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PERFORMANCE OPTIMIZATION OF COMMERCIAL PHOTOVOLTAIC 

TECHNOLOGIES UNDER LOCAL SPECTRAL IRRADIANCES USING 

MACHINE LEARNING 

 

 

ABSTRACT 

 

 

The irradiance from the sun or solar spectral can have significant variance in different 

locations due to the latitude, humidity, cosine effect of incident sunlight.  Performance 

of the outdoor photovoltaic (PV) modules is greatly influenced by the spectrum.  In 

this study, the effects of the local spectral irradiance on outdoor PV modules is of 

interest.  With similar irradiance and operating temperature, the performance of the 

PV modules at different locations differ as compared with the benchmark AM1.5G 

results.  In order to predict the actual PV module performance under local climate 

conditions, a total of five locations in Peninsular Malaysia are considered.  Twelve 

solar PV modules from different manufacturers and materials are analysed.  Two sets 

of experiments were conducted using variants of Genetic Algorithms, where the PCE 

at different irradiance levels is first taken into account.  Then, a multi-objective 

problem involving several parameters of the solar module is considered.  Results from 

the study show that there is a gap from the AM1.5G results with the results from the 

five locations being analysed. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

Renewable energy consists of various systems from solar photovoltaic (PV), wind 

turbines, to tidal energy.  Solar PV has been one of the most popular options, due to 

its simplicity of harvesting energy that is abundant from the sun.  It is especially viable 

in rural electrification and proved to be a cost-efficient way to electrify rural areas in 

developing countries (Ma et al., 2017).  Demand for the solar PV systems has risen 

over the years as a method in reducing the dependency of using fossil fuels.  There has 

been a constant increase of investments, from both the government and private sector 

in terms of research for better and cheaper solar modules and systems, and the use of 

more solar PV systems (Ma et al., 2017). 

 

It is impossible to measure solar irradiance for every location on earth.  Studies 

have been done to model average solar irradiance over broad geographical areas 

(Norton et al., 2017).  This information, however, does not go into detail by states or 

even cities.  To extract valuable trends in data, it is helpful to classify each spectrum 

using a single metric that is able to balance short and long wavelengths, in relation to 

the Standard Test Conditions (STC) (Norton et al., 2017).  

 

Effect of the difference in spectral irradiance in regards to the performance of 

solar cells is well known by the international community for solar energy. The 

efficiency and power output of PV modules under solar irradiance is typically lower 

than the rated STC.  Other than STC, there is another standard used, which is known 
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as nominal operating conditions (NOC).  Values of STC and NOC for irradiance are 

1000 W/m2 and 800 W/m2, ambient temperature 25 C and 20 C, respectively, with a 

wind speed of 1 m/s for NOC. 

 

To date, the impact of different spectral irradiances on the PV modules is 

mainly weighted based on two widely used parameters: average photon energy (APE) 

and spectral mismatch factor (SMF), which can be seen from numerous studies 

worldwide.  In general, APE is used in classifying solar irradiance from the relative 

energy distribution, over spectrum (Norton et al., 2017).  The work in Norton et al. 

(2017) looks into comparing global spectral distributions from two separate locations, 

which are indexed using APE.  APE can be seen as a good predictor of spectral 

irradiance for both datasets after low irradiance data was filtered (Norton et al., 2017).  

In Horio et al. (2017), the value of APE changes the Isc of PV modules, which have 

possibilities of Isc correction using APE coefficient.  Similar to Horio et al. (2017), Isc 

correction is possible using the APE index in Mano et al. (2017).  In Nofuentes et al. 

(2017), it is noted that APE does not represent the uniqueness of the complete spectrum. 

 

The influence of spectrum variations on perovskite solar cells performance was 

considered in Senthilarasu et al. (2015) under various atmospheric conditions.  

Spectrum losses by the solar cells under various climatic conditions are crucial for the 

solar cell community to increase the stability (Senthilarasu et al., 2015).  Impact on 

varying spectrum irradiance for various PV technologies was made in Dirnberger et al. 

