

AN ALGORITHM FOR FINDING A BETTER TM-SCORE

LI SHUAI GUO

MASTER OF COMPUTER SCIENCE

FACULTY OF INFORMATION AND

COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

SEPTEMBER 2018

 i

AN ALGORITHM FOR FINDING A BETTER TM-SCORE

By

LI SHUAI GUO

A dissertation submitted to the Department of Computer Science,

Faculty of Information and Communication Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Computer Science

September 2018

 ii

ABSTRACT

AN ALGORITHM FOR FINDING A BETTER TM-SCORE

 There are many scoring functions have been proposed to evaluate the similarity

between protein structure models. Among these, a popular measure is the

template modeling score (TM-score), introduced by Zhang and Skolnick. At this

moment, the TM-score is calculated through a heuristic algorithm with no

accuracy guarantee. In this paper, we propose an algorithm which computes more

accurate TM-score, through the use of the very fast Kabsch-which is commonly

used to compute the Root Mean Square Deviation (RMSD). Our algorithm the

first obtain an approximation for superposition of the protein model that optimizes

the TM-score (for example, through Opt (GDT). Then, iteratively refines this

superposition through the rotation axes discovered using the Kabsch algorithms.

The algorithm is implemented in C++ into a tool that runs in a time comparable to

Zhang and Skolnick’s TM-score software, but consistently produces TM-score

that are more accurate.

 iii

ACKNOWLEDGEMENT

 I am deeply grateful to my supervisor, who has been supper talent and he always

is bringing out the crucial points in my papers. I very appreciate for giving me

help. Dr. Ng Yen Kaow for his endless patience, motivation, guidance, and

support that has helped me throughout my research and to finish this dissertation.

I would like to express my special gratitude to my co-supervisor, Dr. Goh Yong

Kheng who has been a delightful person to work with. He had given me a lot of

ideas and knowledge throughout the research. I would also like to thank

Universiti Tunku Abdul Rahman (UTAR) for the financial and facilities support.

 I would also like to thank the lecturers and staff in UTAR who were involved in

this research. The knowledge and experiences they have shared with me are

priceless. Without their passionate guidance, this research may not have been

successfully completed. I would also like to thank my friends for accepting

nothing less than excellence from me.

 Last but not the least, I would like to thank my family especially my parents for

providing me with lots of support and continuous encouragement throughout my

years of study. Their advice is always the best and practical when making a life

decision.

 iv

APPROVAL SHEET

This dissertation/thesis entitled “AN ALGORITHM FOR FINDING A

BETTER TM-SCORE” was prepared by LI SHUAI GUO and submitted as

partial fulfillment of the degree of Master of Computer Science at Universiti

Tunku Abdul Rahman.

Approved by:

(Prof. Dr. Ng Ken Kaow) Date: ……………………….

Supervisor

Department of Computer Science

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

(Prof. Dr. Goh Yong Kheng) Date: ………………………..

Co-supervisor

Department of Computer Science

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

 v

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

 Date: _________________

SUBMISSION OF DISSERTATION

 It is hereby certified that Li Shuai Guo (ID No: 13ACM06823) has completed

this dissertation entitled “AN ALGORITHM FOR FINDING A BETTER TM-

SCORE” under the supervision of Dr. Ng Yen Kaow (Supervisor) from the

Department Computer Science, Faculty of Information and Communication

Technology, and Dr. Goh Yong Kheng (Co-supervisor) form the Department of

Computer Science, Faculty of Information and Communication Technology.

 I understand that University will upload softcopy of my dissertation in pdf

format into UTAR Institutional Repository, which may be made accessible to

UTAR community and the public.

Yours truly,

(Li Shuai Guo)

 vi

DECLARATION

I, Li Shuai Guo, hereby declare that the dissertation is based on my original work

except for quotation is based on my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at UTAR or other

institutions.

 (LI SHUAI GUO)

 Date _____________________

 vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Problem Statement .. 2

1.3 Motivation ... 5

1.4 Objectives ... 6

1.5 Scope ... 7

1.6 Research Contributions ... 7

1.7 Organization of dissertation .. 8

CHAPTER 2 LITERATURE REVIEW ... 9

2.1 Biosequences... 9

2.2 Sequence comparison.. 9

2.3 Protein structure prediction ... 10

2.4 Model comparison .. 13

2.5 GDT .. 15

2.6 MaxSub ... 18

2.7 TM-score ... 19

CHAPTER 3 METHODOLOGY ... 21

3.1 The Difficulty of computing TM-score ... 21

3.2 A New algorithm for TM-score ... 22

3.3 Finding an optimal 𝜽 ... 26

3.4 Contrast with current method.. 30

 viii

CHAPTER 4 RESULTS ... 31

4.1 Software preparation ... 31

4.2 Sample preparation ... 33

4.3 TM-score comparison ... 36

4.4 Runtime comparison ... 38

4.5 Discussions ... 39

CHAPTER 5 CONCLUSION ... 40

REFERENCES.. 42

 ix

LIST OF TABLES

Table 2.1: Kabasch Algorithm .. 14

Table 2.2: Heuristic Algorithm for GDT .. 17

Table 2.3: Heuristic Algorithm for TM-score... 20

Table 3.1: Our Proposed Algorithm for TM-score ... 25

Table 3.2: Main routine for computing  Max-TM-scorei(J) 29

Table 3.3: Find-Max-TM-Score(J, [𝜃, 𝜃 + 𝛼]) ... 29

Table 3.4: Side-by-side comparison of our method with the current method 30

Table 4.1: Example PDB file content ... 31

Table 4.2: Transformations to superpose the two structures to obtain the TM-score

... 33

Table 4.3: Samples from I-TASSER .. 34

Table 4.4: Current state of samples from I-TASSER (cases that suffered very

significant file loss are colored red) .. 35

Table 4.5: Average TM-score obtaining using both the current method and the

new method proposed (each comparison is colored green if the new method has

an improvement above 0.001, and set in bold font if the new method has an

improvement above 0.002) ... 36

Table 4.6: Models where the TM-scores computed using the new method

improved significantly over those obtained using the current method (only the top

20 cases are shown) .. 40

Table 4.7: Runtime of the new tool compared to the current tool (seconds used per

100 TM-score computations) .. 41

 x

LIST OF FIGURES

Figure 1.1: Central Dogma of Molecular Biology .. 1

Figure 1.2: Distances between amino acids change with superposition 3

Figure 1.3: Two cases of structure comparison .. 4

 1

CHAPTER 1

INTRODUCTION

1.1 Background

A DNA, or deoxyribonucleic acid, is a molecule that consists of a very long chain

of nucleotides (Alberts et al., 2014). A nucleotide consists of a sugar (deoxyribose)

and one of four bases: Cytosine (C), Thymine (T), Adenine (A), and Guanine (G).

The DNA of an organism encodes the genetic information needed to carry out the

biological processes of the organism.

DNA works by copying a small portion of its genetic codes into shorter

molecules called RNAs, or ribonucleic acids. The RNA transcribed by a segment

of DNA is identical to the DNA except that Thymine is replaced by Uracil (U).

An RNA functions by copying itself into its corresponding amino acids sequence.

The amino acid sequence, in turn, folds into a stable three-dimensional structure

called a protein, driven by the physical forces of its constituent amino acids. This

mechanism of how DNA produces proteins is known as the Central Dogma of

Molecular Biology (Figure 1.1).

DNA

RNA

Amino acid sequence

3D protein structure

Figure 1.1: Central Dogma of Molecular Biology

 2

The function of a protein is directly dependent on its three-dimensional

structure (Alberts et al., 2014). Hence, one can identify the function of an

unknown protein by comparing its structure to those from proteins of known

functions. For this reason, many researches have focused on the task of comparing

between two protein structures.

The comparison between protein structures is also an important task in

protein structure prediction (Kufareva and Abagyan, 2012), where one infers the

structure which an amino acid sequence fold into. They serve at least two

important functions. First, structure comparison is a subroutine when we need to

select a representative structure from a collection, which is a task that is often

required in many protein structure prediction methods. Second, they are needed

when we want to evaluate the success of a protein prediction method by

comparing the output structure of the method against the known target structure.

1.2 Problem Statement

Using a similarity measure is the common approach to compare two

protein structures. Such a similarity measure would map each amino acid in one

of the structures to a corresponding amino acid in the other structure. The

distances between corresponding amino acids are then collected and used to

produce a final score.

