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ABSTRACT

NUMERICAL INVESTIGATION OF MALAYSIAN STOCKS USING

ORDER ONE UNIVERSAL PORTFOLIO STRATEGIES

PANG SOOK THENG

Universal portfolio (UP) is an important investment strategy from a theoretical

point of view due to Cover’s research, which proves that UP can achieve very good

return for a set of stocks in the long run. The exact algorithm for Cover’s UP takes

memory of order O(nm−1) where n is the number of trading days and m is the

number of stocks. It becomes useless for long term daily trading. To tackle the

memory consumption issues, C. P. Tan in year 2013 proposed to limit UP to finite

order. This research set the goal to promote active daily trading in Malaysia stock

market using types of Tan’s finite order UP and its generalisation.

The goal of our research is to study Malaysia stock market using the four

proposed finite order universal portfolios comprehensively and refer to constant

rebalanced portfolio (CRP) as a benchmark. The research is conducted with 95

stocks data selected from KLSE (Kuala Lumpur Stock Exchange) from 1 January

2000 to 31 December 2015. The UPs are Multinomial UP, Multivariate Normal

UP, Brownian-motion generated UP and UP generated by Ornstein-Uhlenbeck

process. This research limits to order one UP and 3 stocks,m = 3. Using the basic

probability theory, we have formalised the four proposed finite order universal

portfolio.

To test our proposed four finite order universal portfolios, they are first bench-

marked against Cover’s Dirichlet (α1, α2, α3) universal portfolio strategy. Using

3 sets of stock data selected randomly from KLSE for the period from 1 January,

2003 to 30 November 2004, empirical result showed that the finite order universal

portfolio can perform as good as Cover’s universal portfolio with computationally
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better in speed and memory.

For the comprehensive study of the above 95 selected stocks, we first find the

good parameters for each proposed universal portfolios by using the combination

of the 10 selected most active stocks from the above 95 selected stocks. From

numerical experiment, the good performance of the parameters is identified for

the purpose of further analysis.

Next, numerical experiment for the four classes of universal portfolio strate-

gies are studied for short term (1 year period), middle term (4 years and 8 years

periods) and long term (12 years and 16 years periods) data. We employed the

four portfolio strategies with their best performing parameters identified to the

above 5 groups of data to learn the performance of these methods and used CRP

as a benchmark. Every 3 stocks data generated by combination of the selected

95 stocks are used for study. The empirical results showed that the performances

of the proposed four strategies are better than CRP in 1 year and 4 years period

groups. However, the four strategies did poorly in 8 years, 12 years and 16 years

period groups. When comparing to KLCI, the result shows that finite order UP

performs poorly.

The research indicates that the order one universal portfolio may help promote

active online trading for Malaysia stock market in short term, only if the right

combination of stocks are chosen.
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CHAPTER 1

INTRODUCTION

Portfolio is a grouping of financial assets such as stocks, bonds and cash equiva-

lents, as well as funds counterparts, including mutual, exchange-traded and closed

funds. Portfolio selection, aiming to optimise the allocation of wealth across a set

of assets, is a fundamental research problem in finance (Li & Hoi 2012).

There are two major philosophies in portfolio selection. One philosophy is the

mean-variance theory, which assumes that each asset follows some normal distri-

bution and an optimal portfolio selection can be obtained based on the tolerance

of risk of an investor. Another philosophy is the capital growth theory, which

focuses on optimising the expected cumulative wealth for a periodic (e.g. daily)

portfolio selection.

The mean-variance theory is well-establised and widely used in practice. The

capital growth theory, although less popular, is probably more meaningful to a

developing country such as Malaysia, to promote active stock trading.

There are many portfolio selection strategies based on the capital growth the-

ory. Li & Hoi (2012) has summarised the state-of-art portfolio selection algo-

rithms as follows:
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Classifications Algorithm Representative Refer-

ences

Buy And Hold

Benchmarks Best Stocks

Constant Rebalanced Portfolios Kelly (1956); Cover

(1991)

The winner Universal Portfolios Cover (1991); Cover &

Ordentlich (1996)

Exponential Gradient Helmbold et al. (1998)

The universal portfolio algorithm is a portfolio selection algorithm from the

field of machine learning and information theory. The algorithm learns adaptively

from historical data and maximizes log-optimal growth rate in the long run. The

algorithm rebalances the portfolio at the beginning of each trading period. At

the beginning of first trading period it starts with a naive diversification. In the

following trading periods the portfolio composition depends on the historical total

return of all possible Constant-Rebalanced Portfolios (CRP).

This research will investigate a variation of the universal portfolio proposed

by Cover (1991) and the capital growth will be compared to Constant Rebalanced

Portfolios, CRP as a benchmark.

In this chapter, we will first state the problem setting, then we will investigate

the relevant research and literatures and finally, an outline of the thesis is given.
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1.1 Problem Setting

Consider an m-stock market. Let xn = (xn,i) be the stock-price-relative vector

on the nth trading day, where xn,i denotes the stock-price relative of stock i on

day n, which is defined to be the ratio of the closing price to its opening price

on day n, for i = 1, 2, · · ·m. We assume that xn,i ≥ 0 for all i = 1, 2 · · ·m and

n = 1, 2 · · · . The portfolio vector bn = (bn,i) on day n is the investment strategy

used on day n when bn,i is the proportion of the current wealth invested on stock

i for i = 1, 2 · · ·m, with 0 ≤ bn,i ≤ 1 and
∑m

i=1 bn,i = 1.

The simplest strategy is to “buy-and-hold” stocks using some portfolio b =

(b1, b2, · · · , bm), where bi ≥ 0,
∑
bi = 1. In particular, when b = ( 1

m
, · · · , 1

m
),

the buy-and-hold strategy is called a “uniform buy-and-hold”. Suppose that the

initial wealth is S0, then the wealth accumulate at the end of the nth day is

Sn = S0(b1x1,1x2,1 · · ·xn,1 + b2x1,2x2,2 · · · xn,2 + · · ·+ bmx1,m · · ·xn,m) (1.1)

We say that a portfolio selection algorithm “beats the market” when it outper-

forms uniform buy-and-hold strategy on a given market. Buy-and-hold strategy

relies on the tendency of successful markets to grow. Much of modern portfolio

theories focus on how to choose a good b for the buy-and-hold strategy, such as

the famous Markowitz portfolio theory.

An alternative approach to the static buy-and-hold is to dynamically change

the portfolio during the trading period. One of the example of this approach is
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constant rebalancing portfolio (CRP), namely, fix a portfolio b and reinvest your

money each day according to b. The paper presents constant rebalanced portfo-

lio first introduced by Cover (1991). Under the assumption that the daily market

vectors are observations of identically and independently distributed random vari-

ables, Cover (1991) showed that constant rebalanced portfolio performs at least

as good as the best online portfolio selection algorithm. There are several weak-

nesses of this approach. One is that it is extremely hard to find the optimal weights

and the second weakness is that in downtrend market CRP tends to trend down.

A constant-rebalanced portfolio (CRP) is a portfolio bj = (b) that is constant

over the trading days and the wealth at the end of nth trading day is

Sn = S0

n∏

j=1

btxj. (1.2)

Cover (1991) pointed out that the active trading strategy will perform better

than “buy-and-hold” in the long run. An active trading strategy involves a se-

quence of universal portfolio vector bn = (bn,1, · · · , bn,m), which are associated

with the n trading days. Here, the value bn,i,, i = 1, 2, · · · ,m is the proportion of

the wealth of the asset i on the nth day and
∑m

i=1 bn,i = 1. The wealth at the end

of nth trading day Sn is given by

Sn = S0

n∏

j=1

btjxj. (1.3)

The goal of our research is to study Malaysia stock market using the four

proposed universal portfolios comprehensively and refer to CRP as a benchmark.

The four universal portfolio strategies are investigated through a set of numer-
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ical experiments concerning 95 stocks data selected from Kuala Lumpur Stock

Exchange.

1.2 Literature Review

The selection of assets in the portfolio is not unique which depends on the special

characteristics of the market. The relation and movement of assets in the portfolio

will directly affect the expected return and variance for analysis.

Portfolio theory was first developed mathematically by Markowitz (1952).

Markowitz portfolio provides a method to analyse how good in a given portfolio

is based on only the means and the variance of the returns of the assets contained

in the portfolio. This led to the efficient frontier where the investor could choose

his preferred portfolio depending on his risk preference. The Markowitz portfolio

theory shows that the selected portfolio can achieve the goal of return by ensuing

that it does not exceed the tolerance risk level of the investor. This idea is later

known as the expected sector for expected return-variance rule (EV-rule). Sharpe

(1963) extends Markowitz work on the portfolio analysis. A simplified model

of the relationships among securities for practical application of the Markowitz

portfolio analysis technique is provided by Sharpe (1963).

There is a new online learning algorithm for portfolio selection on alterna-

tive measure of price relative called Cyclically Adjusted Price Relative (CAPR)

proposed by Nkomo & Kabundi (2013). The CAPR is derived from a simple

state-space model of stock prices and have proved that the CAPR, unlike the stan-
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dard raw price relative widely used in the machine literature, has well defined and

desirable statistical properties that makes it better suited for nonparametric mean

reversion strategies.

Agarwal et al. (2006) studied on-line investment algorithms first proposed by

Agarwal & Hazan (2005) and extended by Hazan et al. (2006) which achieve

almost the same wealth as the best constant-rebalanced portfolio determined in

hindsight. These algorithms are the first to combine optimal logarithmic regret

bounds with efficient deterministic computability and based on the Newton method

for offline optimization.

Cover (1991) proposed the Universal Portfolio (UP) strategy and showed em-

pirically that based on the New York Stock Exchange data over a 22 year period,

this universal portfolio perform well on two- stock portfolios. Cover & Ordentlich

(1996) further investigate universal portfolio and redefined the algorithm as µ-

Weighted universal portfolio and study universal portfolio with side information

using conditional probability. So far, side information is not easy to determine

and was not proved to be much superior, therefore, this research will not consider

side information.

Kalai & Vempala (2002) pointed out that the algorithm to calculate Cover

& Ordentlich (1996)’s universal portfolio strategy accurately has time (or space)

complexity of O(nm−1), where n is the number of trading days and m is the

number of stocks

Several studies are conducted with the objective of saving computation time
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and computer-memory space. The universal portfolio is first studied by Helm-

bold et al. (1998) in employing multiplicative update rule in the portfolio derived

from a frame rule in Kivinen & Warmuth (1997). The algorithm is easier to be

implemented and requires less computer memory for implementation compare to

Cover’s universal portfolio. Since the algorithm uses multiplicative updates on the

weight distribution and does not involve any integration, it is more straightforward

to implement than Cover’s algorithm.

Next, Ishijima (2001) developed several methods for computing universal port-

folios and conducted numerical experiments to show its possibility for the practi-

cal use. Ishijima applied Monte Carlo Methods for calculating universal portfo-

lios. By the virtue of Monte Carlo, they are not time-consuming even if increasing

the universe of assets. Besides, Ishijima also showed how to generate Dirichlet

variates in the feasible region of constant portfolios, attention have been paid to

the generation of uniform variates which is special case of Dirichlet Variates.

The recent study with the above objective is the finite-order universal portfolio

introduced by Tan (2013). This finite order universal portfolio of order ν depends

on the most recent ν days of the stock-price data, assuming that the assets are

stocks.

Tan (2002) also studied the asymptotic performance of the parametric family

of Cover-Ordentlich universal portfolios with respect to the best constant rebal-

anced portfolio. In a recent paper, Tan & Lim (2010) analysed the empirical

performance of the parametric family of Helmbold universal portfolios. Tan &

Pang (2011) compared the performances of the two parametric families of uni-

versal portfolios. Some empirical results are obtained based on some stock data
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sets from the local stock exchange and the results seem to indicate that the Cover-

Ordentlich universal portfolio can outperform the Helmbold universal portfolio

by a proper choice of parameters.

The performance of the Dirichlet universal portfolio can be improved by vary-

ing the parameter vector periodically after a fixed number of days, which is known

as a trading day. After fixing a trading period, Tan & Pang (2012) showed that

using a cyclic constrained-search algorithm, a new parametric vector is chosen

that improve upon the wealth achieved in the previous period. They studied on

some selected stock data sets from the local stock exchange and results shown that

higher returns in wealth are achieved for the parameter-varying universal portfolio

over the constant-parameter universal portfolio.

In Tan & Chu (2012), the investment performance of a pair of universal port-

folios generated by the quadratic divergence with respect to a symmetric, positive

definite matrix and its inverse is studied. They have selected three stock-data

sets from Kuala Lumpur Stock Exchange and the empirical performance of the

three-stock portfolios is presented. The empirical results showed that the use of

complementary pairs of universal portfolios may increase the wealth of investors.

Tan & Lim (2013) have demonstrated another application of the mixture-

current-run universal portfolio in extracting the best daily wealth due to best pa-

rameter from the same parametric family of universal portfolios. The empirical

study showed that with the three stock data sets selected for the Kuala Lumpur

Stock Exchange, the universal portfolio that using the best current-run parameter

seem to outperform the original universal portfolio that using the best parameter

from hindsight.
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In Tan et al. (2015), a study of the empirical performance of the universal port-

folios generated by certain reciprocal functions of the price relatives is presented.

The portfolios are obtained from the zero-gradient sets of specific logarithmic

objective functions containing the estimated daily growth rate of the investment

wealth. The Malaysian companies selected for this empirical study consist of five

stock data sets and trading period ranging form 1 March 2006 until 2 August 2012,

consisting of a total of 1500 trading days.

Yeoh et al. (2010) studied the time-varying world integration of the Malaysia

stock market using a Kalman Filter approach. They estimated the time-varying

world integration of the Malaysia stock market and examined if the paths of the

time-varying integration match the economic events of the country, where they

employed weekly time series data for the period between February 1988 and

September 2009 . The results showed that by using the Kalman Filter technique,

the changes in the level of market integration coincided with the economic events

that took place in the country and provided some evidence to the practical ap-

plication and suitability of the Kalman Filter technique in studying stock market

integration.

The relationship between the portfolio risk and the number of stocks in a port-

folio for a given portfolio return across portfolios of the Malaysian stocks have

been studied by Gupta et al. (2001). The Random Diversification Approach based

on the Statman (1987) technique has been used in their study with a sample of

213 stocks traded on the Kuala Lumpur Stock Exchange(KLSE) are considered to

form sets of portfolios.

Borodin et al. (2004) studied the novel algorithm for actively trading stocks.
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The empirical results on historical markets provide strong evidence that this type

of technical trading can beat the market and moreover can beat the best stock in

the market.

From the above studies, especially the studies by Tan and his students, the

dataset chosen for studying the performances of parameter for respective univer-

sal portfolios only involved small combinations of stocks and short term trading

period from Malaysian stocks. Therefore, a comprehensive study of universal

portfolio involve of large number of stocks, middle term and long term period

will be carried out for investigation in our study.

1.3 Outline

This thesis mainly consists of seven chapters together with an introduction and

conclusion. In Chapter 2, the data included in this study comprises of 95 stocks

data collected from KLSE, whose was available from the Yahoo Finance historical

data. The database contains of daily opening prices, daily closing prices, daily

high and low, and the volume of transaction are collected .

In Chapter 3, we introduce the finite-order universal portfolios generated by

two probability distributions and universal portfolios generated by stochastic pro-

cess due to Tan (2013). This type of universal portfolio depends only on the

positive moments of the generating probability distributions. The finite-order uni-

versal portfolio of order ν depends on the most recent ν days of the stock-price

data, assuming that our assets are stocks. The constraint is there is no transaction

10



cost in each portfolio. In order to reduce the extensive memory and long compu-

tational time, we choose the low order universal portfolio, where the order ν is a

small integer, where ν = 1, 2, 3.

There are many programming languages for the implementation of the univer-

sal portfolio strategies. Python is a suitable choice because it is easy to use, pow-

erful, and versatile. In Chapter 4, the algorithms of four proposed order one uni-

versal portfolios are written in Python code. Also, we used Dirichlet(α1, α2, α3)

universal portfolio strategy as a benchmark to compare with our four proposed

universal portfolio strategies. The modified algorithm of Diriclet universal port-

folio was obtained by Tan (2004b). We now chosen this modified algorithm for

computing the three stock universal portfolio generated by Diriclhet(α1, α2, α3)

distribution where αj > 0 for j = 1, 2, 3. This modified algorithm is written in

python using numpy module.

In Chapter 5, we present an experimental study of the four universal portfo-

lios strategies, namely the finite order Multinomial Universal Portfolio, the finite

order Multivariate Normal universal portfolio, universal portfolio generated by

Brownian-motion and universal portfolio generated by Ornstein-Uhlenbeck pro-

cesses. 10 most active stocks data are chosen among the 95 selected stocks from

Kuala Lumpur Stock Exchange. The trading period is from 1 January 2000 to 31

December 2015. The above order one portfolio are run on 3 stock-price data sets

generated by the combination of the 10 selected most active stocks. The wealths

achieved after the n trading days by the above portfolio strategies is compare to

the CRP strategies. The well performing parameters of the above four strategies

are selected for further study in Chapter 6.
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In Chapter 6, the overview of the analysis are carried out. The 95 stocks with

16 years of trading period divided into 5 groups, there are 1 year trading period

(short term) ranging from 1 January 2015 to 31 December 2015, 4 years period

group (middle term) started from 1 January 2012 to 31 December 2015, 8 years

period group (middle term) ranging from 1 January 2008 to 31 December 2015,

12 years period group (long term) started from 1 January 2004 to 31 December

2015 and 16 years period group (long term) from 1 January 2000 to 31 December

2015. These 5 groups of data are run using the proposed four universal portfolio

strategies with the well performing respective parameter obtained in Chapter 5.

The wealth obtained is compared to its respective benchmark, CRP. In first section

of Chapter 6, the price relatives for a given stock used is the ratio price defined

in section Problem Setting in this chapter. In conclusion, the empirical results

showed that the performances of the proposed four strategies are better than CRP

in 1 year and 4 years period groups. However, the four strategies did poorly in 8

years, 12 years and 16 years period groups.

In order to compare to benchmark, KLCI, the price relatives for a given stock

is redefined as the ratio of today closing price to the day before closing price

which is discussed in Chapter 2. The wealth obtained is compared to its respective

benchmark, CRP and KLCI. In conclusion, only around 25% of the results showed

that the performances of the proposed four strategies are better than CRP in short

term, middle term and long terms period investment. This concluded that the four

proposed universal portfolio strategies did poorly when compared to KLCI.
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CHAPTER 2

DATA COLLECTION

In this chapter, we explain how the data were obtained and processed. This re-

search will work solely on the analysis of the stock data from Bursa Malaysia

(formerly known as KLSE), which is introduced in Section 2.1. We then explain

how we pick the stocks from Bursa Malaysia in Section 2.2 and how Python was

used to process the stock data for later use in Section 2.3.

2.1 Bursa Malaysia

A National Bank (Bank Negara) report in 2005 indicated that compared to other

exchange markets, Malaysia was ranked twenty-third in the world. Bursa Malaysia

is a prominent centre of stock markets in South East Asia. It was previously

known as Kuala Lumpur Stock Exchange (KLSE) from its founding in 1930

when the Singapore Stockbrokers’ Association was set up as a formal organisa-

tion dealing in securities in Malaya (http://www.bursamalaysia.com/

corporate/about-us/corporate-history/).

When Singapore broke away from Malaya federation in 1966 and became

an independent country, the stock exchange remained its function until 1973,

where the Stock Exchange of Malaysia and Singapore was divided into the Kuala

Lumpur Stock Exchange Berhad (KLSE) and the Stock Exchange of Singapore
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(SES) with the cessation of currency interchangeability between Malaysia and

Singapore.

On 14 April, 2004, the KLSE was renamed Bursa Malaysia Berhad, follow-

ing a demutualisation exercise, the purpose of which was to enhance competitive

position and to respond to global trends in the exchange sector by making the

Exchange more customer-driven and market-oriented.

On 18 March, 2005, Bursa Malaysia was listed on the Main Board of Bursa

Malaysia Securities Berhad. On 6 July 2009, Bursa Malaysia introduced an en-

hancement of the Kuala Lumpur Composite Index (KLCI). The KLCI adopted the

FTSE’s global index standards and became known as the FTSE Bursa Malaysia

KLCI. The FTSE Bursa Malaysia KLCI adopted the internationally accepted in-

dex calculation methodology to provide a more investable, tradable and transpar-

ent managed index. The constituents free float adjusted only by the investable

portion included in the index calculation. With this new method the constituents

of the FTSE Bursa Malaysia KLCI, also known as the FBM KLCI, shrunk from

100 to 30 companies to enhance the tradability of the index, while remaining rep-

resentative of the market (Sinakalai & Suppayah 2011).

The FBM KLCI comprises thirty largest companies in Malaysia by full market

capitalisation on the Bursa Malaysia’s main board. When it was launched on the 6

July 2009, it replaced the old KLCI. It started at the closing value of the old KLCI

on 3rd July 2009 and inherited the full history of the old KLCI index (Wikipedia

2016b).
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2.2 Data Description

The KLCI was relatively new compare to famous index such as Dow Jones Indus-

trial Average (https://en.wikipedia.org/wiki/Dow_Jones_Industrial_

Average) and FTSE 100 Index (Wikipedia 2016a) which dated back to 1885 and

1984 respectively.

Since the FTSE 100 Index consists of 100 companies listed on the London

Stock Exchange with the highest market capitalisation, we were trying to find 100

companies with the highest market capitalisation in Malaysia but from the 100

top listed companies in the main board of Bursa Malaysia given by (Capital n.d.).

However, only 95 of them have data available from the Yahoo Finance (Yahoo

n.d.). Five stocks listed in (Capital n.d.), i.e. JT International Bhd, IJM Land Bhd,

UOA Development Bhd, Malaysia Airlines System Bhd and Kulim Malaysia Bhd

were excluded because the historical data are not available in Yahoo Finance.

We fixed our data to begin from the beginning of the year 2000. However,

not all the 95 selected stocks were listing since 2000. We will tabulate the data

obtained from Yahoo Finance based on the category of the stock and the earliest

trading date to 31 December 2015. The average volume is calculated as the av-

erage of volume of the earliest trading day (not earlier than 1 Jan 2000) to the

volume of 31 December 2015.