(2015).  Results show that APE did not represent the advantages over spectral 

mismatch factor, and it should be used for qualitative evaluations only (Dirnberger et 

al., 2015). 

 

While STC is typically presented by manufacturers, they do not represent the 

actual climatic conditions around the world (Ishii et al., 2011).  No complete 

information about the energy performance of the PV is given at the installation site 

(De Soto et al., 2006).  In this case, it is essential to know the energy produced under 

actual operating conditions are essential for return-on-investment.  In this context, it is 

essential to monitor and evaluate PV system’s operating performance under local 

conditions as it assists the users to utilize the electricity fully. 
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Not only local conditions matter, the type of material used by the solar module 

matter.  This is due to solar cells respond differently to spectrum at different 

wavelength range (Sirisamphanwong & Ketjoy, 2012).  As an example solar cells 

respond differently at different wavelength ranges, i.e., spectrum responses of a-Si and 

p-Si spectrum response is 305–820 nm and 305–1200 nm, respectively 

(Sirisamphanwong & Ketjoy, 2012).  Though spectrum response of a-Si is smaller than 

p-Si, the spectrum irradiance has a more significant energy response with a-Si 

(Sirisamphanwong & Ketjoy, 2012).  Outputs of Si PV depend on the module 

temperature while in thin-film ones, it depends both on spectrum distribution and 

module temperature (Minemoto et al., 2009).  

 

In recent years, Genetic Algorithms or better known as GA, have been 

commonly used in the domain of solar PV.  GAs are typically used in generating right 

solutions to optimize and search problems.  Improvements of a dynamic electric 

battery model are made using an automated parameter extraction using GA in Blaifi et 

al. (2016).  The proposed GA model in Blaifi et al. (2016) shows an agreement with 

actual measurements in different modes and conditions.  An enhanced evolutionary 

computing model was used in Kumari and Geethanjali (2017) to extract PV design 

parameters using an adaptive GA.  The curve fitting for I-V was used to find the 

optimal PV parameters.  Identifying single-diode model in PV generators under 

outdoor conditions was done in Bastidas-Rodriguez et al. (2017).  Non-linear 

equations in five different operating points were written to be optimized using GA.   

Parameters of a single hybrid channel PV thermal module were optimized in Singh et 

al. (2015).  Optimization was done using GA, where the efficiency for thermal and 

electrical was optimized.  A maximum power point tracking (MPPT) model using a 

modified GA was done in Daraban et al. (2014).  Integrating an MPPT algorithm in 

the GA structure made finding the maximum power point faster by decreasing the 

number of iterations. 
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1.2 Objectives of the Project 

 

The objectives of this research study are as follow: 

 To collect local solar irradiance data from various locations in Peninsular Malaysia; 

 To optimize the performance of the various photovoltaic cells using machine 

learning; 

 To evaluate the best performing photovoltaic technology in given conditions under 

local spectral irradiances. 

 

 

 

1.3 Problem Statement  

 

There is a gap between the results of solar PV in the datasheets and the performance 

of the actual site.  The results in the datasheets are based on laboratory test results 

under the standard air mass 1.5 condition, known as AM1.5G.  As spectral irradiance 

varies from location, and even by city, taking the standard AM1.5G is not a good 

reference point.  Performance of different materials, such as monocrystalline silicon 

and polycrystalline silicon and highly dependent on the spectral response.  It is a 

challenging question in determining for any of these technologies if it is suitable for 

specific climate conditions.  In this study, the research question is: 

 

“How to determine the most suitable PV technology under local spectral 

irradiance to save time and money?” 
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1.4 Research Work 

 

Understanding how the outdoor performance of solar PV modules with factors such as 

the environment is crucial in developing energy ratings.  The Malaysian climate is 

humid and hot with high ambient temperature.  It has indirectly affected the local solar 

spectral irradiance, which is much different from conventional standard AM 1.5.  In 

this research, the local solar irradiance data will be acquired and compared with 

standard irradiance AM 1.5.  Detailed analysis will be done using computer software, 

to analyse the performance of various types of commercially available PV devices to 

obtain the most suitable types for different locations in Malaysia. 

