

A SECURITY ASSESSMENT OF EGOVERNMENT WEBSITE IN

MALAYSIA

CHUR JIAN CHANG

A project report submitted in partial fulfilment of the

requirements for the award of Master of Information System

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

November 2018

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : CHUR JIAN CHANG

ID No. : 17UEM00878

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “A SECURITY ASSESSMENT OF

EGOVERMENT WEBSITE IN MALAYSIA” was prepared by CHUR JIAN

CHANG has met the required standard for submission in partial fulfilment of the

requirements for the award of Master of Information System at Universiti Tunku

Abdul Rahman.

Approved by,

Signature :

Supervisor : DR. MADHAVAN A/L BALAN NAIR

Date :

Signature :

Co-Supervisor :

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© Year, Name of candidate. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Dr.

Madhavan a/l Balan Nair for his invaluable advice, guidance and his enormous

patience throughout the development of the research.

In addition, I would also like to express my gratitude to my friend, Mr. Choong

Kok Wai for his motivation and immense knowledge. He is exceptionally generous in

sharing his extensive knowledge in the field of IT Security with me.

Last but not least, my sincere thanks to my family and friends who have been

providing me with great support throughout the project.

vi

ABSTRACT

Nowadays, almost every government has been using web support to improve their

performance. Centralised databases have provided the websites the ease of retrieving

necessary data as well as storing sensitive information such as citizen information,

financial, economic statistics etc. Structured Query Language (SQL) injection and

Cross Site Scripting (XSS) is perhaps one of the most common and critical attacks

used by attackers to deface the website, manipulate or delete the data through injecting

malicious scripts. According to the Open Web Application Security Project (OWASP),

SQLi ranked highest in the vulnerability list the past few years. This study focuses on

studying the vulnerability SQLi and XSS. Manual vulnerability assessment with black

box testing was implemented in several Malaysia government web applications to

identity their vulnerabilities, the data found was analysed to draw statistical conclusion

of the present condition of government websites of Malaysia. Lastly, we also discuss

the impact of both attacks and proposed possible countermeasures.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiii

CHAPTER

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives 3

1.4 Research Questions 3

1.5 Scope of Work 3

1.5.1 Identifying the Possible Vulnerabilities 3

1.5.2 Discussing Threats and Consequences Caused by

Vulnerabilities and Attacks for Targeted Malaysia

Government Websites 4

1.5.3 Propose Threats Mitigation Framework 4

1.6 Contribution 4

1.7 Novelty 4

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Web Application Security 5

2.3 HTTP URL 5

2.4 HTTP GET/POST Methods 6

viii

2.5 HTTP Requests and Responses 6

2.6 HTTP Status Codes 7

2.7 Structured Query Language Injection (SQLi) 9

2.7.1 Tautology 9

2.7.2 Illegal/Logically Incorrect Queries 10

2.7.3 Union Query 10

2.7.4 Stored Procedures 10

2.7.5 Piggy-Backed Queries 11

2.7.6 Alternate Encodings 11

2.7.7 Inference 11

2.8 Cross Site Scripting (XSS) 12

2.8.1 Reflected XSS (Non-Persistent) 12

2.8.2 Stored XSS (Persistent) 12

2.8.3 DOM-Based XSS 13

3 RESEARCH METHODOLOGY 15

3.1 Introduction 15

3.2 Research Approach 15

3.3 Web Applications Selection 16

3.4 Information Gathering 17

3.5 Vulnerabilities Discovery 18

3.5.1 Discovery of SQLi 19

3.5.2 Discovery of XSS 20

3.6 Avoiding from Detection 21

3.7 Conclusion 22

4 RESULTS AND DISCUSSIONS 24

4.1 Introduction 24

4.2 Analysis of data-set based on Information Gathered 24

4.3 Analysis of data-set based on SQLi 27

4.4 Analysis of data-set based on XSS 29

4.5 Conclusion 30

ix

5 IMPACT AND REMEDIATION 32

5.1 Introduction 32

5.2 Web Applications Vulnerable to SQLi 33

5.2.1 Impact of SQLi 34

5.2.2 Remediation of SQLi 35

5.3 Web Applications Vulnerable to XSS 37

5.3.1 Impact of XSS 38

5.3.2 Remediation of XSS 38

5.4 Principle of Least Privilege 40

5.5 Conclusion 40

REFERENCES 43

x

LIST OF TABLES

Table 2.1: 1xx Information Responses 8

Table 2.2: 2xx Success Responses 8

Table 2.3: 3xx Redirection Responses 8

Table 2.4: 4xx Client Error Responses 8

Table 2.5: 5xx Server Error Responses 9

Table 4.1: Information Gathered 25

Table 4.2: Web Applications Vulnerable to SQLi 28

Table 4.3: Web Applications Vulnerable to XSS 29

Table 5.1: Vulnerability Level Definition 32

Table 5.2: CVSS Metric, Values and Comments for SQLi 33

Table 5.3: CVSS Metrix, Values and Comments for XSS 37

xi

LIST OF FIGURES

Figure 2.1: Request Sent to www.google.com 7

Figure 2.2: Response Get from www.google.com 7

Figure 2.3: The Steps Involved in a Reflected XSS attack 13

Figure 2.4: The Steps Involved in a Stored XSS attack 14

Figure 2.5: The Steps Involved in a DOM XSS attack 14

Figure 3.1: Different Stages of Penetration Testing 16

Figure 3.2: Flowchart of Vulnerabilities Assessment 17

Figure 3.3: Example Results of Burp Spider 18

Figure 3.4: Example of SQLi with Single Quote 19

Figure 3.5: Example of XSS with Alert Box 20

Figure 3.6: Form Submission Options in Burp Spider 22

Figure 3.7: Application Login Options in Burp Spider 22

Figure 3.8: Spider Engine Options in Burp Spider 22

Figure 4.1: Information Gathered from Each Web Applications 25

Figure 4.2: Scanning Time Cost of Each Web Applications 26

Figure 4.3: Number of Web Applications Completed Scanning 26

Figure 4.4: Result of WebApp 6 26

Figure 4.5: Starting of URLs Crawled from WebApp 6 27

Figure 4.6: Ending of URLs Crawled from WebApp 6 27

Figure 4.7: Number of Web Applications Vulnerable to SQLi 28

Figure 4.8: Response of WebApp 6 While Discovering SQLi 29

Figure 4.9: Number of Web Applications Vulnerable to XSS 30

Figure 5.1: CVSS Rating Scale 32

Figure 5.2: CVSS Calculation for SQLi 34

xii

Figure 5.3: Example of Stored Procedure Creation 36

Figure 5.4: Example of Stored Procedure Execution 36

Figure 5.5: CVSS Calculation for XSS 38

xiii

LIST OF SYMBOLS / ABBREVIATIONS

SQL Structured Query Language

SQLi SQL Injection

XSS Cross Site Scripting

HTTP Hypertext Transfer Protocol

URL Uniform Resource Locator

1

CHAPTER 1

1 INTRODUCTION

1.1 Introduction

Web applications have been integrated into our life recently, and they often contain

sensitive information which must be protected especially government websites. While

the rapidly growth in using web applications, the types of attack used to deface web

application is increasing as well. To secure that sensitive information in web

applications, people try to develop the system completely secure. However, it is nearly

impossible as hackers are always creative enough to find out vulnerabilities to attack

the system. The total number of vulnerabilities in web applications would not be a

problem if they were not being exploited (Inforisk360, 2018). To mitigate the risks,

people identify vulnerabilities in web applications and find mitigations.