15



Table 2.1: 95 Selected Stocks Based On The Category Of The Stock

Category Code Stock Name Average
Volume

Earliest Trading
Date

Construction 5398 Gamuda Bhd 4986282 1 Jan 2000
3336 IJM Coparation Bhd 3248926 31 Dec 2007

Consumer
product

2836 Galsberg Brewery
Malaysia Bhd

190800 1 Jan 2000

3026 Dutch Lady Milk In-
dustries Bhd

12200 1 Jan 2000

3255 Guinness Anchor Bhd 166200 1 Jan 2000
3689 Fraser and Neave

Holdings Bhd
59650 1 Jan 2000

3719 Penasonic Manu-
facturing Malaysia
Bhd

116850 1 Jan 2000

4006 Oriental Holdings Bhd 154100 1 Jan 2000
4065 PPB Group Bhd 408600 1Jan 2000
4162 Bristish American

Tabacco (M)
323250 1 Jan 2000

4405 Tan Chong Motor
Holdings Bhd

273000 1 Jan 2000

4588 UMW Holdings Bhd 691000 1 Jan 2000
4707 Nestle (Malaysia) Bhd 61650 1 Jan 2000
5131 Zhulian Corporation

Bhd
26714150 27 Apr 2007

7052 Padini Holdings Bhd 1059650 20 Sept 2006
7084 QL Resources Bhd 2086150 31 Mar 2000
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Table 2.1 (Continue) 95 Selected Stocks Based On The Category Of The Stock

Category Code Stock Name Average

Volume

Earliest Trading

Date

Finance 1015 AMMB Holdings Bhd 3188500 1 Jan 2000

1023 CIMB Group Hold-

ings Bhd

6675600 1 Jan 2000

1066 RHB Capital Bhd 3368950 1 Jan 2000

1155 Malayan Banking Bhd 10407650 1 Jan 2000

1171 Malaysia Buiding So-

ciety Bhd

1120150 1 Jan 2000

1295 Public Bank Bhd 1687800 1 Jan 2000

1818 Bursa Malaysia Bhd 51271350 18 Mar 2005

2488 Alliance Financial

Group Bhd

6770900 1 Jan 2000

5053 OSK Holdings Bhd 574850 1 Jan 2000

5139 Aeon Credit Service

M. Bhd

10358700 12 Dec 2007

5185 Affin Holdings Bhd 504450 1 Jan 2000

5819 Hong Leong Bank

Bhd

729700 1 Jan 2000

6688 Hwang Capi-

tal(Malaysia) Bhd

242850 1 Jan 2000

8621 PLI Capital Bhd 119950 1 Jan 2000

Hotel 5517 Shangri-La Hotels

Malaysia Bhd

69100 1 Jan 2000

IPC 5031 Time Dotcom Bhd 630100 13 Mar 2001

6947 DIGI Com Bhd 6094600 31 Dec 2007
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Table 2.1 (Continue) 95 Selected Stocks Based On The Category Of The Stock

Category Code Stock Name Average Vol-

ume

Earliest Trading

Date

Industry

Product

3026 Dutch Lady Milk Indus-

tries Bhd

1974250 1 Jan 2000

4324 Shell Refining Company

Bhd

50400 1 Jan 2000

4383 Jaya Tiasa Holdings Bhd 7059050 1 Jan 2000

5012 TA Ann Holdings Bhd 1291650 1 Jan 2000

5183 Petronas Chemicaks

Group Bhd

322414600 26 Nov 2010

5168 Harta Lega Holdings

Bhd

41772450 17 Apr 2008

6033 Petronas Gas Bhd 598050 1 Jan 2000

7106 Supermax 12656000 8 Aug 2000

7113 Top Glove Corparation

Bhd

4141700 27 Mar 2001

7153 Kossan Rubber Indus-

tries Bhd

2929050 1 Jan 2000

Plantation 1899 Batu Kawan Bhd 2550 1 Jan 2000

1961 IOI Corp. Bhd 7423350 1 Jan 2000

2054 TDM Bhd 1261250 1 Jan 2000

2089 United Plantation Bhd 34950 1 Jan 2000

2216 IJM Plantation Bhd 10168800 2 July 2003

2291 Genting Plantation Bhd 228700 1 Jan 2000

2445 Kuala Lumpur Kepong

Bhd

572400 1 Jan 2000

2593 United Malacca Bhd 67300 31 Dec 2007

2771 Boustead Holdings Bhd 332200 1 Jan 2000

5027 Kim Loong Resources

Bhd

415100 31 Dec 2007
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Table 2.1 (Continue) 95 Selected Stocks Based On The Category Of The Stock

Category Code Stock Name Average Vol-

ume

Earliest Trading

Date

Plantation 5126 Sarawak Oil Palms Bhd 182300 31 Dec 2007

5135 Sarawak Plantation Bhd 7823200 28 Aug 2007

5138 Hap Seng Plantation

Holdings Bhd

33316100 16 Nov 2007

5222 Telda Global Ventures

Holdings Bhd

133072250 28 June 2012

9059 TSH Resources Bhd 556050 1 Jan 2000

Properties 1591 IGB Corparation Bhd 144800 21 Sept 2006

2976 Wing Tai Malaysia Bhd 122250 1 Jan 2000

5148 UEM Sunrise Bhd 9561550 1 Jan 2000

5211 Sunway Bhd 3063150 24 Aug 2011

8583 Mah Sing Group Bhd 314300 1 Jan 2000

8664 SP Setia Bhd 742950 1 Jan 2000

REIST 5176 Sunway Real Estate In-

vestment Trust

36566800 8 July 2010

5180 Capital and Malaysia

Mall Trust

6009700 16 July 2010

5212 Pavillion Real Estate 98995300 7 Dec 2011

5227 IGB Real Estate Invest-

ment Trust

118431450 21 Sept 2012

Trading Ser-

vices

1562 Berjaya Sports Toto Bhd 1871300 1 Jan 2000

2194 MMC Coparation Bhd 328200 1 Jan 2000

3034 Hap Seng Consilidated

Bhd

850200 1 Jan 2000

3182 Genting Bhd 13869700 1 Jan 2000

3859 magnum Bhd 2109600 31 Dec 2007

4197 Sime Darby Bhd 1650850 1 Jan 2000
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Table 2.1 (Continue) 95 Selected Stocks Based On The Category Of The Stock

Category Code Stock Name Average Vol-

ume

Earliest Trading

Date

Trading Se-

vices

4502 Media Prime Bhd 193950 1 Jan 2000

4634 Pos Malaysia Bhd 9523550 1 Jan 2000

4677 YTL Coparation Bhd 5907750 1 Jan 2000

4863 Telekom Malaysia Bhd 4929150 1 Jan 2000

5014 Malaysia Airports Hold-

ings Bhd

1799650 1 Jan 2000

5090 Media Chinese Interna-

tional Limited

134200 31 Dec 2007

5099 Air Asia Bhd 94589600 22 Nov 2004

5141 Dagang Enterprise Hold-

ings Bhd

568050 3 Mar 2009

5186 Malaysia Marine and

Heavy Eng Holdings Bhd

71266600 29 Oct 2010

5209 Gas Malaysia Bhd 43652950 6 Nov 2012

5210 Bumi Armada Bhd 281719400 21 July 2011

5218 Sapura kencana Petroleum

Bhd

110011600 17 May 2012

5225 IHH Healthcare Bhd 199803750 25 July 2012

5347 Tenaga Nasional Bhd 5677850 31 Dec 2007

5657 Pakson Holdings Bhd 465350 1 Jan 2000

5681 Petronas Dagangan Bhd 301200 1 Jan 2000

6012 Maxis Bhd 154892350 19 Nov 2009

6351 Amway Malaysia Hold-

ings Bhd

21350 1 Jan 2000

6399 Astro Malaysia Holdings

Bhd

6912200 31 Dec 2012

6599 Aeon Co.(M) Bhd 650650 1 Jan 2000

7277 Dialog Group Bhd 3811900 1 Jan 2000
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To select good performing parameters for the universal portfolio strategies

developed in Chapter 3, we will pick 10 most active (highest average volume)

and long-term (having at least 10 years being listed in the stock exchange) stocks

from each categories in the above table. This is possible for all categories except

the REIST category, where all stocks are listed less than 10 years. Therefore, we

picked two stocks from the trading services category and did not pick any stocks

from the REIST category.

Table 2.2: 10 Most Active Stocks

Category stock
code

stock name Average
Volume

Earliest Trading
Date

Construction 5398 Gamuda Bhd 4986282.33 1 Jan 2000
Consumer
Product

7084 QL Resources
Berhad

2086150 31 Mar 2000

Finance 1818 Bursa Malaysia
Bhd

51271350 18 Jan 2005

Hotel 5517 Shangri-La Ho-
tels Malaysia
Bhd

69100 1 Jan 2000

Industry
Products

7106 Supermax Corpo-
ration Bhd

12656000 1 Jan 2000

IPC 5031 Time Dotcom
Bhd

630100 13 Mar 2001

Plantation 2216 IJM Plantation
Bhd

10168800 2 July 2003

Properties 5148 UEM Sunrise
Bhd

9561550 1 Jan 2000

Trading Ser-
vices

5099 Air Asia Bhd 94589600 22 Nov 2004

Trading Ser-
vices

3182 Genting Bhd 13869700 1 Jan 2000
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2.3 Generating Price Ratios

The data of all the 95 stocks were downloaded from Yahoo Finance in CSV

format (https://en.wikipedia.org/wiki/Comma-separated_values).

Each stock consists the daily opening prices, the daily closing prices, the daily

high and low, and the volume of transaction. However, what we are interested is

the ratio of the stock price. We assume that it is possible to buy at the opening

and sell at the closing and use the ratio of closing price to its opening price as

price relative which we defined in problem setting in Chapter 1, to study the per-

formance of the universal portfolio strategies we investigate in Chapter 3. We also

assume that the opening price of day n is same as the closing price on day n − 1

for the respective stock.

Since there are 95 stocks, the price ratio of each of the stock data will be cal-

culated. For example, the price ratio for stock with code 5398 (GAMUDA, which

belongs to the construction category) can be generated by running the following

Python script.

1 import pandas as pd

2

3 df = pd.read_csv("CONSTRUCTION/5398GAMUDA.csv")

4 df[’Date’] = pd.to_datetime(df[’Date’],format="%m/%d/%y")

5 df[’DailyROI’] = df[’Close’]/df[’Open’]

6 newdf = df[[’Date’,’DailyROI’]]

7 newdf.to_csv("construction new/5398roi.csv")
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However, in order to compare the performances of four proposed strategies

with benchmark KLCI which we will investigate in Chapter 6, the price relative

is defined in problem setting (refer Chapter 1) are redefined as the ratio of closing

price on day n to the closing price of day n− 1, where the code in line number 5

are changed accordingly . If the stock splits or bonus issue was announced by the

respective company, the stock’s price has either increased or decreased sharply,

the price relative will follow the ratio calculated as defined in problem setting of

Chapter 1.

We then combine all the 95 files with all the price ratios for all 95 stocks (listed

in the variable stockslist) into a large CSV file using the following Python

script.

1 stockslist = [... list_of_csv_files ...]

2

3 import pandas as pd

4

5 maindf = pd.read_csv("IPC new/5031roi.csv")

6 maindf[’Date’] = pd.to_datetime(maindf[’Date’])

7 maindf = maindf.drop(maindf.columns[0],axis=1)

8 for thefile in stockslist:

9 df = pd.read_csv(thefile)

10 df[’Date’] = pd.to_datetime(df[’Date’])

11 df = df.drop(df.columns[0],axis=1)

12 df.columns = [df.columns[0], df.columns[1]

13 + thefile[:-4].replace(" new/","_")]

14 maindf = pd.merge(left=maindf,right=df,on="Date",how=’outer’)

15 maindf = maindf.sort([’Date’])

16 maindf.to_csv("stockslist.csv")
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CHAPTER 3

ORDER ν UNIVERSAL PORTFOLIO STRATEGIES

In this chapter, we first simplified the formulation of µ- weighted universal port-

folio Cover & Ordentlich (1996) and order ν universal portfolio Tan (2013) using

probability theory and further extend to probability generated order ν universal

portfolio to stochastic process based universal portfolio. We begin the section to

generate the two order ν universal portfolio by probability distribution, namely

Multinomial universal portfolio and Multivariate Normal universal portfolio, fol-

low by two universal portfolio generated by stochastic process, they are univer-

sal portfolio generated by Brownian-motion and universal portfolio generated by

Ornstein-Uhlenbeck process.

Consider a financial market with m stocks, the wealth of a fund is invested

over the m shares in the market for a sequence of n days trading. Let xn =

(xn,1, xn,2, · · · , xn,m) be the price relative vectors of the nth trading day. Here,

xn,1, xn,2, · · · , xn,m are the ratio of the closing price to the opening price for m

stocks respectively on nth trading day.

Assuming that a portfolio is self-financing and no short is allowed then the

variation of the wealth of the nth trading day is related to the following factor

bn,1xn,1 + bn,2xn,2 + · · ·+ bn,mxn,m (3.1)

where bn,1 + bn,2 + · · ·+ bn,m = 1 and 0 ≤ bn,i ≤ 1 for 1 ≤ i ≤ m.
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Let Sn be the wealth at the nth trading day and let S0 be the initial wealth

before the first trading day. By introducing the column vector notation bn =

(bn1, · · · , bn,m) from linear algebra (Goodaire 2003), (3.1) can be written as btnxn,

where t denotes transpose. Therefore, the total wealth at the end of nth trading

day becomes

Sn = S0b
t
1x1b

t
2x2 · · ·btnxn = S0

n∏

j=1

btjxj (3.2)

Universal portfolio strategy is a kind of online portfolio selection strategy (Li

& Hoi 2012) and proposed in Cover (1991). Cover & Ordentlich (1996) redefined

the universal portfolio strategy to µ-weigthted Universal Portfolio strategy where

µ is a given distribution on the space of valid portfolios ∆m (Li & Hoi 2012). The

following are the wealth and update scheme used in Cover & Ordentlich (1996).

bn+1 =

∫
∆m

bSn(b)dµ(b)∫
∆m

Sn(b)dµ(b)
(3.3)

Sn =

∫

∆m

Sn(b)dµ(b) (3.4)

where Sn(b) =
∏n

j=1 b
t
jxj .

Let Y = (Y1, · · · , Ym) be an m-dimensional random vector such that 0 ≤

Yi ≤ 1 and Y1 + · · ·+Ym = 1. By using the notation of expected value (Wackerly

et al. 2000) and replacing the random vector in (3.3) with Y, it can be written as

bn+1 =
E[Y

∏n
j=1 Y

txj]

E[
∏n

j=1 Y
txj]

=
E[Y(Ytxn)(Ytxn−1) · · · (Ytx1)]

E[(Ytxn)(Ytxn−1) · · · (Ytx1)]
. (3.5)
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The k component of vector bn+1 is

bn+1,k =
E[Yk(Y

txn)(Ytxn−1) · · · (Ytx1)]

E[(Ytxn)(Ytxn−1) · · · (Ytx1)]
(3.6)

where k = 1, 2, · · · ,m.

3.1 Order ν Universal Portfolio

The idea of using a probability distribution to generate a universal portfolio was

first proposed by Cover (1991). The Cover-Ordentlich universal portfolio (Cover

& Ordentlich 1996) is a moving-order universal portfolio. This moving-order uni-

versal portfolio are not practical in the sense that as the number of stocks in the

portfolio increases, the implementation time and the computer storage require-

ments grow exponentially fast. To improve on the time and memory storage per-

formance, Tan (2013) proposed finite-order universal portfolio generated by some

probability distribution. This type of universal portfolio depends only on the pos-

itive moments of the generating probability distribution. Our study only focus on

Multinomial distribution generated universal portfolio and Multivariate normal

distribution generated universal portfolio.

Tan (2013) introduced a variation of Cover’s universal portfolio to deal with

the inefficiency of Cover’s universal portfolio. We will call it a Probability-Based

Order-ν Universal Portfolio. In contrast to Cover, Tan (2013) introduced a ran-

dom vector such that Yi > 0 and define

bn+1 =
E[(Y(Ytxn)(Ytxn−1) · · · (Ytxn−ν+1)]

E[(Y1 + Y2 + · · ·+ Ym)(Ytxn)(Ytxn−1) · · · (Ytxn−ν+1)]
(3.7)
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For k component, (3.7) can be written as

bn+1,k =
E[(Yk(Y

txn)(Ytxn−1) · · · (Ytxn−ν+1)]

E[(Y1 + Y2 + · · ·+ Ym)(Ytxn)(Ytxn−1) · · · (Ytxn−ν+1)]
(3.8)

First, the wealth formula (3.2) is written as

Sn = (btnxn)(btn−1xn−1) · · · (btn−ν+1xn−ν+1)Sn−ν (3.9)

when ν = 1,

Sn = (btnxn) · Sn−1 (3.10)

when ν = 2,

Sn = (btnxn)(btn−1xn−1) · Sn−2 (3.11)

Although this method eliminates some inefficiency in Cover’s universal port-

folio, it has bootstrap issues. We pick simple constant rebalanced portfolio to

bootstrap S0, S1, · · · , Sν .

3.1.1 General Algorithm

The algorithm for computing (3.8) can be defined by expanding the numerator

expression as follows:
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E[Yk(Y
txn) · · · (Ytxn−ν+1)]

= E[Yk

n∏

j=n−ν+1

(
m∑

i=1

Yixj,i)]

= E[Yk

m∑

i1=1

m∑

i2=1

· · ·
m∑

iν=1

Yi1 · · ·Yiνxn,i1 · · · xn−ν+1,iν ]

=
m∑

i1=1

m∑

i2=1

· · ·
m∑

iν=1

xn,i1 · · ·xn−ν+1,iνE[YkYi1 · · ·Yiν ]

(3.12)

The expanding of denominator of (3.8) is as follow:

E[(Y1 + · · ·+ Ym)(Ytxn) · · · (Ytxn−ν+1)]

=
m∑

j=1

E[Yj(Y
txn) · · · (Ytxn−ν+1)]

=
m∑

j=1

m∑

i1=1

m∑

i2=1

· · ·
m∑

iν=1

xn,i1 · · ·xn−ν+1,iνE[YjYi1 · · ·Yiν ]

=
m∑

i1=1

m∑

i2=1

· · ·
m∑

iν=1

xn,i1 · · ·xn−ν+1,iν

m∑

j=1

E[YjYi1 · · ·Yiν ]

(3.13)

when ν = 1, (3.8) becomes

bn+1,k =

∑m
i=1 xn,iE[YkYi]∑m

i=1 xn,i(
∑m

j=1E[YjYi])
(3.14)

When ν = 1, m = 3, let the denominator be ζ , then

ζ = xn,1E[Y1Y1] + xn,2E[Y1Y2] + xn,3E[Y1Y3]

+ xn,1E[Y2Y1] + xn,2E[Y2Y2] + xn,3E[Y2Y3]

+ xn,1E[Y3Y1] + xn,2E[Y3Y2] + xn,3E[Y3Y3]

(3.15)
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The (3.14) becomes

bn+1,k = ζ−1(xn,1E[YkY1] + xn,2E[YkY2] + xn,3E[YkY3]) (3.16)

for k = 1, 2, 3, and the wealth of day n+ 1 is defined as

Sn+1 = (btn+1xn+1)Sn (3.17)

When ν = 2, (3.8) becomes

bn+1,k =
xn,1xn−1,1E[YkY1Y1] + xn,1xn−1,2E[YkY1Y2] + · · ·+ xn,mxn−1,mE[YkY1Ym]∑m
j=1(xn,1xn−1,1E[YjY1Y1] + xn,1xn−1,2E[YjY1Y2] + · · ·+ xn,mxn−1,mE[YjY1Ym])

(3.18)

and ν = 2 and m = 3, let the denominator be ζ , then

ζ = (xn,1xn−1,1E[Y1Y1Y1] + xn,1xn−1,2E[Y1Y1Y2] + xn,3xn−1,3E[Y1Y1Y3]

+ xn,2xn−1,1E[Y1Y2Y1] + xn,2xn−1,2E[Y1Y2Y2] + xn,2xn−1,3E[Y1Y2Y3]

+ xn,3xn−1,1E[Y1Y3Y1] + xn,3xn−1,2E[Y1Y3Y2] + xn,3xn−1,3E[Y1Y3Y3]

+ xn,1xn−1,1E[Y2Y1Y1] + xn,1xn−1,2E[Y2Y1Y2] + xn,3xn−1,3E[Y2Y1Y3]

+ xn,2xn−1,1E[Y2Y2Y1] + xn,2xn−1,2E[Y2Y2Y2] + xn,2xn−1,3E[Y2Y2Y3]

+ xn,3xn−1,1E[Y2Y3Y1] + xn,3xn−1,2E[Y2Y3Y2] + xn,3xn−1,3E[Y2Y3Y3]

+ xn,1xn−1,1E[Y3Y1Y1] + xn,1xn−1,2E[Y3Y1Y2] + xn,3xn−1,3E[Y3Y1Y3]

+ xn,2xn−1,1E[Y3Y2Y1] + xn,2xn−1,2E[Y3Y2Y2] + xn,2xn−1,3E[Y3Y2Y3]

+ xn,3xn−1,1E[Y3Y3Y1] + xn,3xn−1,2E[Y3Y3Y2] + xn,3xn−1,3E[Y3Y3Y3]

(3.19)
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and (3.18) becomes

bn+1,k = ζ−1(xn,1xn−1,1E[YkY1Y1] + xn,1xn−1,2E[YkY1Y2]

+ xn,3xn−1,3E[YkY1Y3] + xn,2xn−1,1E[YkY2Y1]

+ xn,2xn−1,2E[YkY2Y2] + xn,2xn−1,3E[YkY2Y3]

+ xn,3xn−1,1E[YkY3Y1] + xn,3xn−1,2E[YkY3Y2]

+ xn,3xn−1,3E[YkY3Y3])

(3.20)

for k = 1, 2, 3 and the wealth of day n+ 1 is define as

Sn+1 = (btn+1xn+1)(btnxn)Sn−1 (3.21)

When ν = 3, (3.8) becomes

bn+1,k =

∑m
i1=1

∑m
i2=1

∑m
i3=1 xn,i1xn−1,i2xn−2,i3E[YKYi1Yi2Yi3 ]∑m

j=1(
∑m

i1=1

∑m
i2=1

∑m
i3=1 xn,i1xn−1,i2xn−2,i3E[YjYi1Yi2Yi3 ]

) (3.22)

The expansion of the algorithm for order three are similar to order one and

two. When order increases, the algorithm will be changing accordingly as above

and become larger due to the increasing of number of moments.

The wealth of day n+ 1 is defined as

Sn+1 = (btn+1xn+1)(btnxn)(btn−1xn−1)Sn−2 (3.23)

30



3.1.2 Multinomial Universal Portfolio (MUP)

In Wackerly et al. (2000), when the random vector (Y1, Y2, ....., Ym) has a joint

multinomial distribution with parameters N, p1, p2, · · · , pm−1 where 0 < pi < 1

for i = 1, 2, · · · ,m − 1 and 0 < pm = 1 − p1 − p2 − · · · − pm−1 < 1 ; N is a

positive integer larger than the number of stocks in the market, m. Consider joint

probability function f(y1, y2, · · · , ym) of Multinomial distribution :

f(y1, y2, · · · ym) =




N

y1 y2 · · · ym


 py11 p

y2
2 · · · pymm (3.24)

where the multinomial coefficient




N

y1 y2 · · · ym


 =

N !

y1!y2! · · · ym!
(3.25)

and yi = 0, 1, 2, · · · , N for i = 1, 2, ...,m subject to y1 + y2 + · · ·+ ym = N .

The E[Y1 · · ·Ym] in Section 3.1.1 can be found from the joint moment generating

function.