 

In the work of Chong et al. (2016), the efficiency of power conversion under 

different spectral irradiances for organic solar cells was of interest.  In this study, a 

relatively comprehensive methodology based genetic algorithm to obtain the most 

optimized performances of various commercial PV modules under local locations.  

While APE and SMF have been used by other literature, there is no reported work on 

using local spectrum information to commercial PV modules.   

 

As such, the primary contribution in this thesis is to bridge the gap between the 

information provided by the PV manufacturer in the datasheet with the actual spectrum 

at various locations, to get a reasonable estimate of the output power.  There are two 

new knowledge to be added in the current literature gap: 

(1) the use of local spectrum in various locations in Malaysia, which gives a better 

understanding of PV performance, and  

(2) the use of genetic algorithms in optimizing the efficiency rates of the solar 

modules. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

In this section, a review of the various literature, which includes GA and EA is done.  

The areas of focus are on solar PV, PV thermal (PVT), concentrated PV (CPV), and 

PV hybrid. 

 

 

 

2.1 Solar PV 

 

An adaptive GA was used for to extract design parameters for solar PV in Kumari and 

Geethanjali (2017).  The I-V curve fitting method was used in locating optimum PV 

parameters.  The curve fits well at various irradiation levels which enables the use of 

optimum PV parameters, as compared to standard approaches. 

 

Basis GA (BGA) and segmented GA (SGA) was used in Cortés et al. (2018) 

to optimize electricity costs and heating networks in the building.  The aim is to get 

the best energy source configurations to meet electric and heating demands in a period 

of fifteen minutes, which in turn reduces operating costs.  SGA shows to be better than 

BGA in regards to convergence and quality of solutions. 

 

Accurate modelling of PV modules was done in Muhsen et al. (2015) using 

differential evolution with integrated mutation per iteration (DEIM).  Modelling of PV 

module is done for extracting various parameters such as weather condition 

photocurrent, diode ideality factor, shunt and series resistance, and diode ideality 
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factor.  DEIM shows good accuracy with fast convergence speed, compared to other 

methods. 

 

Distributed EA was used in Bucking and Dermardiros (2018) for an integrated 

community energy system by optimizing building design and district technology.  The 

objective is to achieve a renewable energy balance in the building.  In a commercial 

office, it shows that isolated optimization as compared to community integrated 

optimization can be scaled for future community master planning studies. 

 

In the estimation of single-diode PV module parameters, EA is used in Muhsen 

et al. (2016), while GA is used in Bastidas-Rodriguez et al. (2017).  In Muhsen et al. 

(2016), the objective was to optimize PV currents.  The results showed that EA had 

the advantage of estimating accurately, converging rapidly, and with fewer control 

parameters.  In Bastidas-Rodriguez et al. (2017), objective involving PV source in five 

operating points is solved using GA.  The single-diode model parameters are evaluated 

in combinations of two conditions, i.e., irradiance and temperature.  Compared to other 

models, the analysis indicates that parameters require being changed in regards to 

environmental conditions in order to reduce error for power, current, and energy 

predictions. 

 

In ensuring maximum power is produced in real irradiance conditions, EA is 

used in Carotenuto et al. (2015).  The objective was to optimize the output power, with 

results show convergence capabilities of EA, and minimizes computation time. 

 

In improving the dynamic model of battery for PV, GA is used in Blaifi et al. 

(2016).  Extraction of parameters using GA provides lower error rates and better 

matching with actual measurements, as compared with other models.  The model is 

noted to be more accurate for various battery types in many conditions. 

 

In determining the best options to reduce net building energy cost and increase 

PV utilization efficiency, GA is utilized in Youssef et al. (2016).  The objectives are 

to meet the dimension of the building, the ratio from wall-to-wall, and placement 

integration of PV.  Results show the optimum envelopes with the best location for 

building integrated PV from energy and economic point of view. 
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GA is used in an array of module arrangement to reduces mismatch losses for 

PV in Shirzadi et al. (2014).  GA locates the best arrangement of modules in the array, 

taking into account the output power from the array to be maximized.  Results indicate 

the potential of energy savings, at several irradiations and temperature levels. 

