value

2) Copy .data content from flash memory to the Data RAM

3) Jump to user program code located at 0x8001_B400 (virtual address)

Accessing .data from the Data RAM instead of the flash memory is to enhance

the data accessing performance (flash memory data access is in serial form,

while Data RAM is in parallel). The data in .data, .bss, .stack, .heap and I/O

peripherals registers can be accessed using load and store instructions.

76

3.3.2 Cache Unit

 The developed Cache unit is a direct mapped cache. The cache is used

to store the copy of data (virtual memory address location from 0x8001_F400

to 0x8001_F7FF for D-CACHE) or instructions (virtual memory address

location from 0x8000_0000 to 0x8001_F3FF for I-CACHE) with the size of

8-words per block from the flash memory. Figure 3.18 shows the chip

interface of the Cache unit and Table A.2 describes the function of each pin.

ucache
uicac_cpu_read[2:0]
uicac_reg_cpu_addr[31:0]

uicac_mem_data_rd[31:0]
uocac_cpu_stall

uocac_miss
uocac_mem_read

uicac_mem_ack
uicac_io_intr
uicac_mem_busy
uicac_rst
uicac_clk

uocac_mem_sel[3:0]

uocac_cpu_data[31:0]
uocac_mem_addr[31:0]

uicac_cpu_addr[31:0]

Figure 3.18: Cache unit chip interface

77

3.3.2.1 Cache protocol

 The Cache unit is organized in a multiword block (8-words in one

block) as shown in Figure 3.19 (the I-CACHE has 32 indexes while the D-

CACHE has 4 index). Each index carries a tag of the address, 1 valid bit and 8

words of data. The tag is used as the unique identifier of the address so that to

reduce the size of the comparator circuit instead of comparing 32-bit of the

input address. The valid bit is used to identify the validity of the block of data.

All the valid bit of the block in the cache is de-asserted when the processor

reset and each bit is asserted after performing a read operation. Figure 3.19

illustrates the cache organization, with assuming with 32 indexes.

0

1

2
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

30

31

Index Valid Tag Data Data Data Data Data Data Data Data

5-bit 1-bit 22-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit

Figure 3.19: Direct mapped cache organization with a cache block size of

8-words

The cache operation is divided into 2, i.e. read hit and read miss. The

flow and description for each operation are described in Figure 3.20.

Figure 3.20: Cache read operation

78

3.3.2.2 Design Partitioning

 The Cache unit consists of Cache Controller (bcache_ctrl) and Cache

RAM (bcache_ram). The Cache Controller is used to control the data flow and

the activity of the Cache unit. Since FPGA is used as the design platform, the

FPGA Block RAM is used to implement the memory array (Cache RAM) of

the Cache unit. The internal connection of the cache unit is shown in Figure

3.21.

bcache_ram
bicr_sel[3:0]
bicr_we

bicr_din[31:0]

bicr_rd_en

bicr_addr[BIT_NB-1:0]

bicr_clk

bicr_rst

bocr_dout[31:0]

bcache_ctrl
bicac_ctrl_hit

bocac_ctrl_mem_write
bocac_ctrl_mem_read

bocac_ctrl_mem_sel[3:0]
bocac_ctrl_update_en

bicac_ctrl_cpu_read
bicac_ctrl_mem_ack
bicac_ctrl_lmc_same
bicac_ctrl_io_intr
bicac_ctrl_mem_busy

bocac_ctrl_buffer_cac_en

bocac_ctrl_cpu_data_output_en
bocac_ctrl_counter[2:0]

bocac_ctrl_cache_data_select

bicac_ctrl_rst
bicac_ctrl_clk

uocac_cpu_data[31:0]

Cache unit
uicac_cpu_addr[31:0]

uicac_mem_data_rd[31:0]

Figure 3.21: Internal connection of the Cache unit

79

3.3.3 Memory Arbiter Unit

 Memory Arbiter unit is used to control the data communication of the

multiple caches with the flash memory. Memory Arbiter unit permits the data

communication of the highest priority cache with the flash memory while

limiting the data communication of the other caches. The chip interface of the

Memory Arbiter unit is shown in Figure 3.22 and Table A.3 describes the

function of each pin.

umem_arbiter
uima_cac_miss3
uima_cac_read3

uima_cac_sel3[3:0]
uima_cac_addr3[31:0]
uoma_cac_ack3
uoma_cac_data_rd3[31:0]

uima_cac_miss2
uima_cac_read2

uima_cac_sel2[3:0]
uima_cac_addr2[31:0]
uoma_cac_ack2
uoma_cac_data_rd2[31:0]

uima_cac_miss1
uima_cac_read1

uima_cac_sel1[3:0]
uima_cac_addr1[31:0]
uoma_cac_ack1
uoma_cac_data_rd1[31:0]

uima_cac_miss0
uima_cac_read0

uima_cac_sel0[3:0]
uima_cac_addr0[31:0]
uoma_cac_ack0
uoma_cac_data_rd0[31:0]

uima_clk

uima_io_intr
uima_rst

uima_fc_ack

uima_fc_data[31:0]

uoma_fc_read

uoma_fc_write

uoma_fc_host_ld_mode

uoma_fc_sel[3:0]

uoma_fc_addr[31:0]

uoma_fc_data[31:0]

Figure 3.22: Memory Arbiter unit chip interface

80

The Memory Arbiter Unit is a FSM that consists of 5 states, which is

shown in Figure 3.23. The information of each state and the correspondence

output of the state are described in Table 3.8.

IDLECACHE_0 CACHE_2

CACHE_1

CACHE_3

Figure 3.23: Memory Arbiter Unit state diagram

Table 3.8: State definition of the Memory Arbiter Unit

State Name Definition Remark

cache3 Highest priority cache given to perform

operation

Extra ports for future

development on Translation

Lookaside Buffer (TLB),

Memory Management Unit

(MMU) and Operating System

(OS)

cache2 Second priority cache given to perform

operation

cache1 Third priority cache given to perform

operation

Connected to D-CACHE

cache0 Lowest priority cache given to perform

operation

Connected to I-CACHE

idle No operation -

81

3.3.4 Flash Controller Unit

 The Flash Controller unit is able to perform the following

functionalities:

1) Transmit command instructions to the flash memory serially.

2) 32-bit serial data receiving buffer.

3) 4 SPI modes selectable and 16 speed selectable with up to 10MHz SPI

serial communication through RTL/hardware modification. This

feature is not software programmable.

4) Act as master device (flash memory as slave device). In the SPI

modules connection, master device is responsible to initiate the

communication by assert the slave select signal (SS_n), pass the clock

signal (SCLK) and transmit the serial data to the slave device (MOSI).

Slave device is activated when received the SS_n signal and then pass

the serial data to the master device (MISO). The SPI data

communication is in full duplex mode, in which data transmission and

receiving occur at the same time.

The chip interface of the Memory Arbiter unit is shown in Figure 3.24 and

Table A.4 describes the function of each pin.

ufc
MIO0
MI1 SS

SCLK

uifc_read

uifc_cpol
uifc_addr[31:0]

MI2
MI3

uofc_busy

uofc_dout[31:0]

uofc_ack
uifc_cpha
uifc_baud[3:0]

uifc_clk
uifc_rst

uifc_reconfig

uifc_reconfig_nwords[31:0]
uofc_RXFF

Figure 3.24: Flash Controller unit chip interface

82

3.3.4.1 Flash Controller Protocol

 Typically, flash memory uses SPI interface. Hence, the design of the

Flash Controller unit is based on the conventional SPI serial communication

protocol shown in Section 3.4.2.1. The Flash Controller unit is developed with

quad (one for bi-directional and three for receive) serial data line instead of

dual (one for transmit and one for receive) serial data line, to increase the

speed of data accessing from the flash memory. The Flash Controller unit is

developed to support the flash memory command shown in Table 3.9.

Table 3.9: Supported flash memory command instructions

Source: Cypress (2017) „128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V

SPI flash memory‟

Command Name Command Description Instruction Value (Hex)

RDSR1 Read Status Register-1 05

WRR Write Register (Status-1, Configuration-1) 01

WREN Write Enable 06

QOR Read Quad Out (3- or 4-byte address) 6B

 The RDSR1 command is used to read the Status Register-1 of the

S25FL128S flash memory. Of particular interest is the Write in Progress (WIP)

bit, which shown in Table 3.10. It is used to determine if the user

configuration setting has been successfully loaded into the S25FL128S flash

memory (to configure the S25FL128S flash memory to quad serial data output

mode). The command sequence of the RDSR1 command is shown in Figure

3.25.

83

Table 3.10: Status Register-1 of S25FL128S flash memory

Source: Cypress (2017) „128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V

SPI flash memory‟

Figure 3.25: RDSR1 command sequence of S25FL128S flash memory

Source: Cypress (2017) „128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V

SPI flash memory‟

 The WRR command is used to writes a new values into the Status

Register-1 and the Configuration Register-1 in Table 3.10 and Table 3.11

respectively. In our case, to configure the S25FL128S flash memory to quad

serial data output mode, the WRR command follows by the configuration

setting, i.e. 0x0002, should be transmit to the S25FL128S flash memory. Table

3.11 shows the register information of the Configuration Register-1 and Figure

3.26 shows the communication sequence of the WRR command.

0x05h

84

Table 3.11: Configuration Register-1 of S25FL128S flash memory

Source: Cypress (2017) „128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V

SPI flash memory‟

Figure 3.26: WRR command sequence of S25FL128S flash memory

Source: Cypress (2017) „128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V

SPI flash memory‟

 Next, the WREN command is used to set the Write Enable Latch

(WEL) bit of the Status Register-1. For our case, the WEL bit must be set to 1

prior issuing a WRR command. The communication sequence of the WREN

command is shown in Figure 3.27.

0x01h

85

Figure 3.27: WREN command sequence of S25FL128S flash memory

Source: Cypress (2017) „128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V

SPI flash memory‟

 Lastly, the QOR command is used to get the data from the S25FL128S

flash memory to the cache (I-CACHE or D-CACHE) through IO0-IO3 pins of

the S25FL128S flash memory, which is shown in Figure 3.28. The

communication sequence of the QOR command is shown in Figure 3.29.

STARTUPE2
USRCCLKO E6

S25FL128S
SI/IO0

SO/IO1
CS
SCLK

ufc
MIO0
MI1 SS

SCLK

uifc_read

uifc_cpol
uifc_addr[31:0]

MI2
MI3

uofc_busy
uofc_dout[31:0]

uofc_ack

uifc_cpha
uifc_baud[3:0]

uifc_clk
uifc_rst

WP#/IO2
HOLD#/IO3

uifc_reconfig
uifc_reconfig_nwords[31:0] uofc_RXFF

Figure 3.28: Wiring connection of S25FL128S flash memory with Flash

Controller Unit

Figure 3.29: QOR command sequence of S25FL128S flash memory

Source: Cypress (2017) „128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V

SPI flash memory‟

0x06h

0x6Bh

86

3.3.4.2 Design Partitioning

 The Flash Controller unit is developed with 5 major blocks: Flash

Controller FSM, Flash Controller Receiver, Flash Controller Transmitter,

FIFO and Flash Controller Clock Generator. Figure 3.30 shows the

microarchitecture of the Flash Controller unit.

uofc_dout
MI1

bfc_fsm
MIO0 FIFO

bfc_clk_gen

RSR[31:0] RDR[31:0]
MI2

MI3

TSR[31:0]uifc_addr[31:0]

uifc_read

uifc_EOS

uofc_busy
uofc_ack

ufc

uifc_cpol

uifc_cpha

MIO0

uifc_cpha[3:0]
SS
SCLK

bfcRX

bfcTX

uifc_reconfig

uifc_reconfig_nwords[31:0]

uofc_RXFF

Figure 3.30: Flash Controller unit microarchitecture

87

3.3.5 Boot ROM Unit

 The Boot ROM unit is used to store the bootloader program. The Boot

ROM unit is for read-only, i.e. no write data bus, and the bootloader program

is pass to the Boot ROM unit using “$readmemh (`ROM_FILE_PATH,

rom_data)” in the Verilog HDL. A block wrapper module is designed, as

shown in Figure 3.31, for the ease of using the FPGA Block RAM and Table

A.5 describes the function of each pin.

uboot_rom
borom_wb_ack

birom_wb_stb
birom_wb_addr[SIZE:0]

birom_wb_clk

birom_wb_rst

borom_wb_dout[31:0]

Figure 3.31: Boot ROM Unit chip interface

88

3.3.6 Data and Stack RAM Unit

 The Data and Stack RAM Unit is created to store the runtime data

(refer to .data, .bss, .stack and .heap segments in Section 3.3.1). The Data and

Stack RAM is created using FPGA Block RAM, in which both read and write

access of the data must be synchronous to the clock source. A block wrapper

module is designed, as shown in Figure 3.32, for the ease of using the FPGA

Block RAM and Table A.6 describes the function of each pin.

uram
uiram_wb_sel[3:0]
uiram_wb_we

uiram_wb_din[31:0]

uiram_wb_stb

uiram_wb_addr[SIZE:0]

uiram_wb_clk

uiram_wb_rst

uoram_wb_dout[31:0]
uoram_wb_ack

Figure 3.32: Data and Stack RAM Unit chip interface

89

3.4 I/O System

 I/O system components consist of SPI controller, UART controller,

GPIO controller, Priority Interrupt Controller and General Purpose Register

(GPR) unit, are connected to the CPU through Wishbone B4 standard bus

interface (OpenCores, 2010). CPU is treated as the master device while the

I/Os connected are treated as the slave devices. Based on the Wishbone

standard, Table 3.12 shows the specific signals are required by both master

and slave devices while Figure 3.33 shows the I/O system architecture at the

MEM stage (remark: Address Decoder Block is in EX stage).

Table 3.12: Wishbone standard signals for master and slave device

 Master Device Slave Device

Input clock input (CLK_I),

reset input (RST_I),

data input array (DAT_I)

clock input (CLK_I),

reset input (RST_I),

data input array (DAT_I),

address input array (ADR_I),

select input array (SEL_I),

strobe input (STB_I),

write enable input (WE_I)

Output data output array (DAT_O),

address output array (ADR_O),

select output array (SEL_O),

strobe output (STB_O),

write enable output (WE_O)

data output array (DAT_O),

acknowledge output (ACK_O)

90

Figure 3.33: I/O system architecture at MEM stage [PR unit (upr) pins is

simplified for illustration purpose]

91

3.4.1 UART controller

 The UART controller is used for serial data communication between

the UART interface devices. The UART controller is designed to provide the

following features:

1) Half-duplex asynchronous transmitting and receiving, where only

transmit or receive data can take place at any time

2) Performs serial-to-parallel data conversions on data received from

another device via uiua_RxD

3) Performs parallel-to-serial data conversions and transmit the data to

another device via uoua_TxD

4) Programmable baud rate with 8 speed selection (300 baud -> 38400

baud)

5) Selectable parity bit

6) Parity error (PE) and framing error (FE) detection

7) Received complete and transmit FIFO empty interrupt support

Figure 3.34 shows the chip interface of the UART controller and Table A.7

describes the function of each pin.

Wishbone standard interface

uuart

uoua_wb_ack

uiua_wb_din[7:0]

uiua_wb_sel[3:0]

uiua_wb_stb

uiua_wb_clk

uiua_wb_rst

uiua_RxD

uiua_wb_we uoua_wb_dout[7:0]

uoua_TxD

uoua_IRQuiua_UARTIE

Figure 3.34: UART Controller chip interface

92

3.4.1.1 UART protocol

 UART data communication protocol is divided into 4 parts: start, data,

parity and stop bit. Figure 3.35 illustrates the UART data communication

protocol.

Figure 3.35: UART data communication protocol

1) Start bit: This bit is set to LOW to initiate bit synchronization of the

message at the receiver.

2) Data: Represent the data that will be transmitted. The least significant

bit (LSB) will be sent out first followed by next bit until the most

significant bit (MSB).

3) Parity Bit: This bit represents even or odd parity if parity is enabled.

The CPU is in charge of manipulating the even or odd parity.

4) Stop Bit: This bit is set to HIGH to provide the message-framing

indication for use in bit synchronization at the receiver.

When receiving the data from the UART controller, the start bit will be

sampled for 5 times, where the serial bit at the 5th sample will be indicated as

the start bit. When the start bit detected, the UART controller will sample the

next serial bit for 10 times and the serial bit at the 10th sample will be

93

recorded and treated as the LSB of the receiving data. The data receiving

process will continue until the stop bit is received. The sequence of the data

sampling will be 5 (Start bit), 10 (LSB), 10, 10, 10, 10, 10, 10, 10 (MSB), 10

(Parity bit-optional) and 10 (Stop bit). Figure 3.36 illustrates the process of

data sampling when receiving data from the UART controller.

* * * * *

Start bit

LSB

5 10 10 10 10

Figure 3.36: Process of data sampling when receiving data through UART

controller

 A parity bit is used for error detection when in UART serial data

transmission. Odd parity create an odd count of 1‟s in a stream of data (8-bits

data and 1 parity bit) while even parity creates an even count of 1‟s in a stream

of data. A parity error occurs when the count of 1‟s is not as agreed by both

UART devices, where even parity will have 0, 2, 4, 6 or 8 of 1‟s in a stream of

data while odd parity will have 1, 3, 5, 7 or 9 of 1‟s in a stream of data. Parity

error may occur due to the transmission line corrupted. However, no

correction can be done by the UART controller except notify the user by

sending an interrupt request. Such condition can only be resolved by re-

sending the data.

94

Each stream of data consists of a start and a stop bit to indicate the start

and the stop of one byte data communication. Start bit initiate the

communication while stop bit terminates the communication. The framing

error occurs when no stop bit is detected. Such condition may occur due to the

transmission line corrupted, different baud rate for both devices and parity

setting of both devices. UART controller will send an interrupt request to

notify this condition had arisen and the user is required to resolve it by

checking the wire connection or the configuration setting of both UART

devices.

95

3.4.1.2 Design Partitioning

 UART controller consists of Baud Clock Generator (bclkctr), Receiver

(brx) and Transmitter (btx) blocks. 4 registers, UARTCR (UART

Configuration Register), UARTSR (UART Status Register), UARTRDR

(UART Receive Data Register) and UARTTDR (UART Transmit Data

Register), are available for user access while 2 shift registers, Transmitter

Shift Register (TSR) and Receiver Shift Register (RSR), are used for parallel-

to-serial and serial-to-parallel data conversion respectively. UARTCR and

UARTSR are used for configuration setting and status monitoring purposes.

UARTTDR holds the data that will be transmitted to another UART device.

UARTTDR is a 4 x 1-byte FIFO memory, where up to 4 bytes of data can be

inserted by user and queue for data transmitting. UARTRDR is also a 4 x 1-

byte FIFO memory, where up to 4 bytes of data can be received and buffered.