M(τ1, τ2 · · · , τm) = (p1e
t1 + p2e

t2 + · · ·+ pme
tm)N (3.26)

When ν = 1, the E[YkYi1 · · ·Yiν ] in (3.12) can replace by the following mo-

ments:
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E(Yk) = Npk

E(Y 2
k ) = N(N − 1)p2

k +Npi

E(YkYi) = N(N − 1)pkpi for i 6= k

(3.27)

When ν = 2, the E[YkYi1 · · ·Yiν ] in (3.12) can be replace by the following

moments:

E(Y 2
k ) = N(N − 1)p2

k +Npk

E(YkYi) = N(N − 1)pkpi for k 6= i

E(Y 3
k ) = N(N − 1)(N − 2)p3

k + 3N(N − 1)p2
k +Npk

E(Y 2
k Yi) = N(N − 1)(N − 2)p2

kpi +N(N − 1)pkpi for k 6= i

E(YkYiYj) = N(N − 1)(N − 2)pkpipj, for k 6= i, k 6= j, i 6= j

(3.28)

When ν = 3, the E[YkYi1 · · ·Yiν ] in (3.12) can replace by the following mo-

ments:
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E(Y 3
k ) = N(N − 1)(N − 2)p3k + 3N(N − 1)p2k +Npk

E(Y 2
k Yi) = N(N − 1)(N − 2)p2kpi +N(N − 1)pkpi for k 6= i

E(YkYiYj) = N(N − 1)(N − 2)pkpipj for k 6= i, k 6= j, i 6= j

E(Y 4
k ) = N(N − 1)(N − 2)(N − 3)p4k + 6N(N − 1)(N − 2)(N − 3)p3k

+ 3N(N − 1)P 2
k +Npk

E(Y 3
k Yi) = N(N − 1)(N − 2)(N − 3)p3kpi + 3N(N − 1)(N − 2)p2kpi

+N(N − 1)pkpi for k 6= i

E(Y 2
k Y

2
i ) = N(N − 1)(N − 2)(N − 3)p2kp

2
i +N(N − 1)(N − 2)p2kpi

+N(N − 1)(N − 2)pkp
2
i +N(N − 1)pkpi for k 6= i

E(Y 2
k YiYj) = N(N − 1)(N − 2)(N − 3)p2kpipj

+N(N − 1)(N − 2)pkpipj for (i, j, k)distinct

E(YkYiYjYl) = N(N − 1)(N − 2)(N − 3)pkpipjpl for (i, j, k, l)distinct.

(3.29)

In particular, when m = 3, order =1, k = 1, 2, 3 and i = 1, 2, 3, (3.27)

becomes
E(Y1) = Np1

E(Y2) = Np2,

E(Y3) = Np3

E(Y 2
1 ) = N(N − 1)p2

1 +Np1

E(Y 2
2 ) = N(N − 1)p2

2 +Np2

E(Y 2
3 ) = N(N − 1)p2

3 +Np3

E(Y1Y2) = N(N − 1)p1p2

E(Y1Y3) = N(N − 1)p1p3

E(Y2Y3) = N(N − 1)p2p3

(3.30)

Similarly, when order increasing, all the moments can be found by using par-

tial derivatives of the joint moment generating function of (3.26).
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3.1.3 Multivariate Normal Universal Portfolio

(MVNUP)

Consider the random vector Y = (Y1, Y2, · · · , Ym) with a joint multivariate nor-

mal probability density function defined as follow:

f(Y) =
e−

1
2

(Y−µ)tK−1(Y−µ)

(
√

2π)n|K|1/2
, (3.31)

Where K is the covariance matrix of Y , E(Y) = µ = (µ1, µ2, · · · , µm) is

the mean vector. We say Y has the multivariate normal distribution N(µ, K), | · |

means determinate. In our study, we choose m = 3, the Multivariate Normal dis-

tribution N(µ, K) is special form of µ = (µ1, µ2, µ3) and K = diag (σ2
1, σ

2
2, σ

2
3),

where Y1, Y2, Y3 are independent. Hence, the joint moment generating function is

defined as:

M(t1, t2, t3) = e((t1µ1+t2µ2+t3µ3)+ 1
2

(σ2
1t

2
1+σ2

2t
2
2+σ2

3t
2
3)) (3.32)

When ν = 1, theE[YkYi1 · · ·Yiν ] in (3.12) can be obtained from the following:

E(Yk) = µk

E(Y 2
k ) = µ2

k + σ2
k

E(YkYi) = µkµi for i 6= k

E(YkYj) = µkµj for j 6= k

E(YiYj) = µiµj for i 6= j

(3.33)

for k = 1, 2, 3.
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Similarly, for order two and three, all the moments of order two and three of

the universal portfolio can be obtained by taking appropriate partial derivative of

(3.32).

3.2 Stochastic Process Generated Universal Portfolios

In this section, the order-ν universal portfolio will be generalised to stochastic

process based order-ν universal portfolio.

Definition 3.1. A stochastic process {X(t), t ∈ T} is a collection of random

variables. That is, for each t ∈ T,X(t) is a random variable. The index t is often

interpreted as time and, as a result, we refer to X(t) as the state of the process at

time t.

The set T is called the indexset of the process. When T is a countable set

the stochastic process is said to be a discrete-time process. If T is an interval of

the real line, the stochastic process is said to be a continuous-time process. For

instance, {Xn, n = 0, 1, ...} is a discrete-time stochastic process indexed by the

nonnegative integers; while {X(t), t ≥ 0} is a continuous-time stochastic process

indexed by the nonnegative real numbers. The state space of a stochastic process

is defined as the set of all possible values that the random variables X(t) can

assume. Thus, a stochastic process is a family of random variables that describes

the evolution through time of some (physical) process (Ross 2007).
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Let {Yn1}∞n=1, {Yn2}∞n=1,· · · , {Ynm}∞n=1 be m given independent stochastic

processes. For a fixed positive ν, the ν-order universal portfolio {bn+1} generated

by the m given stochastic processes is defined as:

bn+1,k =
E[Ynk(Y

t
nxn)(Yt

n−1xn−1) · · · (Yt
n−(ν−1)xn−(ν−1))]∑m

j=1E[Ynj(Yt
nxn)(Yt

n−1xn−1) · · · (Yt
n−(ν−1)xn−(ν−1))]

(3.34)

for k = 1, 2, · · · ,m and where the vector Yl = (Yl1, · · · , Ylm) for l =

1, 2, · · · .

The formula in (3.34) is the generalisation of (3.8) because it is a special case

of Ynj = Yj, j = 1, · · · ,m independent of the trading day n.

Expanding the numerator and denominator of (3.34), bn+1,k can be written as

∑m
i1=1

∑m
i2=1 · · ·

∑m
iν=1(xni1xn−1,i2 · · ·xn−ν+1,iν )E[YnkYni1Yn−1,i2 · · ·Yn−ν+1,iν ]∑m

j=1{
∑m
i1=1

∑m
i2=1 · · ·

∑m
iν=1(xni1xn−1,i2 · · ·xn−ν+1,iν )E[YnjYni1Yn−1,i2 · · ·Yn−ν+1,iν ]}

(3.35)

The derivation is similar to (3.12) and (3.13).

3.2.1 Brownian Motion, Stationary Process and Weakly Stationary Process

Let us state the definitions of various stochastic processes (Ross 2007) that we

will be needed for later subsection.
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Definition 3.2. A stochastic process {X(t), t ≥ 0} is said to be a Brownian mo-

tion process with drift coefficient µ and variance parameter σ2 if

1. X(0) = 0,

2. {X(t), t ≥ 0} has stationary and independent increments;

3. for every t > 0, X(t) is normally distributed with mean µt and variance

σ2t, i.e. X(t) ∼Normal(µt, σ2t).

When µ = 0, σ = 1, {X(t), t ≥ 0} is it called standard Brownian motion with

E(X(t)) = 0 and V (X(t)) = t .

Definition 3.3. A stochastic process X(t), t ≥ 0 is called a Gaussian process, or

a normal process if X(t1), · · · , X(tn) has a multivariate normal distribution for

all t1, · · · , tn.

Definition 3.4. A stochastic process {X(t), t > 0} is said to be a stationary

process if for all n, s, t1, · · · , tn, the random vectorX(t1), · · · , X(tn) andX(t1 +

s), · · · , X(tn + s) have the same joint distribution.

Definition 3.5. A stochastic process {Yr}∞r=1 is said to be weakly stationary if

E(Yr) = µ, independent of the time r and cov(Yr, Yr+s) does not depend of the r

but depends on the time difference s only.

The weakly stationary process is a generalisation of the stationary process. A

Brownian-motion is the integral of white noise Gaussian process whereas Ornstein-

Uhlenbeck process is both a stationary process and a Gaussian.
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Both Brownian-motion process and Ornstein Uhlenbeck process are stationary

process. Since a stationary process is also a weakly stationary process, they are

also weakly stationary.

Definition 3.6. If {Wr} is a standard Brownian-motion process, then {Zr} de-

fined by Zr = e
−αr
2 W (eαr) for α > 0 is a zero-mean weakly stationary process

with covariance function cov[Zr, Zr+s] = e
−αs
2 . The process {Zr} is known as

the Ornstein-Uhlenbeck process.

3.2.2 Brownian-motion Process Generated Universal Portfolio (BMUP)

From (3.35), E[Ys1i1Ys2i2 · · ·Ysuiu ] = E[Ys1i1 ]E[Ys2i2 ] · · ·E[Ysuiu ] if the u inte-

gers i1, i2, · · · , iu are distinct. Otherwise E[Ys1jYs2j · · ·Ysuj] is determined by

using the moment-generating function of Ysij, Ys2j, · · · , Ysuj .

Specifically,

E[(Ys1jYs2j · · ·Ysuj)(Yr1kYr2k · · ·Yrpk)] = E[Ys1jYs2j · · ·Ysuj]×E[Yr1kYr2k · · ·Yrpk]

for j 6= k.

E

[
q∏

i=1

(Ysi1jiYsi2ji · · ·Ysiui ji)
]

=

q∏

i=1

E(Ysi1jiYsi2ji · · ·Ysiui ji) (3.36)

for any set of distinct integers j1, j2, · · · , jq.
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When {Yn1}∞n=1, {Yn2}∞n=1, · · · , {Ynm}∞n=1 are independent Brownian motion

with positive drift coefficients µ1, µ2, · · · , µm and variance parameters σ2
1, σ

2
2, · · · ,

σ2
m respectively. According to Ross (2007), the process {Ynl} has stationary and

independent increments, where Ynl has a normal distribution with mean nµl and

variance nσ2
l for l = 1, 2, · · · ,m and n = 1, 2, · · · . The covariance of Yn1l and

Yn2l is given by

Cov(Yn1l, Yn2l) = n1σ
2
l for 0 < n1 ≤ n2. (3.37)

Furthermore, the ν random variables Yn−ν+1,l, Yn−ν+2,l, · · · , Ynl have a joint

multivariate normal distribution with mean vector µl = (µl1 , µl2 , · · · , µlν ) > 0

and ν × ν covariance matrix

Kl = σ2
l L = σ2

l (λij) for l = 1, 2, · · · ,m (3.38)

where

µik = (n− ν + k)µi for k = 1, 2, · · · , ν (3.39)

and

λij =





n− ν + i if i ≤ j,

n− ν + j if i > j.
(3.40)

for i, j = 1, 2, · · · , ν.

Note that the lambda matrix L = (λij) in (3.38) does not depend on l. The

components λij are the covariance components of Yn−ν+1,l, · · · , Yn,l that depend

on time n. The means µik are nonnegative for n ≥ ν = 1, k = 1, 2, · · · , ν and

l = 1, 2, · · · ,m. Similarly, λij ≥ 0 for all i, j = 1, 2, · · · , ν if n ≥ ν − 1.
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In particular, when ν = 1 and m = 3, (3.35) becomes

bn+1,k =
xn,1E(YnkYn1) + xn,2E(YnkYn2) + xn,3E(YnkYn3)∑3
j=1[xn,1E(YnjYn1) + xn,2E(YnjYn2) + xn,3E(YnjYn3)]

(3.41)

for k = 1, 2, 3

Since the Brownian process are assumed to be independent, from (3.37) to

(3.40), when ν = 1, we have

E(Y 2
nk) = n(σ2

k + nµ2
k)

E(YnkYni) = E(Ynk)E(Yni) = n2µkµi for k 6= i

E(YnkYnj) = E(Ynk)E(Ynj) = n2µkµj for k 6= j

(3.42)

3.2.3 Asymptotic Behaviour of the Brownian-Motion-Generated Universal

Portfolio

In this subsection, we will try to show that for sufficient large n, the Brownian-

motion generated universal portfolio will behave like the constant rebalance port-

folio (define in Chapter 1).

Previously, it is stated that the ν random variables Yn−ν+1,l, Yn−ν+2,l, · · · , Ynl
are assumed to have a joint multivariate normal distribution with mean vector

µl = (µl1, · · · , µlν) > 0 given by (3.39) and covariance matrix (3.37). Let τ =

(τ1, · · · , τv).
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The moment-generating function Ml(τ1, · · · , τν) of the v random variables is

given by

Ml(τ ) = E(e
∑ν
i=1 τiYn−ν+i,l) = eµ

t
lτ+ 1

2
τ tKlτ (3.43)

for l = 1, 2, · · · ,m.

Lemma 3.1. The moment E[Yn−ν+k1,lYn−ν+k2,l · · ·Yn−ν+kν ,l] is a polynomial in

n of degree u where the coefficients of nu is µul and the integers 1 ≤ ki ≤ ν for

i = 1, · · · , u, l = 1, · · · ,m.

Proof. Note that

µt
lτ +

1

2
τ tKlτ =

ν∑

i=1

µliτi +
1

2
[σ2
i

ν∑

i=1

λiiτ
2
i + 2σ2

l

∑

i<j

λijτiτj], (3.44)

the first and second order derivatives of Ml(τ ) are given by :

∂

∂τk1
Ml(τ ) = eµ

t
lτ+ 1

2
τ tKlτ [µlkl + σ2

l

ν∑

j=1

λk1jτj], (3.45)

∂2

∂τk1∂τk2
Ml(τ ) = eµ

t
lτ+ 1

2
τ tKlτ [µlkl + σ2

l

ν∑

j=1

λk1jτj][µlk2 + σ2
l

ν∑

j=1

λk2jτj]

+ eµ
t
lτ+ 1

2
τ tKlτ [σ2

l λk1k2 ],

(3.46)

furthermore

∂

∂τk1
Ml(τ )

∣∣∣∣
τ=0

= µkl1 = (n− ν + k1)µl (3.47)

and
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∂

∂τk1∂τk2
Ml(τ )|τ=0 = µkl1µlk2 + σ2

l λk1k2l

=





µ2
l (n− ν + k1)(n− ν + k2) + σ2

l (n− ν + k1) if ki ≤ k2,

µ2
l (n− ν + k1)(n− ν + k2) + σ2

l (n− ν + k2) if k1 > k2.

(3.48)

It is observed that ∂
∂τk1

Ml(τ )

∣∣∣∣
τ=0

and ∂
∂τk1∂τk2

Ml(τ )

∣∣∣∣
τ=0

are polynomials in

n with degree 1 and 2 respectively. For any nonnegative integers s2, s2, · · · , sν
summing up to u, it follows that

E[Y s1
n−ν+1,lY

s2
n−ν+2,l · · ·Y sν

n,l ] =
∂uMl(τ )

∂τ s11 ∂τ
s2
2 · · · ∂τ sνν

∣∣∣∣
τ=0

(3.49)

where the differential operator ∂si

∂τ
si
i

is omitted is s1 = 0 . For integers 1 ≤

ki ≤ ν possibly repeated, it is straight forward to deduce that ∂uMl(τ )
∂τk1∂τk2 ···∂τku

is a

sum of products where each product is of the form

eµ
t
lτ+ 1

2
τ tKlτ [µlr1 + σ2

l

∑

j

λr1jτ j] · · · [µlrp + σ2
l

∑

j

λrpjτ j]× [σ2
l λrprp+2 ]

· · · [σ2
l λrq−1rq ].

(3.50)

for some positive integers r1, · · · , rp, rp+1, · · · , rq such that each integer 1 ≤

ri ≤ ν and q ≤ u.
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The product (3.50) evaluated at τ = 0 is µlr1 · · ·µlrpσ2λrprp+1 · · ·σ2λrq−1rq

= µpl (n− ν + r1) · · · (n− ν + rp)σ
2(q−p)
l (n− ν +min(rp; rp+1))

· · · (n− ν +min(rq−1, rq))

(3.51)

The right hand side is a polynomial in n of degree q ≤ u. The only product

in ∂uMl(τ )
∂τk1∂τk2 ···∂τku

∣∣∣∣
τ=0

containing the highest power of n is µul (n− ν + k1)(n− ν +

k2) · · · (n− ν + ku) and the coefficient of nu is µul . or any integers p ≤ s ≤ u, the

coefficient of ns is of the form

µpl σ
2(s−p)
l c1c2 · · · cu−s (3.52)

for some negative constants c1, c2, · · · cu−s which do not depend on n and

|ci| ∈ {1, 2, · · · , ν − 1} for i = 1, 2, · · · , u− s. (3.53)

Lemma 3.2. The moment E[
∏q

i=1(Ysi1ji · · ·Ysiui ji)] for any set of distinct inte-

gers j1, j2, · · · , jq, 1 ≤ ji ≤ m,n−ν+1 ≤ sik ≤ n, u1 +u2 + · · ·+uq = ν+1, is

a polynomial in n of degree ν + 1 where the coefficient of nν+1 is µu1ji µ
u2
j2
· · ·µuqjq .

Proof. It follows from 3.1 that E[Ysi1j1Ysi2ji · · ·Ysiui ji ]is a polynomial in n of

degree ui and the coefficient of nuiis µuiji . From (3.35), E[
∏q

i=1(Ysi1j1 · · ·Ysiuj1)]

is a polynomial in n of degree
∑q

i=1 ui = ν + 1 and the coefficient of n
∑q
i=1ui is

∏q
i=1 µ

ui
ji .
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Proposition 3.2.1. Consider the universal portfolio {bn+1} given by (3.35) gen-

erated by m independent Brownian motions {Yn1}∞n=1, {Yn2}∞n=1, · · · , {Ynm}∞n=1,

for a fixed integer ν ≥ 1. For a large n, the kth component of bn behaves like

bn,k =

∑m
i1=1

∑m
i2=1 · · ·

∑m
iν=1(xni1xn−1,i2 · · ·xn−ν+1,iν )(µkµi1µi2 · · ·µiν )∑m

j=1{
∑m

i1=1

∑m
i2=1 · · ·

∑m
iν=1(xni1xn−1,i2 · · ·xn−ν+1,iν )(µjµi1µi2 · · ·µiν )}

(3.54)

for k = 1, 2, · · · ,m where µ1, µ2, · · · , µm are positive drift coefficients of the m

Brownian motions.

Proof. It is clear from Lemma 3.2 that the component (xni1xn−2,i2 · · · xn−ν+1,iν )

×E[YnkYni1Yn−1,i2 · · ·Yn−ν+1,iν ] given by (3.35) is a polynomial in n of degree

ν+ 1 where (xni1xn−2,i2 · · ·xn−ν+1,iν )(µkµi1µi2 · · ·µik) is the coefficient of nν+1.

Hence the sum (3.35) is a polynomial in n of degree ν + 1 where

m∑

i1=1

m∑

i2=1

· · ·
m∑

iν=1

(xni1xn−1,i2 · · ·xn−ν+1,iν )(µkµi1µi2 · · ·µik)

is the coefficient of nν+1. Similarly, the denominator of bnk in (3.35) is a polyno-

mial in n of degree ν + 1 where the coefficient of nν+1 is

m∑

j=1

{ m∑

i1=1

m∑

i2=1

· · ·
m∑

iν=1

(xni1xn−1,i2 · · · xn−ν+1,iν )(µjµi1µi2 · · ·µik)
}
.

In conclusion, bnk is a ratio of polynomial in n of the same degree ν + 1. Noting

that for a fixed integer ν ≥ 1, the form quantities:

max
1≤il≤m

{
xni1xn−1,i2 · · · xn−ν+1,iν

}
, max
µil∈{µ1,µ2,··· ,µm},

1≤j≤ν+1

{
µi1µi2 · · ·µij

}
,

max
σil∈{σ1,σ2,···σl},

1≤j≤ν

{σ2
i1
σ2
i2
· · ·σ2

ij
}

and

max
|ci|∈{1,2,··· ,ν−1},

1≤j≤ν

{|c1c2 · · · cj|}
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are bounded the asymptotic behaviour of bn,k is the ratio of the numerator

coefficient of nν+1 to the denominator coefficient of nν+1.

This proposition states that bn converges to some constant when n→∞

3.2.4 Ornstein Uhlenbeck Process Generated Universal Portfolio (OUUP)

A finite-order universal portfolio generated by a set of independence Brownian

motions was studied in Section 3.2.2. In the portfolio, the past price relatives are

weighted by the joint moments of the Brownian motions which depend on the

Brownian motion parameters and the sampled times. In Section 3.2.3, asymptoti-

cally, over a long time, this portfolio converges to a constant rebalanced portfolio.

We will investigate a generalisation of Brownian-motion, the Ornstein-Uhlenbeck

process to see it has a better property.

According to Ross (2007), a stochastic process {Yr}∞r=1 is said to be weakly

stationary if E(Yr) = µ, independent of the time r and cov(Yr, Yr+s) does not de-

pend of the r but depends on the time difference s only. For m given weakly sta-

tionary processes {Yn1}, {Yn2}, · · · {Ynm}, E(·) can be defined by rearranging the

product of random variables (YnkYni1Yn−1,i2 · · ·Yn−ν+1,iν ) as m products, where

in each product, the random variables come from the same process. For weakly

stationary process, (YnkYni1Yn−1,i2 · · ·Yn−ν+1,iν ) can be written as the following
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m products:

(YnkYni1Yn−1,i2 · · ·Yn−ν+1,iν ) = (Yr11Yr21 · · ·Yrn1)(Yu12Yu22 · · ·Yun2)

×(Yv13Yv23 · · ·Yvn3)× · · · × (Yw1mYw2m · · ·Ywnm)

(3.55)

for some ordered sequences of time indices r1 ≥ r2 > · · · > rn;u1 ≥ u2 > · · · >

un; v1 ≥ v2 > · · · > vn; · · · ;w1 ≥ w2 > · · · > wn. Taking expected value,

E(YnkYni1Yn−1,i2 · · ·Yn−ν+1,iν ) = E(Yr11Yr21 · · ·Yrn1)E(Yu12Yu22 · · ·Yun2)

×E(Yv13Yv23 · · ·Yvn3)× · · · × E(Yw1mYw2m · · ·Ywnm)

(3.56)

where the functionals E is defined as :

E(Yq1kYq2k · · · , Yqnqk) =





nq−1∏

i=1

E(YqikYqi+1k) if nq is even,

E(Yqnqk)

nq−1∏

i=1

E(YqikYqi+1k) if nq is odd.

(3.57)

for k = 1, 2, · · · ,m; q1 ≥ q2 > · · · > qnq .

The translated Ornstein-Uhlenbeck process {Yr} is define by Yr = Zr + µ for

all r is said to have parameters (µ, α) if E[Yr] = µ and E[YrYr+s] = e
−αs
2 + µ2

for s > 0, α > 0. It is also assumed that µ > 0. Let {Yn1}, {Yn2}, · · · {Ynm}

be m given independent (translated) Ornstein-Uhlenbeck process with parameters

(µ1, α1), (µ2, α2), · · · , (µm, αm) respectively., where all parameters are positive.

Consider the universal portfolio (3.35) generated by these process where E(·) is

defined by (3.56) and (3.57), namely
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E(Yq1kYq2k · · · , Yqnqk) =





nq−1∏

i=1

[e
−αk(qi−qi+1)

2 + µ2
k] if nqis even,

µk

nq−2∏

i=1

[e
−αk(qi−qi+1)

2 + µ2
k] if nq is odd.