 

PV parameters are identified and optimized using a hybrid GA in Rong et al. 

(2015).  The objectives are to improve the identification accuracy for those results with 

a more substantial error.  By comparing the predicted results with the measured results, 

it proves the effectiveness of the method. 

 

In the quest to track global maximum power point (MPP) in PV system affected 

by partial shading, a modified GA is proposed in Daraban et al. (2014).  Results show 

that the modified GA optimizes the parameters with an excellent final solution. 

 

In predicting PV electrical performance, Tabu Search with differential 

evolution is used in Siddiqui and Abido (2013).  The objective is the sum of the slope 

of the power–voltage curve and the errors in current predictions at short circuit, open 

circuit and maximum power points.  Results show that the algorithm gives lowest 

objective values, and it is more accurate as compared to other algorithms. 

 

 

 

2.2 PVT  

 

In improving PVT efficiency system in India, GA is used in Singh et al. (2015b).  The 

objectives are to improve both thermal and exergy efficiency.  Results show an 

improvement in exergy and thermal efficiencies during the optimization process. 

 

Design parameters of transparent PVT system are optimized in Singh and 

Agrawal (2015) using GA with fuzzy.  The objectives of increasing the total exergy 

efficiency.  Results show that GA with fuzzy system converges faster as compared to 

standard GA models. 
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A fuzzified GA is used in Singh and Agrawal (2016) on a hybrid dual channel 

semitransparent PV thermal module.  The objectives are the same as Singh and 

Agrawal (2015), with results showing average improvement in electrical efficiency in 

the module that has been optimized. 

 

A single-channel glazed PVT is optimized with EA in Singh et al. (2015).  

Evaluating overall exergy and thermal gains annually, results show that optimization 

using EA shows an improvement in the overall gains. 

 

 

 

2.3 CPV 

 

CPV, or concentrator photovoltaic is used in Arias-Rosales and Mejía-Gutiérrez (2018) 

and Burhan et al. (2016).  In Arias-Rosales and Mejía-Gutiérrez (2018), a GA-Weibull 

Arias algorithm is used in optimizing effective concentration, material cost, and total 

space.  The outcome is an efficient and flexible tool for determining the solar V-

Troughs setup in various scenarios. 

 

In Burhan et al. (2016), sunlight irradiance beam is harnessed to change the 

electricity converted into Hydrogen/Oxygen gas.  A micro GA model is used in 

optimizing the configuration and size in the proposed CPV-Hydrogen system.  The 

goal is to have no failure time for the power supply and to have the overall system cost 

to be minimum. 
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2.4 Hybrid PV 

 

GA is used in Paulitschke et al. (2017) to optimize energy for household using PV and 

fuel cell.  The objectives are to reduce the amount of power, in which the fuel cell and 

battery can be used together in order to boost the lifespan. 

 

EA is used in Jiménez-Fernández et al. (2014) to optimize a PV-hydrogen 

system supplying a telecommunications facility in a remote area.  The objectives are 

to have an optimum number of PV panels while reducing the maintenance visits.  The 

results show a reduction in PV panels with reduced visits. 
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2.5 Summary 

 

Summary of the literature is given in Table 2.1. 

 

Table 2.1: Literature review summary 

Ref Type Solar Application Objectives Results 

Kumari and 

Geethanjali 

(2017) 

Adaptive 

GA 

PV PV design parameter extraction Current, resistance Fits curve efficiently at different 

irradiation conditions 

Cortés et al. 

(2018) 

BGA, SGA PV Electricity and heating operating 

cost optimization 

Optimal configuration of energy 

supply 

SGA converged faster with better quality 

than BGA 

Muhsen et al. 

(2015) 

DE with 

Integrated 

Mutation 

PV Modelling of PV modules Extract photocurrent, diode current 

and ideality factor, series and shunt 

resistance 

Fast convergence with reasonable 

accuracy with DEIM 

Bucking and 

Dermardiros 

(2018) 

Distributed 

EA 

PV Integrate building design with the 

energy system 

Quantifies a building achieves a 

renewable energy balance 

Integrated optimization  scalable for future 

planning studies 

Muhsen et al. 