Several technical reports and research studies have acknowledged that SQL

Injection (SQLi) and Cross-Site Scripting (XSS) remain the most common and critical

attacks (WhiteHat Security Threat Research Center, 2017). A non-profit organization

the Open Web Application Security Project (OWASP) provides unbiased information

on web applications security. In the OWASP 2017 Top 10 web application security

risks, Injection remained first ranked followed by Broken Authentication, Sensitive

Data Exposure, etc (Wichers and Williams, 2017).

This research will focus on the most prominent web application attacks: SQLi

and XSS. Several Malaysia government web applications will be accessed to identify

the existence of any vulnerabilities that might allow both mentioned attacks to be

crafted, lastly mitigation frameworks will be proposed for them as well.

Motivation:

People pay no attention to the security of web application to protect sensitive

information, they would realise the importance of security when they experienced in

the attacks. Web applications like government websites contains much sensitive

information such as identity card number, addresses, telephone number etc, hence,

precautions must be taken to avoid the data being leaked.

2

1.2 Problem Statement

The rapid growth in relying the convenience of using web applications, most of the

organisations focus on functionality of the web application and overlook the

importance of security. In 2011, Sony Pictures was attacked by a group called Lulz

Security with a very simple SQLi and SonyPictures.com had compromised more than

a million users’ confidential information including passwords, date of birth, home

addresses, email addresses and other personal information (Kumar, 2011). According

to OWASP (Wichers and Williams, 2017), injection is a major problem in web security

which remained ranked 1 in the OWASP Top 10 web application security risks since

year 2013. Injection may lead to information disclosure, data loss, authentication

bypass, loss of data integrity etc. Apart from that, Acunetix vulnerability testing report

in 2017 summarised that data and analysis of vulnerabilities detected by Acunetix from

March 2016 to March 2017. According to the report (Ian, 2017), 50% of the sampled

targets contain XSS vulnerabilities whereas SQLi vulnerabilities were found on 20%

of sampled targets.

At least 33 Malaysia websites have been attacked by Distributed Denial of

Services (DDoS) and defaced by an Indonesian hacker group KidsZonk who were

unhappy by the flag blunder in the official souvenir booklet of the Kuala Lumpur SEA

Games 2017 (Mohsen, 2017). Users have been redirected to a splash page which

showing the Indonesian flag upside down with a message “Bendera Negaraku

Bukanlah Mainan”. Fortunately, the Indonesian hacker’s intention was not about

sensitive information in Malaysia websites but just a shadow of anger.

According to recent news report by The Star (Razak, 2018), the media

company Media Prima Berhad which runs newspapers, advertising, TV/radio channels

and digital media companies was attacked by ransomware on 8th of November 2018,

reported by The Edge Financial Daily. Ransomware is a malicious software to block

access to a computer system until a ransom is paid. Therefore, the company are

requested a ransom of RM26.42 million to release the access to the system.

With the cases above, we should take the initiative to identify and mitigate any

existence of vulnerabilities in targeted Malaysia government websites before enabling

attackers to craft any attacks in the future. In the current rapid growth in Information

Technology, it provides the convenience of using web applications while it also has

some certain risks of using it. Therefore, it is important to identify the causes of the

risks and the ways to mitigate them.

3

1.3 Objectives

The purpose of this research is to identify security practices of targeted Malaysia

government web applications and identity the existence of SQLi and XSS

vulnerabilities. Objectives have been identified as below:

1. To identify the common security practices of targeted Malaysia government

web applications.

2. To identify possible vulnerabilities in targeted Malaysia government web

applications.

3. To identify possible consequences caused by vulnerabilities and attacks for

targeted Malaysia government web applications.

4. To propose threats mitigation frameworks for targeted Malaysia government

web applications.

1.4 Research Questions

1. What is SQLi and XSS vulnerabilities?

2. What are the vulnerabilities identified in the targeted Malaysia government

web applications?

3. What are the possible consequences caused by vulnerabilities and attacks for

targeted Malaysia government web applications?

4. What are the mitigation frameworks to prevent both SQLi and XSS

vulnerabilities?

1.5 Scope of Work

1.5.1 Identifying the Possible Vulnerabilities

Using the OWASP Top 10 web application security risks, we selected to focus on

SQLi and XSS vulnerabilities. The tool Burp Spider will be adopted to gather

information about targeted Malaysia government web applications and some methods

to identify both vulnerabilities. Sony Pictures showed the serious impact of attack by

SQLi, where hackers are able to retrieve sensitive information from the system once

they have successfully injected. This is the lesson that should be learnt and take the

initiative to mitigate from being injected.

4

1.5.2 Discussing Threats and Consequences Caused by Vulnerabilities and

Attacks for Targeted Malaysia Government Websites

Once the vulnerabilities SQLi and XSS are identified, this study will also discuss about

the threats will be brought according to the findings. In order showing the severity of

threats to users about the importance of security, consequences will be pointed out

with examples.

1.5.3 Propose Threats Mitigation Framework

From the findings of identified vulnerabilities SQLi and XSS, mitigations will be

recommended to vulnerable web applications.

1.6 Contribution

From the view of Malaysia government, the result generated at the end of this research

will benefit the government whether the targeted web applications are vulnerable. The

result will help the government to be aware of the existence of vulnerabilities and

mitigation framework will be proposed for Malaysian government to have a more

systematic approach to secure their web applications. Apart from this, people who

either developing or auditing web applications will have rough idea on steps to identify

vulnerabilities in the system and they will be told the ways to mitigate the threats.

1.7 Novelty

There are researches have been done on identifying vulnerabilities in government web

applications of South African, North Khorasan in Iran etc. However, there is no

existing specific framework available for Malaysia government to follow to secure

their web applications. The result will benefit to Malaysia government as they are able

to be aware of if there is any existence of vulnerabilities in their websites and to

propose mitigation framework for them.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, a series of comprehensive literature review covered on several areas

for this research as the following:

• Overview of Web Application Security

• Overview of HTTP URL

• Overview of HTTP GET/POST Methods

• Overview of HTTP Requests and Responses

• Overview of HTTP Status Codes

• Introduction of SQLi

• Introduction of XSS

2.2 Web Application Security

Recently there are reports generated by WhiteHat Security Threat Research Center and

Open Web Application Security Project (OWASP) describe about the TOP 10

common attacks in 2017. Among many different types of attack, they state that SQLi

and XSS remain the most common and critical attacks. Other than that, a recent

research done by Talebzadeh and Ghodrat in 2017 is similarly same as accessing to

government or organisation websites to identify possible vulnerabilities for SQLi and

XSS. In the result (Talebzadeh and Ghodrat, 2017), 3 out of 11 targeted web

applications are vulnerable to XSS and 2 websites are vulnerable to SQLi.

Simultaneously another research found that 309 educational web applications are

found vulnerable to various types of SQLi (Delwar et al., 2015).

2.3 HTTP URL

A uniform resource locator (URL) is a unique identified for a web resource (Dafydd

and Marcus, 2008). The URL used to generate Hypertext Transfer Protocol (HTTP)

request takes the form:

http://<host>:<port>/<path>?<searchpart>

6

<host> is usually the qualified domain name of network host or its IP address, <port>

is the port number to connect to. If :<port> is omitted in the URL, then the port number

is default to 80. The <path> is an HTTP selector and <searchpart> is a query string.

The combination <path>?<searchpart> is optional, if it is not present then the / may

be removed. Those notations / ; ? are reserved within the <path> and <searchpart>.

2.4 HTTP GET/POST Methods

HTTP methods are actions performed on resources (Joel, Vincent and Caleb, 2011).

In attacking web applications, GET and POST methods are most commonly used. GET

is designed to retrieve information whereas POST is designed to send information.

