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ABSTRACT 

 

AN ALGORITHM FOR FINDING A BETTER TM-SCORE 

 

 

  There are many scoring functions have been proposed to evaluate the similarity 

between protein structure models.  Among these, a popular measure is the 

template modeling score (TM-score), introduced by Zhang and Skolnick. At this 

moment, the TM-score is calculated through a heuristic algorithm with no 

accuracy guarantee. In this paper, we propose an algorithm which computes more 

accurate TM-score, through the use of the very fast Kabsch-which is commonly 

used to compute the Root Mean Square Deviation (RMSD). Our algorithm the 

first obtain an approximation for superposition of the protein model that optimizes 

the TM-score (for example, through Opt (GDT). Then, iteratively refines this 

superposition through the rotation axes discovered using the Kabsch algorithms. 

The algorithm is implemented in C++ into a tool that runs in a time comparable to 

Zhang and Skolnick’s TM-score software, but consistently produces TM-score 

that are more accurate. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

A DNA, or deoxyribonucleic acid, is a molecule that consists of a very long chain 

of nucleotides (Alberts et al., 2014). A nucleotide consists of a sugar (deoxyribose) 

and one of four bases: Cytosine (C), Thymine (T), Adenine (A), and Guanine (G). 

The DNA of an organism encodes the genetic information needed to carry out the 

biological processes of the organism.  

DNA works by copying a small portion of its genetic codes into shorter 

molecules called RNAs, or ribonucleic acids. The RNA transcribed by a segment 

of DNA is identical to the DNA except that Thymine is replaced by Uracil (U). 

An RNA functions by copying itself into its corresponding amino acids sequence. 

The amino acid sequence, in turn, folds into a stable three-dimensional structure 

called a protein, driven by the physical forces of its constituent amino acids. This 

mechanism of how DNA produces proteins is known as the Central Dogma of 

Molecular Biology (Figure 1.1).  

    

 

DNA 

 

                         
RNA 

                  

Amino acid sequence 

                                          

3D protein structure 

 

Figure 1.1: Central Dogma of Molecular Biology 
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The function of a protein is directly dependent on its three-dimensional 

structure (Alberts et al., 2014). Hence, one can identify the function of an 

unknown protein by comparing its structure to those from proteins of known 

functions. For this reason, many researches have focused on the task of comparing 

between two protein structures. 

The comparison between protein structures is also an important task in 

protein structure prediction (Kufareva and Abagyan, 2012), where one infers the 

structure which an amino acid sequence fold into. They serve at least two 

important functions. First, structure comparison is a subroutine when we need to 

select a representative structure from a collection, which is a task that is often 

required in many protein structure prediction methods. Second, they are needed 

when we want to evaluate the success of a protein prediction method by 

comparing the output structure of the method against the known target structure.  

1.2 Problem Statement 

Using a similarity measure is the common approach to compare two 

protein structures. Such a similarity measure would map each amino acid in one 

of the structures to a corresponding amino acid in the other structure. The 

distances between corresponding amino acids are then collected and used to 

produce a final score. 

A few measures of similarity are routinely used in protein structure 

comparison, they are the Root Mean Square Deviation (RMSD) (Kabsch, 1976), 

Local-Global Alignment (LGA) (Zemla et al., 1999; Zemla, 2003), MaxSub 
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(Siew et al., 2000), and Template Modeling Score (TM-score) (Zhang and 

Skolnick, 2004).  

The computation of all of these measures are complicated by the fact that 

different superpositions of the structures would result in different sets of distances 

between the amino acids (Figure 1.2). All the similarity measures require us to 

consider every possible superposition of the two structures in their computations. 

 

  

 
 Figure 1.2: Distances between amino acids change with superposition 

 

There are some well-known shortcomings with some of these measures. 

For instance, there are at least two shortcomings with the RMSD, which is 

defined as the sum of the squared values of all the inter-amino acid distances. 

First, the value of the measure is hard to interpret across different situations. For 

example, a value of RMSD=3Å (Angstrom) may indicate that the structures are 

very similar in a case with long structures, but dissimilar in another case with 

short structures. Ideally, a measure that can be interpreted similarly across 

Two protein structures 
One possible superposition Another possible 

superposition superposition 
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different situations should have values that are normalized to lie between a fixed 

range, such [-1, 1] or [0, 1]. However, the RMSD has a range of (0, +∞).  

Second, since the distances are squared in the RMSD, the measure places a 

tougher penalty on larger inter-amino acid distances. For example, in Figure 1.3, 

the two structures in case A are identical except for a pair which differs by a 

relatively large distance. However, this comparison would result in a far larger 

RMSD than the two structures in case B. 

 

Figure 1.3: Two cases of structure comparison 

 

These shortcomings in the RMSD has prompted the creation of more 

sophisticated similarity measures. MaxSub discovers the largest subset of amino 

acids that match well and uses that subset to produce a normalized score. In LGA, 

the distance measure is split into a “local” component, called Longest Continuous 

Segment (LCS), and a “global” component, called Global Distance Test (GDT) 

components. Finally, given two protein structures 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 =

Case A Case B 
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(𝑏1, 𝑏2, … , 𝑏𝑛) , where 𝑎𝑖  and 𝑏𝑖  respectively represents the coordinates of the 

amino acids in A and B, the TM-score between A and B is defined as 

                             TM-Score(𝐴, 𝐵) =
1

𝑛
max

𝑅,𝑇
∑

1

1+(
‖𝑅𝑎𝑖−𝑏𝑖−𝑇‖

𝑑0
)

2
𝑛
𝑖=1   

where 𝑑0  is a normalization factor given as 𝑑0 = 1.24(𝑛 − 15)1 3⁄ − 1.8 . 

Through this formulation, it is easy to see that the TM-score has a range between 

0 and 1, with very similar structures scoring close to 1 and dissimilar structures 

scoring close to 0. This naturally avoids the first problem faced by the RMSD. 

The TM-score also does not penalize far away amino acids pairs; such pairs 

would simply contribute little towards the score.   

These measures have been used in the Critical Assessment of protein 

Structure Prediction (CASP), a competition held biennially to evaluate the success 

of protein structure prediction methods. They are used mainly to evaluate how 

close the outputs of the methods are to the actual protein structures. While they do 

not suffer from the problems faced by the RMSD, unlike the RMSD there are no 

exact algorithms for their computation. 

1.3 Motivation 

This thesis studies the TM-score, which is favored by the CASP 

community. The computational complexity for finding the TM-score is unknown. 

At this moment, the TM-score is calculated through a heuristic method. There is 

no known algorithm for computing TM-score with a theoretical basis. In 

particular, there is currently no computation with a theoretical guarantee on the 

correctness of the score it obtains.  
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This thesis aims to improve on the current heuristic algorithm for 

computing the TM-score.  

The current TM-score computation involves two heuristic steps. At each 

step, the algorithm only optimizes the TM-score with respect to only a segment of 

the structure. It is not known how this “local” aspect of the optimization would 

impact the result of the heuristic algorithm.  

It is worth investigating if by changing these steps to optimize the TM-

score in more “global” sense, more accurate TM-scores can be obtained. 

1.4 Objectives 

The following are the objectives of this research: 

• Propose an improved method for the computation of the TM-score, in 

particular: 

o The method is to optimize global aspects of the TM-score at 

each step as opposed to the currently available algorithm. 

o The method should have similar runtime as the currently 

available algorithm. 

• Create a fast and usable software tool based on the algorithm. In 

particular: 

o The program is not to depend on external libraries, so that it 

may be compiled on as many platforms as possible and 

distributed as a standalone tool for use by researchers. 