(2016) 

EA PV PV module single-diode parameter 

extraction 

PV currents Good accuracy, fewer control settings and 

fast convergence 
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Bastidas-

Rodriguez et al. 

(2017) 

GA PV PV module single-diode 

identification  

Experimental I –V curves η, Rs and Rh vary according to the weather 

conditions 

Carotenuto et al. 

(2015) 

EA PV Maximum power produced at the 

actual irradiance conditions 

Optimize output power Minimize computation time 

Blaifi et al. 

(2016) 

GA PV Dynamic battery model for PV 

 

Battery voltage Lower errors between predicted and real 

model 

Youssef et al. 

(2016) 

GA PV Net energy cost reduction for 

building  

 

The dimension of the building, 

ratios in the building, the location of 

PV 

Optimum design for BIPV from energy 

and cost 

Shirzadi et al. 

(2014) 

GA PV Minimizes mismatch losses more 

effectively 

Optimum placement of modules in 

the array 

Calculation of energy yield supports best 

yield arrangement 

Rong et al. 

(2015) 

hybrid GA PV Identification method for the PV 

parameter 

Improve identification accuracy for 

those results with more substantial 

error 

Identification results by the method are 

accurate 

Daraban et al. 

(2014) 

Modified 

GA 

PV Tracking MPP in PV Input voltage Algorithm optimizes with a good final 

solution 

Siddiqui and 

Abido (2013) 

Tabu 

Search + 

DE 

PV Predict PV electrical performance Power-voltage curve, short circuit, 

open circuit and MPP 

Tabu Search gives the lowest values of the 

objective function and most accurate 

Singh et al. 

(2015b) 

GA PVT PVT system efficiency 

improvement 

Overall exergy and thermal 

efficiency 

Overall efficiency increase for efficiency 

and exergy 
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Singh and 

Agrawal (2015) 

GA–Fuzzy 

System 

PVT PVT system design parameters 

optimization 

Overall exergy efficiency GA–FS converges faster and solves better 

than GA 

Singh and 

Agrawal (2016) 

Fuzzified 

GA 

PVT Efficiency maximization and 

performance evaluation PV 

Overall exergy efficiency Electrical efficiency improved and 

optimized with reduced cell temperature 

Singh et al. 

(2015) 

EA PVT Glazed PVT array optimization Overall exergy efficiency Overall efficiency increase for thermal and 

exergy 

Arias-Rosales 

and Mejía-

Gutiérrez  (2018) 

GA-

Weibull 

Arias 

CPV Solar harvest area increase 

 

Material cost, effective 

concentration, space required 

Efficient in finding solar V-Throughs 

setup 

Burhan et al. 

(2016) 

Micro GA CPV Convert irradiance to electricity 

for Hydrogen/ Oxygen gas 

The optimum configuration of CPV-

Hydrogen system 

Reduce system cost with optimal storage 

factor 

Jiménez-

Fernández et al. 

(2014) 

EA hybrid 

PV 

Optimize power system for a 

remote telecommunications 

facility 

The optimum number of PV panels 

and number of maintenance visits 

Reduction in the number of PV panels for 

unattended work of the system between 

two maintenance visits 

Paulitschke et al. 

(2017) 

GA hybrid 

PV 

Optimize energy for household 

using PV and fuel cell 

Amount of power Combine battery with a fuel cell to prolong 

life 
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CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

To analyse the Power Conversion Efficiency (PCE) of solar PV modules for 

different locations, a detailed methodology based on experimental results and 

GA was devised.  The study is essential in understanding how different locations 

can affect the PCE of different solar PV modules.  The overall flowchart is 

shown in Figure 3.1. 

 

 

Figure 3.1: Overall flowchart 

 

On site data measurement for spectrum 
(different location and times of days)

Get responsivity data from datasheet 
Pin, Isc, Voc for different irradiance

Get Imax, Vmax

Calculate FF using Eq. (3.2)
Calculate Jsc for individual locations using Eq. (3.3)

Plot Voc vs Isc and FF vs Isc

Plot efficiency vs irradiance

SSGA for effective efficiency rate

MmGA and NSGAII for optimum module
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The first step is to take spectrum measurements at various locations, as 

shown in Table 3.1.  The spectrum is measured during different times of the day.  