UART Receiver block used a 9-bit shift register (RSR) to receive each bit

serially from another UART device. Once the 9-bit data received (8 data bit

and 1 stop bit), the data in the RSR data will be passed to the UARTRDR.

UARTRDR holds the data while RSR can continue to receive another byte of

data. For data transmitting, UART Transmitter block used a 10-bit shift

register (TSR) to transmit the data (8 data bit, 1 parity bit and 1 stop bit)

serially to another UART device. Figure 3.37 shows the internal connection of

the UART Controller.

96

TSR[9:0]

uiua_RxD

uoua_TxD

RSR[8:0]

uiua_wb_clk

UARTCR

RXFF TXEF FE PE x x x RXFIM

UARTSR

uiua_wb_din[7:0]

uoua_IRQ

uuart

UARTEN RXCIE TXEIE PRTEN PRT BAUD BAUD BAUD

uoua_wb_ack

uiua_wb_sel[3:0]
uiua_wb_we

uiua_wb_stb

uoua_wb_dout[7:0]

uiua_UARTIE

[7:0]

[7:0]

FIFO
4 x 1
BYTE

FIFO
4 X 1
BYTE

[7:0]

[7:0]

btx

brx

bclkctr

bicc_reset

bocc_ua_clock

bicc_sysclk

bicc_select_baud[2:0]

bocc_tx_en

bocc_ua_clockx10

Figure 3.37: Internal connection of the UART Controller

97

3.4.1.3 Register sets

 4 registers are used to allow the data communication between the CPU

and the UART controller.

1) UART Configuration Register (UARTCR) – 8-bit (0xBFFFFE28)

a. UARTEN – UART enable control. It is used to deactivate the

UART controller when it is not in use. When activated, even

not transmitting a byte of data, the UART controller is capable

to receive a byte of data from another device. To have better

control on power consumption, the UART controller is

recommended to be deactivated when not in use.

i. Set to activate the UART controller

ii. Clear to deactivate the UART controller

b. RXCIE – Receive Complete Interrupt enable control. It can

only be used if and only if UARTIE (UART global interrupt

enable) bit in PICMASK (0xBFFFFE22) is set. This bit is used

for interrupt enable control (to select interrupt method instead

of polling) after data has been completely received (as

indicated by the RXDF bit in UARTSR (0xBFFFFE29)).

i. Set to enable Receive Complete Interrupt

ii. Clear to disable Receive Complete Interrupt

c. TXEIE – Transmit FIFO Empty Interrupt enable control. It can

only be used if and only if UARTIE (UART global interrupt

enable) bit in PICMASK (0xBFFFFE22) is set. This bit is used

for interrupt enable control (to select interrupt method instead

UARTEN RXCIE TXEIE PRTEN PRT BAUD [2:0]

98

of polling) when the transmitter FIFO (UARTTDR) is empty

(as indicated by the TXEF bit in UARTSR (0xBFFFFE29)).

i. Set to enable Transmit Empty Interrupt

ii. Clear to disable Transmit Empty Interrupt

d. PRTEN – Parity enable control

e. PRT – Parity bit, to select either odd or even parity

f. BAUD[2:0] – UART Baud Rate

i. 000: 38400 baud

ii. 001: 19200 baud

iii. 010: 9600 baud

iv. 011: 4800 baud

v. 100: 2400 baud

vi. 101: 1200 baud

vii. 110: 600 baud

viii. 111: 300 baud

2) UART Status Register (UARTSR) – 8-bit (0xBFFFFE29)

a. RXDF – Receive Done flag. This bit when set by UART,

indicates 1-byte or 4-byte of data have been completely

received. It is used in conjunction with RXFM bit in UARTSR

(0xBFFFFE29) to determine if the receive data is 1-byte

(RXFM = 0) or 4-byte (RXFM = 1 i.e. FIFO full).

b. TXEF – Transmit FIFO Empty flag. This bit is set to 1 by the

UART if the transmit FIFO is empty.

c. FE – Framing error. It is set when not detecting a stop bit.

RXDF TXEF FE PE RXFMRESERVED [3:1]

99

d. PE – Parity error. It is set when parity bit mismatch.

e. RXFM – Receive FIFO Full Mode. It is part of UARTCR. It is

placed in UARTSR (0xBFFFFE29) to avoid creating longer

bytes of UARTCR.

i. Set to 1 by user to indicate a 4-byte (FIFO full) data is

expected to be read by CPU.

ii. Clear to 0 by user to indicate a 1-byte data is expected

to be read by CPU.

3) UART Transmit Data Register (UARTTDR) – 8-bit (0xBFFFFE2A)

a. This register holds the data that will transmit to another UART

device

4) UART Receive Data Register (UARTRDR) – 8-bit (0xBFFFFE2B)

a. This register holds the data received from another UART

device

UARTTDR [7:0]

UARTRDR [7:0]

100

3.4.2 SPI controller

 The SPI controller is used for high speed serial data communication

between the SPI interface devices. It is developed with 4 wires, which are

Master out Serial in (MOSI), Master in Serial out (MISO), Slave Select (SS)

and SPI clock (SCLK), and 4 modes of serial data communication (some of

the SPI interface module support only certain mode of serial data

communication, e.g. The CC2420 from Texas Instruments only support mode

0 and 3). The SPI controller is able to perform the following functionalities.

1) Full duplex 8-bit data (8 SCLK cycles) communication, which serial

data transmission and receiving can take place at the same time

2) Selectable 16 transmission speed (305 Hz -> 10 MHz)

3) Selectable 4 mode of transmission (mode 0, 1, 2 and 3)

4) Mode Fault error detection

5) Received buffer full and transmit buffer empty interrupt support

Figure 3.38 shows the chip interface of the SPI controller and Table A.8

describes the function of each pin.

uspi

uospi_wb_ack

uispi_wb_din[7:0]

uispi_wb_sel[3:0]

uispi_wb_stb

uispi_wb_clk

uispi_wb_rst

uispi_SPIE

uispi_wb_we uospi_wb_dout[7:0]

uiospi_MOSI

uiospi_MISO

uiospi_SCLK

uiospi_SS_n

uospi_IRQ

Wishbone standard interface

Figure 3.38: SPI Controller chip interface

101

3.4.2.1 SPI protocol

 To allow serial data communication among SPI devices, in which only

one master device is allowed to exist in the same connection, whereas other

SPI devices must be configured by the user as slave devices. To avoid 2 or

more master devices exist in the same connection, the user can check the

MSTR bits from all the connected SPI devices to ensure only one MSTR bit is

set. The SPI controller also have the capability to check the uiospi_SS_n pin

for 2 or more master devices existing in the same connection and will generate

an interrupt signal (Mode Fault error) to the CPU to notify the user.

 To initiate the SPI serial data communication, master device pull low

the uiospi_SS_n pin for 8 uiospi_SCLK cycles. A clock pulse is sent from the

master to the slave devices, through the uiospi_SCLK pin, for serial data

synchronization purposes. After the uiospi_SS_n pin is pulled low, 8-bit serial

data is transmitted from the uiospi_MOSI pin of the master device to the

uiospi_MOSI pin of the slave device. At the same time, uiospi_MISO pin of

the master device can receive 8-bit data from the uiospi_MISO pin of the slave

device. This makes SPI device capable of performing full duplex data

communication. The serial 8-bit data communication is completed after 8

uiospi_SCLK cycles followed by pull high the uiospi_SS_n pin. Four

communication modes (mode 0, 1, 2 and 3), defined by Clock polarity (CPOL)

and Clock phase (CPHA), are available to identify the uiospi_SCLK edges to

be used for data transmit and sampling. Table 3.13 shows the SPI mode 0, 1, 2

and 3 with respect to CPOL and CPHA and Figure 3.39 to Figure 3.42

illustrates the SPI serial data communication for each communication mode.

102

Table 3.13: SPI communication mode information

mode CPOL CPHA Data transmit at Data sample at (Receive)

0 0 0 half clock before the rising edge rising edge

1 0 1 rising edge falling edge

2 1 0 half clock before the falling edge falling edge

3 1 1 falling edge rising edge

Figure 3.39: Mode 0 serial data communication

Figure 3.40: Mode 1 serial data communication

Figure 3.41: Mode 2 serial data communication

Figure 3.42: Mode 3 serial data communication

103

3.4.2.2 Design Partitioning

 SPI controller consists of Clock Generator (bspiclk_gen), Input Output

Control (bspiIO_ctrl), Receiver (bspiRX) and Transmitter (bspiTX) blocks. 4

registers, SPICR (SPI Configuration Register), SPISR (SPI Status Register),

SPIRDR (SPI Receive Data Register) and SPITDR (SPI Transmit Data

Register), are available for user access while 2 shift registers, Transmitter

Shift Register (TSR) and Receiver Shift Register, are used for parallel-to-

serial and serial-to-parallel data conversion respectively. SPICR and SPISR

are used for configuration setting and status monitoring purposes. SPITDR

holds the data that will be transmitted to another SPI device. SPITDR is a 16 x

1-byte FIFO memory, where up to 16 bytes of data can be inserted by user and

queue for data transmitting. SPIRDR is also a 16 x 1-byte FIFO memory,

where up to 16 bytes of data can be received and buffered. SPI Receiver block

used an 8-bit shift register (RSR) to receive each bit serially from another SPI

device. Once the 8-bit data received, the data in the RSR data will be passed to

the SPIRDR. SPIRDR holds the data while RSR can continue to receive

another byte of data. For data transmitting, SPI Transmitter block used an 8-bit

shift register (TSR) to transmit the data serially to another SPI device.

104

3.4.2.3 Register sets

 4 registers are used to allow the data communication between the CPU

and the SPI controller.

1) SPI Configuration Register (SPICR) – 8-bit (0xBFFFFE24)

a. SPE – SPI enable control. It is used to deactivate the SPI

controller when it is not in use. To have better control on power

consumption, the SPI controller is recommended to be

deactivated when not in use. Set to activate SPI controller, else

otherwise.

b. MSTR – Master/Slave device. Set to indicate as master device,

else otherwise.

c. CPOL – Clock Polarity

a. CPHA – Clock Phase

b. SCR[3:0] – SPI Clock Rate (CPU clock speed is 20 MHz)

i. 0000: 10 MHz

ii. 0001: 5 MHz

iii. …

xv. 1111: 305 Hz

2) SPI Status Register (SPISR) – 8-bit (0xBFFFFE25)

a. RXDF – Receive Done flag. This bit when set by SPI, indicates

1-byte or 16-byte of data have been completely received. It is

used in conjunction with RXFM bit in SPISR (0xBFFFFE25) to

SPE MSTR CPOL CPHA SCR[3:0]

RXDF TXEF MODF RXFM RXFIE TXEIE RXFHE TXEHE

105

determine if the receive data is 1-byte (RXFM = 0) or 16-byte

(RXFM = 1 i.e. FIFO full).

b. TXEF – Transmit FIFO Empty flag. This bit is set to 1 by the

SPI if the transmit FIFO is empty.

c. MODF – Mode Fault error. When SPI unit is set as the master

device, the uiospi_SS_n pin must pull high by the master device.

If there existed two master devices, any attempt to pull low the

uiospi_SS_n pin will trigger the mode fault error. This is to avoid

two master devices exist in the same connection and avoid

damage to the hardware.

d. RXFM – Receive FIFO Full Mode. It is part of SPICR. It is

placed in SPISR (0xBFFFFE25) to avoid creating longer bytes of

SPICR.

i. Set to indicate a 16-byte (FIFO full) data is expected to

be read by CPU.

ii. Clear to indicate a 1-byte data is expected to be read by

CPU.

e. RXFIE – Receive Complete Interrupt enable. It is part of SPICR.

It is placed in SPISR (0xBFFFFE25) to avoid creating longer

bytes of SPICR. It can only be used if and only if SPIE (SPI

global interrupt enable) bit in PICMASK (0xBFFFFE22) is set.

This bit is used for interrupt enable control (to select interrupt

method instead of polling) after data has been completely

received (as indicated by the RXDF bit in SPISR (0xBFFFFE25)).

Set to enable Receive Complete Interrupt, else otherwise.

106

f. TXEIE – Transmit FIFO Empty interrupt enable. It is part of

SPICR. It is placed in SPISR (0xBFFFFE25) to avoid creating

longer bytes of SPICR. It can only be used when SPIE (SPI

global interrupt enable) bit in PICMASK (0xBFFFFE22) is set.

This bit is used for interrupt enable control (to select interrupt

method instead of polling) when the transmitter FIFO (SPITDR)

is empty (as indicated by the TXEF bit in SPISR (0xBFFFFE25)).

Set to enable Transmit Empty Interrupt, else otherwise.

g. RXFHE – Receive-Byte Halt enable. It is part of SPICR. It is

placed in SPISR (0xBFFFFE25) to avoid creating longer bytes of

SPICR.

i. Set to enable FSM stall when received one byte of data

ii. Clear to disable FSM stall

h. TXEHE – Transmit FIFO Empty Halt enable. It is part of SPICR.

It is placed in SPISR (0xBFFFFE25) to avoid creating longer

bytes of SPICR.

i. Set to enable FSM stall when a full stream of data

stored in the FIFO memory is transmitted

ii. Clear to disable FSM stall

3) SPI Transmit Data Register (SPITDR) – 8-bit (0xBFFFFE26)

a. Holds the data that will be transmitted to another SPI device

4) SPI Receive Data Register (SPIRDR) – 8-bit (0xBFFFFE27)

a. Holds the data received from another SPI device

SPITDR [7:0]

SPIRDR [7:0]

107

3.4.3 GPIO controller

 The General Purpose Input/Output (GPIO) Controller is developed

with 32-bits I/O port, where each pin can be set as either input or output. The

GPIO Controller can be used for controlling the external devices, blinking

LEDs, debugging, digital input reading etc. Figure 3.43 shows the chip

interface of the GPIO Controller unit and Table A.9 describes the function of

each pin. Figure 3.44 illustrates the internal operation of the GPIO Controller

unit.

ugpio

uogpio_wb_ack

uigpio_wb_din[31:0]

uigpio_wb_sel[3:0]

uigpio_wb_stb

uigpio_wb_clk

uigpio_wb_rst

uigpio_wb_we

uogpio_wb_dout[31:0]

uiogpio_PORT_pin[31:0]

Wishbone standard interface

uigpio_wb_addr[1:0]

Figure 3.43: GPIO Controller unit chip interface

G
P

IO
D

IR
[3

1
:0

]
&

G

P
IO

EN
[3

1
:0

]

0

1

uiogpio_PORT_pin[31:0]

GPIODATA
[31:0]

din dout

GPIOEN
[31:0]

din dout

GPIODIR
[31:0]

din doutuigpio_wb_din[31:0]

uigpio_wb_sel[3:0]
uigpio_wb_we

uigpio_wb_stb

uogpio_wb_dout[31:0]

uogpio_wb_ack

uigpio_wb_addr[1:0]

ugpio

Figure 3.44: Internal operation of GPIO Controller unit

108

3.4.3.1 Register sets

 3 registers are used to allow the data communication between the CPU

and the GPIO controller.

1) GPIO Direction Control Register (GPIODIR) – 32-bits (0xBFFFFE10)

a. GPIODIR[31:0] – GPIO Direction. It is used to configure each

pin either as input or output. When system restarts, all the pins

are preset as output pins.

i. 1 = input pin; 0 = output pin

2) GPIO Enable Control Register (GPIOEN) – 32-bit (0xBFFFFE14)

a. GPIOEN[31:0] – GPIO pins enable control. It is used to

enable or disable each pin.

i. 1 = pin enable; 0 = pin disable

3) GPIO Data Register (GPIODATA) – 32-bit (0xBFFFFE18)

a. GPIODATA[31:0] – GPIO data. It is used store the data of

each pin. Each bit is set by the user if respective bit is defined

as an output pin, which user may write 1 into the respective bit

in GPIODATA register and respective pins will output logic

high. If a GPIO pin is defined as the input pin, the respective

bit in GPIODATA register should store the digital data that

received from an external device.

GPIODIR[31:0]

GPIOEN [31:0]

GPIODATA [31:0]

109

3.4.4 Priority Interrupt Controller

 The developed Priority Interrupt Controller unit is an external interrupt

controller (CP0 is the internal interrupt controller). Priority Interrupt

Controller unit assist CP0 block to identify the highest priority interrupt source

from 8 interrupt sources. The currently connected interrupt sources are SPI

controller, UART controller and CP0 timer. Four interrupt priority levels (IPL)

can be set for each interrupt source, where the highest level gains the highest

priority. Figure 3.45 shows the chip interface of the Priority Interrupt

Controller unit and Table A.10 describes the function of each pin. Figure 3.46

illustrates the internal operation of the Priority Interrupt Controller unit.

Wishbone standard interface

upi_ctrl

uopi_ctrl_wb_ack

uipi_ctrl_wb_din[31:0]

uipi_ctrl_wb_sel[3:0]

uipi_ctrl_wb_stb

uipi_ctrl_wb_clk

uipi_ctrl_wb_rst

uipi_ctrl_intr_en_n

uipi_ctrl_wb_we uopi_ctrl_wb_dout[31:0]

uopi_ctrl_req_IPL[1:0]

uopi_ctrl_IRQuipi_ctrl_cpu_stall

uipi_ctrl_intr_vector[7:0]

uipi_ctrl_stat_IPL[1:0] uopi_ctrl_IO_IE[7:0]

Figure 3.45: Priority Interrupt Controller unit chip interface

Figure 3.46: Internal operation of Priority Interrupt Controller unit

110

3.4.4.1 Interrupt protocol

 The priority scheme is implemented with respect to two rules:

1) Always serve the highest IPL interrupt source

2) When same IPL, serve the interrupt source with lowest vector number,

for example: served uipi_ctrl_intr_vector[2] first followed by

uipi_ctrl_intr_vector[3] when both interrupt the CPU at the same time

The uopi_ctrl_IRQ should only assert for 1 clock cycle, in which it will

instruct the CPU to jump to the exception handler. Figure 3.47 shows the

timing requirement of the Priority Interrupt Controller, in which the condition

shown demonstrate the nested interrupt request from 8 interrupt sources.

Figure 3.47: Timing requirement of Priority Interrupt Controller unit

111

3.4.4.2 Register sets

 4 registers are used to allow the data communication between the CPU

and the Priority Interrupt Controller.