(3.58)

for k = 1, 2, · · · ,m : q1 ≥ q2 > · · · > qnq .

in particular, when ν = 1, m = 3, (3.34) becomes

bn+1,k =

∑3
i=1 xn,iE(YnkYn,i)∑3

j=1(
∑3

i=1 xn,iE(YnjYni))
(3.59)

and the (3.58) becomes

E(YnkYnk) = E(Y 2
nk) = 1 + µ2

k

E(YnkYni) = E(Ynk)E(Yni) = µkµi for i 6= k

E(YnkYnj) = E(Ynk)E(Ynj) = µkµj for j 6= k

(3.60)

for k = 1, 2, 3.
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CHAPTER 4

COMPUTER IMPLEMENTATION

There are many programming languages for implementing the universal portfolio

strategies. In the previous chapter, Python is a suitable choice because it is easy to

use, powerful, versatile and being relatively popular in finance (Tuttle & Butcher

2016).

4.1 Dirichlet Universal Portfolio Strategy

We will first investigate Dirichlet universal portfolio strategy since it was pro-

posed by Cover & Ordentlich (1996). Cover & Ordentlich (1996) presented an

algorithm for generating the Dirichlet(1
2
, 1

2
) two stocks universal portfolio. Chan

(2002) modified this algorithm for generating any Dirichlet(α1, α2, · · · , αm) uni-

versal portfolio for m = 2, 3 and 4 stocks. The modified algorithm also obtained

by Tan (2004b). We choose this modified algorithm for computing the 3 stocks

universal portfolio generated by Dirichlet(α1, α2, α3) distribution where αj > 0

for j = 1, 2, 3. We present the modified algorithm of Chan (2002) for computing

the three-stock universal portfolio generated by Dirichlet (α1, α2, α3) distribu-

tion where αj > 0 for j = 1, 2, 3. Consider a sequence of price-relative vectors

x1,x2, · · · ,xn corresponding to n trading days in a three-stock market, where

xi = (xi,1, xi,2, xi,3) for i = 1, 2, · · · , n. We shall define three recursive functions

Xn(l1, l2), Cn(l1, l2) and Qn(l1, l2).
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Firstly, we define

Xn(l1, l2) =
∑

jn∈Tn(l1,l2)

n∏

i=1

xij (4.1)

where Tn(l1, l2) is the set of all sequence jn = (j1, j2, · · · , jn) ∈ {1, 2, 3}n with

l1 1’s and l2 2’s and n− l1 − l2 3’s. Secondly, we defined,

Cn(l1, l2) =

∫

B̄

bl11 b
l2
2 b

n−l1−l2
3 dµ(b) (4.2)

where

dµ(b) =
Γ(α1 + α2 + α3)

Γ(α1)Γ(α2)Γ(α3)
bα1−1

1 bα2−1
2 bα3−1

3 db1db2 (4.3)

Finally,

Qn(l1, l2) = Xn(l1, l2)Cn(l1, l2) (4.4)

The universal portfolio {bn} can then be computed as follows:

b̂n =
1∑n−1

l1=1

∑n−l1−1
l2=0 Qn−1(l1, l2)




n−1∑

l1=0

n−l1−1∑

l2=0

(l1 + α1)

(n+ α1 + α2 + α3 − 1)
Qn−1(l1, l2)

n−1∑

l1=0

n−l1−1∑

l2=0

(l2 + α2)

(n+ α1 + α2 + α3 − 1)
Qn−1(l1, l2)

n−1∑

l1=0

n−l1−1∑

l2=0

(n− l1 − l2 + α3 − 1)

(n+ α1 + α2 + α3 − 1)
Qn−1(l1, l2)




(4.5)

and the unversal capital achieved by b̂n is computed as :

Ŝn =
n∑

l=0

Ql(l1, l2) (4.6)

49



Next, we give the recursive relationships of the functions Xn(l1, l2), Cn(l1, l2)

and Qn(l1, l2) and their end-point conditions.

The recursion for Xn(l1, l2) is given by :

Xn(l1, l2) = xn1Xn−1(l1 − 1, l2) + xn2Xn−1(l1, l2 − 1) + xn3Xn−1(l1, l2) (4.7)

for 1 ≤ l1 ≤ n− 1 and 1 ≤ l2 ≤ n− l1 − 1 and the endpoint condition are given

by:

Xn(l1, 0) = xn1Xn−1(l1, 0) + xn3Xn−1(l1, 0) (4.8)

Xn(0, l2) = xn2Xn−1(0, l2 − 1) + xn3Xn−1(0, l2) (4.9)

The recursion for Cn(l1, l2) given by :

Cn(l1, l2) =
l1 + α1 − 1

n+ α1 + α2 + α3 − 1
Cn−1(l1 − 1, l2) (4.10)

for 1 ≤ l1 ≤ n and 0 ≤ l2 ≤ n− l1.

Cn(l1, l2) =
l2 + α2 − 1

n+ α1 + α2 + α3 − 1
Cn−1(l1, l2 − 1) (4.11)

for 0 ≤ l1 ≤ n− 1 and 1 ≤ l2 ≤ n− l1

Cn(l1, l2) =
n− l1 − l2 + α3 − 1

n+ α1 + α2 + α3 − 1
Cn−1(l1, l2) (4.12)

for 0 ≤ l1 ≤ n− 1 and 0 ≤ l2 ≤ n− 11 − 1.

The initial condition is

C0(0, 0) = 1. (4.13)

The recursive for Qn(l1, l2) given by:
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Qn(l1, l2) = xn1
l1 + α1 − 1

n+ α1 + α2 + α3 − 1
Qn−1(l1 − 1, l2)

+xn2
l2 + α2 − 1

n+ α1 + α2 + α3 − 1
Qn−1(l1, l2 − 1)

+xn3
n− l1 − l2 + α3 − 1

n+ α1 + α2 + α3 − 1
Qn−1(l1, l2)

(4.14)

for 1 ≤ l1 ≤ n− 1 and 1 ≤ l2 ≤ n− l1. The six endpoint conditions are given by

:

Qn(l1, 0) = xn1
l1 + α1 − 1

n+ α1 + α2 + α3 − 1
Qn−1(l1 − 1, 0)

+xn3
n− l1 − l2 + α3 − 1

n+ α1 + α2 + α3 − 1
Qn−1(l1, 0)

(4.15)

for 1 ≤ l1 ≤ n− 1.

Qn(0, l2) = xn2
l2 + α2 − 1

n+ α1 + α2 + α3 − 1
Qn−1(0, l2 − 1)

+xn3
n− l1 − l2 + α3 − 1

n+ α1 + α2 + α3 − 1
Qn−1(0, l2)

(4.16)

for 1 ≤ l2 ≤ n− l1 − 1.

Qn(l1, l2) = xn1
l1 + α1 − 1

n+ α1 + α2 + α3 − 1
Qn−1(l1 − 1, l2)

+xn2
l2 + α2 − 1

n+ α1 + α2 + α3 − 1
Qn−1(l1, l2 − 1)

(4.17)

for 1 ≤ l1, 1 ≤ l2 and l1 + l2 = n.

Qn(n, 0) = xn1
n+ α1 − 1

n+ α1 + α2 + α3 − 1
×Qn−1(n− 1, 0)

Qn(0, n) = xn2
n+ α2 − 1

n+ α1 + α2 + α3 − 1
×Qn−1(0, n− 1)

Qn(0, 0) = xn3
n+ α3 − 1

n+ α1 + α2 + α3 − 1
×Qn−1(0, 0)

(4.18)

The initial condition is

Q0(0, 0) = 1. (4.19)
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The computation of the universal portfolio b̂n and the universal capital Ŝn

through (4.8) and (4.9) respectively can be done solely by computing the quanti-

tiesQn(l1, l2) recursively through (4.14) to (4.18) or by computing bothXn(l1, l2)

and Cn(l1, l2) recursively through (4.8) to (4.14). The detailed derivations of the

formulae are given in Chan (2002).

This above modified algorithm is written in python using numpy module as

follow.

1 from numpy import array, zeros, arange

2 from time import clock

3

4 def Recursive3CCT(x,a1,a2,a3,debug=False,echo=False):

5 _N = len(x[0])

6 _b = zeros((3,_N+1))

7 _S = zeros(_N+1)

8 _S[0]=1.

9 _x = x

10

11 Qold = array([[1.]])

12 Q = zeros((_N+1,_N+1))

13

14 x1 = _x[0]

15 x2 = _x[1]

16 x3 = _x[2]

17

18 begin = clock()

19 for n in range(1,_N+1):

20 denom = float(n+a1+a2+a3-1)

21

22 start = clock()

23

24 Q[0,0] = x3[n-1]*(n+a3-1)/denom*Qold[0,0]

25 Q[0,n] = x2[n-1]*(n+a2-1)/denom*Qold[0,n-1]

26 Q[n,0] = x1[n-1]*(n+a1-1)/denom*Qold[n-1,0]

27

28 for l in range(1,n):

29 Q[l,0] = x1[n-1]*(l+a1-1)/denom*Qold[l-1,0] \
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30 + x3[n-1]*(n-l+a3-1)/denom*Qold[l,0]

31 Q[0,l] = x2[n-1]*(l+a2-1)/denom*Qold[0,l-1] \

32 + x3[n-1]*(n-l+a3-1)/denom*Qold[0,l]

33 l2 = n-l

34 Q[l,l2] = x1[n-1]*(l+a1-1)/denom*Qold[l-1,l2] \

35 + x2[n-1]*(l2+a2-1)/denom*Qold[l,l2-1]

36

37 for l1 in range(1,n):

38 for l2 in range(1,n-l1):

39 Q[l1,l2] = x1[n-1]*(l1+a1-1)/denom*Qold[l1-1,l2]

40 Q[l1,l2] += x2[n-1]*(l2+a2-1)/denom*Qold[l1,l2-1]

41 Q[l1,l2] += x3[n-1]*(n-l1-l2+a3-1)/denom*Qold[l1,l2]

42

43 if debug:

44 for i in range(n+1):

45 for j in range(n+1):

46 print("%.4f" % Q[i,j],end="")

47 print()

48 print("-"*70)

49

50 b1 =sum([(l1+a1)/denom*Qold[l1,l2] for l1 in range(0,n) for l2 in range(n-l1)])

51 b2 =sum([(l2+a2)/denom*Qold[l1,l2] for l1 in range(0,n) for l2 in range(n-l1)])

52 b3 = ]sum([(n-l1-l2+a3-1)/denom*Qold[l1,l2]for l1 in range(0,n)forl2 in range(n-l1)])

53 _b[:,n] = array([b1, b2, b3])/Qold.sum()

54 _S[n] = Q.sum()

55 Qold = Q.copy()

56

57 if echo: print("Finish recursive step %3d in %.2f second." % (n,clock()-start))

58

59 print("Total time spent: %g second." % (clock()-begin))

60 return _S[1:]

In the above code, from line number 5 to 12 is allocation of data structure to

store data. Line number 20 is denominator of (4.10). While line number 24 to 41

is (4.14) to (4.18). The portfolio of (4.5) is from line number 50 to 53. The wealth

is calculated by (4.6) and is line number 54.

Next, the four universal portfolios are written in python using the numpy mod-
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ule. We start with order one and order two Multinomial universal portfolio. Refer

order one in (3.14) and follow by order two, (3.18) in Chapter 3 . We chosen 3

stocks for our study where m = 3.

4.2 Multinomial Generated Universal Portfolio

4.2.1 Order One Multinomial Genarated Universal Portfolio

1 from numpy import array, zeros, arange

2 from time import clock

3

4 def Recursive3Multinomial(x,p1,p2,NN,debug=False,echo=False):

5

6 _N = len(x[0])

7 _b = zeros((3,_N+1))

8 _S = zeros(_N+1)

9 _S[0] = 1.

10 _x = x

11 _p1,_p2,_p3,_NN = None,None,None,None

12 order = 1

13 _p1 = p1

14 _p2 = p2

15 _p3 = max(1.-p1-p2,0.)

16 _NN = NN

17 EY1 = _NN*_p1

18 EY2 = _NN*_p2

19 EY3 = _NN*_p3

20 EY12 = _NN*_p1*(1.-_p1) + (_NN*_p1)**2

21 EY22 = _NN*_p2*(1.-_p2) + (_NN*_p2)**2

22 EY32 = _NN*_p3*(1.-_p3) + (_NN*_p3)**2

23 EY1Y2 = _NN*(_NN-1.)*_p1*_p2

24 EY1Y3 = _NN*(_NN-1.)*_p1*_p3

25 EY2Y3 = _NN*(_NN-1.)*_p2*_p3

26
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27 x1 = list(_x[0])

28 x2 = list(_x[1])

29 x3 = list(_x[2])

30 begin = clock()

31

32 _b[:,0] = array([1., 1., 1.])/3

33 _S[1] = _b[0,0]*x1[0] + _b[1,0]*x2[0] + _b[2,0]*x3[0]

34

35 for n in range(order,_N):

36 if echo: start = clock()

37

38 numer = x1[n]*x1[n-1]*EY12 + x2[n]*x2[n-1]*EY22 + x3[n]*x3[n-1]*EY32

39 numer += (x1[n]*x2[n-1] + x2[n]*x1[n-1])*EY1Y2

40 numer += (x1[n]*x3[n-1] + x3[n]*x1[n-1])*EY1Y3

41 numer += (x2[n]*x3[n-1] + x3[n]*x2[n-1])*EY2Y3

42 denom = _NN*(x1[n-1]*EY1 + x2[n-1]*EY2 + x3[n-1]*EY3)

43

44 dotbx = numer/denom

45 _S[n+1] = dotbx * _S[n]

46

47 b1 = x1[n-1]*EY12 + x2[n-1]*EY1Y2 + x3[n-1]*EY1Y3

48 b2 = x1[n-1]*EY1Y2 + x2[n-1]*EY22 + x3[n-1]*EY2Y3

49 b3 = x1[n-1]*EY1Y3 + x2[n-1]*EY2Y3 + x3[n-1]*EY32

50 _b[:,n] = array([b1, b2, b3])/denom

51

52 if echo: print("Finish recursive step %3d in %.2f second.")

53

54 if debug: print("Total time spent: %g second.")

55

56 return _S[1:]

From line number 11 to line number 16 are the parameters of multinomial

universal portfolio where p1 = p1, p2 = p2 and NN = N . Line number 17

to line number 25 are the moments of the multinomial universal portfolio (3.27)

in Chapter 3 . Line number 17 is when ν = 1, refer to (3.27) in Chapter 3. Line

number 38 to number 42 represented the numerator and denominator of (3.15) and

(3.16) in Chapter 3. Line number 44 to line number 45 are the wealth obtained

after n+ 1 trading days, refer to (3.17) in Chapter 3.
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4.2.2 Order Two Multinomial Generated Universal Portfolio

1 from numpy import array, zeros, ones, arange

2 from time import clock

3

4 def Recursive3Multinomial(x,p1,p2,NN,debug=False,echo=False):

5 _order = 2

6

7 _N = len(x[0])

8 _b = zeros((3,_N+1))

9 _S = ones(_N+1)

10 _x = x

11 _p1,_p2,_p3,_NN = None,None,None,None

12 _p1 = p1

13 _p2 = p2

14 _p3 = max(1.-p1-p2,0.)

15 if any([p1<0,p2<0,_p3<0]):

16 import sys

17 print("Error: Parameter is less than 0!")

18 sys.exit(1)

19

20 _p12 = p1**2

21 _p22 = p2**2

22 _p32 = _p3**2

23 _p13 = p1**3

24 _p23 = p2**3

25 _p33 = _p3**3

26 _NN = NN

27 EY1 = _NN*_p1

28 EY2 = _NN*_p2

29 EY3 = _NN*_p3

30 EY12 = _NN*_p1*(1.-_p1) + (_NN*_p1)**2

31 EY22 = _NN*_p2*(1.-_p2) + (_NN*_p2)**2

32 EY32 = _NN*_p3*(1.-_p3) + (_NN*_p3)**2

33 EY13 = _NN*(_NN-1)*(_NN-2)*_p13 + 3*_NN*(_NN-1)*_p12 + _NN*_p1

34 EY23 = _NN*(_NN-1)*(_NN-2)*_p23 + 3*_NN*(_NN-1)*_p22 + _NN*_p2

35 EY33 = _NN*(_NN-1)*(_NN-2)*_p33 + 3*_NN*(_NN-1)*_p32 + _NN*_p3

36 EY1Y2 = _NN*(_NN-1.)*_p1*_p2

37 EY1Y3 = _NN*(_NN-1.)*_p1*_p3

38 EY2Y3 = _NN*(_NN-1.)*_p2*_p3

39 EY12Y2 = _NN*(_NN-1)*(_NN-2)*_p12*_p2 + _NN*(_NN-1)*_p1*_p2

40 EY22Y1 = _NN*(_NN-1)*(_NN-2)*_p22*_p1 + _NN*(_NN-1)*_p1*_p2
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41 EY12Y3 = _NN*(_NN-1)*(_NN-2)*_p12*_p3 + _NN*(_NN-1)*_p1*_p3

42 EY32Y1 = _NN*(_NN-1)*(_NN-2)*_p32*_p1 + _NN*(_NN-1)*_p1*_p3

43 EY22Y3 = _NN*(_NN-1)*(_NN-2)*_p22*_p3 + _NN*(_NN-1)*_p2*_p3

44 EY32Y2 = _NN*(_NN-1)*(_NN-2)*_p32*_p2 + _NN*(_NN-1)*_p2*_p3

45 EY12Y3 = _NN*(_NN-1)*(_NN-2)*_p12*_p3 + _NN*(_NN-1)*_p3*_p1

46 EY32Y1 = _NN*(_NN-1)*(_NN-2)*_p32*_p1 + _NN*(_NN-1)*_p3*_p1

47 EY1Y2Y3 = _NN*(_NN-1)*(_NN-2)*_p1*_p2*_p3

48

49 x1 = _x[0]

50 x2 = _x[1]

51 x3 = _x[2]

52 begin = clock()

53

54 _b[:,0] = array([1., 1., 1.])/3

55 _S[1] = _b[0,0]*x1[0] + _b[1,0]*x2[0] + _b[2,0]*x3[0]

56 _b[:,1] = array([1., 1., 1.])/3

57 _S[2] = _S[1]*(_b[0,1]*x1[1] + _b[1,1]*x2[1] + _b[2,1]*x3[1])

58

59 for n in range(_order,_N):

60 if echo: start = clock()

61

62 numer = x1[n]*x1[n-1]*x1[n-2]*EY13 + x2[n]*x2[n-1]*x2[n-2]*EY23

63 += x3[n]*x3[n-1]*x3[n-2]*EY33

64 numer += (x1[n]*x1[n-1]*x2[n-2] + x1[n]*x2[n-1]*x1[n-2]

65 +=x2[n]*x1[n-1]*x1[n-2])*EY12Y2

66 numer += (x1[n]*x2[n-1]*x2[n-2] + x2[n]*x2[n-1]*x1[n-2]

67 +=x2[n]*x1[n-1]*x2[n-2])*EY22Y1

68 numer += (x1[n]*x3[n-1]*x1[n-2] + x1[n]*x1[n-1]*x3[n-2]

69 +=x3[n]*x1[n-1]*x1[n-2])*EY12Y3

70 numer += (x1[n]*x3[n-1]*x3[n-2] + x3[n]*x3[n-1]*x1[n-2]

71 +=x3[n]*x1[n-1]*x3[n-2])*EY32Y1

72 numer += (x2[n]*x2[n-1]*x3[n-2] + x2[n]*x3[n-1]*x2[n-2]

73 +=x3[n]*x2[n-1]*x2[n-2])*EY22Y3

74 numer += (x3[n]*x2[n-1]*x3[n-2] + x3[n]*x3[n-1]*x2[n-2]

75 +=x2[n]*x3[n-1]*x3[n-2])*EY32Y2

76 numer += (x1[n]*x3[n-1]*x2[n-2] + x1[n]*x2[n-1]*x3[n-2]

77 +=x2[n]*x3[n-1]*x1[n-2] \

78 + x2[n]*x1[n-1]*x3[n-2]+x3[n]*x1[n-1]*x2[n-2]+x3[n]*x2[n-1]*x1[n-2])*EY1Y2Y3

79 denom = _NN*(x1[n-1]*x1[n-2]*EY12 + x1[n-1]*x2[n-2]*EY1Y2 + x1[n-1]*x3[n-2]*EY1Y3 \

80 + x2[n-1]*x1[n-2]*EY1Y2+x2[n-1]*x2[n-2]*EY22+x2[n-1]*x3[n-2]*EY2Y3+x3[n-1] \

81 * x1[n-2]*EY1Y3+x3[n-1]*x2[n-2]*EY2Y3+x3[n-1]*x3[n-2]*EY32)

82

83 dotbx = numer/denom

84 _S[n+1] = dotbx * _S[n]
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85

86 b1 = x1[n-1]*x1[n-2]*EY13 + x1[n-1]*x2[n-2]*EY12Y2 + x1[n-1]*x3[n-2]*EY12Y3

87 += x2[n-1]*x1[n-2]*EY12Y2 + x2[n-1]*x2[n-2]*EY22Y1

88 b1 += x2[n-1]*x3[n-2]*EY1Y2Y3 + x3[n-1]*x1[n-2]*EY12Y3

89 += x3[n-1]*x2[n-2]*EY1Y2Y3 + x3[n-1]*x3[n-2]*EY32Y1

90 b2 = x1[n-1]*x1[n-2]*EY12Y2 + x1[n-1]*x2[n-2]*EY22Y1

91 += x1[n-1]*x3[n-2]*EY1Y2Y3 + x2[n-1]*x1[n-2]*EY22Y1

92 += x2[n-1]*x2[n-2]*EY23

93 b2 += x2[n-1]*x3[n-2]*EY22Y3 + x3[n-1]*x1[n-2]*EY1Y2Y3

94 += x3[n-1]*x2[n-2]*EY22Y3 + x3[n-1]*x3[n-2]*EY32Y2

95 b3 = x1[n-1]*x1[n-2]*EY12Y3 + x1[n-1]*x2[n-2]*EY1Y2Y3

96 += x1[n-1]*x3[n-2]*EY32Y1 + x2[n-1]*x1[n-2]*EY1Y2Y3

97 += x2[n-1]*x2[n-2]*EY22Y3

98 b3 += x2[n-1]*x3[n-2]*EY32Y2 + x3[n-1]*x1[n-2]*EY32Y1

99 + =x3[n-1]*x2[n-2]*EY32Y2 + x3[n-1]*x3[n-2]*EY33

100

101 _b[:,n] = array([b1, b2, b3])/denom

102

103 if echo: print("Finish recursive step %3d in %.2f second." % (n,clock()-start))

104

105 print("Total time spent: %g second." % (clock()-begin))

106 return _S[1:]

Similary, in order two multinomial universal portfolio code, from line number

11 to line number 26 are the parameters of multinomial universal portfolio where

p1 = p1, p2 = p2 and NN = N . Line number 27 to line number 47 are the mo-

ments of order two multinomial generated universal portfolio, refer to (3.28) in

Chapter 3. Line number 62 to number 81 represented the numerator and denomi-

nator, refer to (3.19) and (3.20) in Chapter 3. While line number 84 is the wealth

obtained after n+ 1 trading days, (3.21) in Chapter 3.

From the above two python codes have shown that the calculation of nu-

merator and denominator of portfolios become complicated when order increase.

These are due to the moments are increasing when order ν increase. Therefore,

only the order one of the other three proposed universal portfolios will be shown
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and discussed in the following section.

