IMPROVEMENT OF POWERMITE PACKAGE CRACK AND CHIP DIE PROCESS OPTIMIZATION STUDY IN DIE ATTACH AND MOLDING PROCESS

NUR AFIQQA BINTI RASHID

A project report submitted in partial fulfilment of the requirements for the award of Master of Engineering (Electronic Systems)

> Lee Kong Chian Faculty of Engineering and Science Universiti Tunku Abdul Rahman

> > April 2019

DECLARATION

I hereby declare that this project report is based on my original work except for citations and quotations which have been duly acknowledged. I also declare that it has not been previously and concurrently submitted for any other degree or award at UTAR or other institutions.

Signature	:	
Name	:	Nur Afiqqa Binti Rashid
ID No.	:	1800856
Date	:	

APPROVAL FOR SUBMISSION

I certify that this project report entitled "IMPROVEMENT OF POWERMITE PACKAGE CRACK AND CHIP DIE PROCESS OPTIMIZATION STUDY IN DIE ATTACH AND MOLDING PROCESS" was prepared by NUR AFIQQA BINTI RASHID has met the required standard for submission in partial fulfilment of the requirements for the award of Master of Electronics at Universiti Tunku Abdul Rahman.

Signature	:	
Supervisor	:	
Date	:	
Signature	:	
Co-Supervisor	:	
Date	:	

Approved by,

The copyright of this report belongs to the author under the terms of the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© 2019, Nur Afiqqa. All right reserved.

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of this project. I would like to express my gratitude to my research supervisor, Associate Professor, Dr. Lim Soo King for his invaluable advice, guidance and his enormous patience throughout the development of this project.

In addition, I would also like to express my gratitude to my loving parents, husband, supervisors that are very understanding and accommodating towards my studies, colleagues and friends who had helped and given me encouragement throughout this project.

ABSTRACT

Powermite is a surface mount package with a low profile package technology, space saving and higher power dissipation surface mount diode. Since the package was introduced in the past few years, multiple occurrence of crack die reported which are severely impacting automotive customers quality and causing customer returns.

Vertical crack pattern contributes to 70% of the crack die which is the highest crack type compared to lateral crack and diagonal crack. The assembly high stress processes during die attach causing the initiation crack point propagates to reach die active area. The six sigma tools identified the root cause originates from die attach parameters not optimized. Design of Experiment (DOE) was performed to verify the hypothesis by assessing five die attach parameters and the parameters that are significantly causing crack die are then analysed to obtain the optimized die attach parameters.

The DOE concludes four out of five main parameters which are collet type, pick force, bond force and ejector needle settings significantly contribute to die crack issue. The association factor analysis concludes that the uses of rubber collet, lower bond force, pick force and ejector needle are the factors required to minimize crack die in die attach process. Future work for this project is to replicate this experiment through Taguchi method to find the best optimized parameter for die attach.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYMBOLS / ABBREVIATIONS	xi
LIST OF APPENDICES	xii

CHAPTER

1

INTR	ODUCT	ION	1
1.1	Introdu	action	1
1.2	Crack	die challenges	2
	1.2.1	Crack die due to die attach parameter not optimi	zed2
	1.2.2	Crack die due to Silicon wafer crystal defect	3
	1.2.3	Crack die due to solder void issue	3
	1.2.4	Crack die due to Co-efficient of Thermal Expa	nsion
	(CTE)	mismatch	4
	1.2.5	Crack die due to mechanical stress	5
	1.2.6	Crack die due to insufficient solder thickness	5
	1.2.7	Crack die due to package stress	6
	1.2.8	Failure Analysis on Powermite package cust	omer
	return	unit	6
1.3	Import	ance of the Study	7
1.4	Proble	m Statement	7
1.5	Aims a	and Objectives	8

			viii
	1.6	Scope and Limitation of the Study	8
	1.7	Contribution of the Study	8
	1.8	Outline of the Report	8
2	т ітс	DATUDE DEVIEW	10
2	2 1	Introduction	10
	2.1	Six Sigma Method	10
	2.2	Thermal transfer through solder void of semicond	luctor
	nacka		11
	2 4	Design of Experiment	13
	2.4		15
3	MET	HODOLOGY AND WORK PLAN	17
	3.1	Introduction	17
	3.2	Project Timeline	17
	3.3	DOE matrix and arrangement	18
	3.4	Design of Experiment method	19
	3.5	Failure analysis method using destructive test	22
4	RESU	ULTS AND DISCUSSIONS	23
	4.1	Introduction	23
	4.2	DOE decapsulation result	23
	4.3	Analysis of Variance and Associate Effect Analysis	and
	Discu	ission	28
	Total	sum of square calculation;	28
5	CON	CLUSIONS AND RECOMMENDATIONS	32
	5.1	Conclusions	32
	5.2	Recommendations for future work	33
REFE	RENCE	S	33
APPE	NDICES	5	36

LIST OF TABLES

Table 2.1: Main and interaction factor, number of effects, and factor designator for $k = 2, 3, 4$ and 5.	13
Table 2.2: ANOVA table for five factor two level design	15
Table 3.1: Gantt chart on project progress	17
Table 3.2: DOE setting at die attach area	18
Table 3.3: Severity rating based on value	18
Table 3.4: Full factorial DOE five factor two levels	19
Table 3.5: Full factorial DOE plan	20
Table 3.6: Full factorial DOE plan interaction factor	21
Table 4.1: Sampling of decapsulation unit result	24
Table 4.2: Tabulated result of DOE	26
Table 4.3: ANOVA table for five-factor two level design	29
Table 4.4: Significant factor in ANOVA table	29
Table 4.5: Proposed die attach setting	31
Table 4.6: Contrast values and associated factors	30

LIST OF FIGURES

Figure 1.1: Ejector pin contact to surface of substrate (Fisher- Cripps, 2009 cited in L. Annaniah, 2016 p4)	3
Figure 1.2: Crack die caused by mold compression with presence of solder void (S. M. Yeo, A. Mahmood and N. A. M. Yazid, 2018)	4
Figure 1.3: Vertical crack die at the no interfacial bonding area (K. Chiong, H. Zhang and S. P. Lim, 2016).	6
Figure 1.4: Solder seepage in between crack line.	7
Figure 2.1: Simulated temperature distribution (colour) and arrows using FEA in cylindrical coordinates with a contact resistance of $10 \ 10 - 5 \ km^2/W$ at Silicon/TIM and TIM/copper interfaces (Xuejiao H., Linan J., Kenneth E.G., 2004).	12
Figure 2.2: Thermal resistance due to different void styles (Otiaba et al., 2011).	12

LIST OF SYMBOLS / ABBREVIATIONS

IC	Integrated Circuit
Cu	Copper
DMAIC	Define, Measure, Analyze, Improve, Control
SIPOC	Supplier Input Process Output Customer
CTE	Co-efficient of thermal expansion
SEM	Scanning Electron Microscopy
BLT	Bond Line Thickness
ANOVA	Analysis of Variance
Pb	Lead
RBFA	Reject Bin Failure Analysis
TIM	Thermal interface materials
MSE	Mean Square Error
SSE	Sum Square error
SST	Sum square total

LIST OF APPENDICES

Appendix A: Crack die pattern	36
Appendix B: Crack die image mapping vs solder void location	37
Appendix C: F-Tables at α=0.05	38

CHAPTER 1

INTRODUCTION

1.1 Introduction

Integrated circuit chip (IC) technology was used in everyday life all the way from computers, cars, communication devices, industrial and electronics application. High demand for lower cost, smaller, faster, high power and good reliability of devices are the challenges which drive the competitive semiconductor industry to grow rapidly from the 1940's when contact point transistor was first invented by American physicists John Bardeen, Walter Brattain and William Shockley.