A few measures of similarity are routinely used in protein structure

comparison, they are the Root Mean Square Deviation (RMSD) (Kabsch, 1976),

Local-Global Alignment (LGA) (Zemla et al., 1999; Zemla, 2003), MaxSub

 3

(Siew et al., 2000), and Template Modeling Score (TM-score) (Zhang and

Skolnick, 2004).

The computation of all of these measures are complicated by the fact that

different superpositions of the structures would result in different sets of distances

between the amino acids (Figure 1.2). All the similarity measures require us to

consider every possible superposition of the two structures in their computations.

 Figure 1.2: Distances between amino acids change with superposition

There are some well-known shortcomings with some of these measures.

For instance, there are at least two shortcomings with the RMSD, which is

defined as the sum of the squared values of all the inter-amino acid distances.

First, the value of the measure is hard to interpret across different situations. For

example, a value of RMSD=3Å (Angstrom) may indicate that the structures are

very similar in a case with long structures, but dissimilar in another case with

short structures. Ideally, a measure that can be interpreted similarly across

Two protein structures
One possible superposition Another possible

superposition superposition

 4

different situations should have values that are normalized to lie between a fixed

range, such [-1, 1] or [0, 1]. However, the RMSD has a range of (0, +∞).

Second, since the distances are squared in the RMSD, the measure places a

tougher penalty on larger inter-amino acid distances. For example, in Figure 1.3,

the two structures in case A are identical except for a pair which differs by a

relatively large distance. However, this comparison would result in a far larger

RMSD than the two structures in case B.

Figure 1.3: Two cases of structure comparison

These shortcomings in the RMSD has prompted the creation of more

sophisticated similarity measures. MaxSub discovers the largest subset of amino

acids that match well and uses that subset to produce a normalized score. In LGA,

the distance measure is split into a “local” component, called Longest Continuous

Segment (LCS), and a “global” component, called Global Distance Test (GDT)

components. Finally, given two protein structures 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 =

Case A Case B

 5

(𝑏1, 𝑏2, … , 𝑏𝑛) , where 𝑎𝑖 and 𝑏𝑖 respectively represents the coordinates of the

amino acids in A and B, the TM-score between A and B is defined as

 TM-Score(𝐴, 𝐵) =
1

𝑛
max

𝑅,𝑇
∑

1

1+(
‖𝑅𝑎𝑖−𝑏𝑖−𝑇‖

𝑑0
)

2
𝑛
𝑖=1

where 𝑑0 is a normalization factor given as 𝑑0 = 1.24(𝑛 − 15)1 3⁄ − 1.8 .

Through this formulation, it is easy to see that the TM-score has a range between

0 and 1, with very similar structures scoring close to 1 and dissimilar structures

scoring close to 0. This naturally avoids the first problem faced by the RMSD.

The TM-score also does not penalize far away amino acids pairs; such pairs

would simply contribute little towards the score.

These measures have been used in the Critical Assessment of protein

Structure Prediction (CASP), a competition held biennially to evaluate the success

of protein structure prediction methods. They are used mainly to evaluate how

close the outputs of the methods are to the actual protein structures. While they do

not suffer from the problems faced by the RMSD, unlike the RMSD there are no

exact algorithms for their computation.

1.3 Motivation

This thesis studies the TM-score, which is favored by the CASP

community. The computational complexity for finding the TM-score is unknown.

At this moment, the TM-score is calculated through a heuristic method. There is

no known algorithm for computing TM-score with a theoretical basis. In

particular, there is currently no computation with a theoretical guarantee on the

correctness of the score it obtains.

 6

This thesis aims to improve on the current heuristic algorithm for

computing the TM-score.

The current TM-score computation involves two heuristic steps. At each

step, the algorithm only optimizes the TM-score with respect to only a segment of

the structure. It is not known how this “local” aspect of the optimization would

impact the result of the heuristic algorithm.

It is worth investigating if by changing these steps to optimize the TM-

score in more “global” sense, more accurate TM-scores can be obtained.

1.4 Objectives

The following are the objectives of this research:

• Propose an improved method for the computation of the TM-score, in

particular:

o The method is to optimize global aspects of the TM-score at

each step as opposed to the currently available algorithm.

o The method should have similar runtime as the currently

available algorithm.

• Create a fast and usable software tool based on the algorithm. In

particular:

o The program is not to depend on external libraries, so that it

may be compiled on as many platforms as possible and

distributed as a standalone tool for use by researchers.

• Perform extensive comparison on the proposed algorithm against the

currently available tool for finding TM-score.

 7

o The comparison is to be performed with a comprehensive set

of structures that is relevant to the field of interest, that is,

protein structure prediction.

o The TM-scores computed from the algorithm are to be

compared against those computed from the currently available

tool.

o The times taken for the tool are to be benchmarked against the

times taken by the currently available tool.

1.5 Scope

In this research, a new algorithm for computing the TM-score was

proposed. Like the currently available algorithm, the new algorithm is heuristic

and iterative in nature. However, it optimizes global aspects of the TM-score

during every iteration of its computation.

The algorithm was implemented as a standalone C++ program which

requires no external library (other than ANSI libraries).

Finally, the binary compiled from the program was tested using a

comprehensive set of data from the CASP test set. The performance of the tool

was compared against the currently available tool for TM-score. Using this

comparison, the tool is shown to be more accurate than the currently available

tool, while running in comparable time.

1.6 Research Contributions

The major contributions of this research are as follows:

 8

• An improved heuristic and iterative method for the computation of

the TM-score, which is able to optimize global aspects of the TM-

score at each step as opposed to the currently available algorithm.

• An auxiliary branch and bound method to speed up the proposed

algorithm.

• A fast and usable alternative software tool (compiled on multiple OS

platforms) for computing the TM-score. The tool can be used as a

replacement to the current tool for finding TM-score, or as a mean to

verify the output of the current tool.

1.7 Organization of dissertation

Chapter 2 presents a literature review of the existing results in molecular

biology that led to the present problem, as well as more in-depth discussions of

these algorithms. The new algorithm proposed in this thesis is explained in

Chapter 3. Chapter 4 shows the experimental results and compares the results of

the proposed approach with those from the currently available method. Chapter 5

gives some discussions and concludes the thesis.

 9

CHAPTER 2

LITERATURE REVIEW

2.1 Bio-sequences

Large-scale sequencing of the DNA became a possibility since the Sanger

chain sequencing technique was developed in 1977 (Sanger and Coulson, 1977).

In 1998, a method known as pyrosequencing further improved sequencing speed

(Ronaghi et al., 1998). In the subsequent years, a few sequencing techniques, now

commonly referred to as next-generation sequencing (NGS) together with

pyrosequencing, were invented. Their availability has made DNA information

easily available in biological and medical researches. This has yielded a very

large collection of DNA sequences for analysis.

2.2 Sequence comparison

Given the huge database of sequence, fast algorithms for comparing

sequences became important in the past decades. In particular, they are needed for

the following tasks:

• Identifying the contributor of an unknown sequence

Given an unknown sequence, we can match the sequence to a database

of sequences where the contributors are known, in order to either

identify the species, or even the exact organism which the sequence

belongs to.

• Predicting the functions of an unknown sequence

 10

The genetic sequence of an organism determines the organism’s

physical traits, and similar sequences often lead to the same traits.

Hence, given an unknown sequence, we can predict its function by

finding sequences with known functions that are similar to it. The

functions of those sequences are then likely to be the functions of the

unknown sequence.

• Finding the genes within a sequence

Given a database of genes and an unknown sequence, we can find

which genes in the database exist in the sequence.

 In order to biological sequences, a score is typically defined to express the

difference between two sequences and then an algorithm is then designed to

minimize this score. Examples of such scores are the Hamming distance and the

edit distance.

The first well-known algorithm, the Needleman-Wunsch algorithm, for

comparing sequences was proposed in 1970 (Needleman and Wunsch, 1970).

This was followed by the Smith-Waterman algorithm (Smith and Waterman,

1981).

2.3 Protein structure prediction

According to the Central Dogma of Molecular Biology, DNA works by

transcribing its sequences into RNA, and subsequently, into protein structures,

which then carries out biological functions of the organism. In a sense, our study

of DNA sequences is motivated by our desire to understand these protein

structures.