Both GET and POST can send information to the server, the important difference

between them is GET leaves all the data in URL such as the id=13 in the following

URL:

http://www.sparx.com/php?id=13

but POST places the data in the body of the request which is not visible in URL. In

terms of security, GET is less secure than POST as parameters are being exposed in

URL.

2.5 HTTP Requests and Responses

When a client navigates to a web page, a request of the web page content will be sent

to the server, the request is called HTTP request (Fielding, et al. 1999). After the server

received the request, the server will interpret it and responds with an HTTP response

message. Figure 2.1 is an example of request we sent to www.google.com server with

GET method to retrieve content of its home page. After the request is received, the

server will response to the client whether the request is being accepted by using HTTP

status codes. As shown in Figure 2.2, the server accepted our request and response 200

HTTP status code with the requested content.

7

Figure 2.1: Request Sent to www.google.com

Figure 2.2: Response Get from www.google.com

2.6 HTTP Status Codes

The HTTP status code is issued by a server in response to the request made by client

(Fielding, et al. 1999). Those codes are consolidated by 3-digit integer and categorised

into 5 classes of response with the first digit of the status code as below:

• 1xx Informational: The request was received and continuing process.

• 2xx Success: The action was successfully received, understood and accepted.

• 3xx Redirection: Further action has to be taken to complete the request.

• 4xx Client Error: The request contains bad syntax or cannot be fulfilled.

• 5xx Server Error: The server failed to fulfil an apparently valid request.

Table 2.1, 2.2, 2.3, 2.4 and 2.5 are showing each of the status codes in every classes

with corresponding meaning.

8

Table 2.1: 1xx Information Responses

Status Code Meaning

100 Continue

101 Switching Protocols

Table 2.2: 2xx Success Responses

Status Code Meaning

200 OK

201 Created

202 Accepted

203 Non-Authoritative Information

204 No Content

205 Reset Content

206 Partial Content

Table 2.3: 3xx Redirection Responses

Status Code Meaning

300 Multiple Choices

301 Moved Permanently

302 Found

303 See Other

304 Not Modified

305 Use Proxy

307 Temporary Redirect

Table 2.4: 4xx Client Error Responses

Status Code Meaning

400 Bad Request

401 Unauthorised

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

9

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Large

415 Unsupported Media Type

416 Requested Range Not Satisfiable

417 Expectation Failed

Table 2.5: 5xx Server Error Responses

Status Code Meaning

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version Not Supported

2.7 Structured Query Language Injection (SQLi)

SQLi attacks have become the most critical web application attack. Structured Query

Language (SQL) with malicious code is provided by attackers to a user input field of

web interface, the SQL will be sent to the database for execution to allow attackers

steal or manipulate data. Based on a survey (Diallo and Al-Sakib, 2011) and the other

survey (Ossama and Mohammad, 2016), SQLi attacks are categorised into: Tautology,

Illegal/Logically Incorrect Queries, Stored Procedures, Piggy-Backed Queries,

Alternate Encodings and Inference.

2.7.1 Tautology

This attack helps attackers to identify injectable parameters, bypass authentication and

extract data from the database. Attackers inject code in the WHERE clause of a SQL

10

query so that the query will always evaluates to true. The code OR 1=1 is generally to

be used for injection as the statement 1=1 will always return true, for example the

query below is generated to display bank account details of owner Joel which does not

exist:

SELECT * FROM BankAccounts WHERE Owner = 'JOEL';

After injecting 'OR 1=1--, the query below will display all the data of BankAccounts

table due to the query will be always true even if the owner Joel does not exist.

SELECT * FROM BankAccounts WHERE Owner = 'JOEL' OR 1=1--';

2.7.2 Illegal/Logically Incorrect Queries

This type of attack can be used as preliminary attack to gather information about the

backend database, then attackers are able to craft further attacks by using the

information revealed. By injecting wrong malicious queries, the database will be

caused to return error messages which might include the information about the

database. The following query Owner input parameter is injected by ' UNION SELECT

SUM(Owner) FROM BankAccounts which attempt to sum the NVARCHAR type

Owner column in BankAccounts table:

SELECT * FROM BankAccounts WHERE Owner = '' UNION SELECT

SUM(Owner) FROM BankAccounts;

Since there is no way to sum NVARCHAR value, this causes the database to return

error messages containing information about the database and Owner column.

2.7.3 Union Query

This attack is used to bypass authentication and extract data from the database. UNION

operator is injected by attackers into a vulnerable parameter that eventually will return

the dataset of both the original and injected queries. For example, an additional query

' UNION SELECT * FROM AccountBalance -- is injected into Owner column to

extract data from AccountBalance table:

SELECT * FROM BankAccounts WHERE Owner = '' UNION SELECT * FROM

AccountBalance --;

2.7.4 Stored Procedures

Most of the database provides a set of stored procedures that extend the functionality

of the database. Once the attackers know which type of database is in use and the

11

vulnerable injectable parameter, they can craft an attack by executing stored

procedures provided by the database. For example, input parameter is being injected

by '; SHUTDOWN; -- which will run the stored procedure to cause the database to shut

down:

SELECT * FROM BankAccounts WHERE Owner = ''; SHUTDOWN; --;

2.7.5 Piggy-Backed Queries

This attack is similar as Stored Procedures attack, in which additional queries will be

added to the end of a query. Attackers can retrieve or modify data by executing

additional queries, for example:

SELECT * FROM BankAccounts WHERE Owner = ''; DROP TABLE

BankAccounts --;

If the database allows additional queries to be appended at the end of a valid SQL

query, then the second query above will be executed and it will delete the

BankAccounts table.

2.7.6 Alternate Encodings

This attack can be used to bypass detection methods used by defensive coding practices.

Common detection methods will scan for harmful code from user input such as

SHUTDOWN, however, attackers able to encode the input string using ASCII,

hexadecimal, and so on to mask the attack. For example, char(0x73687574646f776e)

will return the string SHUTDOWN.

SELECT * FROM BankAccounts WHERE Owner = ''; char(0x73687574646f776e);

2.7.7 Inference

This attack’s intention is to identify injectable parameters, extracting data and

determine database schema. Attackers modify query to be executed and return

true/false from the database to derive logical conclusions. Inference SQLi can be

differentiate into Blind Injection and Timing Attacks. In Blind Injection technique,

true/false questions will be asked to the server to infer the information from the page.

If the injected statement returns true, the site will continue function normally else the

page will differ significantly although there is no error message. In Timing Attacks,

attackers gain information by observing time delays in response of the site. To perform

this attack, attackers normally generate the query in the form of if/then statement.

12

2.8 Cross Site Scripting (XSS)

XSS is the Godfather of attacks against other users (Dafydd and Marcus, 2008). XSS

is another common and well-known web application attack. I. Yusof & A. Pathan have

discussed about XSS (Yusof and Pathan, 2016), XSS involves injecting malicious

script in HTML, Java, Flash, ActiveX, JavaScript or other browser supported

technology and execute in a victim’s browser. By XSS, attackers can hijack user

sessions via cookie or even redirect users to malicious sites without victim’s

knowledge. There are few research papers discussed about different types of XSS

attack, they are generally categorised into three different types: Reflected (Non-

Persistent), Stored (Persistent) and DOM-based.

2.8.1 Reflected XSS (Non-Persistent)

This is a very common type of XSS also known as Type-1 XSS. It usually occurs when

an application responses request on a dynamic page to display contents to users. For

example, a user has logged in to a bank application as usual and is issued with a cookie

containing a session token:

Set-Cookie: sessId=193a9100ed37374201a4b9672362g13459c2a652401a1

then the user requests a malicious URL crafted by attacker that embedded JavaScript

such as the following:

https://bank.com/error.php?message=<script>var+i=new+Image;+i.src=”http://w

ahh-attacker.com/“%2bdocument.cookie;</script>

the server responds to the user’s request then attacker’s script and the script will be

executed in user’s browser to send session token for attack to hijacks the user’s session.