The basic operations involved in semiconductor manufacturing are divided into two which are front end and back end process. Front End process comprises of Crystal Production and Wafer Preparation, Masking Process and Wafer Fabrication whilst Back End process comprises of Packaging and Testing (Hitachi High-Technologies Corporation, 2019).

For the device to work reliably over time, it is important to protect the chip from internal and also external stress to the chip through packaging. Packaging refers to materials that encapsulate the circuit to protect the die from corrosion and mechanical damage and also to allow for electrical interconnection to the Printed Circuit Board. There are many types of IC packaging in the market. The design of the packaging is depending on the function, size, dimension, cost, electrical, mechanical, thermal properties and user friendliness of the end products and also their competitiveness in the market (Lee, Y.C. and Chen, W.T., 1998).As the packages become smaller and simpler, the complexity of the packages increases. New process was discovered to meet the market demand (Dexin Z., et. al., 2006).

Clip Bond is one of the packaging technologies for power devices that are acknowledged to have the least package resistance compared wire bonding and ribbon bonding (Kengen M., et al., 2009). Some high power packages and discrete devices for example, Insulated Gate Bipolar Transistors (IGBTs), Metal Oxide Semiconductor Field Effect Transistor (MOSFETs) are using solder paste as direct materials to form Intermetallic Layer (IMC) to electrically connect the die, clip and lead frame. Some of the advantages are lower package resistance, good thermal transfer and fast switching performance due to small package dimension.

Crack die will affect the semiconductor device greatly and in some applications. The device failure can cause life threatening situation to the user like that application in aerospace. Although the devices was tested prior shipped to customer, the partially crack die might not necessarily fail immediately as the failure is still within passing margin. However, the partially defected device is facing serious reliability issue and eventually failed after continuous thermal stress and cause casualties to the user.

1.2 Crack die challenges

One of the challenges in semiconductor assembly packaging is to manage the thermal and mechanical stress to the die. There are many factors that could bring thermal and mechanical stress to the die that may cause the device failure. (Wang, K. P., et al., 2000). Studies have shown that crack die is caused by die attach parameters not optimized, silicon wafer incoming defect, solder void issue, Co-efficient of thermal expansion mismatch, mechanical stress, insufficient solder thickness and package stress.

1.2.1 Crack die due to die attach parameter not optimized

One of the cause of crack die is due to die attach parameter not optimized (Tan, Y. H. and Liau, W. S. 2018). The study explored on the type of machine, mechanical parts, die strength and the co-relationship between the impact force and crack die. It also suggested that surface defects such as micro crack that had existing in previous process, such as back grinding and wafer thinning have weaken the die and makes the die more susceptible to cracking in the subsequent process.

Figure 1.1: Ejector pin contact to surface of substrate (Fisher-Cripps, 2009 cited in Annaniah, L., 2016)

The crack formation is due to stress acting on the atomic bond exceeds the interatomic bond strength as illustrated in Figure 1.1 (Claeys, C. et al., 2011).

1.2.2 Crack die due to Silicon wafer crystal defect

A study had shown that crack die was happening only at specific die technology with a (100) crystallographic orientation plane. This concludes that the bond force and crystallographic orientation interaction is the contributing factor to crack die. (Annaniah, L. and Devarajan, M., 2016).

Crack die also might be caused by crystal defect in the wafer during wafer fabrication process. The two most commonly used technique for crystal growth are Czochralski or the crucible type method. Most common defect in the crystal growth are dislocation and swirls that may lead to reduction in the density of crystal growth. To reduce the crack die due to wafer fabrication issues, reduction of back side defects during wafer thinning and reduction in dicing defect during sawing (Ranjan, M., Gopalakrishnan, L., Srihari K., and Woychik, C., 1998)

1.2.3 Crack die due to solder void issue

Solder void degrades the performance of die by reducing the solder contact area. In addition, single big void also can cause high crack die possibility from subsequent

process at wire bond and mold (Yeo, S. M., Mahmood A. and Yazid, N. A. M., 2018).

Figure 1.2: Crack die caused by mold compression with presence of solder void (Yeo, S. M., Mahmood A. and Yazid, N. A. M., 2018)

Void formation inside the solder joint influence the thermal resistance of devices. More solder voids increases the crack growth rate significantly (Hanss A., Liu, E., Schmid, M. and Elger, G., 2015).

1.2.4 Crack die due to Co-efficient of Thermal Expansion (CTE) mismatch

There are multiple researches that had proven CTE mismatch is one of the key factor of device performance. During designing stage, all factors must be taken into consideration such as material, package design, electrical performance, reliability and expected life span of a device. CTE mismatch will bring serious reliability issue when continuously being subjected to thermal loading and mechanical stress at consumer side.

A study conducted showed by reducing the mismatch of the CTE between multiple components of flip chip assembly, crack die could be reduced due to decrease of warpage of the package (Ranjan, M., Gopalakrishnan, L., Srihari K., and Woychik, C., 1998). Another CTE related study to crack die had proven that devices subject under 1000 cycles are prone to crack and chip. Modelling has verified that the level of tensile stress is crucial to long life reliability compared to compressive stress (Pavio, J. and Hyde, D., 1991). A similar crack mechanism in Pb Free Flip Chip packaging from die bottom suggested that crack die occurs due to bending stress at the die backside from CTE mismatch of the Silicon die and the underfil fillet (Chen, K. M., 2009).

1.2.5 Crack die due to mechanical stress

Several studies had proven that mechanical stress can cause physical damage to the die. A study using external load is applied to the top of the packages and the damage at the Silicon layer was observed using ultrasonic scan and cross section (Su P., Khan B., and Ding M., 2010).

1.2.6 Crack die due to insufficient solder thickness

Solder thickness is crucial to cushioning of the stress subjected to the die during assembly processing. After solder reflow process, the dies was continuously subjected to many thermal and mechanical stress at the preceding assembly process. High lead solder was preferable in high-current-density discrete power packages due to its many advantages such as having low resistance, high thermal conductivity, ductility to accommodate thermal expansion mismatches between joining material and its high melting point to accommodate multiple reflow cycles in the subsequent process.

However, IMC interface Ag₃Sn layer spalling with discrete structure embedded in the Cu₃Sn IMC is undesirable. It may weaken the interface structure and make the joint harder and more brittle. The CTE mismatch and the stress from the mismatch strain lead to the crack of the Silicon. The study concludes that thinner BLT with larger IMC grain size at solder joint contributes to facilitate the crack growth at Si die and solder joint. The hardened solder also did not absorb the strain caused by CTE mismatch which later leads to crack die (Chiong, K., Zhang H., and Lim, S. P., 2016). Figure 2.4 shows the vertical crack initiated from bottom and propagate to die top through compression stress after cooling.

Figure 1.3: Vertical crack die at the no interfacial bonding area (Chiong, K., Zhang H., and Lim, S. P., 2016).