 11

The portions in a DNA sequence which are involved in these

transcriptions are known as genes. Genes must be transcribed into proteins in to

perform their functions. Furthermore, the function of a protein relies mostly on its

structure. Evolutionarily, protein structures are 3 to 10 times better conserved than

their sequences. Hence, to predict the function of a genetic sequence, some

researchers first infer the protein which it is transcribed into and then compare the

structure of that protein with protein structures of known functions. The similarity

in the structures would then give a better prediction for the function of the original

sequence.

Due to the mechanism of genetic folding, it is possible to predict the

protein structure which a gene encodes. This has resulted in the study of protein

structure prediction in the last two decades (Dorn et al., 2014).

Given a gene sequence, there are four levels of structures in which protein

structure prediction can be performed.

(1) Primary structure: this predicts the linear arrangement of amino acids in a

protein and the location covalent linkages such as disulfide bonds between

amino acids.

(2) Secondary structure: this predicts the areas of folding or coiling within a

protein; examples include alpha helices and pleated sheets, which are

stabilized by hydrogen bonding.

(3) Tertiary structure: this predicts the final three-dimensional structure of a

protein, which results from a large number of non-covalent interactions

between amino acids.

(4) Quaternary structure: this predicts the non-covalent interactions that bind

multiple polypeptides into a single, large protein.

 12

The primary structure of a protein can be readily deduced from the

nucleotide sequence of the corresponding messenger RNA, based on primary

structure. Many features of secondary structures can be predicted with the aid of

computer programs. However, predicting protein tertiary and quaternary

structures remains very tough problems.

The comparison of protein structures is a recurring problem in protein

structure prediction. There are two main ways in which protein structures are

compared:

• Structural alignment

• Model comparison

In both types of comparison, two structures are given in the problem

statement, typically as. A protein structure A consists of an ordered set of 𝑛 points

in three-dimension, denoted (𝑎1, 𝑎2, … , 𝑎𝑛). Each point ai gives the coordinates of

the 𝐶𝑎 atom in the i-th amino acid. A structure B consisted of 𝑚 points, denoted

(𝑏1, 𝑏2, … , 𝑏𝑚). There are many ways to formulate both the structural alignment

problem and the model comparison problem. In all the formulations, a scoring

function that measures how similar (or dissimilar) the two structures are is defined,

and the problem is to find a way to compute the scoring function effectively. One

difference between structural alignment and model comparison is that: one is to

first find an order-preserving one-one mapping between the points in A and B in

structural alignment, whereas such a mapping is provided in model comparison.

This thesis is concerned with the latter, model comparison.

 13

2.4 Model comparison

In model comparison, one is given two protein structures,

A= (𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) , and is required to determine how

similar the two structures are. There are many different formulations to the

problem depending on the scoring function. Several scoring functions have been

proposed for the purpose of protein structure prediction, such as Root Mean

Square Deviation (RMSD) (Kabsch, 1976), Local-Global Alignment (LGA)

(Zemla et al., 1999; Zemla, 2003), MaxSub (Siew et al., 2000), and Template

Modeling Score (TM-score) (Zhang and Skolnick, 2004).

Model comparison serves several purposes in protein structure prediction,

among which the following two are most prominent:

1. For the evaluation of the predicted protein structure against the known

structure. The predicted structure is known as a “model” structure

while the known structure is called the “native” structure in the

literature.

2. For the selection of a consensus structure out of a collection of similar

structures generated typically using some sampling method such as

Gibbs Sampling.

The root means square deviation (RMSD) is one of the earliest structural

comparison measure proposed (Nishikawa et al., 1972; Rao and Rossmann, 1973),

as well as the best studied. For two structures A= (𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 =

(𝑏1, 𝑏2, … , 𝑏𝑛), the RMSD is defined as

 14

RMSD(𝐴, 𝐵) = min
𝑅∈ℛ,𝑇∈𝒯

√
∑ ‖𝑅𝑎𝑖−𝑏𝑖−𝑇‖2𝑛

𝑖=1

𝑛
,

where 𝑇 is some translation in the space of all translations 𝒯 , and 𝑅 is some

rotation in the space of all rotations ℛ. Kabsch first gave an algorithm which

computes the RMSD in linear time (Kabsch, 1976), as follows:

Table 2.1: Kabsch Algorithm

Due to its low runtime complexity, the RMSD has come in very convenient

for the comparison of structures. However, it suffers from a few drawbacks. First,

as mentioned in Chapter 1, an RMSD value of 3Å (Angstrom) may indicate high

similarity between two structures of a few hundred points but would be

Input: Protein structures A and B.

(1) Translate A and B with a translation 𝑇′ which result in their

centroids to coincide.

(2) Find the 3x3 matrix 𝐶 = 𝐵𝐴𝑇 . (denotes 𝐴𝑇the transpose of 𝐴.)

(3) Find the Single Value Decomposition (𝑆𝑉𝐷) of C. That is, find

𝑈, 𝑉 and diagonal 𝑆 such that 𝐶 = 𝑈𝑇𝑆𝑉.

(4) Output the RMSD as
1

𝑛
∑ 𝑝𝑖

2𝑛
𝑖=1 + 𝑞𝑖

2 − 2(𝑙1 + 𝑙2 + 𝑙3), where

𝑙1, 𝑙2, and 𝑙3 are the singular values in S.

(The corresponding rotation𝑅 = 𝑉𝑈𝑇 and translation 𝑇 = 𝑇′for

this RMSD value.)

 15

considered very dissimilar for two structures of only a few points. More precisely,

in order to a measure to have universal interpretation across different scenarios,

its range is typically normalized to within some interval of values, e.g. [0, 1] or [-

1, 1]. However, the range of RMSD is between (0, +∞).

Second, since the distances are squared in the RMSD, the measure places a

tougher penalty on larger inter-amino acid distances, as demonstrated in Figure of

Chapter 1.

These shortcomings have resulted in the proposal of other similarity

measures, such as the GDT, MaxSub, and TM-score.

2.5 GDT

To avoid the problems faced by the RMSD, Zemla et al. (1999) introduced

a measure called the Local-Global Alignment (LGA). LGA consists of a “local”

component, called the Longest Continuous Segment (LCS), and a “global”

component, called the Global Distance Test (GDT). The latter, GDT, has received

widespread adoption in the community.

GDT is defined on a sub-problem known as d-LCP, which aims to find the

largest common point sets under approximate congruence for the given distance

threshold d. More precisely, given two structures A= (𝑎1, 𝑎2, … , 𝑎𝑛) , 𝐵 =

(𝑏1, 𝑏2, … , 𝑏𝑛) and threshold 𝑑, d-LCP aims to find the largest set M of pairs of (ai,

bi) which fulfills

(∀ (𝑎𝑖, 𝑏𝑖) ∈ 𝑀)[‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑].

for some 𝑇 ∈ 𝒯 and 𝑅 ∈ ℛ.

 16

The GDT is then, computed as a composite of the four 𝑑-LCP scores

where 𝑑 is set to 1Å, 2Å, 4Å and 8Å.

Unlike the RMSD which places a heavy penalty on unmatchable amino

acids, the GDT simply discounts them.

While the d-LCP problem can be solved in 𝑂(𝑛7) time (Li et al., 2008),

the high time complexity makes the algorithm impractical. Currently, GDT is

computed through a heuristic algorithm.

Intuitively, the algorithm starts with an initial subset of amino acid pairs

that can be superposed to within the threshold distance d. Then, it iteratively

attempts to “grow” the set of amino acids. To do so, the RMSD is used as a

subroutine. At every iteration, an RMSD is calculated to obtain an optimal

superposition for the current set of matching amino acids; this superposition is

then used to identify more matching amino acids.

This same strategy is used by many subsequent researchers (Siew et al.,

2000; Ortiz et al., 2002; Kihara and Skolnick, 2003; Zhang and Skolnick, 2004).

The following shows this algorithm in detail:

 17

T

T

Table 2.2: Heuristic Algorithm for GDT

The algorithm achieves good results in general. However, since it is

heuristic, there is no guarantee on whether the superposition found by the

algorithm optimizes the number of matching amino acids found.

There is also worth noting that at every step of the computation, the

optimal superposition is computed only on a subset of A and B and hence may

miss out some “global” properties of the structures.

Input: Protein structures A, B, and distance threshold 𝑑.