2.8.2 Stored XSS (Persistent)

This attack is also known as Type-2 XSS which happens when a web application

accepts and stores hostile data by one user in a file, database, or other backend system

then displays the unfiltered data to other users without being filtered or sanitised

appropriately (Inforisk360, 2018). This is extremely dangerous for web applications

that support interaction between users such as blogs, forums, or others content

management systems as huge number of users see the hostile data input from hackers.

The stored attack can be even worse such as a user with administrative privileges visits

an infected website, attackers could potentially be stealing the user’s cookie. The

attackers’ script can be stored in database and they can use it anytime. For example, a

13

forum application that allows users to post questions in a specific discussion. If a user

is able to post a question that contains JavaScript without being filtered or sanitise by

the application, then attackers can post a crafted question that with arbitrary scripts to

execute within the browser of whoever views the question.

Figure 2.3: The Steps Involved in a Reflected XSS attack

Adapted from “The Web Application Hacker’s Handbook Discovering and

Exploiting Security Flaws” (Dafydd and Marcus, 2008)

2.8.3 DOM-Based XSS

This is known as Type-0 or Document Object Model-based XSS which is an advanced

type of XSS attack. In previous examples of reflected and stored XSS, the server-side

takes data from a crafted URL parameter and inserts malicious script into the page and

responds to user. When the user’s browser receives the response and executes the

malicious script while the page loads. In DOM-based XSS, there is no malicious script

inserted as part of the page but the script is executed after the page has loaded. How

does it work? It works when the client-side script can access the browser’s DOM, then

it can determine which URL is used to load the current page and dynamically update

the data from URL.

14

Figure 2.4: The Steps Involved in a Stored XSS attack

Adapted from “The Web Application Hacker’s Handbook Discovering and

Exploiting Security Flaws” (Dafydd and Marcus, 2008)

Figure 2.5: The Steps Involved in a DOM XSS attack

Adapted from “The Web Application Hacker’s Handbook Discovering and

Exploiting Security Flaws” (Dafydd and Marcus, 2008)

15

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

This chapter is to demonstrate the actions taken to achieve all listed research objectives

in Chapter 1. Especially the process of vulnerabilities assessment, the websites

selection, the information gathering method, the discovery of vulnerabilities, and also

the way to avoid being detected from web application server.

3.2 Research Approach

Under Part II of the Computer Crimes Act 1997, it is an offence if a person knowingly

and intentionally accesses a computer without authorisation and causes a computer to

perform any function with the intent to secure access to any program or data held in

any computer (Deepak and Yong, 2019). As we must not go into the system of targeted

websites, hence Black Box testing method will be used to identify the vulnerabilities.

While performing Black Box testing, we might adopt some tools to identity the

vulnerabilities by intercepting the traffic and observe the process.

Basically, a complete penetration testing is containing five different stages

such as Reconnaissance, Profiling, Discovery, Exploitation and Reporting.

Understanding the concept behind every stage which will help us to perform good

assessment. Below is an overview of the five stages of penetration testing:

I. Reconnaissance: This is all about information gathering. Collecting

information about the target application as much as possible for the later

exploitation uses.

II. Profiling: In order to perform a good testing, understanding the target

application is important as well. Usually, a dummy account will be register to

observe the features, how the application works, etc.

III. Discovery: In this stage, start to discover is the application vulnerable to any

attacks.

IV. Exploitation: After discovering, exploit that system.

V. Reporting: Lastly, a report will be prepared to informing the application is

vulnerable to what attacks with priority to solve.

16

Figure 3.1: Different Stages of Penetration Testing

As this project is not authorised to perform such testing, hence only the stages

Reconnaissance, Discovery and Reporting will be performed. The reasons skipping

Profiling and Exploitation is not to create any data in the target web applications yet

exploitation will be infringing the system operation of the web applications. This

process is called as Vulnerabilities Assessment, because discovery of vulnerabilities

will be done but not exploitation, once the application is found to be vulnerable then

the process stops.

In Figure 3.2, shows the flow of vulnerabilities assessment for this project.

Start from gather information from the application, then perform discovery. If the

application is vulnerable, then stop for the application immediately. However, if the

URL tested is not vulnerable, then move to next URL to continue the discovery until

finish looping all the possible URL. A further discussion in each stage will be

discussed later. But before that, a list of possible vulnerable websites should be ready.

3.3 Web Applications Selection

As discussed previously in Chapter 2.2, <searchpart> in HTTP URL scheme is a

query string. If parameters are exposed in <searchpart> means that we are able to

inject scripts into the query.

Google Search Engine is the most popular and the best in the world. According

to the report (NetMarketShare, 2018), more than 76% searches were powered by

Google. Its search engine algorithm provides the best results to users and the search

setting is customisable for specific search. Hence, Google Search Engine is used to

search for possible vulnerable Malaysia government websites by using the keywords

inurl:php?id= site.:gov.my. This returned list of Malaysia government websites that

are developed by PHP and exposing parameters in the URL, this does not mean that

those web applications are vulnerable but they have the potential to be vulnerable. A

17

total of 21 different Malaysia government domains could be found from the list, but

due to time constraint, only 10 of them are chosen for this research purpose.

Figure 3.2: Flowchart of Vulnerabilities Assessment

3.4 Information Gathering

Information gathering is to gain accurate information about target web applications

without revealing our presence or our intentions, to learn how the organisation operates,

and to determine the best route of entry (Inforisk360, 2018). Information about the

specific IP addresses which could be accessed over the Internet, operating system,

system architecture, and the services running. Information gathering can be

18

categorised into Passive and Active. Passive Information Gathering, we can use tools

like search engines, social networking, etc to discover information about targeted web

applications without touching their systems. Active Information Gathering, we will

interact directly with the systems to conduct port scans for open ports, determine what

services are running, determine the details of operating system, etc.

 In this project, Burp Suite Community Edition was used and the Spider

function in Burp Suite to perform active information gathering. The Burp Spider is

actually a scanner that perform task of scanning web sites for content, it navigates

around a target web application like a normal user with a browser, by clicking links

and submitting requests to the server. Eventually as in Figure 3.3, it returned list of

URLs of the target web application under same domain and indicated whether there

are any parameters being exposed (column Params with tick) in the URL.

Figure 3.3: Example Results of Burp Spider

3.5 Vulnerabilities Discovery

A web application has many URLs under its domain. If we are able to show any of

these URLs is vulnerable to SQLi or XSS, then we could conclude that the web

application is vulnerable to the attack. An example, if an URL response with malicious

SQL scripts then we are allowed to connect to the database and retrieve or manipulate

19

the data or do whatever we want, same goes to XSS. Hence, if an URL is vulnerable

then the whole application is vulnerable.

3.5.1 Discovery of SQLi

As discussed, SQLi has several types of attack. In order not to exploit and infringe the

system, we chose to perform Illegal/Logically Incorrect Queries injection by just

injecting a single quote in the end of parameters exposed URL. For an example URL:

http://www.sparx.com/php?id=13

the system is expected to retrieve content id=13 by executing query:

SELECT * FROM dbo.PageContent WHERE Id='13'

So, we inject a single quote at the end of URL

http://www.example.com/php?id=13'

and the system will input the value 13' into the query like:

SELECT * FROM dbo.PageContent WHERE Id='13''

By executing this incorrect query, it will cause the database server to return a syntax

error message. If the URL reflects with the error message, this means the application

is vulnerable to SQLi then we stop the testing on this web application. Unfortunately,

if the application does not response which means the application has secured for this

URL. If that is the case, we stop testing on this URL and move on to the next one until

we successfully show the application is vulnerable or finish testing on all URLs

without responses.

