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ABSTRACT

BOUNDARY MATCHING TECHNIQUESFOR
TERAHERTZ LOSSY GUIDING STRUCTURES

Yeap Kim Ho

In THz radio astronomy, waveguide heterodyne receivers are often used in
signal mixing. To ensure that the energy of the waves from the incoming
waveguide couples efficiently to the microstrip probe, an accurate and
versatile mathematical model that computes losses in waveguides is desirable
in the development of a mixer circuit.

In this thesis, a new and novel method to compute the propagation
constants in guiding structures is presented. This method is based on matching
the fields at the boundary with the constitutive properties of the wall material.
Compared to existing methods which assume lossless fields, the field
expressions in the new method can accommodate both lossless and lossy
cases. Unlike the existing methods which are geometry specific, the new
method is applicable to various structures including the circular and
rectangular waveguides, superconducting waveguides, and microstrip lines.

For circular and rectangular waveguides, simulation and experimenta
measurements were carried out to validate the new method. It is found that this
method is able to account the additional 1oss induced by mode coupling effects
in degenerate modes. This is in contrast to existing methods which fail to

account for multimode propagation.
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In the study of superconducting waveguides, the real conductivity is
replaced with a complex conductivity derived from the Bardeen-Cooper-
Schrieffer theory. It is found that at frequencies below the gap frequency, the
waveguide exhibited lossless transmission behaviour while above the gap
frequency, Cooper pairs breaking dominates and the loss increases
considerably. Considering that THz signals from astronomical sources are
extremely weak, the result suggests that superconducting waveguides that
operate at frequencies below the gap frequency can be applied in SIS receivers
to minimize the loss of such signals.

A full-wave analysis has also been performed on microstrip lines.
Since the new method accounts for the propagation of hybrid modes and
fringing loss, it is found to be more accurate compared to the conventional
quasi-static methods which only assume TEM mode propagation.
Superconducting microstrips are found to be dispersionless and exhibit a much
lower loss. A comparison is aso made between the performance of a
microstrip line and coplanar waveguide (CPW). Preliminary studies suggest
that at dimensions comparable with the wavelength, CPW exhibits lower loss
than a microstrip. The lower loss found in CPWs strongly suggests that CPWs
can be considered as a better aternative to microstrip line for THz waves

coupling in heterodyne receivers.
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CHAPTER 1

INTRODUCTION*

11 Scientific Motivation

Wave guiding structures such as circular and rectian waveguides
and microstrip transmission lines are widely usedadio receiver systems to
channel and couple signals to the mixer circuitsoider to ensure that the
received signal is converted in the mixer circuithwminimum loss, accurate
and versatile mathematical formulations are used gside to compute and
predict the losses in the guiding structures. Tétation of extremely weak
extraterrestrial signals at millimeter and submiter wavelengths poses an
interesting challenge (Withington, 2003). The mliter and submillimeter
bands of the electromagnetic spectrum hold the nmpgbrtant spectral and
spatial signatures in the field of astrophysicst &oample, the study of the
cosmic microwave background (CMB) radiation whigaks in the frequency
range of 100 GHz to 300 GHz provides an in depttewstanding on the
physics of the Big Bang theory and the formationtloé early universe
(Withington, 2003; Komatset al., 2010). Besides, the cold material (10-K
30 K) associated with the early stages of star@adet formation, as well as
the earliest stages of galaxy formation, has itkpamission in the millimeter
and submillimeter range as well (Barychev, 200%).aBalyzing and mapping

the lines in the millimeter and submillimeter bandsis essential to build

*Parts of this chapter were published in "K. H. Y,e@pY. Tham, G. Yassin, and K. C. YeomRyppagation in Lossy
Rectangular Waveguides, Electromagnetic Waves Propagation in Complex &tathtech, July 2011, pp. 255 — 272.”



models of astrophysical objects, which include terafure, density, large

scale movement of material, magnetic field stresgdotope abundance, etc.

In general, presently available formulations to paie the loss in
guiding structures are rather limited in three walse first limitation is that
the formulations (especially that for a rectanguleaveguide) are mostly
derived from the perturbation of the lossless c&gece the fields’ expression
in these methods is assumed to be identical withetlof a lossless waveguide,
they do not give an accurate insight on the agiogpagation characteristics
of waves in practical lossy waveguides. The sedondation is that these
formulations are designed only for very specifiometrical structures. For
example, Stratton’s equation (Stratton, 1941) cenirbplemented only in
circular waveguides but not rectangular waveguidesnformal mapping
methods (Wheeler, 1964; Wheeler, 1965; Wheeler,7;19¥assin and
Withington, 1995; Yassin and Withington, 1996a; MAgton and Yassin,
1996; Hammerstad and Jansen, 1980; Schneider, 1&&Hdourian and
Rimai, 1952) are only applicable for planar wavegsi such as microstrips.
The third limitation of these formulations is due gimplifications in mode
transmissions. For example, the power loss metliStatton, 1941; Seida,
2003; Collin, 1991; Cheng, 1989) that are appliedircular and rectangular
waveguides assume the propagation of single mattkshais do not take into
account the mode coupling effects of the concunpespagation of degenerate
modes (Imbrialeet al., 1998). Similarly, the quasi-static methods (Weee
1964; Wheeler, 1965; Wheeler, 1977; Yassin and Mftbn, 1995; Yassin

and Withington, 1996a; Withington and Yassin, 19%&mmerstad and



Jansen, 1980; Schneider, 1969; Assadourian andiRi®B2; Yamashita and
Mittra, 1968; Yamashita, 1968; Green, 1965; Stilfene1968; Schneider,
1965; Matick, 1969; Kautz, 1978) in microstrips wasg the propagation of
the transverse electromagnetic (TEM) mode. At fesmies where the
wavelengths are comparable with the dimensions hef $tructures, the
longitudinal components of the hybrid modes camomger be neglected. This

means that these methods are inaccurate at higlogreincies.

In this thesis, a new formulation in computingskes in wave guiding
structures that is novel and fundamental is proho$be main advantage of
this formulation is that it can be easily geneeizo solve for characteristic
equations with more than one unknown variablesnyching hybrid fields
to the material property at the boundary of thadtres this method is found
to account for the superposition of both TransveEectric (TE) and
Transverse Magnetic (TM) modes. This is an addedamtdge as the
formulation can be implemented at higher frequencieillimeter and
submillimeter wavelengths). In addition, the foratidn is general and can be
applied to any structure as long as the geometry lsa put into the
formulation. In this thesis, this formulation haseb applied to compute the

loss in rectangular waveguides, circular wavegyided microstrip lines.

1.2  Technological Background

Millimeter and submillimeter waves are attenuated dignificant

levels of precipitation and are absorbed in theoaphere by water vapor and



oxygen. Hence, to be able to observe stellar seueféectively, radio
telescopes and interferometers are usually bugtaates with high altitude and
dry climate. Examples of such observatories areJtmaes Clerk Maxwell
Telescope (JCMT) and the Caltech Submillimeter @faery (CSO), both of
which situated at the summit of Mauna Kea, Hawaiother example is the
Atacama Large Millimeter Array (ALMA), an interfemeter which is still
under construction at the Plano de Atacama in Chitemprises 64 antennas,
each 12 m in diameter, ALMA is going to be the wlt®lmost powerful
interferometer at millimeter and submillimeter wkargths (Withington,

2003; Tarenghi, 2008).

Figure 1.1 shows the functional block diagram ¢y@ical heterodyne
receiver in radio telescopes (Chattopadhsteal., 2002; Kraus, 1986). The RF
signal from the antenna is directed down to thesiver system via mirrors
and beam waveguides (Paietal., 1994). At the front-end of the receiver
system, the RF signal is channeled and couplednbixar circuit via hollow
waveguides and microstrips. A superconductor-inetisuperconductor (SIS)
heterodyne mixer is commonly implemented to downveot the RF signal to
an intermediate frequency IF signal. After goingotlgh multiple stages of
amplification, the IF signal is fed to a data as&\ysystem such as an acousto-
optic spectrometer. The data analysis system wilable to perform Fourier

transformation and record spectral information @lloe input signal.



Mixer IF Amplifiers Spectrometer

A 4
A 4

Input signal Local
from horn Oscillator (LO)

Figure 1.1. Block diagram of a heterodyne receiver

To illustrate in detail the applications of waveiding structures in
receiver systems, the side band separating SISrrdesgned and fabricated
by the Onsala Space Observatory, for the ALMA 8315 GHz band 7
cartridge (Vassilewt al., 2004; Vassilev and Belitsky, 2001a; Vassilev and
Belitsky, 2001b) has been taken as an exampleaAde seen in Figure 1.2,
the received RF signal is channeled from the apemdé the horn through a
circular and subsequently a rectangular wavegud&re being coupled to
the SIS mixer, built in the same substrate as tloeostrip. Figure 1.3 shows
the RF power being coupled to the microstrip in thieldle of the substrate
and divided between the two mixer junctions by ihetangular waveguide to
microstrip double probe transition. Similarly, tleeal oscillator LO signal is
channeled to a waveguide branch line coupler viactangular waveguide.
The waveguide coupler provides a 90° phase spifttisg the LO power so
as to be coupled to both ends of the substratéheiavaveguide-to-microstrip
transition. As depicted in Figure 1.4, a three isecttransformer in the
microstrip matches the impedance of the LO probeh® LO injection

coupler. To keep the signal path loss small, theppb@er is coupled to the RF



Corrugated Horn L
RF Input

Transition from Circular to
Rectancular Wavequide

DC Bias Input )
(to the isolators
3 dB 90° LO Hybrid
yo LO
orbe LO Input
Waveguide

Figure 1.2. Layout of the SIS receiver for ALMA lgarr

cartridge (Vassileet al., 2004).

Waveguide to Microstrip
Double Probe Transition

€ A
\\\ /ﬁ":/,/ | ’ﬂ]w

Figure 1.3. A mixer substrate is coupled to the egandes in

the ALMA band 7 receiver (Vassilev and Belitsky020).



LO waveguide to microstrip to transition LOin
OO

choke structure

3 section transformer

SIS junction as an absorbing load

LO directional coupler

SIS mixer junction

crystal quartz substrate

double probe coupler
to the 2nd

mixer
Figure 1.4. Layout of the quartz substrate with 18 mixer

built onto it (Vassilev and Belitsky, 2001b).

signal via the LO directional coupler. The RF arf@d signals are subsequently
fed to each of the mixer junctions tuning circuitAt the SIS mixer, both the
RF and LO signals are then mixed and down conveéatedower intermediate
frequency IF signal. The rest of the LO power atittle port of the coupler is
terminated by a second SIS junction. Since thet&t8ination absorbs 15 dB
more LO power than the mixer junction, it becomegrgpumped. The
nonlinear current-voltagd-{/) curve of the second SIS junction straightens

and thus allowing it to behave as a pumped resistor

The front-end receiver noise temperatiiggs determined by a number
of factors. These include the mixer noise tempeealy, the conversion loss
CLosss the noise temperature of the first IF amplifigg, and the coupling
efficiency between the IF port of the junction ahd input port of the first IF

amplifier 77, . A comparison of the performance of different 3i&veguide



receivers is listed in Table 1.1 (Walkaral., 1992). It can be seen that the
value ofTg for the 230 GHz system is a factor of 3 to 4 kbss that achieved
with the 492 GHz system. The decrease in systefompeance at 492 GHz is

due to the increase &f .s andTy by a factor of approximately 3.

Since the input power level of the weak THz sigeajuite small, i.e.
of the order of 10° to 10%° W (Shankar, 1986), it is therefore of primary
importance to minimize the conversion ldSgs of the mixer circuit. One
way is to ensure that the energy of the LO angbairiicular, the RF signals is
channeled and coupled from the waveguides to themaircuit in a highly
efficient manner. It is simply too time consumingdatoo expensive to
develop wave guiding structures in a receiver sygia a trial-and-error basis.
To minimize the loss of the propagating signals,dkailability of an accurate
and easy-to-use mathematical model to computedd® ¢f such signals in

wave guiding structures is, of course, centralhi® development of receiver

circuits.
Table 1.1. Comparison of SIS receiver performance.

SIS Junction Nb Pb Nb
Center Frequency (GH2z) 230 345 492
Tr (K) 48 159 176
Tw (K) 34 129 123
ClLoss (dB) 3.1 8.1 8.9
Tir (K) 7.0 4.2 6.8




13 Overview of Thesis

The theme of this thesis is to develop a new foathmh to investigate
the loss of waves in wave guiding structures, dpegain particular in the
millimeter and submillimeter frequencies range. Thesis is organized as

follows:

Chapter 2 describes the formulation of a set of characierefjuations
used to compute the propagation constant of wavesctangular waveguides.
The equations are obtained by matching the targeglictromagnetic fields
with the electrical properties of waves, expresasdsurface impedance. To
account for the penetration of fields into the walhterials, two new phase
parameters are introduced in the field equationsaddition, the transverse
and longitudinal wavenumbers in a lossy waveguigeadso allowed to take

complex forms.

Chapter 3 extends the approach implemented in Chapter 2 for
rectangular waveguides to the case of circular gaides. It can be seen that
the new method has the flexibility of being implertezl in waveguides with

different geometry — especially in circular andtaagular waveguides.

Chapter 4 gives a detail analysis of superconducting waveggli
based on the equations derived in Chapters 2 almdtBe computation of loss,
the complex conductivity of a superconductor is stiied into the

transcendental equations developed in Chapters 2 3anThe complex



conductivity is obtained by solving Mattis-Bardeequations (Mattis and

Bardeen, 1958).

Chapter 5 describes a new full-wave analysis developed toprdge
the loss in a microstrip transmission line. The rostrip is assumed to be
partially encapsulated in a metallic box. A trammtental equation is
formulated by matching the fields at the dieleetic interface and also
matching the fields with the surface impedancehat dielectric-conductor
interface. To account for the finite thickness lod strip and groundplane, the
surface impedance formulated by Kerr (1999) is lipomted into the

equation.

Chapter 6 shows an analysis between the performance of n@anth
superconducting coplanar waveguides (CPWs) andostrgp lines, designed
at different dimensions. The conduction loss inRAACis computed based on
the quasi static equation in Ghione (1993). To antfor the dispersive effect
of a lossy CPW, the frequency dependent effectidectric constantg;

given by Hasnaimt al. (1986) is incorporated into the loss equation.

Chapter 7 concludes with a summary the findings of Chap#r3, 4,

5, and 6. Some of the future work is also prop@setidiscussed here.
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CHAPTER 2

RECTANGULAR WAVEGUIDES*

In this chapter, the characteristics of electronetig waves
propagating in a rectangular waveguide with findenducting walls are
investigated. A set of transcendental equation waseloped based on
matching the tangential fields at the boundarieghef waveguide with the
electrical properties of the wall material. A sifggant contribution from this
new proposed method is that it successfully dematest the mode coupling

effects in degenerate mode waves.

2.1 Introduction

Propagation of electromagnetic waves in circulavegaiides has been
widely investigated, for waveguides with lossy (€& 1969) and
superconducting (Yassiet al, 2001; Yassiret al, 2003) walls, unbounded
dielectric rod (Claricoats, 1960a), bounded dielectod in a waveguide
(Claricoats, 1960b), and multilayered coated cacwraveguide (Chou and
Lee, 1988). The computation given by these autiver® based on a method
suggested by Stratton (1941). The circular symmeftithe waveguide allows
the boundary matching equations to be expressadsingle variable which is
the propagation constakt The eigenmodes could therefore be obtained from

a single transcendental equation. This approachweber, cannot be

*Parts of this chapter were published in "K. H. Ye@p Y. Tham, G. Yassin, and K. C. Yeong, “Atteriotin
Rectangular Waveguides with Finite Conductivity WalRadioengineeringlVol. 20(2), June 2011, pp. 472 - 478."
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implemented in the case of rectangular symmetryrevhee 2D Cartesian
coordinate system must be used (Krammer, 1976).imMilas rigorous
technique to study the attenuation of rectangulaveguides is not available
hitherto. It is to be noted, however, that in pi@gt rectangular waveguides
are more widely used than circular waveguides. Thigspecially true in
receivers of radio telescopes (Cartetr al, 2004; Boifot et al, 1990;
Withington et al, 2003) where rectangular waveguide-to-microstigmgition
is commonly used to couple the field to the deteatocuit. Indeed,
rectangular waveguides are much easier to mangutatn circular
waveguides (bend, twist, etc.) and also offer $icgmtly lower cross

polarization component.

The approximate power-loss method has been widedgd uin
analyzing wave attenuation in lossy rectangularegaides as a result of its
simplicity and because it gives reasonably accuegelt, when the frequency
of the signal is well above cutoff (Stratton, 19&kida, 2003; Collin, 1991,
Cheng, 1989). In this method, the fields’ exprassawe derived assuming
perfectly conducting walls, allowing the solutianlie separated into pure TE
and TM modes. For a practical waveguide with fimibeductivity, however, a
superposition of both TE and TM modes is necesgasatisfy the boundary
conditions (Stratton, 1941; Yassat al, 2003). To calculate the attenuation
using the power-loss method, ohmic losses are assumexist due to small
field penetration into the conductor walls. Resuitsvever show that this
method fails near cutoff, as the attenuation oleghidiverges to infinity when

the signal frequencfapproaches the cutoff frequenigy Clearly, it is more
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realistic to expect losses to be high but finitdthea than diverging to infinity.
The inaccuracy in the power-loss method at cutifflue to the fact that the
fields’ equation is assumed to be the same as thiosdossless waveguide. A
lossless waveguide behaves exactly like an idegd pass filter where signal
ceases to propagate at frequehdelow the cutofff,. Since waveguides are
commonly used as filters, an accurate calculatibnthe power loss at

frequencies at the vicinity of cutoff would henaedubstantial.

Robson (1963) and Bladel (1971) discussed degenenabdes
propagation in lossy rectangular waveguides, buheeof them was able to
compute the attenuation values accurately nearffcutike the power-loss
method, their theories predict infinite attenuatiain cutoff. An expression
valid at all frequencies is given by Kohler and Ba{1964) and reiterated by
Somlo and Hunter (1996). This expression howevaniy applicable to the
TE;0 dominant mode. The perturbation solution developgd?apadopoulos
(1954) shows that the propagation of a mode dodésmmerely stop aff..
Rather, as the frequency approachetransition from a propagating mode to
a highly attenuated mode takes place. The promagati waves will only
cease wheii = 0. Papadopoulos’ perturbation method (PPM) shihas the
attenuation at frequencies well abdveemains in close agreement with that
computed using the power loss method for non-degemenodes. Because of
this reason, PPM is perceived as a more accuret@itpie in computing the
loss of waves travelling in waveguides. A similalutsion has been derived by
Gustincic using the variational approach (Collirg91; Gustincic, 1963).