(1) For each pair of 3, 5, and 7 residue-long corresponding segments

(𝐴′, 𝐵′) from both structures,

(1.1) Calculate an RMSD to obtain the corresponding

superposition (R, T) which optimally superposes (𝐴′, 𝐵′)

for the RMSD.

(1.2) Find the subset of amino acid pairs (𝐴′′, 𝐵′′) within

(𝐴, 𝐵) where [‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑].

(1.3) Set 𝐴′ to 𝐴′′ and 𝐵′ to 𝐵′′.

(1.4) Repeat (1.1) -(1.3) until there are no more changes to (R,

T). (Hence, no more changes to (𝐴′, 𝐵′).)

(2) Output the largest set (𝐴′, 𝐵′) found with all different initial

segments.

 18

2.6 MaxSub

The MaxSub score is based on the GDT. Given two structures

A=(𝑎1, 𝑎2, … , 𝑎𝑛), 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) and given threshold 𝑑 , MaxSub aims to

find a largest set M of pairs of (𝑎𝑖, 𝑏𝑖) which fulfills

(∀ (𝑎𝑖, 𝑏𝑖) ∈ 𝑀)[‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑]

 Due to the similarity between MaxSub and GDT, the MaxSub score has a

polynomial solution of very high order (Li et al., 2008).

At present, the most common way to compute the MaxSub score is

through a heuristic algorithm similar to that used for computing the GDT.

 19

2.7 TM-score

Given two protein structures 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) ,

where 𝑎𝑖 and 𝑏𝑖 respectively represents the coordinates of the amino acids in A

and B, the TM-score between A and B is defined as

 TM-score(𝐴, 𝐵) =
1

𝑛
max

𝑅,𝑇
∑

1

1+(
‖𝑅𝑎𝑖−𝑏𝑖−𝑇‖

𝑑0
)

2
𝑛
𝑖=1

where 𝑑0 is a normalization factor given as 𝑑0 = 1.24(𝑛 − 15)1 3⁄ − 1.8. It is

clear that the TM-score has values within (0,1].

Like the RMSD, the TM-score is defined through the distances between

amino acids. However, TM-score is based on the inverse of the squared distances

rather than the squared distances. Because of this, unlike the RMSD where a

larger score indicates dissimilarity, a larger TM-score would indicate more similar

structures.

Analytically solving the optimal superposition for the score in a

straightforward fashion will require the solving of the roots of high order

polynomials. Hence, interesting to know to what extent the TM-score can be

computed accurately.

Currently, TM-score is computed through an algorithm that is identical to

that for computing the GDT, except that when collecting the amino acids at each

iteration, the criteria is changed to examine the condition [‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑0]

rather than [‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑]. The entire algorithm is reproduced below for

completeness.

 20

Table 2.3: Heuristic Algorithm for TM-score

As with GDT, the algorithm achieves good results in general. However,

since it is heuristic, there is no guarantee on whether the superposition found by

the algorithm optimizes the number of matching amino acids found. This is

particularly likely since the optimal superposition is computed only on a subset of

A and B at each iteration.

On the other hand, since TM-score has gained popularity in the protein

structure prediction community, its accuracy has become a matter of significant

importance.

Input: Protein structures A and B.

(1) For each pair of 3, 5, and 7 residue-long corresponding segments

(𝐴′, 𝐵′) from both structures,

(1.1) Calculate an RMSD to obtain the corresponding

superposition (R, T) which optimally superposes (𝐴′, 𝐵′)

for the RMSD.

(1.2) Find the subset of amino acid pairs (𝐴′′, 𝐵′′) within

(𝐴, 𝐵) where [‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑0].

(1.3) Set 𝐴′ to 𝐴′′ and 𝐵′ to 𝐵′′.

(1.4) Repeat (1.1)-(1.3) until there is no more changes to

(𝐴′, 𝐵′).

(2) Output the optimal TM-score (𝐴′, 𝐵′) found with all different

initial segments.

 21

CHAPTER 3

METHODOLOGY

In this chapter, an algorithm which computes more accurate TM-score is

developed. The algorithm follows the general framework of the iterative

algorithm currently in use, but offers the following enhancements:

• Better iteration through gradient descent-like search,

• Instead of using only a subset of matching points, all the points in the

two input structures are used in obtaining the superposition at each

iteration.

As stated in the earlier chapter, given two protein structures 𝐴 =

(𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛), the TM-score between A and B is

 TM-Score(𝐴, 𝐵) =
1

𝑛
max

𝑅,𝑇
∑

1

1 + (
‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖

𝑑0
)

2

𝑛

𝑖=1

 (1)

where 𝑑0 is normalization factor given as 𝑑0 = 1.24(𝑛 − 15)1 3⁄ − 1.8 [11].

3.1 Difficulty of computing TM-score

It is unlikely that TM-score would yield an analytical closed-form solution.

Consider the simplified case where the points in A and B have only components

along the 𝑥-axis. In this case, no rotation is required, and Eqn. (1) becomes

 TM-Score(𝐴, 𝐵) =
1

𝑛
max

𝑅
∑

𝑑0
2

𝑑0
2 + (𝑎𝑖 ∙ 𝑥⃗ − 𝑏𝑖 ∙ 𝑥⃗ − 𝑥)2

𝑛

𝑖=1

 (2)

where 𝑥⃗ is the unit vector along the 𝑥-axis and 𝑥 is the displacement along the

 22

𝑥-axis. An attempt to obtain the optimal value for 𝑥 by differentiating Eqn. (2)

with respect to 𝑥 and equating it with zero will result in a high order polynomial

equation, for which the roots cannot be solved efficiently. Hence, even in the case

of a single translation along a single axis, the problem of optimizing the TM-score

is difficult.

3.2 A New algorithm for TM-score

Given structures A and B, the computation of TM-score (A, B) is the same as that

of finding rotation R and matrix which maximizes

𝑓(𝑅, 𝑇) = ∑
𝑑0

2

𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2

𝑛

𝑖=1

Write the translation T as 〈𝑡𝑥, 𝑡𝑦, 𝑡𝑧〉 (where 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 ∈ ℝ), and (𝑅𝑎𝑖 − 𝑏𝑖)

as 〈𝑟𝑖𝑥, 𝑟𝑖𝑦, 𝑟𝑖𝑧〉 (where 𝑟𝑖𝑥, 𝑟𝑖𝑦, 𝑟𝑖𝑧 ∈ ℝ). Then we can show that

𝑓(𝑅, 𝑇) = ∑
𝑑0

2

𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖‖2 + ‖𝑇‖2 − 2 ∑ 𝑡𝑗𝑟𝑖𝑗𝑗=𝑥,𝑦,𝑧

𝑛

𝑖=1

Now, collect all the terms which do not depend on 𝑥 into a new variable

𝑝𝑖𝑥. That is,

𝑝𝑖𝑥 = 𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖‖

2 + 𝑡𝑦
2 + 𝑡𝑧

2 − 2 ∑ 𝑡𝑗𝑟𝑖𝑗

𝑗=𝑦,𝑧

.

The expression can then be simplified into :

𝑓(𝑅, 𝑇) = ∑
𝑑0

2

𝑡𝑥
2 − 2𝑡𝑥𝑟𝑖𝑥 + 𝑝𝑖𝑥

𝑛

𝑖=1

 23

At this point, differentiating 𝑓(𝑅, 𝑇) with respect to 𝑡𝑥 will result in

𝑑𝑓(𝑅, 𝑇)

𝑑𝑡𝑥
= ∑

−𝑑0
2(2𝑡𝑥 − 2𝑟𝑖𝑥)

(𝑡𝑥
2 − 2𝑡𝑥𝑟𝑖𝑥 + 𝑝𝑖𝑥)2

𝑛

𝑖=1

= ∑
−𝑑0

2(2𝑡𝑥 − 2𝑟𝑖𝑥)

(𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2)2

𝑛

𝑖=1

Denote
𝑑0

2

(𝑑0
2+‖𝑅𝑎𝑖−𝑏𝑖−𝑇‖2)

2 as 𝑤𝑖. Then, the expression is simplified into

𝑑𝑓(𝑅, 𝑡)

𝑑𝑡𝑥
= ∑ −𝑤𝑖(2𝑡𝑥 − 2𝑟𝑖𝑥)

𝑛

𝑖=1

.

The critical point of 𝑓(𝑅, 𝑇) is hence at

𝑡𝑥=

∑ 𝑤𝑖𝑟𝑖𝑥𝑖

∑ 𝑤𝑖𝑖
.