• Perform extensive comparison on the proposed algorithm against the 

currently available tool for finding TM-score. 
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o The comparison is to be performed with a comprehensive set 

of structures that is relevant to the field of interest, that is, 

protein structure prediction. 

o The TM-scores computed from the algorithm are to be 

compared against those computed from the currently available 

tool. 

o The times taken for the tool are to be benchmarked against the 

times taken by the currently available tool. 

1.5 Scope 

In this research, a new algorithm for computing the TM-score was 

proposed. Like the currently available algorithm, the new algorithm is heuristic 

and iterative in nature. However, it optimizes global aspects of the TM-score 

during every iteration of its computation.  

The algorithm was implemented as a standalone C++ program which 

requires no external library (other than ANSI libraries). 

Finally, the binary compiled from the program was tested using a 

comprehensive set of data from the CASP test set. The performance of the tool 

was compared against the currently available tool for TM-score. Using this 

comparison, the tool is shown to be more accurate than the currently available 

tool, while running in comparable time. 

1.6 Research Contributions 

The major contributions of this research are as follows:  
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• An improved heuristic and iterative method for the computation of 

the TM-score, which is able to optimize global aspects of the TM-

score at each step as opposed to the currently available algorithm.  

• An auxiliary branch and bound method to speed up the proposed 

algorithm. 

• A fast and usable alternative software tool (compiled on multiple OS 

platforms) for computing the TM-score. The tool can be used as a 

replacement to the current tool for finding TM-score, or as a mean to 

verify the output of the current tool. 

1.7 Organization of dissertation 

Chapter 2 presents a literature review of the existing results in molecular 

biology that led to the present problem, as well as more in-depth discussions of 

these algorithms. The new algorithm proposed in this thesis is explained in 

Chapter 3. Chapter 4 shows the experimental results and compares the results of 

the proposed approach with those from the currently available method. Chapter 5 

gives some discussions and concludes the thesis. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Bio-sequences 

Large-scale sequencing of the DNA became a possibility since the Sanger 

chain sequencing technique was developed in 1977 (Sanger and Coulson, 1977). 

In 1998, a method known as pyrosequencing further improved sequencing speed 

(Ronaghi et al., 1998). In the subsequent years, a few sequencing techniques, now 

commonly referred to as next-generation sequencing (NGS) together with 

pyrosequencing, were invented. Their availability has made DNA information 

easily available in biological and medical researches. This has yielded a very 

large collection of DNA sequences for analysis. 

2.2 Sequence comparison 

Given the huge database of sequence, fast algorithms for comparing 

sequences became important in the past decades. In particular, they are needed for 

the following tasks:  

• Identifying the contributor of an unknown sequence 

Given an unknown sequence, we can match the sequence to a database 

of sequences where the contributors are known, in order to either 

identify the species, or even the exact organism which the sequence 

belongs to. 

• Predicting the functions of an unknown sequence 
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The genetic sequence of an organism determines the organism’s 

physical traits, and similar sequences often lead to the same traits. 

Hence, given an unknown sequence, we can predict its function by 

finding sequences with known functions that are similar to it. The 

functions of those sequences are then likely to be the functions of the 

unknown sequence. 

• Finding the genes within a sequence 

Given a database of genes and an unknown sequence, we can find 

which genes in the database exist in the sequence. 

 In order to biological sequences, a score is typically defined to express the 

difference between two sequences and then an algorithm is then designed to 

minimize this score. Examples of such scores are the Hamming distance and the 

edit distance.  

The first well-known algorithm, the Needleman-Wunsch algorithm, for 

comparing sequences was proposed in 1970 (Needleman and Wunsch, 1970). 

This was followed by the Smith-Waterman algorithm (Smith and Waterman, 

1981). 

2.3 Protein structure prediction 

According to the Central Dogma of Molecular Biology, DNA works by 

transcribing its sequences into RNA, and subsequently, into protein structures, 

which then carries out biological functions of the organism. In a sense, our study 

of DNA sequences is motivated by our desire to understand these protein 

structures. 
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The portions in a DNA sequence which are involved in these 

transcriptions are known as genes. Genes must be transcribed into proteins in to 

perform their functions. Furthermore, the function of a protein relies mostly on its 

structure. Evolutionarily, protein structures are 3 to 10 times better conserved than 

their sequences. Hence, to predict the function of a genetic sequence, some 

researchers first infer the protein which it is transcribed into and then compare the 

structure of that protein with protein structures of known functions. The similarity 

in the structures would then give a better prediction for the function of the original 

sequence. 

Due to the mechanism of genetic folding, it is possible to predict the 

protein structure which a gene encodes. This has resulted in the study of protein 

structure prediction in the last two decades (Dorn et al., 2014).  

Given a gene sequence, there are four levels of structures in which protein 

structure prediction can be performed. 

(1) Primary structure:  this predicts the linear arrangement of amino acids in a 

protein and the location covalent linkages such as disulfide bonds between 

amino acids. 

(2) Secondary structure: this predicts the areas of folding or coiling within a 

protein; examples include alpha helices and pleated sheets, which are 

stabilized by hydrogen bonding. 

(3) Tertiary structure: this predicts the final three-dimensional structure of a 

protein, which results from a large number of non-covalent interactions 

between amino acids. 

(4) Quaternary structure: this predicts the non-covalent interactions that bind 

multiple polypeptides into a single, large protein. 
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The primary structure of a protein can be readily deduced from the 

nucleotide sequence of the corresponding messenger RNA, based on primary 

structure. Many features of secondary structures can be predicted with the aid of 

computer programs. However, predicting protein tertiary and quaternary 

structures remains very tough problems.  

The comparison of protein structures is a recurring problem in protein 

structure prediction. There are two main ways in which protein structures are 

compared: 

• Structural alignment 

• Model comparison 

In both types of comparison, two structures are given in the problem 

statement, typically as. A protein structure A consists of an ordered set of 𝑛 points 

in three-dimension, denoted (𝑎1, 𝑎2, … , 𝑎𝑛). Each point ai gives the coordinates of 

the 𝐶𝑎 atom in the i-th amino acid. A structure B consisted of 𝑚 points, denoted 

(𝑏1, 𝑏2, … , 𝑏𝑚). There are many ways to formulate both the structural alignment 

problem and the model comparison problem. In all the formulations, a scoring 

function that measures how similar (or dissimilar) the two structures are is defined, 

and the problem is to find a way to compute the scoring function effectively. One 

difference between structural alignment and model comparison is that: one is to 

first find an order-preserving one-one mapping between the points in A and B in 

structural alignment, whereas such a mapping is provided in model comparison. 

This thesis is concerned with the latter, model comparison. 
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2.4 Model comparison 

In model comparison, one is given two protein structures, 

A= (𝑎1, 𝑎2, … , 𝑎𝑛)  and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) , and is required to determine how 

similar the two structures are. There are many different formulations to the 

problem depending on the scoring function. Several scoring functions have been 

proposed for the purpose of protein structure prediction, such as Root Mean 

Square Deviation (RMSD) (Kabsch, 1976), Local-Global Alignment (LGA) 

(Zemla et al., 1999; Zemla, 2003), MaxSub (Siew et al., 2000), and Template 

Modeling Score (TM-score) (Zhang and Skolnick, 2004). 

Model comparison serves several purposes in protein structure prediction, 

among which the following two are most prominent: 

1. For the evaluation of the predicted protein structure against the known 

structure. The predicted structure is known as a “model” structure 

while the known structure is called the “native” structure in the 

literature. 

2. For the selection of a consensus structure out of a collection of similar 

structures generated typically using some sampling method such as 

Gibbs Sampling. 