4.3 Order One Multivariate Normal Generated Universal Portfolio

1 from numpy import array, zeros, arange

2 from time import clock

3

4 def Recursive3MultivariatNormal(x,p1,p2,p3,NN,debug=False,echo=False):

5 _N = len(x[0])

6 _b = zeros((3,_N+1))

7 _S = zeros(_N+1)

8 _S[0] = 1.

9 _x = x

10 _p1,_p2,_p3,_NN = None,None,None,None

11 order = 1

12 _p1 = p1

13 _p2 = p2

14 _p3 = p3

15 _p12 = p1**2

16 _p22= p2**2

17 _p32 = p3**2

18 _NN = NN

19

20 EY1 = _p1

21 EY2 = _p2

22 EY3 = _p3

23 EY12 = _p12 + _NN

24 EY22 = _p22 + _NN

25 EY32 = _p32 + _NN

26 EY1Y2 = _p1*_p2

27 EY1Y3 = _p1*_p3

28 EY2Y3 = _p2*_p3

29

30 x1 = list(_x[0])

31 x2 = list(_x[1])

32 x3 = list(_x[2])

33

34 begin = clock()
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35

36 _b[:,0] = array([1., 1., 1.])/3

37 _S[1] = _b[0,0]*x1[0] + _b[1,0]*x2[0] + _b[2,0]*x3[0]

38

39 for n in range(order,_N):

40 if echo: start = clock()

41

42 numer = x1[n]*x1[n-1]*EY12 + x2[n]*x2[n-1]*EY22 + x3[n]*x3[n-1]*EY32

43 numer += (x1[n]*x2[n-1] + x2[n]*x1[n-1])*EY1Y2

44 numer += (x1[n]*x3[n-1] + x3[n]*x1[n-1])*EY1Y3

45 numer += (x2[n]*x3[n-1] + x3[n]*x2[n-1])*EY2Y3

46 denom = x1[n-1]*EY12 + x2[n-1]*EY22 + x3[n-1]*EY32

47 denom += (x2[n-1] + x1[n-1])*EY1Y2

48 denom += (x3[n-1] + x1[n-1])*EY1Y3

49 denom += (x3[n-1] + x2[n-1])*EY2Y3

50

51 dotbx = numer/denom

52 _S[n+1] = dotbx * _S[n]

53

54 b1 = x1[n-1]*EY12 + x2[n-1]*EY1Y2 + x3[n-1]*EY1Y3

55 b2 = x1[n-1]*EY1Y2 + x2[n-1]*EY22 + x3[n-1]*EY2Y3

56 b3 = x1[n-1]*EY1Y3 + x2[n-1]*EY2Y3 + x3[n-1]*EY32

57 _b[:,n] = array([b1, b2, b3])/denom

58

59 if echo: print("Finish recursive step %3d in %.2f second.")

60

61 if debug: print("Total time spent: %g second.")

62 return _S[1:]

From the above code, line number 10 to line number 18 are the parameters

of multivariate normal universal portfolio where µ1 = p1, µ2 = p2, µ3 = p3 and

σ2
1 = σ2

2 = σ2
3 = σ = NN . Line number 20 to line number 28 are the moments

of the Multivariate normal generated universal portfolio (3.33) in Chapter 3. Line

number 42 to number 49 represented the numerator and denominator where the

numerator is (3.14) in Chapter 3. While the wealth obtained is in line number 52,

refer (3.17) in Chapter 3.
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4.4 Order One Brownian-motion Generated Universal Portfolio

1 from numpy import array, zeros, arange

2 from time import clock

3

4 def Recursive3bronianmotion (x,p1,p2,p3,NN,MM,QQ,debug=False,echo=False):

5 _N = len(x[0])

6 _b = zeros((3,_N+1))

7 _S = zeros(_N+1)

8 _S[0] = 1.

9 _x = x

10

11 order = 1

12 _p1 = p1

13 _p2 = p2

14 _p3 = p3

15 _p12 = p1**2

16 _p22= p2**2

17 _p32 = p3**2

18 _NN = NN

19 _MM = MM

20 _QQ = QQ

21 x1 = list(_x[0])

22 x2 = list(_x[1])

23 x3 = list(_x[2])

24

25 begin = clock()

26 _b[:,0] = array([1., 1., 1.])/3

27 _S[1] = _b[0,0]*x1[0] + _b[1,0]*x2[0] + _b[2,0]*x3[0]

28

29 for n in range(order,_N):

30 if echo: start = clock()

31

32 EY1 = n*_p1

33 EY2 = n*_p2

34 EY3 = n*_p3

35 EY12 = n*n*_p12 + n*_NN*_NN

36 EY22 = n*n*_p22 + n*_MM*_MM

37 EY32 = n*n* _p32 + n*_QQ*_QQ

38 EY1Y2 = n*n*_p1*_p2

39 EY1Y3 = n*n*_p1*_p3

40 EY2Y3 = n*n*_p2*_p3
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41

42 numer = x1[n]*x1[n-1]*EY12 + x2[n]*x2[n-1]*EY22 + x3[n]*x3[n-1]*EY32

43 numer += (x1[n]*x2[n-1] + x2[n]*x1[n-1])*EY1Y2

44 numer += (x1[n]*x3[n-1] + x3[n]*x1[n-1])*EY1Y3

45 numer += (x2[n]*x3[n-1] + x3[n]*x2[n-1])*EY2Y3

46 denom = x1[n-1]*EY12 + x2[n-1]*EY22 + x3[n-1]*EY32

47 denom += (x2[n-1] + x1[n-1])*EY1Y2

48 denom += (x3[n-1] + x1[n-1])*EY1Y3

49 denom += (x3[n-1] + x2[n-1])*EY2Y3

50

51 dotbx = numer/denom

52 _S[n+1] = dotbx * _S[n]

53

54 b1 = x1[n-1]*EY12 + x2[n-1]*EY1Y2 + x3[n-1]*EY1Y3

55 b2 = x1[n-1]*EY1Y2 + x2[n-1]*EY22 + x3[n-1]*EY2Y3

56 b3 = x1[n-1]*EY1Y3 + x2[n-1]*EY2Y3 + x3[n-1]*EY32

57 _b[:,n] = array([b1, b2, b3])/denom

58

59 if echo: print("Finish recursive step %3d in %.2f second." )

60

61 if debug: print("Total time spent: %g second." )

62 return _S[1:]

From the above code, line number 12 to line number 20 are the parameters of

Brownian motion generated universal portfolio where µ1 = p1, µ2 = p2, µ3 = p3

and σ2
1 = NN, σ2

2 = MM,σ2
3 = QQ . Line number 32 to line number 40

are the moments of the universal portfolio generated by Brownian-motion, refer

(3.42) in Chapter 3. Line number 42 to number 49 represented the numerator and

denominator of the portfolio (3.41) in Chapter 3. While Line number 52 is the

calculation of the wealth obtained after n+ 1 trading days, (3.17) in Chapter 3.
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4.5 Order One Universal Portfolio Generated by Ornstein Uhlenbeck Pro-

cess

1 from numpy import array, zeros, arange

2 from time import clock

3

4 def Recursive3ornstein(x,p1,p2,p3,debug=False,echo=False):

5

6 _N = len(x[0])

7 _b = zeros((3,_N+1))

8 _S = zeros(_N+1)

9 _S[0] = 1.

10 _x = x

11 _p1,_p2,_p3,_NN,_MM,_QQ =,None,None,None,None,None, None

12 Order =1

13 _p1 = p1

14 _p2 = p2

15 _p3 = p3

16 _NN = NN

17 _MM = MM

18 _QQ = QQ

19 _p12 = p1**2

20 _p22 = p2**2

21 _p32 = p3**2

22 _p13 = p1**3

23 _p23 = p2**3

24 _p33 = p3**3

25

26 EY1 = _p1

27 EY2 = _p2

28 EY3 = _p3

29 EY12 = 1 + _p12

30 EY22 = 1+ _p22

31 EY32 = 1+ _p32

32 EY1Y2 = _p1*_p2

33 EY1Y3 = _p1*_p3

34 EY2Y3 = _p2*_p3

35

36 x1 = list(_x[0])

37 x2 = list(_x[1])

38 x3 = list(_x[2])
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39

40 begin = clock()

41

42 _b[:,0] = array([1., 1., 1.])/3

43 _S[1] = _b[0,0]*x1[0] + _b[1,0]*x2[0] + _b[2,0]*x3[0]

44

45 for n in range(order,_N):

46 if echo: start = clock()

47

48 numer = x1[n]*x1[n-1]*EY12 + x2[n]*x2[n-1]*EY22 + x3[n]*x3[n-1]*EY32

49 numer += (x1[n]*x2[n-1] + x2[n]*x1[n-1])*EY1Y2

50 numer += (x1[n]*x3[n-1] + x3[n]*x1[n-1])*EY1Y3

51 numer += (x2[n]*x3[n-1] + x3[n]*x2[n-1])*EY2Y3

52 denom = x1[n-1]*EY12 + x2[n-1]*EY22 + x3[n-1]*EY32

53 denom += (x2[n-1] + x1[n-1])*EY1Y2

54 denom += (x3[n-1] + x1[n-1])*EY1Y3

55 denom += (x3[n-1] + x2[n-1])*EY2Y3

56

57 dotbx = numer/denom

58 _S[n+1] = dotbx * _S[n]

59

60 b1 = x1[n-1]*EY12 + x2[n-1]*EY1Y2 + x3[n-1]*EY1Y3

61 b2 = x1[n-1]*EY1Y2 + x2[n-1]*EY22 + x3[n-1]*EY2Y3

62 b3 = x1[n-1]*EY1Y3 + x2[n-1]*EY2Y3 + x3[n-1]*EY32

63

64 _b[:,n] = array([b1, b2, b3])/denom

65

66 if echo: print("Finish recursive step %3d in %.2f second." )

67

68 if debug: print("Total time spent: %g second." )

69 return _S[1:]

From the above code, from line number 13 to line number 24 are the pa-

rameters of universal portfolio generated by Ornstein Uhlenbeck process where

µ1 = p1, µ2 = p2, µ3 = p3 and α1 = NN,α2 = MM,α3 = QQ . Line number

26 to line number 34 are the moments of the universal portfolio generated by Orn-

stein uhlenbeck process, refer (3.60) in Chapter 3. Line number 48 to number 55

represented the numerator and denominator of (3.59) in Chapter 3. While, Line

number 58 is the wealth obtained after n+ 1 trading days, (3.17) in Chapter 3.
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CHAPTER 5

IDENTIFY “GOOD PARAMETERS”

In the preliminary stage of this research, a numerical experiment was done on

the Dirichlet distribution based universal portfolio proposed in Cover (1991) for

m = 3, i.e. three stocks. The Tan and Chan algorithm (Chan 2002) was found

hardly worked for more than 500 trading days, i.e. n ≥ 500. To resolve this

matter, Tan et al. (2012) proposed finite order universal portfolio strategies. Much

of Tan’s universal porfolio strategies are applied to a few selected stocks (refer to

the literature review in Chapter 1). While we will be investigating how various

strategies work on all combination of stocks.

5.1 Performance of Five Universal Portfolio Strategies for Special Sets of

Stocks

In all these numerical experiments, an initial wealth of 1 is assumed. All calcula-

tions with the proposed strategies were obtained by using Python 2.7 and NumPy

on a MacBook Pro with MacOS/X Version 10.8.3.
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5.1.1 Performance of Dirichlet-Distribution-Based Universal Portfolio

Universal portfolio strategies can only perform well with the right parameters.

In this numerical experiment, 3 sets of stocks data were selected randomly from

KLSE (Kuala Lumpur Stock Exchange) and Yahoo Finance (Yahoo n.d.) for the

period from 1 January, 2003 to 30 November, 2004, consisting of 500 trading

days. Each set consists of 3 company stocks. Set A consists of the stocks of

Malayan Banking, Genting and Amway(M) Holdings. Set B consists of the stocks

of Public Bank, Sunrise and YTL Corporation. Lastly, set C consists of the stocks

of Hong Leong Bank, RHB Capital and YTL Corporation. Refer to Appendix A.

Cover & Ordentlich (1996) presented an algorithm for generating the Dirich-

let (1
2
, 1

2
) two stock universal portfolio. Chan (2002) modified this algorithm

for generating any Dirichlet (α1, α2, · · · , αm) universal portfolio for m = 2, 3

and 4 stock. A general algorithm capable of handling the m-stock Dirichlet

(α1, α2, · · · , αm) universal portfolio was proposed by Tan (2004b). We used

the modified algorithm of Chan (2002) for computing the three-stock univer-

sal portfolio generated by Diriclet (α1, α2, α3) distribution where αj > 0 for

j = 1, 2, 3, with the starting capital S0 to be 1 unit and the initial portfolio

b0 = (1
3
, 1

3
, 1

3
). We can compute the investment capitals achieved by Dirichlet

(α1, α2, α3) Cover-Ordentlich universal portfolios for set A, set B and set C. Ta-

ble 5.1 show the wealth obtained by the Dirichlet (α1, α2, α3) where parameter

are chosen as α1 = 0.01, α2 = 0.01 and α3 = 8000. From Table 5.1, the wealth

obtained S500 is 1.8750 for data set A, 4.0761 for data set B and 4.0761 for data

set C with the computation time in second.
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Table 5.1: The wealth S500 achieved by the Dirichlet (0.01,0.01,8000) UP for
data set A,B and C.

S500 Computation Time (Seconds)
Set A 1.8750 394.77
Set B 4.0761 394.98
Set C 4.0761 394.38

5.1.2 Empirical Performance of Multinomial Distribution Generated Uni-

versal Portfolio

The computation of the Dirichlet universal portfolios requires a substantial amount

of computer and longer computation time. To overcome this problem, the memory-

saving Dirichlet universal portfolios of finite order is introduced in Tan et al.

(2012). The finite-order multinomial universal portfolios having the faster com-

putation time and reduced the computer- memory saving is studied.

A numerical experiment was carried out for the finite-order Multinomial uni-

versal portfolios on same three stock-price data sets A, B and C selected from the

Kuala Lumpur Stock Exchange. The wealth S500 achieved by selected parameters

of the multinomial universal portfolio(p1, p2, N) for algorithm given in Chapter 3

are shown in Table 5.2, Table 5.3 and Table 5.4 respectively. The computation

times of the finite-order Multinomial universal portfolios are 0.014, 0.022 and

0.052 seconds for the first, second and third order respectively. From Table 5.1,

the computation times of the Dirichlet universal portfolios are 394.77, 394.98 and

394.38 seconds with the maximum wealth of 1.8750, 4.0761 and 4.0761 for data

set A, B and C. Thus, the wealth achieved by the finite-order multinomial uni-

versal portfolios are comparable to that of the moving-order Dirichlet universal

portfolio with substantial savings in computation time. Note that, the order one

Multinomial universal portfolio has better performance.
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Table 5.2: The wealth S500 achieved by the MNUP (0.8,0.01,600) for data Set
A.

S500 Computation Time (Seconds)
order 1 2.0238 0.014
order 2 2.0362 0.022
order 3 2.0315 0.052

Table 5.3: The wealth S500 achieved by the MNUP (0.000001,0.000001,600)
for data Set B.

S500 Computation Time (Seconds)
order 1 4.0761 0.014
order 2 4.0354 0.022
order 3 4.0217 0.052

Table 5.4: The wealth S500 achieved by the MNUP (0.000001,0.000001,600)
for data Set C.

S500 Computation Time (Seconds)
order 1 4.0761 0.014
order 2 4.0490 0.022
order 3 4.0218 0.052

5.1.3 Empirical Performance of Multivariate Normal Distribution Gener-

ated Universal Portfolio

We now investigate the finite-order multivariate normal universal portfolios. The

finite-order multivariate normal universal portfolios are run on same selected three

data sets with the selected values of parameter (µ1, µ2, µ3, σ
2
1 = σ2

2 = σ2
3 = σ)

listed in Table 5.5, Table 5.6 and Table 5.7. Empirically, from the Table 5.5,

Table 5.6 and Table 5.7, we observed the performance of the finite-order multi-

variate normal universal portfolios is comparable to that of the Dirichlet universal
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portfolios and yet requiring substantially less computation time.

Table 5.5: The wealth S500 achieved by the MVNUP (7.1,0.8,0.3,1.0) for data
Set A.

S500 Computation Time (Seconds)
order 1 1.9393 0.014
order 2 1.9442 0.024
order 3 1.9405 0.063

Table 5.6: The wealth S500 achieved by the MVNUP (0.01,0.01,1000,1.2) for
data Set B.

S500 Computation Time (Seconds)
order 1 4.0761 0.015
order 2 4.0353 0.024
order 3 4.0218 0.062

Table 5.7: The wealth S500 achieved by the MVNUP (0.01,0.01,1000,1.2) for
data Set C.

S500 Computation Time (Seconds)
order 1 4.0761 0.015
order 2 4.0490 0.024
order 3 4.0219 0.062

5.1.4 Empirical Performance of Brownian-motion Generated Universal Port-

folio

In this subsection, we investigate the universal portfolio generated by three in-

dependent Brownian motions with drift coefficients µ1, µ2, µ3 and variance pa-

rameters σ2
1, σ

2
2, σ

2
3 respectively are run on the same sets A, B and C. In the fol-
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lowing tables, the notation (µ1, σ
2
1;µ2, σ

2
2;µ3, σ

2
3) is used to denote the param-

eters of the 3 generating Brownian motions. For three sets of selected param-

eters (1, 1.4; 1, 1.5; 1, 1.2), (1, 1.4; 10, 2.5; 100, 3.6) and (25, 1.4; 0.5, 1.5; 0.5, 1.2)

the Brownian motion universal portfolios of orders 1, 2, 3 are run on the data sets

A, B and C. Assuming an initial wealth of 1 unit, the wealth S500 achieved by the

portfolios after 500 trading days and the implementation times for data sets A, B

and C are displayed in Table 5.8, Table 5.9 and Table 5.10 respectively. Compar-

ing the wealth achieved by the multinomial universal portfolios in Section 5.1.2

and the wealth achieved in Table 5.8, Table 5.9 and Table 5.10, its is observed that

4.0335, 3.9666 and 3.9194 units are achieved by the orders 1,2 and 3 portfolios re-

spectively for data set B in Table 5.9. The corresponding wealth of 4.0761, 4.0354

and 4.0217 units are achieved by the (0.000001,0.000001,600) multinomial uni-

versal portfolio for data set B. In Table 5.8, lower wealth of 1.6832, 1.6832 and

1.5886 units are achieved by the orders 1, 2 and 3 Brownian-motion portfolios re-

spectively for data set A. The corresponding higher wealth of 2.0238, 2.0362 and

2.0315 units are achieved by the (0.8,0.01,600) multinomial universal portfolio

for data set A.
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Table 5.8: The wealth S500 achieved by the BMUP (1,1.4;1,1.5;1,1.2) for data
Set A.

S500 Computation Time (Seconds)
order 1 1.6832 0.042
order 2 1.6832 0.065
order 3 1.5886 0.211

Table 5.9: The wealth S500 achieved by the BMUP (1,1.4;10,2.5;100,3.6) for
data Set B.

S500 Computation Time (Seconds)
order 1 4.0335 0.025
order 2 3.9666 0.067
order 3 3.9194 0.208

Table 5.10: The wealth S500 achieved by the BMUP (25,1.4;0.5,1.5;0.5,1.2) for
data Set C.

S500 Computation Time (Seconds)
order 1 1.4230 0.027
order 2 1.4142 0.067
order 3 1.4451 0.210

5.1.5 Empirical Performance of Universal Portfolio Generated by Ornstein-

Uhlenbeck Process

The Ornstein-Uhlenbeck process based universal portfolio is studied with the

three stock-price data sets A, B and C .The parametric vector of this universal port-

folio is (µ1, µ2, µ3;α1, α2, α3). By trial and error, parametric vectors (16,0.1,0.5;

0.2,1.2,2), (0.001,0.001,50; 0.2,1.2,2) and (0.005,0.009,99; 0.2,1.2,2) were found

to be doing well for data sets A, B and C respectively. The wealth S500 and com-

putation time in second after 500 trading days achieved by the orders 1, 2 and
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3 portfolios for data sets A, B and C are displayed in Table 5.11,Table 5.12 and

Table 5.13, respectively. The wealth achieved by the portfolios is from 2.035 to

2.037, 4.069 to 4.073 and 4.073 to 4.075 for data sets A, B and C respectively.

Table 5.11: The wealth S500 achieved by the portfolios generated by the OU
process with parametric vector (16,0.1,0.5;0.2,1.2,2) for data Set A.

S500 Computation Time (Seconds)
order 1 2.0370 0.015
order 2 2.0368 0.072
order 3 2.0358 0.332

Table 5.12: The wealth S500 achieved by the portfolios generated by the OU
process with parametric vector (0.001,0.001,50;0.2,1.2,2) for data Set B.

S500 Computation Time (Seconds)
order 1 4.0732 0.010
order 2 4.0711 0.077
order 3 4.0696 0.325

Table 5.13: The wealth S500 achieved by the portfolios generated by the OU
process with parametric vector (0.005,0.009,99;0.2,1.2,2) for data Set C.

S500 Computation Time (Seconds)
order 1 4.0746 0.011
order 2 4.0739 0.074
order 3 4.0734 0.334

5.2 Identifying “Good” Parameters

From the above results, four finite order universal portfolios strategies were found

can perform better than the Cover Ordentlich Dirichlet universal portfolio for
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same data sets. Noticed that the four universal portfolios with order one per-

formed slightly better than order two and three. Therefore, this research will be

limited to order one universal portfolios.

5.2.1 Representation Data

For the following sections, selection of 10 set of parameters for each universal

portfolios are described. Python code are written to obtain the good performance

parameters among these 10 set of parameters. We use CRP as a benchmark to

evaluate and to compare with these four universal portfolio strategies. A com-

parison can be made with the wealth obtained by CRP and the wealth achieved

by the four proposed universal portfolios. Every one year period starting from

year 2000 to year 2015 of the available stock data listed in Table 2.1 in Chapter 2

are used for study. At least 20% of the wealth achieved by proposed universal

portfolio performed better than wealth obtained by CRP are analysed. The good

performance of the parameters is observed.

5.2.2 Parameters for Multinomial Universal Portfolio

10 set of parameters (p1, p2, N) are used for selection of good performances, they

are A = (0.8, 0.001, 600), B = (0.001,0.8,600), C =(0.5, 0.5, 600), D = (0.9,0.1,

600), E = (0.1,0.9,600), F = (0.8,0.001,50), G = (0.001,0.8,50), H = (0.05,0.95,99),

I = (0.95,0.05,99 ) and J = (0.9,0.004 10). In Section 5.1.2, ( 0.8,0.001,600) per-

formed well when ran on 3 selected stocks from KLSE. Therefore, this set of
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parameter chosen for the analysis. The other nine set of parameters are formed by

varying among (0.8,0.001,600).

5.2.3 Parameters for Multivariate Normal Universal Portfolio

In Section 5.1.3, good performances obtained by order one universal portfolio

generated by Multivariate Normal Distribution with the set of (7.1,0.8,0.2,1.0).

Therefore, the 10 sets of parameters are selected varying among (7.1,0.8,0.2,1.0),

i.e. K = (7.1,0.8,0.2,1.0), L = (0.2,0.8,7.1,1.0), M = (0.8,7.1,0.2,1.0), N = (7.1,0.2,

0.8,1.0), O = (0.8,0.2,7.1,1.0), P = (0.2,7.1,0.8,1.0), Q = (8.1,9.1,0.1,2.0), R =

(0.2,8.1,9.1,2.0), S = (8.1,0.,2,9.1,2.0) and T = (9.0,0.1,0.1,2.0).