1.2.7 Crack die due to package stress

Finished products are also having the internal stress. A study had proven that the package design itself may cause crack die during molding process. The study compares several different packages with varied mask openings and die sizes were tested and the quantity of crack die was recorded. The outcome of the study shows that smaller die size has lesser stress compared with bigger die sizes (Vijayakumar, B. and Guo, Y., 2006).

1.2.8 Failure Analysis on Powermite package customer return unit

The customer return units shows solder seepage in between the crack line from die backside. This indicated that the crack had occur during die attach process when the solder is still in liquid form before solder reflow process as shown in Figure 1.4.

Figure 1.4: Solder seepage in between crack line.

1.3 Importance of the Study

Crack die has been the focus field of improvement since the introduction of semiconductor devices. For this package, the study will encompass three types of crack and chip which are lateral crack, vertical crack and chip die. This study can pose as a reference to another crack die study.

1.4 Problem Statement

All the surface mount package customer return is reported to have failed at board level. No external abnormalities can be observed on the Powermite package from field return device. However, after failure analysis conducted on the return units, found the die cracked into half. Those units having marginal crack at active area passes the final test electrical requirements.

In response to this problem, this study proposes to investigate the root causes through six sigma tools. One of six sigma tools which is Design of Experiment is used to study the significance of die attach parameters that contribute to crack die.

1.5 Aims and Objectives

This project aims to improve the surface mount package crack and chip die through process optimization study by using DOE approach in die attach parameters. The DOE was performed to verify the hypothesis by assessing five die attach parameters to identify parameters that are significantly causing crack die to obtain the optimized die attach parameters.

1.6 Scope and Limitation of the Study

The assembly process to analyse is at die attach process. For die attach machine, only Alphasem E3008 model will be used for study purpose. The studied parameter are die attach parameters - collet type, ejector needle height, bond force, pick force and separation time. Molding parameters are excluded from the study as they are not the contributing factors after investigation through failure analysis on the customer return units by Finite Element Analysis (FEA) and six sigma analysis.

1.7 Contribution of the Study

The findings of this study will serve as the reference document to other assembly process that are also facing crack dies issue. This would enable achieving zero defect products as expected by end user customer. The finding of this study also would serve the reference for future researcher who would work on optimization of die attach process.

1.8 Outline of the Report

This report contains 5 chapters. Chapter 1 contains the introduction, the importance of study, aims and objectives, scope and limitations of the study and also the contribution of the study.

Chapter 2 will contain the literature review on this research. It contains the tools of lean six sigma introduction, explanation of thermal transfer through solder

void of semiconductor packages and design of experiment's Analysis of Variance for five factors and two levels mathematical equation.

Chapter 3 will focuses on methodology and work plan on conducting the two levels five factors DOE for the die attach parameters which are identified by six sigma model analysis. The chapter also specific the plan of how the design of experiment is carried.

Chapter 4 presents the result, analysis and discussion of the outcomes of the experiments.

Lastly, Chapter 5 will summarise the conclusion and future recommendation.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The literature review in this chapter will cover three subtopics which are six sigma method, thermal transfer through solder void in semiconductor packages and Design of Experiment. Six sigma methods explained about some of the tools incorporated in lean six sigma as root cause and problem solving tools. Improper heat transfer through solder void present causing high thermal resistance in semiconductor packages was visualized and studied in this chapter. Lastly, the Design of Experiment section will lists all the formula related to be used for Analysis of Variation.

2.2 Six Sigma Method

The continuous struggle by manufacturers wields tightly fixed process parameters as means to gain high yield. There are multiple methods introduced to bring improvement to the manufacturing process itself such as lean six sigma method. Six sigma was introduced by Motorola engineer Bill Smith in 1980's (Kaizen Consulting Group, 2019). Six sigma as applied by Motorola, is a drastic extension of the old idea of statistical control of a manufacturing process. Six sigma philosophy uses data and statistical tools to systematically improve process and sustain process improvements (Thomas P., 2019).

Six sigma methodologies comprises of five phases which are Define, Measure, Analyse, Improve, and Control (DMAIC). The Define phase contains the problem statement, Supplier Input Process Output Customer (SIPOC) mapping and Gantt chart of the project. Measure phase is to thoroughly understand the current state of the process and collect reliable data that will be used to expose the underlying causes of problem. All of the key processes input and output variables to be identified at the measure phase. Analyse phase is to pinpoint and verify causes affecting the key input and output variables tied to the project goals. The lists of potential causes through usage of top down chart, Is and Is Not mapping, fishbone diagram was narrowed. Statistical analysis through the Design of Analysis was used to validate the significant factor and confirm the root cause (Michael L. G., et al., 2005)

2.3 Thermal transfer through solder void of semiconductor packages

Power package module was designed to withstand high thermal stress and electrical stress. Solder acts as interconnecting materials between clip and die and die to leadframe. Solder void, which may occur due to trapped gas during reflow, micro crack die, poor wettability at the joining interfaces will cause undesirable effect to the device functionality (Tran, Son, Dupont, Laurent and Khatir, Z., 2014).

The thermal resistance between packages with solder void and packages without solder void is different. Based on study conducted, the thermal resistance in package with large solder void is higher compared to packages with less solder void. Figure 2.2 shows a FEA simulation of heat transfer between Silicon/ Thermal Interface Materials and Thermal Interface Materials to copper. Example of thermal interface material is solder paste.

Solder interface materials (STIMs) are used to reduce the thermal resistance from the chip to the heat sink. However, voids formation in STIMs impedes heat transfer and results in increase in chip temperature. The package with larger solder voids results in higher thermal stress and will gradually formed a hot spot which later will contribute to the failure of a device. The excess heat melts the materials, warps and breaks the structure of semiconductor dies (Lakshminarayanan V., 1999).

Figure 2.1: Simulated temperature distribution (colour) and arrows using FEA in cylindrical coordinates with a contact resistance of $1010^{-5} km^2/W$ at Silicon/TIM and TIM/copper interfaces (Xuejiao H., Linan J., Kenneth E.G., 2004).

A study on void percentage that contributes to thermal resistance has been successfully modelled by a research. The research has concluded that thermal resistance increases as the solder void increases in Figure 2.3 (Otiaba et al., 2011).

Figure 2.2: Thermal resistance due to different void styles (Otiaba et al., 2011).

2.4 Design of Experiment

By using designed experiment, the outcome of experiment can help to determine which of the process variables has the greatest influence on process performance. There are many ways to conduct an experiment. If the number of factors in a factorial experiment is too large, two levels for each factor is usually analysed which are the minimum and maximum effect. If there is *k*-factor set for two levels each, the total of experimental combinations is 2^k , which is called 2^k experimental design. The notations used to express the levels are "-1" to denote low and "+1" to denote high.

The interaction factors are called effect and calculated using formula $C^{k}_{j} = \frac{k!}{j!(k-j)!}$, where *j* denotes *j*-factor interaction. Table 2.1 shows the main and interaction factor, number of effects, and factor designator for k = 2, 3, 4 and 5.

k Factor	No of effects 2 ^k -1	Main Factor	Two-factor Interaction	Three-factor Interaction	Four-factor Interaction	Five-factor Interaction
1	1	1	0	0	0	0
-	1	A	-	-	-	-
2	2	2	1	0	0	0
2	2	A, B	AB	-	-	-
2	7	3	2	1	0	0
3	/	A, B, C	AB, AC, BC	ABC	-	-
		4	6	4	1	0
4	15	A, B, C, D	AB, AC, AD, BC, BD, CD	ABC, ABD, ACD, BCD	ABCD	-
		5	10	10	5	1
5	31	A, B, C, D, E	AB, AC, AD, AE, BC, BD, BE, CD, CE, DE	ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE,	ABCD, ABCE, ABDE, ACDE, BCDE	ABCDE

Table 2.1: Main and interaction factor, number of effects, and factor designator for k = 2, 3, 4 and 5.