Nevertheless, the PPM is merely an approximatetisolubased on the
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perturbation from the lossless case. Thereforig, mot an accurate derivation
from fundamental principles. Although this methad#tds into account the co-
existence of TE and TM modes, the boundary condstiare still assumed to

be the same as those of the perfectly conductingguade.

It can be seen that almost all analysis techniguesased on certain
approximations and assumptions. The most commadyg assumption is that
based on the boundary conditions of lossless wadegu Due to such
assumption, most methods fail to give an insight@eper understanding on
the mechanism of the propagation of waves in legsyeguides. Moreover, at
very high frequency — especially that approaches thillimeter and
submillimeter wavelengths — the loss tangent ofcthreducting wall decreases.
Therefore, such assumption turns out to be inatewatavery high frequency.
Although Stratton (1941) has developed a truly amdntal approach to
analyze waveguides, his approach is only restrittethe case of circular
waveguides and could not be applied to rectanguéareguides. Because of
these reasons, a more accurate approach — ondabstnot assume lossless
boundary condition, is essential to accurately catepghe loss of waves in
waveguides — in particular, at frequencies opegatm the millimeter and

submillimeter wavelengths.

In this chapter, a novel and fundamental techniueompute the
attenuation of waves in rectangular waveguides wtperfectly conducting
walls is introduced. The method is derived from damental principles

without assumptions made in its formulation. Irstmethod, the solution for
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the attenuation constant is found by solving twans$cendental equations
derived from matching the tangential componentthefelectromagnetic field
at the waveguide walls with the constitutive projesrof the wall material,
expressed as surface impedance. The attenuatiataots for the dominant
non-degenerate Tk mode and the degenerate ;TEand TM;; modes are
computed and compared with the power-loss methadl the PPM. As
demonstrated in the subsequent sections, the nelhothgives more realistic
values for the degenerate modes since the formualatlows co-existence and
exchange of power between these modes while otleénads treat each one

independently.
2.2 General Wave Behaviours along Uniform Guiding Suctures

As depicted in Figure 2.1, a time harmonic fieldgagating in the
direction of a uniform guiding structure with arbity geometry can be

expressed as a combination of elementary wavesd¢avigeneral functional

form (Cheng, 1989, Marcuvitz, 1986)

W = ¢° (x y)expliot + k2], (2.1)

where ¢;° (%, y) is a two dimensional vector phasor that depemdig @n the

cross-sectional coordinates, = 2zf the angular frequency, and is the

propagation constant.
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Figure 2.1. A waveguide with arbitrary geometry.

In using phasor representation in equations rejdteid quantities, the
partial derivatives with respect t@andz may be replaced by products with |

and k;, respectively; i.e.

2 (exeliat) = jwexs{jat). 2.2)
2 (exslik,2))= ik, exei,2). 23

Hence, the common factor expji{ + k2] can be dropped. Here, the
propagation constarit, is a complex variable, which consists of a phase

constanj, and an attenuation constant

ke = f2 — jotz (2.4)
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The field intensities in a charge-free dielectrggion (such as free-
space), satisfy the following homogeneous vectoimHeltz’'s equation

(Cheng, 1989; Marcuvitz, 1986)

Dz‘//z +(k2 _kzz)l//z =0, (25)

wherey, is the longitudinal component q,;if 02 is the Laplacian operator for

the transverse coordinates, &id the wavenumber in the material. For waves

propagating in a hollow waveguides ko, the wavenumber in free-space.

It is convenient to classify propagating waveso itliree types, in
correspond to the existence of the longitudinattele field E, or longitudinal

magneticH; field:

(1) Transverse electromagnetic (TEM) waves. A TEMve consists of
neither electric fields nor magnetic fields in tbhegitudinal direction.

(i) Transverse magnetic (TM) waves. A TM wave dstssof a nonzero
electric field but zero magnetic field in the longlinal direction.

(i)  Transverse electric (TE) waves. A TE wave ssts of a zero electric

field but nonzero magnetic field in the longitudidaection.
Single-conductor waveguides, such as a hollow (eleckric-filled)

circular and rectangular waveguide, cannot suppbBEM waves. As

graphically shown in Figure 2.2, this is becauseoseting to Ampere’s
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circuital law in (2.6), the line integral of a magit field H around any

closed loop in a transverse plane must equal time stithe longitudinal

conductionJ and displacement curren%tg through the loop; i.e.

§Cﬁ-df=j 3+66 . ds. (2.6)

However, since a single-conductor waveguide doet hawve an inner
conductor and that the longitudinal electric fiekl zero, there are no
longitudinal conduction and displacement currergnée, transverse magnetic

field of a TEM mode cannot propagate in the waveg{Cheng, 1989).

X+

a 0

Figure 2.2. The presence of an inner conductor imvith

rectangular waveguide allows the propagation of Tik&e.
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2.3 Fields in Cartesian Coordinates

For waves propagating in a rectangular waveguigieh ss that shown

in Figure 2.3, Helmholtz’'s equation in (2.5) can Wwetten in Cartesian
coordinates to give
(2.7)

2 2
awz+awz+h2¢/220,
x> oy®

whereh =/k? -k,* .

By applying the method of separation of variables;an be expressed as

@, =X(XY(Y). (2.8)

/
7/

X132 i

Figure 2.3. The cross section of a rectangular yaide
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Equation (2.7) can thus be separated into two sétdinearly

independent second order differential equationsstamvn below (Cheng,

1989)
X094 2x(x) = o, (2.9)
dx
dZYZ(y)+ k,2Y(y) = O, (2.10)
dy

wherek, and k, are the transverse wavenumbers in thandy directions,
respectively. The longitudinal fields can be ob¢ainby solving (2.9) and

(2.10) based on a set of boundary conditions ahdtguting the solutions into

(2.8).

The transverse field components can be deriveduistituting the

longitudinal field components into Maxwell’s sourftee curl equations

- -

DxE:-japH, (2.11)

OxH = jaeE, (2.12)

where ¢ and u are the permittivity and permeability of the méakr

respectively ancE the electric field intensity. Expressing the tnarse field
components in term of the longitudinal field comeots E; and H,, the

following equations can be obtained (Cheng, 1989)
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1(. dH . dE

H, = —F(jkz q L - jw dsz (2.13)
1(. dH, . dE

H, = —F(jkz dy + jwe dxj’ (2.14)
1(. dE . dH

E, = _F(sz dxz + jou dyzj , (2.15)
1(. dE . dH

E, = -?(sz dyz - jou dxzj. (2.16)

2.4 A Review of Some Conventional Methods

In the subsequent sections, analysis and compaaismmg the power-
loss method, PPM, and the proposed method shagllebfermed. Hence, in
order to present a complete scheme, derivationsthef former two

conventional approximate methods are briefly oetiim this section.

The attenuation of electromagnetic waves in waikggucan be caused
by two factors, i.e. the attenuation due to theyadielectric materiad,q), and
that due to the ohmic losses in imperfectly conidgcwvalls o, (Cheng,

1989)

Oz = Ozd) T Ozc) - (2.17)

For a conducting waveguide, the inner core is lhsfiled with low-

loss dielectric material, such as air. Hengg, in (2.17) shall be assumed zero

in the following approximate methods and the losa waveguide is assumed
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to be caused solely by the conduction loss. Itadad seen later that such
assumption is not necessary in the proposed mefthiod. new boundary-
matching method inherently accounts for both kinafs losses in its

formulation.

2.4.1 The Power-Loss Method

The approximate power-loss method assumes that fitles’
expression in a highly but not perfectly conductivayveguide, to be the same
as those of a lossless waveguide. Hekgek,, andk, are given as (Cheng,

1989)

k, =% (2.18)
a
ni
k, =——, 2.19
y b ( )
k; =B, (2.20)

where a and b are the width and height, respectively, of thetaregular
waveguide; whereas andn denote the number of half cycle variations in the
x andy directions, respectively. Every combination rafand n defines a

possible mode for T and TMy, waves.

Conduction loss is assumed to occur due to snmetldi penetration

into the conductor surfaces. According to the ldvweanservation of energy,
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the attenuation constant due to conduction loss bmamerived as (Cheng,

1989)

a,=-L (2.21)

whereP; is the time-average power flowing through the sfssction andP_

the time-average power lost per unit length ofvila@eguide.

Solving for P. and P, based on Poynting’s theorem, the attenuation
constantx, for TM and TE modes, i.ermy andoyre), respectively, can thus

be expressed as (Collin, 1991; Marcuvitz, 1986)

2R.(m?%b® + n%a’®
@iy = s{ L (2.22)

2
na 1—[?} (m2b2+n2a2)
ey =2 (uejkiel_y mab+n’a?
ATE) — f JZ a f a f (mb)2 +(na)2 )

(2.23)

whereR; is the surface resistandethe cutoff frequency, ang the intrinsic

impedance of free space.
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2.4.2 Papadopoulos’ Perturbation Method

Papadopoulos’ perturbation method (PPM) assunaghk transverse

electric fields propagating in a waveguide withittnconducting walls Iét)

can be expressed as a linear combination of trases\aectric fields IE:[s) for

different modes in a lossless waveguide (Papadopplib54)
E =Y AE,. (2.24)
S

where the sum is extended over all the TE and TMiemoandAs is an

unknown amplitude coefficientE; consists of transverse wavenumbers

which are assumed to be real, as given by (2.18)Y249).

A system of equations for determining the coedints As and

propagation constank, may be obtained by first scalar multiplying the

homogeneous Helmholtz’s equation fé[r with ES, and vice-versaEﬁts with

Ii. A characteristic equation can then be derived shiptracting both

equations and, subsequently, integrating the reseilt the cross section of the

waveguide

(B -k)[E*E, dS=[(E*0E~Esr0E) dS (2.25)
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Applying (2.25) into the case of a rectangular egde, the

following two homogeneous equations are obtaineghéEopoulos, 1954)

I o a0
(2.26a)
R AGIRL Gl SO
(2.26b)

whereZs is the surface impedance of the wall mateal, and A, are the

coefficients of TE and TM modes, respectivelys 2 =k,2-k.?,

) 5 o

1 m=0
- , 2.27a
‘90m {2 m>0 ( )
1 n=0
= . 2.27b
‘90n {2 n>0 ( )

If m=1 andn = 0, (2.26a) reduces to a single term and gives th

propagation constait for the dominant Ty mode as:
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K, =1 ko? —[Ejz , 2 . (2.28)
z 0 mfuyab

If m# 0 andn # 0, (2.26a) and (2.26b) determine a solutionXgrand
Anm, provided the determinant vanishes. The vanislihghe determinant

leads to two roots fdt, as shown below:

20 5ab k.’ab

. 2
k,= | JZmfomfon {T +R% \/(T +RY - 4{TR - [—koﬁm“m””zJ (b- a)z” + B2 -

(2.29)

For the root wheré\,, > An., the propagation constakyt corresponds
to a perturbed Tf& mode. The other root whe#rg,, > Ay, corresponds to a

perturbed TM,, mode.

2.5 The Proposed Method

It is apparent that, in order to derive the apprate characteristic

equations illustrated in the previous sections, fikkl equations must be

assumed to be exactly the same as those propagatntpssliess waveguide.
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In a lossless waveguide where the conductivitis infinity, the boundary
condition requires that the resultant tangentiahponent of the electric field
E; and the normal derivative of the tangential maigrfetld H, to vanish at the

waveguide wall,

E = = 0:0 = oo, (2.30)

wherea, is the normal direction to the waveguide wall. &ality, however,

this is not exactly the case. The conductivity giractical waveguide is finite.

oH
Hence, bothE; and 3 L are not exactly zero at the boundary of the
a

n

waveguide,

E = ﬁ #0; 0 # oo, (2.31)
da

Besides, the loss tangent of a material decreasdsdct proportion with the
increase of frequency. Hence, a highly conductiad at low frequency may
exhibit the properties of a lossy dielectric at hhifyequency, resulting in

inaccuracy using the assumption at millimeter arhsllimeter wavelengths.

In order to model the fields’ expression closertthose in a lossy
waveguide and to account for the presence of figlsise the walls, two phase
parameters have been introduced in the proposedconhetThe phase

parameters — i.g and ¢, are referred to as the field’s penetration feciar
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the x andy directions, respectively. It is worthwhile notirgat, with the

. . . oH .
introduction of the penetration factoks, and 3 L do not necessarily decay
a

n

to zero at the boundary, therefore allowing thedffof not being a perfect

conductor at the waveguide wall.
2.5.1 Fields in a Lossy Rectangular Waveguide

For waves propagating in a lossy hollow rectangwareguide, as
shown in Figure 2.1, a superposition of TM and T&ves is necessary to
satisfy the boundary condition at the wall (Stmaftb941; Yassirt al, 2003).
The longitudinal electric and magnetic field comeots E, and H,,
respectively, can be derived by solving Helmholtasnogeneous equation in
Cartesian coordinate. Using the method of separatiovariables (Cheng,

1989), the following set of field equations is ab&ad:

E, = Eosin(kex+ @ )sinlk, y + 4, ), (2.32)

H, = Hg codk,x + g )codk, y + @, ), (2.33)
whereEy andHg are constant amplitudes of the fields.

The propagation constakitfor each mode will be found by solving for

k« andk, and substituting the results into the dispersedation

k, =ko? — k2 k2. (2.34)

28



Equations (2.32) and (2.33) must also apply to réepty conducting

. oH . . . :
waveguide. In that cagg and 3 Z are either at their maximum magnitude or
a

n

zero at bothx = a andy = g i.e. the centre of the waveguide, therefore

. (ka (kb E
Sin =—+ =sin —+ = . 2.35
[ 2 @ 2 % 0 ( )
Solving (2.35), the penetration factors are obthiag,

@ = (2.36D)

For waveguides with perfectly conducting wad, = % and k, =

n_bn, (2.36a) and (2.36b) result in zero penetratiath EBrandH; in (2.32) and

(2.33) are reduced to the fields of a lossless gade. To take the finite
conductivity into accountk, and k, are allowed to take complex values

yielding non-zero penetration of the fields inte thaveguide material:

Ky =Bx = jax (2.37)

< =B, -ia, | (2.38)
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where fx and g, are the phase constants amdand ay are the attenuation
constants in th& andy directions, respectively. This in turn resultcomplex
value for the propagation constant of the wavegkidésee equation (2.4))

which yields loss in propagation.

Substituting (2.32) and (2.33) into (2.13) to (3,1l€éhe fields are

obtained as:
Hx = h_JZ[kzka0+ CUEOkyEO]Sin(kXX-'-@()Coskyy-'-%) ! (239)
Hy = h_Jz[kzkyHo—6050kxEO]COS(kxX+(ﬂx)sm(kyy-i-wy) ! (2.40)
Ex = _#[kzkxEo_wﬂokyHO]COS(kXX+@()Sin(kyy-l-wy) ! (2.41)
E, = _h_Jz[kzkyEO + otk Hosin(k x + &) cosk, y +@,) (2.42)

where uo and ¢y are the permeability and permittivity of free spac

respectively.

2.5.2 Constitutive Relations for TE and TM Modes

Using Maxwell equations it can be shown that tlagior of the

tangential component of the electric field to tleface current density at the

conductor surface is given by (Thamnal, 2001; Thanet al, 2003)
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= |He (2.43)

where u. ande. are the permeability and permittivity of the watlaterial,
respectively, and /& is the intrinsic impedance of the wall materiaheT
gC

dielectric constant is complex andmay be written as
.
E.=& — j;c, (2.44)

whereo. is the conductivity of the wall.

In order to estimate the loss of waves in millieneand submillimeter
wavelengths more accurately, a more evolved mdueh the conventional
constant conductivity model used at microwave fesmies is necessary.
Here, Drude’s model is applied for the frequencpeatelent conductivity,

(Booker, 1982)

g

@ jan)’ (2.45)

C

whereg is the conventional constant conductivity of thallwnaterial and
the mean free time. For most conductors, such ap€&opthe mean free time

is in the range of I8%to 10 s (Kittel, 1986).
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H, H £

At the width surface of the waveguide= b, E, __E He

Substituting (2.32), (2.33), (2.39), and (2.41)oin{2.43), the following

relationships are obtained:

L _u

HZX _F(H_O KzKy —woky]tan(kybﬂﬂy)—,/g—:, (2.46a)

Hy _ i [Ho (e

EZ = h2 (E—O kzkx +&E0kyJCOt(kyb+¢7y)— Iu_c . (246b)
Similarly, at the height surface whexes a, we obtain—- = -——2% =

H, H,

/% Substituting (2.32), (2.33), (2.40), and (2.4#pi(2.43), the following
C

relationships are obtained:

E, -ilE /

y - _J| Lo = K
_Z_?(_Okzky+ap0kx}an(kxa+¢g()— c (2.47a)
-H, -i(H

v -~ J| Ho - = |=
E—Z_F(E_okay afkaJCOt(kxa-F@)_ H: - (4t)

In order to obtain nontrivial solutions for (2.4@nd (2.47), the
determinant of the equations must be zero. Bynigtthe determinant of the

coefficients of E; and Hy in (2.46) and (2.47) vanish the following

transcendental equations are obtained
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[ja,’uokytan(kyb+¢y)+ &}[jwfokycm(kym%) &}:[@T

h2 PR h2 Ue h2

(2.48a)

{jwokxtar(kxawxu H{jwokxcon(kxw)_ _Hkk}
h? £ h? He h?

(2.48b)

In the above equationk, andky are the unknowns arld can then be
obtained from (2.34). The Powell Hybrid root-seanghalgorithm in a NAG
routine was used to find the roots lgf and k. The routine requires initial
guesses ok, andk, for the search. For good conductors, suitable guakies

are clearly those close to the perfect conducthresa

For TEp mode,m andn are set to 1 and O, respectively, hence the
search starts witk, = 7 and k, = 0. Substitutingn = 1 andn = 0 into the
a

penetration factors in (2.36), the transcendergaigons in (2.48) for T

mode can be simplified to
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a

. a .
n chuokxcot[kxzj . Jarokxtar{kxzj :{jkzkyr

- —-= 4+
& h? U h? h?

(2.49b)

For TE; and TM1 modes,m andn are both set to 1 and the initial

guess values are’’ and % respectively for both modes. Similarly,
a

substitutingm = n = 1 into (2.36), (2.48a) and (2.48b) for ;fEand TM;

modes, the equations in (2.48) can be simplified to

. . b
japk cot[k j jeaE ok tar(k J , 2
U ofy y & ofy Yy o :{szkx},
£, h2 e h2 h2
(2.50a)
. : a
chuokxco(kxj onkxtar{kxj kT2
He _ fc 2 — K, y .
£, h2 e h2 h2
(2. 50b)

When solving for these two degenerate modes wisgetaof initial
guess, it is not obvious that the solution will eerge to which of the two
modes. However when the guess for one is verytglighanged a second set
of result is obtained. By comparing with resultsnfr any of the approximate
methods the two solutions can then be identifielkafy, the solutions of

(2.50) account for the interaction between T&d TM; modes.
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It is worthwhile noting that when the search sthmeth exactly these
values, the solution did not always converge tordggiired mode. It was often
necessary to refine the initial values slightlyoiaer to force convergence to

the correct mode.