(3)

Similarly, the optimal 𝑡𝑦 and 𝑡𝑧 can be shown to be at

𝑡𝑦 =

∑ 𝑤𝑖𝑟𝑖𝑦𝑖

∑ 𝑤𝑖𝑖
, and

(4)

𝑡𝑧 =

∑ 𝑤𝑖𝑟𝑖𝑧𝑖

∑ 𝑤𝑖𝑖
, respectively.

(5)

Hence, if an optimal rotation 𝑅 is known, then an optimal 𝑇 can be

calculated from Eqn. (3)-(5), given that 𝑤𝑖 is known.

This gives an opportunity for a method which iteratively improves on the

TM-score, where at each iteration we

(1) Compute a semi-optimal 𝑅,

(2) Based on 𝑅, compute a semi-optimal 𝑇 from the above equations,

(3) Repeat Step (1)-(2) until no further improvement can be obtained.

 24

For the computation of 𝑇 in Step (2), we assume R and T to be relatively

small around convergence. In which case, we simply take 𝑤𝑖 =

𝑑0
2 (𝑑0

2 + ‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2)2⁄ , and compute 𝑡𝑥, 𝑡𝑦, and 𝑡𝑧 using Eqn. (3)-(5).

We now discuss how to compute 𝑅 in Step (1). This is achieved through

optimizing the RMSD. The Kabsch algorithm is used for this purpose. We first

relate our object our objective function 𝑓 to the RMSD.

𝑓(𝑅, 𝑇) = ∑
𝑑0

2

𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2

𝑖

 = ∑ 𝑤𝑖(𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2)

𝑖

 = ∑ 𝑤𝑖𝑑0
2

𝑖

+ ∑ 𝑤𝑖‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2

𝑖

There are two terms in this expression of 𝑓. The first term depends only on 𝑤𝑖,

while the second one resembles the objective function in the RMSD. The intuition

given here is that, the RMSD is closely related to the current optimization

problem. Hence, we would expect the rotation axis used to superimpose the

structures in RMSD to be a good candidate for finding an optimal rotation for 𝑓.

This rotation axis can be obtained from the Kabsch algorithm described in Table

2.1, without running Step (1).

Given this rotation axis, our algorithm will perform an exhaustive search

on all the rotation angles about the axis to find an angle which optimizes 𝑓. This

gives our final algorithm as follows.

 25

Table 3.1: Our Proposed Algorithm for TM-score

The computations for Step (3.1) -(3.2) is clear. For Step (3.3), the

algorithm in Table 2.1 is performed with the centroid alignment Step (1) replaced

with T = 〈
∑ 𝑤𝑖𝑟𝑖𝑥𝑖

∑ 𝑤𝑖𝑖
,

∑ 𝑤𝑖𝑟𝑖𝑦𝑖

∑ 𝑤𝑖𝑖
,

∑ 𝑤𝑖𝑟𝑖𝑧𝑖

∑ 𝑤𝑖𝑖
〉. Steps (3.5) -(3.6) are straightforward. Hence,

we only need to discuss the computation of Step (3.4).

Input: Protein structures A and B.

(1) Set initial 𝑓old(𝑅, 𝑇) to 0, set 𝑓new(𝑅, 𝑇) to 1 and initialize semi-

optimal rotation R to [
1 0 0
0 1 0
0 0 1

].

(2) Define a suitable accuracy threshold t (e. g. 0.0001), for

stopping the iteration.

(3) While |𝑓new(𝑅, 𝑇) − 𝑓old(𝑅, 𝑇)| ≥ 𝑡, do

(3.1) Let 𝑤𝑖 =
𝑑0

2

(𝑑0
2+‖𝑅𝑎𝑖−𝑏𝑖‖2)

2.

(3.2) Let T = 〈
∑ 𝑤𝑖𝑟𝑖𝑥𝑖

∑ 𝑤𝑖𝑖
,

∑ 𝑤𝑖𝑟𝑖𝑦𝑖

∑ 𝑤𝑖𝑖
,

∑ 𝑤𝑖𝑟𝑖𝑧𝑖

∑ 𝑤𝑖𝑖
〉.

(3.3) Obtain 𝑅′, the optimal rotation for obtaining the RMSD

under translation T.

(3.4) Apply T and R on A and let 𝑓new(𝑅, 𝑇) = 𝑓(𝑅, 𝑇).

(4) Output 𝑓new(𝑅, 𝑇) as the TM-score computed.

 26

3.3 Finding an optimal 𝜽

Recall that the TM-score is defined as

TM-score(𝐴, 𝐵) =
1

𝑛
max

𝑅,𝑇
∑

1

1 + (
‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖

𝑑0
)

2

𝑛

𝑖=1

That is, it is the sum of n terms of the form
1

1+(
‖𝑅𝑎𝑖−𝑏𝑖−𝑇‖

𝑑0
)

2. Each term can

be considered the contribution of the 𝑖-th amino acid pairs (i.e. 𝑎𝑖 and 𝑏𝑖) towards

the TM-score under a given superposition. We want to study how each of these

individual contributions changes according to the rotation angle 𝜃. First, we make

the following definitions.

Since the transformation to look in Step (3.4) involves only rotation, we

assume that T=0. Then, given a rotation of angle 𝜃 along an axis J, we define the

contribution of the i-th amino acid pair as

TM-score𝑖(𝐽, 𝜃) =
1

1 + (
‖𝑅𝑎𝑖 − 𝑏𝑖‖

𝑑0
)

2

where R is the rotation defined by 𝐽 and 𝜃 . We are interested in how

TM-score𝑖(𝐽, 𝜃) changes with respect to 𝜃. Without loss of generality assume that

the rotation axis is the 𝑦-axis. Suppose 𝑏𝑖 has 𝑦 coordinate ℎ𝑖 and is of minimum

distance 𝑟𝑖 from be 𝑦 -axis. Suppose 𝑎𝑖 has coordinate (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) in the new

coordinate system. Then, the distance from 𝑏𝑖 and 𝑎𝑖 after a rotation angle 𝜃 is

 𝑑𝑖 = √(𝑥𝑖 − 𝑟𝑖 cos 𝜃)2 + (𝑦𝑖 − ℎ𝑖)2 + (𝑧𝑖 − 𝑟𝑖 sin 𝜃)2

 27

Hence

𝑑𝑖
2 = 𝑥𝑖

2 + 𝑦𝑖
2 + 𝑧𝑖

2 + 𝑟𝑖
2 + ℎ𝑖

2 − 2𝑦𝑖ℎ𝑖2𝑟𝑖(𝑥𝑖 cos 𝜃 − 𝑧𝑖 sin 𝜃)

 = 𝑎𝑖 ∙ 𝑎𝑖 + 𝑏𝑖 ∙ 𝑏𝑖 − 2𝑦𝑖ℎ𝑖 − 2𝑟𝑖(𝑥𝑖 cos 𝜃 + 𝑧𝑖 sin 𝜃)

To simplify the notations, we let

𝑐𝑖,0 = 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 + 𝑟𝑖

2 + ℎ𝑖
2 − 2𝑦𝑖ℎ𝑖

 𝑐𝑖,1 = 2𝑟𝑖𝑥𝑖

𝑐𝑖,2 = 2𝑟𝑖𝑧𝑖

Then, TM-Score𝑖(𝐽, 𝜃) can be written as

TM-Score𝑖(𝐽, 𝜃) =
𝑑0

2

𝑑0
2 + 𝑐𝑖,0 − 𝑐𝑖,1 cos 𝜃 − 𝑐𝑖,2 sin 𝜃

It is clear that TM-score𝑖(𝐽, 𝜃) is maximized when −𝑐1 cos 𝜃 − 𝑐2 sin 𝜃 is

minimized. This happens when

 𝑥𝑖 sin 𝜃 = 𝑧𝑖 cos 𝜃

 𝜃 = tan−1 𝑧𝑖 𝑥𝑖⁄ (6)

We denote the set of angles fulfilling Eqn. (6) by Ω𝑖(𝐽), and denote this maximum

contribution by Max-TM-score𝑖(𝐽).

 Now consider the possible values of TM-score𝑖(𝐽, 𝜃) within a rotation

interval [𝛼, 𝛼 + 𝜔], denoted TM-score𝑖(𝐽, [𝛼, 𝛼 + 𝜔]).