The total sum of squares SST is equal to $SST = \sum_{i=1}^{2^k} \sum_{k=1}^n y^{2_{ik}} - \frac{(\sum_{i=1}^{2^k} \sum_{k=1}^n y^{ik})^2}{2^k n}$. This is because, each factor is set to two levels only. The degrees of freedom are $(2^k n - 1)$. The formula for calculating the sum of squares for every factor and sum of square of error is shown in equation 2.1.

$$SS(any factor) = \frac{(Sum of observation at "-"level)^2}{(Number of observation at -level)^2} + \frac{(Sum of observation at "+"level)^2}{(Sum of observation at "+"level)^2} - \frac{(Grand sum of all observations)^2}{(Total number of observations)}$$

Sum of Square of Error = Total sum of squares – Sum of squares for all factors

(2.1)

Where "-1" denotes low level of factor j and "+1" indicates high level of factor j. For any factors, its degrees of freedom is (2 -1). The total degrees of freedom is (2^{*k*}n-1), whilst the degrees of freedom for error is number of effect multiplied by number of duplicate. The formula to calculate Mean Square of any factor and Mean Square of error is as per equation 2.2 below.

Mean Square (any factor) = $\frac{Sum \ of \ square \ of \ (any \ factor)}{Degreees \ of \ Freedom \ (any \ factor)}$

Mean Square (Error) =
$$\frac{Sum \ of \ square \ of \ error}{Degrees \ of \ freedom \ for \ error}$$

(2.2)

Calculated F-Value is per equation 2.3;

Calculated F-Value =
$$\frac{Mean Square (any factor)}{Mean Square (Error)}$$
(2.3)

The analysis of variance ANOVA for all factors and the F-test matrix is summarizes per table 2.2.

Factor	Sum of	Degrees of	Mean Square	Calculated F-	F-value
	Square	freedom		Value	from
					statistical
					table
А	SSA	(2 – 1)	SSA/(2-1)	MSA/MSE	Fα[(2-
					1), $(2^{k}n -$
					1) —
					$(2^{k} - 1)$
ABCDE	SSABCDE	(2 – 1)	$SS_{ABCDE}/(2 -$	MABCDE/MSE	
			1)		
					Fa [(2 -
					1)(b-1)(c-
					1)(d-1)(e-
					1),
					abcde(n-
					1)]
ERROR	SSE	(2 ^k n)-	$MSE/(2^kn)$ -	-	-
		$(2^{k}-1)$	$(2^{k}-1)$		
TOTAL	SSt	$(2^k n-1)$	-	-	-

Table 2.2: ANOVA table for five factor two level design

 $(T_1 - T_2)$ is called as contrast of the factor. T_1 indicates the "+1" value of factor while T_2 indicates the "-1" value of factor. Equation 2.4 shows the contrast value calculation. Thus, the contrast values for all the factors are tabulated per Table 2.3.

Contrast value (any factor) = Sum of T_1 – Sum of T_2

(2.4)

The associated effect of factor can be calculated per formula 2.5

Associated Effect of any main factor or interaction =
$$2(T_1-T_2)/2^k$$

(2.5)

Associated effect allows one to know the effect of the factor on the output response. A positive value means factor has direct effect on the output response while negative value means factor has negative effect on the output response.

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter contains the project timeline and experimental procedures conducted in this study. Six sigma tools have identified the possible root cause which are not optimized die attach parameter. DOE will be conducted to validate the root cause. The procedure of DOE will be explained further in this chapter.

3.2 Project Timeline

Table 3.1 shows the Gantt chart on the project progress.

Details	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13
Project Report											
selection											
Confirmation of											
Project Report											
Submission of Project											
Proposal											
Define Phase											
Problem statement											
and objective											
Measure phase											
SIPOC mapping											
Key Indicator											
(KPIV/KPOV)											
Analyze											
Top down chart											
Is and Is Not mapping											
Fishbone Diagram											
Design Of Experiment											

Table 3.1: Gantt chart on project progress

3.3 DOE matrix and arrangement

The DOE was conducted using Alphasem E8003 die bonder and conducted on the morning shift. Listed in table 3.2 are the materials involved on this experiment;

Setting	Description
Lead Frame	Copper based lead frame
Solder Paste	PbSnAg
Collet	Rubber and Delrin collet
Input parameter	Pick force, bond force, needle height, separation time and post ejection delay
Sample size	6 units per run

Table 3.2: DOE setting at die attach area

Table 3.3 shows severity guidelines for the crack die analysis for DOE.

Value	Justification
100	Vertical crack line same as customer return pattern
85	Vertical crack line from bottom
70	Lateral Crack
60	Shell chip at die bottom
30	Random chipping at die bottom (big size)
20	Corner Chip
5	Random chipping at die bottom (small size)
0	No crack and chip die

Table 3.3:	Severity	rating	based	on	value
1 uoie 5.5.	Severing	raung	ouseu	on	, arac

3.4 Design of Experiment method

The design of experiment designed using five factor two level experiment. Table 3.4 contains all two level five factors die attach parameters to be performed in the DOE full factorial plan with 6 selected sample. The parameter limit setting is set using current die attach setting limit.

Factor	Low	High				
Collet type A	Rubber	Delrin				
Separation time B	20ms	80ms				
Pick Force C	0.6N	1.0N				
Bond Force D	0.6N	1.0N				
Ejector needle height E	0.6mm	0.9mm				

Table 3.4: Full factorial DOE five factor two levels

Table 3.5 shows the full factorial DOE plan. Table 3.6 lists all possible interaction factors from the main factors. The notations used to express the levels are "-1" to denote low and "+1" to denote high. Note that 31 interaction factor column in Table 3.6 is a product of all combination of A,B, C, D, E. To estimate an effect, a table of plus and minus which indicates high and low levels of factor A, B, C, D and E can be used through through

Rım	Run						Duplicate						
IXuii	Α	В	С	D	Е	1	2	3	4	5	6	ent	
1	Rubber	20ms	0.6N	0.6N	0.6mm								
2	Rubber	20ms	0.6N	0.6N	0.9mm								
3	Rubber	20ms	0.6N	1.0N	0.6mm								
4	Rubber	20ms	0.6N	1.0N	0.9mm								
5	Rubber	20ms	1.0N	0.6N	0.6mm								
6	Rubber	20ms	1.0N	0.6N	0.9mm								
7	Rubber	20ms	1.0N	1.0N	0.6mm								
8	Rubber	20ms	1.0N	1.0N	0.9mm								
9	Rubber	80ms	0.6N	0.6N	0.6mm								
10	Rubber	80ms	0.6N	0.6N	0.9mm								
11	Rubber	80ms	0.6N	1.0N	0.6mm								
12	Rubber	80ms	0.6N	1.0N	0.9mm								
13	Rubber	80ms	1.0N	0.6N	0.6mm								
14	Rubber	80ms	1.0N	0.6N	0.9mm								
15	Rubber	80ms	1.0N	1.0N	0.6mm								
16	Rubber	80ms	1.0N	1.0N	0.9mm								
17	Delrin	20ms	0.6N	0.6N	0.6mm								
18	Delrin	20ms	0.6N	0.6N	0.9mm								
19	Delrin	20ms	0.6N	1.0N	0.6mm								
20	Delrin	20ms	0.6N	1.0N	0.9mm								
21	Delrin	20ms	1.0N	0.6N	0.6mm								
22	Delrin	20ms	1.0N	0.6N	0.9mm								
23	Delrin	20ms	1.0N	1.0N	0.6mm								
24	Delrin	20ms	1.0N	1.0N	0.9mm								
25	Delrin	80ms	0.6N	0.6N	0.6mm								
26	Delrin	80ms	0.6N	0.6N	0.9mm								
27	Delrin	80ms	0.6N	1.0N	0.6mm								
28	Delrin	80ms	0.6N	1.0N	0.9mm								
29	Delrin	80ms	1.0N	0.6N	0.6mm								
30	Delrin	80ms	1.0N	0.6N	0.9mm								
31	Delrin	80ms	1.0N	1.0N	0.6mm								
32	Delrin	80ms	1.0N	1.0N	0.9mm								