It could be seen that solving for the root of (a)and (2.49b) only
gives the propagation constakf{ of one non-degenerate mode, i.e. the
dominant Ty mode, since TNy mode does not exist. However, for the
concurrent presence of modes, such as the degeridatand TM,; modes,
the transcendental equations in (2.50) actually itoes both TE and TM
modes in its formulation, therefore, allowing crossupling effects in
degenerate modes. This solution is certainly dfferfrom most existing
methods, such as the power-loss method, PPM, amadl $tratton’s rigorous
approach, where separate sets of equations aree@da solve for the loss in

TE mode and TM mode.

2.6 HFSS Simulation

To obtain a preliminary insight on the validity dhe new
independently derived transcendental equationsatie®muation constant of a
rectangular waveguide has been simulated using fAsgdigh Frequency
Structure Simulator (HFSS). HFSS is a high perforoea full-wave
electromagnetic field simulator for volumetric passdevice modeling. It
employs the Finite Element Method (FEM), adaptivesimng, and Adaptive

Lanczos-Pade Sweep (ALPS) for electromagnetic sitioul.
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In the simulation, a 10 cm copper rectangular \gaige with an
arbitrary size of 2.29 x 1.02 érmas been drawn on the 3D modeler window.
A pair of waveports is connected to both ends a& thaveguide. The
waveports are necessary for exciting electromagnetaves into the
waveguide. Once the setup is completed as showrrigare 2.4, the
attenuation constant, of the dominant Tk mode are then acquired, by
simulating the model on a range of frequenciessi@wvn in Figure 2.5, the
loss predicted by the proposed method is in clogeement with the
simulated loss result. Both the electric and magrfetlds intensity are also

shown in Figures 2.6 and 2.7, respectively.

E Field[¥_per_n

1. 3165e+@A0Y4
1, 234Ze+BRY4
1. 1519e+22Y4
1. A696E+ARY

9. 8737e+@03
9, @59 +BE3
8, 2282Ze+0B3
7. 4@ske+BE3
6. 5826e+@A3
5. 75988+0A3
4. 9371e+@@3
4. 1143e+883

3, 29158+0@3
2, 46G7e+0R3
1. B4ERE+AAS
8. 25318e+A02
3. 9905 -pa1

Figure 2.4. The meshes of a 10 cm long, 2.29 x TiB2
copper rectangular waveguide, simulated using &iBlement

Method (FEM) in HFSS.
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Figure 2.5. Attenuation of g wave in a 2.29 x 1.02 ém
rectangular waveguide near cutof- —— —- simulation

result, ————— the proposed method.
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Figure 2.6. Electric field of T mode in a 2.29 x 1.02 ém

rectangular waveguide.
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Figure 2.7. Magnetic field of Tig mode in a 2.29 x 1.02 ém

rectangular waveguide.

2.7 Experimental Setup

To further validate the results, experimental meaments had been
carried out in the experimental cosmology labosatof the University of
Oxford. It is in this laboratory where the millineetwave instrumentation for
studying the Cosmological Microwave Background atite Sunyaev-
Zel'dovich effect were developed. The loss as ation of frequency for a
rectangular waveguide was measured using a Vecwwdk Analyzer
(VNA). A 20 cm copper rectangular waveguide witimdnsions ofa = 1.30
cm andb = 0.64 cm such as that shown in Figure 2.8 weed us the

measurement.

To minimize noise in the waveguide, a pair of a®kad also been

designed and fabricated as shown in Figure 2.9{@.choke was machined to

form an effective radial transmission line in tharnow gap between the
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Figure 2.8. Rectangular waveguides with widtl+ 1.30 cm

and height = 0.64 cm.

chokes and the flanges of both the waveguide amadiapters. As illustrated

A
in Figure 2.9(b), the radial transmission line tspa)ximatelng in length

between the choke and the point of contact forfldrges, wherégy = %2 is

A
the guide wavelength. Anothe+4& line is formed by a circular axial groove in

the choke. So the short circuit at the end of ¢n@ove is transformed to an
open circuit at the contact point between the chakd the flanges. Any
resistance in this contact is in series with amitd (or very high) impedance
and thus has little effect. This high impedancéhen transformed back to a
short circuit (or very low impedance) at the edgésthe waveguides, to
provide a very low-resistance path for current flasross the joint. Since
there is a negligible voltage drop across the olooitact between the flanges
and the choke, voltage breakdown is avoided (P@0H5). A detail design of

the choke drawn using AutoCAD is shown in Figurkd2.
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(Pozar, 2005).
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In order to allow the waveguide to be connectethéoadapters which
are of different sizes, a pair of taper transitibadg also been used as shown in
Figure 2.11. Figure 2.12 depicts the complete sefughe experiment where
the rectangular waveguide was connected to the \WiNAtapers, chokes,
coaxial cables, and adapters. Before measurementavaed out, the coaxial
cables and waveguide adapters were calibratednaneke noise from the two
devices. The loss in the waveguide was then obddreen the $; parameter
of the scattering matrix. The measurement was pedd in the frequency
range where only Tig mode could propagate, while other higher orderesod

were in evanescence.

Figure 2.11. Taper transitions.

Figure 2.12. A 20 cm rectangular waveguide conmktdethe

VNA, via tapers, chokes, adapters, and coaxialesabl
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2.8 Results and Discussion

Figure 2.13 depicts the geometrical dimensionsraatkrial properties
of the hollow rectangular waveguide implementeceHer analysis. As shown
in Figure 2.14, a comparison among the attenuatiothe TE, mode near
cutoff as computed by the proposed new methodgcdhgentional power-loss
method, the PPM, and the measuredr8sult was performed. As can clearly
be seen, the attenuation constapttomputed from the power-loss method
diverges sharply to infinity, as the frequency @&aghesf;, and is very
different to the measured results, which show bgJedhat the loss at
frequencies belowi is high but finite. The attenuation curves comguising
the proposed method and the PPM in Figure 2.14magcy well and in fact

are indistinguishable on the plot.

o= 58rx 10 S/m
e = 1.2566X 108 H/m

X
\ 'bl= 0.64 cm
,Z
X*1a=7.30 cm \o' -

Oo= 0S/m
Lo = 1.2566X 10°H/m

€= 8854X 102 F/m

Figure 2.13. Cross section of a1.30 x 0.64 meotangular waveguide.
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Figure 2.14. Loss of Tl mode in a hollow rectangular
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As shown in Table 2.1, the loss between 11.4708% éd 11.49950
GHz computed by the two methods agree with measnmeno within 5%

which is comparable to the error in the measurement

Figure 2.15 shows the attenuation curve when tleguEncy is
extended to higher values. Here, the loss due tg dlBne could no longer be
measured since higher-order modes, such as aed TM;, etc., start to
propagate. At higher frequencies the loss due tg PEedicted by the three
methods, i.e. the proposed method, the power-lethod, and the PPM are in
very close agreement. As depicted in Figure 2.16frequencies beyond
millimeter wavelengths, however, the loss compuigdhe proposed method
appears to be higher than those by the power-lethad and the PPM. The
differences can be attributed to the fact thatx&reenely high frequencies, the
field in a lossy waveguide can no longer be appnated to those derived
from a perfectly conducting waveguide. At such hfgdgquencies, the wave
propagating in the waveguide is a hybrid mode dmal presence of the

longitudinal electric fielde; can no longer be neglected.
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Table 2.1. Attenuation of Tlsmode in a lossy rectangular waveguide.

Frequency Attenuation Constant Np/m
GHz Experiment PPM %A Proposed %A
method
11.47025 30.17693 30.95772 2.59 30.95782 2
11.47138 30.68101 30.77407 0.30 30.77417 Q
11.47250 29.53345 30.5893 3.58 30.5894 3
11.47363 30.51672 30.40339 0.37 30.40349 Q
11.47475 30.16449 30.21631 0.17 30.21642 d
11.47588 29.68032 30.02805 1.17 30.02816 1
11.47700 29.09721 29.83859 2.55 29.8387 2
11.47813 28.85077 29.6479 2.76 29.648 2|
11.47925 29.25528 29.45595 0.69 29.45606 Q
11.48038 29.20923 29.26273 0.18 29.26283 Q
11.48150 27.99881 29.0682 3.82 29.06831 3
11.48263 28.38341 28.87234 1.72 28.87245 1
11.48375 28.18551 28.67513 1.74 28.67524 1
11.48488 27.91169 28.47653 2.02 28.47664 2
11.48600 28.08407 28.27651 0.69 28.27663 0
11.48713 27.44495 28.07506 2.30 28.07517 2
11.48825 27.67956 27.87212 0.70 27.87224 d
11.48938 26.84192 27.66768 3.08 27.66779 3
11.49050 26.95767 27.4617 1.87 27.46181 1
11.49163 26.60108 27.25414 2.46 27.25425 2
11.49275 26.78715 27.04496 0.96 27.04508 Q
11.49388 26.14928 26.83414 2.62 26.83426 2
11.49500 25.83003 26.62162 3.06 26.62174 3
11.49613 25.82691 26.40738 2.25 26.4075 2
11.49725 25.26994 26.19136 3.65 26.19148 3
11.49838 24.82685 25.97353 4.62 25.97365 4
11.49950 25.1100 25.75383 2.56 25.75395 2
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Figure 2.15. Loss of Tl mode in a hollow rectangular
waveguide from 0 to 100 GHzZ— — — — power loss
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Figure 2.16. Loss of T mode in a hollow rectangular
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perturbation method.

Next, the propagation constanks of TE;; and TM; degenerate
modes, which have identical phase constghtsn the lossless case, are
compared. Here, the power-loss method can only givehereas both the
PPM and the proposed method give bgthnda,. Figure 2.17 shows that the
phase constant, for TE;; mode computed using the proposed method is in
good agreement with that computed using the PPVITRa; mode however,
the results differ slightly. Unlike that of the kiess case, the values gf
differ slightly for the different modes in a losasveguides giving dispersive

effects.
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Figure 2.17. Phase constafit of TE;; and TM; in a

rectangular waveguidef, of TE;; computed using the

perturbation method={=s===sssssss ) and the proposed method
(——); B, of TM11 computed using the perturbation
method - — - —- ) and the proposed methed—{ — —

)-

The attenuationa, of the degenerate TE and TM; modes is
illustrated in Figures 2.18 to 2.21, both near ffutmd in the propagating
region. In Figures 2.18 and 2.1&, computed by the PPM and the proposed
method, agree very well near cutoff. However, FéguR.20 and 2.21 show
that when the frequency increases beyond 28.5 GHZE;; and 27.0 GHz

for TM14, the results start to disagree significantly.
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According to the findings of Imbrialet al. (1998), power losses of a
number of modes that propagate simultaneouslywaeguide is not simply
additive. The cross product terms between the réiftemodes give rise to
additional dissipation, making the total loss geed#lhan the one obtained from

the addition of loss in independent propagationsioigle modes. This is

because the product of the average power deisity; % Reg |§1 X I—H|1 *) of the

electric field of mode 1|§1 and magnetic field of mode 1, when integrated

along the boundary, is not zero and the currentigad by I:Il will deliver

power to mode 1, and vice versa. In this caseetivdl be coupling of power

between multiple propagating modes, which give tispower loss as a result
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of the change in the amplitude distribution of fledds across the area of the

waveguide (Imbrialet al, 1998)
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(2.51)

Here, A™ and A™ are arbitrary amplitude coefficients for the TE &Fid

modes respectivelyR the surface resistance, andhe contour around the
inner surface of the waveguide, which is also ndtm#he propagating axis.
The subscript represents the component of the transverse fagldential to
the contourc. M is the number of different TE propagating modesl lslh is

the number of different TM propagating modes.

It turns out that mode coupling increases the adkon between the
propagating power and the waveguide walls, makihg tttenuation
dependent on the axial distance from the sourdegiating the exponential
terms in (2.51), it could be seen that the factetolw determines the

importance of the coupling term (Imbriadeal, 1998)

53



£ = &PliBn - B )I1-1
Li(Bn" = B

(2.52)
wheref, andpg, are the phase constants of two different modegiwbould

be either TM or TE, whild is the length of the waveguide. As expected,
equation (2.52) shows that the cross coupling mniScant when the
difference between the phase constants of the gadipgg modes that exist in
the waveguide is small. Therefore, the couplingafbetween T and TM;

in a waveguide fabricated from a good conducta@xisected to be significant
because the phase constants foi,T&hd TM; are very close as shown in

Figure 2.17.

Figures 2.20 and 2.21 depict the attenuation cah$ta the Th; and
the TMi; modes at frequencies when both of them can prdpaga
simultaneously. It can clearly be seen that irs ttegion, the computed
attenuation using the proposed method is signifigamgher than the one
computed using the power loss method. This isafrge to be expected
because in the power loss method, attenuationterea excluding coupling
losses. Finger and Kerr (2008) has performed amréaxental validation on
the loss in transmission lines. In their findingfse measurement result was
found to be much higher than those computed ugirgpbwer-loss method.
Indeed, such result suggests that the proposedochetree reasonably well
with the result obtained by Finger and Kerr (2008)is interesting to see

however that in this range, the attenuation contpbtethe PPM is even lower
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than that obtained by the power loss method, initigathat the PPM under-

estimates the loss significantly in degenerate npydpagation.

2.9 Summary

A new technique using fundamental principle fomfatation, with no
assumption of perfect conductor to compute the ggapon constant of waves
in a lossy rectangular waveguide has been propdsexformulation is based
on matching the tangential electric and magneéld$ at the boundary of the
wall, and allowing the wavenumbers to take complealues. The
electromagnetic fields are used in conjunction lé ttoncept of surface
impedance to derive transcendental equations, wioage give values for the
wavenumbers in th& andy directions for different TE or TM modes. The
wave propagation constaky could then be obtained froky, ky, andky using

the dispersion relation.

The computed attenuation curves are in good agreewith the PPM
and experimental results for the case of the dominBE,, mode. An
important consequence of this work is the demotistrathat the loss
computed for degenerate modes propagating simwitestyeis not additive. In
other words, the combined loss of two co-existingdes is higher than adding
the losses of the two modes propagating indepelyddritis can be explained
by the mode coupling effects, which is significariten the phase constants of

two propagating modes are different yet very close.
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CHAPTER 3

CIRCULAR WAVEGUIDES*

In this chapter, the new proposed method introduce@hapter 2 is
extended to characterize the attenuation of wavesrcular waveguides. To
validate the result, a comparison was performet #ie loss obtained from
simulation, experimental measurement, and Stragtequation. This chapter
demonstrates the versatility of the new method bieeng able to be applied in
waveguides with different geometry — especiallycircular and rectangular

waveguides.

3.1 Introduction

The efficiency of coupling the radiation from aestope to a detector
element is one of the key factors to determinepgr@ormance of a receiver.
In direct detection such as those using bolomd®&sdell and Tong, 1991,
Baselmanst al, 2004; Cherednichenket al, 2002), waveguide coupling is
accomplished by receiving the radiation signalavi@ed horn and channeling
the signal via a circular waveguide to a waveguidibe where the detector is
located. Similarly, for heterodyne detection sushiese using the waveguide
Superconductor-Insulator-Superconductor (SIS) msiX§voodyet al, 1985;
Ellison and Miller, 1988; Kittarat al, 2004), the signal from the horn is first

channeled to a circular waveguide. The structuteseguently undergoes a

*Parts of this chapter were published in "K. H. [ge€. Y. Tham, K. C. Yeong, and H. J. Woo, “Waveggation
in Lossy and Superconducting Circular WaveguidBsidioengineeringlVol. 19(2), June 2010, pp. 320 — 325."
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circular-to-rectangular waveguide transition befall®wing the waves to be
coupled to the detectors via the microstrip prabeypical bolometer design
is shown in Figure 3.1 (Blundell and Tong, 1992heneas waveguide mixer
designs are shown in Figures 1.2 and 3.2 (Wen@892). It is apparent that,
in both direct and heterodyne detections, circulaveguides are required in

the coupling of waves from the horn. Hence, thdigt®n and reduction of
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Figure 3.1. A bolometer receiver (Blundell and Toh@92).
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Figure 3.2. Caltech two-tuner waveguide design (Ylem
1992) which has been implemented for 230, 345,48%1GHz

band mixers.
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loss to its minimal at the circular waveguide iscohsiderable importance,

particularly for the detection of THz signals whishextremely weak.

Developing a standard approach capable of chaizo the
propagation of waves in both rectangular and carculaveguides (or at best
in waveguides with any arbitrary shapes) is celgam great convenience,
since there is no need to employ different methadanalyzing waveguides
with different geometries. It is worthwhile notirtilgat circular-to-rectangular
waveguide transitions have been widely implemented,only in the design
of heterodyne receivers, but also in the desigwadfeguide polarizers (Cresci
et al, 2002) and Ortho-Mode Transducers (OMT) (Chattbyayg et al,
1998). Hence, in this chapter, the proposed nevhaodeimplemented in the
case of rectangular waveguides (as illustrated hapfer 2) is extended to

compute the propagation constant of waves in @rovbhveguides.

3.2 Fields in Circular Cylindrical Coordinates

For waves propagating in a circular waveguide, saghhat shown in

Figure 3.3, Helmholtz's equation in (2.3) can beressed in cylindrical

coordinates to give

10( 09\, 10, 2y 2, -
rar( arj r2 9¢ Hk kg, =0, 3D

Applying the method of separation of variabkescan be expressed as
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Figure 3.3. The cross section of a circular wavegui

W, =R()P(9). (3.2)

Equation (3.2) can be separated into two sets ajrgkorder linearly

independent differential equations, as shown bdezar, 2005; Marcuvitz,

1986)

azRgr) LLORO L e _ﬂz) R(r) =0, (3.3)
or roor r

9°®(¢) _

S0 TN®@ =0, (3.4

whereN is a separation constant and (3.3) is known asdBesdifferential

equation.
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Solving (3.3), the following solutions can be obéal,

R(r) = Cndn(hr) (3.5)

and

R(r) = DaHn(hr) (3.6)

whereC, andD, are arbitrary constant3,(hr) is known as the Bessel function

of the first kind, andH,(hr) is known as the Hankel function of the first kind

The fields confined within the waveguide have ®flmite atr = 0.
Hence, (3.5) is applied to define the fields prapag in the waveguide. For
the case of dielectric or lossy conducting walB6) is used to represent the

elementary field beyond the wall.

Since all field components are periodic with respe ¢, the only
admissible solution for (3.4) is eithecosfi¢) or sin(ng) or a linear

combination of both.