The root means square deviation (RMSD) is one of the earliest structural 

comparison measure proposed (Nishikawa et al., 1972; Rao and Rossmann, 1973), 

as well as the best studied. For two structures A= (𝑎1, 𝑎2, … , 𝑎𝑛)  and 𝐵 =

(𝑏1, 𝑏2, … , 𝑏𝑛), the RMSD is defined as 
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RMSD(𝐴, 𝐵) = min
𝑅∈ℛ,𝑇∈𝒯

√
∑ ‖𝑅𝑎𝑖−𝑏𝑖−𝑇‖2𝑛

𝑖=1

𝑛
, 

where 𝑇  is some translation in the space of all translations  𝒯 , and 𝑅  is some 

rotation in the space of all rotations ℛ. Kabsch first gave an algorithm which 

computes the RMSD in linear time (Kabsch, 1976), as follows: 

 

 

 

 

 

 

 

 

 

Table 2.1: Kabsch Algorithm 

 

Due to its low runtime complexity, the RMSD has come in very convenient 

for the comparison of structures. However, it suffers from a few drawbacks. First, 

as mentioned in Chapter 1, an RMSD value of 3Å (Angstrom) may indicate high 

similarity between two structures of a few hundred points but would be 

Input: Protein structures A and B.                                   

(1) Translate A and B with a translation 𝑇′ which result in their 

centroids to coincide. 

(2) Find the 3x3 matrix 𝐶 = 𝐵𝐴𝑇 . (denotes 𝐴𝑇the transpose of 𝐴.) 

(3) Find the Single Value Decomposition (𝑆𝑉𝐷) of C. That is, find 

𝑈, 𝑉 and diagonal 𝑆 such that 𝐶 = 𝑈𝑇𝑆𝑉. 

(4) Output the RMSD as  
1

𝑛
∑ 𝑝𝑖

2𝑛
𝑖=1 + 𝑞𝑖

2 − 2(𝑙1 + 𝑙2 + 𝑙3), where 

𝑙1, 𝑙2, and 𝑙3 are the singular values in S. 

(The corresponding rotation𝑅 = 𝑉𝑈𝑇 and translation 𝑇 = 𝑇′for 

this RMSD value.) 
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considered very dissimilar for two structures of only a few points. More precisely, 

in order to a measure to have universal interpretation across different scenarios, 

its range is typically normalized to within some interval of values, e.g. [0, 1] or [-

1, 1]. However, the range of RMSD is between (0, +∞).   

Second, since the distances are squared in the RMSD, the measure places a 

tougher penalty on larger inter-amino acid distances, as demonstrated in Figure of 

Chapter 1.  

These shortcomings have resulted in the proposal of other similarity 

measures, such as the GDT, MaxSub, and TM-score. 

2.5 GDT 

To avoid the problems faced by the RMSD, Zemla et al. (1999) introduced 

a measure called the Local-Global Alignment (LGA). LGA consists of a “local” 

component, called the Longest Continuous Segment (LCS), and a “global” 

component, called the Global Distance Test (GDT). The latter, GDT, has received 

widespread adoption in the community. 

GDT is defined on a sub-problem known as d-LCP, which aims to find the 

largest common point sets under approximate congruence for the given distance 

threshold d. More precisely, given two structures A= (𝑎1, 𝑎2, … , 𝑎𝑛) , 𝐵 =

(𝑏1, 𝑏2, … , 𝑏𝑛) and threshold 𝑑, d-LCP aims to find the largest set M of pairs of (ai, 

bi) which fulfills 

(∀ (𝑎𝑖, 𝑏𝑖) ∈ 𝑀)[‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑]. 

for some 𝑇 ∈ 𝒯 and 𝑅 ∈ ℛ. 
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The GDT is then, computed as a composite of the four 𝑑-LCP scores 

where 𝑑 is set to 1Å, 2Å, 4Å and 8Å. 

Unlike the RMSD which places a heavy penalty on unmatchable amino 

acids, the GDT simply discounts them.  

While the d-LCP problem can be solved in 𝑂(𝑛7) time (Li et al., 2008), 

the high time complexity makes the algorithm impractical. Currently, GDT is 

computed through a heuristic algorithm. 

Intuitively, the algorithm starts with an initial subset of amino acid pairs 

that can be superposed to within the threshold distance d. Then, it iteratively 

attempts to “grow” the set of amino acids. To do so, the RMSD is used as a 

subroutine. At every iteration, an RMSD is calculated to obtain an optimal 

superposition for the current set of matching amino acids; this superposition is 

then used to identify more matching amino acids. 

This same strategy is used by many subsequent researchers (Siew et al., 

2000; Ortiz et al., 2002; Kihara and Skolnick, 2003; Zhang and Skolnick, 2004). 

The following shows this algorithm in detail: 
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Table 2.2: Heuristic Algorithm for GDT 

 

The algorithm achieves good results in general. However, since it is 

heuristic, there is no guarantee on whether the superposition found by the 

algorithm optimizes the number of matching amino acids found. 

There is also worth noting that at every step of the computation, the 

optimal superposition is computed only on a subset of A and B and hence may 

miss out some “global” properties of the structures.  

Input: Protein structures A, B, and distance threshold 𝑑.                                   

(1) For each pair of 3, 5, and 7 residue-long corresponding segments 

(𝐴′, 𝐵′) from both structures,  

(1.1) Calculate an RMSD to obtain the corresponding 

superposition (R, T) which optimally superposes (𝐴′, 𝐵′) 

for the RMSD. 

(1.2) Find the subset of amino acid pairs (𝐴′′, 𝐵′′)  within 

(𝐴, 𝐵) where [‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑].  

(1.3) Set 𝐴′ to 𝐴′′ and 𝐵′ to 𝐵′′. 

(1.4) Repeat (1.1) -(1.3) until there are no more changes to (R, 

T). (Hence, no more changes to (𝐴′, 𝐵′).) 

(2) Output the largest set (𝐴′, 𝐵′)  found with all different initial 

segments. 
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2.6 MaxSub 

The MaxSub score is based on the GDT. Given two structures 

A=(𝑎1, 𝑎2, … , 𝑎𝑛), 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) and given threshold 𝑑 , MaxSub aims to 

find a largest set M of pairs of (𝑎𝑖, 𝑏𝑖) which fulfills 

(∀ (𝑎𝑖, 𝑏𝑖) ∈ 𝑀)[‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑] 

 Due to the similarity between MaxSub and GDT, the MaxSub score has a 

polynomial solution of very high order (Li et al., 2008).  

At present, the most common way to compute the MaxSub score is 

through a heuristic algorithm similar to that used for computing the GDT.  
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2.7 TM-score 

Given two protein structures 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛)  and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) , 

where 𝑎𝑖 and 𝑏𝑖 respectively represents the coordinates of the amino acids in A 

and B, the TM-score between A and B is defined as 

                             TM-score(𝐴, 𝐵) =
1

𝑛
max

𝑅,𝑇
∑

1

1+(
‖𝑅𝑎𝑖−𝑏𝑖−𝑇‖

𝑑0
)

2
𝑛
𝑖=1   

where 𝑑0  is a normalization factor given as 𝑑0 = 1.24(𝑛 − 15)1 3⁄ − 1.8. It is 

clear that the TM-score has values within (0,1]. 

Like the RMSD, the TM-score is defined through the distances between 

amino acids. However, TM-score is based on the inverse of the squared distances 

rather than the squared distances. Because of this, unlike the RMSD where a 

larger score indicates dissimilarity, a larger TM-score would indicate more similar 

structures.  