5.2.4 Parameters for Brownian-motion Generated Universal Portfolio

In Section 5.1.4, good performances parameter of order one universal portfolio

generated by Brownian-motion is (1,1.4;10,2.5;100,3.6), therefore, the 10 sets of

parameters are formed among (1,1.4;10,2.5;100,3.6), i.e. a = (1,1.4;10,2.5;100,3.6),

b = (100,1.4;1,2.5;10,3.6), c = (100,1.4;10,2.5;1,3.6), d = (10,1.4;1,2.5;100,3.6),

e = (1,1.4;100,2.5;10,3.6), f = (10,1.4;100,2.5;1,3.6), g = (1,1.4;10,3.6;100,2.5), h

= (1,2.5;10,1.4;100,3.6), i = (1,2.5;10,3.6;100,1.4) and j = (1,3.6;10,1.4;100, 2.5).
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5.2.5 Parameters for Universal Portfolio Generated by Ornstein Uhlenbeck

Process

From Section 5.1.5, one of the parameters selected of is (16,0.1,0.5,0.2,1.2,2) due

to good performance is obtained. The other 9 set of parameters we formed by

varying among (16,0.1,0.5,0.2,1.2,2). The 10 set of parameters are k = (16,0.1,0.5,

0.2,1.2,2), l = (16,0.5,0.1,0.2,1.2,2), m = (0.5,0.1,16,0.2,1.2,2), n = (0.5,16,0.1,0.2,

1.2,2), o = (0.1,16,0.5,0.2,1.2,2), p = (0.1,0.5,16,0.2,1.2,2), q = (16,0.1,0.5,2,1.2,

0.2), r =(16,0.5,0.1,2,1.2,0.2), s = (50, 0.5, 2, 0.2, 1.2, 2) and t = (50,2,0.5,0.2,1.2,2).

5.3 Numerical Experiment

5.3.1 Computer Program

The chosen parameters in the previous section will be used for numerical compu-

tation. The Python code is written as follow:

1 import pandas as pd

2 import numpy as np

3

4 df = pd.read_csv(’data00-15/klse100roi.csv’)

5

6 to_find_list = ["3182", "5148", "5398", "5517", "7106", \

7 "7084","1818","5031","2216","5099"]

8

9 stock_data.fillna(1.0,inplace=True)

10
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11 def CRP(x, param=[]):

12 num_cols = len(x)

13 _x = [list(x[i]) for i in range(num_cols)]

14 num_rows = len(_x[0])

15 Se = np.ones(num_rows)

16 if len(param)>0 and (sum(param)-1.0)<1e-9:

17 Se[0] = sum([param[i]*_x[i][0] for i in range(num_cols)])

18 for n in range(num_rows-1):

19 daily_roi_p = sum([param[i]*_x[i][n] \

20 for i in range(num_cols)])

21 if np.isnan(daily_roi_p):

22 print("\nAt n =", n, "_x =", \

23 [_x[i][n] for i in range(num_cols)])

24 return None

25 Se[n+1] = Se[n]*daily_roi_p

26 else:

27 Se[0] = (x1[0]+x2[0]+x3[0])/3

28 for n in range(num_rows-1):

29 Se[n+1] = Se[n]*(x1[i]+x2[i]+x3[i])/3

30 if np.isnan(daily_roi_p):

31 print("\nAt n =", n, "_x =", \

32 [_x[i][n] for i in range(num_cols)])

33 return None

34 return Se

35

36 from portfolio2015.recur3multinomial import Recursive3Multinomial

37 from portfolio2015.recur3multivariatNormal import Recursive3MultivariatNormal

38 from portfolio2015.recur3bronianmotion import Recursive3bronianmotion

39 from portfolio2015.recur3ornstein import Recursive3ornstein

40

41 for i, j, k in itertools.combinations(stock_roi, 3):

42 x = [list(stock_data[i]),list(stock_data[j]),list(stock_data[k])]

43

44 print("%s,%s,%s,CRP,\"%s\"" % (i,j,k,[])),

45 crp_res = CRP(x,[1./3,1./3,1./3])

46 if crp_res is not None:

47 print(",%f"%(crp_res[-1]))

48 else:

49 print("Data Error")

50

51 parameters = [

52 [0.8, 0.001, 600], [0.001, 0.8, 600],

53 [0.5, 0.5, 600], [0.9, 0.1, 600],

54 [0.1, 0.9, 600], [0.8, 0.001, 50],
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55 [0.001, 0.8, 50], [0.05, 0.95, 99],

56 [0.95, 0.05, 99], [0.9, 0.004, 10],

57 ]

58 for p1, p2, NN in parameters:

59 print("%s,%s,%s,MultiNomial,\"%s\"" % (i,j,k,[p1,p2,NN])),

60 res = Recursive3Multinomial(x,p1,p2,NN)

61 if res is not None:

62 print(",%f"%res[-1])

63 else:

64 print("Data Error")

65

66 parameters = [

67 [7.1,0.8,0.2,1.0], [0.2,0.8,7.1,1.0],

68 [0.8,7.1,0.2,1.0], [7.1,0.2,0.8,1.0],

69 [0.8,0.2,7.1,1.0], [0.2,7.1,0.8,1.0],

70 [8.1,9.1,0.2,2.0], [0.2,8.1,9.1,2.0],

71 [8.1,0.2,9.1,2.0], [9.0,0.1,0.1,2.0],

72 ]

73

74 for p1, p2, p3, NN in parameters:

75 print("%s,%s,%s,MultivariatNormal,\"%s\"" % (i,j,k,[p1,p2,p3,NN])),

76 res = Recursive3MultivariatNormal(x,p1,p2,p3,NN)

77 if res is not None:

78 print(",%f"%res[-1])

79 else:

80 print("Data Error")

81

82 parameters = [

83 [1,10,100,1.4,2.5,3.6], [100,1,10,1.4,2.5,3.6],

84 [100,10,1,1.4,2.5,3.6], [10,1,100,1.4,2.5,3.6],

85 [1,100,10,1.4,2.5,3.6], [10,100,1,1.4,2.5,3.6],

86 [1,10,100,1.4,3.6,2.5], [1,10,100,2.5,1.4,3.6],

87 [1,10,100,2.5,3.6,1.4], [1,10,100,3.6,1.4,2.5],

88 ]

89 for p1, p2, p3 in parameters:

90 print("%s,%s,%s,bronianmotion,\"%s\"" % (i,j,k,[p1,p2,p3])),

91 res = Recursive3bronianmotion(x,p1,p2,p3,NN,MM,QQ)

92 if res is not None:

93 print(",%f"%res[-1])

94 else:

95 print("Data Error")

96

97 parameters = [

98 [16,0.1,0.5,0.2,1.2,2], [16,0.5,0.1,0.2,1.2,2],
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99 [0.5,0.1,16,0.2,1.2,2], [0.5,16,0.1,0.2,1.2,2],

100 [0.1,16,0.5,0.2,1.2,2], [0.1,0.5,16,0.2,1.2,2],

101 [16,0.1,0.5,0.2,1.2,2], [16,0.5,0.1,0.2,1.2,2],

102 [50,0.5,2,0.2,1.2,2], [50,2,0.5,0.2,1.2,2],

103 ]

104 for p1, p2, p3 in parameters:

105 print("%s,%s,%s,ornstein,\"%s\"" % (i,j,k,[p1,p2,p3])),

106 res = Recursive3ornstein(x,p1,p2,p3,NN,MM,QQ)

107 if res is not None:

108 print(",%f"%res[-1])

109 else:

110 print("Data Error")

From the above python code, line number 4 is reading all the 95 stocks data

from the CSV file which has been generated in Section 2.3 in Chapter 2. In line

number 6 is to pick the 10 most active stocks. While in line number 9 is describing

the data collected from Yahoo KLSE stocks are incomplete and sometimes wrong.

In line number 41 is combination of 3 stocks which is described in Chapter 4.

The chosen parameters for each portfolios are listed from line number 52 to

line number 56 for Multinomial generated universal portfolio, line number 67

to number 71 for Multivariate Normal generated universal portfolio, line num-

ber 83 to line number 87 for Brownian-motion generated universal portfolio and

line number 98 to line number 102 are for Ornstein Uhlenbeck process generated

universal portfolio.
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5.3.2 Numerical Result and Analysis

The number of stocks and trading period will be vary based on the available data

and trading period listed in Table 2.1 in Chapter 2. From period 1 January 2015

to 31 December 2015, 10 most active stocks data listed in Table 2.2 in Chapter 2

with codes 5398, 7084, 1818, 5517, 7106, 5031, 2216, 5148, 5099 and 3182 will

be studied, and the 120 sets consists of 3 stocks data have been generated from

the 10C3 combination. At least 20% out of total 120 sets with the performance

better the CRP portfolio strategies will be observed and studied. Only stocks

data with codes 5398, 7084, 5517, 7106, 5031, 2216, 5148, 3182 are available

for study from year 2004 to year 2015, refer to Table 2.2 in Chapter 2. Total of

combination is 56 sets data and 20% of the good performance parameters strategie

is observed. From year 2002 to year 2015 only stocks data with codes 5398, 7084,

5517, 7106, 5031, 5148 and 3182 are available with total 35 sets data, and from

year 2001 to year 2015, stocks with codes 5398, 7084, 5517, 7106, 5148 and

3182 and the total 20 sets of data are studied. From year 2000 to year 2015,

there are 5 stocks with codes 5398, 5517, 7106, 5148 and 3182 available for

studied and total only 10 data sets consists on 3 stock data being studied. At least

20% of each universal portfolio strategy perform better than benchmark CRP are

recorded, details of result can refer Appendix C. For each trading period, well

performance parameters for each proposed universal portfolio are obtained and

shown in the following figures.

The meaning of A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T,

a, b, c, d, e, f, g, h, i, k, l, m, n, o, p, q, r, s and t are given in Section 5.2.2 to

Sec 5.2.5. For each parameter setting, the Wn is calculated as the ratio of Sn of

selected universal portfolio to Sn of CRP, and then a box-plot is constructed for
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Wn. Figure 5.1 to Figure 5.13 compare the box-plots for Wn which are selected

from the good parameters of the respective four proposed universal portfolios.
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Figure 5.1: Well Performed Parameters of each Universal Portfolio in Year
2015 Period

From Figure 5.1, good performance parameters are observed for selected pa-

rameters A, D, F, I and J for Multinomial generated universal portfolio. For Mul-

tivariate Normal generated universal portfolio, parameters K, N and T are per-

formed good. While, for Brownian-motion generated universal portfolio, only

parameter b and c are good and there are four parameters performed well for uni-

versal portfolio generated by Ornstein Uhlenbeck process, there are k, l, s and

t. The performances of Ornstein Uhlenbeck process generated universal portfolio

performed better than the other three universal portfolio strategies.
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Figure 5.2: Well Performed Parameters of each Universal Portfolio in Year
2014 to 2015 Period

From Figure 5.2, good performance parameters are observed for selected pa-

rameters D, I and J for Multinomial generated universal portfolio. For Multivari-

ate Normal generated universal portfolio, parameters K, N and T are performed

good. While, for Brownian-motion generated universal portfolio, only parameters

b and c are good and there are four parameters performed well for universal port-

folio generated by Ornstein Uhlenbeck process, there are k, l, s and t. Among the

four strategies, we can observed that the universal portfolio generated by Ornstein

Uhlenbeck process again performed better than other strategies.
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Figure 5.3: Well Performed Parameters of each Universal Portfolio in Year
2013 to 2015 Period

From Figure 5.3, we can observed that the results are similar to Figure 5.2

with good performance parameters are shown for selected parameters D, I and

J for Multinomial generated universal portfolio. For Multivariate Normal gen-

erated universal portfolio, parameters K, N and T are performed good. While,

for Brownian-motion generated universal portfolio, only parameters b and c are

good. There are four parameters performed well for universal portfolio generated

by Ornstein Uhlenbeck process, there are k, l, s and t and this strategy again better

better than the other three strategies.

However, none of the proposed four universal portfolio has at least 20% of the

results obtained performed better than CRP for the year 2012 to year 2015, year

2011 to year 2015 and year 2010 to year 2015 periods.
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Figure 5.4: Well Performed Parameters of each Universal Portfolio in Year
2009 to 2015 Period

From Figure 5.4, only universal portfolio generated by Ornstein Uhlenbeck

process has shown the good performances with parameters k, l, s and t and have

showed the similar performances among them.
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Figure 5.5: Well Performed Parameters of each Universal Portfolio in Year
2008 to 2015 Period

From Figure 5.5, good performance parameters are observed for selected pa-

rameters A, D, F, I and J for Multinomial generated universal portfolio. For Multi-
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variate normal generated universal portfolio, parameters K, L and T are performed

good. While, for Brownian-motion generated universal portfolio, only parameters

b and c are good and there are four parameters performed well for universal port-

folio generated by Ornstein Uhlenbeck process, there are k, l, s and t with the

performances better than other three strategies.
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Figure 5.6: Well Performed Parameters of each Universal Portfolio in Year
2007 to 2015 Period

Figure 5.6 showed the results obtained is similar to Figure 5.5, good perfor-

mance parameters are observed for selected parameters A, D, F, I and J for Multi-

nomial generated universal portfolio. For Multivariate normal generated univer-

sal portfolio, parameters K, L and T are performed good. While, for Brownian-

motion generated universal portfolio, only parameters b and c are good and there

are four parameters performed well for universal portfolio generated by Ornstein

Uhlenbeck process, there are k, l, s and t.
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Figure 5.7: Well Performed Parameters of each Universal Portfolio in Year
2006 to 2015 Period

From Figure 5.7, results obtained is similar to previous period, where good

performance parameters are observed for selected parameters A, D, F, I and J

for Multinomial generated universal portfolio. For Multivariate Normal gener-

ated universal portfolio, parameters K, L and T are performed good. While, for

Brownian-motion generated universal portfolio, only parameters a and b are good

and there are four parameters performed well for universal portfolio generated by

Ornstein Uhlenbeck process, there are k, l, s and t.
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Figure 5.8: Well Performed Parameters of each Universal Portfolio in Year
2005 to 2015 Period
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From Figure 5.8, results obtained is slightly different compare to Figure 5.7.

Good performance parameters are observed for selected parameters A, E, F, I and

J for Multinomial generated universal portfolio. For Multivariate Normal gener-

ated universal portfolio, parameters K, O and T are performed good. While, for

Brownian-motion generated universal portfolio, only parameters b and c are good

and there are four parameters performed well for universal portfolio generated by

Ornstein Uhlenbeck process, there are k, l, s and t. Universal portfolio generated

by Ornstein Uhlenbeck still performed better than the other three strategies.
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Figure 5.9: Well Performed Parameters of each Universal Portfolio in Year
2004 to 2015 Period

From Figure 5.9, good performance parameters are observed for selected pa-

rameters A, D, F, I and J for Multinomial generated universal portfolio. For Mul-

tivariate Normal generated universal portfolio, parameters K, N and T are per-

formed good. While, for Brownian-motion generated universal portfolio, only

parameters b and c are good and there are four parameters performed well for

universal portfolio generated by Ornstein Uhlenbeck process, there are k, l, s

and t. Universal portfolio generated by Ornstein Uhlenbeck still performed better

than the other three strategies. There are more outliers compared to the previous

graphs.
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Figure 5.10: Well Performed Parameters of each Universal Portfolio in Year
2003 to 2015 Period

From Figure 5.10, the results obtained by the four proposed strategies are

different compared to the previous period. Good performance parameters are ob-

served for selected parameters B and G for Multinomial generated universal port-

folio. For Multivariate Normal generated universal portfolio, parameters L and O

are performed good. While, for Brownian-motion generated universal portfolio,

parameters a, d, g, h, i and j are good and there are three parameters performed

well for universal portfolio generated by Ornstein Uhlenbeck process, there are m,

n, and p. The universal portfolio generated by Ornstein Uhlenbeck process still

performed better than the other three portfolio strategies even with the different

parameters.
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Figure 5.11: Well Performed Parameters of each Universal Portfolio in Year
2002 to 2015 Period

From Figure 5.11, only universal portfolio generated by Ornstein Uhlenbeck

process showed the good performances with parameters m, n and p. We can con-

cluded that the universal portfolio generated by Ornstein Uhlenbeck process con-

sistently performed well compare to the other three strategies.
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Figure 5.12: Well Performed Parameters of each Universal Portfolio in Year
2001 to 2015 Period

From Figure 5.12, good parameters are observed by B and G for universal

portfolio generated by Multinomial, R of universal portfolio generated by Multi-

variate normal and e for universal portfolio generated by Brownian-motion. How-

88



ever, the universal portfolio generated by Ornstein Uhlenbeck process did not

perform well in this period.
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Figure 5.13: Well Performed Parameters of each Universal Portfolio in Year
2000 to 2015 Period

From Figure 5.13, good performance parameters are observed for selected pa-

rameters L, P and S for Multivariate Normal generated universal portfolio. While

for Brownian-motion generated universal portfolio, parameters a, b, g, h, i and j

were performed good and there are three parameters performed well for universal

portfolio generated by Ornstein Uhlenbeck process, there are m, p and t. The uni-

versal portfolio generated by Brownian-motion is performed better than the other

three universal portfolio strategies with 5 set of parameters shown in above figure.

In conclusion, for the further data analysis in next chapter, only the best per-

forming parameter was chosen among all the above good performance parameters

for each universal portfolio obtained in each period. Overall, from Figure 5.1 to

Figure 5.13, we observed that the parameter for Multinomial generated univer-

sal portfolio is I which is (0.95, 0.05, 99) showed the good performances, for

universal portfolio generated by Multivariate Normal distribution, parameter T (

9.0,0.1,0.1,2.0) is observed with good performances. The other parameters per-
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formed are b, which is (100,1.4;1,2.5;10,3.6) for universal portfolio generated by

Brownian motion and k which is (16,0.1,0.5,0.2,1.2,2) for universal portfolio gen-

erated by Ornstein Uhlenbeck process with good performances.

The detail of the results are shown in Appendix C.
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CHAPTER 6

PERFORMANCE OF SELECTED UNIVERSAL PORTFOLIO

STRATEGIES

In this chapter, we will study the four classes universal portfolio strategies (refer

to Chapter 3) with the best performance parameters identified in Chapter 5. Nu-

merical experiment for the four classes of portfolio strategies will be studied for

short term (1 year period), middle term (4 years and 8 years periods) and long

term (12 years and 16 years periods). We will employ the four portfolio strate-

gies on the above 5 groups of data to learn the performance of these methods and

use CRP as a benchmark. The experiment will be limited to order one universal

portfolios and 3 stocks data are chosen for study.

We have identified the 95 most active stocks in KLSE. In Table 2.1 in Chap-

ter 2, the first group of data starting from 1 January 2015 to 31 December 2015

consists of 95 stocks data. The second group is 4 years period starting from 1

January 2012 to 31 December 2015 consists of 90 stocks data where stock data

with codes 5222, 5227, 5209, 5225 and 6399 are excluded because there were

no transaction from year 2012 to 2014 . The third group is 8 years trading pe-

riod starting from 1 January 2008 to 31 December 2015 consists of 80 stocks data

where the stock data excluded are codes 5183, 5141, 5186, 5211, 5176, 5180,

5212, 5210, 5218, 6912 and all the codes excluded in four years trading period

group. The fourth group is 12 years period starting from 1 January 2004 to 31

December 2015 consists of 66 stocks data excluded the stocks with codes 3336,

5131, 7052,1818, 5139, 5168, 6947, 2593, 5027, 5126, 5135, 5138,1591, 3859,

5090, 5099, 5347 and all the stock excluded in 4 years and 8 years period groups.
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While, the last group is 16 years of trading period starting from 1 January 2000

to 31 December 2015 consists of 63 stocks data where data are excluded in are

codes 7113, 5031, 7106 and all the stock data excluded in 4 years, 8 years and 12

years periods.

6.1 Performance Analysis of Four Universal Portfolio Strategies against CRP

We will investigate the performance of the four universal portfolio strategies by

analysing the basic statistics of Sn against the CRP performance. The price rel-

ative for a given stock is the ratio of the closing price to its opening price on the

same trading day. The summary of the analysis are calculated as log of the wealth

obtained. The histogram of the log of the ratio of the wealth obtained by the four

universal portfolio against the corresponding benchmark, CRP wealth are plotted.

6.1.1 Statistical Analysis of n-year Investment Based on “log Sn”

After running the Multinomial distribution generated universal portfolio algorithm

in Chapter 4, the data stored in “resultmultinomial.csv”. The summary of statisti-

cal analysis is calculated using R commands as below:

1 > setwd("/Volumes/SAMSUNG/PhD-Thesis/code/result1year")

2 > df=read.csv("resultmultinomial.csv",header=F)

3 > x =log(df$V4)
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4 > summary(x)

5 Min. 1st Qu. Median Mean 3rd Qu. Max.

6 -2.99000 -0.30040 0.07203 0.11340 0.47590 3.14600

In line number 2, the CSV file consist of the ratio of respective universal port-

folio wealth to CRP wealth. While for the CRP strategy, CSV file is read with the

log of the wealth obtained by this strategy. By loading other data files obtained

in Chapter 4 and performing basic statistical analysis, results of summary of the

statistical analysis are listed in the following tables.

93



Table 6.1: Short Term Period Data Analysis (1 Year Period)

Portfolio Strategies Min First Median Mean Third Max
Quartile Quartile

Multinomial -2.9900 -0.3004 0.0720 0.1134 0.4759 3.1460
Universal Portfolio

Multivariate Normal -2.9540 -0.2953 0.0672 0.1074 0.4615 3.0750
Universal Portfolio
Brownian Motion -2.8480 -0.2851 0.05780 0.0939 0.4303 2.8910

Universal Portfolio
OU Process -3.0830 -0.3088 0.0666 0.1075 0.4747 3.1761

Universal Portfolio
log(Sn(CRP )) -1.8430 -0.1040 0.2469 0.3051 0.6390 3.7700

Table 6.2: Middle Term Period Data Analysis (4 Years Period)

Portfolio Strategies Min First Median Mean Third Max
Quartile Quartile

Multinomial -3.6420 -0.3956 0.0653 0.1245 0.5532 4.3480
Universal Portfolio

Multivariate Normal -3.5830 -0.3914 0.0579 0.1161 0.5356 4.2520
Universal Portfolio
Brownian Motion -3.4300 -0.3798 0.0446 0.0980 0.49730 4.0050

Universal Portfolio
OU Process -3.7330 -0.4114 0.0552 0.1143 0.5492 4.3960

Universal Portfolio
log(Sn(CRP )) -1.8430 -0.1071 0.2430 0.3070 0.6467 3.7700

From Table 6.1 and Table 6.2, we obtained the median and mean with positive

values for the four universal portfolios. This indicate that the performances of the

four proposed universal portfolio strategies are better than CRP.
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Table 6.3: Middle Term Period Data Analysis (8 Years Period)

Portfolio Strategies Min First Median Mean Third Max
Quartile Quartile

Multinomial -8.4310 -0.8883 -0.0226 -0.1555 0.7735 5.8400
Universal Portfolio

Multivariate Normal -9.0200 -0.9381 -0.0247 -0.1704 0.8109 6.1520
Universal Portfolio
Brownian Motion -9.3050 -0.9625 -0.0256 -0.1818 0.8223 6.2600

Universal Portfolio
OU Process -9.3500 -0.9810 -0.0327 -0.1840 0.8335 6.3660

Universal Portfolio
log(Sn(CRP )) -1.5920 -0.0247 0.3121 0.3917 0.7271 3.7700

From Table 6.3, we observed that CRP is performed better than the four uni-

versal portfolio strategies.