Thus, the longitudinal electric fiel&f) and magnetic fieldH;) within

the waveguide can be, customarily, expressed as

E, =C,J,(hr)coshg), (3.7)

H, =C.'J, (hr)sin(ng), (3.8)
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whereC, andC,’ denote the coefficients of the fields.

The transverse field components can be derivedubstituting the
longitudinal field components into Maxwell’'s sourbee curl equations in
(2.8) and (2.9). Expressing the transverse fielthmonents in term of the
longitudinal field components, andH,, the following can be obtained (Pozar,

2005)

H = _iz ik, dH, joe dE, (3.9)
h dr r de
1(jk,dH, = dE,
H, = _F(Jr o e J (3.10)
E, = —h—lz(jkz ey ok dqu;j, (3.11)
r
1 ( jk, dE dH
E, = —h—z( rzd—; drzj (3.12)

3.3 A Review of Stratton’s Approach

In Stratton’s formulation, the fields at the wallrface are made
continuous into the wall material. Since the fieh#s/ond the radiug, of the
inner core, i.er > a,, must be evanescent, (3.6) is employed to dehiediéld

expression within the wall material.
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Equating the tangential fields at the boundaryhef wall (i.e.r = &)
and letting the determinants of the coefficientsagero lead to the following

transcendental equation for circular waveguidesa{tin, 1941)

Ho 3,(u) _ pe Ho )| ey 3, (W) _ a’e, Ho(W)'| znz{i_i}z
uJ@u vHW| u Ju v HW ©lur v

whereu = hy &, v = he &, h. =4k, -k,?, andk. is the wavenumber in the

wall material.

Equation (3.13a) can be solved numerically for gm®pagation
constantk, of TE,, modes. Here, the andp subscripts denote theth order
and p-th zero ofJ,(hr), respectively. By convention, the subscript always
represents the number of half-wave field variatiansthe ¢-direction;
whereas, th@ subscript represents the number of half-wave fi@ldations in

ther-direction (Cheng, 1989).

Since TE and TM modes are determined by the rdo{?;s'l% =0 and
n

Jn(U)
Jn (u)

=0, respectively (Stratton, 1941), an alternate farfnthe equation is

required for TM, modes (Yassiet al, 2003)
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I3 TH, W chz+k_02_i 3, W) [ Ha)' [ Moy 2y e 2
W] [H,M] v v w[d @[ HM | s
{Jn(w} kzzn{ 1 _LT

J. () u®  v?

(3.13b)
3.4  The Proposed Method

It is necessary to develop an approach which is ttbhccount for the
mode-coupling effect in waveguides; while at thensdime, versatile enough
to solve for the propagation constants in wavegidih different geometry
(for eg. circular and rectangular waveguides). Ils tsection, the new
boundary-matching method introduced in Chapter @&lus solving for the
propagation constant in rectangular waveguided| bagextended to the case

of circular waveguides. The tangential fields ici@ular waveguide, i.eE,
and H,, are first derived by substituting the longitudifialds in (3.7) and

(3.8) into (3.10) and (3.12), giving

1] jnk . .
E, :—[1 . £C,J,(hr)sinng+ japohCn'Jn(hr)'cosnga] (3.14)

H = __{Jnrkz C,'J,,(hr)cosng+ jafohCan(hr)'coano] (3.15)
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From (2.38), the surface impedar:eat the boundary of the wall €

E
a) can be expressed ag, = =—%= }% Substituting (3.7), (3.8),
C

(3.14), and (3.15) into (2.38), the following equoas are obtained

[ jnk jaboda () _ (Mo | o
2z C + | ——9Y"nA"/ _ |[C C _0 ]
_hZaT:| n |: th(u) gc_ n ) (3 168.)
_jCLEOan(U)' gc jnkz_ -
220 1% o 4| £z |C =0

ha. () PR Y (3.16b)

Solving the determinants of the coefficie@®sandC,’ in (3.16) results

in the following transcendental equation

o [l @7 .o le . 3] [nk]
{’h @”‘“’h %(u)}{’h ﬁw"h %(u)} Lx } '

(3.17a)

Like Stratton’s equation, (3.17a) is only applieaim solving fork; of
TE modes. To solve for TM modes, an alternate forust be taken, as shown

below

[J‘hz # W +Woh}{ jh? F—Jn(“) +a£0h} - {%_Jn(“)}z
g J,(u) J7ANN(V)) a J,u)

(3.17b)
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35 HFSS Simulation

In order to obtain a preliminary verification ohet new proposed
equation, the loss computed using the new formaras compared with that
using the Finite Element Method (FEM). Like the easf the rectangular
waveguide, HFSS is implemented to simulate thelre$uhe Finite Element

Method.

Figure 3.4 depicts the structure of a copper tarcwaveguide plotted
in the HFSS. The radius and length of the wavegai@e5.8533 mm and 20
cm, respectively. The attenuation constant of tbenidant Tk; mode is
simulated and compared with that obtained from7&)1Figures 3.5 and 3.6
show the electric and magnetic fields in the cacwlaveguide, respectively;
while Figures 3.7 and 3.8 show comparison of lagbe vicinity of cutoff. It
is indeed surprising to find from Figure 3.7, thfa¢ simulation result differs
considerably from the calculation result. The cufodquencyf. found from
the simulation result is much higher; and in faleg loss from the simulation
is also much higher than that from the calculatesult. Further attempt in the
simulation shows that the loss as well as the €ftefuency, decrease as the
radiusa, of the waveguide increases. As shown in Figure tB@ simulation
loss found in a circular waveguide with radajs= 5.9270 mm turns out to be

much closer with the calculation result wiéh= 5.8533 mm.
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Figure 3.4. The mesh structure of a circular waigsgin HFSS.
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Figure 3.5. Electric field of a IEmode in a circular waveguide.
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Figure 3.6. Magnetic field of a TEmode in a circular waveguide.
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Figure 3.7. Attenuation of TE wave in a copper circular

waveguide with radiusay, = 5.8533 mMm.————"

simulation result: the proposed method.
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Figure 3.8. Comparison of loss in a copper circulaveguide.
——————— simulation result (radiusay, = 5.927 mm).

the proposed method (radiais= 5.8533 mm).

3.6 Experimental Setup

In order to further validate the new formulation, @periment similar
to that used to measure the scattering matrix rgfctangular waveguide was
set up. As shown in Figure 3.9, some of the comptnaised in the
measurement are circular waveguides, a pair ofsapbokes, and circular-to-
rectangular waveguide transitions. Figure 3.10 aepihe complete setup of
the experiment where a 20 cm hollow circular wawegumade of brass with
radiusa, = 5.8533 mm is connected to the VNA. Thg Barameter of the

dominant Tk; mode was measured from the VNA.
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(a) (b) (©) (d)
Figure 3.9. (a) Hollow circular waveguides madéafss, (b) a
taper, (c) a circular choke, and (d) a circulargotangular

waveguide transition.

Figure 3.10. A 20 cm hollow circular waveguide cecited to
the VNA via tapers, chokes, circular-to-rectanguiaveguide

transitions, and adapters.
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3.7 Results and Discussion

A comparison is performed among the attenuationprded by the
proposed method, Stratton’s equation, and the meass parameter using a
hollow circular waveguide made of brass, with radiu= 5.8533 mm. The
geometrical dimensions and material propertiehefdircular waveguide are
illustrated in Figure 3.11. As can be clearly olkedrfrom Figure 3.12, at
frequencies below cutoff, both Stratton’s and thevnmethod tally very

closely with the experimental result.

o= 580X 10" S/m
Ue = 1.2566X 10°H/m

0o = 0S/m

W= 1.2566X 10% H/m
€= R8RAX 102 F/m

Figure 3.11. Cross section of a hollow circular egwde with

radiusa, = 5.8533 mm.
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Figure 3.12. Loss of T& mode in a hollow circular waveguide
with radius a, = 5.8533 mm, near cutoff—:—:—-
measurement— — — —  Stratton’'s method—

the proposed method.

To show that the characteristic equation is apple to circular
waveguides with different radius and material praps, the attenuation
constants for the propagation of ;fEand TM; modes in a copper circular
waveguide with radiug, = 8.1 mm are computed. The range of frequericies
is extended to the millimeter wave regimefat 120 GHz. As shown in
Figures 3.13 and 3.14, respectively, the lossesligiesl by the proposed
method are in high exactness with Stratton’s methbds, verifying the

validity of the new method.
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Figure 3.13. Loss of T&& mode in a hollow circular waveguide
with a = 8.1 mm, at milimeter wave frequencies.

————— Stratton’s method——  the proposed
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Figure 3.14. Loss of TM mode in a hollow circular
waveguide witha, = 8.1 mm, at millimeter wave frequencies.

————— Stratton’s method.— the proposed

3.8 Summary

This chapter demonstrates the versatility of thev neoundary-
matching method introduced in Chapter 2. Besidetangular waveguides,
the method is shown to be applicable in computiegloss of wave in circular
waveguides as well. A set of transcendental eguatosolve for the loss in
circular waveguides can be formulated by matchirgtangential fields with
the surface impedance of the wall, expressed imgeof the electrical

properties of the wall material.
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Comparison shows that the losses predicted bytbposed method
are in good agreement with the experimental measemes, as well as
Stratton’s method. However, unlike Stratton’s mekthdich is only restricted
to the case of circular waveguides, the new mettasdthe flexibility of being
able to be applied to both rectangular and circwaweguides. Having a
standard and accurate approach certainly provideshmconvenience,
especially when the propagation constant in wawkggwith more than one
kind of geometry is required to be computed. Aslisha seen in later
chapters, with modification made on the proposedhot it can also be
applied in calculating the propagation constantno€rostrip transmission

lines.
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CHAPTER 4

SUPERCONDUCTING WAVEGUIDES*

In this chapter, the characteristics of the propagaof waves in
superconducting waveguides are investigated. Topotenthe propagation
constant, the complex conductivity of the supercmhar is incorporated into
the equations, derived in Chapters 2 and 3. An itapb outcome from this
analysis is that superconducting waveguides arevishim behave like a
lossless waveguide, exhibiting lossless behavibireguencies above cutoff.
Above the gap frequency, however, the waveguideslis superconductivity,

giving loss higher than those operating at roonpenature.

41 I ntroduction

A waveguide mounted superconductor-insulator-sugretactor (SIS)
heterodyne receiver is commonly used to detect H®imals in radio
astronomy (Kookt al., 1994; Yassiret al., 1997; Yassiret al., 2000). Due to
its high gap frequencyy of about 700 GHz at 4.2 K, Niobium (Nb) has
generally been employed as the superconductingrizater the detection of
millimeter and submillimeter waves. On the wholee emission strength of
signals in the millimeter and submillimeter bandsdstronomical objects is at
extremely low orders of magnitude (Phillips and K&el992). Although most

waveguides implemented in SIS receivers are madeopper, attenuation

*Parts of this chapter were published in "K. H. ge€. Y. Tham, K. C. Yeong, and H. J. Woo, “Wave&gation
in Lossy and Superconducting Circular WaveguidBatioengineeringl, Vol. 19(2), June 2010, pp. 320 — 325."
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level exhibited in standard metallic waveguideshsas copper may actually
degrade the detection of signals at such weak siitefWinters and Rose,
1991). Superconducting waveguides which feature famsmission losses
and dispersion level below the gap frequefycyan thus be considered to be

implemented in the SIS receiver system.

A perfect conductor exhibits lossless conditiomeve the tangential

electric field E; and the normal derivative of the tangential maignéeld

oH
— at the boundary of the wall are zero. In contragth a perfect

oa,

conductor, field penetration occurs at the supetaoting walls. In order to
account for the field penetration, an alternatieeifidary condition based on
the penetration depth of the Meissner effect has lseiggested to study the
wave properties of superconducting rectangular @Vah al., 1994;
Yalamanchiliet al., 1995; Ma, 1998), circular (Ma, 1995), and paigilate
(Ma, 1999) waveguides. In the work of these authibrs boundary condition

for the longitudinal magnetic field, of a TE mode is given by,

M, 1y - 4.1)
da, A

wherei. known as the London penetration depth, is a measiuthe distance
of magnetic field penetration into the superconductAn important
implication of this theoretical study is that thengdnant mode for a
rectangular waveguide is found to have switchenohfiidgp to TE;1; while that

for a circular waveguide has switched from;TE TE). The formulation
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developed based on (4.1) predicts that the cutetfuencies. for both Tho
and TR; of rectangular and circular waveguides, respelgtivacrease when
the temperaturd drops below the critical temperatufg therefore resulting
in the change of dominant modes in supercondustiageguides. Yassist
al. (2001) has performed an experimental validatiothenabove theory using
a superconducting circular waveguide. The experiateresult, however,
shows that the work reported in Waeg al. (1994), Yalamanchiliet al.
(1995), Ma (1998), Ma (1995), and Ma (1999) turimed to be invalid. The
mode order in a superconducting waveguide remamsame as those found

in a perfectly conducting waveguide.

Yassin et al. (2003) had performed a theoretical analysis on
superconducting circular waveguides based on imcating the complex
conductivity of a superconductor into Stratton’si&ipn (Stratton, 1941). The
complex conductivity was found by solving MattistrBeen’s equation (Mattis
and Bardeen, 1958), derived from BCS theory. Waterd Rose (1991) had
performed a study on the attenuation in supercdiycrectangular
waveguides. As mentioned in Chapters 1, 2, andra{t&n’s equation fails to
be applied in the case of rectangular waveguides. method proposed by
Winter and Rose (1991) was, therefore, based ombeoximate power-loss
method and the phenomenological two-fluid modehc8ithe power-loss
method assumes lossless field’s expression in theeguide, it fails to
account for the penetration depth in a supercomdubtoreover, the two-fluid
model does not account for the existence of theegegogy in its formulation

and therefore is not able to indicate clearly thengition from
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superconducting to normal states. As concluded aytXK (1978), due to its
ability in describing the relationship of quasipeds and Cooper-pairs with
the energy gap, Mattis-Bardeen’s equations weradda be more realistic to

be applied in the case of superconductors.

In this chapter, a new approach to investigateptbpagation of waves
in both superconducting circular and rectangulavegaides is presented. In
the analysis, the complex conductivity of a supedtmtor based on Mattis-
Bardeen’s equation is incorporated into the tramdestal equations
formulated for rectangular and circular waveguidesChapters 2 and 3,
respectively. The new method introduced in the ipre chapters allows the
penetration of fields into the wall material;, whase Mattis-Bardeen’s
equation takes into account the existence of therggngap. Hence, the
incorporation of the two in this chapter providesnare realistic study of
superconductivity effect in waveguides — in pafacu rectangular
waveguides. In the results and discussion secticzgmparison between the
loss in superconducting and normal waveguides idemét is worthwhile
noting that the results obtained using the new ggegd method actually show
that the cutoff frequencidsof the dominant modes remain unchanged when
drops belowT.. This agrees with the experimental result of Yiassial.
(2001), further confirming the validity of the nemethod and therefore
disproving the theoretical findings in Waegal. (1994), Yalamanchilet al.

(1995), Ma (1998), Ma (1995), and Ma (1999).
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4.2  Propertiesof Superconductors

Superconductivity denotes a remarkable state tiansdf a material
which is characterized by the disappearance oftredat resistance and the
complete expulsion of magnetic flux. The tempematuat which the
superconducting state transition occurs is knowthagritical temperaturé..

A superconductor exhibits zero DC resistivity andanthgnetism at
temperatures below.. At temperatures above the critical temperatare

superconductor behaves as a normal metal.

The understanding of superconductivity was advamtd®57 by John
Bardeen, Leon Cooper, and John Schrieffer, thrabhgh microscopic theory
of superconductivity, known as the Barde€ooperSchrieffer (BCS) theory
(Bardeenet al., 1957). To explain the phenomenon of supercondtictin a
simple manner, one can imagine a negatively chaejedtron passing by
positively charged ions in the lattice of the sgpaductor. Due to the
attraction of the charges, the positively chargéoma distort toward the
electron. This in turn causes phonons or packetowhd waves to be emitted
which forms a trough of positive charges arounddieetrons. As depicted in
Figure 4.1, before the electron passes by and édfier lattice springs back to
its normal position, a second electron is drawro itite trough. The forces
exerted by the phonons overcome the electrons’ralatapulsion, allowing
the electrons to pair up. The coupled electronskamvn as Cooper pairs

(Cooper, 1956).
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Figure 4.1. A negatively charged electron passesvdsn
positively charged atoms in the lattice causesatioens to be

attracted inward.
4.3  The Semiconductor Picture of the Super conductor

The condensation of electrons out of a continuunallmived energy
values into Cooper pairs at a single energy lelga gives rise to an energy
gap Q) at the Fermi surface. This energy gap is ordemagnitude less than
the Fermi energy, typically about one millielectreolt, compared to Fermi
energies of several electrons volts. The energy\gaphe average energy per
electron of a Cooper pair, relative to the contmuThe binding energy of a
Cooper pair is thusA2 this being the minimum energy required to brdak t
pair. The situation in a superconductor can be dhtwf as analogous to a
semiconductor, with both having an energy gap @atRérmi surface. When a
superconductor is at finite temperatures below dhcal temperaturel,,
thermal energy and incident radiation can breakp&o@airs. The electrons
from the broken pairs are known as excited quaisies, which behave as
normal electrons with well specified momenta. Sirtbe binding energy

between paired electrons i&,2absorption of incident radiation is possible for
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field frequencies off > % where n is the reduced Planck’s constant.

Frequencyfy = % is thus referred to as the gap frequency of a

superconductor.

A comparison between the normal electron and gaasile density of
states is depicted in Figure 4.2 (Wengler, 1992)thie superconductor, the
electronic states in the immediate neighbourhoaoith®fermi energi- have
their energy pushed away frdg. The result is a range of energies frem—

A to Er + A in which there are no quasiparticle states. Imatetif above and
below are more states than in the normal metalsd laee the states that would
have been in the gap if the superconductor werermal metal. In the
ground-state superconductor shown, there is anyecgitinuum of states

available above the gap which is analogous to theduction band in an

Energy Energy
f 3

mstates mtates

(a) (b)
Figure 4.2. (a) The electronic density of statesaimormal
metal at 0 K and (b) the quasiparticle density tates in a

superconductor cooled to 0 K (Wengler, 1992).
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intrinsic semiconductor. Below the gap is a filledlence like band. This
density of states description of a superconductachvshows the presence of
an energy gap reminiscent to that of an intringmisonductor, and is thus

called the semiconductor picture of the supercotwtuc

44  TheComplex Conductivity

The equations for the complex conductivity, i®. — jo,, of a
superconductor have been developed by Mattis andleBa from the
microscopic analysis of BCS superconductor wealplog theory, as shown

below (Mattis and Bardeen, 1958)

o, 2 o E? + A2 + haE
_1:h—jA [f(E) - f (E +hw) —dE
On w (EZ_AZ)l/Z[(E_I_ha))Z_AZ]

1 A E2 + A% + hakE o (429)
+h—jA_hw[1—2f(E+ha))] ——dE

w (EZ_AZ)llz[(E‘I‘hCU)Z_Az]
o, 1 & E? +A? + haE
a_z%J’A—hw,—A[l_Zf(E-'-hw)] 5 12 5 T2 dE, (42b)

n (0% —EADY2|(E+hw)? -A

wherea, is the normal conductivity antl = A(T) the energy-gap parameter.