Table 3.5: Full factorial DOE plan

	F	acto	rs				-			-							Inte	eracti	on Fa	ctor				-											
Α	В	С	D	Е	Α	AB	ABC	ABCD	ABCDE	ABCE	ABD	ABDE	ABE	AC	ACD	ACDE	ACE	AD	ADE	AE	В	BC	BCD	BCDE	BCE	BD	BDE	BE	CC	DC	DE (CE	D	Е	ED
-1	-1	-1	-1	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1 ·	-1	1	-1	-1	1
-1	-1	-1	-1	1	-1	1	-1	1	1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	1	-1	-1	1	1	1	-1	-1	1	1	-1	-1	1	-1
-1	-1	-1	1	-1	-1	1	-1	-1	1	1	1	-1	-1	1	1	-1	-1	-1	1	1	-1	1	1	-1	-1	-1	1	1	-1 -	1	1	1	1	-1	-1
-1	-1	-1	1	1	-1	1	-1	-1	-1	-1	1	1	1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1 -	1 ·	-1	-1	1	1	1
-1	-1	1	-1	-1	-1	1	1	-1	1	-1	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1	1	-1	1	1 -	1	1	-1	-1	-1	1
-1	-1	1	-1	1	-1	1	1	-1	-1	1	-1	-1	1	-1	1	1	-1	1	1	-1	-1	-1	1	1	-1	1	1	-1	1 -	1 -	-1	1	-1	1	-1
-1	-1	1	1	-1	-1	1	1	1	-1	-1	1	-1	-1	-1	-1	1	1	-1	1	1	-1	-1	-1	1	1	-1	1	1	1	1 ·	-1	-1	1	-1	-1
-1	-1	1	1	1	-1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1
-1	1	-1	-1	-1	-1	-1	1	-1	1	-1	1	-1	1	1	-1	1	-1	1	-1	1	1	-1	1	-1	1	-1	1	-1	-1	1 ·	-1	1	-1	-1	1
-1	1	-1	-1	1	-1	-1	1	-1	-1	1	1	1	-1	1	-1	-1	1	1	1	-1	1	-1	1	1	-1	-1	-1	1	-1	1	1	-1	-1	1	-1
-1	1	-1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	1	1	-1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	-1 -	1	1	1	1	-1	-1
-1	1	-1	1	1	-1	-1	1	1	1	1	-1	-1	-1	1	1	1	1	-1	-1	-1	1	-1	-1	-1	-1	1	1	1	-1 -	·1 ·	-1	-1	1	1	1
-1	1	1	-1	-1	-1	-1	-1	1	-1	1	1	-1	1	-1	1	-1	1	1	-1	1	1	1	-1	1	-1	-1	1	-1	1 -	1	1	-1	-1	-1	1
-1	1	1	-1	1	-1	-1	-1	1	1	-1	1	1	-1	-1	1	1	-1	1	1	-1	1	1	-1	-1	1	-1	-1	1	1 -	1 ·	-1	1	-1	1	-1
-1	1	1	1	-1	-1	-1	-1	-1	1	1	-1	1	1	-1	-1	1	1	-1	1	1	1	1	1	-1	-1	1	-1	-1	1	1 ·	-1	-1	1	-1	-1
-1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	-1	-1	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	-1	1 ·	-1	1	-1	-1	1
1	-1	-1	-1	1	1	-1	1	-1	-1	1	1	1	-1	-1	1	1	-1	-1	-1	1	-1	1	-1	-1	1	1	1	-1	-1	1	1	-1	-1	1	-1
1	-1	-1	1	-1	1	-1	1	1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1 -	1	1	1	1	-1	-1
1	-1	-1	1	1	1	-1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	1	1	1	-1	1	1	1	1	-1	-1	-1	-1 -	1 -	-1	-1	1	1	1
1	-1	1	-1	-1	1	-1	-1	1	-1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	1	-1	1	1	-1	1	1 -	1	1	-1	-1	-1	1
1	-1	1	-1	1	1	-1	-1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	1	-1	1	1	-1	1 -	1 -	-1	1	-1	1	-1
1	-1	1	1	-1	1	-1	-1	-1	1	1	-1	1	1	1	1	-1	-1	1	-1	-1	-1	-1	-1	1	1	-1	1	1	1	1 ·	-1	-1	1	-1	-1
1	-1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1
1	1	-1	-1	-1	1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	-1	1 ·	-1	1	-1	-1	1
1	1	-1	-1	1	1	1	-1	1	1	-1	-1	-1	1	-1	1	1	-1	-1	-1	1	1	-1	1	1	-1	-1	-1	1	-1	1	1	-1	-1	1	-1
1	1	-1	1	-1	1	1	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1	-1	-1	1	1	1	-1	-1	-1 -	1	1	1	1	-1	-1
1	1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	-1 -	1 ·	-1	-1	1	1	1
1	1	1	-1	-1	1	1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1 -	1	1	-1	-1	-1	1
1	1	1	-1	1	1	1	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	1	-1	-1	1	-1	-1	1	1 -	1 ·	-1	1	-1	1	-1
1	1	1	1	-1	1	1	1	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	1	-1	-1	1	-1	-1	1	1 ·	-1	-1	1	-1	-1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Table 3.6: Full factorial DOE plan interaction factor

3.5 Failure analysis method using destructive test

All samples of DOE experiment are decapsulated, and performed inspection of severity of crack, and table the results shown in Table 3.5.

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

Prior to the DOE, all the root cause investigation were conducted through the usage of DMAIC tools. This chapter will discuss about the outcome of the DOE conducted per methodology section which are the DOE decapsulation results, the severity rating tabulated results, analysis of variance and associate Effect analysis and discussion, and the optimized setting.

4.2 DOE decapsulation result

Results of decapsulation for the analysing the crack with sample results shown in Table 4.1.

Table 4.1: Sampling of decapsulation unit result

Percentage	Justification	Image
100	Vertical crack line same as customer return pattern	
85	Vertical crack line from bottom	
70	Lateral Crack	
60	Shell chip at die bottom	

30	Random chipping at die bottom (big size)	
20	Corner Chip	
5	Random chipping at die bottom (small size)	
0	No crack and chip	

The tabulated results of the DOE is shown in Table 4.2.