 In the case that Ω𝑖(𝐽) ∩ [𝛼, 𝛼 + 𝜔] = ∅,

 28

max(TM-score𝑖(𝐽, [𝛼, 𝛼 + 𝜔])) ≤ max{TM-score𝑖(𝐽, 𝛼), TM-score𝑖(𝐽, 𝛼 + 𝜔)}.

In the case that Ω𝑖(𝐽) ∩ [𝛼, 𝛼 + 𝜔] ≠ ∅,

max(TM-score𝑖(𝐽, [𝛼, 𝛼 + 𝜔])) ≤ Max-TM-score𝑖(𝐽)

These two conditions give us a way to obtain an upper-bound to the

maximum TM-score obtainable by rotating along the axis 𝐽. That is, ∑ Max-𝑛
𝑖=1

TM-score𝑖(𝐽) , or more precisely,
1

 𝑛
max

𝜃
∑

1

1+(
‖𝑅𝑎𝑖−𝑏𝑖‖

𝑑0
)

2
𝑛
𝑖=1 .

To compute this upper-bound, we perform an exhaustive search in a divide

and conquer fashion. At the topmost layer we computer ∑ Max-TM-score𝑖(𝐽)𝑛
𝑖=1

at ℎ intervals, i.e. at the angles 0,
2𝜋

ℎ
,

4𝜋

ℎ
, … ,2𝜋. At the subsequent layers, we take

two consecutive angles 𝜃 from the topmost layer, 𝜃 and 𝜃 +
2𝜋

ℎ
 say, and further

compute TM-score at ℎ intervals within it, i.e. at the angle 𝜃, 𝜃 +
2𝜋

ℎ2 , … , 𝜃 +
2𝜋

ℎ
.

This is done recursively. The computation for an interval at a specific layer is

halted if the interval between two consecutive angles results in a step size smaller

than that required, or further refinement will not yield a TM-score larger than the

largest computed so far, based on the upper-bound as discussed. The pseudo-

codes in Table 3.2 and 3.3 show this computation.

 29

 Table 3.2: Main routine for computing  Max-TM-scorei(J)

Table 3.3: Find-Max-TM-Score (J, [𝜃, 𝜃 + 𝛼])

With the computation of Step (3.4) in Table 3.1 explained, our algorithm

is complete. We next compare it to the currently available algorithm, which is

listed in Table 2.3, to examine their differences.

Input: Protein structures 𝐴, 𝐵, and a rotation axis 𝐽.

(1) Set global variable MAX to 0.

(2) Call subroutine Find-Max-TM-score(𝐽, [0, 2𝜋]).

(3) Output MAX.

Input: Protein structures 𝐴, 𝐵, rotation axis 𝐽, and interval [𝜃, 𝜃 + 𝛼]

(1) For each interval 𝑋 in [𝜃, 𝜃 +
𝛼

ℎ
], … , [𝜃 +

(ℎ−1)𝛼

ℎ
], do

(1.1) If the interval X would result in a smaller step size than

required, let MAX = max {
∑ TM-score𝑖(𝐽, 𝜃)𝑛

𝑖=1

∑ TM-score𝑖(𝐽, 𝜃 + 𝛼)𝑛
𝑖=1

 MAX

} and

return.

(1.2) Else let MAX′ = MAX and call Find-Max-TM-score𝑖(𝐽, 𝑋).

(1.3) If MAX′ > MAX, let MAX = MAX′. (Restore value.)

 30

3.4 Contrast with the current method

Table 3.4 shows a side-by-side comparison of our new method with the

currently available method.

Table 3.4: Side-by-side comparison of our method with the current method

Several differences can be noted of the new algorithm:

1. At each iteration, it considers the protein structures in their entirety

instead of only a set of matching residues.

2. Optimal TM-score is achieved at each iteration, compared to the

current method which optimizes the RMSD instead.

In the next chapter, we will compare the new method to the current one in

terms of their performances in computing actual TM-score.

Current method

1. Start with a short (contiguous)

fragment.

2. Superpose the fragment to the

corresponding residues of the

other structure through Kabsch

algorithm.

3. Collect all of the residues that

are matched closely to form a

new fragment.

4. Repeat Steps 2–3 until the new

fragment is the same as the old.

Our method

1. Start with an arbitrary R.

2. Translate structure with semi-

optimal T obtained through our

analysis under R.

3. Compute a semi-optimal R by

through the Kabsch algorithm

but without the translation step.

4. Repeat Steps 2–3 until no

significant further improvements

in TM-score can be obtained.

 31

CHAPTER 4

RESULTS

4.1 Software preparation

The new algorithm is implemented in C++. The program accepts two input files:

each file is to contain a list of coordinates written in the PDB file format – the

format used by the Protein Data Bank (Berman et al., 2000).

An example is given in Table 4.1.

Table 4.1: Example PDB file content

decoy 1 energy=-1770.2
ATOM 1 N PHE 1 -6.907 11.411 -5.439
ATOM 2 CA PHE 1 -6.529 12.598 -5.984
ATOM 3 C PHE 1 -6.455 12.732 -7.492
ATOM 4 O PHE 1 -6.716 11.831 -8.203
ATOM 5 CB PHE 1 -7.517 12.355 -7.157
ATOM 6 CG PHE 1 -8.853 12.986 -6.850
ATOM 7 CD1 PHE 1 -9.839 12.245 -6.193
ATOM 8 CD2 PHE 1 -9.142 14.273 -7.287
ATOM 9 CE1 PHE 1 -11.097 12.797 -5.949
ATOM 10 CE2 PHE 1 -10.412 14.848 -7.057
ATOM 11 CZ PHE 1 -11.376 14.082 -6.384
ATOM 12 N ILE 2 -6.077 13.919 -8.037
ATOM 13 CA ILE 2 -5.987 14.112 -9.439
ATOM 14 C ILE 2 -4.547 13.861 -9.376
ATOM 15 O ILE 2 -3.883 13.901 -10.406
ATOM 16 CB ILE 2 -6.984 15.015 -10.245
ATOM 17 CG1 ILE 2 -7.086 14.544 -11.710
ATOM 18 CG2 ILE 2 -6.560 16.492 -10.130
ATOM 19 CD1 ILE 2 -8.174 15.271 -12.521
END

 32

Each line in the file which starts with the word “ATOM” gives away the

3D coordinate of an amino acid in the protein structure chain. For instance, the

first line in Table,

states the coordinate of the first amino acid as (-6.907, 11.411, -5.439). Similarly,

the second line gives the coordinate of the second amino acid as (-6.529, 12.598, -

5.984). These coordinates have no absolute meaning. They should be understood

as only conveying the relative position of each amino acid from the other amino

acids.

 The program is invoked through the command:

 Here, file1.pdb and file2.pdb are the names of the input PDB files.

 The program then computes the TM-score according to the new algorithm

proposed in this thesis, and output that score on the console.

 If invoked with a “–v” switch,

the program will, in addition, output the superposition for the TM-score.

 This superposition is given as a transformation which is to be applied to

the set of coordinates in both input files. Table 4.2 shows an example of the

transformations given by the program:

ATOM 1 N PHE 1 -6.907 11.411 -5.439

> tm2 file1.pdb file2.pdb

> tm2 –v file1.pdb file2.pdb

 33

Table 4.2: Transformations to superpose the two structures to obtain the TM-score

Having information of the superposition allowed us to verify the

correctness of the program.

The C++ source codes for the program can be obtained from the GitHub

repository at: https://github.com/kalngyk/tm2. The GNU C++ compiler is used to

compile the source codes into an executable.

The new tool is compared to the current standard tool used to compute

TM-scores. The tool is written in Fortran by Zhang and Skolnick and is obtained

from https://zhanglab.ccmb.med.umich.edu/TM-score/. The GNU Fortran

compiler is used to compile the source codes into an executable.

4.2 Sample preparation

For samples, we use the database of created by the protein structure

prediction system called I-TASSER (Wu et al., 2007). The database consists of

the structures that I-TASSER predicted out of 56 different known protein

structures (called natives). For each native, I-TASSER predicted between 6119 to

Transformation for /decoys/1abv_/d2.pdb:
 -Translation (before rotation)
 (-0.50859049, -0.54650653, -0.68786361)
 -Rotation
 [0.99994680 0.00653589 -0.00797949]
 [-0.00658550 0.99995905 -0.00620671]
 [0.00793860 0.00625893 0.99994890]

 Transformation for /decoys/1abv_/d1.pdb:
 -Translation
 (-0.38875880, -0.60755767, -0.78644808)

 34

32000 structures (called models). The exact number of models predicted on each

native structure, along with the length of the structures, are shown in Table 4.3.