The function,

1

f(E):1+exp(E/kT)'

(4.3)
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gives the Fermi-Dirac statistics akds the Boltzmann’s constant. The first
integral in (4.2a) describes the effect of the riredly excited quasiparticles.
The second integral denotes the generation of padmsiles by fields with
frequenciesf corresponding to energies above the gap energys,Tthe
second integral is zero fér < 2A. Sinceo, indicates the contribution due to
the Cooper pairs, the lower integration limit in2ld) becomes A when/io >

2A. A depends on temperature and is obtained from thtae (Kautz, 1978)

|n(Aj = —2[0‘”(52 +A2jm{1+ ex{(n/ Ve fj{Ez +A2jm}}ld5. (4.5)

whereA :@, T =l, andye = 1.781 is the Euler’s constant.
A0) T

45  Characteristic Equationsfor Superconducting Waveguides
Substituting the complex conductivity of the sup@&ductor in (4.2)
into (2.43) for rectangular waveguides and (3.br)drcular waveguides the

following characteristic equations can be obtained

For superconducting rectangular waveguides:

japok, tanlk,b+ ) [uaae o, + jo) | ieeok, cotlk,b+ )
h? (we -0,)° +0, h?

, , (4.63)
_ C«}S‘—(UZ'*'le) — kzkx
\/ ay } [ h?® }
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{jaauokx tanlk,a+@) Juaxae—az +jay) }{ jak ok, cotka+ @)

h? (we-0,)% +0, h?
) , (4.6b)
_|ae—=(0,*]0y) | _ kK,
wu h?
and for superconducting circular waveguides:
{jthuw(w—amal) . th'(ha)}[jthar—(aﬁja—l)
we-0,)’ +0o *"J,(ha
( 2) oy (ha) ay @.7)

, 2
aEOhJ” (ha) _ nk,
J, (ha) a

4.6 Results and Discussion

To investigate the attenuation of the dominant rsofle waves
propagating in superconducting waveguides, thestemdental equations in
(4.6) and (4.7) are numerically solved using a#sm#rching algorithm from
NAG. The attenuation constant of a Nb rectangulaaveguide with
dimensions 2.29 x 1.02 énand Nb circular waveguide with radias= 8.1
mm, below and above the critical temperatiigeof 9.2 K is computed and
plotted in Figure 4.3 and Figure 4.4, respectivélyg.can be clearly seen, at
frequenciesf below the gap frequencly, the superconducting waveguides
operating afl = 4.2 K behave exactly like a perfectly conductmaveguide.
The attenuation diverges to infinity at cutoff fuemcyf.. Above cutoff, the
superconducting waveguides exhibit lossless att@mmuaTo explain this

phenomenon, the complex conductivity of the supsttacting Nb at 4.2 K
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Figure 4.3. Attenuation for Tig mode in a Nb rectangular
waveguide af = 4.2 K and room temperature (300 K).
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Figure 4.4. Attenuation for TiE mode in a Nb circular

waveguide at T = 4.2 K and room temperature (300 K)
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has been computed using Mattis-Bardeen equatioi.i). As can be
observed in Figure 4.%; which indicates the effect of the quasiparticies,
negligible at frequencies belofy, explaining the lossless result beldyvin
Figures 4.3 and 4.4. Abovig of approximately 716.45 GHz;, decreases
gradually toward zero, while; approaches the value ef, implying that
Cooper-pair breaking takes place abgvéVith the increase of quasiparticles,
the random collision of quasiparticles with thetitat structure can thus be
expected to become more frequent, resulting in drigtonduction loss at

frequencies abovi.

The attenuation for the superconducting waveguiddmve fy
eventually surpass the attenuation of the waveguwgderating at room
temperature. Conduction loss in a waveguide isctlireproportional to the

surface resistancBs and the square of the current induced by the niagne

TleTy

Ft
T

! [ [ [
] 500 1000 1500 2000 2500
Frequeny GHz

Figure 4.5. The normalized complex conductivityn@bium at

4.2 K, computed using Mattis and Bardeen equation.
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field penetration in the wall. Hence, to understandh phenomenon, the skin
depth and surface resistance of the supercondudimgare plotted as a
function of frequency. The skin depthof the field is given as (Duzer and

Turner, 1981)

5= |2 . 4.8)
WOy

where un, and oy, are permeability and complex conductivity of Nb,

respectively.

Figures 4.6 and 4.7 show the skin defptbf Nb at different range of
frequency. For frequencies below the gap frequdgcthe skin depth of the
superconducting Nb is of the order of 4én, which is much smaller than that

in the normal state. As the frequency increasesealive gap frequendy, o

Skin depth pm

100 200 300 400 500 600 00
Frequency GHz

Figure 4.6. Comparison between the skin depth of ifb

superconducting and normal state, wWitrelowfj.
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Figure 4.7. Comparison between the skin depth of ifb

superconducting and normal state, from 0 to 250@.GH
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Figure 4.8. The surface resistance of Nb in bothmab and

superconducting state.
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for the superconducting Nb turns out to be mucihéighan the normal state,

as can be observed from Figure 4.7.

The surface resistancBs of the waveguide can be computed by
substituting the values of the complex conductivittp the real part oZs in
(2.38). As shown in Figure 4.&s for the superconducting Nb at 4.2 K
increases at a higher rate than that at room teatyper As the frequency
increases above approximately 1.75 TRzat 4.2 K eventually surpasses that
at room temperature. Duzer and Turner (1981) hasséved the surface
resistance of a superconductor using the macrosdwmoi-fluid model (Duzer

and Turner, 1981; London, 1961), as given in (B&pw

_ &P na,

= 2

, (4.9)

wheren, is the number density of the quasiparticles. Asgared to the value

of Rs for normal conductors which could be simplifiedrfr (2.38) and (2.39)

as %, it can be observed that the surface resistaRge for

20

superconductors increase as the square of theeineguwhileRs for normal
conductors only increases proportional to the sguaot. It is apparent that
both the Mattis-Bardeen’s equation and the twadfloiodel show thaRs in
the superconducting state increases faster andewalhtually exceed that in
the normal state when the frequency increasesctrtain extent. The higher
loss for superconducting waveguide observed inregyé4.3 and 4.4 can thus

be attributed to the higher surface resistancegaedter penetration depth for
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frequencies above the gap frequency. It is intergdb see from Yassid al.

(2003), however, that the attenuation computedguSimatton’s equation for
superconducting circular waveguides was below #tatoom temperature,
implying that Stratton’s approach underestimatesltiss of superconducting

waveguides at THz frequencies.

47  Summary

A new analysis on wave propagation in supercondgatircular and
rectangular waveguides is presented. The complexumiivity is calculated
using Mattis-Bardeen’s equation, developed from Bi@®ry. The attenuation
constants are computed by substituting the valti#dseocomplex conductivity

into the transcendental equations formulated inpdra 2 and 3.

The results show that superconducting waveguigba\e exactly like
lossless waveguides, where the loss diverges faitinfat f = f; and the
waveguides become lossless abovef. but below the gap frequendy An
important implication of this study is that, thessoabove the gap frequenfgy
is observed to be higher than that in normal cotidgovaveguides. Such
phenomenon can be attributed to the higher surfasestance and field

penetration in the superconductor at frequenciesely.
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CHAPTER 5

MICROSTRIP TRANSMISSION LINES*

In this chapter, a full-wave analysis on normal augerconducting
microstrip transmission lines is presented. A $dtanscendental equation is
derived based on a similar boundary matching ambraenplemented in
previous chapters. Unlike quasi-static methods iassume the propagation
of TEM mode, the new method considers hybrid madgaggation, therefore
giving higher accuracy when computing the loss eives at wavelengths
comparable with the dimensional cross section efdfip — for eg. at THz

frequencies.

51 Introduction

Microstrip lines constitute the basic building tecof microwave
integrated circuits (MIC). Microstrip sections azemmonly used in passive
and active hybrid and monolithic integrated cirsuiExamples of passive
circuits include filters (Hset al., 2005; Ahnet al., 2001; Hong and Lancaster,
1997), directional couplers (Brenner, 1967a; Brenh®67b; Caloz and Itoh,
2004), capacitors (Alley, 1970), and inductors (Baet al., 1994); whereas,
active circuits include amplifiers, oscillators @o, 2005; Guptat al., 1996),
and mixers (Endaet al., 2009; Serizawat al., 2008). Another important

application of microstrip lines is in supercondngtiMICs. Superconducting

*Parts of this chapter were published iK."H. Yeap, C. Y. Tham, K. C. Yeong, and E. H. LifRull Wave Analysis
of Normal and Superconducting Microstrip Transnuediines”,Frequenz, Vol. 64, April 2010, pp. 56 — 66.”
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microstrip lines feature almost lossless transmissand dispersion level.
Signals at millimeter and submillimeter wavelengtiiste often are from
distant sources, resulting in the signals at extfgrftow orders of magnitude.
Thus, to detect such weak signals, superconduatimgostrip lines are
commonly integrated with Nb superconductor-insutstgperconductor SIS
tunnel junctions to build heterodyne receivers widlar quantum-limited noise
performance (Cartegt al., 2004; Yassin and Withington, 1996a; Withington

and Yassin, 1997; Withingtcat al., 1999).

The behaviour of normal and superconducting migp$&ansmission
lines have been investigated by a number of autlars to its simplicity and
analytical solution, quasi-static approaches hawenb widely used in
analyzing the propagation constant of waves in osicip structures. Quasi-
static approaches such as the method of confomawadformations (Wheeler,
1964; Wheeler, 1965; Wheeler, 1977; Yassin and Mftbn, 1995; Yassin
and Withington, 1996a; Withington and Yassin, 19%&mmerstad and
Jansen, 1980; Schneider, 1969; Assadourian andiRif&2), variational
method (Yamashita and Mittra, 1968; Yamashita, }196Be relaxation
method (Green, 1965; Stinehelfer, 1968; SchneidE65), and the
transmission line model (Yassin and Withington, 3;99yassin and
Withington, 1996a; Withington and Yassin, 1996; Miat1969; Kautz, 1978),
assume pure TEM mode of propagation. As experinigntalidated by
Grunbergert al. (1970) and Grunberger and Meinke (1971), the apam
of TEM mode for the propagation of the dominant ma&l adequate only at

low frequencies$ where the strip width and substrate thicknessushmower
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than the wavelength in the dielectric materialhigher frequencies, however,
deviation from the ideal conception of TEM waveolsserved. In reality, the
nature of wave propagation is a hybrid mode, wiheté longitudinal electric
E; and magnetiti; fields exist, respectively. Thus, hybrid mode d¢dess the
superposition of both TE and TM modes. As the feamy increases, the
fields tend to concentrate in the dielectric sudistr resulting in dispersive

effect in the phase velocity.

A more exact but complex approach is the full-wamalysis (Guptat
al., 1996). Full-wave analysis allows the co-existentdéongitudinal fields,
thus accounting for the dispersive nature of therosirip lines. Investigations
on microstrip lines based on full-wave analysisenaeen reported in Mittra
and Itoh (1971), Itoh and Mittra (1973), Itoh andttka (1974), Syahkal and
Davies (1979), Kowalski and Pregla (1971), and Zysmand Varon (1969).
Although these techniques produce accurate hybodemesults, they feature
certain limitations due to the assumptions madenduformulation. For
example, the spectral domain approach (SDA) inttedun Mittra and Itoh
(1971), Itoh and Mittra (1973), and Itoh and Mit{E®74) assumes that the
strip thickness to be infinitesimal, and is, thasgcurate only in cases where
the strip thickness, is much smaller than the dielectric heighi.e.ts << b.
Also, the methods introduced by Kowalski and Prétyv1) and Zysman and

Varon (1969) have assumed that the strip to be rabderfect conductor.

In this chapter, a novel full-wave analysis apploadich considers

the dispersive nature of the microstrip structurespresented. The new
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formulation takes into account the finite thicknessl width of the strip and
also the imperfect conductivity of the strip andwgrdplane. In the new
method, the solution for the propagation constanfound by solving the

transcendental equation derived from matching #mgedntial fields at both
regions of the dielectric-air interface and thegemtial fields with the surface
impedance at the dielectric-conductor interfacee Tiew method can be
implemented in superconducting microstrip structuae well, by applying the
complex conductivity of a BCS weak coupling supedurctor (Mattis and

Bardeen, 1958) into the equation. Since single mamration on microstrip

lines is of the most practical importance, detaidlgsis of the fundamental
HE, mode will be shown in the subsequent sections.tt be noted, however,
that this technique is not only restricted to tbevést order mode and can
actually be applied to all modes in the microstiipes. The attenuation
constants for normal and superconducting microgtapsmission lines are
computed and compared with those obtained fromgtreesi-static methods.
Hence, for convenience purpose, some of the availgbasi-static methods
shall be discussed briefly, prior to discussiontius new method of full-wave

analysis. In the subsequent sections, the new metilbalso be demonstrated
to give more realistic values especially for supaducting microstrip lines

operating in the millimeter and submillimeter regenwhere the wavelengths

are comparable with the dimensions of the micrpshiuctures.

94



5.2  Methodsto Compute Microstrip L oss

Four separate mechanisms can be identified for pdesses and

parasitic effects associated with microstrip liedwards, 1981)

0] Conductor losses
(i) Dielectric losses
(i)  Radiation losses

(iv)  Losses due to surface-wave propagation

The first two losses are dissipative effects, whihe last two are
essentially parasitic phenomena. Hence, lossedaluadiation and surface-
wave propagation can actually be suppressed so &ndhe microstrip
structure is carefully and properly designed. Instnaonventional microstrip
circuit designs with a high substrate dielectrinstant, conductor losses in the
strip and groundplane dominate over the other thosges. In the following
sections, a brief review on the conventional quéaiic methods used to
calculate loss in microstrip lines shall be presdntSince conductor loss is
significantly higher, when calculating the lossngsthe quasi-static methods,

the total loss in the microstrip is assumed to titurie of only conductor loss.

5.2.1 Formulationsbased on the Incremental I nductance Rule

To formulate the attenuation constantucelet al. (1968a) and Pucel

et al. (1968b) have used a technique based on the “imsr&hinductance
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rule” (Wheeler, 1942). This rule expresses theesesurface resistané® per
unit length in terms of that part of the total isthnce per unit length which is
attributable to the skin effect, i.e. the induc&hgcproduced by the magnetic
field within the conductors. Solving for the extakninductance using
Wheeler's quasi-static approach (Wheeler, 1964; &\éne 1965; Wheeler,
1977), the total resistance per unit length cars thel found. The attenuation
constant of an air-filled microstrip line can betabed by substituting the
total resistance into the power-loss method (S&l@i@3; Collin, 1991; Cheng,
1989). Here, only the final relations for the attation constant is presented

(Pucelet al., 1968b)

ForVEv < 1/(2n):

2
azp _ 868 1—[ﬂj 1+£+£ L (5.1a)
R 2m| \4b Wl w
For 1/(2n) < va <2:
2
aZp _ 868 1—[ﬂj 1+£+£ Inz—b—t—S : (5.1b)
R 2T 4b wo o ot b
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IN
U-l-E

where Z; is the characteristic impedance of an air-filledrghel-plate
transmission linew' =w + Aw, andAw is known as the edge correction factor
(Wheeler, 1977). The quantitkw can be found by comparison of the
conformal mapping result of a microstrip line watnip thicknesgs # 0 andts
= 0. Hammerstad and Jensen (1980) have improvedbtheilation forAw
developed by Wheeler (1977). Hence, the more atxui@mulation in

Hammerstad and Jansen (1980) has been applied here.

According to Wheeler (1964), a homogeneous meditan be
introduced to replace the air and dielectric sabstiof the dielectric-filled
microstrip line. The dielectric constant of the nugdl is represented ag; and
is known as the “effective dielectric constant”.ride, in order to calculate the

attenuation of an actual microstrip line with suéts carrier, the attenuation

constants of the air-filled line in (5.1) is to eultiplied with jeg . A

number of authors have developed different equatiordescribe the value of
eqf, for eg. Wheeler (1964), Wheeler (1965), Wheel&7{7), Hammerstad

and Jansen (1980), and Schneider (1969). Since Hestad and Jansen

97



(1980) claimed that the accuracy of their formalatio be better than 0.01 %
for VEV <1 and 0.03 % fo%v > 1000 compare to the others which claimed to

have a higher relative error, their formulation fine effective dielectric
constantes has been substituted into (5.1) to calculate fe kbss of a

practical dielectric-filled microstrip line.

Schneidert al. (1969) has derived the characteristic impedanca of
single-dielectric filled microstrip structure usirige elliptic function-based
exact solution. Applying a similar method as Pugtedl. (1968a), i.e. using
Wheeler’s incremental inductance rule and subsiguthe equations of the
characteristic impedance into their equation, Siclanet al. (1969) obtained a

simpler expression for the attenuation constant

Forv—v <1:
b

(Sb Wj b bow
- 1+7+77
b= 10R, \w 4b W wot,

o o gy eXF{Zo(& =1)j ’

(5.2a)

60

Forv—v >1:
b

_ 2 2 5
o = ReZo(& =) {“ 044p° , 6b (1_2j }[“V_VJ,S_WJ . (5.2b)

~ 720%b In10 w2 owAlow
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The formula published by Hammerstad and Bekkad&7%) is
identical with (5.2) although it is modified in wirig. According to the

theoretical derivation shown in Hammerstad and Bdkk (1975), the term
exp Zo in (5.2) can be expressed b§9+ﬂ. The relation after
60 w 4b

Hammerstad and Bekkadal (1975) reads

Forv—v <1
b

a =
bZ (g, =1)In1032+ (w/b)? ot

S

10R, 32-(w/b)? {14,2[14,5_""]} , (5. 3a)
w

Forv—v >1:
b

_ 5
g = 2RZeEole =) W, b (1—% + 008} 1+ 214+ 2
M, InN10 b w w w ot

(5.3b)

It is to be noted that the formulations develogmd Pucel et al.
(1968b), Schneideat al. (1969), and Hammerstad and Bekkadal (1975) are all
based on the incremental inductance rule (Whe&842). Since the external
inductance applied in this rule is derived usingjuasi-static conformal

mapping approach, the accuracy of equations (%01)5t3) is therefore
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restricted to the range of frequencies where tbeagation of wave resembles

closely to that of TEM wave.