1) Interrupt Priority Level Low-byte Register (PICIPLLO) – 8-bit

(0xBFFFFE20)

User sets the interrupt priority level of the I/Os. For example,

PICIPLLO[7:0] = 8‟b00_00_11_11, this means I/O0 has the higher

priority than I/O1 because I/O0 has the lowest vector number.

a. IPL0[1:0] – Interrupt Priority Level of interrupt source 0

b. IPL1[1:0] – Interrupt Priority Level of interrupt source 1

c. IPL2[1:0] – Interrupt Priority Level of UART

d. IPL3[1:0] – Interrupt Priority Level of SPI

2) Interrupt Priority Level High-byte Register (PICIPLHI) – 8-bit

(0xBFFFFE21)

a. IPL4[1:0] – Interrupt Priority Level of interrupt source 4

b. IPL5[1:0] – Interrupt Priority Level of interrupt source 5

c. IPL6[1:0] – Interrupt Priority Level of interrupt source 6

d. IPL7[1:0] – Interrupt Priority Level CP0 timer

3) Interrupt Sources Masking Register (PICMASK) – 8-bits

(0xBFFFFE22)

IPL3

PICIPLLO

IPL2 IPL1 IPL0

PICIPLHI

IPL7 IPL6 IPL5 IPL4

IO7 IO6 IO5 IO4 SPIE UARTIE IO1 IO0

PICMASK

112

It is used as the global interrupt enable control of each I/O.

a. IO0 – Interrupt source 0 Interrupt Enable

b. IO1 – Interrupt source 1 Interrupt Enable

c. UARTIE – UART Interrupt Enable

d. SPIE – SPI Interrupt Enable

e. IO4 – Interrupt source 4 Interrupt Enable

f. IO5 – Interrupt source 5 Interrupt Enable

g. IO6 – Interrupt source 6 Interrupt Enable

h. IO7 – Interrupt source 7 Interrupt Enable

4) Status Register (PICSTAT) – 8-bits (0xBFFFFE23)

Stored the currently I/O information being served by the CPU. The

exception handler reads the PICSTAT to identify which I/O and hence,

which Interrupt Service Routine (ISR) to jump to.

a. vec_num[2:0] – store the vector number of Interrupt source

that currently handles

000 – Interrupt source 0

001 – Interrupt source 1

010 – UART

011 – SPI

100 – Interrupt source 4

101 – Interrupt source 5

110 – Interrupt source 6

111 – CP0 timer

x x x x x vec_num

PICSTAT

113

3.4.5 General Purpose Register

 The General Purpose Register unit is developed to store the current

microarchitecture identification bit, multi-cycle microarchitecture partial

bitstream start address, pipeline microarchitecture partial bitstream start

address and the partial bitstream size. Figure 3.48 shows the chip interface of

the General Purpose Register unit and Table A.11 describes the function of

each pin.

Wishbone standard interface

ugpr

uogpr_wb_ack

uigpr_wb_din[31:0]

uigpr_wb_sel[3:0]

uigpr_wb_stb

uigpr_wb_clk

uigpr_wb_rst

uigpr_wb_we uogpr_wb_dout[31:0]

uogpr_pipeline_reconf_addr[31:0]

uogpr_multicycle_reconf_addr[31:0]

uigpr_wb_addr[1:0]

uigpr_update_ma

uogpr_reconf_setting[31:0]

Figure 3.48: General Purpose Register unit chip interface

114

3.4.5.1 Register sets

 3 registers are included in the General Purpose Register unit.

1) Setting Register (SETTING) – 32-bit (0xBFFFFE00)

a. MABS[31:9] – Microarchitecture PR Bitstream Size (Word).

Store the PR bitstream word size. Multi-cycle and pipeline

microarchitectures have the same PR bitstream word size. This

information is used to prevent fetching the wrong PR bitstream

from flash memory

b. CMA – Current Microarchitecture. Set when current

microarchitecture is pipeline microarchitecture while reset when

it is multi-cycle microarchitecture

c. SYSCLK[7:0] – System clock frequency

2) Pipeline Microarchitecture PR Bitstream Start Address Register

(P5CADDR)– 32-bit (0xBFFFFE04)

a. P5CADDR[23:0] – Pipeline microarchitecture PR bitstream start

address. The 24-bits value stored indicates the address location of

pipeline microarchitecture in the flash memory

3) Multi-cycle Microarchitecture PR Bitstream Start Address Register

(M5CADDR) – 32-bit (0xBFFFFE08)

a. M5CADDR[23:0] – Multi-cycle microarchitecture PR bitstream

start address. The 24-bits value stored indicates the address

location of multi-cycle microarchitecture in the flash memory

CMAMABS[31:9] SYSCLK[7:0]

P5CADDR[23:0]RESERVED[31:24]

M5CADDR[23:0]RESERVED[31:24]

115

3.5 Polling and Single Vector Nested Interrupt Serving

 Interrupt sources include UART, SPI and CP0 timer can be served

through polling or interrupt method. Polling access repeatedly checks the

interrupt source to determine whether it is ready for data transfer. The

following example shows the flow of the UART‟s transmits FIFO is empty

using the polling method:

1) Disable the UART global interrupt through resetting the UARTIE bit

in the EXPIC register, of the priority interrupt controller

2) UART configuration through UARTCR

a. Set baud rate (BAUD[2:0] = 010, 9600 baud)

b. Start UART by setting the UARTEN bit.

3) Load UARTSR register value to Register File‟s register to check the

TXEF bit of the UARTSR register

a. When TXEF=1, break the loop and continue with further

process

b. When TXEF=0, repeat step 3 to continue polling

The polling method occupies the processing capability of the CPU. Instead,

the interrupt method allows the CPU to proceed with other tasks while waiting

for interrupt sources to interrupt the CPU for special attention. The following

example shows the flow of the UART‟s transmit FIFO is empty using

interrupt method:

1) Enable the UART global interrupt by setting the UARTIE bit to 1 in

the EXPIC register of the Priority Interrupt Controller

2) UART configuration through UARTCR

116

a. Set baud rate (BAUD[2:0] = 010, 9600 baud) and set the

TXEIE bit to enable the transmit FIFO is empty interrupt

enable.

b. Start UART by setting the UARTEN bit.

3) Move on to process other tasks

4) When interrupt occurs, jump to exception handler, 0x8001_B400

virtual address (we will discuss this in detailed later)

Even if the interrupt method can achieve higher computation than the polling

method, however, it needs higher effort in program flow design. The problem

would come when the multiple interrupts occur at the same time or interrupt

occurs when the CPU is serving an interrupt. Thus, we had developed a

scheme (single vector nested interrupt) that includes the hardware and

firmware to overcome the problem.

Single vector interrupt allows every interrupts jump to a single general

routine (exception handler) rather than jump to the specific interrupt source‟s

interrupt service routine (ISR). The hardware parts (Priority Interrupt

Controller and CP0 block) responsible to send an interrupt signal to the CPU

for interruption based on priority (higher priority gets served first), set EXL bit

of the $stat register in the CP0 block to disable further exception and reset

EXL bit of the $stat when the exception return (eret instruction). The related

register information of the CP0 block is shown in Figure 3.49 and described in

Table 3.14.

117

RESERVED IEELUM RESERVEDIPL
01234

RESERVED

5910111231

RESERVED

01

Exception Code

26

EL

7

TIBD

3031 29 910

RIPL
1112

RESERVED

$stat

$cause TEN

2728 26

Figure 3.49: Graphical view of CP0 $stat and $cause registers

Table 3.14: $stat and $cause register description

Register bit usage

$stat [31:12] RESERVED

 IPL[11:10] store current interrupt priority level

 [9:5] RESERVED

 UM[4] 1=user mode, 0=kernel mode

 [3:2] RESERVED

 EL[1] Exception level

1=exception occurs, disable further exception to occur

0=no exception occurs

 IE[0] 1=Interrupt enable

0=Interrupt disable

$cause BD[31] Indicate branch delay

 TI[30] 1=enable timer interrupt

0=disable timer interrupt

 [29:28] RESERVED

 TEN[27] CP0 Timer, $count disable control

 [26:12] RESERVED

 RIPL[11:10] Request interrupt priority level

 [9:7] RESERVED

 Exception

code [6:2]

encodes reasons for the exception

0=Interrupt

4=AdEL, address error trap (load or instruction fetch)

5= AdES, address error trap (store)

6=lBE, bus error on instruction fetch trap

7=DBE, bus error on data load or store trap

8=Sys, syscall trap

9=Bp, breakpoint trap

10=Rl, undefined instruction trap

12=Ov, arithmetic overflow trap

 [1:0] RESERVED

The firmware part performs the program flow shown in Figure 3.50 to

allow the nested interrupt to occur. The firmware (exception handler program

located at 0x8001_B400 virtual address) decodes the exception and jump to

the sub-routine accordingly. The nested interrupt program flow makes used of

118

the stack memory to store the register information so that to allow another

interrupt to occurs.

Store register to stack

Exception Return
(ERET)

Reset $stat.EXL bit

User Interrupt
handling code

Load previous
information from

stack back to
registers

Set $state.EXL bit
and reset $stat.IE bit

Set $state.IE bit

$k0

$epc

$a2

Exception frame, EF

$k1

$a1

$a0

$stat

$a3

$cause
If(interrupt){
 Copy $cause.RIPL to $stat.IPL
 //to prevent lower priority interrupt occurs
}

Figure 3.50: Nested interrupt service routine flow

119

3.6 Summary

 This chapter is summarized as follows:

1) MIPS ISA compatible multi-cycle and pipeline processors are

developed for experimental purpose.

2) A 2-level memory hierarchy memory system consists of caches, Boot

ROM, Data and Stack RAM and flash memory is integrated with the

CPU to provide CPU bootloading, fast instruction and data access and

runtime variable storage.

3) I/O system consists of SPI controller, UART controller, GPIO

controller, Priority Interrupt Controller and GPR unit is connected to

the CPU through Wishbone standard bus interface.

4) The PR controller is developed and integrated with CPU to perform the

required action for PR. De-coupler unit is used to de-couple the

corrupted signals from the static region‟s logic when PR is in progress.

5) Memory system consists of flash memory, Data and Stack RAM, Boot

ROM and I/O registers are map to kseg0 and kseg1.

6) A single vector nested interrupt protocol is developed to allow for

nested interrupt support.

120

CHAPTER 4

 SYSTEM VERIFICATION

 The developed reconfigurable soft-core IoT processor is synthesized

based on Xilinx Artix-7 XC7A100T FPGA chip on Digilent Nexys 4 DDR

board. The FPGA resources used in both multi-cycle and pipeline

microarchitectures are shown in Table 4.1. The critical path delay of each

hardware component in the reconfigurable soft-core IoT processor of both

multi-cycle and pipeline microarchitecture is shown in Table 4.2 and Table 4.3.

Table 4.1: FPGA resources used in pipeline and multi-cycle

microarchitectures.

FPGA Resources
Microarchitecture

Multi-cycle Pipeline

LUT 7643 8561

LUTRAM 127 311

FF 5464 5812

BRAM 3.50 3.50

IO 45 45

BUFG 1 1

Table 4.2: Critical path delay of each hardware component in multi-cycle

microarchitecture (generated from Xilinx Vivado)

Hardware component Delay (ns)

logic net total

Partial Reconfiguration

PR unit (pr_inst) 4.070 8.203 12.273

PR controller unit (upr_ctrl) 3.830 6.478 10.308

CPU

Data-path unit (udata_path) 4.070 8.203 12.273

Control-path unit FSM (uctrl_path) 4.070 8.203 12.273

Main Control block (bmain_ctrl) 3.616 8.130 11.746

Arithmetic Logic Control block (balb_ctrl) 1.123 2.438 3.561

Register File block (brf) 1.846 2.515 4.361

121

Continued from Table 4.2

Hardware component Delay (ns)

logic net total

CP0 block (bcp0) 4.070 8.203 12.273

Interlock block (bitl_ctrl) - - 0.000

Forwarding block (bfw_ctrl) - - 0.000

ALU block (balb) 4.070 8.203 12.273

Multiplier Block (bmult32) 6.258 5.957 12.215

Address Decoder block (baddr_decoder) 4.070 7.455 11.525

I/O System

UART Controller unit (uuart) 3.954 6.993 10.947

- UART Baud Clock Generator block (bclkctr) 1.563 1.736 3.299

- UART Receiver block (brx) 3.946 6.960 10.906

- UART Transmitter block (btx) 3.946 6.993 10.939

SPI Controller unit (uspi) 4.070 7.455 11.525

- SPI Clock Generator block (bclk_gen) 1.801 2.688 4.489

- SPI Receiver block (bRX) 1.261 2.745 4.006

- SPI Transmitter block (bTX) 1.801 2.688 4.489

- SPI Input Output Control block (bio_ctrl) 1.385 2.652 4.037

GPIO Controller unit (ugpio) 3.830 6.524 10.354

Priority Interrupt Controller unit (upi_ctrl) 3.830 6.547 10.377

General Purpose Register unit (ugpr) 3.830 6.483 10.313

Memory System

Boot ROM unit (uboot_rom) 4.078 8.185 12.263

Data and Stack RAM unit (bsram) 3.706 6.837 10.543

Cache unit (icache) 4.070 8.203 12.273

- Cache Controller block (bcache_ctrl) 3.706 6.802 10.508

- Cache RAM block (bsram) 4.070 8.203 12.273

Cache unit (dcache) 3.830 7.097 10.927

- Cache Controller block (bcache_ctrl) 3.238 6.287 9.525

- Cache RAM block (bsram) 3.830 7.097 10.927

Memory Arbiter unit (umem_arbiter) 2.411 7.031 9.442

Flash Controller Unit (ufc) 2.411 7.031 9.442

- Flash Controller Clock Generator block (bfc_clk_gen) 1.021 2.131 3.152

- Flash Controller FSM block (bfc_fsm) 2.411 7.031 9.442

- Flash Controller Transmitter block (bfc_TX) 1.393 2.811 4.204

- Flash Controller Receiver block (bfc_RX) 1.319 3.385 4.704

122

Table 4.3: Critical path delay of each hardware component in pipeline

microarchitecture (generated from Xilinx Vivado)

Hardware component Delay (ns)

logic net total

Partial Reconfiguration

PR unit (pr_inst) 3.858 10.024 13.882

PR controller unit (upr_ctrl) 3.087 7.255 10.342

CPU

Data-path unit (udata_path) 3.858 10.024 13.882

Branch Predictor block (bbp_4way) 3.540 6.789 10.329

Main Control block (bmain_ctrl) 3.083 8.374 11.457

Arithmetic Logic Control block (balb_ctrl) 1.123 2.439 3.562

Register File block (brf) 3.540 6.789 10.329

CP0 block (bcp0) 4.068 7.983 12.051

Interlock block (bitl_ctrl) 1.763 6.647 8.410

Forwarding block (bfw_ctrl) 3.357 8.705 12.062

ALU block (balb) 5.398 8.715 14.113

Multiplier Block (bmult32) 7.096 7.325 14.421

Address Decoder block (baddr_decoder) 4.068 6.964 11.032

I/O System

UART Controller unit (uuart) 3.610 8.269 11.879

- UART Baud Clock Generator block (bclkctr) 1.563 1.736 3.299

- UART Receiver block (brx) 3.944 6.469 10.413

- UART Transmitter block (btx) 3.486 8.183 11.669

SPI Controller unit (uspi) 3.734 8.718 12.452

- SPI Clock Generator block (bclk_gen) 1.801 2.688 4.489

- SPI Receiver block (bRX) 1.261 2.745 4.006

- SPI Transmitter block (bTX) 1.801 2.688 4.489

- SPI Input Output Control block (bio_ctrl) 1.385 2.652 4.037

GPIO Controller unit (ugpio) 3.610 8.582 12.192

Priority Interrupt Controller unit (upi_ctrl) 3.610 8.582 12.192

General Purpose Register unit (ugpr) 3.363 8.400 11.763

Memory System

Boot ROM unit (uboot_rom) 3.548 6.774 10.322

Data and Stack RAM unit (uram) 5.416 9.044 14.460

Cache unit (icache) 4.076 7.968 12.044

- Cache Controller block (bcache_ctrl) 3.704 6.323 10.027

- Cache RAM block (bcache_ram) 3.540 6.789 10.329

Cache unit (dcache) 5.084 10.864 15.948

- Cache Controller block (bcache_ctrl) 5.084 10.864 15.948

- Cache RAM block (bcache_ram) 4.257 11.649 15.906

Memory Arbiter unit (umem_arbiter) 4.257 11.649 15.906

Flash Controller Unit (ufc) 4.257 11.649 15.906

- Flash Controller Clock Generator block (bfc_clk_gen) 1.021 2.131 3.152

123

Continued from Table 4.3

Hardware component Delay (ns)

logic net total

- Flash Controller FSM block (bfc_fsm) 4.257 11.649 15.906

- Flash Controller Transmitter block (bfc_TX) 1.393 2.811 4.204

- Flash Controller Receiver block (bfc_RX) 1.293 3.422 4.715

 Our experiment was conducted in 2 phases: physical functional test

and power analysis. The first phase verifies the I/O controller functionality

while the second phase performs the power analysis through: 1) the switching

activity extracted from the Switching Activity Interchange Format (.saif) file

from Xilinx Vivado post-implementation simulation; 2) the physical power

analysis.

124

4.1 Physical Functional Test

 The Xilinx Design Constraints (XDC) shown in Table 4.4 has been set

for the implementation of our reconfigurable IoT processor on the Xilinx

Nexys4 DDR FPGA development board.

Table 4.4: Design pin allocation on Nexys 4 DDR FPGA development

board

Group Design pin Xilinx Nexys 4

DDR FPGA pin

Remark

Global uirisc_clk_100mhz E3

uirisc_rst C12

Quad SPI Flash

Memory

uorisc_fc_sclk E6 E6 pin hard-wired to Xilinx

STARTUPE2 module

uiorisc_fc_MOSI K17

uirisc_fc_MISO1 K18

uirisc_fc_MISO2 L14

uirisc_fc_MISO3 M14

uorisc_fc_ss L13

SPI Controller uiorisc_spi_miso F6

uiorisc_spi_mosi K1

uiorisc_spi_sclk J2

uiorisc_spi_ss_n G6

UART

Controller

uorisc_ua_tx_data D4

uirisc_ua_rx_data C4

GPIO

Controller

urisc_GPIO[0] C17 PMOD JA

urisc_GPIO[1] D18

urisc_GPIO[2] E18

urisc_GPIO[3] G17

urisc_GPIO[4] D17

urisc_GPIO[5] E17

urisc_GPIO[6] F18

urisc_GPIO[7] G18

urisc_GPIO[8] D14 PMOD JB

urisc_GPIO[9] F16

urisc_GPIO[10] G16

urisc_GPIO[11] H14

urisc_GPIO[12] E16

urisc_GPIO[13] F13

urisc_GPIO[14] G13

urisc_GPIO[15] H16

urisc_GPIO[16] H17 LEDs

urisc_GPIO[17] K15

urisc_GPIO[18] J13

urisc_GPIO[19] N14

urisc_GPIO[20] R18

urisc_GPIO[21] V17

urisc_GPIO[22] U17

urisc_GPIO[23] U16

urisc_GPIO[24] J15 Switches

urisc_GPIO[25] L16

125

Continued from Table 4.4

Group Design pin Xilinx Nexys 4

DDR FPGA pin

Remark

 urisc_GPIO[26] M13

urisc_GPIO[27] R15

urisc_GPIO[28] R17

urisc_GPIO[29] T18

urisc_GPIO[30] U18

urisc_GPIO[31] R13

126

4.1.1 GPIO

 A test program was designed to test the functionality of the GPIO

controller. Each GPIO pin can be set as either input or output pins. The GPIO

test program flow is as follows:

1) Setup GPIO controller

2) Get inputs from switches (urisc_GPIO[24] to urisc_GPIO[31])

3) Turn on LEDs (urisc_GPIO[16] to urisc_GPIO[23]) when switches

turn upward, off when switches turn downward

4) Repeat step 2 to 3

The first step setup the GPIO controller by configure bit-24 to bit-31

(urisc_GPIO[24] to urisc_GPIO[31]) as input pins and bit-16 to bit-23

(urisc_GPIO[16] to urisc_GPIO[23]) as output pins through the GPIODIR

register located at 0xBFFFFE10. After configure the direction of the GPIO

pins, bit-16 to bit-31 in the GPIOEN register located at 0xBFFFFE14 are set.