Dun			Factor					Dupl	icate			Sum of
Kull	Α	В	С	D	E	1	2	3	4	5	6	Experiment
1	Rubber	20ms	0.6N	0.6N	0.6mm	0	0	0	0	30	0	30
2	Rubber	20ms	0.6N	0.6N	0.9mm	0	30	0	0	0	0	30
3	Rubber	20ms	0.6N	1.0N	0.6mm	0	0	30	0	0	0	30
4	Rubber	20ms	0.6N	1.0N	0.9mm	0	0	5	5	0	0	10
5	Rubber	20ms	1.0N	0.6N	0.6mm	5	0	0	5	0	0	10
6	Rubber	20ms	1.0N	0.6N	0.9mm	5	0	0	0	0	0	5
7	Rubber	20ms	1.0N	1.0N	0.6mm	0	70	20	0	5	0	95
8	Rubber	20ms	1.0N	1.0N	0.9mm	0	0	60	60	0	0	120
9	Rubber	80ms	0.6N	0.6N	0.6mm	0	0	0	0	0	0	0
10	Rubber	80ms	0.6N	0.6N	0.9mm	0	0	0	0	5	0	5
11	Rubber	80ms	0.6N	1.0N	0.6mm	0	0	0	0	20	0	20
12	Rubber	80ms	0.6N	1.0N	0.9mm	30	0	5	20	0	5	60
13	Rubber	80ms	1.0N	0.6N	0.6mm	0	0	0	0	0	5	5
14	Rubber	80ms	1.0N	0.6N	0.9mm	5	0	0	5	0	0	10

Table 4.2: Tabulated result of DOE

15	Rubber	80ms	1.0N	1.0N	0.6mm	30	5	0	5	30	0	70
16	Rubber	80ms	1.0N	1.0N	0.9mm	0	0	70	30	0	0	100
17	Delrin	20ms	0.6N	0.6N	0.6mm	0	30	0	0	5	0	35
18	Delrin	20ms	0.6N	0.6N	0.9mm	60	0	0	0	5	0	65
19	Delrin	20ms	0.6N	1.0N	0.6mm	0	30	0	5	0	5	40
20	Delrin	20ms	0.6N	1.0N	0.9mm	70	0	0	0	0	60	130
21	Delrin	20ms	1.0N	0.6N	0.6mm	0	5	0	30	0	0	35
22	Delrin	20ms	1.0N	0.6N	0.9mm	5	70	70	30	5	5	185
23	Delrin	20ms	1.0N	1.0N	0.6mm	30	70	20	0	0	0	120
24	Delrin	20ms	1.0N	1.0N	0.9mm	0	85	100	60	5	100	350
25	Delrin	80ms	0.6N	0.6N	0.6mm	0	0	0	30	30	5	65
26	Delrin	80ms	0.6N	0.6N	0.9mm	5	5	0	0	85	20	115
27	Delrin	80ms	0.6N	1.0N	0.6mm	20	0	0	30	0	30	80
28	Delrin	80ms	0.6N	1.0N	0.9mm	0	60	0	5	5	0	70
29	Delrin	80ms	1.0N	0.6N	0.6mm	30	0	0	20	5	30	85
30	Delrin	80ms	1.0N	0.6N	0.9mm	60	5	5	5	20	5	100
31	Delrin	80ms	1.0N	1.0N	0.6mm	30	0	30	5	30	5	100
32	Delrin	80ms	1.0N	1.0N	0.9mm	20	5	20	60	85	70	260

4.3 Analysis of Variance and Associate Effect Analysis and Discussion

Total sum of square calculation;

$$SST = \sum_{i=1}^{2^5} \sum_{k=1}^{6} y^2_{ik} - \frac{(\sum_{l=1}^{2^5} \sum_{k=1}^{6} y^{lk})^2}{(2^5)(6)}$$

= 99934.24

The sum of squares, degrees of freedom, mean square value and calculated Fvalue was calculated per formula given in chapter 2 sub-section 2.4 and the result was tabulated in Table 4.3. The analysis of variance ANOVA for all factors and the F-test results for α =0.05 or 95% confidence level are analysed and compared with Fvalue from F-table (Appendix C).

Factor	Sum of square of	Degrees of Freedom of	Mean square	Calculated F-value	F-Value from F-Table @ α=0.05	Remarks
А	7943.8802	1	7943.8802	18.29	F0.05 [1,161] =3.89	Significant
AB	3.2552	1	3.2552	0.01	F0.05 [1,161] =3.89	Not significant
ABC	159.5052	1	159.5052	0.37	F0.05 [1,161] =3.89	Not significant
ABCD	141.7969	1	141.7969	0.33	F0.05 [1,161] =3.89	Not significant
ABCDE	312.6302	1	312.6302	0.72	F0.05 [1,161] =3.89	Not significant
ABCE	29.2969	1	29.2969	0.07	F0.05 [1,161] =3.89	Not significant
ABD	263.6719	1	263.6719	0.61	F0.05 [1,161] =3.89	Not significant
ABDE	57.4219	1	57.4219	0.13	F0.05 [1,161] =3.89	Not significant
ABE	693.8802	1	693.8802	1.60	F0.05 [1,161] =3.89	Not significant
AC	854.2969	1	854.2969	1.97	F0.05 [1,161] =3.89	Not significant
ACD	37.6302	1	37.6302	0.09	F0.05 [1,161] =3.89	Not significant
ACDE	178.2552	1	178.2552	0.41	F0.05 [1,161] =3.89	Not significant
ACE	693.8802	1	693.8802	1.60	F0.05 [1,161] =3.89	Not significant
AD	15.7552	1	15.7552	0.04	F0.05 [1,161] =3.89	Not significant
ADE	125.1302	1	125.1302	0.29	F0.05 [1,161] =3.89	Not significant
AE	2100.1302	1	2100.1302	4.83	F0.05 [1,161] =3.89	Significant
В	109.5052	1	109.5052	0.25	F0.05 [1,161] =3.89	Not significant
BC	287.6302	1	287.6302	0.66	F0.05 [1,161] =3.89	Not significant
BCD	68.8802	1	68.8802	0.16	F0.05 [1,161] =3.89	Not significant
BCDE	81.3802	1	81.3802	0.19	F0.05 [1,161] =3.89	Not significant
BCE	159.5052	1	159.5052	0.37	F0.05 [1,161] =3.89	Not significant
BD	81.3802	1	81.3802	0.19	F0.05 [1,161] =3.89	Not significant
BDE	0.1302	1	0.1302	0.00	F0.05 [1,161] =3.89	Not significant
BE	218.8802	1	218.8802	0.50	F0.05 [1,161] =3.89	Not significant
С	3897.0052	1	3897.0052	8.97	F0.05 [1,161] =3.89	Significant
CD	2443.8802	1	2443.8802	5.63	F0.05 [1,161] =3.89	Significant
CDE	365.7552	1	365.7552	0.84	F0.05 [1,161] =3.89	Not significant
CE	940.7552	1	940.7552	2.17	F0.05 [1,161] =3.89	Not significant
D	3987.6302	1	3987.6302	9.18	F0.05 [1,161] = 3.89	Significant
E	3291.7969	1	3291.7969	7.58	F0.05 [1,161] =3.89	Significant
ED	453.2552	1	453.2552	1.04	F0.05 [1,161] =3.89	Not significant
Error	69936.4583	161	434.3879	-	-	
Total	99934.24479	192	-	-	-	