5.2.2 Formulationsbased on the Transmission Line Modé€

Matick (1969) has adopted a simpler and straigitiod approach in
deriving the propagation constakf of a microstrip line. In analyzing a
microstrip line, Matick has assumed that the widltlthe stripw to approach
infinity, such that fringing fields at the edges tbk strip can be neglected.
Solving for the series impedanZeand shunt admittancé of the microstrip
line and substituting them into the approximateppgation constant equation

derived from a sinusoidal voltage on a transmisiman(Cheng, 1989)

k, =-jJZY | (5.4)

the attenuation constantand phase constafitcan be found respectively as

(Matick, 1969; Kautz, 1978)

2.+241%
a= _ko\/zlm 1- JW , (55a)
0
z +72_ 1%
ﬂzkm/ZR{l— j%ﬁ} . (5.5b)
0

where Zs and Zy are the surface impedance of the strip and grdandp

respectively, and are given as (Kautz, 1978)
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Z = /% cotk{(,/jcquoaS )[s] , (5.6a)
Zy = /JJ—Q:IO coth[(,/jcquoag )g] : (5.6b)

Here,os andog are the conductivities artgdandty the thicknesses of the strip

and groundplane, respectively.

Clearly, the loss computed in Matick’'s model is @kathe same as
that of a TEM wave propagating in a parallel-platpacdtor with no fringing
field. In order to account for the fringing lossdadispersion of a practical
microstrip line, Yassin and Withington (1995) hasraduced a penetration
factor y into Matick’s formulation. According to Yassin and/ithington
(1995),y takes into account the increase in the attenuabmstant due to the
actual distribution of the current not being unmbrand the characteristic
impedance being lowered by the fringing field. Bycarporatingy into
Matick’'s equation and substituting the dielectramstants, of the substrate
with the effective dielectric constank, the attenuation constamtand phase

constanf read

a = =Ko/ Exr Im{ ] (5.7a)

B=k\[Ea {—JZ s X} . (5.7b)
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According to Yassin and Withington (1995), the gteation factory is
derived using the conformal mapping technique o$al®urian and Rimai

(1952) to compute the power loss in microstripdine

It is to be further noted that the introductiontloé penetration factor
and the effective dielectric constagt into the transmission line model are not
derived from fundamental principles. They are based mere empirical
assumption. Moreovey, is obtained from the conformal transformation,cal
only when TEM wave is assumed. Hence, Yassin-Witbimgt equation,
though claimed to have accounted for the fringieflfs effect, could only be

taken as a better approximate method, improved Matick's.

53 TheProposed Method

It can be clearly seen that, in order to derive #Htéenuation
expressions using the quasi-static methods disdussthe previous section,
the propagation of wave must be assumed to be in hidde. Strictly
speaking, however, since fringing loss exists atadges of the strip, fields
penetration occurs in the lossy conductor mateaat] the wave velocity in
the dielectric substrate is different from thafriee space, it is not possible to
support a pure TEM mode in the structure. In fact,even pure TE or TM
modes can exist in a microstrip structure. A prattmicrostrip line can only
support hybrid mode. This can be seen rather edsilyconsidering a
microstrip line being encapsulated in a rectangulaveguide, as shown in

Figure 5.1. If the center strip is removed from tieveguide, it reduces to a
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Figure 5.1. Cross section of a microstrip line gscéated in a

shielded case.

partially filled guide that can support longitudirsection electric (LSE) or
longitudinal section magnetic (LSM) types of mo@&alénis, 1989), but not a
pure TE or TM mode. The insertion of the center strifhe waveguide causes
currents to flow in the- andz-directions on the strip. The strip thus serves to
couple the LSE and LSM modes so that the final numatgiguration is hybrid

in nature (Itoh and Mittra, 1972).

Hence, in this section, a new full-wave analysisiciwhtakes into
account the coexistence of hybrid modes in a migpmpdine shall be
introduced. To analyze a microstrip line using fudlve method, it is a
common practice to assume the microstrip line terimpsulated in a metallic
box (Mittra and Itoh, 1971; Itoh and Mittra, 197Bph and Mittra, 1974;
Syahkal and Davies, 1979; Kowalski and Pregla, 1Z¥man and Varon,
1969) such as a rectangular waveguide shown inr&igul. The shielded form
of the microstrip transmission line makes the tkhaoal treatment less

difficult since the field region is confined withihe metallic box. However,
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care must be taken when defining the dimensionhef metallic box. The
enclosure dimension must be made much larger tharstrip widthw and
substrate height so that the presence of walls does not affectrtioeostrip
line characteristics. Besides, it can also be ghahby letting the distance
between the walls and the microstrip line approsdnénity, the structure

reduces back to an open microstrip.

The new method is inspired from the approach inttedby Kowalski
and Pregla (1971) and Zysman and Varon (1969), Wwlgeaesolution to solve
for the phase constant is obtained by matchingfiglés at the air-substrate
interface. However, unlike Kowalski and Pregla (IPand Zysman and
Varon (1969) which assume the strip to be madeeofept conductor, the
formulation developed by Kerr (1999) which descsiltiee surface impedance
of a conductor with finite thickness is incorporhtmto the new method.
Taking a similar approach as that used in Chaptensd23, i.e. matching the
fields and the surface impedance at the boundatymifferent media, a set
of characteristic equation can be found, solvingctvlgives the propagation
constant of a lossy microstrip line. It is worth¥ehnoting that, instead of fully
encapsulated in a metallic box as assumed by o{Mitsa and Itoh, 1971,
Itoh and Mittra, 1973; Itoh and Mittra, 1974; Syahkand Davies, 1979;
Kowalski and Pregla, 1971; Zysman and Varon, 1968, microstrip line
analyzed using the new method is only assumed tpalially enclosed at
both sides. This reduces the number of boundaryittonsl to be satisfied and

therefore, simplifying the process of derivation.
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5.3.1 Fiddsin theDidectric Substrate

The microstrip configuration analyzed using the newethod is

partially enclosed as indicated in Figure 5.2. Ttracture is assumed to be
P . o : a
infinite in length in thex and z directions. The sidewalls at = iE are

perfectly conducting and the widthapproaches infinity so that the walls do
not perturb the field lines localized around theipstconductor. The
fundamental HE mode is an even mode, which has the property ttiat
electrical field distribution is symmetrical wittespect to they-z plane at
x = 0. Thus, the mathematical problem can be sinegliby treating only one
half of the microstrip structure. In this case,\ottile right half of the structure
in Figure 5.2 is considered. The symmetry plarne=aD represents a magnetic
wall or an ideal electrical open. On a magneticlmtae tangential magnetic
field vanishes and the electric field is purelygantial (Kowalski and Pregla,
1971). In other words, at= 0, both the resultant tangential magnetic fid|d

and the normal derivative of the tangential eledigld dE, /0a, are zero.

. y |

T w2 wip <

| Y2z / —— bi2
to} ’///AV?////W////////—b/z
—al2 =l | o2 al2

Figure 5.2. Cross section of a microstrip line,hwgerfectly

conducting walls enclosed at both ends.
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As illustrated in (2.30) in chapter 2, the bounda&gndition in a
lossless microstrip line, requires that the tangécbmponent of the electric

OH,

field E; and normal derivative of the tangential magnaedf 3 to vanish

at the dielectric-conductor interface. Hesg,is the normal direction to the

conductor material. Nevertheless, due to the fioieductivity of the strip and

groundplane material, botg and gHt do not decay to zero at the boundary
a,

(see equation (2.31)). To account for the diffefatdls at the boundary of the

strip and groundplane with different surface impemta a phase parametgy

is introduced. Likey in Yassin-Withington’s equation (Yassin and Wittion,

1995; Yassin and Withington, 1996; Withington ancs¥in, 1996),¢,

describes the penetration of fields into the los®yductor. Hence, for
convenience purpose it shall also be referred tdhasfields’ penetration
factor. Applying the boundary conditions at the metgc wall and dielectric-
conductor interface, the longitudinal fielHsandH, can be derived by solving
Helmholtz homogeneous equation in Cartesian coatdinlt is to be noted

that, the introduction of, in the solution complies with Maxwell’s equations,

therefore, abide by the fundamental principlesngshe method of separation
of variables (Cheng, 1989), the following set oéldi equations can be

obtained in the dielectric substrate

E,s = Ey cogk X)sin(k, Y+, ) , (5.8)

Hy = Hgsin(kgx)codk y+g,) | (5.9)
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whereEy andHy are the constant amplitudes of the fields; while= n and
a

k,a are the transverse wavenumbers inxlagdy directions, respectively. The
subscriptd denotes electromagnetic fields in the dielectuiostrate. The usual
wave factor in the form of exgfpt — k;2)] is omitted, as one deals with the

time harmonic excitations.

For a microstrip structure having an equivalenfage impedance at

the strip and groundplane, the skin depth and,, tBusand ZH‘ at the
a,

: . b .
dielectric-conductor boundary at = iE must be the same. In this case,

equating the longitudinal fields gt= ig, the fields’ penetration factap, is
found to be zero. As illustrated in the equivaleintuits shown in Figures 5.3
and 5.4, the sum oOE; and the sum oH; aty = ig for the strip and
groundplane having surface impedaZggandZy, respectively, must be the
same as that sharing an equal surface impedancgez—%;‘;z—sg). Applying

voltage and current divider formula fgy andH,, the following is obtained
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Figure 5.3. Equivalent circuit for the longitudiredéctric fields

at the substrate-strip and substrate-groundplanedauies.

k. b
2Hdsin(kxdx)co{ yzd )

ﬁ

Figure 5.4. Equivalent circuit for the longitudinadagnetic

fields at the substrate-strip and substrate-grokamep

boundaries.
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Aty= 9 , it follows:

E,, = E, codkx) sm{

|

27 Ky
=———E, k
> { codk,,x sm{

s =
H,, =H,sin(k,x) co:{ j

2Z, Ky
=——> | H,sin kxdx co
Z +Zg

I

)

and aty =—g , One obtains:

kb
E,, = E, codk, x)sin[ yzd —qoy]

o7 NE (5.12)
:ﬁ{Ed cogk,x)sin —= H

ss sy 2

k. b
H, = Hdsin(kxdx)co{ = —goy]

2

. - (5.13)
—[H sin(k ,x)cog —= H
Z +Z

2

The transverse fields’ expression can be obtainedutsgtituting the
longitudinal fields into Maxwell's source-free cwetjuations and expressing

the transverse field components in term&gfandH,4 (Cheng, 1989). Hence,
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substituting (5.8) and (5.9) into (2.10) and (2,18 transverse fieldd,y and
Exs can be expressed as follows
|

Hy = _F[kzkded - wgdkydEd]coskde)COS((ydy+¢y) » (5.14)

d

Exd = #[kzkxdEd +a’,udkydHd]Sin(kde)Sin(kydy+¢y) ! (5'15)

d

where uq and ¢q are the permeability and permittivity of the dthec
substrate, respectively, ang’ = kq® + kd°. Since (5.14) and (5.15) are
derived from the substitution of longitudinal eléctand magnetic fields, thus,

unlike quasi-static methods, it accounts for theexistence of hybrid modes.
5.3.2 Fiddsin Free Space

As shown in Figure 5.2, the air or the free spagpon is unbounded
in the y direction. Thus, electromagnetic waves must asston&ecay

exponentially asy approaches infinity. At the direction, the fields must

satisfy the boundary condition of the perfectly docting walls atx = +

N

(Kowalski and Pregla, 1971; Zysman and Varon, 196@jving Helmholtz
homogeneous equation and applying the boundaryittmmdthe longitudinal

fields can, thus, be expanded to

E,. = E, codk,.x)expl- jk,.y) , (5.16)

H,. = H,sin(kx)exd- jkyay) , (5.17)
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whereE, andH, are constant amplitudes of the fields; whilg= 7 and Kya
a

are the transverse wavenumbers in xhendy directions, respectively. The

subscripta represents fields in the free space region.

Following the same procedure as that used to eldhe transverse
fields in the dielectric substrate, the followingrisverse fields’ expressions in

the free space region are obtained

1.
Hxa = _F[szkxaHa - afakyaEa]Coskan) exp(—kyay) ! (518)

a

1. . .
Exa :F[szkxaEa _WakyaHa]SIn(kxax) eXp(—Jkyay) ! (519)

a

where u, and e, are the permeability and permittivity of free spac

respectively anth,” = ke~ + Kya.

Since the tangential fields are continuous atbiiendary, the constant
coefficients E; and H, can thus be expressed in terms Ef and Hyg,

respectively, by matching, with E4 using (5.15) and (5.19) ar}, with Hq

using (5.14) and (5.18), at the bound;apyg

jk kb

E, = E, ex[{l 2y ]sin[ VZ“ J , (5.20)
ik, b Kb

Ha:Hdexr{J é"" Jco{ y2d J . (5.21)
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5.3.3 Characteristic Equation for Microstrip Lines

In order to satisfy the boundary conditidf,andH; in the dielectric
substrate and air region can be matched at thedtlie-air interface. As
discussed in Section 2.5.F; and H; at the boundary of the dielectric-
conductor interface can be related to the surfanpedanceZs of the

conductor via the equation:
Z = 5 (5.22)
Js

whereJs = a,xH; denotes the surface current density (Cheng, 1989).

From Kerr (1999),Zs and Zy can be expressed in terms of the

electrical properties as:

=571 T expl- k.t
j 2, + k. pPEjkts)
Z =1"s , (5.23a)

%% | expiik.t.) - 2220 " s oo ik t)
X - XpE
PUSS o.Z +jk PSS

s<n S

) oz, - jk
exp(jkqty) +—="
g

. a-gZ[] - J g .
exp(ikyty) +—————exptjkgty)
— 9 JQZU + Jkg
Z, = . , (5.23h)

o . 0,2, - Jk .
9 | exp(ik,t,) —ﬁexp(—jkgtg)

g—n 9
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where Z, = Ho is the intrinsic impedance of free space; wkilandk, are

é?O
the wavenumbers in the strip and groundplane, otispéy. It can be seen that
when the thickness is large (iteor ty — ), (5.23a) or (5.23b) reduces to the

usual surface impedance formula shown in (2.38).

Assuming that an “imaginary window” with width exists in the

microstrip structure, as shown in Figure 5.2, ih & observed from (5.22)

that the sum of the fields ratieE‘— at the boundary = J_rg can be computed
St
using either of the following two methods:
(1) Integrating the ratio of the tangential fields the substrate

cl/2
from x = ¢/2 to /2, i.e. I de, aty = +

-c/2%s

. Here,c can be

N o

of any value from zero to the width of the perfgatbnducting
walls at both ends of the microstrip structure. @.€ c < a).

(i)  Adding the integration of the ratio of the ggntial fields in the

cl/2
. L E . .
air region, i.e. I —tdx with the total surface impedance of the

w/2 s

strip and grounplane fromi2 to —— aty = %

N o

<
2

At the boundary = ig, applying (5.22), the surface impedance can
be derived asZ, =+ EX =+ :X . Hence, finding the sum 05 within the

z z St
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window with width c using the two methods in (i) and (ii) mentioned\ad
and matching them, the following sets of equatigiéng the total sum of

surface impedance of the microstrip, can be obthine

b
/2 Exd(y:j /2 Ex
dx + j

-c/2 sz(yzgj -c/2 sz

<
1
|
o
X

<
1
|

m

x
Q

R
<
1

<
I

w/2 b c/2 cl/2 b
:2!; Z$(y=§jdx+zj' - ng(yz—ajdx

w/2 H

Q.
X
+
N
—_—

o

NIioT|INIoT vIio|NITo

(5.24a)

(5.24b)

It is worthwhile noting that, since only the righalf of the microstrip structure

is considered, the right hand side of (5.24) istipligd by two in order to

E

compute the total sum of fields ratie~ from % to —%.

St

Substituting the field equations (5.10) to (5.18jo (5.24) and
expressingE, and H, in terms of E; and Hy using (5.20) and (5.21),

respectively, the following equations are obtained
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ik k . ta kydb C Zss + ZSQ + (W_C) Zss

JK Ky 2 2

i 2 h, ng Zg h, ng
L (w-0) ¢ z. Z kb)|,
haz C"’Jakya _Wzss _Czsg - JEWd kyd ng + Z;g ta y2 Hd

(w-0) W ¢c  .cC Z, Z Kygb
we K —-—+ | —awe Kk, |—+—=|cCO E, =
hz a ‘ya ZSS 7 Jhd2 dMyd 7 7 2 d

a

g
i kb Z —o)(Z

JK Ky CO{ yzd j:”:hCZ[ng +§$]+(V\I{] ZC)(ng }Hd
L d Ss g a ss

(5.25b)
In order to obtain nontrivial solutions, the deterant in (5.25a) and

(5.25b) must be zero. By letting the determinanthef coefficientdey andHg

in (5.25) vanish, the following set of transcend¢equation is obtained

n) el
¢ o=+"%| (w-o) ‘=
Z Z

[ikkaf| =2+ :

hy* h’ h,* h’
I Z. Z kb)]
(W )k ] apdkyd(2$+zsg]tar(wj
WZ +cZ B 2= x
Ss S 2 hdZ
I z ko) |
- jeak Ky Zs it cot
w, ¢ (W=C)ar kK, ~ g s 2
Zs Ly h’ hy”

(5.26)
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The propagation constakt for each mode can be expressed in terms
of the transverse wavenumbers using either of iggedsion relation shown in

(5.27) and (5.28) below

K, =Ko’ ke’ — Ky (5.27)

K, = yky” —Kyy” Ky - (5.28)

Since ke = kg = 2, kja can thus be expressed in termskgf by
a

equating (5.27) and (5.28)

Ky =Ko~k +Kyy (5.29)

Substituting (5.27) or (5.28) and (5.29) into @,2it can be clearly
seen thatkyy is the remaining unknown to be numerically solfed The
attenuation constant, can be computed by substituting the rootkafinto
(5.28) and extracting the imaginary componenkof f, — ja, in (2.2). For a
lossless dielectric, the wavenumber in the dielesubstrates, is purely real.
Close inspection on (5.28) shows that in orderdmpute the value of the
complex propagation constaif kyg must be a complex variable as well, since
both ky andk,q are real variables. Like the case of the lossyegaides, the
Powell Hybrid root-searching algorithm in a NAG tioe has been used to

find the root ofkyy. Since the fundamental mode is thegHiBode, the search
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can thus start with values close to zero for bdtd teal and imaginary

components Olkyq.