When the GPIO received the input signals as in step 2, the input data is

recorded in GPIODATA register located at 0xBFFFFE18. The GPIO test

program will copy the input data to its respective output data field in the

GPIODATA register, i.e. urisc_GPIO[16] as the output data of

urisc_GPIO[24], urisc_GPIO[17] as the output data of urisc_GPIO[25] etc.

Figure 4.1 demonstrates the GPIO test set up. The GPIO test program is

running in loop, it is repeated until the power source is shut off.

127

Figure 4.1: Demonstration of GPIO test set up

GPIO[23] -> GPIO[16]

GPIO[31] -> GPIO[23]

128

4.1.2 UART and SPI

 A test program was designed to test the functionality of the UART and

SPI controllers. Data is being passed from the SPI transmitter to the SPI

receiver, then to the computer (via UART). The UART and SPI test program

flow are as follows:

1) Create a variable in the Register File which will holds the values of

0x41 (ASCII = “A”) and to 0x5A (ASCII = “Z”). The value is changed

in ascending order on every 500 ms.

2) Setup UART controller through UARTCR register

a. Set baud rate (BAUD[2:0] = 010, 9600 baud)

b. Start UART by setting the UARTEN bit.

3) Setup SPI controller through SPICR register

a. Set SPI clock rate (SCR[2:0] = 0100, 625 kHz)

b. Start SPI by setting the SPE bit

4) Start sending the variable through SPI uiorisc_spi_mosi

(uiorisc_spi_miso at pin F6 and uiorisc_spi_mosi at pin K1 are

connected together). Refer to Figure 4.2 for the connection.

5) Deactivate SPI by resetting the SPE bit in SPICR register

6) The received data from SPI uiorisc_spi_miso is sent to computer

through UART.

7) Variable value counting up and reset the variable‟s value to 0x41 when

hits the upper bound (0x5A).

8) Delay 500 ms and then repeat step 3 to 8.

The first step set the variable that will be transmitted through SPI controller.

Alphabet „A‟ to „Z‟ is loaded into the SPITDR register located at

129

0xBFFFFE26 every 500 ms. The same SPI controller was used for data

receiving by connecting MISO pin (data receiving) to MOSI pin (data

transmitting). The data received is loaded in the SPIRDR register located at

0xBFFFFE27 and the test program will transfer the respective data to

UARTTDR located at 0xBFFFFE2A. UART controller will then transmit the

data loaded in the UARTTDR register to the computer for debugging purposes.

Figure 4.2 and Figure 4.3 show the board wire connection on Nexys4 DDR

board and the value prompt on computer received through UART.

Figure 4.2: SPI uiorisc_spi_miso and uiorisc_spi_mosi connection

130

Figure 4.3: Data received on the computer through UART. The data is

displayed using Putty.

131

4.1.3 Interrupt Handling

 Interrupt-driven I/O access can helps to increase the throughput of the

processor, in which the processor can perform extra tasks while waiting for an

I/O to request (to interrupt the CPU) for data transfer. On the contrary,

constantly checking I/O condition in polling I/O access scheme consumes the

CPU cycle that is useful for executing more tasks. However, the program code

developed for polling I/O access is relatively simple as compared with

interrupt-driven I/O access. The development of the program code for

interrupt-driven I/O access requires special handling in I/O configuration.

Figure 4.4 illustrates the interrupt handling test program.

Figure 4.4: Pseudo code of interrupt handling test program

From Figure 4.4, the test program starts with UART configuration. The

UART configuration includes enable UART interrupt (set UARTIE) through

PICMASK register located at 0xBFFFFE21, enable UART Receive Complete

Interrupt (set RXCIE) through UARTCR register located at 0xBFFFFE28, set

the baud rate of the UART controller and activate the UART controller. A

132

message (“HELLO WELCOME TO NEXYS4 DDR!\n\r”) was transmitted to

a computer through UART controller every 500 ms. When user strikes a key

on the keyboard, a byte of data in the scan code form is sent from the

computer to the IoT processor. The UART controller on our IoT processor

will receive the data and interrupts the processor to jump to the exception

handler (refer Section 3.5). Exception handler decodes the source of interrupt

and then jump to the UART Receive Complete Interrupt Service Routine

(RXCISR). The RXCISR send a message (“\n\rCATCH\n\r”) back to

computer which will be displayed on the Putty. Then the UART‟s ISR will

clear the RXFF bit in the UARTSR register located at 0xBFFFFE29 to

indicate the interrupt has been served. Figure 4.5 shows the message prompt

on the computer screen.

Figure 4.5: Demonstration of interrupt handling

133

4.2 Power Analysis

4.2.1 Simulation

4.2.1.1 Experiment Setup

 The power analysis of both multi-cycle and pipeline microarchitectures

is carried out separately from the simulation perspective, where the procedure

flow is shown in Figure 4.6.

Figure 4.6: Power analysis procedure

Since the hardware components in the static region are shared by the

multi-cycle and pipeline microarchitectures, it is only synthesized once to

ensure its consistency. The difference comes when perform place and route

process in the PR region. Imagine the PR region as a black box that contains

the reconfigurable logic, once the place and route process in the static region is

completed, the PR region‟s place and route process fused the PR region‟s

logic with the static region‟s logic. Since the logic within PR region are

134

different for both multi-cycle and pipeline microarchitectures and thus, the

place and route for the PR region is performed separately.

For a common IoT task, the task time consists of active time (Tactive)

and idle time (Tidle). Tactive defines the performance of the processor while Tidle

creates delay used to align with the user target task period. The task period

will vary among the IoT application. Some of the IoT application may not

have the Tidle due to high computational power is required to run a heavy

workload task. Thus, our experiment focuses on the power analysis based on

the full capability of the processor, i.e. the total time of a task consists of only

Tactive.

The post-implementation simulation simulates the program flow as

follows with referring to the pseudo code of AES-128 encryption shown in

Figure 4.7.

1) Get 16-bytes of data from SPI EEPROM (data collection)

2) Encrypt data received using AES-128 (data processing)

3) Send the encrypted data through UART (data transmission)

4) Toggle urisc_GPIO[0] pin to indicate the end of current loop and start

of the new loop

5) Repeat step 1 to 4.

135

Figure 4.7: AES128 encryption pseudo code (Nk=4, Nb=4, Nr=10)

Source: National Institute of Standards and Technology (2001) „FIPS 197:

Advanced Encryption Standard‟

The post-implementation simulation used an SPI EEPROM simulation

model in place of the sensor data storage. The test program was executed in

loop for 200 ms, with switching activities and power consumption data

collected (through the information gather from .saif file) at every 20ms

interval. Every loop of the test program will be recorded with the start time

and the stop time by monitoring urisc_GPIO[0] pin. The result collected will

be discussed in the next subsection.

136

4.2.1.2 Result & Discussion

 Table 4.5 and Table 4.6 are the results collected from the phase 2

experiment.

Table 4.5: Average switching rate (millions of transitions per seconds)

based on Artix-7 XC7A100T

Based on the results shown in Table 4.5, the average switching rate of

the multi-cycle execution is lesser than the pipeline execution. This condition

explained why the dynamic power consumption of the multi-cycle execution is

lesser than the pipeline execution as shown in Table 4.6. From the data shown

in Table 4.6, the task completed by the multi-cycle and pipeline executions are

1.88 and 2.39 tasks respectively, which consume 85.11 mJ and 108.79 mJ of

dynamic energy per task respectively. The multi-cycle execution processes

slower by 21.38% but reduces 21.77% dynamic energy than the pipeline

execution. At 40 ms simulation time, multi-cycle and pipeline executions have

completed 4.04 and 5.13 tasks respectively. The task completed is more than

twice as compared to the 20 ms simulation time. The system resetting,

Sim. time

(ms)

Multi-cycle

switching rate (Mtr/s)

Pipeline

switching rate (Mtr/s)

signal logic BRAM I/O signal logic BRAM I/O

20 1.09 0.38 0.87 14.01 7.69 1.00 0.96 14.16

40 1.09 0.40 0.93 13.93 8.38 1.08 1.02 14.03

60 1.08 0.41 0.94 13.86 8.60 1.10 1.03 13.99

80 1.09 0.41 0.95 13.85 8.61 1.11 1.04 13.98

100 1.09 0.41 0.95 13.84 8.61 1.11 1.04 13.98

120 1.08 0.41 0.96 13.82 8.62 1.11 1.05 13.98

140 1.08 0.41 0.96 13.83 8.69 1.12 1.05 13.97

160 1.08 0.41 0.96 13.82 8.72 1.12 1.05 13.96

180 1.08 0.41 0.96 13.82 8.77 1.13 1.05 13.95

200 1.08 0.41 0.96 13.82 8.79 1.13 1.05 13.95

137

bootloading, flash memory initialization and cache miss consume a start-up

overhead of simulated 2.5 ms, which explained the task completed at 40 ms is

more than twice than 20 ms. Multi-cycle and pipeline executions at 40 ms

simulation time consume 79.21 mJ and 109.16 mJ of dynamic energy per task

respectively. The multi-cycle execution is slower than pipeline execution by

21.27%, but consuming 27.44% lesser dynamic energy. The remaining

simulations (60 - 200ms) show 32.33% to 33.06% dynamic energy reduction

for the pipeline versus multi-cycle execution with a corresponding

computational performance reduction of 20.31% - 21.16%.

The developed reconfigurable soft-core IoT processor always starts up

with the multi-cycle microarchitecture as the default microarchitecture for

power saving purpose. When PR occurs, an overhead of 44 ms (at 20 MHz

system clock) is required, which should be taken into consideration when

developing program with time-critical tasks. The PR overhead can be reduced

by: 1) Increasing the clock frequency up to 100 MHz (based on ICAP

requirement); 2) Buffer the partial bitstream in an FPGA Block RAM; 3)

Using a Direct Memory Access (DMA) controller when copying the partial

bitstream. But all are at the expense of more energy and resources used

(Pezzarossa, L., Schoeberl, M. and Sparsø, J., 2017).

The static power consumption (about 90% of the total power) shown in

Table 4.6 was not taken into account in our analysis since it is technology

dependent, which our implemented technique has no direct relationship with

the technology. As the technology in transistor scaling is improving, the static

138

power will be reduced. This will provide extra benefit to our platform (total

power will be reduced when static power reduce). The result from Table 4.5

and Table 4.6 are based on 20MHz operating frequency. The typical operating

frequencies used by a variety of sensor nodes cover a wide range from 8MHz

to 180MHz (Gajjar, S. et al., 2014). As the operating frequency increased,

dynamic power consumption is expected to dominate the total power

consumption. Hence, a significant amount of dynamic power reduction result

can be observed in Table 4.6. This makes our target focuses on analyzing the

dynamic power consumption.

 The simulation based power analysis has presented the quantitative

differences between multi-cycle and pipeline microarchitectures, in terms of

the computational speed and the dynamic energy consumption per task.

However, the physical power analysis must be performed based on the

following justifications:

1) The simulation experiment is unable to shows the competitive

advantages of using the combination of multi-cycle and pipeline

microarchitectures to perform an IoT task, i.e. the simulation

experiment only shows the IoT task running in each microarchitecture

independently. Thus, the energy used for PR cannot be measured.

2) Xilinx Vivado is unable to simulate the behavior of PR (currently

unsupported for Xilinx Vivado 2017.2). Thus, the energy used for PR

is unknown.

139

Table 4.6: Power and performance analysis based on Artix-7 XC7A100T

Notes: 1) Dynamic energy reduction = (Dynamic energy/task of pipeline - Dynamic energy/task of multi-cycle) / Dynamic energy/task of pipeline x 100%

 2) Computational performance reduction = (Task completed in pipeline - Task completed in multi-cycle) / Task completed in pipeline x 100%

Sim.

time

(ms)

Multi-cycle Pipeline
Dynamic

energy

reduction (%)

Computational

performance

reduction (%)

Power
task

completed

Dynamic

energy/task

(mJ)

Power
task

completed

Dynamic

energy /task

(mJ)
Static

(W)

Dynamic

(W)

Static

(W)

Dynamic

(W)

20 0.097 0.008 1.88 85.11 0.097 0.013 2.39 138.30 21.77 21.38

40 0.097 0.008 4.04 79.21 0.097 0.014 5.13 138.61 27.44 21.27

60 0.097 0.008 6.21 77.29 0.097 0.015 7.88 144.93 32.33 21.16

80 0.097 0.008 8.37 76.46 0.097 0.015 10.58 143.37 32.59 20.86

100 0.097 0.008 10.54 75.90 0.097 0.015 13.29 142.31 32.75 20.67

120 0.097 0.008 12.71 75.53 0.097 0.015 15.99 141.62 32.90 20.53

140 0.097 0.008 14.88 75.27 0.097 0.015 18.69 141.13 33.01 20.36

160 0.097 0.008 17.04 75.12 0.097 0.015 21.39 140.85 33.05 20.36

180 0.097 0.008 19.19 75.04 0.097 0.015 24.10 140.70 33.02 20.35

200 0.097 0.008 21.36 74.91 0.097 0.015 26.81 140.45 33.06 20.31

140

4.2.2 Physical Power Analysis

 Due to the limitation of the simulation based power analysis, as

mentioned in Section 4.2.1.2, we have carried out the physical power analysis.

Our hypothesis in this experiment is that using the combination of pipeline

microarchitecture to perform data processing and multi-cycle

microarchitectures to perform data transmission part of an IoT task can

provide better energy usage. Thus, both multi-cycle and pipeline

microarchitectures will be used to test the following conditions:

1) Multi-cycle microarchitecture for data collection and processing

2) Pipeline microarchitecture for data collection and processing

3) Multi-cycle microarchitecture for data transmission

4) Pipeline microarchitecture for data transmission

 The physical power analysis experiment used the same IoT program

flow as the simulation based power analysis. However, we have used various

data sizes (64, 128, 256, 512 and 1024 bytes) for collect, process and transmit.

We need to consider the PR overhead (44 ms) since this is directly translated

into energy consumption. The PR of the microarchitecture is only

advantageous in energy saving if processing and transmitting the data size

takes longer time than the PR overhead time. Otherwise, triggering the PR

process unnecessarily will waste energy. The combination of the tests is

summarized in Table 4.7. MM and PP combinations represents the common

practice in designing IoT sensor nodes by using single microarchitecture for

fast computational performance (PP combination) or low power (MM

combination) design goal. PM combination represents our proposed technique

141

to reconfigure the microarchitecture based on different workload

characteristics to further optimize the energy usage while achieving acceptable

computational speed performance.

Table 4.7: Combination of test

Combination of microarchitectures
Data size (bytes)

64 128 256 512 1024

MM
[1]

MM64 MM128 MM256 MM512 MM1024

MP
[2][5]

MP64 MP128 MP256 MP512 MP1024

PP
[3]

PP64 PP128 PP256 PP512 PP1024

PM
[4][5]

PM64 PM128 PM256 PM512 PM1024
Notes:

[1] MM – Data collection, processing and transmission using multi-cycle microarchitecture

[2] MP – Data collection and processing using multi-cycle microarchitecture and data transmission

using pipeline microarchitecture

[3] PP – Data collection and processing using pipeline microarchitecture and data transmission using

pipeline microarchitecture

[4] PM – Data collection and processing using pipeline microarchitecture and data transmission using

multi-cycle microarchitecture

[5] PR is require, PR overhead take into account in the energy usage

142

4.2.2.1 Experiment Setup

 Since a fixed voltage supply (1V) is used, our intention in this

experiment is to measure the current consumption and the power consumption

can be calculate using the electric power formula, P=VI. A high side current

measurement circuit is constructed to measure the current consumption of the

developed soft-core IoT processor running at 20 MHz system clock over a

certain period. Figure 4.8 shows the current measurement circuit connection.

Figure 4.8: High side current measurement circuit

 Current consumption is measured through measuring the voltage drop

across the 10 mΩ with 1% tolerance shunt resistor. A Tektronix TBS1000B-

EDU oscilloscope is used to measure and collect the current consumption

sampling data for further analysis. However, based on our investigation, the

differences in current consumption measured from both multi-cycle and

pipeline microarchitecture is relatively small, which is in terms of mA range.

Thus, an extra TI INA-213 current-shunt monitor is used to amplify the

measured signal by 50 times before pass into the oscilloscope.

143

4.2.2.2 Result & Discussion

 The dynamic power consumptions of the combination of tests for

varying data from 64 Bytes to 1024 Bytes as shown in Table 4.7 are shown in

Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.12 and Figure 4.13, with

following denotations:

MM: Data collection and processing and data transmission using multi-cycle

 microarchitecture

MP: Data collection and processing using multi-cycle microarchitecture and

 data transmission using pipeline microarchitecture

PP: Data collection and processing using pipeline microarchitecture and

 data transmission using pipeline microarchitecture

PM: Data collection and processing using pipeline microarchitecture and

 data transmission using multi-cycle microarchitecture

AM: Data processing using multi-cycle microarchitecture

TM: Data transmission using multi-cycle microarchitecture

AP: Data processing using pipeline microarchitecture

TP: Data transmission using pipeline microarchitecture

PR: Partial Reconfiguration

144

Figure 4.9: Dynamic power consumption for 64 bytes data size.

Figure 4.10: Dynamic power consumption for 128 bytes data size.

Figure 4.11: Dynamic power consumption for 256 bytes data size.

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500

D
yn

am
ic

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
m

W
)

Time (ms)

Dynamic Power Consumption for 64 Bytes Data Size

AM TM AM TP PR AP TP AP TM PR

MM MP PP PM

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900

D
yn

am
ic

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
m

W
)

Time (ms)

Dynamic Power Consumption for 128 Bytes Data Size

AM TM AM TP PR AP TP AP TM PR

MM MP PP PM

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400 1600

D
yn

am
ic

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
m

W
)

Time (ms)

Dynamic Power Consumption for 256 Bytes Data Size

AM TM AM TP PR AP TP AP TM PR

MM MP PP PM

145

Figure 4.12: Dynamic power consumption for 512 bytes data size.