Analytically solving the optimal superposition for the score in a 

straightforward fashion will require the solving of the roots of high order 

polynomials. Hence, interesting to know to what extent the TM-score can be 

computed accurately. 

Currently, TM-score is computed through an algorithm that is identical to 

that for computing the GDT, except that when collecting the amino acids at each 

iteration, the criteria is changed to examine the condition [‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑0] 

rather than [‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑]. The entire algorithm is reproduced below for 

completeness.  



 20 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3: Heuristic Algorithm for TM-score 

As with GDT, the algorithm achieves good results in general. However, 

since it is heuristic, there is no guarantee on whether the superposition found by 

the algorithm optimizes the number of matching amino acids found. This is 

particularly likely since the optimal superposition is computed only on a subset of 

A and B at each iteration. 

On the other hand, since TM-score has gained popularity in the protein 

structure prediction community, its accuracy has become a matter of significant 

importance. 

Input: Protein structures A and B.                                   

(1) For each pair of 3, 5, and 7 residue-long corresponding segments 

(𝐴′, 𝐵′) from both structures,  

(1.1) Calculate an RMSD to obtain the corresponding 

superposition (R, T) which optimally superposes (𝐴′, 𝐵′) 

for the RMSD. 

(1.2) Find the subset of amino acid pairs (𝐴′′, 𝐵′′)  within 

(𝐴, 𝐵) where [‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖ ≤ 𝑑0].  

(1.3) Set 𝐴′ to 𝐴′′ and 𝐵′ to 𝐵′′. 

(1.4) Repeat (1.1)-(1.3) until there is no more changes to 

(𝐴′, 𝐵′).  

(2) Output the optimal TM-score (𝐴′, 𝐵′) found with all different 

initial segments. 
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CHAPTER 3 

METHODOLOGY 

 

In this chapter, an algorithm which computes more accurate TM-score is 

developed. The algorithm follows the general framework of the iterative 

algorithm currently in use, but offers the following enhancements: 

• Better iteration through gradient descent-like search, 

• Instead of using only a subset of matching points, all the points in the 

two input structures are used in obtaining the superposition at each 

iteration. 

As stated in the earlier chapter, given two protein structures 𝐴 =

(𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛), the TM-score between A and B is 

 TM-Score(𝐴, 𝐵) =
1

𝑛
max

𝑅,𝑇
∑

1

1 + (
‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖

𝑑0
)

2

𝑛

𝑖=1

 (1) 

where 𝑑0 is normalization factor given as 𝑑0 = 1.24(𝑛 − 15)1 3⁄ − 1.8 [11].  

3.1 Difficulty of computing TM-score 

It is unlikely that TM-score would yield an analytical closed-form solution. 

Consider the simplified case where the points in A and B have only components 

along the 𝑥-axis. In this case, no rotation is required, and Eqn. (1) becomes 

 TM-Score(𝐴, 𝐵) =
1

𝑛
max

𝑅
∑

𝑑0
2

𝑑0
2 + (𝑎𝑖 ∙ 𝑥⃗ − 𝑏𝑖 ∙ 𝑥⃗ − 𝑥)2

𝑛

𝑖=1

 (2) 

where 𝑥⃗ is the unit vector along the 𝑥-axis and 𝑥 is the displacement along the  
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𝑥-axis. An attempt to obtain the optimal value for 𝑥 by differentiating Eqn. (2) 

with respect to 𝑥 and equating it with zero will result in a high order polynomial 

equation, for which the roots cannot be solved efficiently. Hence, even in the case 

of a single translation along a single axis, the problem of optimizing the TM-score 

is difficult.  

3.2 A New algorithm for TM-score 

Given structures A and B, the computation of TM-score (A, B) is the same as that 

of finding rotation R and matrix which maximizes 

𝑓(𝑅, 𝑇) = ∑
𝑑0

2

𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2

𝑛

𝑖=1

 

Write the translation T as 〈𝑡𝑥, 𝑡𝑦, 𝑡𝑧〉 (where  𝑡𝑥, 𝑡𝑦, 𝑡𝑧 ∈ ℝ), and (𝑅𝑎𝑖 − 𝑏𝑖) 

as 〈𝑟𝑖𝑥, 𝑟𝑖𝑦, 𝑟𝑖𝑧〉  (where 𝑟𝑖𝑥, 𝑟𝑖𝑦, 𝑟𝑖𝑧 ∈ ℝ). Then we can show that 

𝑓(𝑅, 𝑇) = ∑
𝑑0

2

𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖‖2 + ‖𝑇‖2 − 2 ∑ 𝑡𝑗𝑟𝑖𝑗𝑗=𝑥,𝑦,𝑧

𝑛

𝑖=1

 

Now, collect all the terms which do not depend on 𝑥 into a new variable 

𝑝𝑖𝑥. That is, 

𝑝𝑖𝑥 = 𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖‖

2 + 𝑡𝑦
2 + 𝑡𝑧

2 − 2 ∑ 𝑡𝑗𝑟𝑖𝑗

𝑗=𝑦,𝑧

. 

The expression can then be simplified into : 

𝑓(𝑅, 𝑇) = ∑
𝑑0

2

𝑡𝑥
2 − 2𝑡𝑥𝑟𝑖𝑥 + 𝑝𝑖𝑥

𝑛

𝑖=1
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At this point, differentiating 𝑓(𝑅, 𝑇) with respect to 𝑡𝑥 will result in 

𝑑𝑓(𝑅, 𝑇)

𝑑𝑡𝑥
= ∑

−𝑑0
2(2𝑡𝑥 − 2𝑟𝑖𝑥)

(𝑡𝑥
2 − 2𝑡𝑥𝑟𝑖𝑥 + 𝑝𝑖𝑥)2

𝑛

𝑖=1

= ∑
−𝑑0

2(2𝑡𝑥 − 2𝑟𝑖𝑥)

(𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2)2

𝑛

𝑖=1

 

Denote 
𝑑0

2

(𝑑0
2+‖𝑅𝑎𝑖−𝑏𝑖−𝑇‖2)

2 as 𝑤𝑖. Then, the expression is simplified into 

𝑑𝑓(𝑅, 𝑡)

𝑑𝑡𝑥
= ∑ −𝑤𝑖(2𝑡𝑥 − 2𝑟𝑖𝑥)

𝑛

𝑖=1

. 

The critical point of 𝑓(𝑅, 𝑇) is hence at 

 
𝑡𝑥=

∑ 𝑤𝑖𝑟𝑖𝑥𝑖

∑ 𝑤𝑖𝑖
. 

(3) 

Similarly, the optimal 𝑡𝑦 and 𝑡𝑧 can be shown to be at 

 
𝑡𝑦 =

∑ 𝑤𝑖𝑟𝑖𝑦𝑖

∑ 𝑤𝑖𝑖
, and    

(4) 

 
𝑡𝑧 =

∑ 𝑤𝑖𝑟𝑖𝑧𝑖

∑ 𝑤𝑖𝑖
, respectively. 

(5) 

Hence, if an optimal rotation 𝑅  is known, then an optimal 𝑇  can be 

calculated from Eqn. (3)-(5), given that 𝑤𝑖 is known. 

This gives an opportunity for a method which iteratively improves on the 

TM-score, where at each iteration we 

(1) Compute a semi-optimal 𝑅, 

(2) Based on 𝑅, compute a semi-optimal 𝑇 from the above equations, 

(3) Repeat Step (1)-(2) until no further improvement can be obtained. 



 24 

For the computation of 𝑇 in Step (2), we assume R and T to be relatively 

small around convergence. In which case, we simply take 𝑤𝑖 =

𝑑0
2 (𝑑0

2 + ‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2)2⁄ , and compute 𝑡𝑥, 𝑡𝑦, and 𝑡𝑧 using Eqn. (3)-(5). 