5.34 The Superconducting Microstrip Lines

Several authors (Matick, 1969; Meyers, 1961; SwjhE961; Fingers
and Kerr, 2008) considering superconducting traesion lines and striplines
at low frequencies, have used the simple two-flmiadel to characterize the
superconductors. Nevertheless, Kautz (1978) hagpared the results for the
attenuation constant and phase velocity of stiggliobtained using the two-
fluid model and the Mattis-Bardeen theory. As shdwnKautz (1978), it is
more realistic to apply the microscopic theory deped by Mattis and
Bardeen (1958) since it takes into account theraotens of quasiparticles
and Cooper pairs with the energy gap (as discuiss€thapter 4). Hence, in
order to be able to give a more accurate prediotibtoss, Mattis-Bardeen
equations, i.e. equations (4.2) to (4.5), shallapplied here to calculate the

loss in superconducting microstrip transmissiordin

54 Results and Discussion

In order to verify the new formulation, the attetioa constant of a
microstrip line is computed using the transcendesaation in (5.26) based
on two sets of parameters arbitrarily chosen fromn tesults in Pucedt al.
(1968a). Both the strip and groundplane of the rbmmicrostrip structure are

made of copper. The attenuation curve computedutle substrate with a
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dielectric constant, = 105 is illustrated in Figure 5.5 and for alumina
substrate witle; = 9.35 in Figure 5.6. The attenuation constargscampared
with those from equations derived using conformahsformations (Wheeler,
1964; Wheeler, 1965; Wheeler, 1977) and Wheel@ecsemental inductance
rule (Wheeler, 1942), by Hammerstad and Bekkadarg)l (HB), Schneider,
et al. (1969) (SGB), and Pucet al. (1968b) (PMH). As shown in Figures 5.5
and 5.6, the attenuations computed using the nethadeare close, though
somewhat higher than those from the three quascstaethods. Close
inspection on the experimental results publishe®bgelet al. (1968a), it can
be observed, however, that the measurement reshiised higher loss than

those suggested by PMH as well. Hence, this sugg@gsingly that the new

HB’s method

21 -
E 16 | The new method
as]
o method
c
9 R e -
B KT
S 11 R R
C L e = - -
g RN
Z e /

PMH’s method

1 T T T T T T

0 1 2 3 4 5 6
Frequency GHz

Figure 5.5. The loss in a copper microstrip trarssion line
with alumina substrate. Givem = b = 508.0um, ts = 8.382
um, ty = 300.0pum, ande = 105. (@)=============" SGB’s
method, = = = * = HB’'s method,= = =— = PMH’s

method, and¢=——— the new method.
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2.5 7

Attenuation dB/m

Frequency GHz

Figure 5.6. The loss in a copper microstrip linghwiutile
substrate. Givew = 3.048 mmp = 1.27 mm{s = 9.906um, tq
= 300.0um, andeg, = 9.35. (a)=======r==nnrn SGB’s method,
————— HB’s method,= = = = PMH’s method, and

the new method.

full-wave method gives more accurate predictioioss, which tallies closer

with the experimental result shown in Pueiedl. (1968a).

Next, the attenuation of a Nb microstrip above aetbw the critical
temperature T, of 9.25 K is investigated. The dimensions of the
superconducting microstrip structure are takenetavls 750 nmpb = 250 nm,
ts =ty = 300 nmg; = 3.8, andc = a = «. Figure 5.7 depicts the values of the
attenuation constant, against a range of strip thickness to dielectaght

ratio t/b, at frequencyf = 100 GHz for the microstrip line at room
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Figure 5.7. The loss in a Nb microstrip line at nmoo
temperature anti= 100 GHz as a function of strip thickness to
substrate height ratid#b). Givenw = 750 nm,b = 250 nm,

ande, = 3.8.

t .
temperature. As can be seen, whﬁn decreases below 0.1, the attenuation

diverges to a very high value. Since the penematigpth of Nb is 85 nm at
=0 K (Tracket al., 1989) and 40 nm &t = 4.2 K (Scheltert al., 1971), it is
apparent that a sharp increase of loss occurs Wigethickness of the strip is
less than the penetration depth (during supercdimdustate) or skin depth
(during normal state) of Nb. Another factor contiting to the high loss in
microstrips is that, when the strip becomes indisitnally thin (i.ets = 0), the
current at the edges of the strip diverges to d@aremely high rate resulting in

the loss becomes unbounded (Heitkampar and Hejnti@@l). Clearly, the
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Spectral Domain Approach (SDA) which assumes zéiiokness during

formulation is not able in any formal way to cakte the behaviour of strips
having finite thickness. In order to avoid singitlas, however, Yassin and
Withington (1995) have proposed limiting the numbémbasis function used

to represent the current distribution to a finiée af values. Since the SDA is
calibrated to yield the best agreement with thfammal mapping techniques,
the calculation of the power loss could only, there be as good as and no

better than the equations used by HB, SGB, and PMH.

Figures 5.8 and 5.9 show the attenuation of Nbrostcp line at

temperatureT = 4.2 K, both below and above the frequency dgp

E
respectively. The sum of fields ratio, |§t— in (5.22) are integrated using the

limits ¢ = 750 nm, 1750 nm, 7500 nm, and 1.0 ¥ dn and (5.26) is
computed based on these four sets of values kifcan be seen from Figure
5.10 that when the fields ratio is integrated altmgwidth of the strip (i.ec =

w = 750 nm), the fringing fields beyond the widthtbé strip are excluded in
the mathematical treatment. Hence, the sum ofdiesdio resembles closely
Matick’s formulation which assumes a parallel pleégacitor with negligible
fringing loss. Indeed, the attenuation obtainesgshe proposed method at
= w, tallies very closely with that computed using Mk equation (Matick,
1969; Kautz, 1978), and is, in fact, indistinguisleaasf exceedsy. As c
increases, the attenuation increases accordinglyels The attenuation,
however, ceases to increase further when the fralils is integrated beyond

some definite value af. The additional loss predicted by the proposechouet
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whenc approaches infinity can thus be attributed toftivging effect at the

edges of the strip.
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Figure 5.8. The loss in a superconducting micrpdinie atT =

4.2 K below the gap frequencly. Equation (5.26) was

integrated overc = 0.1 M (e—————), 7.5 pum

(= = = v ), 1.75 ym (== -« =) and 0.75um
(e ), srmmsmsmmeaaas was calculated using Matick’s
equation.
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Figure 5.9. The loss in a superconducting micrpdinie atT =

4.2 K above the gap frequendy. Equation (5.26) was

integrated overc = 0.1 M (—————) 7.5 um
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Figure 5.10. Field lines distribution in an aiddd microstrip.
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An overall picture of the attenuation below and \a&bahe gap
frequencyfy is shown in Figure 5.11. It is interesting to &t in this range,
the attenuation computed by Yassin and Withingt®d95) is even lower than
Matick’s method, indicating that Yassin-Withingtsrmmethod underestimates
the loss of a superconducting microstrip line digantly. Although both the
new method and Yassin-Withington’s method introdacpenetration factor
into their formulations, it can be seen that thev meethod actually gives a
more accurate result. This is however to be expestece the modification

introduced by Yassin and Withington (1995) in thEM mode transmission

1.0E+06 +

1.0E+05 - e
1.0E+04 1 ’ Yass}'
Withington’s
1.0E+03 | method
£
m
© 1.0E+02 -
o
S
2 1.0E+01 1
e
<
LOE+00 - The new
1.0E-01 1
1.0E-02 -
1.0E-03 | : : |
1 10 100 1000 10000

Frequency GHz

Figure 5.11. The loss in a superconducting Nb nsici line

at T = 4.2 K as a function of frequen Cis—————— was
calculated using the new method in (5.53)y=====s==== using
Matick’'s equation, and = == == = using Yassin-

Withington’s equation.
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line model, is based on an empirical approximatiovhile, the new
formulation proposed here is developed from fundaaleprinciples which

accounts for the existence of both longitudindbise

A comparison of the attenuation constant and phadecity of Nb
microstrip line at room temperature andlat 4.2 K are shown in Figures 5.12
and 5.13, respectively. As can be clearly seerigarg 5.12, af belowf,, the
attenuation of the superconducting microstrip isme&onsiderably lower than
that at room temperature. The attenuation shoufddghreduce further as the
microstrip line cooled to a much lower temperat(f¥assin and Withington,
1995; Yassin and Withington, 1996a; Withington araksin, 1996). Figure

5.13 shows that the phase velocity of the supemsctity microstrip line

1.0E+06 -

1.0E+05 - e

10E+04 v+ =TT

e

1.0E+03

1.0E+02 -

1.0E+01 -

1.0E+00 -

Attenuation dB/m

1.0E-01 ~

1.0E-02 ~

1.0E-03 ~

1.0E-04 ~

1.0E-05

0.1 1 10 100 1000 10000
Frequency GHz

Figure 5.12. Comparison of the loss in a Nb micipdine at

room temperatures{====s=s===ss= ) anll= 4.2 K (me—)
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Figure 5.13. Comparison of the phase velocity inNh
microstrip line at room temperature (sassssasss and T

= 4.2 K (e ).

below fy stays almost constant at approximately 1.01 %M. The fact that
the phase velocity does not vary with frequenciesicates that the
superconducting microstrip line is dispersionlegshove f;, both the
attenuation and the phase velocity approach thbsened from the microstrip
line at room temperature. It can be observed tmatphase velocity abovg
varies with frequencies and, thus, the microstrip becomes dispersive. Such
phenomenon is to be expected since Cooper-paikibgaecomes dominant

at frequencies above the gap (Kittatal., 2002).
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55 Summary

A new full-wave analysis to compute the propagatmmstant of
waves in a normal and superconducting microstrgngmission line is
proposed. The formulation is based on matchingtahgential electric fields
E: and magnetic fieldsH; at the dielectric-conductor and dielectric-air
interfaces. Integrating the fields ratio along dirdee width in thex-direction
and solving for the determinant of the coefficienfsthe fields, a set of
transcendental equation is obtained. The roothefttanscendental equation
gives values for the transverse wavenunmggm the substrate. Like the case
of lossy waveguides discussed in Chapters 2 antthe3wave propagation
constantk, could then be obtained by substitutikg into the dispersion

relation.

The attenuation results computed using the newndtation are in
good agreement with the quasi-static results in iamstad and Bekkadal
(1975), Schneideret al. (1969), and Pucekt al. (1968b). Quasi-static
techniques assume pure TEM mode of wave propagationis, thus, valid
only in the low frequency range where the dimersiaf the microstrip
structure is much smaller than the wavelength. idwe method proposed here
is a fulll-wave analysis which takes into accoune tphresence of the
longitudinal fields, as well as fringing loss. Thilse new method gives more
realistic result, especially for superconductingmostrip lines operating in the
THz frequencies, where the dimensions of the aireds comparable with the

wavelength.
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CHAPTER 6

COPLANAR WAVEGUIDES

In this chapter, the loss of waves propagating aoalanar waveguide
and microstrip line is compared and analyzed. Th&opmance of both
devices, designed at different dimensions and tipgrat different range of

frequencies is investigated.

6.1 I ntroduction

The conventional coplanar waveguide (CPW) propdse@. P. Wen
(1969) is basically a planar device consisting afiglectric substrate with a
layer of conductor deposited at the top surfaceshasvn in Figure 6.1. The
metallization layer is separated into three sestiom®. a center strip with a
narrow gap at both sides, separating it from twaugd planes on either side.
To simplify the analysis of a CPW, Wen has assumhedthickness of the
dielectric substratb to approach infinity, i.ed — oo. For practical application,
however, the thickness of the CPW has to be filitdeed, it is the widthv
and thicknessts of the center strip, the gap between the strip Hral
groundplanen,, the permittivityeq, and the heigh of the dielectric substrate
which determine the characteristic impedadgand the attenuatiomof wave

in the CPW.
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Figure 6.1 The cross section of a coplanar waveguid

CPWs have been extensively used in the design ofhohtboic

microwave integrated circuits (MMICs). This is besa CPWs offer the

following advantages over microstrip lines:

(i)

(ii)

(iii)

Unlike microstrip structures which require vi@les to ground active
devices, CPWs allow ground connections to be caemdy made at
the substrate edge (Browne, 1987a; Brown, 198Th$. to be noted
that, at high frequencies, via holes can introdigaificant inductance
and degrade circuit performance (Jackson, 1986).

CPWs are uniplanar devices which eliminate #uglitional steps for
backside wafer processing and significantly lovirer flabrication cost.

CPWs allow easy connection of shunt and seraggrcuit elements
(Brown, 1989; Browne, 1990; Browne, 1992). Henteés well suited

for use with field effect transistors (FETs) such MOSFETs and

MESFETSs, which are coplanar (Ahmetcal., 2006) in nature as well.

Nevertheless, in spite of the above advantageSysCRave not been

commonly used in the coupling of waves in mixecuwits. Microstrips are still

the preferred option for wave coupling. One ma=tegal reason for this is
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that, CPWs are believed to inherently exhibit highenduction loss than
microstrips (Jackson, 1986). However, it was pairdgat by Gopinath (1982)
and Itoh (1989) that under special circumstan¢desconduction loss in CPWs
can be significantly lower than that in microstfipes. In fact, Kittaraet al.
(2002) has performed a theoretical study on theel®e both superconducting
CPWs and microstrips using the formulations dewetdoby Gupta (1996) and
Yassin and Withington (1995), respectively. In it et al. (2002), the
performance of CPWs and microstrips designed wiferént dimensions and
material properties was compared. In their stutyyas shown that CPWs
with a higher dielectric constant and at dimensiomsch larger than the
microstrip, the loss turned out to be much lowantkthat in a micrsotrip. It is
not indicated in Kittarat al. (2002), however, which structures exhibit lower
loss when the dielectric constant and dimensiomsh(as the width of the strip
w, the thickness of the substrdigetc.) of the structures are similar to each
other. Hence, it is interesting to compare the lbstween CPWs and

microstrip lines, designed at similar dimensiond dielectric constants.

Furthermore, coplanar waveguides have also beeamsxely used as
resonators in Kinetic Inductance Detectors (KIDs)detect the increase of
guasiparticles due to the coupling of millimeterdasubmillimeter signals
(Day et al., 2003; Calveet al., 2010; Schaertbt al., 2008; Figer, 2010). The
study of loss in superconducting CPWs is, henceyciar for future

development of such devices.
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In this chapter, the loss of normal and supercotiggiccoplanar
waveguides is investigated. A comparison and airlystween the loss in
coplanar waveguides and microstrip lines is peréanin order to show that
the performance of both devices at large dimens(sush as those used in
printed circuit technology) and small dimensiongc{s as those used in SIS
mixer circuits) can be different, an analysis isdmavith the dimensions of

both devices multiplied with a multiplication facigvarying from O to 5.

To determine the conduction loss for planar limean absolute sense
is difficult. The loss depends to a large extenttba conductor surface
roughness, which can vary from device to devickeialbeing designed with
the same geometry and dimensions (Jackson, 1986)luatrated in Chapter
5, the loss is also highly affected by the behavmfuthe current crowded at
the edge of the strip with different thickness. Elgnin the comparison of
microstrips and CPWSs, the surface roughness fdr B&RWs and microstrip
structures has been assumed to be zero. To actmutite same current
density in the strip, the strip thicknesg 6f both devices has also been taken

to be the same.

6.2  Attenuation in Coplanar Waveguides

Similar with the case of microstrip lines, threpdyg of losses can be

identified in coplanar waveguides, i.e. dielectobmic, and radiation/surface

wave losses. Very often, dielectric loss can berak be negligibly small by

choosing a low loss substrate material. Power Igaldue to surface waves
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and radiation from unwanted modes can also be adoidy carefully
designing the CPW circuit. Some of the steps whah be taken to minimize

power leakage are listed below:

0] Radiation due to the excitation of the parasitidd modes can be
minimized by maintaining the symmetry of the CPW uming air
bridges at regular intervals to short it out (Jack<s.986).

(i) Surface wave loss can be suppressed if theffcitequency of the
surface modes is “pushed” above the operating éecy This can be
done by choosing the appropriate substrate thickbesuch that

0124,
<

7z

(Riaziatet al., 1990).

b , Where/, is the wavelength of a plane wave in free space

(i)  The parasitic parallel plate waveguide moaed conductor-backed
CPW can be controlled by introducing an additidager of dielectric
in between the metallization plane and the sulesti@bwer leakage
due to this parasitic mode occurs when the domitransmission line
mode of the CPW travels faster than the parallatepmode. Hence,
the dielectric constant and dielectric thicknesshi$ additional layer
are chosen in such a manner that the CPW modevgeslthan the

parasitic mode (Liu and Itoh, 1992).

Since the loss from the above dielectric and ramti&urface waves

could be suppressed, the ohmic loss in coplanaegwdes would only be

considered in the subsequent analysis. To calcthatehmic losses in CPWs,
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the analytical solution published in Ghione (199Ball be applied. In Ghione
(1993), the power dissipated in the line was eueatlidhrough a conformal
approximation of the current density of the finiléckness structure, with the
width of the groundplang tending to infinity. The analytical equation okth

attenuation constant was then derived using theepéegs method as

{ﬂ+ In(itmv((ll_:l))j:l {n+ In(477(wt+(iwc2(;‘ kl)J:l
+ +
RS ,—Eeﬂ (f) s 1 + s 1

w (w+2w,)

2407K (k)K" (k)L - k,°)

(6.1)

where Rs is the surface resistance of the conductgg(f) the frequency
dependent effective dielectric constamtthe width of the strip, ank(k;) and
K'(k,) are the complete elliptic integrals of the fikihd and its complement,
respectively. The argument of the elliptic integral can be solved using a

pair of conformal transformations (Veyres and Harire80)

k, = (6.2)

Here, the series expansion fiétk;) illustrated by Hilberg (1969) has been

implemented, as given below
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for 0<k; <0.707,
2 2)? 2\3 2\
K(k) =142 5 [og K| 15d 50| 430628 K| 4|,
2 8 8 8 8

and for 0.70& k; <1,

- N Tk 37 k®
S )

(6.3b)

wherep = In(4ky") andk,'=+1-k;° .