Native #Models length Native #Models Length

1abv_ 12500 103 1mkyA3 6119 81

1af7_ _ 12499 72 1mla_2 12500 70

1ah9_ 27498 63 1mn8A 12500 84

1aoy_ 32000 65 1n0uA4 12499 69

1b4bA 12500 71 1ne3A 12500 56

1b72A 12499 49 1no5A 12500 93

1bm8_ 20000 99 1npsA 20000 88

1bq9A 20000 53 1o2fB_ 12500 77

1cewI 19830 108 1of9A 20000 77

1cqkA 19999 101 1ogwA_ 19998 72

1csp_ 12500 67 1orgA 20000 118

1cy5A 32000 92 1pgx_ 20000 59

1dcjA_ 20000 73 1r69_ 20000 61

1di2A_ 20000 69 1sfp_ 19985 111

1dtjA_ 20000 74 1shfA 20000 59

1egxA 20000 115 1sro_ 20000 71

1fadA 12599 92 1ten_ 20000 87

1fo5A 20000 85 1tfi_ 32000 47

1g1cA 19997 98 1thx_ 32000 108

1gjxA 12500 77 1tif_ 12500 59

1gnuA 17533 117 1tig_ 12500 88

1gpt_ 32000 47 1vcc_ 20000 76

1gyvA 11508 117 256bA 20000 106

1hbkA 20000 89 2a0b_ 32000 118

1itpA 12500 68 2cr7A 12500 60

1jnuA 20000 104 2f3nA 19999 65

1kjs_ 20000 74 2pcy_ 20000 99

1kviA 20000 68 2reb_2 12500 60

Table 4.3: Samples from I-TASSER

The database was originally downloaded on the 24th July of 2009 from I-

TASSER's website, http://zhang.bioinformatics.ku.edu/I-TASSER/decoys/. The

website is no longer available. Furthermore, a minor part of the data in our

 35

collection has been damaged due to file corruption. Table 4.4 shows the current

state of the collection. The current experiments are performed on this set of data.

Native #Models Current # Native #Models Current #

1abv_ 12500 12500 1mkyA3 6119 6119

1af7_ _ 12499 12472 1mla_2 12500 12500

1ah9_ 27498 27498 1mn8A 12500 12475

1aoy_ 32000 32000 1n0uA4 12499 12499

1b4bA 12500 12500 1ne3A 12500 12500

1b72A 12499 12463 1no5A 12500 12500

1bm8_ 20000 20000 1npsA 20000 20000

1bq9A 20000 20000 1o2fB_ 12500 12500

1cewI 19830 19830 1of9A 20000 20000

1cqkA 19999 19999 1ogwA_ 19998 19998

1csp_ 12500 12500 1orgA 20000 19982

1cy5A 32000 32000 1pgx_ 20000 20000

1dcjA_ 20000 20000 1r69_ 20000 20000

1di2A_ 20000 20000 1sfp_ 19985 19985

1dtjA_ 20000 20000 1shfA 20000 20000

1egxA 20000 19279 1sro_ 20000 20000

1fadA 12599 12500 1ten_ 20000 19976

1fo5A 20000 19975 1tfi_ 32000 32000

1g1cA 19997 19997 1thx_ 32000 32000

1gjxA 12500 12500 1tif_ 12500 12500

1gnuA 17533 17517 1tig_ 12500 12500

1gpt_ 32000 31954 1vcc_ 20000 20000

1gyvA 11508 11508 256bA 20000 16910

1hbkA 20000 20000 2a0b_ 32000 22930

1itpA 12500 179 2cr7A 12500 12500

1jnuA 20000 65 2f3nA 19999 19999

1kjs_ 20000 19971 2pcy_ 20000 20000

1kviA 20000 19969 2reb_2 12500 12500

Table 4.4: Current state of samples from I-TASSER (cases that suffered very

significant file loss are colored red)

 36

4.3 TM-score comparison

For each native structure, the TM-score between it and each of its predicted

models is computed, and then an average of these TM-scores is obtained. This

results in 56 average TM-score, each for one native structure. These averages,

obtained using the current TM-score tool and our new TM-score tool respectively,

are shown in Table 4.5.

Native Current New Native Current New

1abv_ 0.29089 0.29201 1mkyA3 0.39476 0.39807

1af7_ _ 0.37797 0.37940 1mla_2 0.59582 0.59741

1ah9_ 0.51037 0.51175 1mn8A 0.28868 0.29002

1aoy_ 0.66534 0.66603 1n0uA4 0.47075 0.47287

1b4bA 0.43531 0.43701 1ne3A 0.36134 0.36413

1b72A 0.56623 0.56810 1no5A 0.41955 0.42045

1bm8_ 0.30003 0.30117 1npsA 0.72768 0.72811

1bq9A 0.36093 0.36309 1o2fB_ 0.35697 0.35850

1cewI 0.18051 0.18156 1of9A 0.53111 0.53280

1cqkA 0.81051 0.81081 1ogwA_ 0.67277 0.66040

1csp_ 0.69542 0.69625 1orgA 0.74720 0.74756

1cy5A 0.85736 0.85754 1pgx_ 0.47822 0.48039

1dcjA_ 0.35526 0.35622 1r69_ 0.71156 0.71243

1di2A_ 0.73412 0.71599 1sfp_ 0.72730 0.72754

1dtjA_ 0.75502 0.75568 1shfA 0.58400 0.58552

1egxA 0.74859 0.74904 1sro_ 0.62662 0.62753

1fadA 0.57726 0.57820 1ten_ 0.78512 0.78543

1fo5A 0.52384 0.52571 1tfi_ 0.47232 0.47429

1g1cA 0.75538 0.75570 1thx_ 0.78107 0.78135

1gjxA 0.34868 0.35011 1tif_ 0.31027 0.31152

1gnuA 0.53802 0.53861 1tig_ 0.47187 0.47327

1gpt_ 0.49780 0.50002 1vcc_ 0.35366 0.35534

1gyvA 0.74122 0.74149 256bA 0.75671 0.75716

1hbkA 0.60986 0.61082 2a0b_ 0.76548 0.76586

1itpA 0.30651 0.30764 2cr7A 0.42824 0.42999

1jnuA 0.69819 0.69869 2f3nA 0.69283 0.69397

1kjs_ 0.38041 0.38190 2pcy_ 0.62193 0.62244

1kviA 0.69722 0.69788 2reb_2 0.37690 0.37850

Table 4.5: Average TM-score obtaining using both the current method and the

new method proposed (each comparison is colored green if the new method has

an improvement above 0.001, and set in bold font if the new method has an

improvement above 0.002)

 37

 Except in the cases of the two native structures 1di2A_ and 1ogwA_, the

new method obtained TM-scores that improved on those from the current method.

 Larger improvements can be observed if instead of considering averages,

we look at an individual model. For some models, the difference in the TM-score

obtained using the new method can be larger than 0.01 from the value obtained

using the current method. The largest 20 such differences are listed in Table 4.6,

together with the corresponding filenames of the models.