Figure 3.4: Example of SQLi with Single Quote

20

3.5.2 Discovery of XSS

A basic approach provided by (Dafydd and Marcus, 2008) to identify XSS

vulnerabilities is to use a standard proof of concept attack string such as the following:

"><script>alert(document.cookie)</script>

 This string is submitted as a value of parameter to the page of the application,

and responses with the injected JavaScript that display pop-up message with browser

cookie. If the request of browser cookie is responded and being shown as in Figure 3.5,

then the application is very likely vulnerable to XSS.

Figure 3.5: Example of XSS with Alert Box

It is possible that the application will not be identified vulnerable to XSS via

the basic approach, but this does not mean that the application is not vulnerable. Most

of the applications have implemented a rudimentary mitigation like blacklist-based

filters to prevent XSS attacks (Dafydd and Marcus, 2008). These filters usually look

for typical expression like <script> within the request parameters, if the expression is

found then some defensive actions will be taken such as removing or encoding the

expression, or even blocking the request. However, there are cases of XSS successfully

exploit without using those common characters like < > / and ". Besides the basic

approach, the following strings or other than them will bypass the filter and

successfully result in XSS exploitation. Although these strings may be decoded,

sanitized, or modified before being return in the server’s response, but still able to

perform XSS exploitation:

"><script >alert(document.cookie)</script >

21

"><ScRiPt>alert(document.cookie)</ScRiPt>

"%3e%3cscript%3ealert(document.cookie)%3c/script%3e

"><scr<script>ipt>alert(document.cookie)</scr</script>ipt>

%00"><script>alert(document.cookie)</script>

3.6 Avoiding from Detection

Nowadays, people will monitor the server to detect any uncommon or suspicious

requests generated, some actions will be taken such as blocking the IP address from

their server or some legal actions. In order not to be detected, time delay method is

used which is in a slow pace during information gathering and find vulnerabilities.

 In Burp Spider, the configuration is set to not submit any forms, as user data

should not be sent or created in this project. Besides that, in order to reduce the speed

of scanning which will make many HTTP request to the server, only 2 threads are set

to work concurrently and 3 minutes waiting time between requests.

While identifying the SQLi vulnerabilities, only the basic approach to inject

single quote ' at the end of value of parameter will be adopted such as the following:

http://www.sparx.com/php?id=13'

If this payload does not identify the SQLi vulnerabilities, the identification will be

stopped for the URL and proceed on next URL after 5 minutes.

Applying the same method on identification of XSS vulnerabilities, only the

following string will be submitted as a value of parameter:

"><script>alert('Test')</script><!--

Compare this string to the basic approach as mentioned earlier, symbols <!-- is

appended to comment the remaining HTML codes. If this does not identity the XSS

vulnerabilities, identification will be stopped for the URL and proceed on next URL

after 5 minutes.

 Theoretically, there is Cheat Sheet for SQLi or XSS that contains list of

payloads to be tested one by one until the vulnerabilities is identified or end of the list.

However, only one payload for one attack is used in this project. The more payloads

being tried the easier to be detected.

22

Figure 3.6: Form Submission Options in Burp Spider

Figure 3.7: Application Login Options in Burp Spider

Figure 3.8: Spider Engine Options in Burp Spider

3.7 Conclusion

This chapter presented the core aspect of this study where it describes the research

methods used in conducting the search. The research methodology focused on the

23

process of vulnerability assessment, the way of selecting possibly vulnerable Malaysia

government web applications, the tools and configurations to gather information of

web applications and the payloads used to identify SQLi or XSS in web applications.

 Apart from that, this study applied the time delay method where all the actions

were performed slowly to avoid detection from the web servers.

24

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

We have completed the assessment for all the 10 government web applications with

process mentioned in Figure 3.2. In this chapter, we will present the results of

vulnerability assessments, perform analysis and discuss on the results. Each of the web

applications is given a pseudonym to keep their information confidential, for example

WebApp 1, WebApp 2, WebApp 3 and so on, and some parts of the screenshots

provided will be redacted to hide their information.

4.2 Analysis of data-set based on Information Gathered

As mentioned in previous chapter, we need URLs with parameters to discover whether

the web application is vulnerable to SQLi or XSS. Hence, we have adopted Spider

function in Burp Suite to crawl URLs of each web application with the configurations

as shown in Figure 3.6, 3.7 and 3.8 to avoid from being detected.

 Table 4.1 shows the details of each web application during the information

gathering stage such as number of requests have been made to the server, number of

URL crawled, number of URL with parameters crawled, whether the web application

is successfully completed being scanned and average of time efforts taken. We can see

that WebApp3 has 8,116 the highest number of requests made, 5,820 the second

highest requests made to WebApp6 and 4,341 the third highest requests made to

WebApp8. The reason we found for these three web applications had the highest

requests made was because they were having list of data separated into many pages

for users to browse through. And hence, the average time taken for them are the longest,

as the more requests were made, the longer the time taken.

 Due to some unforeseen circumstances, the Burp Suite stopped scanning on

WebApp 4, WebApp 5, WebApp 8 and WebApp 9. For example, power outage，short

circuit, overheating etc caused the computer to automatically shut down. A special

scenario occurred on WebApp 4, responses from the server were all 503 HTTP status

code due to a server maintenance was performed on the web application in the middle

of the scanning, and it caused us to stop the work. Therefore, the scanning was not

25

completed on these 4 web applications and we did not restart the scanning as we could

not afford taking the risk again.

Table 4.1: Information Gathered

Target No. of

Requests

Made

No. of

URL

Crawled

No. of URL

with

Parameters

Crawled

Completed

Scanning

Average of

Time Taken

(hours)

WebApp 1 1,609 1,265 170 Yes 80.45

WebApp 2 1,513 1,501 84 Yes 75.65

WebApp 3 8,116 7,984 474 Yes 405.80

WebApp 4 945 940 199 No 47.25

WebApp 5 1,063 1,011 200 No 53.15

WebApp 6 5,820 5,719 124 Yes 291.00

WebApp 7 274 274 24 Yes 13.70

WebApp 8 4,341 4,105 194 No 217.05

WebApp 9 1,147 1,123 42 No 57.35

WebApp 10 1,621 1,589 70 Yes 81.05

Figure 4.1: Information Gathered from Each Web Applications

1609

1513

8116

945

1063

5820

274

4341

1147

1621

170

84

474

199

200

124

24

194

42

70

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

WebApp 1

WebApp 2

WebApp 3

WebApp 4

WebApp 5

WebApp 6

WebApp 7

WebApp 8

WebApp 9

WebApp 10

Information Gathered from Each Web Applications

No. of URL with Parameters No. of URL No. of Requests Made

26

Figure 4.2: Scanning Time Cost of Each Web Applications

Figure 4.3: Number of Web Applications Completed Scanning

Figure 4.4: Result of WebApp 6

80.45

75.65

405.80

47.25

53.15

291.00

13.70

217.05

57.35

81.05

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00

WebApp 1

WebApp 2

WebApp 3

WebApp 4

WebApp 5

WebApp 6

WebApp 7

WebApp 8

WebApp 9

WebApp 10

Scanning Time Cost of Each Web Applications

Average of Time Taken (hours)

6

4

Number of Web Applications Completed Scanning

Yes No

27

Figure 4.5: Starting of URLs Crawled from WebApp 6

Figure 4.6: Ending of URLs Crawled from WebApp 6

4.3 Analysis of data-set based on SQLi

According to vulnerability assessment flow in Figure 3.2, we proceeded to inject single

quote in the URLs with parameters one by one. Among the 10 web applications,

WebApp 1 and WebApp 6 were found vulnerable to SQLi. See Figure 4.8, the error

message we got from WebApp 6 server, it clearly shows they were using MySQL

Server and attackers were able to inject query to retrieve and manipulate sensitive

information stored in the database.