Figure 4.13: Dynamic power consumption for 1024 bytes data size.

 From Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.12 and Figure 4.13,

we observed that the area occupied on the graph (energy consumption) for PR

is decreasing as the data size increases from 64 bytes to 1024 bytes. This is

due to the dynamic energy consumed for PR is constant whenever invoking

the PR process. PR has a significant effect on the total energy used per task for

smaller data size (i.e. 64 bytes and 128 bytes), but relatively less significant in

larger data size (i.e. 256 bytes onwards) since energy consumed by the data

collection, processing and transmitting works are far greater. The time taken

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000

D
yn

am
ic

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
m

W
)

Time (ms)

Dynamic Power Consumption for 512 Bytes Data Size

AM TM AM TP

PR

AP TP AP TM

PR

MM MP PP PM

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

D
yn

am
ic

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
m

W
)

Time (ms)

Dynamic Power Consumption for 1024 Bytes Data Size

AM TM AM TP

PR

AP TP AP TM

PR

MM MP PP PM

146

for the task (task time) to complete for each combination is shown in Figure

4.14, while Figure 4.15 show the dynamic energy consumed by each

combination.

Figure 4.14: Task time used by MM, MP, PP and PM for 64, 128, 256, 512

and 1024 bytes data size.

Figure 4.15: Dynamic energy consumption of MM, MP, PP and PM for 64,

128, 256, 512 and 1024 bytes data size.

 From Figure 4.14, for 1024 bytes data size, PP combination shows the

highest computational performance with the least task time while MP

147

combination is the least performing combination that requires longer time to

compute due to PR overhead. We can safely omit the use of MP combination

due to its conflicting usage, whereby low computational multi-cycle

microarchitecture is used for data collection and processing while power

hungry pipeline microarchitecture is used for low computational requirement

data transmission. PM combination is always faster (despite having PR

overhead) than MM combination because the most time consuming part (data

collection and processing) is executed with pipeline microarchitecture. PM

combination is 4.38% faster than MM combination but 3.27% slower than PP

combination.

 Despite the superiority of PP combination in computational

performance, Figure 4.15 shows that PP combination requires significantly

more energy to complete the task as compared to PM and MM combinations.

Fast speed performance and low dynamic energy consumption are two

contradicting design goals that cannot be achieved by utilizing single

microarchitecture. However, using PM combination can achieve the lowest

energy consumption among the micro-architectural configurations.

Considering the case for 1024 bytes data size, PM combination is 4.63% and

21.47% more energy efficient compared to MM and PP combinations

respectively. Our proposed technique, PM combination can achieve better

energy efficiency when the data size increases. PM combination is preferred

over MM combination for data size that is larger than 256 Bytes due to its

superiority in terms of energy efficiency and performance. This finding is

important as many wireless sensor networks actually employ multi-hop

148

techniques (S. Y. Liew, C. K. Tan, M. L. Gan, H. G. Goh., 2018) in practical

on-field deployment, wherein the sensor nodes collect large amount of data

and take turn (based on the designed protocol) to transmit it. Under such

scenario, the data size can be much larger than 1024 bytes, which highlights

the potential energy reduction of our proposed technique. In order to improve

the dynamic energy consumption without losing too much of computational

performance, the energy-delay product metric is used, which as shown in

Figure 4.16.

Figure 4.16: Energy-delay product of MM, MP, PP and PM for 64, 128,

256, 512 and 1024 bytes data size.

 PM combination only achieves moderate timing performance as

compared to PP and MM combinations. But it consumes the least energy,

which is 8.81% and 18.91% lesser as compared to MM and PP combinations

respectively. Thus, it has the least energy-delay product. This makes PM

combination the most optimized option when taking into accounts both energy

and computational performance for on-field IoT application. This also implies

149

that the proposed technique achieved better performance-energy trade-off for

IoT applications compared to conventional method (DVS, DFS, DVFS, clock

gating and power gating) that only have single microarchitecture. On the other

hand, if computational performance is required by an IoT task, then PP

combination will be used.

150

4.3 Summary

 In this chapter, we have presented our verification on the developed

reconfigurable soft-core IoT processor. The developed reconfigurable soft-

core IoT processor is able to perform data aggregation, data processing and

data transmission. The experimental result shows that, for 1024 bytes data size,

PM combination can achieve the least energy-delay product, which is 8.81%

and 18.91% lesser compared to multi-cycle (MM combination) and pipeline

(PP combination) microarchitectures respectively. For sensor nodes that

process larger data sizes, which larger than 1024 bytes, the energy-delay

product can be further reduced.

151

CHAPTER 5

CONCLUSIONS & FUTURE WORK

5.1 Conclusions

 An FPGA-based soft-core IoT System on a Chip (SoC) has been

developed to provide rapid customization and reconfigurable based on the

need of an IoT application. The development cost for FPGA-based soft-core

products are justifiable for small to medium scale production volume. It has

the cost advantage over ASIC approach for coping with designs that are still

undergoing development.

 In summary, the dissertation has provided robust evidence with which

to answer the three main research challenges as following:

1) For on-field IoT application, the IoT sensor node is expected to

perform data aggregation, data processing and data transmission. Our

first issue is to establish the basic requirement (computation speed,

power consumption and functionality) of an IoT processor suitable to

be used as an IoT sensor node.

 This dissertation has reviewed the specification of the existing

IoT platform required by each IoT application. From the review,

an FPGA based soft-core IoT SoC is proposed and developed

which has the advantage in highly customizability that is able

to cope with the basic requirement needs in each IoT

application.

152

2) In IoT application, low power consumption is the essential issue. Our

next issue will be on what is the technique used and how to enable the

developed reconfigurable soft-core IoT processor to tune based on the

computational needs from the environment requirement to have the

optimal power saving scheme?

 The PR between multi-cycle and pipeline executions has been

proved to satisfy the varying performance-power tradeoff

requirements from each IoT application. Multi-cycle execution

is used to reduce the dynamic power consumption of the

processor at the expense of providing lower computational

speed, while pipeline execution provides higher computational

speed but consume more dynamic power.

3) How to verify the performance of the design in terms of computational

speed and power using conventional FPGA chip?

 An IoT program that consists of intensive data processing

requirement, i.e. AES-128, has been used to identify the

computational speed and power of the developed FPGA-based

soft-core IoT SoC. The experimental result shows that for 1024

bytes data size, PM combination is able to reduce dynamic

energy consumption by 4.63% and 21.47% respectively,

compare to multi-cycle (MM combination) and pipeline (PP

combination) only microarchitectures. Moreover, PM

combination can achieve the least energy-delay product, which

is 8.81% and 18.91% lesser compared to multi-cycle (MM

combination) and pipeline (PP combination) microarchitectures

153

respectively. For sensor nodes that process larger data sizes,

which larger than 1024 bytes, the energy-delay product can be

further reduced.

As the technology in transistor scaling is improving steadily over the

past few years, the static power consumption of FPGA also reduces

dramatically (Tajalli, A. and Leblebici, Y., 2011). Hence, the bottleneck of the

low power design has shifted towards the reduction of dynamic power

consumption. We have presented a novel technique to further reduce the

dynamic power consumption based on micro-architectural level design. This

research work showed a proof of concept prototype whereby, with the PR

feature offered by FPGAs, multi-cycle and 5-stage pipeline executions are

designed to run intermittently in a processor core to achieve better

performance-power tradeoff. Other combinations, for example, multi-cycle, 5-

stage and 8-stage pipeline executions can also be used for more refined

performance-power tradeoff. The proposed technique can be applied to other

FPGA platforms as well. Therefore, all objective that stated were met.

154

5.2 Future work

 Currently, the system test programs are developed in assembly

language. In fact, it requires extra effort when it comes to debug and trace for

the test program code since long test program in assembly form is generated.

The existing GNU Compiler Collection (GCC) may help to resolve the issue.

High level programming languages help to reduce the programming

complexity when developing a test program and increase the program code

readability. However, due to the limited MIPS ISA compatible instruction

support in our research work, GCC may generates the unsupported MIPS ISA

compatible instructions. The developed reconfigurable soft-core IoT SoC will

serve the unsupported instruction as reserved instruction, which will trigger an

Undefined Instruction exception. Besides that, the pre-built high-level

programming language (HLL) test program code has to be manually converted

to the assembly form that suits to our system when without the use of a

compiler. Thus, an Original Equipment Manufacturer (OEM) compiler is

required.

 Other useful existing work such as DVFS and clock gating can be

integrated with our proposed technique to achieve better power efficiency.

DVFS technique scales down the system frequency and voltage level of the

processor when low computation is required. Thus, it is expected to have

lower static and dynamic power consumption. Clock gating in another side

reduces dynamic power consumption by deactivating the clock source of the

idle hardware components.

155

REFERENCES

Abid, F. and Izeboudjen, N. (2015a) „Technology-independent approach for

FPGA and ASIC implementations‟, in 2015 4th International Conference on

Electrical Engineering (ICEE). IEEE, pp. 1–4. doi:

10.1109/INTEE.2015.7416610.

Abid, F. and Izeboudjen, N. (2015b) „ASIC implementation of an OpenRISC

based SoC for VoIP application‟, in 2015 6th International Conference on

Information and Communication Systems (ICICS). IEEE, pp. 64–67. doi:

10.1109/IACS.2015.7103203.

Akyildiz, I. F. et al. (2002) „A survey on sensor networks‟, IEEE

Communications Magazine, 40(8), pp. 102–114. doi:

10.1109/MCOM.2002.1024422.

Al-Fuqaha, A. et al. (2015) „Internet of Things: A Survey on Enabling

Technologies, Protocols, and Applications‟, IEEE Communications Surveys &

Tutorials, 17(4), pp. 2347–2376. doi: 10.1109/COMST.2015.2444095.

Becker, J. et al. (2007) „Dynamic and Partial FPGA Exploitation‟, Proceedings

of the IEEE, 95(2), pp. 438–452. doi: 10.1109/JPROC.2006.888404.

Bhattacharyya, D., Kim, T. and Pal, S. (2010) „A Comparative Study of

Wireless Sensor Networks and Their Routing Protocols‟, Sensors, 10(12), pp.

10506–10523. doi: 10.3390/s101210506.

Borges, L. M., Velez, F. J. and Lebres, A. S. (2014) „Survey on the

Characterization and Classification of Wireless Sensor Network Applications‟,

IEEE Communications Surveys & Tutorials, 16(4), pp. 1860–1890. doi:

10.1109/COMST.2014.2320073.

Buratti, C. et al. (2009) „An overview on wireless sensor networks technology

and evolution‟, Sensors, 9(9), pp. 6869–6896. doi: 10.3390/s90906869.

Cardona, L. A. and Ferrer, C. (2015) „AC_ICAP: A Flexible High Speed

ICAP Controller‟, International Journal of Reconfigurable Computing, 2015,

pp. 1–15. doi: 10.1155/2015/314358.

Choi, K., Soma, R. and Pedram, M. (2004) „Dynamic voltage and frequency

scaling based on workload decomposition‟, in Proceedings of the 2004

international symposium on Low power electronics and design - ISLPED ‟04.

New York, New York, USA: ACM Press, p. 174. doi:

10.1145/1013235.1013282.

Chow, C. T. et al. (2005) „Dynamic voltage scaling for commercial FPGAs‟,

in Proceedings. 2005 IEEE International Conference on Field-Programmable

Technology, 2005. IEEE, pp. 173–180. doi: 10.1109/FPT.2005.1568543.

156

Cypress (2017) „128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V SPI Flash

Memory‟ [Online]. Available: http://www.cypress.com/file/177966/download

[Accessed: Nov. 8, 2017] D. Sweetman (2006) „See MIPS run 2nd edition‟,

Elsevier/Morgan Kaufmann. ISBN: 9780080525235

de la Piedra, A., Braeken, A. and Touhafi, A. (2012) „Sensor Systems Based

on FPGAs and Their Applications: A Survey‟, Sensors, 12(12), pp. 12235–

12264. doi: 10.3390/s120912235.

de la Piedra, A. et al. (2013) „Wireless sensor networks for environmental

research: A survey on limitations and challenges‟, Eurocon 2013, (July), pp.

267–274. doi: 10.1109/EUROCON.2013.6624996.

Gajjar, S. et al. (2014) „Comparative analysis of wireless sensor network

motes‟, in 2014 International Conference on Signal Processing and Integrated

Networks (SPIN). IEEE, pp. 426–431. doi: 10.1109/SPIN.2014.6776991.

Garcia, R., Gordon-Ross, A. and George, A. D. (2009) „Exploiting Partially

Reconfigurable FPGAs for Situation-Based Reconfiguration in Wireless

Sensor Networks‟, in 2009 17th IEEE Symposium on Field Programmable

Custom Computing Machines. IEEE, pp. 243–246. doi:

10.1109/FCCM.2009.45.

Gomes, T. et al. (2015) „Towards an FPGA-based edge device for the Internet

of Things‟, in 2015 IEEE 20th Conference on Emerging Technologies &

Factory Automation (ETFA). IEEE, pp. 1–4. doi:

10.1109/ETFA.2015.7301601.

Gu, C. (2016) Building Embedded Systems, O‟Reilly & Associates. doi:

10.1007/978-1-4842-1919-5.

Gungor, V. C., Lu, B. and Hancke, G. P. (2010) „Opportunities and

Challenges of Wireless Sensor Networks in Smart Grid‟, IEEE Transactions

on Industrial Electronics, 57(10), pp. 3557–3564. doi:

10.1109/TIE.2009.2039455.

Hansen, S. G., Koch, D. and Torresen, J. (2013) „Simulation framework for

cycle-accurate RTL modeling of partial run-time reconfiguration in VHDL‟, in

2013 8th International Workshop on Reconfigurable and Communication-

Centric Systems-on-Chip (ReCoSoC). IEEE, pp. 1–8. doi:

10.1109/ReCoSoC.2013.6581519.

Harris, D. M. and Harris, S. L. (2013) Digital design and computer

architecture. doi: 10.1016/B978-0-12-800056-4.00022-4.

Hempstead, M. et al. (2008) „Survey of Hardware Systems for Wireless

Sensor Networks‟, Journal of Low Power Electronics, 4(1), pp. 11–20. doi:

10.1166/jolpe.2008.156.

Hennessy, J. L. and Patterson, D. A. (2012) „Computer architecture: a

quantitative approach‟, Elsevier. doi: 10.1.1.115.1881.

157

Hinkelmann, H., Zipf, P. and Glesner, M. (2007) „A Domain-Specific

Dynamically Reconfigurable Hardware Platform for Wireless Sensor

Networks‟, in 2007 International Conference on Field-Programmable

Technology. IEEE, pp. 313–316. doi: 10.1109/FPT.2007.4439274.

Hosseinabady, M. and Nunez-Yanez, J. L. (2014) „Run-time power gating in

hybrid ARM-FPGA devices‟, in 2014 24th International Conference on Field

Programmable Logic and Applications (FPL). IEEE, pp. 1–6. doi:

10.1109/FPL.2014.6927503.

Hosseinabady, M. and Nunez-Yanez, J. L. (2015) „Energy optimization of

FPGA-based stream-oriented computing with power gating‟, in 2015 25th

International Conference on Field Programmable Logic and Applications

(FPL). IEEE, pp. 1–6. doi: 10.1109/FPL.2015.7293946.

Hongzhi Liu and Bergmann, N. W. (2010) „An FPGA softcore based

implementation of a bird call recognition system for sensor networks‟, in 2010

Conference on Design and Architectures for Signal and Image Processing

(DASIP). IEEE, pp. 1–6. doi: 10.1109/DASIP.2010.5706238.

Hsieh, C.-M. et al. (2014) „Hardware/software co-design for a wireless sensor

network platform‟, in Proceedings of the 2014 International Conference on

Hardware/Software Codesign and System Synthesis - CODES ‟14. New York,

New York, USA: ACM Press, pp. 1–10. doi: 10.1145/2656075.2656086.

I. C. Bertolotti and Tingting Hu. (2015) „Embedded Software Development:

The Open-Source Approach‟, ISBN: 9781466593923

Jawhar, I., Mohamed, N. and Agrawal, D. P. (2011) „Linear wireless sensor

networks: Classification and applications‟, Journal of Network and Computer

Applications. Elsevier, 34(5), pp. 1671–1682. doi: 10.1016/j.jnca.2011.05.006.

Johnson, D. (2009) „Implementing serial bus interfaces with general purpose

digital instrumentation‟, in 2009 IEEE AUTOTESTCON. IEEE, pp. 125–129.

doi: 10.1109/AUTEST.2009.5314057.

Kateeb, A. El, Ramesh, A. and Azzawi, L. (2008) „Wireless Sensor Nodes

Processor Architecture and Design‟, 22nd International Conference on

Advanced Information Networking and Applications - Workshops (aina

workshops 2008), pp. 892–897. doi: 10.1109/WAINA.2008.177.

Kiat, W. P. et al. (2017) „A Comprehensive Analysis on Data Hazard for

RISC32 5-Stage Pipeline Processor‟, pp. 2–7. doi: 10.1109/WAINA.2017.20.

Koch, D. et al. (2012) „Partial Reconfiguration on FPGAs in Practice Tools

and Applications‟, in ARCS Workshops.

Krasteva, Y. E. et al. (2008) „Remote HW-SW reconfigurable Wireless Sensor

nodes‟, in 2008 34th Annual Conference of IEEE Industrial Electronics. IEEE,

pp. 2483–2488. doi: 10.1109/IECON.2008.4758346.

158

Kuon, I. and Rose, J. (2007) „Measuring the Gap Between FPGAs and ASICs‟,

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 26(2), pp. 203–215. doi: 10.1109/TCAD.2006.884574.

Kuon, I., Tessier, R. and Rose, J. (2007) „FPGA Architecture: Survey and

Challenges‟, Foundations and Trends® in Electronic Design Automation, 2(2),

pp. 135–253. doi: 10.1561/1000000005.

Lazarescu, M. T. (2013) „Design of a WSN platform for long-term

environmental monitoring for IoT applications‟, IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, 3(1), pp. 45–54. doi:

10.1109/JETCAS.2013.2243032.

Lloret, J. et al. (2009) „A wireless sensor network deployment for rural and

forest fire detection and verification‟, Sensors, 9(11), pp. 8722–8747. doi:

10.3390/s91108722.

McDonald, E. (2008) „Runtime FPGA partial reconfiguration‟, IEEE

Aerospace and Electronic Systems Magazine, 23(7), pp. 10–15. doi:

10.1109/MAES.2008.4579286.

Mikhaylov, K. and Tervonen, J. (2012) „Evaluation of Power Efficiency for

Digital Serial Interfaces of Microcontrollers‟, in 2012 5th International

Conference on New Technologies, Mobility and Security (NTMS). IEEE, pp.