We now discuss how to compute 𝑅 in Step (1). This is achieved through 

optimizing the RMSD. The Kabsch algorithm is used for this purpose. We first 

relate our object our objective function 𝑓 to the RMSD. 

𝑓(𝑅, 𝑇) = ∑
𝑑0

2

𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2

𝑖

  

 = ∑ 𝑤𝑖(𝑑0
2 + ‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2)

𝑖

  

 = ∑ 𝑤𝑖𝑑0
2

𝑖

+ ∑ 𝑤𝑖‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖2

𝑖
 

There are two terms in this expression of 𝑓. The first term depends only on 𝑤𝑖, 

while the second one resembles the objective function in the RMSD. The intuition 

given here is that, the RMSD is closely related to the current optimization 

problem. Hence, we would expect the rotation axis used to superimpose the 

structures in RMSD to be a good candidate for finding an optimal rotation for 𝑓. 

This rotation axis can be obtained from the Kabsch algorithm described in Table 

2.1, without running Step (1). 

Given this rotation axis, our algorithm will perform an exhaustive search 

on all the rotation angles about the axis to find an angle which optimizes 𝑓. This 

gives our final algorithm as follows. 
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Table 3.1: Our Proposed Algorithm for TM-score 

 

 

The computations for Step (3.1) -(3.2) is clear. For Step (3.3), the 

algorithm in Table 2.1 is performed with the centroid alignment Step (1) replaced 

with T = 〈
∑ 𝑤𝑖𝑟𝑖𝑥𝑖

∑ 𝑤𝑖𝑖
,

∑ 𝑤𝑖𝑟𝑖𝑦𝑖

∑ 𝑤𝑖𝑖
,

∑ 𝑤𝑖𝑟𝑖𝑧𝑖

∑ 𝑤𝑖𝑖
〉. Steps (3.5) -(3.6) are straightforward. Hence, 

we only need to discuss the computation of Step (3.4). 

Input: Protein structures A and B.       

(1) Set initial 𝑓old(𝑅, 𝑇) to 0, set 𝑓new(𝑅, 𝑇) to 1 and initialize semi-

optimal rotation R to [
1 0 0
0 1 0
0 0 1

]. 

(2) Define a suitable accuracy threshold t (e. g. 0.0001), for 

stopping the iteration. 

(3) While |𝑓new(𝑅, 𝑇) − 𝑓old(𝑅, 𝑇)| ≥ 𝑡, do 

(3.1) Let 𝑤𝑖 =
𝑑0

2

(𝑑0
2+‖𝑅𝑎𝑖−𝑏𝑖‖2)

2. 

(3.2) Let T = 〈
∑ 𝑤𝑖𝑟𝑖𝑥𝑖

∑ 𝑤𝑖𝑖
,

∑ 𝑤𝑖𝑟𝑖𝑦𝑖

∑ 𝑤𝑖𝑖
,

∑ 𝑤𝑖𝑟𝑖𝑧𝑖

∑ 𝑤𝑖𝑖
〉. 

(3.3) Obtain 𝑅′, the optimal rotation for obtaining the RMSD 

under translation T. 

(3.4) Apply T and R on A and let 𝑓new(𝑅, 𝑇) = 𝑓(𝑅, 𝑇). 

(4) Output 𝑓new(𝑅, 𝑇) as the TM-score computed. 
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3.3 Finding an optimal 𝜽 

Recall that the TM-score is defined as 

TM-score(𝐴, 𝐵) =
1

𝑛
max

𝑅,𝑇
∑

1

1 + (
‖𝑅𝑎𝑖 − 𝑏𝑖 − 𝑇‖

𝑑0
)

2

𝑛

𝑖=1

 

 

That is, it is the sum of n terms of the form 
1

1+(
‖𝑅𝑎𝑖−𝑏𝑖−𝑇‖

𝑑0
)

2. Each term can 

be considered the contribution of the 𝑖-th amino acid pairs (i.e. 𝑎𝑖 and 𝑏𝑖) towards 

the TM-score under a given superposition. We want to study how each of these 

individual contributions changes according to the rotation angle 𝜃. First, we make 

the following definitions. 

Since the transformation to look in Step (3.4) involves only rotation, we 

assume that T=0. Then, given a rotation of angle 𝜃 along an axis J, we define the 

contribution of the i-th amino acid pair as 

TM-score𝑖(𝐽, 𝜃) =
1

1 + (
‖𝑅𝑎𝑖 − 𝑏𝑖‖

𝑑0
)

2 

where R is the rotation defined by 𝐽  and 𝜃 . We are interested in how 

TM-score𝑖(𝐽, 𝜃) changes with respect to 𝜃. Without loss of generality assume that 

the rotation axis is the 𝑦-axis. Suppose 𝑏𝑖 has 𝑦 coordinate ℎ𝑖 and is of minimum 

distance 𝑟𝑖  from be 𝑦 -axis. Suppose 𝑎𝑖  has coordinate (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)  in the new 

coordinate system. Then, the distance from 𝑏𝑖 and 𝑎𝑖 after a rotation angle 𝜃 is 

                         𝑑𝑖 = √(𝑥𝑖 − 𝑟𝑖 cos 𝜃)2 + (𝑦𝑖 − ℎ𝑖)2 + (𝑧𝑖 − 𝑟𝑖 sin 𝜃)2 
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Hence 

𝑑𝑖
2 = 𝑥𝑖

2 + 𝑦𝑖
2 + 𝑧𝑖

2 + 𝑟𝑖
2 + ℎ𝑖

2 − 2𝑦𝑖ℎ𝑖2𝑟𝑖(𝑥𝑖 cos 𝜃 − 𝑧𝑖 sin 𝜃) 

 = 𝑎𝑖 ∙ 𝑎𝑖 + 𝑏𝑖 ∙ 𝑏𝑖 − 2𝑦𝑖ℎ𝑖 − 2𝑟𝑖(𝑥𝑖 cos 𝜃 + 𝑧𝑖 sin 𝜃)  

To simplify the notations, we let  

𝑐𝑖,0 = 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 + 𝑟𝑖

2 + ℎ𝑖
2 − 2𝑦𝑖ℎ𝑖  

          𝑐𝑖,1 = 2𝑟𝑖𝑥𝑖 

𝑐𝑖,2 = 2𝑟𝑖𝑧𝑖  

Then, TM-Score𝑖(𝐽, 𝜃) can be written as 

TM-Score𝑖(𝐽, 𝜃) =
𝑑0

2

𝑑0
2 + 𝑐𝑖,0 − 𝑐𝑖,1 cos 𝜃 − 𝑐𝑖,2 sin 𝜃

 

It is clear that TM-score𝑖(𝐽, 𝜃) is maximized when −𝑐1 cos 𝜃 − 𝑐2 sin 𝜃 is 

minimized. This happens when 

                                                 𝑥𝑖 sin 𝜃 = 𝑧𝑖 cos 𝜃 

 𝜃 = tan−1 𝑧𝑖 𝑥𝑖⁄  (6) 

 

We denote the set of angles fulfilling Eqn. (6) by Ω𝑖(𝐽), and denote this maximum 

contribution by Max-TM-score𝑖(𝐽). 

             Now consider the possible values of TM-score𝑖(𝐽, 𝜃) within a rotation 

interval [𝛼, 𝛼 + 𝜔], denoted TM-score𝑖(𝐽, [𝛼, 𝛼 + 𝜔]). 