 The remaining eight web applications were not found vulnerable to SQLi, they

might have implemented a least defence to prevent SQLi attack, but this does not mean

they are not vulnerable. As we were trying to inject only one payload for the

28

assessment, the single quote is a common payload to be filtered in the validation and

we did not try on input fields where query could be injected as well. They are affirmed

not vulnerable to SQLi if and only if a complete penetration testing is performed.

Table 4.2: Web Applications Vulnerable to SQLi

Target Vulnerable to SQLi

WebApp 1 Yes

WebApp 2 No

WebApp 3 No

WebApp 4 No

WebApp 5 No

WebApp 6 No

WebApp 7 Yes

WebApp 8 No

WebApp 9 No

WebApp 10 No

Figure 4.7: Number of Web Applications Vulnerable to SQLi

2

8

Number of Web Applications Vulnerable to SQLi

Yes No

29

Figure 4.8: Response of WebApp 6 While Discovering SQLi

4.4 Analysis of data-set based on XSS

We did the same method of injection to identify XSS vulnerability on the 10 web

applications, but with a JavaScript payload to prompt a message. The result we got

was excellent that none of the 10 web applications were identified as vulnerable to

XSS. Same as discussed in Chapter 4.2, these web applications were not vulnerable to

XSS from our findings but this does not mean they are completely not vulnerable to

XSS. With the same explanation, either they might have filtered our JavaScript

payload but still accept others or the input fields might accept the payload and response

to attackers.

Table 4.3: Web Applications Vulnerable to XSS

Target Vulnerable to XSS

WebApp 1 No

WebApp 2 No

WebApp 3 No

WebApp 4 No

WebApp 5 No

WebApp 6 No

WebApp 7 No

WebApp 8 No

30

WebApp 9 No

WebApp 10 No

Figure 4.9: Number of Web Applications Vulnerable to XSS

4.5 Conclusion

In this chapter, we have shown and analysed the information gathered from each of

the web applications. Two of the ten government web applications were found as

vulnerable to SQLi but none of them were found to be vulnerable to XSS. For those

not vulnerable web applications, we observed that they have some mechanism to

handle suspicious requests. When a malicious URL was sent, the website will either

remain and refresh the page or redirect us to the home page. Hence, we believe this is

the current security practice they are using.

A total of 1322.45 hours, approximately 56 days were taken for the information

gathering process. As there were four web applications that did not complete the

scanning, hence we expect the exact number of days needed for the complete scanning

shall be more than 56 days. There were several difficulties found during the whole

vulnerability assessment process. In the information gathering process, as the time

delay method was adopted, therefore the computer used to perform scanning had to be

switched on for more than a week. The longer the computer was switched on, the

higher possibility the computer will be shut down automatically with loss of data

0

10

Number of Web Applications Vulnerable to XSS

Yes No

31

because of several possible causes. In the discovery of vulnerability process, only one

payload could be injected for SQLi or XSS to avoid being detected by the server, hence

this would definitely reduce the accuracy of the findings.

32

CHAPTER 5

IMPACT AND REMEDIATION

5.1 Introduction

Previously we have shown that two web applications are vulnerable to SQLi and none

of them vulnerable to XSS, but what if all of them are vulnerable to both attacks?

 In this chapter, we will use the Common Vulnerability Scoring System (CVSS)

v3.0 Calculator to measure the severity score and level of both attacks. It is a well-

known tool used by penetration testers for generating reports to clients. Then, we will

discuss about the impact of SQLi and XSS to these web applications by categorising

them into the Confidentiality, Integrity and Availability (CIA triad) (Rahul and Pankaj,

2012). Lastly, the development best practices will be provided to prevent both attacks.

Table 5.1: Vulnerability Level Definition

Adapted from “Common Vulnerability Scoring System” (FIRST, 2018)

Severity Definition

Critical A vulnerability with high business risk and easily exploitable.

High A vulnerability with high business risk and medium level of

exploitability.

Medium A vulnerability with medium level of business risk and difficult

to exploit.

Low A vulnerability with low business risk and no direct exploitation

possible.

Figure 5.1: CVSS Rating Scale

Adapted from “Common Vulnerability Scoring System” (FIRST, 2018)

33

5.2 Web Applications Vulnerable to SQLi

Table 5.2 shows the value we select for each metric regarding to SQLi, and the score

is 9.9 which is in the critical severity level.

Table 5.2: CVSS Metric, Values and Comments for SQLi

Metric Values Comments

Attack Vector Network Attackers are required to connect to the database over

a network.

Attack

Complexity

Low A malicious SQL script is enough for an attacker craft

the attacks.

Privileges

Required

Low The attacker might need an account with the authority

to change user input. It varies from the design of web

applications.

User

Interaction

None The attacker could exploit the database without any

user interaction.

Scope Changed The vulnerable component is the database itself, but it

might cause others linked database to be impacted.

Confidentiality High Once the database is exploited, the attacker could

access to any sensitive data stored in the database.

Integrity High Once the database is exploited, the attacker could

easily perform modification SQL scripts to modify the

data.

Availability High Once the database is exploited, the attacker could

execute stored procedures provided by the database to

bring down the server.

Score 9.9

34

Figure 5.2: CVSS Calculation for SQLi

5.2.1 Impact of SQLi

SQL is a language to communicate with database, it can be used to retrieve, modify

and delete data stored in database. In other words, if a web application is vulnerable to

SQLi means attackers are able to access to the database.

 The impact of SQLi categorised into confidentiality, integrity and availability

triad as below:

• Confidentiality

Generally, every data is stored in SQL database, including sensitive

information. Among the 10 web applications, most of them do contain sensitive

information like citizen name, identity number, address etc and even national

secret information. Attackers are able to retrieve any data from the database,

despite that the data might be encrypted but attackers still able decrypt them

afterwards.

• Integrity

Since data can be retrieved by SQL, then SQL allows attackers to make

changes or even delete the data as well.

35

• Availability

Some database servers allow operating system commands to be executed on

the server. Attackers could craft an attack on the internal network which might

bring down the service of web application.

5.2.2 Remediation of SQLi

Insufficient input validation is the root cause of SQLi attack. Hence, the following

common and effective defensive coding practices for mitigating the SQLi attack.

• Parameterised Queries

Parameterised query is also known as a prepared statement, it is actually a

placeholder for storing a value that will be used when query runs. A

parameterised query may look like this:

SELECT * FROM BankAccounts WHERE Owner = ?

where the question mark “?” is the parameter storing owner’s name JOEL. If

an attacker were to inject ' OR 1=1-- to bypass authentication, the parameter ?

will represent the payload. The parameterised query will not be amended

instead it will look for an owner which literally matched the entire value ' OR

1=1--.

• Stored Procedures

Stored procedure is a SQL query that you could store in the database, then the

query can be executed again and again. You could pass parameters to a stored

procedure, so that the stored procedure can execute based on the value(s) that

is passed. Stored procedure is similar to parameterised query, the main

difference is that stored procedure is stored in the database but parameterised

query is generated in the source code. In addition, the stored procedure is not

safe to use if the SQL query is dynamically generated in the stored procedure.

The stored procedure is safe as long as it does not include unsafe dynamic SQL

generation.