1–5. doi: 10.1109/NTMS.2012.6208716.

National Institute of Standards and Technology (2001) „FIPS 197: Advanced

Encryption Standard‟ [Online]. Available:

https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-

197.pdf [Accessed: Nov. 8, 2017]

Nunez-Yanez, J. L. (2015) „Adaptive Voltage Scaling with In-Situ Detectors

in Commercial FPGAs‟, IEEE Transactions on Computers, 64(1), pp. 45–53.

doi: 10.1109/TC.2014.2365963.

Nunez-Yanez, J.L., Hosseinabady, M. and Beldachi, A. (2016) „Energy

Optimization in Commercial FPGAs with Voltage, Frequency and Logic

Scaling‟, IEEE Transactions on Computers, 65(5), pp. 1484–1493. doi:

10.1109/TC.2015.2435771.

Oklobdzija, V. G. and Krishnamurthy, R. K. (2006) High-Performance

Energy-Efficient Microprocessor Design. Edited by V. G. Oklobdzija and R.

K. Krishnamurthy. Boston, MA: Springer US (Series on Integrated Circuits

and Systems). doi: 10.1007/978-0-387-34047-0.

OpenCores (2010) „WISHBONE System-on-Chip (SoC) Interconnection

Architecture for Portable IP Cores (Revision B4)‟ [Online]. Available:

http://cdn.opencores.org/downloads/wbspec_b4.pdf [Accessed: Nov. 8, 2017]

159

Pandey, B. et al. (2013) „Clock Gated Low Power Memory Implementation on

Virtex-6 FPGA‟, in 2013 5th International Conference on Computational

Intelligence and Communication Networks. IEEE, pp. 409–412. doi:

10.1109/CICN.2013.90.

Pande, V., Elmannai, W. and Elleithy, K. (2013) „Classification and detection

of fire on WSN using IMB400 multimedia sensor board‟, 9th Annual

Conference on Long Island Systems, Applications and Technology, LISAT

2013. doi: 10.1109/LISAT.2013.6578247.

Patterson, D. A. and Hennessy, J. L. (2013) Computer Organization and

Design : The Hardware / Software Interface.

Pezzarossa, L., Schoeberl, M. and Sparsø, J. (2017) „A Controller for Dynamic

Partial Reconfiguration in FPGA-Based Real-Time Systems‟, in 2017 IEEE

20th International Symposium on Real-Time Distributed Computing (ISORC).

IEEE, pp. 92–100. doi: 10.1109/ISORC.2017.3

Qingping Chi et al. (2014) „A Reconfigurable Smart Sensor Interface for

Industrial WSN in IoT Environment‟, IEEE Transactions on Industrial

Informatics, 10(2), pp. 1417–1425. doi: 10.1109/TII.2014.2306798.

Rodriguez-Andina, J. J., Moure, M. J. and Valdes, M. D. (2007) „Features,

Design Tools, and Application Domains of FPGAs‟, IEEE Transactions on

Industrial Electronics, 54(4), pp. 1810–1823. doi: 10.1109/TIE.2007.898279.

Rodriguez-Andina, J. J., Valdes-Pena, M. D. and Moure, M. J. (2015)

„Advanced Features and Industrial Applications of FPGAs - A Review‟, IEEE

Transactions on Industrial Informatics, 11(4), pp. 853–864. doi:

10.1109/TII.2015.2431223.

Shannon, L. et al. (2015) „Technology Scaling in FPGAs: Trends in

Applications and Architectures‟, in 2015 IEEE 23rd Annual International

Symposium on Field-Programmable Custom Computing Machines. IEEE, pp.

1–8. doi: 10.1109/FCCM.2015.11.

Stankovic, J. A. (2008) „Wireless Sensor Networks‟, Computer, 41(10), pp.

92–95. doi: 10.1109/MC.2008.441.

S. Y. Liew, C. K. Tan, M. L. Gan, H. G. Goh. (2018) „A Fast, Adaptive, and

Energy-Efficient Data Collection Protocol in Multi-Channel-Multi-Path

Wireless Sensor Networks‟, in IEEE Computational Intelligence Magazine,

pp. 30-40.

Tajalli, A. and Leblebici, Y. (2011) „Design trade-offs in ultra-low-power

digital nanoscale CMOS‟, IEEE Transactions on Circuits and Systems I:

Regular Papers, 58(9), pp. 2189–2200. doi: 10.1109/TCSI.2011.2112595.

160

Texas Instruments (2006) „MSP430x1xx Family User's Guide (Rev. F)‟

[Online]. Available: http://www.ti.com/lit/ug/slau049f/slau049f.pdf [Accessed:

Nov. 4, 2017]

Tong, J. G., Anderson, I. D. L. and Khalid, M. A. S. (2006) „Soft-Core

Processors for Embedded Systems‟, in 2006 International Conference on

Microelectronics. IEEE, pp. 170–173. doi: 10.1109/ICM.2006.373294.

Vana Jeličić et al. (2011) „MasliNET : A Wireless Sensor Network based

Environmental Monitoring System‟, in 2011 Proceedings of the 34th

International Convention, pp. 150–155. Available at:

http://ieeexplore.ieee.org/document/5967041/.

Violante, M. et al. (2011) „A Low-Cost Solution for Deploying Processor

Cores in Harsh Environments‟, IEEE Transactions on Industrial Electronics,

58(7), pp. 2617–2626. doi: 10.1109/TIE.2011.2134054.

Xilinx (2016a) „Vivado Design Suite User Guide Partial Reconfiguration‟

[Online].Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug9

09-vivado-partial-reconfiguration.pdf [Accessed: Jul. 7, 2016]

Xilinx (2016b) „7 Series FPGAs Configuration User Guide‟ [Online].

Available:

http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Co

nfig.pdf [Accessed: Jul. 7, 2016]

Xufeng Wei, Yahui Wang and Yanliang Dong (2014) „Design of fire detection

system in buildings based on wireless multimedia sensor networks‟, in

Proceeding of the 11th World Congress on Intelligent Control and Automation.

IEEE, pp. 3008–3012. doi: 10.1109/WCICA.2014.7053208.

Yan Zhang, Roivainen, J. and Mammela, A. (2006) „Clock-Gating in FPGAs:

A Novel and Comparative Evaluation‟, in 9th EUROMICRO Conference on

Digital System Design (DSD‟06). IEEE, p. `584-590. doi:

10.1109/DSD.2006.32.

Yongjun Xu et al. (2005) „Processor Design Considerations for Wireless

Sensor Network‟, in 2005 6th International Conference on ASIC. IEEE, pp.

255–257. doi: 10.1109/ICASIC.2005.1611298.

161

APPENDIX A

Table A.1: PR Unit I/O description

Pin name: uipr_tma Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate tma instruction is executing, PR will take place to reconfigure the PR unit

0: indicate tma instruction is not execute

Pin name: uipr_alb_src Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: Register File data or forwarding data is selected

0: Immediate data is selected

Pin name: uipr_rd_src Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: $rd as destination register

0: $rt as destination register

Pin name: uipr_mult_en Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate mult or multu instruction is executing

0: indicate mult and multu instructions are not execute

Pin name: uipr_sign_mult Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Indicate sign multiplication, MSB of the operands as the sign bit.

1: indicate mult instruction is executing

0: indicate mult instruction is not execute

Pin name: uipr_rf_wr Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: enable write to Register File

0: disable write to Register File

Pin name: uipr_sw Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

Store word (32-bit data)

1: indicate sw, swl or swr instruction is executing

0: indicate sw, swl and swr instructions are not execute

Pin name: uipr_swl Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Unaligned store word left (32-bit data)

1: indicate swl instruction is executing

0: indicate swl instruction is not execute

Pin name: uipr_swr Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Unaligned store word right (32-bit data)

1: indicate swr instruction is executing

0: indicate swr instruction is not execute

Pin name: uipr_lw Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Load word (32-bit data)

1: indicate lw, lwl or lwr instruction is executing

0: indicate lw, lwl and lwr instructions are not execute

162

Continued from Table A.1

Pin name: uipr_lwl Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Unaligned load word left (32-bit data)

1: indicate lwl instruction is executing

0: indicate lwl instruction is not execute

Pin name: uipr_lwr Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Unaligned load word right (32-bit data)

1: indicate lwr instruction is executing

0: indicate lwr instruction is not execute

Pin name: uipr_sh Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Store half-word (16-bit data)

1: indicate sh instruction is executing

0: indicate sh instruction is not execute

Pin name: uipr_lh Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Load half-word (16-bit data), sign extend required (refer uipr_load_sign_ext)

1: indicate lh instruction is executing

0: indicate lh instruction is not execute

Pin name: uipr_lhu Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Load half-word unsigned (16-bit data)

1: indicate lhu instruction is executing

0: indicate lhu instruction is not execute

Pin name: uipr_sb Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Store byte (8-bit data)

1: indicate sb instruction is executing

0: indicate sb instruction is not execute

Pin name: uipr_lb Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Load byte

Load byte (8-bit data), sign extend required (refer uipr_load_sign_ext)

1: indicate lb instruction is executing

0: indicate lb instruction is not execute

Pin name: uipr_lbu Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: Load byte unsigned (8-bit data)

1: indicate lbu instruction is executing

0: indicate lbu instruction is not execute

Pin name: uipr_load_sign_ext Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate lh or lb instruction is executing, sign extend 16-bit for lh or 24-bit for lb

0: indicate lbu instruction is not execute

Pin name: uipr_sign_ext Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: Immediate data sign extend

0: Immediate data zero extend

Pin name: uipr_mem_to_rf Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: Data memory data to Register File

0: ALU block result to Register File

163

Continued from Table A.1

Pin name: uipr_hi_wr Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: reserved for future development

Pin name: uipr_lo_wr Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: reserved for future development

Pin name: uipr_alb_to_rf Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function: reserved for future development

Pin name: uipr_hi_to_rf Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate HI register data to Register File

0: indicate LO register data to Register File

Pin name: uipr_hilo_acc Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate mflo or mfhi instruction is executing

0: indicate mflo and mfhi instructions are not execute

Pin name: uipr_jump Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate j instruction is executing

0: j instruction is not execute

Pin name: uipr_jr Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate jr instruction is executing

0: indicate jr instruction is not execute

Pin name: uipr_jal Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate jal instruction is executing

0: indicate jal instruction is not execute

Pin name: uipr_jalr Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate jalr instruction is executing

0: indicate jalr instruction is not execute

Pin name: uipr_beq Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate beq instruction is executing

0: indicate beq instruction is not execute

Pin name: uipr_bne Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate bne instruction is executing

0: indicate bne instruction is not execute

Pin name: uipr_blez Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate blez instruction is executing

0: indicate blez instruction is not execute

164

Continued from Table A.1

Pin name: uipr_bgtz Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate bgtz instruction is executing

0: indicate bgtz instruction is not execute

Pin name: uipr_mfc0 Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate mfc0 instruction is executing

0: indicate mfc0 instruction is not execute

Pin name: uipr_mtc0 Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate mtc0 instruction is executing

0: indicate mtc0 instruction is not execute

Pin name: uipr_eret Pin direction: input

Source -> Destination: Main Control Block -> PR Unit / CP0 Block

Pin function:

1: indicate eret instruction is executing

0: indicate eret instruction is not execute

Pin name: uipr_syscall Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate syscall instruction is executing

0: indicate syscall instruction is not execute

Pin name: uipr_undef_inst Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate an undefined instruction is detected

0: indicate supported instruction is detected

Pin name: uipr_rtype Pin direction: input

Source -> Destination: Main Control Block -> PR Unit

Pin function:

1: indicate R-type instruction is issued

0: indicate I-type or J-type instruction is issued

Pin name: uopr_opcode[5:0] Pin direction: output

Source -> Destination: PR Unit -> Main Control Block

Pin function: Instruction opcode field

Pin name: uopr_funct[5:0] Pin direction: output

Source -> Destination: PR Unit -> Main Control Block / Arithmetic Logic Control Block

Pin function: Instruction funct field

Pin name: uipr_alb_ctrl[5:0] Pin direction: input

Source -> Destination: Arithmetic Logic Control Block -> PR Unit

Pin function: ALU operation to perform

Pin name: uipr_rf_rs32 [31:0] Pin direction: input

Source -> Destination: Register File Block -> PR Unit

Pin function: 32-bit $rs data from Register File

Pin name: uipr_rf_rt32 [31:0] Pin direction: input

Source -> Destination: Register File Block -> PR Unit

Pin function: 32-bit $rt data from Register File

Pin name: uopr_rf_rs5[4:0] Pin direction: output

Source -> Destination: PR Unit -> Register File Block

Pin function: Instruction rs field

Pin name: uopr_rf_rt5[4:0] Pin direction: output

Source -> Destination: PR Unit -> Register File Block

Pin function: Instruction rt field

165

Continued from Table A.1

Pin name: uopr_rf_wr_data[31:0] Pin direction: output

Source -> Destination: PR Unit -> Register File Block

Pin function: Data to be written into Register File

Pin name: uopr_rf_wr_addr[4:0] Pin direction: output

Source -> Destination: PR Unit -> Register File Block

Pin function: Register to be updated in Register File

Pin name: uopr_rf_wr_en Pin direction: output

Source -> Destination: PR Unit -> Register File Block

Pin function:

1: enable write to Register File

0: disable write to Register File

Pin name: uipr_id_fw_rs32_ctrl[2:0] Pin direction: input

Source -> Destination: Forwarding Block -> PR Unit

Pin function:

Only use in pipeline microarchitecture, used as the forward control signal for the rs path

Pin name: uipr_id_fw_rt32_ctrl[2:0] Pin direction: input

Source -> Destination: Forwarding Block -> PR Unit

Pin function:

Only use in pipeline microarchitecture, used as the forward control signal for the rt path

Pin name: uipr_ex_fw_hilo_ctrl[2:0] Pin direction: input

Source -> Destination: Forwarding Block -> PR Unit

Pin function:

Only use in pipeline microarchitecture, used as the forward control signal for the HILO path

Pin name: uipr_ex_fw_mem Pin direction: input

Source -> Destination: Forwarding Block -> PR Unit

Pin function: Only use in pipeline microarchitecture

1: Forward data from MEM stage

0: No data forwarding is require

Pin name: uopr_id_rtype Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture

1: indicate a R-type instruction is in ID stage

0: indicate a J-type or I-type instruction is in ID stage

Pin name: uopr_id_itype Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture

1: indicate an I-type instruction is in ID stage

0: indicate a R-type or J-type instruction is in ID stage

Pin name: uopr_id_mfc0 Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture, indicate a mfc0 instruction is in ID stage

Pin name: uopr_ex_jal Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture, indicate a jal instruction is in EX stage

Pin name: uopr_ex_jalr Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture, indicate a jalr instruction is in EX stage

Pin name: uopr_ex_rf_wr Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture, indicate enable write to Register File

operation is in EX stage

Pin name: uopr_ex_hilo_acc Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function:

Only use in pipeline microarchitecture, indicate a mflo or mfhi instruction is in EX stage

166

Continued from Table A.1

Pin name: uopr_ex_hi_to_rf Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture, indicate a mfhi instruction is in EX stage

Pin name: uopr_mem_jal Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture, indicate a jal instruction is in MEM stage

Pin name: uopr_mem_jalr Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function:

Only use in pipeline microarchitecture, indicate a jalr instruction is in MEM stage

Pin name: uopr_mem_rf_wr Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture, indicate enable write to Register File

operation in MEM stage

Pin name: uopr_mem_load Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function: Only use in pipeline microarchitecture, indicate a lw, lwl, lwr, lh, lhu, lb or lbu

instruction is in MEM stage

Pin name: uopr_mem_mult_en Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function:

Only use in pipeline microarchitecture, indicate a mult or multu instruction is in MEM stage

Pin name: uopr_ex_rt5_rd5[4:0] Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function:Only use in pipeline microarchitecture, destination register address is in EX stage

Pin name: uopr_mem_rt5_rd5[4:0] Pin direction: output

Source -> Destination: PR Unit -> Forwarding Block

Pin function:

Only use in pipeline microarchitecture, destination register address is in MEM stage

Pin name: uipr_itl_pc_en Pin direction: input

Source -> Destination: Interlock Block -> PR Unit

Pin function: Only use in pipeline microarchitecture

1: no stall on PC register

0: stall PC register

Pin name: uipr_itl_ifid_en Pin direction: input

Source -> Destination: Interlock Block -> PR Unit

Pin function: Only use in pipeline microarchitecture

1: no stall on IF/ID pipeline register

0: stall IF/ID pipeline register

Pin name: uipr_itl_idex_en Pin direction: input

Source -> Destination: Interlock Block -> PR Unit

Pin function: Reserved for future development, temporary always enable

Pin name: uipr_itl_exmem_en Pin direction: input

Source -> Destination: Interlock Block -> PR Unit

Pin function: Reserved for future development, temporary always enable

Pin name: uipr_itl_memwb_en Pin direction: input

Source -> Destination: Interlock Block -> PR Unit

Pin function: Reserved for future development, temporary always enable

Pin name: uipr_itl_id_flush_ex Pin direction: input

Source -> Destination: Interlock Block -> PR Unit

Pin function: Only use in pipeline microarchitecture

1: flush ID/EX stage pipeline register

0: no pipeline register flush is requires

Pin name: uopr_id_load Pin direction: output

Source -> Destination: PR Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, indicate a lw, lwl, lwr, lh, lhu, lb or lbu

instruction is in ID stage

167

Continued from Table A.1

Pin name: uopr_id_store Pin direction: output

Source -> Destination: PR Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, indicate a sw, swl, swr, sh or sb

instruction is in ID stage

Pin name: uopr_itl_ex_load Pin direction: output

Source -> Destination: PR Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, indicate a lw, lwl, lwr, lh, lhu, lb or lbu

instruction is in EX stage

Pin name: uopr_ex_rt5[4:0] Pin direction: output

Source -> Destination: PR Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, the $rt address in EX stage

Pin name: uipr_cp0_flush_id Pin direction: input

Source -> Destination: CP0 Block -> PR Unit

Pin function:

1: Flush IF/ID pipeline registers

0: no pipeline register flush is requires

Pin name: uipr_cp0_flush_ex Pin direction: input

Source -> Destination: CP0 Block -> PR Unit

Pin function:

1: Flush ID/EX pipeline registers

0: no pipeline register flush is requires

Pin name: uipr_cp0_flush_mem Pin direction: input

Source -> Destination: CP0 Block -> PR Unit

Pin function:

1: Flush EX/MEM pipeline registers

0: no pipeline register flush is requires

Pin name: uipr_cp0_eret_addr[31:0] Pin direction: input

Source -> Destination: CP0 Block -> PR Unit

Pin function: Exception return address

Pin name: uipr_cp0_read_data[31:0] Pin direction: input

Source -> Destination: CP0 Block -> PR Unit

Pin function: CP0 register output data

Pin name: uipr_cp0_exc_flag Pin direction: input

Source -> Destination: CP0 Block -> PR Unit

Pin function:

1: an exception has occur

0: no exception occur

Pin name: uopr_id_rd5[4:0] Pin direction: output

Source -> Destination: PR Unit -> CP0 Block

Pin function: $rd address in ID stage, the address to read or write in the CP0 register

Pin name: uopr_id_fw_rt32[31:0] Pin direction: output

Source -> Destination: Partial Reconfiguration Unit -> CP0 Block

Pin function: Data to be updated in CP0 register

Pin name: uopr_cp0RegWr Pin direction: output

Source -> Destination: PR Unit -> CP0 Block

Pin function:

1: enable write to CP0 register

0: disable write to CP0 register

Pin name: uopr_if_pc[31:0] Pin direction: output

Source -> Destination: PR Unit -> CP0 Block

Pin function:

pipeline microarchitecture: PC register address in IF stage

multi-cycle microarchitecture: Previous PC value when uipr_IRQ=1; current PC value when

uipr_IRQ=0

168

Continued from Table A.1

Pin name: uopr_id_pc[31:0] Pin direction: output

Source -> Destination: PR Unit -> CP0 Block

Pin function:

pipeline microarchitecture: PC register address in ID stage

multi-cycle microarchitecture: Previous PC value when uipr_IRQ=1; current PC value when

uipr_IRQ=0

Pin name: uopr_ex_pc[31:0] Pin direction: output

Source -> Destination: PR Unit -> CP0 Block

pipeline microarchitecture: PC register address in EX stage

multi-cycle microarchitecture: Previous PC value when uipr_IRQ=1; current PC value when

uipr_IRQ=0

Pin name: uopr_id_undef_inst Pin direction: output

Source -> Destination: PR Unit -> CP0 Block

Pin function:

1: indicate an undefined instruction is detected

0: indicate supported instruction is detected

Pin name: uopr_id_syscall Pin direction: output

Source -> Destination: PR Unit -> CP0 Block

Pin function:

1: indicate syscall instruction is executing

0: indicate syscall instruction is not execute

Pin name: uopr_cp0_all_branch Pin direction: output

Source -> Destination: PR Unit -> CP0 Block

Pin function:

1: indicate eret, beq, bne, blez, bgtz, j, jr, jal or jalr instruction is executing

0: indicate eret, beq, bne, blez, bgtz, j, jr, jal and jalr instruction is not execute

Pin name: uipr_ex_alb_out[31:0] Pin direction: input

Source -> Destination: ALU Block -> PR Unit

Pin function: ALU output result

Pin name: uopr_ex_rs32[31:0] Pin direction: output

Source -> Destination: PR Unit -> ALU Block

Pin function: ALU operand

Pin name: uopr_ex_op_b[31:0] Pin direction: output

Source -> Destination: PR Unit -> ALU Block

Pin function: ALU operand

Pin name: uopr_ex_alb_ctrl[5:0] Pin direction: output

Source -> Destination: PR Unit -> ALU Block

Pin function: ALU operation to perform

Pin name: uopr_ex_shamt[4:0] Pin direction: output

Source -> Destination: PR Unit -> ALU Block

Pin function: Instruction shamt field in EX stage

Pin name: uipr_mem_mult_result[63:0] Pin direction: input

Source -> Destination: Multiplier Block -> PR Unit

Pin function: Multiplier output result

Pin name: uipr_mem_mult_valid Pin direction: input

Source -> Destination: Multiplier Block -> PR Unit

Pin function:

1: indicate multiplier result is valid

0: indicate multiplier result is not ready to use

Pin name: uipr_mem_mult_busy Pin direction: input

Source -> Destination: Multiplier Block -> PR Unit

Pin function: reserved for future development

Pin name: uopr_mult_mulcn[31:0] Pin direction: output

Source -> Destination: PR Unit -> Multiplier Block

Pin function: Multiplier operand

169

Continued from Table A.1

Pin name: uopr_mult_mulpl[31:0] Pin direction: output

Source -> Destination: PR Unit -> Multiplier Block

Pin function: Multiplier operand

Pin name: uopr_ex_sign_mult Pin direction: output

Source -> Destination: PR Unit -> Multiplier Block

Pin function:

1: indicate mult instruction in EX stage

0: indicate no mult instruction in EX stage

Pin name: uopr_ex_mult_en Pin direction: output

Source -> Destination: PR Unit -> Multiplier Block

Pin function:

1: indicate mult or multu instruction in EX stage

0: indicate no mult and multu instructions in EX stage

Pin name: uopr_mem_lw Pin direction: output

Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate lw, lwl or lwr instruction in MEM stage

0: indicate no lw, lwl and lwr instructions in MEM stage

Pin name: uopr_mem_lh Pin direction: output

Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate lh or lhu instruction in MEM stage

0: indicate no lh and lhu instructions in MEM stage

Pin name: uopr_mem_lb Pin direction: output

Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate lb or lbu instruction in MEM stage

0: indicate no lb and lbu instructions in MEM stage

Pin name: uopr_mem_sw Pin direction: output

Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate sw, swl or swr instruction in MEM stage

0: indicate no sw, swl and swr instructions in MEM stage

Pin name: uopr_mem_swl Pin direction: output

Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate swl instruction in MEM stage

0: indicate no swl instruction in MEM stage

Pin name: uopr_mem_swr Pin direction: output

Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate swr instruction in MEM stage

0: indicate no swr instruction in MEM stage

Pin name: uopr_mem_sh Pin direction: output

Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate sh instruction in MEM stage

0: indicate no sh instruction in MEM stage

Pin name: uopr_mem_sb Pin direction: output

Source -> Destination: PR Unit -> Address Decoder Block

Pin function:

1: indicate sb instruction in MEM stage

0: indicate no sb instruction in MEM stage

Pin name: uopr_mem_alb_out[31:0] Pin direction: output

Source -> Destination: PR Unit -> Address Decoder Block

Pin function: ALU output result in MEM stage

170

Continued from Table A.1

Pin name: uipr_instr[31:0] Pin direction: input

Source -> Destination: ROM / ICACHE Block -> PR Unit

Pin function: Instruction machine code to be decoded

Pin name: uipr_loaded_data[31:0] Pin direction: input

Source -> Destination: DCACHE Block / I/O controller -> PR Unit

Pin function: Data from memory device or I/O registers

Pin name: uipr_mem_stall Pin direction: input

Source -> Destination: ICACHE / DCACHE Block -> PR Unit

Pin function:

1: halt operation, processor stalling for cache miss

0: no processor stalling is requires

Pin name: uopr_next_pc[31:0] Pin direction: output

Source -> Destination: PR Unit -> ROM / ICACHE

Pin function: This bus carries the address of the next instruction to be fetched from the ROM /

ICACHE

Pin name: uopr_pseudo_pc[31:0] Pin direction: output

Source -> Destination: PR Unit -> ROM / ICACHE / Partial Reconfiguration Controller

Pin function: The PC value in IF stage. It is used by I-CACHE to generate the cache hit and

cache miss signals.

Pin name: uopr_store_addr[31:0] Pin direction: output

Source -> Destination: PR Unit -> DCACHE Block / RAM / I/O Controller

Pin function: address of data memory or I/O registers to be access

Pin name: uopr_store_data[31:0] Pin direction: output

Source -> Destination: PR Unit -> DCACHE Block / RAM / I/O Controller

Pin function: Data to be store in data memory or I/O registers

Pin name: uipr_reconf_stall_if Pin direction: input

Source -> Destination: PR Controller -> Partial Reconfiguration Unit

Pin function:

1: stall IF/ID pipeline register

0: no processor stalling is requires

Pin name: uipr_reconf_release_pc Pin direction: input

Source -> Destination: PR Controller -> Partial Reconfiguration Unit

Pin function:

1: indicate to copy the PC register address stored in GPR unit to current PC register

0: No copy require

Pin name: uipr_reconf_store_pc[31:0] Pin direction: input

Source -> Destination: PR Controller -> Partial Reconfiguration Unit

Pin function: PC register address stored in GPR unit

Pin name: uipr_IRQ Pin direction: input

Source -> Destination: Priority Interrupt Controller -> PR Unit / CP0 Block

Pin function:

1: Interrupt request from I/O controller

0: No interrupt request

Pin name: uipr_clk Pin direction: input

Source -> Destination: Global clock -> PR Unit

Pin function: Global clock

Pin name: uipr_sys_rst Pin direction: input

Source -> Destination: Global reset -> PR Unit

Pin function:

1: reset

0: no reset require

171

Table A.2: Cache unit I/O description

Pin name: uocac_cpu_data[31:0] Pin direction: output

Source -> Destination: Cache Unit -> PR Unit -> Data-path Unit

Pin function: 32-bits data to CPU (instruction for I-CACHE, data for D-CACHE)

Pin name: uocac_mem_addr[31:0] Pin direction: output

Source -> Destination: Cache Unit -> Memory Arbiter Unit -> Data-path Unit

Pin function: 32-bits address that indicates which location in the flash memory to be accessed

Pin name: uocac_cpu_stall Pin direction: output

Source -> Destination: Cache Unit -> PR Unit -> Data-path Unit

Pin function: Indicate a halt operation, processor stalling for cache miss
Pin name: uocac_miss Pin direction: output

Source -> Destination: Cache Unit -> Memory Arbiter Unit

Pin function: indicates cache miss.

Pin name: uocac_mem_read Pin direction: output

Source -> Destination: Cache Unit -> Memory Arbiter Unit

Pin function:

1: request read data from the flash memory

0: read disable from the flash memory

Pin name: uocac_mem_sel[3:0] Pin direction: output

Source -> Destination: Cache Unit -> Memory Arbiter Unit

Pin function: 4-bit byte select control, to select any one or more bytes to be accessed

Pin name: uicac_cpu_addr[31:0] Pin direction: input

Source -> Destination: PR Unit -> Cache Unit

Pin function: 32-bit address from CPU

Pin name: uicac_reg_cpu_addr[31:0] Pin direction: input

Source -> Destination: PR Unit -> Cache Unit

Pin function: The registered 32-bit address from CPU. This address bus is used to generate the

cache hit and cache miss signals

Pin name: uicac_cpu_read[2:0] Pin direction: input

Source -> Destination: PR Unit -> Cache Unit

Pin function:

1xx: read word

01x: read half-word

001: read byte

Pin name: uicac_mem_data_rd[31:0] Pin direction: input

Source -> Destination: Memory Arbiter Unit -> Cache Unit

Pin function: 32-bits data from the flash memory that will transfer to the Cache Unit

Pin name: uicac_mem_ack Pin direction: input

Source -> Destination: Memory Arbiter Unit -> Cache Unit

Pin function: Acknowledge signal (HIGH) to indicate read data is ready to be transfer from

flash memory to Cache Unit
Pin name: uicac_io_intr Pin direction: input

Source -> Destination: CP0 block -> Cache Unit

Pin function:

1: I-CACHE stop operation, CPU jump to exception handler

0: run normal

Pin name: uicac_mem_busy Pin direction: input

Source -> Destination: Flash Controller unit -> Cache Unit

Pin function:

1: flash memory is busy

0: flash memory is ready to use

Pin name: uicac_rst Pin direction: input

Source -> Destination: Global reset -> Cache Unit

Pin function:

1: reset

0: no reset require

Pin name: uicac_clk Pin direction: input

Source -> Destination: Global clock -> Cache Unit

Pin function: Global clock

172

Table A.3: Memory Arbiter Unit I/O description, where x = 0, 1, 2 and 3

Pin name: uoma_cac_ackx Pin direction: output

Source -> Destination: Memory Arbiter Unit-> Cache Unit

Pin function: Acknowledge signal (HIGH) to indicate read data is ready to be transfer from

flash memory to Cache Unit

Pin name: uoma_cac_data_rdx[31:0] Pin direction: output

Source -> Destination: Memory Arbiter Unit-> Cache Unit

Pin function: 32-bits data that from flash memory

Pin name: uima_cac_readx Pin direction: input

Source -> Destination: Cache Unit-> Memory Arbiter Unit

Pin function:

1: request read data from the flash memory

0: read disable from the flash memory

Pin name: uima_cac_missx Pin direction: input

Source -> Destination: Cache Unit-> Memory Arbiter Unit

Pin function: indicates cache miss.

Pin name: uima_cac_selx[3:0] Pin direction: input

Source -> Destination: Cache Unit-> Memory Arbiter Unit

Pin function: 4-bit byte select control, to select any one or more bytes to be accessed

Pin name: uima_cac_addrx[31:0] Pin direction: input

Source -> Destination: Cache Unit-> Memory Arbiter Unit

Pin function: 32-bits address location to be access in the flash memory (only lower 24-bit is

used, higher 8-bit is allocated for future expansion)

Pin name: uoma_fc_data[31:0] Pin direction: output

Source -> Destination: Memory Arbiter Unit -> Flash Controller Unit

Pin function: 32-bits data to be write to flash memory (RESERVED, all caches are read-only)

Pin name: uoma_fc_addr[31:0] Pin direction: output

Source -> Destination: Memory Arbiter Unit -> Flash Controller Unit

Pin function: 32-bits address location to be access in the flash memory (only lower 24-bit is

used, higher 8-bit is allocated for future expansion)

Pin name: uoma_fc_sel[3:0] Pin direction: output

Source -> Destination: Memory Arbiter Unit -> Flash Controller Unit

Pin function: 4-bit byte select control, to select any one or more bytes to be accessed

Pin name: uoma_fc_read Pin direction: output

Source -> Destination: Memory Arbiter Unit -> Flash Controller Unit

Pin function: Request read operation from the flash memory

Pin name: uima_fc_ack Pin direction: input

Source -> Destination: Flash Controller Unit -> Memory Arbiter Unit

Pin function: Acknowledge signal (HIGH) to indicate read data is ready to be transfer from

flash memory to Cache Unit

Pin name: uima_fc_data[31:0] Pin direction: input

Source -> Destination: Flash Controller Unit -> Memory Arbiter Unit

Pin function: 32-bits data from flash memory

Pin name: uima_io_intr Pin direction: input

Source -> Destination: CP0 Block -> Memory Arbiter Unit

Pin function:

1: An exception has occurred. CPU will jump to exception handler at the next clock cycle

0: run normal

Pin name: uima_rst Pin direction: input

Source -> Destination: Global reset -> Memory Arbiter Unit

Pin function:

1: reset

0: no reset require

Pin name: uima_clk Pin direction: input

Source -> Destination: Global clock -> Memory Arbiter Unit

Pin function: Global clock

173

Table A.4: Flash Controller Unit I/O description

Pin name: SS Pin direction: output

Source -> Destination: Flash Controller Unit -> flash memory

Pin function: SPI protocol Slave Select

Pin name: SCLK Pin direction: output

Source -> Destination: Flash Controller Unit -> flash memory

Pin function: SPI protocol clock signal

Pin name: MIO0 Pin direction: bi-directional

Source -> Destination: flash memory -> Flash Controller Unit or Flash Controller Unit ->

flash memory

Pin function: : SPI protocol serial input output pin

Pin name: MI1 Pin direction: input

Source -> Destination: flash memory -> Flash Controller Unit

Pin function: SPI protocol serial input pin

Pin name: MI2 Pin direction: input

Source -> Destination: flash memory -> Flash Controller Unit

Pin function: SPI protocol serial input pin

Pin name: MI3 Pin direction: input

Source -> Destination: flash memory -> Flash Controller Unit

Pin function: SPI protocol serial input pin

Pin name: uofc_busy Pin direction: output

Source -> Destination: Flash Controller Unit -> Cache Unit

Pin function: Indicate flash memory is busy, data fetching from the flash memory in operation

Pin name: uofc_dout [31:0] Pin direction: output

Source -> Destination: Flash Controller Unit -> Memory Arbiter Unit / PR Controller Unit

Pin function: 32-bits data from flash memory

Pin name: uofc_ack Pin direction: output

Source -> Destination: Flash Controller Unit -> Memory Arbiter Unit / PR Controller Unit

Pin function: Indicate data is ready to be fetched

Pin name: uofc_RXFF Pin direction: output

Source -> Destination: Flash Controller Unit -> PR Controller Unit

Pin function:

1: 1-word (uifc_reconfig=1) or 8-words (uifc_reconfig=0) of data has been received

0: Data receiving is in progress

Pin name: uifc_read Pin direction: input

Source -> Destination: Memory Arbiter Unit -> Flash Controller Unit

Pin function:

1: request read data from the flash memory

0: read disable from the flash memory

Pin name: uifc_addr[31:0] Pin direction: input

Source -> Destination: Memory Arbiter Unit / PR Controller Unit -> Flash Controller Unit

Pin function: flash memory address location to be access

Pin name: uifc_cpol Pin direction: input

Pin function: SPI clock polarity, default to 1 (set in HDL) to align with the SPI

communication mode supported by the flash memory

Pin name: uifc_cpha Pin direction: input

Pin function: SPI clock phase, default to 1 (set in HDL) to align with the SPI communication

mode supported by the flash memory

174

Continued from Table A.4

Pin name: uifc_baud[3:0] Pin direction: input

Pin function: the clock speed of the SCLK, default 4‟b0000 (set in HDL)

0000: uifc_clk / 2

0001: uifc_clk / 4

0010: uifc_clk / 8

0011: uifc_clk / 16

0100: uifc_clk / 32

0101: uifc_clk / 64

0110: uifc_clk / 128

0111: uifc_clk / 256

1000: uifc_clk / 512

1001: uifc_clk / 1024

1010: uifc_clk / 2048

1011: uifc_clk / 4096

1100: uifc_clk / 8192

1101: uifc_clk / 16384

1110: uifc_clk / 32768

1111: uifc_clk / 65536

Pin name: uifc_reconfig Pin direction: input

Source -> Destination: PR Controller Unit -> Flash Controller Unit

Pin function:

1: Partial reconfiguration has taken place to read the partial bitstream from the flash memory

0: Normal run

Pin name: uifc_reconfig_nwords[31:0] Pin direction: input

Source -> Destination: PR Controller Unit -> Flash Controller Unit

Pin function: Partial bitstream size (number of words)

Pin name: uifc_clk Pin direction: input

Source -> Destination: Global clock -> Flash Controller Unit

Pin function: Global clock

Pin name: uifc_rst Pin direction: input

Source -> Destination: Global reset -> Flash Controller Unit

Pin function:

1: reset

0: no reset require

Table A.5: Boot ROM Unit I/O description

Pin name: borom_wb_dout[31:0] Pin direction: output

Source -> Destination: Boot ROM unit -> PR Unit -> Data-path Unit

Pin function: 32-bits data output

Pin name: borom_wb_ack Pin direction: output

Source -> Destination: Boot ROM unit -> PR Unit

Pin function: Indicate data is ready to be fetched

Pin name: birom_wb_addr[SIZE:0] Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> Boot ROM unit