Next, data sheets from various manufacturers are downloaded and the 

responsivity data, Eq. (3.4) is taken.  In addition, the Pin, Isc, Voc are noted from 

the datasheet and the Imax and Vmax are then calculated. 

 

Then, the fill factor (FF) is calculated using Eq. (3.2).  The current 

density of a solar cell is calculated using Eq. (3.3).  Open circuit voltage is 

plotted vs short-circuit current in Figure 3.5, and FF vs short-circuit current in 

Figure 3.6.  Efficiency vs spectral irradiance is then plotted.  Finally, SSGA is 

used in calculating the effective efficiency rates, while MmGA and NSGAII is 

used in selecting the optimum module. 

 

 

 

3.1 Solar spectrum acquisition 

 

To study the effect of local solar irradiance in a tropical country as compared to 

AM1.5G standard spectral irradiance, five locations in Peninsular Malaysia 

were chosen, as listed in Table 3.1. 

 

Table 3.1: GPS coordinates of various locations 

Location GPS Coordinates 

Sg Long, Selangor 3°04'08.0"N 101°79'42.0"E 

Setapak, Kuala Lumpur 3°12'59.5"N 101°44'00.2"E 

Bangi, Selangor 2°92'72.5"N 101°78'25.9"E 

Bayan Lepas, Penang 5°20'07.5"N 100°18'05.8"E 

Jitra, Kedah 6°15'28.1"N 100°25'12.2"E 

 

For acquiring the full solar spectrum to cover the wavelengths ranging 

from 300 nm to 1800 nm, configuration of combined two types Avantes 

spectrometers comprised of AvaSpec-2048-USB2-RM (visible bandwidth 200–

1100 nm) and AvaSpec-NIR256-1.7-RM (infrared bandwidth 1000–2000 nm), 

as shown in Figure 3.2 were used.   The data is captured using AvaSoft, as 
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shown in Figure 3.3.  For data acquisition, a mostly sunny day in the month of 

October 2017 was selected to assess how the solar spectrum varies across the 

day. 

 

 

Figure 3.2: Avantes NIR Spectrometer 

 

 

Figure 3.3: AvaSoft software 

 

While there were numerous readings taken during the day, the maximum 

recorded irradiance during the day are as follows: Sg Long 832.46 W/m2, 

Setapak 876.21 W/m2, Bangi 802.74 W/m2, Bayan Lepas 808.35 W/m2, and 

Jitra 706.80 W/m2.  The spectral irradiance versus the wavelength for different 

locations ranging from 300 to 1700 nm is shown in Figure 3.4.  It can be seen 

that the values at each wavelength are different at different locations, with some 
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locations overlapping at specific wavelengths.  This creates the difference in the 

output of the PV solar module.  

 

 

Figure 3.4: Spectral irradiance of the local spectrum at different locations 

 

 

 

3.2 Solar irradiance 

 

To analyse the Power Conversion Efficiency (PCE) of solar cells under different 

spectral irradiances, a detailed methodology based on experimental results and 

a computational algorithm is formulated.  PCE can be calculated using  

PCE =
𝐹𝐹 × 𝐽𝑠𝑐𝑉𝑜𝑐

𝑃𝑖𝑛/𝐴
 (3.1) 

where Jmax (mA/cm2) and Vmax (V) are the current density and voltage at the 

maximum power point, respectively; Pin/A is the incident light intensity with 
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unit mW/cm2 in which Pin is a power of incident light in unit mW, and A is the 

corresponding area (cm2).  

 

The study is essential to understand the PCE for various types of 

photovoltaic devices, and here demonstrated for solar cells, under different 

spectral irradiances. 