• White List Input Validation

The prepared statement is not applicable for some parts of the SQL query, for

example the names of tables, columns, and sort order indicator. In some

features of application, users could perform read or write from certain tables,

hence the users are allowed to specify the names of tables or columns but

36

usually those values should be hardcoded from the source codes yet not from

users’ input. However, if users are allowed to make decision for the names of

tables or columns, then white list input validation is the most appropriate to

control the legal/expected tables or columns in the query.

Figure 5.3: Example of Stored Procedure Creation

Figure 5.4: Example of Stored Procedure Execution

37

5.3 Web Applications Vulnerable to XSS

Table 5.3 shows the value we select for each metric regarding to XSS, and the score is

6.1 which is in the medium severity level.

Table 5.3: CVSS Metrix, Values and Comments for XSS

Metric Values Comments

Attack Vector Network The vulnerability is in the web application and

reasonably requires network interaction with the

server.

Attack

Complexity

Low A malicious script is enough for an attacker to obtain

the valid session token.

Privileges

Required

None An attacker does not need any privileges to craft the

attack.

User

Interaction

Required XSS requires the victim to visit the vulnerable

component, for example: visiting a malicious URL.

Scope Changed Web server is the vulnerable component and victim’s

browser is the impacted component.

Confidentiality Low Information stored in the victim’s browser could be

read by attacker. The impact will become high only if

the attacker could hijack the victim’s session.

Integrity Low Information stored in the victim’s browser could be

modified.

Availability None The malicious script will only affect victim’s browser

but not the web application. Victim can easily

terminate the attack by closing the browser.

Score 6.1

38

Figure 5.5: CVSS Calculation for XSS

5.3.1 Impact of XSS

The impact of XSS is the same no matter which type of XSS it is, the difference is how

the payload being injected to the server. XSS could cause several types of problem for

the user that range from an annoyance to user account compromise. The most serious

problem is the disclosure of victim’s session cookie to an attacker, which is allowing

the attacker to hijack the victim’s session. Other types of problem include redirecting

the victim to other sites, installation of malware programs, or changing presentation of

the web page content etc.

 For the government web applications, the XSS vulnerability allows attackers

to modify news item which might affect the country’s economic or causing political

issues.

5.3.2 Remediation of XSS

Content Security Policy (CSP) is a layer of security that helps to mitigate types of

attack including XSS. It is a HTTP header to a web page and it grants the control what

locations a client browser can load resources or what other sites are allowed to interact

with the server’s site. CSP is suggested to mitigate XSS without the need to modify

the web application’s source code.

39

 There are two fundamentals restrictions from CSP to support XSS protection:

• Restriction 1: Inline Scripts Will Not be Executed

One of the causes of XSS is the client’s browser could not differentiate if the

content is sent by the server or injected by an attacker. CSP enforces the code

must be separated from the content and requires the code developers intend to

execute have to be placed in referenced files externally.

• Restriction 2: Strings May Not Become Code

(Sid, Brandon and Gervase, 2010) eval() is a dangerous function which will

execute a string of characters as code. In normal circumstances, attackers need

<script> </script> tags to bypass whatever encoding or filters to execute

codes injected. If eval() is able to operate on user input without the need of

script tags. Therefore, the JavaScript function eval() and related functions

which generating code from strings are blocked by CSP.

Besides the restrictions from CSP, we could specify the policy by using

Content-Security-Policy HTTP header like Content-Security-Policy: <policy>, the

<policy> is a string describing the policy using a series of policy directives. Most of

the directives control where a resource may be loaded from, for example default-src,

img-src, media-src, script-src and etc.

The default-src is used to whitelisting where the sources may be loaded from,

for example:

Content-Security-Policy: default-src 'self'

which the developers allow client browsers to load resources from the web

application’s origin only, and this exclude subdomains; and

Content-Security-Policy: default-src 'self' *.example.com

which resources are loaded from the web application’s origin and the example domain

only; and

Content-Security-Policy: default-src 'self'; media-src example1.com example2.com;

img-src *; script-src examplescript.com

which by default the resource is permitted from the web application’s origin only, but

with exceptions below:

1. Media is loaded from example1.com and example2.com only.

2. Image may be loaded from anywhere.

3. Executable script is loaded from examplescript.com only.

40

The CSP is not shown with the HTTP header, it should be hidden from the header. It

is a risk if the CSP of the web application is shown, because the attacker will have the

configuration of CSP and craft further attack.

5.4 Principle of Least Privilege

The principle of giving least privilege (PoLP) is one of the most important security

policies in IT security, this principle is limiting users’ authority to the minimum that

they need to perform their work. This is a principle to improve the data protection as

well as the application functionality from malicious behaviour. By applying PoLP

could help to restrict attacker’s access to the web application. For example, the victim

has the access to what they need only and so the compromised victim’s account to

attacker will have access to limited resources. Therefore, applying this principle will

reduce the consequences.

5.5 Conclusion

This chapter presented the severity and consequences of SQLi and XSS with the CVSS,

and provided comments on every metrics. The SQLi has the critical severity level

which score 9.9 out of 10, this has shown why SQLi has been being the Top 1

vulnerability reported by OWASP, because the impact brought to the web application

could be ranged from losing confidentiality of data to availability of the application.

Besides that, XSS scores 6.1 a medium severity level. The consequences of both

attacks might affect the country’s economic or even causing political issues. Hence,

several remediations are proposed for preventing the attacks and mitigating the risks.

There are several research objectives and research questions were developed in this

research as a guideline in performing the vulnerability assessment. Therefore, this

study has fulfilled all the research objectives and research questions. Below is the

summary of the research fulfilment on the research objectives and research questions:

Research Objective 1:

To identity the common security practices of targeted Malaysia government web

applications.

Research Question 1:

What is SQLi and XSS vulnerabilities?

41

Refer to Chapter 2 (2.7, 2.8), a comprehensive review on the SQLi and XSS. There are

seven different types of SQLi which is Tautology, Illegal/Logically Incorrect Queries,

Union Query, Stored Procedures, Piggy-Backed Queries, Alternate Encodings and

Inference. And there are there types of XSS which is Reflected, Stored and DOM-

Based. We discussed about the current security practices the web applications are

using in Chapter 4.5, they are refreshing the page or redirecting us to the home page

when suspicious request is detected.

Research Objective 2:

To identify possible vulnerabilities in targeted Malaysia government web applications.

Research Question 2:

What are the vulnerabilities identified in the targeted Malaysia government web

applications?

Refer to Chapter 3, it shows the assessment flow clearly from information gathering

to identify SQLi and XSS, the time delay method was adopted to avoid from being

detected by the server. Refer to Chapter 4 (4.3 and 4.4), the analysis of data sets has

shown what are the vulnerabilities found in the web applications.

Research Objective 3:

To identity possible consequences caused by vulnerabilities and attacks for targeted

Malaysia government web applications.

Research Question 3:

What are the possible consequences caused by vulnerabilities and attacks for targeted

Malaysia government web applications?

We have discussed about those impacts of SQLi in the categories of confidentiality,

integrity and availability. Data stored in SQLi vulnerable web applications is unsafe,

as the SQL allows attackers to retrieve, modify and delete the data, more serious is the

attackers are possible to bring down the service of web applications. Next, the impacts

of XSS was discussed shown to cause several types of problem for the user that range

from an annoyance to user account compromise.

Research Objective 4:

To propose threats mitigation frameworks for targeted Malaysia government web

applications.

Research Question 4:

What are the mitigation frameworks to prevent both SQLi and XSS vulnerabilities?