             In the case that Ω𝑖(𝐽) ∩ [𝛼, 𝛼 + 𝜔] = ∅, 



 28 

max(TM-score𝑖(𝐽, [𝛼, 𝛼 + 𝜔])) ≤ max{TM-score𝑖(𝐽, 𝛼), TM-score𝑖(𝐽, 𝛼 + 𝜔)}. 

In the case that Ω𝑖(𝐽) ∩ [𝛼, 𝛼 + 𝜔] ≠ ∅, 

max(TM-score𝑖(𝐽, [𝛼, 𝛼 + 𝜔])) ≤ Max-TM-score𝑖(𝐽) 

These two conditions give us a way to obtain an upper-bound to the 

maximum TM-score obtainable by rotating along the axis 𝐽. That is, ∑ Max-𝑛
𝑖=1

TM-score𝑖(𝐽) , or more precisely, 
1

 𝑛
max

𝜃
∑

1

1+(
‖𝑅𝑎𝑖−𝑏𝑖‖

𝑑0
)

2
𝑛
𝑖=1 . 

To compute this upper-bound, we perform an exhaustive search in a divide 

and conquer fashion. At the topmost layer we computer ∑ Max-TM-score𝑖(𝐽)𝑛
𝑖=1  

at ℎ intervals, i.e. at the angles 0,
2𝜋

ℎ
,

4𝜋

ℎ
, … ,2𝜋. At the subsequent layers, we take 

two consecutive angles 𝜃 from the topmost layer, 𝜃 and 𝜃 +
2𝜋

ℎ
 say, and further 

compute TM-score at ℎ intervals within it, i.e. at the angle 𝜃, 𝜃 +
2𝜋

ℎ2 , … , 𝜃 +
2𝜋

ℎ
.  

This is done recursively. The computation for an interval at a specific layer is 

halted if the interval between two consecutive angles results in a step size smaller 

than that required, or further refinement will not yield a TM-score larger than the 

largest computed so far, based on the upper-bound as discussed. The pseudo-

codes in Table 3.2 and 3.3 show this computation. 
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                             Table 3.2: Main routine for computing  Max-TM-scorei(J) 

                                  

 

 

 

 

 

 

 

Table 3.3: Find-Max-TM-Score (J, [𝜃, 𝜃 + 𝛼]) 

 

With the computation of Step (3.4) in Table 3.1 explained, our algorithm 

is complete. We next compare it to the currently available algorithm, which is 

listed in Table 2.3, to examine their differences. 

Input: Protein structures 𝐴, 𝐵, and a rotation axis 𝐽. 

(1) Set global variable MAX to 0. 

(2) Call subroutine Find-Max-TM-score(𝐽, [0, 2𝜋]). 

(3) Output MAX. 

Input: Protein structures 𝐴, 𝐵, rotation axis 𝐽, and interval [𝜃, 𝜃 + 𝛼] 

(1) For each interval 𝑋 in [𝜃, 𝜃 +
𝛼

ℎ
], … , [𝜃 +

(ℎ−1)𝛼

ℎ
], do 

(1.1) If the interval X would result in a smaller step size than 

required, let MAX = max {
∑ TM-score𝑖(𝐽, 𝜃)𝑛

𝑖=1

∑ TM-score𝑖(𝐽, 𝜃 + 𝛼)𝑛
𝑖=1

 MAX

}  and 

return.  

(1.2) Else let MAX′ = MAX and call Find-Max-TM-score𝑖(𝐽, 𝑋). 

(1.3) If MAX′ > MAX, let MAX = MAX′. (Restore value.) 
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3.4 Contrast with the current method 

Table 3.4 shows a side-by-side comparison of our new method with the 

currently available method. 

  

 

 

 

 

 

 

 

 

 

 

 

Table 3.4: Side-by-side comparison of our method with the current method 

 

Several differences can be noted of the new algorithm:  

1. At each iteration, it considers the protein structures in their entirety 

instead of only a set of matching residues. 

2. Optimal TM-score is achieved at each iteration, compared to the 

current method which optimizes the RMSD instead. 

In the next chapter, we will compare the new method to the current one in 

terms of their performances in computing actual TM-score. 

 

 

Current method 

1. Start with a short (contiguous) 

fragment. 

2. Superpose the fragment to the 

corresponding residues of the 

other structure through Kabsch 

algorithm. 

3. Collect all of the residues that 

are matched closely to form a 

new fragment. 

4. Repeat Steps 2–3 until the new 

fragment is the same as the old. 

 

Our method 

1. Start with an arbitrary R. 

2. Translate structure with semi-

optimal T obtained through our 

analysis under R. 

3. Compute a semi-optimal R by 

through the Kabsch algorithm 

but without the translation step. 

4. Repeat Steps 2–3 until no 

significant further improvements 

in TM-score can be obtained. 
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CHAPTER 4 

RESULTS 

 

4.1 Software preparation 

The new algorithm is implemented in C++. The program accepts two input files: 

each file is to contain a list of coordinates written in the PDB file format – the 

format used by the Protein Data Bank (Berman et al., 2000).  

An example is given in Table 4.1. 

 

 

 

 

 

 

 

 

Table 4.1: Example PDB file content 

 

decoy 1 energy=-1770.2 
ATOM      1  N   PHE     1      -6.907  11.411  -5.439 
ATOM      2  CA  PHE     1      -6.529  12.598  -5.984 
ATOM      3  C   PHE     1      -6.455  12.732  -7.492 
ATOM      4  O   PHE     1      -6.716  11.831  -8.203 
ATOM      5  CB  PHE     1      -7.517  12.355  -7.157 
ATOM      6  CG  PHE     1      -8.853  12.986  -6.850 
ATOM      7  CD1 PHE     1      -9.839  12.245  -6.193 
ATOM      8  CD2 PHE     1      -9.142  14.273  -7.287 
ATOM      9  CE1 PHE     1     -11.097  12.797  -5.949 
ATOM     10  CE2 PHE     1     -10.412  14.848  -7.057 
ATOM     11  CZ  PHE     1     -11.376  14.082  -6.384 
ATOM     12  N   ILE     2      -6.077  13.919  -8.037 
ATOM     13  CA  ILE     2      -5.987  14.112  -9.439 
ATOM     14  C   ILE     2      -4.547  13.861  -9.376 
ATOM     15  O   ILE     2      -3.883  13.901 -10.406 
ATOM     16  CB  ILE     2      -6.984  15.015 -10.245 
ATOM     17  CG1 ILE     2      -7.086  14.544 -11.710 
ATOM     18  CG2 ILE     2      -6.560  16.492 -10.130 
ATOM     19  CD1 ILE     2      -8.174  15.271 -12.521 
END 
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Each line in the file which starts with the word “ATOM” gives away the 

3D coordinate of an amino acid in the protein structure chain. For instance, the 

first line in Table, 

 

states the coordinate of the first amino acid as (-6.907, 11.411, -5.439). Similarly, 

the second line gives the coordinate of the second amino acid as (-6.529, 12.598, -

5.984). These coordinates have no absolute meaning. They should be understood 

as only conveying the relative position of each amino acid from the other amino 

acids. 

 The program is invoked through the command: 

 

 Here, file1.pdb and file2.pdb are the names of the input PDB files. 

 The program then computes the TM-score according to the new algorithm 

proposed in this thesis, and output that score on the console. 

 If invoked with a “–v” switch,  

 

the program will, in addition, output the superposition for the TM-score. 

 This superposition is given as a transformation which is to be applied to 

the set of coordinates in both input files. Table 4.2 shows an example of the 

transformations given by the program: 

ATOM      1  N   PHE     1      -6.907  11.411  -5.439 
 

> tm2 file1.pdb file2.pdb 
 

> tm2 –v file1.pdb file2.pdb 
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Table 4.2: Transformations to superpose the two structures to obtain the TM-score 

 

Having information of the superposition allowed us to verify the 

correctness of the program. 