95



Table 6.4: Long Term Period Data Analysis (12 Years Period)

Portfolio Strategies Min First Median Mean Third Max
Quartile Quartile

Multinomial -inf -2 0 -inf 1 16
Universal Portfolio

Multivariate Normal -inf -2 0 -inf 1 15
Universal Portfolio
Brownian Motion -inf -2 0 -inf 1 16

Universal Portfolio
OU Process -inf -2 0 -inf 1 16

Universal Portfolio
log(Sn(CRP )) -1.5850 -0.0472 0.2886 0.3830 0.7234 3.7470

Table 6.5: Long Term Period Data Analysis (16 Years Period)

Portfolio Strategies Min First Median Mean Third Max
Quartile Quartile

Multinomial -inf -2 0 -inf 1 40
Universal Portfolio

Multivariate Normal -inf -2 0 -inf 1 38
Universal Portfolio
Brownian Motion -inf -2 0 -inf 1 39

Universal Portfolio
OU Process -inf -2 0 -inf 1 40

Universal Portfolio
log(Sn(CRP )) -1.5850 -0.0548 0.2680 0.3610 0.6762 3.7470

From Table 6.4 and Table 6.5, we observed that the CRP is performed well

compared to the four proposed strategies. There are some extreme values showed

under mean, minimum value and maximum value of the four strategies . There-

fore, the summary values obtained in long term period is meaningless. The maxi-

mum values obtained for four proposed strategies are much more larger than CRP.

Hence, we can concluded that there are outliers and further analysis without these

outlier will be carried out on next section.
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In order to view the result graphically, the following histograms for short term

period, middle-term period and long term period are plotted using R commands

as below.

1 > setwd("/Volumes/SAMSUNG/PhD-Thesis/code/result1year")

2 > df=read.csv("resultmultinomial.csv",header=F)

3 > setEPS()

4 > postscript("resultmultinomial.eps")

5 > x=log(df$V4)

6 > coeff=density(x,na.rm=TRUE)

7 > hist(x,freq=FALSE,ylim=c(0,0.25))

8 > lines(coeff)

9 > dev.off()

Refer to line number 2, CSV files of each universal portfolio’s result with their

respective trading period are read and histogram are plotted in line number 7.
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Histogram for Multinomial (1 Year)
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Histogram for Multivariate Normal (1 Year)
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Histogram for Brownian Motion (1 Year)
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Histogram for OU Process (1 Year)
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Figure 6.1: Short Term Period Data Analysis (1 Year Period)

Figure 6.1 allows us to make the conclusion that the four graphs are slightly

skew to the left, same as the results shown in previous statistical analysis tables,

we can concluded that the wealths achieved by the four universal portfolio strate-

gies are better than the wealths achieved by CRP strategy.
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Histogram for Multinomial (4 Years)
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Histogram for Multivariate Normal (4 Years)

x

D
e
n
s
it
y

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Histogram for Brownian Motion (4 Years)
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Histogram for OU Process (4 Years)
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Figure 6.2: Middle Term Period Data Analysis (4 Years Period)

Figure 6.2 show that the four graphs are slightly skew to the left, even the

four graphs are pretty close in the shape, but the four strategies still consistently

beating the performance of CRP strategy.
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Histogram for Multinomial (8 Years)
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Histogram for Multivariate Normal (8 Years)
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Histogram for Brownian Motion (8 Years)
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Histogram for OU Process (8 Years)
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Figure 6.3: Middle Term Period Data Analysis (8 Years Period)

The third group data starting from 1 January 2008 to 31 December 2015. The

financial crisis happened at the end of year 2007 and beginning of year 2008

caused a huge impact on all financial markets around the world. The crisis dam-

aged investor confidence had an impact on global stock markets, where securities

suffered large losses during the late year 2008 and early year 2009. The analy-

sis of Figure 6.3 allow us to make the following conclusion, the four graphs are

slightly skew to the right, from the summary of analysis in table 6.3 also showed

that the four strategies are not perform well compared to CRP strategy.
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Histogram for Multinomial (12 Years)
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Histogram for Multivariate Normal (12 Years)
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Histogram for Brownian Motion (12 Years)
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Histogram for OU Process (12 Years)
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Figure 6.4: Long Term Period Data Analysis (12 Years Period)
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Histogram for Multinomial (16 Years)
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Histogram for Multivariate Normal (16 Years)
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Histogram for Brownian Motion (16 Years)
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Histogram for OU Process (16 Years)
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Figure 6.5: Long Term Period Data Analysis (16 Years Period)

Figure 6.4 and Figure 6.5 show that there are outliers in the result obtained.

Therefore, further analysis are carry out without the outlier to identify the perfor-

mances of the four proposed universal portfolio strategies.
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6.2 Performance Analysis on Data Without Outliers

In the previous section, we observe that the empirical distribution indicates that

for long term (12 years and 16 years), the four order one universal portfolios are

performed very badly (i.e. basically losing all money), therefore leading to some

outliers where some of the ratios very small which leads to −inf and some of the

ratios very big when taking logarithm. Therefore, in this section, we present the

analysis for the long term period without the outliers.
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Table 6.6: Long Term Period Data Analysis (12 Years Period) without Out-
liers

Portfolio Strategies Minimum First Median Mean Third Maximum
Quartile Quartile

Multinomial -4.9990 -1.6200 -0.4573 -0.3691 0.8410 4.9820
Universal Portfolio

Multivariate Normal -5.0000 -1.8530 -0.4408 -0.3500 0.8290 4.9990
Universal Portfolio
Brownian Motion -5.0000 -1.4940 -0.4199 -0.3222 0.7991 4.9880

Universal Portfolio
OU Process -4.9980 -1.6430 -0.4634 -0.3656 0.8527 4.9900

Universal Portfolio
log(Sn(CRP )) -1.5850 -0.0472 0.2886 0.3830 0.7234 3.7470

Table 6.7: Long Term Period Data Analysis (16 Years Period) without Out-
liers

Portfolio Strategies Minimum First Median Mean Third Maximum
Quartile Quartile

Multinomial -4.9990 -1.9460 -0.5129 -0.3840 1.1190 4.9970
Universal Portfolio

Multivariate Normal -4.9980 -1.8940 -0.4991 -0.3638 1.1150 5.000
Universal Portfolio
Brownian Motion 4.9990 -1.7900 -0.4645 -0.3383 -0.1075 4.9970

Universal Portfolio
OU Process -5.0000 -1.9500 -0.5207 -0.3792 1.1360 4.9980

Universal Portfolio
log(Sn(CRP )) -1.5850 -0.0548 0.2680 0.3610 0.6762 3.7470

From the Table 6.6 and Table 6.7, the summary values obtained after removing

the outliers show that the performances of CRP in 12 years and 16 years again

performed better than the proposed four strategies. The following Figures show

the graphs plotted without the outliers for long term period groups (12 years and

16 years ).
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Histogram for Multinomial (12 Years)

y

D
e
n
s
it
y

−4 −2 0 2 4

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

Histogram for Multinomial (16 Years)
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Histogram for Multivariate Normal (12 Years)
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Histogram for Multivariate Normal (16 Years)
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Figure 6.6: Long Term Period Data Analysis (12 and16 Years Period) without
Outliers for MNUP and MVNUP
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Histogram for Brownian Motion (12 Years)
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Histogram for Brownian Motion (16 Years)
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Histogram for OU Process (12 Years)
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Histogram for OU Process (16 Years)
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Figure 6.7: Long Term Period Data Analysis (12 and 16 Years Period) with-
out Outliers for BMUP and OUUP

Form the Figure 6.6 and Figure 6.7, the spread of the graphs of four universal

portfolio in 16 years period are larger than graphs in 12 years period. The data

are clustered around the mean for 12 years period data. Notice that the proposed

four universal portfolios performed better in 12 years period group compare to 16

years period group after removing the outliers.

From the above analysis and discussion, we can conclude that the four pro-
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posed universal portfolio strategies are perform well for the short term period and

the middle term period (only 4 years period). Unfortunately, the four strategies

are not perform well in 8 years period (middle term) and long term period.

6.3 Performance Analysis of Four Universal Portfolio Strategies against CRP

with Redefined the Price Relative

In this section, we will try to compare the performances of four proposed strate-

gies with benchmark KLCI. The price relatives for a given stock change to the

ratio of closing price on the current trading day to the closing price on the day

before. However, if the stock splits or bonus issue was announced by the respec-

tive company, the stock’s price has either increased or decreased sharply, the price

relative will be calculated as the ratio of closing price to its opening price on the

same trading day. The performance of the benchmark CRP is compared to the

KLCI ratio where this ratio is calculated as the log of closing index to its opening

index for the respective trading period.

6.3.1 Statistical Analysis of n-year Investment Based on “log Sn” with Re-

defined the Price Relative

Similar to previous section, the performance of the four universal portfolio strate-

gies are analysed. The statistical analysis of the ratio of Sn against the CRP perfor-

mance are performed. The summary of statistical analysis of the results obtained

are calculated as log of the ratio of Sn. The short term, middle term and long
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term period statistical analysis are shown in the following tables. The graph of the

log of the ratio of the wealth obtained by the four universal portfolio against the

corresponding benchmark, CRP wealth are plotted.

Table 6.8: Short Term Period Data Analysis (1 Year Period) with Redefined
the Price Relative

Portfolio Strategies Min First Median Mean Third Max
Quartile Quartile

Multinomial -4.2260 –1.1140 -0.5467 -0.5935 -0.0218 2.1116
Universal Portfolio

Multivariate Normal -4.0850 -1.0720 -0.5272 -0.5671 -0.0178 2.0690
Universal Portfolio
Brownian Motion -3.6920 -0.9513 -0.4475 -0.4809 0.02168 1.9970

Universal Portfolio
OU Process -4.21500 -1.1100 -0.5498 -0.5896 -0.0249 2.1250

Universal Portfolio
log(Sn(CRP )) 0.2045 0.9622 1.5330 2.2890 2.6450 76.4800

log(KLCIRatio) -0.0395

First, we analyse the performance of short term period. From the Table 6.8,

we obtained the median and mean with negative values for the four portfolios.

This indicate that the four proposed universal portfolio strategies are not perform

well compare to CRP and KLCI. Noticed that CRP strategy is performed better

than KLCI.
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Table 6.9: Middle Term Period Data Analysis (4 Years Period) with Redefined
the Price Relative

Portfolio Strategies Min First Median Mean Third Max
Quartile Quartile

Multinomial -4.3310 -1.1440 -0.5683 -0.6146 -0.0330 2.2011
Universal Portfolio

Multivariate Normal -4.1650 -1.1000 -0.5499 -0.5872 -0.0290 2.0891
Universal Portfolio
Brownian Motion -3.7120 -0.9731 -0.4649 -0.4973 0.0129 1.9970

Universal Portfolio
OU Process -4.3511 -1.1370 -0.5718 -0.6101 -0.0360 2.2176

Universal Portfolio
log(Sn(CRP )) 0.2541 0.9693 1.5160 2.3520 2.7210 76.4820

log(KLCIRatio) 0.1052

Table 6.10: Middle Term Period Years Data Analysis (8 Years Period) with
Redefined the Price Relative

Portfolio Strategies Min First Median Mean Third Max
Quartile Quartile

Multinomial -4.2103 -1.2100 -0.6189 -0.6625 -0.0632 2.0880
Universal Portfolio

Multivariate Normal -4.1010 -1.1620 -0.5954 -0.6327 -0.0573 2.2134
Universal Portfolio
Brownian Motion -3.5991 -1.02400 -0.5014 -0.5344 -0.0077 1.9945

Universal Portfolio
OU Process -4.2240 -1.2010 -0.6189 -0.6566 -0.0642 2.1311

Universal Portfolio
log(Sn(CRP )) 0.2066 0.9916 1.6410 2.5060 2.9150 76.4816

log(KLCIRatio) 0.1590

Next, we analyse the results obtained for middle term period. From Table 6.9

and Table 6.10, we again obtained the median and mean with negative values

for the four universal portfolios strategies. This indicate that the four proposed

universal portfolio strategies still performed poorly when compare to benchmark

CRP and KLCI. Furthermore, CRP still performed better than KLCI.
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Table 6.11: Long Term Period Years Data Analysis (12 Years Period) with
Redefined the Price Relative

Portfolio Strategies Min First Median Mean Third Max
Quartile Quartile

Multinomial -4.2212 -1.2850 -0.6719 -0.7072 -0.0840 2.1157
Universal Portfolio

Multivariate Normal -4.0978 -1.2850 -0.6719 -0.7072 -0.0840 2.0988
Universal Portfolio
Brownian Motion -3.7100 -1.0960 -0.5505 -0.5750 -0.0186 1.9876

Universal Portfolio
OU Process -4.2219 -1.2830 -0.6753 -0.7045 -0.0849 2.1250

Universal Portfolio
log(Sn(CRP )) 0.2088 0.9716 1.6750 2.6250 3.0660 74.8850

log(KLCIRatio) 0.7576

Table 6.12: Long Term Period Data Analysis (16 Years Period) with Rede-
fined the Price Relative

Portfolio Strategies Min First Median Mean Third Max
Quartile Quartile

Multinomial -4.2159 -1.2970 -0.6807 -0.7191 -0.0939 2.2213
Universal Portfolio

Multivariate Normal -4.0798 -1.2490 -0.6610 -0.6903 -0.0893 2.0645
Universal Portfolio
Brownian Motion -3.7001 -1.6970 -0.5542 -0.5807 -0.0268 1.9897

Universal Portfolio
OU Process -4.2139 -1.2890 -0.6844 -0.7134 -0.0951 2.1245

Universal Portfolio
log(Sn(CRP )) 0.2044 0.9768 1.6790 2.6430 3.0790 74.8250

log(KLCIRatio) 0.7332

The analysis of results obtained for long term periods are showed in Table 6.11

and Table 6.12. Both tables still showed the negative values of mean and median.

Hence, we concluded that the CRP is performed well compared to the four pro-

posed universal portfolio strategies for long term period.

In order to view the result graphically, the following histograms for short term

period, middle-term period and long term period analysis are plotted.
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Histogram for Multinomial (1 Year)
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Histogram for Multivariate Normal (1 Year)
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Histogram for Brownian Motion (1 Year)
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Histogram for OU Process (1 Year)
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Figure 6.8: Short Term Period Data Analysis (1 Year Period) with Redefined
the Price Relative

From the Figure 6.8, the four graphs are skew to the left, these concluded that

the four universal portfolio strategies are not performed good when compare to

CRP strategy. There are only around 25% of the results showed the four universal

portfolio strategies can beat the CRP strategy in short term investment.
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Histogram for Multinomial (4 Years)
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Histogram for Multivariate Normal (4 Years)
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Figure 6.9: Middle Term Period Data Analysis (4 Years Period) with Rede-
fined the Price Relative
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Histogram for Multinomial (8 Years)

x

D
e
n
s
it
y

−4 −3 −2 −1 0 1 2

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Histogram for Multivariate Normal (8 Years)

x

D
e
n
s
it
y

−4 −3 −2 −1 0 1 2

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Histogram for Brownian Motion (8 Years)

x

D
e
n
s
it
y

−4 −3 −2 −1 0 1 2

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Histogram for OU Process (8 Years)

x

D
e
n
s
it
y

−4 −3 −2 −1 0 1 2

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Figure 6.10: Middle Term Period Analysis (8 Years Period) with Redefined
the Price Relative

For the middle term analysis, Figure 6.9 and Figure 6.10 allow us to make

the following conclusion, all the histograms are skew to the left even they are

close in the shape. The CRP strategy is consistently beating the four propose

universal portfolio strategies. The histograms also show that around 25% of the

results indicated the four universal portfolio strategies can perform better than

CRP strategy in middle term investment.
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Histogram for Multinomial (12 Years)
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Figure 6.11: Long Term Period Data Analysis (12 Years Period) with Rede-
fined the Price Relative
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Histogram for Multinomial (16 Years)
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Figure 6.12: Long Term Period Data Analysis (16 Years Period) with Rede-
fined the Price Relative

For the long term investment, From Figure 6.11 to Figure 6.12, again the his-

tograms showed the results obtained still skew to the left. This led us to conclude

that the four universal portfolio strategies are still not perform better than CRP

strategy in long term period.

In summary, in order to compare to KLCI, when the price relatives for a given

stock changed to ratio of the closing price on the current trading day to the closing
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price on the day before, the analysis of the results obtained conclude that CRP

strategies are outperform the four propose universal portfolio strategies in short

term, middle term and long term period investment.

6.4 Summary and Thoughts on Performance Analysis

The numerical experiment comparison of the achieved wealth by four different

universal portfolio strategies against the constant rebalanced portfolio are stud-

ied. The empirical performances of the four portfolio strategies are investigated

through a set of numerical experiments concerning 95 stocks data selected from

Kuala Lumpur Stock Exchange.

So far, the research of universal portfolios in Malaysia was focused on de-

termining the best performing parameters for m stocks. In the first section of

this chapter, The result obtained emphasise the proposed investment strategy per-

formed better than the constant rebalanced portfolio for short term. Also, the

performance of the four proposed universal portfolio strategies performed more

or less the same as the CRP. We believe that most parameters of these four order

one universal portfolio strategies for 3 stocks computation will perform more or

less the same. This may due to the nature of the joint distribution of the random

variables Y1, Y2, Y3. The four universal portfolio strategies are performed well

comparing to CRP for short term. However, they are found performed terribly

when trading in middle to long term.
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In second section, in order to compare with benchmark KLCI, noticed that the

four universal portfolio strategies did not perform well for short term, middle term

and long term period. However, CRP is consistently performed good throughout

the three terms.

As a conclusion, CRP is better and more stable strategy. In contrast, four

universal portfolios may be able to achieve better return in wealth some of the

time at the larger risks.
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CHAPTER 7

CONCLUSION

The goal of our research is to study how the finite order universal portfolio strate-

gies perform for a fund which invest on 3 out of 95 Malaysian stocks. Since uni-

versal portfolio strategies are comparable to BCRP, we will use CRP as a bench-

mark for comparison. The study was limited to four proposed universal portfolio

strategies, the finite order Multinomial Universal Portfolio, the finite order Mul-

tivariate Normal universal portfolio, universal portfolio generated by Brownian-

motion and universal portfolio generated by Ornstein-Uhlenbeck processes.

After collecting and compiling the 95 Malaysian stock data, I proceed to pro-

pose a unified framework for the research carried out by Tan (2004b), Tan et al.

(2012), Tan & Lim (2011) and Tan (2013) research group. Using the basic prob-

ability theory, I have formalised the finite order universal portfolio. This type of

universal portfolio depends only on the positive moments of the generating proba-

bility distribution. The moments of the proposed universal portfolio are computed

for low order, i.e, order one, two and three. The price relatives used for a given

stock is the ratio of closing price to the opening price on the same trading day.

Based on the formulas derived from the finite order portfolios, we have im-

plemented them in Python programming language to test how well they perform.

Cover have shown both mathematically and numerically that universal portfolio

performed well. To show that the finite order universal portfolio perform well,

they are compared against Cover’s Dirichlet (α1, α2, α3) universal portfolio strat-
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egy. I used the modified algorithm of Diriclet (α1, α2, α3)universal portfolio ob-

tained by Tan (2004b) to perform computation on three stock data selected from

Kuala Lumpur Stock Exchange. The finite order universal portfolio performed as

good as Cover’s universal portfolio, but finite order universal portfolio is compu-

tationally better in speed and memory.

An experimental study of the above four universal portfolios strategies was

conducted for the 10 most active stocks data among the 95 selected stocks from

kuala Lumpur Stock Exchange. The trading period is from 1 Jan 2000 to 31 Dec

2015. From the first section in Chapter 5, the proposed four finite order univer-

sal portfolios strategies are found can perform better than the Cover Ordentlich

Dirichlet universal portfolio for same data sets. Noticed that the four universal

portfolios with order one performed as well as order two and three. Therefore,

this research will be limited to order one universal portfolio.

The above four order one universal portfolios are run on 3 stock-price data

sets generated by the combination of the 10 selected most active stocks from the

95 selected stocks. Selection of good parameters for each proposed universal

portfolios are carry out. We use CRP as a benchmark to evaluate and to compare

with these four universal portfolio strategies. A comparison can be made with the

wealth obtained by CRP and the wealths achieved by the four proposed universal

portfolios. Every one year period starting from year 2000 to year 2015 of the

available stock data are used for study. The best performing parameter of all four

classes of universal portfolio strategies were identified from the box-plot plotted.

Next, we studied the performances of four proposed universal portfolio strate-

gies with their best performance parameters identified in previous study. Numer-
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ical experiment for the four classes of portfolio strategies are studied for short

term (1 year period), middle term (4 years and 8 years periods) and long term

(12 years and 16 years periods) data. We employed the four portfolio strategies

on the above five groups of data to learn the performance of these methods and

used CRP as a benchmark. Every 3 stocks data generated by combination of the

selected of 95 stocks are chosen for study. The empirical results showed that the

performances of the proposed four strategies are better than CRP in 1 year and 4

years period. However, the four strategies did poorly in 8 years, 12 years and 16

years period. Therefore, these four universal portfolio strategies are confirmed to

be an extremely competitive investment strategies in short term period.

Lastly, we try to compare the performances of four proposed strategies to

KLCI. We changed the price relatives for a given stock as the ratio of closing

price on the current trading day to the closing price on the day before. After the

investigation and analysis of the results obtained, we found that the four proposed

universal portfolio strategies are not perform good compared to benchmark CRP

and KLCI in short term, middle term and long term period. Furthermore, CRP is

consistently performed good when compare to four proposed universal portfolio

strategies and KLCI in short, middle and long term period.

In conclusion, this research has simplified the formulation of µ-weighted uni-

versal portfolio Cover & Ordentlich (1996) and order ν universal portfolio Tan

(2013) using probability theory and further extend to probability generated order

ν universal portfolio to stochastic process based universal portfolio. The order

ν universal portfolio has much better speed and memory performance as well as

easy to implement in a high level programming language as illustrated in this re-

search. The four order one universal portfolio strategies are found to perform

better than CRP in the short term when used the price relatives mentioned in first
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section of Chapter 6. Therefore, these four universal portfolio strategies are con-

firmed to be an extremely competitive investment strategies in short term period.

Stochastic processes based universal portfolio is a good generalisation order

ν universal portfolio which is believed be able to perform well with the right

stochastic processes. However, the derivation of the algorithm will be more com-

plicated. Malaysian stock data are used in this research and we believe that the

order ν universal portfolio may help to promote active online trading for Malaysia

stock market, as well as to have more investment opportunities for Malaysian but

with the right combination of stocks.

7.1 Further Research

So far, the research of universal portfolios in Malaysia was focused on determin-

ing the best performing parameters for m ≤ 10 stocks. In analysing the perfor-

mance of the four strategies, we find that they perform more or less the same as

the CRP. We believe that most of the parameters for these four order one strate-

gies with 3 stocks study will perform more or less the same. This may due to the

nature of the joint distribution of the random variables Y1, Y2, Y3.