Table 4.3: ANOVA table for five-factor two level design

Table 4.4: Significant factor in ANOVA table

Significant factor	Interaction
А	Collet type
В	Separation Time
Е	Ejector needle height
A*B	Collet type and separation time
A*B*C*D	Collet type, separation time, pick force, bond force
A*B*C*D*E	All interaction
A*B*E	Collet type, separation time and needle height
A*C*D	Collet type, pick force, bond force
A*C*D*E	Collet type, needle height, pick force, bond force
A*E	Collet type and needle height

B*C*D	Separation time, pick force, bond force				
B*C*D*E	Separation time, pick force, bond force, needle height				
B*E	Separation time and needle height				
C*D	Pick force and bond force				
C*D*E	Pick force, bond force, needle height				

All of the calculated F-value is compared to F-value from F [1, 161] at α =0.05 or 95% confidence level, which is 3.89. Table 4.3 summarizes the main factor and interaction factors that significantly contribute to crack die. The DOE shows that main factor A, C, D and E and interaction factor AE and CD can significantly cause crack die. All the other factors calculated F-Value is lesser than given F-value from α =0.05 table thus can be classified as not significant. Table 4.6 lists all the contrast values and the associated effects of factors.

Factors	Sum of "-	Sum of ''+1''	Contrast	Associated factor		
A	600	1835	-1235	-12.8646		
B	1290	1145	145	1.5104		
С	785	1650	-865	-9.0104		
D	780	1655	-875	-9.1146		
Е	820	1615	-795	-8.2813		
AB	1230	1205	25	0.2604		
ABC	ABC 1305 1130 17		175	1.8229		
ABCD	D 1135 1300 -165		-165	-1.7188		
ABCDE	1095	1340 -245		-2.5521		
ABCE	1255	1180	75	0.7813		
ABD	1330	1105	225	2.3438		
ABDE	1270	1165	105	1.0938		
ABE	1400	1035	365	3.8021		
AC	1015	1420	-405	-4.2188		
ACD	ACD 1175 1260 -85		-0.8854			
ACDE	CDE 1125 1310 -185		-1.9271			
ACE	CE 1035 1400 -365 -		-3.8021			
AD	1190	1245	-55	-0.5729		

Table 4.5: Contrast values and associated factors

ADE	1140	1295	-155	-1.6146
AE	900	1535	-635	-6.6146
BC	1335	1100	235	2.4479
BCD	1275	1160	115	1.1979
BCDE	1155	1280	-125	-1.3021
BCE	1305	1130	175	1.8229
BD	1280	1155	125	1.3021
BDE	1220	1215	5	0.0521
BE	1320	1115	205	2.1354
CD	CD 875 1560		-685	-7.1354
CDE	DE 1085 1350 -2		-265	-2.7604
CE	1005	1430	-425	-4.4271
ED	1070	1365	-295	-3.0729

From the table 4.4 result, the effect due to factor A is the highest contrast value which is -12.86 compared to factor D which is -9.1146 and followed by factor C and factor E.

The results has shown by using rubber collet, is the best significant factor to reduce the crack die occurrence. The association factor shows the higher the negative value, the better the improvement on the crack die. It indicates that lower bond force, pick force and ejector needle can contribute to improvement on the crack die.

Factor	Current setting	Proposed setting
Collet type A	Delrin	Rubber
Pick Force C	0.9N	0.6N
Bond Force D	0.9N	0.6N
Ejector needle height E	0.9mm	0.6mm

Table 4.6: Proposed die attach setting

By using the proposed die attach settings, no crack die was observed after sampling of one hundred units from the production lots.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

A lot of studies have been done regarding crack die improvement in semiconductor field. There are many factors that may contribute to crack die such as die bond parameter not optimized, silicon defect during wafer fabrication process, solder void issue during reflow, CTE mismatch, mechanical stress, insufficient solder thickness and package stress. Thus, studies from similar defect mode are greatly contributing to this crack die improvement project to understand the crack mechanism and narrow down the possible root cause.

The DOE performed able to replicate the customer return crack pattern. Based on the DOE results, four out of five main factors which are collet type, pick force, bond force and ejector needle settings was identified to significantly contribute to die crack issue. The associated effect was studied to obtain the optimized setting. The results shown that rubber type collet is the most contributing factor to reduce crack die follows by lower pick force, bond force and ejector needle. The optimized parameter was implemented and no crack die was observed after sampling of one hundred units from production lots.

5.2 **Recommendations for future work**

The DOE results in this project have shown the significant factor contributing to crack die. However, future work for this project is to replicate this experiment through Taguchi method to find the best optimized parameter for die attach area.

REFERENCES

Hitachi High-Technologies Corporation, (2019) 'Semiconductor Manufacturing Process' Retrieved from: <u>https://www.hitachi-hightech.com/global/products/device/semiconductor/process.html</u>

Lee, Y.C. and Chen, W.T., (1998) 'Manufacturing Challenges in Electronic Packaging' University of Colorado, Boulder, CO, USA: Chapman & Hall.

Dexin, Z., Song, H., Li, Y., Tan, H. and Qianghua, P. (2006) 'Packaging Challenges for Miniaturized SOT Packages', *Thirty-First IEEE/CPMT International Electronics Manufacturing Technology Symposium*, Petaling Jaya, 2006, pp. 7-12.

Kengen, M., Peels, W., and Heyes, D. (2009) 'Development of matrix clip assembly for power MOSFET packages', *European Microelectronics and Packaging Conference*, Rimini, 2009, pp. 1-4.

Liu, L., Jiang, W., Liu, Q., Lin, W., Miao, X. and Shi, L. (2018) Investigation on Copper Clip Bonding Structure for Power Package, 2018 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, 2018, pp. 1042-1046.

'Sticky Issues With Semiconductor Processing Tape' (1996). Available at: <u>https://www.semicorp.com/articles/published-articles/item/sticky-issues-with-semiconductor-processing-tape</u>

Amri, M.S, Liew, D. and Harun, F. (2010) 'Chipping free process for combination of narrow saw street (60um) and thick wafer (600um) sawing process', 2010 34th IEEE/CPMT International Electronic Manufacturing Technology Symposium (IEMT), Melaka, 2010, pp. 1-5.

Hing, T. W., Samsun P., and Teng, W. H. (2014). 'Challenges of super high thermal performance adhesive in power device application', *Proceedings of the 5th*

Electronics System-integration Technology Conference (ESTC), Helsinki, 2014, pp. 1-6.

'Encapsulation and Modern Molding' (2005). Available at: <u>https://electroiq.com/2005/10/encapsulation-and-modern-molding/</u>

Tanaka, Y. and Watanabe, I. (2018) 'Latest developments of molding compound material for power semiconductors', *China Semiconductor Technology International Conference (CSTIC)*, Shanghai, 2018, pp. 1-3.

Vijayakumar B. and Guo, Y. (2006) 'Failure rate prediction and prevention of die cracking in over molded plastic packages', *Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems. ITHERM 2006.*, San Diego, CA, 2006, pp. 6 pp.-803.

Su, P., Khan, B., and Ding, M. (2010) 'An evaluation of die crack risk of overmolded packages due to external impact', *Proceedings 60th Electronic Components* and Technology Conference (ECTC), Las Vegas, NV, 2010, pp. 1631-1636.