The C++ source codes for the program can be obtained from the GitHub 

repository at: https://github.com/kalngyk/tm2. The GNU C++ compiler is used to 

compile the source codes into an executable. 

The new tool is compared to the current standard tool used to compute 

TM-scores. The tool is written in Fortran by Zhang and Skolnick and is obtained 

from https://zhanglab.ccmb.med.umich.edu/TM-score/. The GNU Fortran 

compiler is used to compile the source codes into an executable. 

4.2 Sample preparation 

For samples, we use the database of created by the protein structure 

prediction system called I-TASSER (Wu et al., 2007). The database consists of 

the structures that I-TASSER predicted out of 56 different known protein 

structures (called natives). For each native, I-TASSER predicted between 6119 to 

Transformation for /decoys/1abv_/d2.pdb: 
   -Translation (before rotation) 
    (-0.50859049, -0.54650653, -0.68786361) 
   -Rotation 
    [   0.99994680   0.00653589  -0.00797949 ] 
    [  -0.00658550   0.99995905  -0.00620671 ] 
    [   0.00793860   0.00625893   0.99994890 ] 
 
 Transformation for /decoys/1abv_/d1.pdb: 
   -Translation 
    (-0.38875880, -0.60755767, -0.78644808) 
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32000 structures (called models). The exact number of models predicted on each 

native structure, along with the length of the structures, are shown in Table 4.3. 

 

Native #Models length  Native #Models Length 

1abv_ 12500 103  1mkyA3 6119 81 

1af7_ _ 12499 72  1mla_2 12500 70 

1ah9_ 27498 63  1mn8A 12500 84 

1aoy_ 32000 65  1n0uA4 12499 69 

1b4bA 12500 71  1ne3A 12500 56 

1b72A 12499 49  1no5A 12500 93 

1bm8_ 20000 99  1npsA 20000 88 

1bq9A 20000 53  1o2fB_ 12500 77 

1cewI 19830 108  1of9A 20000 77 

1cqkA 19999 101  1ogwA_ 19998 72 

1csp_ 12500 67  1orgA 20000 118 

1cy5A 32000 92  1pgx_ 20000 59 

1dcjA_ 20000 73  1r69_ 20000 61 

1di2A_ 20000 69  1sfp_ 19985 111 

1dtjA_ 20000 74  1shfA 20000 59 

1egxA 20000 115  1sro_ 20000 71 

1fadA 12599 92  1ten_ 20000 87 

1fo5A 20000 85  1tfi_ 32000 47 

1g1cA 19997 98  1thx_ 32000 108 

1gjxA 12500 77  1tif_ 12500 59 

1gnuA 17533 117  1tig_ 12500 88 

1gpt_ 32000 47  1vcc_ 20000 76 

1gyvA 11508 117  256bA 20000 106 

1hbkA 20000 89  2a0b_ 32000 118 

1itpA 12500 68  2cr7A 12500 60 

1jnuA 20000 104  2f3nA 19999 65 

1kjs_ 20000 74  2pcy_ 20000 99 

1kviA 20000 68  2reb_2 12500 60 

 

Table 4.3: Samples from I-TASSER 

 

The database was originally downloaded on the 24th July of 2009 from I-

TASSER's website, http://zhang.bioinformatics.ku.edu/I-TASSER/decoys/. The 

website is no longer available. Furthermore, a minor part of the data in our 
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collection has been damaged due to file corruption. Table 4.4 shows the current 

state of the collection. The current experiments are performed on this set of data. 

 

Native #Models Current #  Native #Models Current # 

1abv_ 12500 12500  1mkyA3 6119 6119 

1af7_ _ 12499 12472  1mla_2 12500 12500 

1ah9_ 27498 27498  1mn8A 12500 12475 

1aoy_ 32000 32000  1n0uA4 12499 12499 

1b4bA 12500 12500  1ne3A 12500 12500 

1b72A 12499 12463  1no5A 12500 12500 

1bm8_ 20000 20000  1npsA 20000 20000 

1bq9A 20000 20000  1o2fB_ 12500 12500 

1cewI 19830 19830  1of9A 20000 20000 

1cqkA 19999 19999  1ogwA_ 19998 19998 

1csp_ 12500 12500  1orgA 20000 19982 

1cy5A 32000 32000  1pgx_ 20000 20000 

1dcjA_ 20000 20000  1r69_ 20000 20000 

1di2A_ 20000 20000  1sfp_ 19985 19985 

1dtjA_ 20000 20000  1shfA 20000 20000 

1egxA 20000 19279  1sro_ 20000 20000 

1fadA 12599 12500  1ten_ 20000 19976 

1fo5A 20000 19975  1tfi_ 32000 32000 

1g1cA 19997 19997  1thx_ 32000 32000 

1gjxA 12500 12500  1tif_ 12500 12500 

1gnuA 17533 17517  1tig_ 12500 12500 

1gpt_ 32000 31954  1vcc_ 20000 20000 

1gyvA 11508 11508  256bA 20000 16910 

1hbkA 20000 20000  2a0b_ 32000 22930 

1itpA 12500 179  2cr7A 12500 12500 

1jnuA 20000 65  2f3nA 19999 19999 

1kjs_ 20000 19971  2pcy_ 20000 20000 

1kviA 20000 19969  2reb_2 12500 12500 

 

Table 4.4: Current state of samples from I-TASSER (cases that suffered very 

significant file loss are colored red) 
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4.3 TM-score comparison 

For each native structure, the TM-score between it and each of its predicted 

models is computed, and then an average of these TM-scores is obtained. This 

results in 56 average TM-score, each for one native structure. These averages, 

obtained using the current TM-score tool and our new TM-score tool respectively, 

are shown in Table 4.5. 

Native Current New  Native Current New 

1abv_ 0.29089 0.29201  1mkyA3 0.39476 0.39807 

1af7_ _ 0.37797 0.37940  1mla_2 0.59582 0.59741 

1ah9_ 0.51037 0.51175  1mn8A 0.28868 0.29002 

1aoy_ 0.66534 0.66603  1n0uA4 0.47075 0.47287 

1b4bA 0.43531 0.43701  1ne3A 0.36134 0.36413 

1b72A 0.56623 0.56810  1no5A 0.41955 0.42045 

1bm8_ 0.30003 0.30117  1npsA 0.72768 0.72811 

1bq9A 0.36093 0.36309  1o2fB_ 0.35697 0.35850 

1cewI 0.18051 0.18156  1of9A 0.53111 0.53280 

1cqkA 0.81051 0.81081  1ogwA_ 0.67277 0.66040 

1csp_ 0.69542 0.69625  1orgA 0.74720 0.74756 

1cy5A 0.85736 0.85754  1pgx_ 0.47822 0.48039 

1dcjA_ 0.35526 0.35622  1r69_ 0.71156 0.71243 

1di2A_ 0.73412 0.71599  1sfp_ 0.72730 0.72754 

1dtjA_ 0.75502 0.75568  1shfA 0.58400 0.58552 

1egxA 0.74859 0.74904  1sro_ 0.62662 0.62753 

1fadA 0.57726 0.57820  1ten_ 0.78512 0.78543 

1fo5A 0.52384 0.52571  1tfi_ 0.47232 0.47429 

1g1cA 0.75538 0.75570  1thx_ 0.78107 0.78135 

1gjxA 0.34868 0.35011  1tif_ 0.31027 0.31152 

1gnuA 0.53802 0.53861  1tig_ 0.47187 0.47327 

1gpt_ 0.49780 0.50002  1vcc_ 0.35366 0.35534 

1gyvA 0.74122 0.74149  256bA 0.75671 0.75716 

1hbkA 0.60986 0.61082  2a0b_ 0.76548 0.76586 

1itpA 0.30651 0.30764  2cr7A 0.42824 0.42999 

1jnuA 0.69819 0.69869  2f3nA 0.69283 0.69397 

1kjs_ 0.38041 0.38190  2pcy_ 0.62193 0.62244 

1kviA 0.69722 0.69788  2reb_2 0.37690 0.37850 

 

Table 4.5: Average TM-score obtaining using both the current method and the 

new method proposed (each comparison is colored green if the new method has 

an improvement above 0.001, and set in bold font if the new method has an 

improvement above 0.002) 
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 Except in the cases of the two native structures 1di2A_ and 1ogwA_, the 

new method obtained TM-scores that improved on those from the current method.  