The four universal portfolio strategies are found to perform better than CRP for

short term in first section of Chapter 6. However, they are found perform poorly

when trading in middle to long term. Therefore, further study for the causes of

the poor performance of the proposed four strategies in middle and long term are

suggest to carry out for future.
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Furthermore, the four universal portfolio strategies are found to perform poorly

in short term, middle term and long term when comparing to KLCI. In this situ-

ation, suggest further study to investigate the causes of the poor performance of

the proposed four strategies in the future.

The result also showed that the influences of parameters of the strategies to the

wealth obtained. Therefore, it is important to understand whether different values

of the parameters of the universal portfolio strategies will demonstrate similar

pattern. It is also important to try the order one universal portfolios on the United

State and European Stocks to see if the performance with respect to CRP are

similar.

The proposed four order one universal portfolio strategies did not perform

well with some possible combinations of Malaysian stocks. I believe if we choose

the right combination of stocks will lead to the four strategies perform as well as

CRP strategy. Also, it is interesting to see if higher finite order universal portfolio

strategies of mixing strategies approach will reduce the occurrence of outliers in

long term.
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APPENDIX A

SET A, SET B AND SET C DATASETS

Three sets of stocks data shown in the following figures were selected randomly

from KLSE (Kuala Lumpur Stock Exchange) and Yahoo Finance Yahoo (n.d.)

for the period from 1 January, 2003 to 30 November, 2004, consisting of 500

trading days. Each set consists of 3 company stocks. Set A consists of the stocks

of Malayan Banking, Genting and Amway(M) Holdings. Set B consists of the

stocks of Public Bank, Sunrise and YTL Corporation. Lastly, set C consists of the

stocks of Hong Leong Bank, RHB Capital and YTL Corporation.

There is a gap shown in the graph of Public Bank and Sunrise. This may

cause by the stock splits or bonus issue was announced by the respective company.

When a gap in a stock occurs, it means the stock’s price has either increased or

decreased sharply with no trading occurring in between. On a chart, this abrupt

price movement will form an empty space or break between the prices.
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APPENDIX B

TEN MOST ACTIVE STOCKS

The following figures showed the 10 most active and long-term (having at least

10 years being listed in the stock exchange) stocks from each categories among

the 95 selected stocks.

There is a gap shown in the graph of Bursa Malaysia Bhd, Genting and Time

Dotcom. This may cause by the stock splits or bonus issue was announced by the

respective company. When a gap in a stock occurs, it means the stock’s price has

either increased or decreased sharply with no trading occurring in between. On a

chart, this abrupt price movement will form an empty space or break between the

prices.
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APPENDIX C

WELL PERFORMING PARAMETERS

For selection of well performing parameters for each universal portfolios, we use

CRP as a benchmark to evaluate and to compare with these four universal portfo-

lio strategies. A comparison can be made with the wealth obtained by CRP and

the wealth achieved by the four proposed universal portfolios. Every one year

period starting from year 2000 to year 2015 of the available stock data listed in

Table 2. At least 20% of the wealth achieved by proposed universal portfolio per-

formed better than wealth obtained by CRP are analysed. The good performance

of the parameters of each universal portfolio with average and standard deviation

is observed and listed in the following table.
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Strategies Duration Average Standard Deviation

Multinomial [0.8,

0.001, 50]

1 Jan 2015 to 31

Dec 2015

1.872272 0.144625964

Multinomial [0.8,

0.001, 600]

1Jan 2015 to 31

Dec 2015

1.872129 0.1446316

Multinomial [0.9,

0.004, 10]

1 Jan 2015 to 31

Dec 2015

2.0260995 0.083495876

Multinomial [0.9,

0.1, 600]

1 Jan 2015 to 31

Dec 2015

2.021586 0.078432284

Multinomial

[0.95, 0.05, 99]

1 Jan 2015 to

31Dec 2015

2.105049 0.047998408

Multinomial [0.9,

0.004, 10]

1 Jan 2014 to 31

Dec 2015

7.3133625 1.162690731

Multinomial [0.9,

0.1, 600]

1 Jan 2014 to 31

Dec 2015

7.3025065 1.205954352

Multinomial

[0.95, 0.05, 99]

1 Jan 2014 to 31

Dec 2015

7.9577425 0.708231788

Multinomial [0.9,

0.004, 10]

1 Jan 2013 to 31

Dec 2015

30.06651151 8.336130634

Multinomial [0.9,

0.1, 600]

1 Jan 2013 to 31

Dec 2015

30.0945315 8.537531616

Multinomial

[0.95, 0.05, 99]

1 Jan 2013 to 31

Dec 2015

33.7422785 4.745774739
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Strategies Duration Average Standard Deviation

Multinomial [0.8,

0.001, 50]

1 Jan 2008 to 31

Dec 2015

158.612327 97.71612695

Multinomial [0.8,

0.001, 600]

1 Jan 2008 to 31

Dec 2015

158.587814 97.72132277

Multinomial [0.9,

0.004, 10]

1 Jan 2008 to 31

Dec 2015

237.065062 74.75428805

Multinomial [0.9, 0.1,

600]

1 Jan 2008 to 31

Dec 2015

238.6583255 77.68982841

Multinomial [0.95,

0.05, 99]

1 Jan 2008 to 31

Dec 2015

296.497761 48.91055484

Multinomial [0.8,

0.001, 50]

1 Jan 2007 to 31

Dec 2015

132.2665145 75.33927112

Multinomial [0.8,

0.001, 600]

1 Jan 2007 to 31

Dec 2015

132.2201705 75.31942405

Multinomial [0.9,

0.004, 10]

1 Jan 2007 to 31

Dec 2015

204.8146685 61.20016333

Multinomial [0.9, 0.1,

600]

1 Jan 2007 to 31

Dec 2015

204.964026 62.10088514

Multinomial [0.95,

0.05, 99]

1 Jan 2007 to 31

Dec 2015

258.1299895 41.37791389

Multinomial [0.8,

0.001, 50]

1 Jan 2006 to 31

Dec 2015

178.6115835 113.2260044

Multinomial [0.8,

0.001, 600]

1 Jan 2006 to 31

Dec 2015

178.537211 113.2070136

Multinomial [0.9,

0.004, 10]

1 Jan 2006 to 31

Dec 2015

277.5363855 92.07861702

Multinomial [0.9, 0.1,

600]

1 Jan 2006 to 31

Dec 2015

274.7625725 91.26704653

Multinomial [0.95,

0.05, 99]

1 Jan 2006 to 31

Dec 2015

347.7052635 58.89452853
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Strategies Duration Average Standard Deviation

Multinomial [0.8,

0.001, 50]

1 Jan 2005 to 31

Dec 2015

239.105569 167.9310497

Multinomial [0.8,

0.001, 600]

1 Jan 2005 to 31

Dec 2015

239.00653 167.8962275

Multinomial [0.9,

0.004, 10]

1 Jan 2005 to 31

Dec 2015

380.6836375 141.8727569

Multinomial [0.9,

0.1, 600]

1 Jan 2005 to 31

Dec 2015

379.5841465 142.4877631

Multinomial

[0.95, 0.05, 99]

1 Jan 2005 to 31

Dec 2015

487.8792055 95.32278617

Multinomial [0.8,

0.001, 50]

1 Jan 2004 to 31

Dec 2015

400.2781995 212.1060772

Multinomial [0.8,

0.001, 600]

1 Jan 2004 to 31

Dec 2015

400.128036 212.0530265

Multinomial [0.9,

0.004, 10]

1 Jan 2004 to 31

Dec 2015

604.2257875 157.7730287

Multinomial [0.9,

0.1, 600]

1 Jan 2004 to 31

Dec 2015

602.6234155 157.7730287

Multinomial

[0.95, 0.05, 99]

1 Jan 2004 to 31

Dec 2015

748.3181105 102.8328358

Multinomial

[0.001, 0.8, 50]

1 Jan 2003 to 31

Dec 2015

32.215131 11.89520483

Multinomial

[0.001, 0.8, 600]

1 Jan 2003 to 31

Dec 2015

32.187138 11.91306069

Multinomial

[0.001, 0.8, 50]

1 Jan 2001 to 31

Dec 2015

24.7398855 0.16061577

Multinomial

[0.001, 0.8, 600]

1 Jan 2001 to 31

Dec 2015

24.730969 0.160571222
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Strategies Duration Average Standard Deviation

Brownian motion (100, 1,

10, 1.4, 2.5, 3.6 )

1 Jan 2015 to 31

Dec 2015

2.0265425 0.079012819

Brownian-motion (100, 10,

1, 1.4, 2.5, 3.6)

1Jan 2015 to 31

Dec 2015

2.023856 0.070359953

Brownian-motion (100, 1,

10, 1.4, 2.5, 3.6)

1 Jan 2014 to 31

Dec 2015

7.3190495 1.146490914

Brownian-motion(100, 10,

1, 1.4, 2.5, 3.6)

1 Jan 2014 to 31

Dec 2015

7.30123 1.118149367

Brownian-motion (100, 1,

10, 1.4, 2.5, 3.6)

1 Jan 2013 to 31

Dec 2015

30.064781 8.165413136

Brownian-motion (100, 10,

1, 1.4, 2.5, 3.6)

1 Jan 2013 to 31

Dec 2015

29.811969 7.895890902

Brownian-motion [100, 1,

10, 1.4, 2.5, 3.6]

1 Jan 2008 to 31

Dec 2015

235.709762 70.87220535

Brownian-motion [100, 10,

1, 1.4, 2.5, 3.6]

1 Jan 2008 to 31

Dec 2015

238.609657 75.33569953
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Strategies Duration Average Standard Deviation

Brownian-motion [100, 1,

10, 1.4, 2.5, 3.6]

1 Jan 2007 to 31

Dec 2015

205.250947 60.58070031

Brownian-motion [100, 10,

1, 1.4, 2.5, 3.6]

1 Jan 2007 to 31

Dec 2015

201.434666 55.46979897

Brownian-motion [100, 1,

10, 1.4, 2.5, 3.6]

1 Jan 2006 to 31

Dec 2015

278.414544 89.7088738

Brownian-motion [100, 10,

1, 1.4, 2.5, 3.6]

1 Jan 2006 to 31

Dec 2015

271.118674 82.66402834

Brownian-motion [100, 1,

10, 1.4, 2.5, 3.6]

1 Jan 2005 to 31

Dec 2015

384.4106285 137.6970185

Brownian-motion [100, 10,

1, 1.4, 2.5, 3.6]

1 Jan 2005 to 31

Dec 2015

382.468823 137.9797162

Brownian-motion [100, 1,

10, 1.4, 2.5, 3.6]

1 Jan 2004 to 31

Dec 2015

604.4072875 154.8509637

Brownian-motion [100, 10,

1, 1.4, 2.5, 3.6]

1 Jan 2004 to 31

Dec 2015

595.479407 148.4204222

Brownian-motion [1, 10,

100, 1.4, 2.5, 3.6]

1 Jan 2003 to 31

Dec 2015

50.535135 13.37465041

Brownian-motion [1, 10,

100, 1.4, 3.6, 2.5]

1 Jan 2003 to 31

Dec 2015

50.534848 13.37537307

Brownian-motion [1, 10,

100, 2.5, 1.4, 3.6]

1 Jan 2003 to 31

Dec 2015

50.53511 13.37392067

Brownian-motion [1, 10,

100, 2.5, 3.6, 1.4]

1 Jan 2003 to 31

Dec 2015

50.5346405 13.37510508

Brownian-motion [1, 10,

100, 3.6, 1.4, 2.5]

1 Jan 2003 to 31

Dec 2015

50.5347845 13.37350136

Brownian-motion [1, 10,

100, 3.6, 2.5, 1.4]

1 Jan 2003 to 31

Dec 2015

50.5346015 13.37396381

Brownian-motion [10, 1,

100, 1.4, 2.5, 3.6]

1 Jan 2003 to 31

Dec 2015

45.0898545 5.490426062
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Strategies Duration Average Standard Deviation

Brownian-motion[1, 100,

10, 1.4, 2.5, 3.6]

1 Jan 2001 to 31

Dec 2015

22.2905245 0.497273551

Brownian-motiom [1, 10,

100, 1.4, 2.5, 3.6]

1 Jan 2000 to 31

Dec 2015

19.3637865 6.39364608

Brownian-motion [1, 10,

100, 1.4, 3.6, 2.5]

1 Jan 2000 to 31

Dec 2015

18.075308 4.570732577

Brownian-motion [1, 10,

100, 2.5, 1.4, 3.6]

1 Jan 2000 to 31

Dec 2015

19.3638495 6.393660223

Brownian-motion [1, 10,

100, 2.5, 3.6, 1.4]

1 Jan 2000 to 31

Dec 2015

19.364966 6.394042767

Brownian-motion [1, 10,

100, 3.6, 1.4, 2.5]

1 Jan 2000 to 31

Dec 2015

19.36463 6.393915488

Brownian-motion [1, 10,

100, 3.6, 2.5, 1.4]

1Jan 2000 to 31

Dec 2015

19.365065 6.394063981

Brownian-motion [10, 1,

100, 1.4, 2.5, 3.6]

1 Jan 2000 to 31

Dec 2015

18.3479715 4.638068234

C-138



Strategies Duration Average Standard Deviation

MultivariateNormal [7.1,

0.2, 0.8, 1.0]

1 Jan 2015 to 31

Dec 2015

1.955066 0.09180933

Multivariate Normal [7.1,

0.8, 0.2, 1.0]

1Jan 2015 to 31

Dec 2015

1.956286 0.081379505

Multivariate Normal [9.0,

0.1, 0.1, 2.0]

1 Jan 2015 to 31

Dec 2015

2.0877165 0.041910926

Multivariate Normal [7.1,

0.2, 0.8, 1.0]

1 Jan 2014 to 31

Dec 2015

6.742861 1.501959857

Multivariate Normal [7.1,

0.8, 0.2, 1.0]

1 Jan 2014 to 31

Dec 2015

6.69516 1.395113194

Multivariate Normal [9.0,

0.1, 0.1, 2.0]

1 Jan 2014 to 31

Dec 2015

7.770994 0.763040342

Multivariate Normal [7.1,

0.2, 0.8, 1.0]

1 Jan 2013 to 31

Dec 2015

185.063506 72.81175258

multivariate Normal [7.1,

0.8, 0.2, 1.0]

1 Jan 2013 to 31

Dec 2015

193.523848 85.71626608

Multivariate Normal[9.0,

0.1, 0.1, 2.0]

1 Jan 2013 to 31

Dec 2015

276.3518625 51.95913896

Multivariate Normal [7.1,

0.2, 0.8, 1.0]

1 Jan 2008 to 31

Dec 2015

27.2618865 9.966086718

multivariate Normal [7.1,

0.8, 0.2, 1.0]

1 Jan 2008 to 31

Dec 2015

26.586557 8.681444109

Multivariate Normal [9.0,

0.1, 0.1, 2.0]

1 Jan 2008 to 31

Dec 2015

32.4116065 5.123314606
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Strategies Duration Average Standard Deviation

Multivariate Normal [7.1,

0.2, 0.8, 1.0]

1 Jan 2007 to 31

Dec 2015

164.975529 69.01928153

multivariate Normal [7.1,

0.8, 0.2, 1.0]

1 Jan 2007 to 31

Dec 2015

161.813746 64.6768412

Multivariate Normal [9.0,

0.1, 0.1, 2.0]

1 Jan 2007 to 31

Dec 2015

240.5946675 45.23218466

Multivariate Normal [7.1,

0.2, 0.8, 1.0]

1 Jan 2006 to 31

Dec 2015

225.052084 98.65878373

multivariate Normal [7.1,

0.8, 0.2, 1.0]

1 Jan 2006 to 31

Dec 2015

214.1665545 89.89713179

Multivariate Normal [9.0,

0.1, 0.1, 2.0]

1 Jan 2006 to 31

Dec 2015

327.6703685 65.94573513

Multivariate Normal [7.1,

0.2, 0.8, 1.0]

1 Jan 2005 to 31

Dec 2015

313.443567 154.3113924

multivariate Normal [7.1,

0.8, 0.2, 1.0]

1 Jan 2005 to 31

Dec 2015

310.560472 154.978443

Multivariate Normal [9.0,

0.1, 0.1, 2.0]

1 Jan 2005 to 31

Dec 2015

467.2951875 101.9507625
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Strategies Duration Average Standard Deviation

Multivariate Normal [7.1,

0.2, 0.8, 1.0]

1 Jan 2004 to 31

Dec 2015

490.154204 183.1714692

multivariate Normal [7.1,

0.8, 0.2, 1.0]

1 Jan 2004 to 31

Dec 2015

471.429849 159.3962751

Multivariate Normal [9.0,

0.1, 0.1, 2.0]

1 Jan 2004 to 31

Dec 2015

701.0537485 110.2752124

Multivariate Normal [0.2,

0.8, 7.1, 1.0]

1 Jan 2003 to 31

Dec 2015

44.052089 15.0078507

multivariate Normal [0.8,

0.2, 7.1, 1.0]

1 Jan 2003 to 31

Dec 2015

39.6614195 8.585701144

Multivariate Normal [0.2,

8.1, 9.1, 2.0]

1 Jan 2001 to 31

Dec 2015

25.8827735 1.301132339

Multivariate Normal [0.2,

0.8, 7.1, 1.0]

1 Jan 2000 to 31

Dec 2015

17.940328 7.129771817

Multivariate Normal [0.2,

8.1, 9.1, 2.0]

1 Jan 2000 to 31

Dec 2015

14.691917 4.566167495

Multivariate Normal [0.8,

0.2, 7.1, 1.0]

1 Jan 2000 to 31

Dec 2015

17.200072 6.209487897
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Strategies Duration Average Standard Deviation

Ornstein [16, 0.1,

0.5,0.2,1.2,2]

1 Jan 2015 to 31

Dec 2015

2.121387 0.04412912

Ornstein [16, 0.5,

0.1,0.2,1.2,2]

1Jan 2015 to 31

Dec 2015

2.1186715 0.035085931

Ornstein [50, 0.5,

2,0.2,1.2,2]

1 Jan 2015 to 31

Dec 2015

2.111905 0.047320293

Ornstein [50, 2,

0.5,0.2,1.2,2]

1 Jan 2015 to 31

Dec 2015

2.109227 0.038255891

Ornstein [16, 0.1,

0.5,0.2,1.2,2]

1 Jan 2014 to 31

Dec 2015

8.067012 0.570505065

Ornstein[16, 0.5,

0.1,0.2,1.2,2]

1Jan 2014 to 31

Dec 2015

8.04818 0.536612023

Ornstein [50, 0.5,

2,0.2,1.2,2]

1 Jan 2014 to 31

Dec 2015

7.9887175 0.630782382

Ornstein [50, 2,

0.5,0.2,1.2,2]

1 Jan 2014 to 31

Dec 2015

7.9701295 0.594828831

Ornstein [16, 0.1,

0.5,0.2,1.2,2]

1 Jan 2013 to 31

Dec 2015

34.254638 3.75991303

Ornstein[16, 0.5,

0.1,0.2,1.2,2]

1Jan 2013 to 31

Dec 2015

33.9694685 3.468970409

Ornstein [50, 0.5,

2,0.2,1.2,2]

1 Jan 2013 to 31

Dec 2015

33.795792 4.234245915

Ornstein [50, 2,

0.5,0.2,1.2,2]

1 Jan 2013 to 31

Dec 2015

33.5046435 3.927663507
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Strategies Duration Average Standard Deviation

Ornstein [50, 0.5,

2,0.2,1.2,2]

1 Jan 2009 to 31

Dec 2015

189.172132 101.8969

Ornstein [50, 2,

0.5,0.2,1.2,2]

1 Jan 2009 to 31

Dec 2015

200.759345 117.3114418

Ornstein [16, 0.1,

0.5,0.2,1.2,2]

1 Jan 2008 to 31

Dec 2015

301.439745 35.3349362

Ornstein [16, 0.5, 0.1] 1 Jan 2008 to 31

Dec 2015

305.113613 41.01533286

Ornstein [50, 0.5, 2] 1 Jan 2008 to 31

Dec 2015

293.96517 39.45733479

Ornstein [50, 2, 0.5] 1 Jan 2008 to 31

Dec 2015

297.5198085 45.04923068

Ornstein [16, 0.1,

0.5,0.2,1.2,2]

1 Jan 2007 to 31

Dec 2015

266.2532905 35.79009871

Ornstein [16, 0.5,

0.1,0.2,1.2,2]

1 Jan 2007 to 31

Dec 2015

264.900757 34.06162922

Ornstein [50, 0.5,

2,0.2,1.2,2]

1 Jan 2007 to 31

Dec 2015

259.4439375 38.96697109

Ornstein [50, 2,

0.5,0.2,1.2,2]

1 Jan 2007 to 31

Dec 2015

257.844673 36.90749077

Ornstein [16, 0.1,

0.5,0.2,1.2,2]

1 Jan 2006 to 31

Dec 2015

363.7716645 50.53144935

Ornstein [16, 0.5,

0.1,0.2,1.2,2]

1 Jan 2006 to 31

Dec 2015

358.3183775 47.82847994

Ornstein [50, 0.5,

2,0.2,1.2,2]

1 Jan 2006 to 31

Dec 2015

353.992774 54.97640672

Ornstein [50, 2,

0.5,0.2,1.2,2]

1 Jan 2006 to 31

Dec 2015

347.856213 51.40405377
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Strategies Duration Average Standard Deviation

Ornstein [16, 0.1,

0.5,0.2,1.2,2]

1 Jan 2005 to 31

Dec 2015

511.4671185 78.54948217

Ornstein [16, 0.5,

0.1,0.2,1.2,2]

1 Jan 2005 to 31

Dec 2015

509.6434985 80.83019004

Ornstein [50, 0.5,

2,0.2,1.2,2]

1 Jan 2005 to 31

Dec 2015

497.090707 85.22536709

Ornstein [50, 2,

0.5,0.2,1.2,2]

1 Jan 2005 to 31

Dec 2015

494.9842985 87.83733822

Ornstein [16, 0.1,

0.5,0.2,1.2,2]

1 Jan 2004 to 31

Dec 2015

771.5952125 80.67172882

Ornstein [16, 0.5,

0.1,0.2,1.2,2]

1 Jan 2004 to 31

Dec 2015

762.823391 71.85391563

Ornstein [50, 0.5,

2,0.2,1.2,2]

1 Jan 2004 to 31

Dec 2015

752.528413 88.88544513

Ornstein [50, 2,

0.5,0.2,1.2,2]

1 Jan 2004 to 31

Dec 2015

742.4438335 78.66768072

Ornstein[0.1, 0.5,

16,0.2,1.2,2]

1 Jan 2003 to 31

Dec 2015

57.5212825 5.81661442

Ornstein[0.5, 0.1,

16,0.2,1.2,2]

1 Jan 2003 to 31

Dec 2015

55.8499615 3.217462427

Ornstein [0.5, 16,

0.1,0.2,1.2,2]

1 Jan 2003 to 31

Dec 2015

56.7503485 6.569207966

Ornstein [0.1, 0.5,

16,0.2,1.2,2]

1 Jan 2002 to 31

Dec 2015

27.1964845 1.721150938

Ornstein[0.5, 0.1,

16],0.2,1.2,2

1 Jan 2002 to 31

Dec 2015

26.3251285 0.779508152

Ornstein [0.5, 16,

0.1,0.2,1.2,2]

1 Jan 2002 to 31

Dec 2015

26.976849 1.914191797
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