Wang, K. P., Huang, Y. Y., Chandra, A. and Hu, K. X. (2000) 'Interfacial shear stress, peeling stress, and die cracking stress in trilayer electronic assemblies', in *IEEE Transactions on Components and Packaging Technologies*, vol. 23, no. 2, pp. 309-316, June 2000.

Tan, Y. H. and Liau, W. S. (2018) 'Co-relationship of the Die Attach Machine Dynamic Impact Force Trend with Cracked Die Occurrences for Shrink Chip Package', *IEEE 38th International Electronics Manufacturing Technology Conference (IEMT)*, Melaka, 2018, pp. 1-7.

Fisher-Cripps A. (2005) 'The IBIS handbook of nanoindentation'. Sydney, Australia: Fisher-Cripps Laboratories Pty. Limited, (NSW, 2009), pp. 8-11.

Annaniah L. and Devarajan, M. (2016) 'An investigation on AlInGaP die crack during LED die attach process', *IEEE 37th International Electronics Manufacturing Technology (IEMT) & 18th Electronics Materials and Packaging (EMAP) Conference*, George Town, 2016, pp. 1-5.

Looe, S. H. and Wang, S. W. (2008) 'Challenges & solutions in the die attach process for micro thin die', *33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)*, Penang, 2008, pp. 1-5.

Ranjan, M., Gopalakrishnan, L., Srihari, K. and Woychik, C. (1998) 'Die cracking in flip chip assemblies', *1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No.98CH36206)*, Seattle, WA, USA, 1998, pp. 729-733.

Pavio, J. and Hyde, D. (1991) 'Effects of coefficient of thermal expansion mismatch on solder attached GaAs MMICs', *1991 IEEE MTT-S International Microwave Symposium Digest*, Boston, MA, USA, 1991, pp. 1075-1078 vol.3. Chen, K. M. (2009) 'Die crack study for 40 nm lead free flip chip packaging', 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, 2009, pp. 730-733.

Yeo, S. M., Mahmood A. and Yazid, N. A. M. (2018) 'Die Pop Challenge and Comprehensive Solutions in Vacuum Reflow Technology for Semiconductor Packaging', 2018 IEEE 38th International Electronics Manufacturing Technology Conference (IEMT), Melaka, 2018, pp. 1-5.

Hanss, A., Liu, E., Schmid, M. and Elger, G. (2015) 'The influence of voids in solder joints on thermal performance and reliability investigated with transient thermal analysis', 2015 21st International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Paris, 2015, pp. 1-6.

'Six Sigma is Primarily a Management Program' (2019) Available at: <u>https://www.pyzdekinstitute.com/blog/six-sigma/six-sigma-is-primarily-a-management-program-2.html</u>

The history of Lean Six Sigma (2019) Available at: <u>https://www.kcg.com.sg/the-history-of-lean-six-sigma/</u>

Michael L. G., David R., Mark P. and John M. (2005) *Lean Six Sigma Pocket Tool Book.* New York: McGraw-Hill

Tran, Son & Dupont, Laurent & Khatir, Z., (2014) 'Solder void position and size effects on electro thermal behaviour of MOSFET transistors in forward bias conditions'. *Microelectronics Reliability*. 54. 10.1016/j.microrel.2014.07.152.

Xuejiao H., Jiang, L. and Goodson, K. E. (2004). 'Thermal characterization of eutectic alloy thermal interface materials with void-like inclusions', *Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium* (*IEEE Cat. No.04CH37545*), San Jose, CA, USA, 2004, pp. 98-103.

What causes semiconductor devices to fail? (1999) Available at: <u>https://www.edn.com/electronics-news/4382044/What-Causes-Semiconductor-Devices-to-Fail-</u>

Otiaba, Kenny & Bhatti, Raj & Ekere, N.N. & Mallik, S & Amalu, Dr Emeka & Ekpu, Mathias, (2011) 'Thermal effects of die-attach voids location and style on performance of chip level package'. *3rd IEEE International Conference on Adaptive Science and Technology*, ICAST 2011, Proceedings. 10.1109/ICASTech.2011.6145176.

APPENDICES

Appendix A: Crack die pattern

Top Side	Back side	Remarks
Fragment "1" D E Fragment "2"	Fragment "1"	Vertical crack
	G	Diagonal crack
N/A		Lateral crack

Appendix B: Crack die image mapping vs solder void location

			Degrees of freedom in the numerator								
		р	1	2	3	4	5	6	7	8	9
		.100	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.8
		.050	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.2
	28	.025	5.61	4.22	3.63	3.29	3.06	2.90	2.78	2.69	2.6
		.010	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.1
		.001	13.50	8.93	7.19	6.25	3.66	5.24	4.93	4.69	4.5
		.100	2.89	2.50	2.28	2.15	2.06	1.99	1.93	1.89	1.8
	12.2.27	.050	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.2
	29	.025	5.59	4.20	3.61	3.27	3.04	2.88	2.76	2.67	2.5
		.010	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.0
		.001	13.39	6.83	7.12	6.19	2.39	5.18	4.87	4.64	4.4
		.100	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.8
		.050	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.2
	30	.025	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.5
		.010	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.0
		.001	13.29	8.77	7.05	6.12	5.53	5.12	4.82	4.58	4.3
		.100	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.7
		.050	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.1
	40	.025	5.42	4.05	3.46	3.13	2.90	2.74	2.62	2.53	2.4
200		.010	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.8
		.001	12.61	8.25	6.39	5.70	5.13	4.73	4.44	4.21	4.0
100		.100	2.81	2.41	2.20	2.06	1.97	1.90	1.84	1.80	1.7
8		.050	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.0
8	50	.025	5.34	3.97	3.39	3.05	2.83	2.67	2.55	2.46	2.3
		.010	7.17	5.06	4.20	3.72	3.41	3.19	3.02	2.89	2.7
8		.001	12.22	7.96	6.34	5.46	4.90	4.51	4.22	4.00	3.8
		.100	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.7
		.050	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.0
	60	.025	5.29	3.93	3.34	3.01	2.79	2.63	2.51	2.41	2.3
n.		.010	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.7
212		1001	11.97	1.11	0.17	5.31	4.70	9.57	4.09	3,80	.5.0
5		.100	2.76	2.36	2.14	2.00	1.91	1.83	1.78	1.73	1.6
		.050	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.9
	100	.025	5.18	3.83	3.25	2.92	2.70	2.54	2.42	2.32	2.2
		.010	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.5
		.001	11.50	7.41	5.86	5.02	4.48	4.11	3.83	3.61	3,4
		.100	2.73	2.33	2.11	1.97	1.88	1.80	1.75	1.70	1.6
	1213.00	.050	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.9
	200	.025	5.10	3.76	3.18	2.85	2.63	2.47	2.35	2.26	2.1
		.010	6.76	4.71	3.88	3.41	3.11	2.89	2.73	2.60	2.5
		1001	11.15	7.15	5.63	4.81	4.29	3.92	3.65	3.43	3.2
		.100	2.71	2.31	2.09	1.95	1.85	1.78	1.72	1.68	1.6
	-	.050	3.85	3.00	2.61	2.38	2.22	2.11	2.02	1.95	1.8
	1000	.025	5.04	3.70	3.13	2.80	2.58	2.42	2.30	2.20	2.1
		.010	6.66	4.63	3.80	3.34	3.04	2.82	2.66	2.53	2.4

Appendix C: F-Tables at α=0.05