  Larger improvements can be observed if instead of considering averages, 

we look at an individual model. For some models, the difference in the TM-score 

obtained using the new method can be larger than 0.01 from the value obtained 

using the current method. The largest 20 such differences are listed in Table 4.6, 

together with the corresponding filenames of the models. 

 

Native Model file 
name 

TM-score Improvement 

Current New 

1cewI d18838.pdb 0.1544 0.1845 0.0301 

1ne3A d7337.pdb 0.2492 0.2682 0.0190 

1mkyA3 d12097.pdb 0.3568 0.3743 0.0175 

1ne3A d7338.pdb 0.2627 0.2801 0.0174 

1ne3A d9836.pdb 0.2528 0.2701 0.0173 

1tfi_ d31506.pdb 0.2597 0.2765 0.0168 

1ne3A d4902.pdb 0.2485 0.2650 0.0165 

1tfi_ d23509.pdb 0.2646 0.2810 0.0164 

1mkyA3 d12100.pdb 0.3610 0.3773 0.0163 

1cewI d13371.pdb 0.1720 0.1883 0.0163 

1ne3A d7229.pdb 0.2349 0.2511 0.0162 

1ne3A d12388.pdb 0.2505 0.2664 0.0159 

1ne3A d8128.pdb 0.2383 0.2540 0.0157 

1ne3A d7283.pdb 0.2441 0.2598 0.0157 

1ne3A d9347.pdb 0.2462 0.2617 0.0155 

1mkyA3 d4534.pdb 0.3734 0.3887 0.0153 

1ne3A d11198.pdb 0.2233 0.2386 0.0153 

1ne3A d5629.pdb 0.2420 0.2572 0.0152 

1ne3A d11664.pdb 0.2399 0.2546 0.0147 

1mkyA3 d10192.pdb 0.3748 0.3893 0.0145 

 

Table 4.6: Models where the TM-scores computed using the new method 

improved significantly over those obtained using the current method (only the top 

20 cases are shown) 
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4.4 Runtime comparison 

To examine if the new tool runs in a reasonable time, tests were performed on a 

PC with the following specification: 

• Intel Pentium G4400 3.3 GHz CPU 

• 4GB RAM 

• Cygwin environment (Windows 7 host) 

Native Current New Ratio  Native Current New Ratio 

1abv_ 5 56 11.2  1mkyA3 6 41 6.8 

1af7_ _ 11 46 4.2  1mla_2 9 47 5.2 

1ah9_ 5 28 5.6  1mn8A 10 19 1.9 

1aoy_ 5 22 4.4  1n0uA4 7 50 7.1 

1b4bA 3 33 11.0  1ne3A 10 58 5.8 

1b72A 11 20 1.8  1no5A 10 21 2.1 

1bm8_ 7 75 10.7  1npsA 35 36 1.0 

1bq9A 8 35 4.4  1o2fB_ 11 33 3.0 

1cewI 6 69 11.5  1of9A 10 16 1.6 

1cqkA 7 20 2.9  1ogwA_ 12 24 2.0 

1csp_ 4 15 3.8  1orgA 8 30 3.8 

1cy5A 9 17 1.9  1pgx_ 10 26 2.6 

1dcjA_ 6 37 6.2  1r69_ 32 32 1.0 

1di2A_ 5 15 3.0  1sfp_ 12 23 1.9 

1dtjA_ 6 16 2.7  1shfA 16 25 1.6 

1egxA 19 34 1.8  1sro_ 7 32 4.6 

1fadA 7 52 7.4  1ten_ 8 53 6.6 

1fo5A 23 45 2.0  1tfi_ 8 53 6.6 

1g1cA 7 21 3.0  1thx_ 28 31 1.1 

1gjxA 4 46 11.5  1tif_ 39 45 1.2 

1gnuA 21 47 2.2  1tig_ 6 34 5.7 

1gpt_ 32 36 1.1  1vcc_ 8 20 2.5 

1gyvA 7 20 2.9  256bA 10 25 2.5 

1hbkA 8 31 3.9  2a0b_ 5 36 7.2 

1itpA 9 36 4.0  2cr7A 6 41 6.8 

1jnuA 34 37 1.1  2f3nA 9 47 5.2 

1kjs_ 32 50 1.6  2pcy_ 10 19 1.9 

1kviA 32 28 0.9  2reb_2 7 50 7.1 

 

Table 4.7: Runtime of the new tool compared to the current tool (seconds used per 

100 TM-score computations) 
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 To perform this test, 100 models were randomly selected for each native 

structure (except for 1jnuA where there are less than 100 models), and the total 

time is taken for the tool to compute the 100 TM-scores between these models 

and the native structure were recorded. These total times are shown in Table 4.6. 

 On average, the new method took 4.2 times the time required by the 

current method. However, in several cases, namely, 1abv_, 1b4bA, 1bm8_, 1cewI, 

1gjxA, the new method took more than 10 times the time taken by the current 

method. On the other hand, the time is taken by the tool for each computation 

never exceeded a second, which is reasonable for most routine usage. 

4.5 Discussions 

The tests in this section demonstrated that the new tool provides better 

TM-score computation than the currently available tool. The runtime required of 

the new tool was also shown to be within reasonable limits for routine use. 

It can hence be concluded that the proposed algorithm has achieved its 

original aim, that is, to compute better TM-score at a reasonable time for either 

replacing the current tool or be used to verify the correctness of the TM-scores 

found by the current tool.  
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CHAPTER 5 

CONCLUSION 

 

This research proposed a new algorithm for the computation of the TM-

score, a popular scoring function for measuring the similarity between two protein 

structures among the protein structure prediction community. The algorithm uses 

a different strategy for iteration from the currently available algorithm – whereas 

at each iteration, the current algorithm finds a superposition of only a subset of the 

structures which optimizes the RMSD, the new method aims to find a 

superposition of the entire structures which optimizes TM-score. 

A C++ tool was implemented based on the algorithm and made available 

to researchers. 

Test results based on publicly available database showed the tool to give 

better TM-scores than the currently available tool in every case except for a few. 

The runtime required by the tool is within a fraction of a second and can be used 

routinely, as a replacement for the current tool, or as a verifier in situations where 

accuracy is important.  

For future work, it is worth investigating whether the iteration framework 

espoused by the new algorithm can be extended to the computation of the other 

scores such as GDT and MaxSub. 

In the future, we will investigate the possibilities to define a new 

measurement for protein structures. The RMSD measurement is metric. However, 

the range is not between 0 and 1. On the other hand, GDT, MaxSub, and TM-
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score are between 0 and 1, and they are not metric. We find new definitions of 

distances for protein structures, which are both metric and with the range from 0 

to 1. 
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