A simpler expression which relaté&s(k;) to K(k;) can be found in

Jahnkeet al. (1969) as

for 0<k; <0.707,

K'(k,) = K(Z‘;l) In

(6.4a)

1
N
=
+
x%‘
-
~—
| I
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and for 0.70k k; <1,

K (k)7

2+ i) -k ]

(6.4b)

K'(k1)=I

Ghione (1993) has applied an effective dielectoastantes which
does not vary with frequendyin its calculation of loss. Here, to account for
the dispersive effect in CPWSs, however, a frequedependent effective
dielectric constant«(f) has been incorporated into (6.1), instead. &h@) is
found by curve fitting the results of numerical siation (Hasnainet al.,

1986)

1+G(f/ f.)™

eeﬁ(f):!\/a+ Ve —ea ] , (6.5)

whereg; is the dielectric constant of the substrate gadhe cutoff frequency
for the Tk surface wave mode for the substrate. The varidb)es andv are

given respectively as

G = exp In(w/wg) +V] , (6.6a)
u=0.54 - 0.64In(@/b) + 0.015[In(&v/b)]?, (6.6b)
v = 0.43 - 0.86In(@/b) + 0.54[In(2v/b)]>. (6.6¢)

It is to be noted thake andeg(f) in (6.5) are different — with the

former being independent of frequency. The effectiielectric constants is
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dispersionless and can be derived using quascstagthods. Hence, they
formulated by Veyres and Hannas (1980) using thasigstatic conformal

transformations has been applied in (6.5)

-1+ & -1 K(kz) K.(kl)

Eq = . 6.7
“ 2 K'(k;) K(k,) ©7)
Here, the argumenk of the elliptic integral is given as
")
sinhf —
K = 4b
2 = . (6.8)
sin n(w/2+wc)
2b

6.3  Comparison between Microstrip Linesand Coplanar Waveguides

In order to compare the loss in microstrip lined &PWs at different
dimensions, the strip width and substrate thickreddsoth devices operating
atf = 100 GHz are varied. For the CPW, the conduclims is computed
using (6.1); whereas, for the microstrip line, twnduction loss is computed
using (5.26) formulated in Chapter 5. In the analythe loss of the strip
width w at 750 nm and substrate thicknbsat 250 nm is first computed. Both
strip width and substrate thickness are then isa@aby a multiplication
factorg, i.e. strip widthw = 750 nm x 1®and substrate thicknebs= 250 nm
x 10%. The exponenq is allowed to vary from 0 to 5. The strip thickaésfor

both the microstrip and CPW is taken to be 300 wmje the groundplane
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thicknessty for the microstrip is the same as the strip théde) i.ety = ts =
300 nm. The strip and groundplane are made of MNmbi(Nb) with
conductivity ¢ = 1.57 x 10 S/m at room temperature and the dielectric
constant of the substrate is given as 3.8 for both the microstrip line and
CPW. The distance between the strip and the grqlewe for the coplanar

waveguiden, is taken to be fm.

From Figure 6.2, it can be clearly seen thatga#creases, the
conduction loss of the microstrip line decreases laigher rate than the CPW.
Both curves intersect gt= 2.2. At large dimensions whege> 2.2, the loss of
the microstrip line is much lower than the CPW.gAt 2.2, however, it can be
observed that the conduction loss of the CPW tauisto be considerably
lower. Such results give a strong implication esdbcin the design of SIS
mixer circuits for the detection of millimeter asdbmillimeter waves, where
microstrips are usually used for the coupling ofves The dimensions of an
SIS circuit are small, for eg. the substrate ceesion for a microstrip used to
couple a 100 GHz signal is around 610 x L&@ (Vassilevet al., 2004). Due
to the fact that a CPW features much lower atteonah small dimensions
(whereq < 2.2), the result in Figure 6.2 actually suggdakt CPWSs can,

hence, be considered as a better alternative feesveoupling.
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Figure 6.2. Comparison of conduction loss betweamastrips
and CPWs at strip widthv = 750 nm x 1% and substrate

thicknessb = 250 nm x 1f) whereq varies from 0 to 5.

An SIS mixer circuit, as well as a coplanar wavedguiesonator used
in a Kinetic Inductance Detector (KID) usually ogters under the critical
temperature of the superconductor. Hence, the pedace of
superconducting microstrips and coplanar waveguadesnvestigated as well.
Figures 6.3 and 6.4 show the losses of waves isreapducting microstrips
and CPWs operating at temperature= 4.2 K, for “large” and “small”
dimensions, respectively. For “large” dimensionsevey > 2.2, the following
parameters for both microstrips and CPWs have bdem:w = b = 200um,
ts = ty = 300 nm. For “small” dimensions whege< 2.2, the parameters are:

= 750 nm,b = 250 nm,ts = t; = 300 nm. The distance between the strip and
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groundplane in a coplanar waveguidg for “large” and “small” dimensions

are 5um and 2um respectively.

From Figure 6.3, it can be clearly seen that tles lof wave in a
superconducting CPW with “large” dimensions turng t be higher than
those in a microstrip line. The loss in the CPWhswever, much lower at
“small” dimension, as shown in Figure 6.4. Hend¢as shows that the result
shown in Figure 6.2 for normal structures is alsdidv for the case of a
superconductor. In other words, it can be seenah&mall” dimensions, i.e.
the size of a probe usually used for wave coupimgn SIS mixer, a CPW

exhibits much lower loss compared with a micrsopripbe of a similar size.
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Figure 6.3. Conduction loss of superconducting asttips and

CPWs for “large” structures whegg> 2.2.
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Figure 6.4. Conduction loss of superconducting asips and

CPWs for “small” dimensions where< 2.2.

6.5 Summary

A comparison between the attenuation of waves afreg in a
microstrip line and coplanar waveguide (CPW) isfquened. The results for
both the normal and superconducting cases showlftbatonduction loss of a
microstrip line decreases at a higher rate tharCfA@/ as the dimensions for
both devices increases. As the dimensions reduteatacomparable with the

wavelength (i.eq < 2.2), the loss in a CPW appears to be signifigdower.

Such result is very useful especially in the desifjmixers. As shown

in Vassilev and Belitsky (2001b), the size of agaised in SIS mixer lies in
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the range wherg < 2.2. The preliminary result illustrated in Figar6.2 and
6.4 actually suggests that CPWs can be considesed better alternative
device in the coupling of millimeter and submillitae waves. Since
superconducting coplanar waveguides are also corynagplied in Kinetic
Inductance Detectors (KIDs) to measure the shiftegbnant frequencies, the

loss investigated here is certainly important fctsdevices as well.
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CHAPTER 7

SUMMARY AND FUTURE WORK

In order for extremely weak millimeter and submiléter waves to
propagate and couple effectively to the SIS jumgtid is important to
minimize the loss in wave guiding structures thatlauilt inside the receivers.
A novel and accurate formulation is developed tmgote the loss in different
wave guiding structures made of different mater{alsrmal conductors and
superconductors) that can be implemented in radiwo@omy receivers.
Existing methods of calculations assume pure TE, ™™ TEM mode
propagation in wave guiding structures. Hence, theyonly accurate up to
the microwave range where the conducting matexiaibés high loss tangent
close to a perfect conductor. At millimeter and millimeter wavelengths,
however, the loss tangent of a conducting mateleareases with increasing
frequency. In other words, the co-existence ofldmgitudinal fields becomes
significant at millimeter and submillimeter wavedghs. Since existing
methods assume that fields in lossy structuregdargical to those in a perfect
waveguide, they fail to account for the additioltas induced by the mode-
coupling effects of hybrid modes. The workhorsetlut thesis is a new
computational method that is derived from fundamlergrinciples. The
superposition of hybrid lossy modes and also thelencoupling effect of
multimode propagation in lossy waveguides are ausulifor in this new

method by incorporating both the longitudinal efiecand magnetic fields into
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the solution when the Helmhotz’s equation is solM@enetration factors are
introduced in the field equations to represent phesence of fields at the
boundary of the lossy wall material. In additione transverse wavenumbers
are allowed to take on a complex form in order &bis§y the dispersion
relation of propagating fields in lossy guides. & sof characteristic equations
is then derived by matching the fields with theface impedance at the
boundary and finding the determinant of the fietweféicients. Finally, the
characteristic equations are solved to obtain ttemaation in the waveguides.
This new method is versatile and can be appliedjuing structures of

differing geometries.

In the following, a summary on the analysis of batbrmal and
superconducting wave guiding structures is madés ifitludes circular and
rectangular waveguides, microstrip transmissionedjn and coplanar
waveguides. At the end of this chapter, some piterdsearch areas worth

investigating are proposed.

71  Summary

In chapters 2 and 3, the new method has been dppliehe case of
lossy rectangular and circular waveguides, respalgti The results have been
validated with the experimental measurement forpitogpagation of dominant
modes, at frequencies at the vicinity of cutoff.r Fagher order modes of
propagation, the computed results show that the ks millimeter and

submillimeter frequencies is higher than the prepiag of single mode alone,
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i.e. the loss computed using the power-loss me{l&ichtton, 1941; Seida,
2003; Coallin, 1991; Cheng, 1989). The additionaisl@btained using the new
method is induced by the mode coupling effect ef tbncurrent propagation
of modes. This is an important discovery since negsting methods are
derived from the perturbation of the lossless ctsey fail to account for the

interaction of different modes existing in practicssy waveguides.

In chapter 4, the loss in superconducting wavesgiidas also been
investigated. The complex conductivity of a supadiaeting Nb was solved
using Mattis-Bardeen’s equation (Mattis and Bardd®®8) and subsequently
substituted into the characteristic equations dgea using the new method.
The results show that &tbelow the gap frequendy, the superconducting
waveguide behaves like a lossless waveguide hieeloss diverges to infinity
at frequencies below cutoff and becomes zero alwoneff. Indeed, such
discovery is significant since it suggests strongihat superconducting
waveguides operating at this range can be usedhaonel waves to the
detector circuit in a highly efficient manner andhaminimum loss. Abovd
however, the waveguide loses its superconductaiy exhibits loss. This is
to be expected since Cooper-pair breaking becomesnant atf abovef,. In
fact, it can be observed that the loss above tlpedggerges at a higher rate
and eventually surpasses the loss in a normal wadegThis result can be
attributed to the fast increase rate of surfacistasce and fields’ penetration

in the waveguide when operating below the critieatperature.
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In chapter 5, the new method is extended furtheéhé case of normal
and superconducting microstrip lines. Here, thectate to magnetic fields
ratio, i.e.E/H; in the substrate is matched with the ratios offiblels in free
space and also the surface impedances of the atidp groundplane. To
account for the finite thicknesses of the strip gmndundplane, the surface
impedance equation formulated by Kerr (1999) hanbagpplied in the new

formulation.

Comparison in normal microstrip transmission lisesw that the loss
computed using the new method is somewhat highem those computed
using the quasi-static methods. Indeed, it can limemwed from Figures 5.5
and 5.6 that the experimental measurements pertbbyéucekt al. (1968a)
are higher than those estimated by the quasi-staéithods as well. This
suggests that the new method gives more accuraticpon of loss. The
higher loss found using the new method can bebated to those induced by

the longitudinal components in hybrid modes.

For superconducting microstrip lines, the loss ol from the new
method is validated by comparing with Matick’s (Mé&t 1969; Kautz, 1978)
and Yassin-Withington’s (Yassin and Withington, %99Yassin and
Withington, 1996a; Withington and Yassin, 1996)uits The field in the
microstrip line at the boundaries of the substmates integrated along the
width of the substrate. When the field is integidateer the size of the strip,
the loss from the new method is in close agreemaht that from Matick’s

method. However, when it is integrated beyond ihe ef the strip, the loss
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becomes higher than that using Matick’s equationce&SMatick assumes the
strip to be infinitely wide, the additional lossuftd in the new method can
thus be attributed to the fringing loss at the sdgé the strip. In the
comparison, it could be seen that the loss obtairsgty Yassin-Withington’s
method is even lower than Matick's method, indiogtithat Yassin-
Withington’s method underestimates the loss of@estonducting microstrip.
Compared with normal microstrips, superconductirigrostrips show much
lower loss below the gap frequenfgy The new method also shows that the
phase velocity belowfy is constant indicating that the superconducting

microstrip is dispersionless.

In chapter 6, the performance of microstrips apoplanar waveguides
(CPWs) was compared. Preliminary results showed #tawavelength
comparable to the dimensions of the structures, €BMibit lower loss than
microstrip lines. Such result is very useful andually suggests that, with
modification made to the SIS receiver design, a CEW be considered as a

better alternative to be used for the coupling at/es.

7.2 FutureWork

In this thesis, a new analytical approach to compagses in uniform

wave guiding structures have been presented.ttt & noted, however that,

besides such losses, there are a number of othwmrdawhich affect the

performance of waves channeling and coupling dmeadietector circuit. Here,
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a few key factors have been identified. To imprdke efficiency of the

guiding structures, these factors are worthwhitkiiog into in the future.

7.2.1 Full-Wave Analysis of Coplanar Waveguides

The loss in coplanar waveguides computed in Ch&piebased on the
guasi-static method illustrated in Ghione (19933. rAentioned in Chapter 5,
the accuracy of quasi-static methods start to wetee at high frequencies,
since the signals can no longer be approximateithéopropagation of pure
TEM mode. Although full-wave analysis such as thedexmatching method
(Heinrich, 1990) exists, it requires a significamiount of computer resources
to carry out the computations. Thus far, a simpled analytical full-wave
analysis is not available. Therefore, it is wortlie/ldeveloping an analytical

full-wave approach to compute the loss of wavesoplanar waveguides.

7.2.2 Bending Lossesin Rectangular Waveguides

The waveguides that have been considered in teEghhitherto, are
assumed to be uniformly straight. Studies have shibzat an increase of loss
occurs due to bends in waveguides (Miyetgal., 1984). It can be seen from
Figures 1.2 and 1.3 that bends are inevitable wtlilgnneling the signals
using waveguides to the microstrip probe. Miyeigal. (1984) and Mercatili
and Schmeltzer (1964) have formulated analytichltems to compute bend
losses in both conducting and dielectric circulaveguides. Although Kumar

and Galawa (1994) and Deekal. (1998) have derived equations to compute
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bend losses in rectangular waveguides, their methoel only restricted to the
case of dielectric waveguides. Moreover, a genapgroach applicable to
both circular and rectangular waveguides is noilavie yet. To be able to
compute losses in waveguides in a more “complet@ss, the new method
presented in this thesis can thus be considerbée &xtended further so as to

include bend losses in the formulation.

7.2.3 Input Impedance of a Microstrip Probein Circular Waveguides

When constructing millimeter and submillimeter w&& mixers, it is
important to design the mixer block in such a wémattthe incoming
waveguide mode is coupled to the microstrip probeaihighly efficient
manner. To allow the incident power to be couplfitgiently, the dimension
of the probe must be designed in such a way tleatnibut impedance of the
probe is purely resistive (with the reactance redu zero) (Collin, 1991).
The input impedance of a microstrip probe placedettangular waveguides
has been extensively studied (Yassin and Withingt®6b; Withington and
Yassin, 1997; Withingtonet al., 1999; Ho and Shih, 1989). However,
literatures on microstrip probe in circular wavedps are, surprisingly, rare.
This is because rectangular waveguide-to-microstrgmsition is more

commonly used in receiver circuits.

Although a circular waveguide is less popular thinrectangular

counterpart, it finds many applications, especiailyases where a rotational

symmetry is desirable. For eg. Bock (1999) and @siet al. (2007) have
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used a circular waveguide with four microstrip gskio design an L-band
orthomode transducer (OMT) to extract two orthodq@udarization modes in

the waveguide.

Lee and Yung (1994) have developed an analyticalatian to
calculate the input impedance of a coaxial linébprn a circular waveguide.
It is believed that with modification made on theiethod, their approach can
be extended further to the case of a microstrip@ia a circular waveguide as

well.
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APPENDIX A

DERIVATION OF HELMHOLTZ'S EQUATIONS

The electricE and magnetid:| fields in Maxwell’'s equations can be

expressed in phasor forms as

OXxE=-jauH, (A1)
DXFI:3+ja£E, (A.2)
OE=p, (A.3)
OH =0, (A.4)

where J is the density of free currenp, charge densityw the angular
frequency, and andu are the permittivity and permeability of the mediju

respectively.

For an electromagnetic wave propagating in a linesatropic, and

homogeneous nonconducting medium, Maxwell’'s eqoatreduce to

-

OXxE=—jeuH, (A.5)

Dxﬁ=ja£é, (A.6)
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OCE=0, (A7)

OH =0. (A.8)

In order to obtain a second order equationénalone, the curl of (A.5) is

taken, giving
DXDXEz—jw(DXI:Ij. (A.9)
Substituting (A.6) into (A.9), (A.9) can be expredsn term ofE alone as
OxOxE = &P ueE. (A.10)

Using the vector identity]x [ x E=0J0[E-0O%E (Cheng, 1989; Collin,

1991) and replacing! E by (A.7) gives the desired result
02 E+k2E =0. (A.11)

wherek = /¢ is called the wavenumber.

Applying a similar procedure, an equationﬁh can be obtained as
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02H+k2H =0. (A.12)

Both (A.11) and (A.12) are referred to as the hoemagpus vector

Helmholtz’'s equations.
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APPENDIX B

DERIVATION OF THE TRANSVERSE FIELD COMPONENTSIN

CARTESIAN COORDINATES

Maxwell’'s source free curl equations can be expdnideCartesian

coordinates to give

OXE=—jauH, (B.1)
0 . .
—E, + jkE, =—jaH,, (B.1a)
oy
0 . .
-—E, - jKE =-jgH,, (B.1b)
oX
0 0 .
aX X ay X Jap z ( )
and
OxH = jarE, (B.2)
0 . .
—H,+]jkH, = jaeE,, (B.2a)
oy
0 . .
-—H,-jkH, =jaeE , (B.2b)
oX
0 0 .
_H __H = C(E‘E , BZC
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where E and H are the electric and magnetic fields, respectivklythe
propagation constantj the angular frequency,andu are the permittivity and
permeability of the medium, respectively, dad E,, E;, andHy, Hy, H,, are
the electric and magnetic fields components in xhg, and z directions,

respectively. Here, the common factor expfj¢ k.z)] have been omitted.

Expressing the transverse field components ingexhthe longitudinal

component&; andH,, the following equations can be obtained

H, = —h—lz[jkz e o ddEij, (B.4)
H, = —h—lz(jkZ ;/Z +j gd:;j, (B.5)
E, = —h—lz[jkz = +jwud;';], (B.6)
E, = —h—lz(jkz d;; —jwﬂd:xzj. (B.7)
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APPENDIX C

DERIVATION OF THE TRANSVERSE FIELD COMPONENTSIN

CYLINDRICAL COORDINATES

Maxwell's source free curl equations can be expdndecylindrical

coordinates to give

OXE=—jauH, (C.1)

%%}Eﬁ ik,E, = - jaxH, (C.12)
d o

—EEZ—szEr =—jauH,, (C.1b)

0 10 .

EE(/]_?@Er :_]C(]JHZ, (ClC)

and

OxH = jaeE, (C.2)

%%Hz+jsz¢,= jaxE, (C.23)
d . .

_EHr - jk,H, = ja¥E ), (C.2b)

0 0 .

an—@Hr = jaxE,, (C.2¢)
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where E and H are the electric and magnetic fields, respectivklythe
propagation constantj the angular frequency,andu are the permittivity and
permeability of the medium, respectively, aad E;, E,, andH,, Hy, H,, are
the electric and magnetic fields components in ithé, and z directions,

respectively. Here, the common factor expfj¢ k.z)] have been omitted.

Expressing the transverse field components ingexhthe longitudinal

component&; andH,, the following equations can be obtained

H = _iz jkdeZ joe dE, (C.4)
h dr r de

H, = -1 Tk OH, e 9B | (C.5)
h“{ r dg dr

E = _iz ik, dE, N jou dH, ’ (C.6)
h dr r de
1 ( jk, dE, . dH,

E = ——|——=2""2 _

) hz( r dg Jou a | (C.7)
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