42

The remediations have been proposed in this chapter. Three specific development

practices were proposed to prevent SQLi which is parameterised queries, stored

procedures and white list input validation. Then the CSP is proposed to prevent XSS,

which is a setting in HTTP header to control what locations a client browser to load

resources can what other sites are allowed to interact with the server’s site. Lastly, the

principle of giving least privilege is the general practice to improve the data protection

as well as the application functionality by restricting attacker’s access to the web

application.

43

REFERENCES

Abdulrahman, A. et al., 2017. Web Application Security Tools Analysis. 2017 IEEE

3rd International Conference on Big Data Security on Cloud.

Abirami, J., Devakunchari, R. & Valliyammai, C., 2015. A Top Web Security

Vulnerability SQL Injection attack - Survey. 2015 Seventh International Conference

on Advanced Computing (ICoAC).

Acunetix, Types of XSS: Stored XSS, Reflected XSS and DOM-based XSS. Available

at: https://www.acunetix.com/websitesecurity/xss/.

Ahmad, G., 2017. A Hybrid Method for Detection and Prevention of SQL Injection

Attacks. Computing Conference 2017.

Ali, S. & Yashar, H., e-Government Services Vulnerability.

Ankit, S., Santosh, C. & Ashish, K., 2016. XSS Vulnerability Assessment and

Prevention in Web Application. 2016 2nd International Conference on Next

Generation Computing Technologies.

Arianit, M. et al., 2017. Testing Techniques and Analysis of SQL Injection Attacks.

2017 2nd International Conference on Knowledge Engineering and Applications.

Aureliano, C. & Diego, T., 2008. alert('A JavaScript agent').

Berners-Lee, T., Masinter, L. & McCahill, M., 1994. Uniform Resource Locators

(URL). The Internet Society.

Chou, T.-S., 2013. Security Threats on Cloud Computing Vulnerabilities.

International Journal of Computer Science & Information Technology (IJCSIT), 5(3).

44

Dafydd, S. & Marcus, P., 2008. The Web Application Hackers’s Handbook, Wiley

Publishing, Inc

Dave, W. et al., 2018. SQL Injection Prevention Cheat Sheet. Available at:

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet.

Dave, W., 2017. Input Validation Cheat Sheet. Available at:

https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet.

Dave, W. & Jeff, W., 2017. OWASP Top 10 - 2017. The OWASP Foundation.

Deepak, P. & Yong, S.H., 2018. Cybersecurity 2019 Malaysia. Available at:

https://iclg.com/practice-areas/cybersecurity-laws-and-regulations/malaysia.

Delwar, A. et al., 2015. SQLi Vulnerability in Education Sector Websites of

Bangladesh. International Conference on Information Security and Cyber Forensics.

Diallo, K.A. & Al-Sakib, P.K., 2011. A Survey on Sql Injection: Vulnerabilities,

Attacks, and Prevention Techniques. 2011 IEEE 15th International Symposium on

Consumer Electronics.

Fielding, R. et al., 1999. Hypertext Transfer Protocol -- HTTP/1.1. The Internet Society.

FIRST, 2018. Common Vulnerability Scoring System v3.0: Specification Document.

Available at: https://www.first.org/cvss/specification-document.

Ian, M., 2017. Acunetix Vulnerability Testing Report 2017. Available at:

https://www.acunetix.com/blog/articles/acunetix-vulnerability-testing-report-2017/.

Imran, Y. & Al-Sakib, P.K., 2016. Mitigating Crss-Site Scripting Attacks with a

Content Security Policy. The IEEE Computer Society.

Inforisk360, 2018. Advanced Web Hacking & Defense, Inforisk360.

45

Inforisk360, 2018. Hacking and Security Vulnerability Management, Inforisk360.

Jeff, W., Jim, M. & Neil, M., 2018. XSS (Cross Site Scripting) Prevention Cheat Sheet.

Available at:

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_S

heet.

Jerome, S.H. & Michael, S.D., The Protection of Information in Computer Systems.

IEEE.

Joel, S., Vincent, L. & Caleb, S., 2011. Hacking Exposed Web Applications 3rd ed.,

The McGraw-Hill Companies.

Joel, W. et al., 2011. A Systematic Analysis of XSS Sanitization in Web Application

Frameworks. Springer-Verlag Berlin Heidelberg.

Kumar, M., 2011. Sony Pictures hacked and Database Leaked by LulzSec. Available

at: https://thehackernews.com/2011/06/sony-pictures-hacked-and-database.html.

Lwin, K.S. & Hee Beng, K.T., 2012. Predicting Common Web Application

Vulnerabilities from Input Validation and Sanitization Code Patterns. Association for

Computing Machinery (ACM).

Mingyi, Z., Jens, G. & Peng, L., 2015. An Empirical Study of Web Vulnerability

Discovery Ecosystems. Association for Computing Machinery (ACM).

Mohsen, A.S., 2017. Indonesian hackers retaliate flag blunder by defacing M'sian sites.

Indonesian hackers retaliate flag blunder by defacing M'sian sites. Available at:

http://www.thesundaily.my/news/2017/08/22/indonesian-hackers-retaliate-flag-

blunder-defacing-msian-sites.

Nuno, A. & Marco, V., 2012. Defending Against Web Application Vulnerabilities.

IEEE Computer Society.

46

NetMarketShare, 2018. Search Engine Market Share. Available at:

https://netmarketshare.com/search-engine-market-share.aspx.

Ossama, B.A. & Mohammad, A.A., 2015. Survey of Web Application Vulnerability

Attacks. 2015 4th International Conference on Advanced Computer Science

Applications and Technologies.

Pratik, S., Douglas, K. & Salim, H., 2016. Anomaly Behavior Analysis of Website

Vulnerability and Security.

Rahul, J. & Pankaj, S., 2012. A Survey on Web Application Vulnerabilities (SQLIA,

XSS) Exploitation and Security Engine for SQL Injection. 2012 International

Conference on Communication Systems and Network Technologies.

Razak, A., 2018. Media Prima hit by ransomware, hackers demand RM26mil in

bitcoins, says report. Media Prima hit by ransomware, hackers demand RM26mil in

bitcoins, says report. Available at:

https://www.thestar.com.my/news/nation/2018/11/13/media-prima-hit-by-

ransomware-hackers-demand-rm26mil-in-bitcoins-says-report/.

Schneider, F.B., 2003. Least Privilege and More. The IEEE Computer Society.

Shashank, G. & Lalitsen, S., 2012. Exploitation of Cross-Site Scripting (XSS)

Vulnerability on Real World Web Applications and its Defense. International Journal

of Computer Applications, 60(14).

Sid, S., Brandon, S. & Gervase, M., 2010. Reining in the Web with Content Security

Policy. International World Wide Web Conference Committee.

Talebzadeh, P.F. & Ghodrat, S., 2017. Assessments Sqli and Xss vulnerability in

Several Organizational Websites of North khorasan in Iran and Offer Solutions to Fix

these Vulnerabilities. 2017 3th International Conference on Web Research (ICWR),

pp.44–47.

47

The Commissioner of Law Revision Malaysia, 2006. Computer Crimes Act 1997.

Percetakan Nasional Malaysia Berhad.

The OWASP Foundation, 2018. Cross-site Scripting (XSS). Available at:

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS).

The OWASP Foundation, 2016. SQL Injection. Available at:

https://www.owasp.org/index.php/SQL_Injection.

WhiteHat Security Threat Research Center, 2017. 2017 WhiteHat Security

Application Security Statistics Report.

William, H.G.J., Jeremy, V. & Alessandro, O., 2006. A Classification of SQL Injection

Attacks and Countermeasures. IEEE.

Yuma, M. & Vitaly, K., 2015. Evaluation of Web Vulnerability Scanners. The 8th

IEEE International Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications.