Native Model file
name

TM-score Improvement

Current New

1cewI d18838.pdb 0.1544 0.1845 0.0301

1ne3A d7337.pdb 0.2492 0.2682 0.0190

1mkyA3 d12097.pdb 0.3568 0.3743 0.0175

1ne3A d7338.pdb 0.2627 0.2801 0.0174

1ne3A d9836.pdb 0.2528 0.2701 0.0173

1tfi_ d31506.pdb 0.2597 0.2765 0.0168

1ne3A d4902.pdb 0.2485 0.2650 0.0165

1tfi_ d23509.pdb 0.2646 0.2810 0.0164

1mkyA3 d12100.pdb 0.3610 0.3773 0.0163

1cewI d13371.pdb 0.1720 0.1883 0.0163

1ne3A d7229.pdb 0.2349 0.2511 0.0162

1ne3A d12388.pdb 0.2505 0.2664 0.0159

1ne3A d8128.pdb 0.2383 0.2540 0.0157

1ne3A d7283.pdb 0.2441 0.2598 0.0157

1ne3A d9347.pdb 0.2462 0.2617 0.0155

1mkyA3 d4534.pdb 0.3734 0.3887 0.0153

1ne3A d11198.pdb 0.2233 0.2386 0.0153

1ne3A d5629.pdb 0.2420 0.2572 0.0152

1ne3A d11664.pdb 0.2399 0.2546 0.0147

1mkyA3 d10192.pdb 0.3748 0.3893 0.0145

Table 4.6: Models where the TM-scores computed using the new method

improved significantly over those obtained using the current method (only the top

20 cases are shown)

 38

4.4 Runtime comparison

To examine if the new tool runs in a reasonable time, tests were performed on a

PC with the following specification:

• Intel Pentium G4400 3.3 GHz CPU

• 4GB RAM

• Cygwin environment (Windows 7 host)

Native Current New Ratio Native Current New Ratio

1abv_ 5 56 11.2 1mkyA3 6 41 6.8

1af7_ _ 11 46 4.2 1mla_2 9 47 5.2

1ah9_ 5 28 5.6 1mn8A 10 19 1.9

1aoy_ 5 22 4.4 1n0uA4 7 50 7.1

1b4bA 3 33 11.0 1ne3A 10 58 5.8

1b72A 11 20 1.8 1no5A 10 21 2.1

1bm8_ 7 75 10.7 1npsA 35 36 1.0

1bq9A 8 35 4.4 1o2fB_ 11 33 3.0

1cewI 6 69 11.5 1of9A 10 16 1.6

1cqkA 7 20 2.9 1ogwA_ 12 24 2.0

1csp_ 4 15 3.8 1orgA 8 30 3.8

1cy5A 9 17 1.9 1pgx_ 10 26 2.6

1dcjA_ 6 37 6.2 1r69_ 32 32 1.0

1di2A_ 5 15 3.0 1sfp_ 12 23 1.9

1dtjA_ 6 16 2.7 1shfA 16 25 1.6

1egxA 19 34 1.8 1sro_ 7 32 4.6

1fadA 7 52 7.4 1ten_ 8 53 6.6

1fo5A 23 45 2.0 1tfi_ 8 53 6.6

1g1cA 7 21 3.0 1thx_ 28 31 1.1

1gjxA 4 46 11.5 1tif_ 39 45 1.2

1gnuA 21 47 2.2 1tig_ 6 34 5.7

1gpt_ 32 36 1.1 1vcc_ 8 20 2.5

1gyvA 7 20 2.9 256bA 10 25 2.5

1hbkA 8 31 3.9 2a0b_ 5 36 7.2

1itpA 9 36 4.0 2cr7A 6 41 6.8

1jnuA 34 37 1.1 2f3nA 9 47 5.2

1kjs_ 32 50 1.6 2pcy_ 10 19 1.9

1kviA 32 28 0.9 2reb_2 7 50 7.1

Table 4.7: Runtime of the new tool compared to the current tool (seconds used per

100 TM-score computations)

 39

 To perform this test, 100 models were randomly selected for each native

structure (except for 1jnuA where there are less than 100 models), and the total

time is taken for the tool to compute the 100 TM-scores between these models

and the native structure were recorded. These total times are shown in Table 4.6.

 On average, the new method took 4.2 times the time required by the

current method. However, in several cases, namely, 1abv_, 1b4bA, 1bm8_, 1cewI,

1gjxA, the new method took more than 10 times the time taken by the current

method. On the other hand, the time is taken by the tool for each computation

never exceeded a second, which is reasonable for most routine usage.

4.5 Discussions

The tests in this section demonstrated that the new tool provides better

TM-score computation than the currently available tool. The runtime required of

the new tool was also shown to be within reasonable limits for routine use.

It can hence be concluded that the proposed algorithm has achieved its

original aim, that is, to compute better TM-score at a reasonable time for either

replacing the current tool or be used to verify the correctness of the TM-scores

found by the current tool.

 40

CHAPTER 5

CONCLUSION

This research proposed a new algorithm for the computation of the TM-

score, a popular scoring function for measuring the similarity between two protein

structures among the protein structure prediction community. The algorithm uses

a different strategy for iteration from the currently available algorithm – whereas

at each iteration, the current algorithm finds a superposition of only a subset of the

structures which optimizes the RMSD, the new method aims to find a

superposition of the entire structures which optimizes TM-score.

A C++ tool was implemented based on the algorithm and made available

to researchers.

Test results based on publicly available database showed the tool to give

better TM-scores than the currently available tool in every case except for a few.

The runtime required by the tool is within a fraction of a second and can be used

routinely, as a replacement for the current tool, or as a verifier in situations where

accuracy is important.

For future work, it is worth investigating whether the iteration framework

espoused by the new algorithm can be extended to the computation of the other

scores such as GDT and MaxSub.

In the future, we will investigate the possibilities to define a new

measurement for protein structures. The RMSD measurement is metric. However,

the range is not between 0 and 1. On the other hand, GDT, MaxSub, and TM-

 41

score are between 0 and 1, and they are not metric. We find new definitions of

distances for protein structures, which are both metric and with the range from 0

to 1.

 42

REFERENCES

Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K. And

Walter, P., 2014. Molecular Biology of the Cell, 6th ed. New York:

Garland Science.

Kufareva, I. And Abagyan, R., 2012. Methods of protein structure comparison,

Methods in Molecular Biology, 857, pp. 231–257.

Kabsch, W., 1976. A solution for the best rotation to relate two sets of vectors,

Acta Crystallographica, A32, pp. 922–923.

Zemla, A., Venclovas, C., Moult, J., Fidelis, K., 1999. Processing and analysis

of CASP3 protein structure predictions. Proteins. S3, pp. 22–29.

Zemla, A., 2003. LGA – a method for finding 3D similarities in protein

structures, Nucleic Acids Research, 31(13), pp. 3370–3374.

Siew, N., Elofsson, A., Rychlewski, L. And Fischer, D., 2000. MaxSub: an

automated measure for the assessment of protein structure prediction

quality, Bioinformatics, 16(9), pp. 776–85.

Zhang, Y. And Skolnick, J., 2004. Scoring function for automated assessment of

protein structure template quality, Proteins, 57, pp. 702–710.

Sanger, F. And Coulson, A. R., 1975. A rapid method for determining sequences

in DNA by primed synthesis with DNA polymerase. Journal of

Molecular Biology, 94 (3), pp. 441–448.

 43

Ronaghi, M., Uhlén, M. And Nyrén, P., 1998. A sequencing method based on

real-time pyrophosphate. Science. 281 (5375), pp. 363–365.

Needleman, S. B. And Wunsch, C. D., 1970. A general method applicable to the

search for similarities in the amino acid sequence of two proteins, Journal

of Molecular Biology, 48 (3), pp. 443–453.

Smith, T. F., and Waterman, M. S., 1981. Identification of Common Molecular

Subsequences, Journal of Molecular Biology, 147, pp. 195–197.

Dorn, M., e Silva, M. B., Buriol, L. S. And Lamb, L. C., 2014. Three-

dimensional protein structure prediction. Computational Biology and

Chemistry. 53, pp. 251–276.

Nishikawa, K., Ooi, T., Isogai, Y. And Saitô, N., 1972. Tertiary Structure of

Proteins. I. Representation and Computation of the Conformations,

Journal of the Physical Society of Japan. 32, pp. 1331–1337.

Rao, S.T. And Michael Rossmann, G., 1973. Comparison of super-secondary

structures in proteins, Journal of Molecular Biology, 76(2), pp. 241–250.

Li, S. C., Bu, D., Xu, J. And Li, M., 2008, Finding largest well-predicted subset

of protein structure models, in Proceedings of the 19th annual

symposium on Combinatorial Pattern Matching, CPM’08, Springer-

Verlag, pp. 44–55.

 44

Ortiz, A. R., Strauss, C. E. And Olmea, O., 2002. MAMMOTH (matching

molecular models obtained from theory): an automated method for model

comparison, Protein Science, 11(11), pp. 2606–2621.

Kihara, D. And Skolnick, J., 2003. The PDB is a covering set of small protein

structures, Journal of Molecular Biology, 334(4), pp. 793-802.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H.,

Shindyalov, I. N., Bourne, P. E., 2000. The Protein Data Bank, Nucleic

Acids Research, 28(1), pp. 235–42.

Wu, S., Skolnick, J., Zhang, Y., 2007. Ab initio modeling of small proteins by

iterative TASSER simulations, BMC Biology, 5(17).