Pin function: Address location of the data in the Boot ROM unit

Pin name: birom_wb_stb Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> Boot ROM unit

Pin function: Strobe control

1: Boot ROM unit is activated to perform read access for new address location

0: Boot ROM unit is de-activated to perform read access

Pin name: birom_wb_clk Pin direction: input

Source -> Destination: Global clock -> Boot ROM unit

Pin function: Global clock

175

Continued from Table A.5

Pin name: birom_wb_rst Pin direction: input

Source -> Destination: Global reset -> Boot ROM unit

Pin function:

1: reset

0: no reset require

Table A.6: Data and Stack RAM Unit I/O description

Pin name: uoram_wb_dout[31:0] Pin direction: output

Source -> Destination: Data and Stack RAM Unit -> PR Unit -> Data-path Unit

Pin function: 32-bits data output

Pin name: uoram_wb_ack Pin direction: output

Source -> Destination: Data and Stack RAM Unit -> PR Unit

Pin function: Indicate data is ready to be fetched

Pin name: uiram_wb_din[31:0] Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> Data and Stack RAM Unit

Pin function: 32-bits data input

Pin name: uiram_wb_addr[SIZE:0] Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> Data and Stack RAM Unit

Pin function: Address location of the data in the Data and Stack RAM Unit

Pin name: uiram_wb_sel[3:0] Pin direction: input

Source -> Destination: Address Decoder Block -> Data-path Unit -> Data and Stack RAM

Unit

Pin function: 4-bit byte select control, to select any one or more bytes to be accessed

Pin name: uiram_wb_we Pin direction: input

Source -> Destination: Address Decoder Block -> Data-path Unit -> Data and Stack RAM

Unit

Pin function: write control

1: Enable to write to the Data and Stack RAM Unit

0: No operation

Pin name: uiram_wb_stb Pin direction: input

Source -> Destination: Address Decoder Block -> Data-path Unit -> Data and Stack RAM

Unit

Pin function: Strobe control

1: Data and Stack RAM Unit is activated to perform read or write access for new address

location

0: Data and Stack RAM Unit is de-activated to perform read or write access

Pin name: uiram_wb_clk Pin direction: input

Source -> Destination: Global clock -> Data and Stack RAM Unit

Pin function: Global clock

Pin name: uiram_wb_rst Pin direction: input

Source -> Destination: Global reset -> Data and Stack RAM Unit

Pin function:

1: reset

0: no reset require

Table A.7: UART Controller I/O description

Pin name: uoua_TxD Pin direction: output

Source -> Destination: device 0‟s uoua_TxD -> device 1‟s uiua_RxD

Pin function: UART standard pin – transmit serial data

176

Continued from Table A.7

Pin name: uoua_IRQ Pin direction: output

Source -> Destination: UART controller Unit -> Priority Interrupt Controller Unit

Pin function: To request an interrupt (uiua_UARTIE must pull high before can send an

interrupt)

1: Request to interrupt

0: No interrupt request

Pin name: uoua_wb_dout [7:0] Pin direction: output

Source -> Destination: UART controller Unit -> PR Unit -> Data-path Unit

Pin function: Wishbone standard data output bus

Pin name: uoua_wb_ack Pin direction: output

Source -> Destination: UART controller Unit -> PR Unit -> Data-path unit

Pin function:

Wishbone standard acknowledge signal - indicates the termination of a normal bus cycle

1: normal bus cycle termination

0: no bus cycle termination

Pin name: uiua_RxD Pin direction: input

Source -> Destination: device 0‟s uiua_RxD <- device 1‟s uoua_TxD

Pin function: UART standard pin – receive serial data

Pin name: uiua_UARTIE Pin direction: input

Source -> Destination: Priority Interrupt Controller Unit-> UART controller Unit

Pin function: allow UART to interrupt

1: enable UART global interrupt

0: disable UART global interrupt

Pin name: uiua_wb_din [7:0] Pin direction: input

Source -> Destination: Data-path unit -> PR Unit -> UART controller Unit

Pin function: Wishbone standard data input bus

Pin name: uiua_wb_sel [3:0] Pin direction: input

Source -> Destination: Address Decoder Block -> UART controller Unit

Pin function: Wishbone standard byte select signal – data granularity control

1111: word selected

1100: upper half-word selected

0011: lower half-word selected

1000: 4th byte selected

0100: 3rd byte selected

0010: 2nd byte selected

0001: 1st byte selected

Pin name: uiua_wb_we Pin direction: input

Source -> Destination: Address Decoder Block -> UART controller Unit

Pin function:

Wishbone standard write enable signal – indicate current bus cycle is for READ or WRITE

1: WRITE cycle – write to UART controller

0: READ cycle – Read from UART controller

Pin name: uiua_wb_stb Pin direction: input

Source -> Destination: Address Decoder Block -> UART controller Unit

Pin function: Wishbone standard strobe signal – indicate valid data transfer cycle

1: activate UART controller for read or write access

0: deactivate UART controller for read or write access

Pin name: uiua_wb_clk Pin direction: input

Source -> Destination: Global clock -> UART controller Unit

Pin function: Global clock

Pin name: uiua_wb_rst Pin direction: input

Source -> Destination: Global reset -> UART controller Unit

Pin function:

1: reset

0: no reset require

177

Table A.8: SPI Controller I/O description

Pin name: uiospi_MOSI Pin direction: bi-directional

Source -> Destination: device 0‟s uiospi_MOSI <-> device 1‟s uiospi_MISO

Pin function: SPI standard pin – Master out Serial in

If the SPI is configure as a master, then uiospi_MOSI will become an output, else otherwise.

Pin name: uiospi_MISO Pin direction: bi-directional

Source -> Destination: device 0‟s uiospi_MISO <-> device 1‟s uiospi_MOSI

Pin function: SPI standard pin – Master in Serial out

If the SPI is configure as a master, then uiospi_ MISO will become an input, else otherwise.

Pin name: uiospi_SCLK Pin direction: bi-directional

Source -> Destination: device 0‟s uiospi_SCLK <-> device 1‟s uiospi_SCLK

Pin function: SPI standard pin – SPI clock signal for data synchronization across devices

If the SPI is configure as a master, then uiospi_ SCLK will become an output, else otherwise.

Pin name: uiospi_SS_n Pin direction: bi-directional

Source -> Destination: device 0‟s SS_n <-> device 1‟s SS_n

Pin function: SPI standard pin – SPI slave select control signal

If the SPI is configure as a master, then uiospi_ SS_n will become an output, else otherwise.

Pin name: uospi_IRQ Pin direction: output

Source -> Destination: SPI controller Unit -> Priority Interrupt Controller Unit

Pin function: To request an interrupt (uispi_SPIE must pull high before can send an interrupt)

1: Request to interrupt

0: No interrupt request

Pin name: uospi_wb_dout [7:0] Pin direction: output

Source -> Destination: SPI controller Unit -> PR Unit -> Data-path Unit

Pin function: Wishbone standard data output bus

Pin name: uospi_wb_ack Pin direction: output

Source -> Destination: SPI controller Unit -> PR Unit -> Data-path Unit

Pin function:

Wishbone standard acknowledge signal - indicates the termination of a normal bus cycle

1: normal bus cycle termination

0: no bus cycle termination

Pin name: uispi_SPIE Pin direction: input

Source -> Destination: Priority Interrupt Controller Unit-> SPI controller Unit

Pin function: allow SPI to interrupt

1: enable SPI global interrupt

0: disable SPI global interrupt

Pin name: uispi_wb_din[7:0] Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> SPI controller Unit

Pin function: Wishbone standard data input bus

Pin name: uispi_wb_sel[3:0] Pin direction: input

Source -> Destination: Address Decoder Block -> SPI controller Unit

Pin function: Wishbone standard byte select signal – data granularity control

1111: word selected

1100: upper half-word selected

0011: lower half-word selected

1000: 4th byte selected

0100: 3rd byte selected

0010: 2nd byte selected

0001: 1st byte selected

Pin name: uispi_wb_we Pin direction: input

Source -> Destination: Address Decoder Block -> SPI controller Unit

Pin function:

Wishbone standard write enable signal – indicate current bus cycle is for READ or WRITE

1: WRITE cycle – Write to SPI controller

0: READ cycle – Read from SPI controller

178

Continued from Table A.8

Pin name: uispi_wb_stb Pin direction: input

Source -> Destination: Address Decoder Block -> SPI controller Unit

Pin function: Wishbone standard strobe signal – indicate valid data transfer cycle

1: activate SPI controller for read or write access

0: deactivate SPI controller for read or write access

Pin name: uispi_wb_clk Pin direction: input

Source -> Destination: Global clock -> SPI controller Unit

Pin function: Global clock

Pin name: uispi_wb_rst Pin direction: input

Source -> Destination: Global reset -> SPI controller Unit

Pin function:

1: reset

0: no reset require

Table A.9: GPIO Controller unit I/O description

Pin name: uiogpio_PORT_pin Pin direction: inout

Source -> Destination: GPIO Controller Unit <-> External device (LEDs, switches etc.)

Pin function: GPIO pins

Pin name: uogpio_wb_dout [31:0] Pin direction: output

Source -> Destination: GPIO Controller Unit -> PR Unit -> Data-path Unit

Pin function: Wishbone standard data output bus

Pin name: uogpio_wb_ack Pin direction: output

Source -> Destination: GPIO Controller Unit -> PR Unit -> Data-path Unit

Pin function:

Wishbone standard acknowledge signal - indicates the termination of a normal bus cycle

1: normal bus cycle termination

0: no bus cycle termination

Pin name: uigpio_wb_din [31:0] Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> GPIO Controller Unit

Pin function: Wishbone standard data input bus

Pin name: uigpio_wb_addr[1:0] Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> GPIO Controller Unit

Pin function: Used to select which register to be access

00: GPIODIR

01: GPIOEN

10: GPIODATA

11: RESERVED

 Pin name: uigpio_wb_sel [3:0] Pin direction: input

Source -> Destination: Address Decoder Block -> GPIO Controller Unit

Pin function: Wishbone standard write enable signal – data granularity control

1111: word selected

1100: upper half-word selected

0011: lower half-word selected

1000: 4th byte selected

0100: 3rd byte selected

0010: 2nd byte selected

0001: 1st byte selected

Pin name: uigpio_wb_we Pin direction: input

Source -> Destination: Address Decoder Block -> GPIO Controller Unit

Pin function:

Wishbone standard write enable signal – indicate current bus cycle is for READ or WRITE

1: WRITE cycle – write to GPIO controller

0: READ cycle – read from GPIO controller

179

Continued from Table A.9

Pin name: uigpio_wb_stb Pin direction: input

Source -> Destination: Address Decoder Block -> GPIO Controller Unit

Pin function: Wishbone standard strobe signal – indicate valid data transfer cycle

1: activate UART controller for read or write access

0: deactivate UART controller for read or write access

Pin name: uigpio_wb_clk Pin direction: input

Source -> Destination: Global clock -> GPIO Controller Unit

Pin function: Global clock

Pin name: uigpio_wb_rst Pin direction: input

Source -> Destination: Global reset -> GPIO Controller Unit

Pin function:

1: reset

0: no reset require

Table A.10: Priority Interrupt Controller unit I/O description

Pin name: uopi_ctrl_IO_IE[7:0] Pin direction: output

Source -> Destination: Priority Interrupt Controller Unit -> UART / SPI Controller Unit

Pin function: Interrupt sources masking bit

1: Enable the interrupt source

0: Disable the interrupt source

Pin name: uopi_ctrl_req_IPL[1:0] Pin direction: output

Source -> Destination: Priority Interrupt Controller Unit -> CP0 Block

Pin function: indicate the IPL of the interrupt source. This value will be store in the CP0

$cause register to prevent lower IPL interrupt sources to interrupt the CPU

Pin name: uopi_ctrl_IRQ Pin direction: output

Source -> Destination: Priority Interrupt Controller Unit -> PR Unit -> Data-path Unit

Pin function: Interrupt request signal. Pull high for 1 clock cycle to interrupt the CPU to stop

current process and jump to exception handler (0x8001_B140).

1: Interrupt request from one of the interrupt sources

0: No interrupt request

Pin name: uopi_ctrl_wb_dout [31:0] Pin direction: output

Source -> Destination: Priority Interrupt Controller Unit -> PR Unit -> Data-path Unit

Pin function: Wishbone standard data output bus

Pin name: uopi_ctrl_wb_ack Pin direction: output

Source -> Destination: Priority Interrupt Controller Unit -> PR Unit -> Data-path Unit

Pin function:

Wishbone standard acknowledge signal - indicates the termination of a normal bus cycle

1: normal bus cycle termination

0: no bus cycle termination

Pin name: uipi_ctrl_intr_vector[7:0] Pin direction: input

Source -> Destination: CP0 Timer, SPI and UART Controller Unit -> Priority Interrupt

Controller Unit

Pin function: Connect up to 8 interrupt sources

uipi_ctrl_intr_vector[7]: CP0 timer

uipi_ctrl_intr_vector[6]: 1‟b0

uipi_ctrl_intr_vector[5]: 1‟b0

uipi_ctrl_intr_vector[4]: 1‟b0

uipi_ctrl_intr_vector[3]: SPI Controller Unit

uipi_ctrl_intr_vector[2]: UART Controller Unit

uipi_ctrl_intr_vector[1]: 1‟b0

uipi_ctrl_intr_vector[0]: 1‟b0

180

Continued from Table A.10

Pin name: uipi_ctrl_stat_IPL Pin direction: input

Source -> Destination: CP0 Block -> Priority Interrupt Controller Unit

Pin function: Indicate the Interrupt Priority Level that currently handle. This is to prevent the

lower IPL interrupt sources to interrupt the CPU.

Pin name: uipi_ctrl_intr_en_n Pin direction: input

Source -> Destination: CP0 Block -> Priority Interrupt Controller Unit

Pin function: Interrupt enable signal

1: disable interrupt

0: enable interrupt

Pin name: uipi_ctrl_cpu_stall Pin direction: input

Source -> Destination: Cache Unit -> Priority Interrupt Controller Unit

Pin function: stall the Priority Interrupt Controller when memories (I-CACHE/D-CACHE)

stall. This is to ensure that no interrupt request can occur during memories stall

Pin name: uipi_ctrl_wb_din[31:0] Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> Priority Interrupt Controller Unit

Pin function: Wishbone standard data input bus

Pin name: uipi_ctrl_wb_sel[3:0] Pin direction: input

Source -> Destination: Address Decoder Block -> Priority Interrupt Controller Unit

Pin function: Wishbone standard write enable signal – data granularity control

1111: word selected

1100: upper half-word selected

0011: lower half-word selected

1000: 4
th

 byte selected

0100: 3
rd

 byte selected

0010: 2
nd

 byte selected

0001: 1
st
 byte selected

Pin name: uipi_ctrl_wb_we Pin direction: input

Source -> Destination: Address Decoder Block -> Priority Interrupt Controller Unit

Pin function:

Wishbone standard write enable signal – indicate current bus cycle is for READ or WRITE

1: WRITE cycle – Write to Priority Interrupt Controller

0: READ cycle – Read from Priority Interrupt Controller

Pin name: uipi_ctrl_wb_stb Pin direction: input

Source -> Destination: Address Decoder Block -> Priority Interrupt Controller Unit

Pin function: Wishbone standard strobe signal – indicate valid data transfer cycle

1: activate Priority Interrupt controller for read or write access

0: deactivate Priority Interrupt controller for read or write access

Pin name: uipi_ctrl_wb_clk Pin direction: input

Source -> Destination: Global clock -> Priority Interrupt Controller Unit

Pin function: Global clock

Pin name: uipi_ctrl_wb_rst Pin direction: input

Source -> Destination: Global reset -> Priority Interrupt Controller Unit

Pin function:

1: reset

0: no reset require

Table A.11: General Purpose Register unit I/O description

Pin name: uogpr_reconf_setting[31:0] Pin direction: output

Source -> Destination: General Purpose Register Unit -> PR Controller Unit

Pin function: Output the SETTING register of the General Purpose Register Unit

Pin name: uogpr_pipeline_reconf_addr[31:0] Pin direction: output

Source -> Destination: General Purpose Register Unit -> PR Controller Unit

Pin function: Pipeline microarchitecture partial bitstream start address

181

Continued from Table A.11

Pin name: uogpr_multicycle_reconf_addr[31:0] Pin direction: output

Source -> Destination: General Purpose Register Unit -> PR Controller Unit

Pin function: Multi-cycle microarchitecture partial bitstream start address

Pin name: uogpr_wb_dout[31:0] Pin direction: output

Source -> Destination: General Purpose Register Unit -> PR Unit -> Data-path Unit

Pin function: Wishbone standard data output bus

Pin name: uogpr_wb_ack Pin direction: output

Source -> Destination: General Purpose Register Unit -> PR Unit -> Data-path Unit

Pin function:

Wishbone standard acknowledge signal - indicates the termination of a normal bus cycle

1: normal bus cycle termination

0: no bus cycle termination

Pin name: uigpr_update_ma Pin direction: input

Source -> Destination: PR Controller Unit -> General Purpose Register Unit

Pin function: Indicate to update the current microarchitecture status in SETTING register

Pin name: uigpr_wb_din[31:0] Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> General Purpose Register Unit

Pin function: Wishbone standard data input bus

Pin name: uigpr_wb_addr[1:0] Pin direction: input

Source -> Destination: Data-path Unit -> PR Unit -> General Purpose Register Unit

Pin function: Used to select which register to be access

00: SETTING

01: P5ADDR

10: M5ADDR

11: RESERVED

Pin name: uigpr_wb_sel[3:0] Pin direction: input

Source -> Destination: Address Decoder Block -> General Purpose Register Unit

Pin function:

Pin function: Wishbone standard write enable signal – data granularity control

1111: word selected

1100: upper half-word selected

0011: lower half-word selected

1000: 4th byte selected

0100: 3rd byte selected

0010: 2nd byte selected

0001: 1st byte selected

Pin name: uigpr_wb_we Pin direction: input

Source -> Destination: Address Decoder Block -> General Purpose Register Unit

Pin function:

Wishbone standard write enable signal – indicate current bus cycle is for READ or WRITE

1: WRITE cycle – write to General Purpose Register Unit

0: READ cycle – read from General Purpose Register Unit

Pin name: uigpr_wb_stb Pin direction: input

Source -> Destination: Address Decoder Block -> General Purpose Register Unit

Pin function: Wishbone standard strobe signal – indicate valid data transfer cycle

1: activate General Purpose Register for read or write access

0: deactivate General Purpose Register for read or write access

Pin name: uigpr_wb_clk Pin direction: input

Source -> Destination: Global clock -> General Purpose Register Unit

Pin function: Global clock

Pin name: uigpr_wb_rst Pin direction: input

Source -> Destination: Global reset -> General Purpose Register Unit

Pin function:

1: reset

0: no reset require