 

In the proposed methodology, the first step is to obtain the electrical 

characteristics of solar cells from the datasheet.  The External Quantum 

Efficiency (EQE), input power Pin, short-circuit current Isc, open-circuit voltage 

Voc, maximum current Imax, and maximum voltage Vmax is first taken from the 

various manufacturer datasheets.  Then, the Fill Factor (FF) is calculated using 

FF =
𝐽𝑚𝑎𝑥𝑉𝑚𝑎𝑥

𝐽𝑠𝑐𝑉𝑜𝑐
 (3.2) 

 

The current density of a solar cell can be calculated using the following 

equation: 

𝐽𝑠𝑐 = ∫ 𝑆𝐿(𝜆) ∙ 𝑅(𝜆) d𝜆
𝜆2

𝜆1

 (3.3) 

1 and 2 are the lower limit and upper limit wavelengths of incident light 

respectively, SL() is spectral irradiance of local spectrum.  R() is the spectral 

responsivity of the device, given as 

𝑅(𝜆) =
𝑒𝜆

ℎ𝑐
𝜂𝐸𝑄𝐸(𝜆) (3.4) 

where EQE is the external quantum efficiency of the device,  is the wavelength 

of incidence light, h is Planck’s constant, c is the speed of light. 

 

Incident light intensity can be calculated as 

𝑃𝑖𝑛

𝐴
= ∫ 𝑆𝐿(𝜆)d𝜆

𝜆2

𝜆1

 (3.5) 
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3.3 Specifications 

 

Specifications of the various solar modules are listed in Table 3.2.  A total of 

twelve types of modules from eleven manufacturers are used.  The material used 

ranges from monocrystalline silicon to polycrystalline silicon.  Some of the cells 

are a combination of multiple materials.  The PCEs of various commercial PV 

modules are obtained from the datasheet ranging from 7.1% to 21.2% based on 

the AM1.5G rated values. 

 

Table 3.2: Specifications of solar modules 

Type Manufacturer Model Material 
PCE 

AM1.5G 

1 SunPower SPR-X21-345 
Monocrystalline Silicon 

21.167% 

2 Wattrom WT 255M17 16.391% 

3 Sanyo HIT-H250E01 
Monocrystalline Silicon + 

Amorphous Silicon 
18.077% 

4 DelSolar D6P250B3A 

Multicrystalline Silicon 

15.385% 

5 SunPower 
SPR-P17-350-

COM 
16.965% 

6 
Hanwha Q 

CELLS 

Q.PLUS L-G4.2 

340 

Polycrystalline Silicon 

17.041% 

7 IndoSolar ISLM-270 16.838% 

8 SolarWorld 
Sunmodule SW 

260 
15.675% 

9 Sunbe Solar SPM(P)255 14.969% 

10 Schott ASI 103 Amorphous Silicon 7.116% 

11 
First Solar 

FS-387 CdS/CdTe Silicon 12.163% 

12 FS-4117-2 CdTe Silicon 16.317% 

 

Based on data provided by Sustainable Energy Development Authority 

(SEDA, 2017) Malaysia, the annual solar radiation for different locations is 

listed in Table 3.3.  The highest annual radiation is at Bayan Lepas, Penang, a 

city located in the northern region of Peninsular Malaysia, whilst the lowest 

recorded value is at Bangi, Selangor. 
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Table 3.3: Annual solar radiation (SEDA, 2017) 

Location  kWh/m2 

Sg Long, Selangor 1572 

Setapak, Kuala Lumpur 1571 

Bangi, Selangor 1487 

Bayan Lepas, Penang 1809 

Jitra, Kedah 1750 

 

 

 

3.4 Case study at Sg Long 

 

There are many combinations of locations and types of PV modules in this study. 

To show the detailed procedure in the methodology, only one of the locations is 

selected, i.e., Sg Long with module type 4 from Delsolar as a sample case study.  

The first relationship between Voc and Jsc is investigated by extracting values 

under different irradiances, as shown in Figure 3.5.  The empirical formula is 

𝑉𝑜𝑐 =  1.9821 𝑙𝑛(𝐽𝑠𝑐)  +  32.976 (3.6) 

 

 

Figure 3.5: The relationship between open circuit voltage (Voc) and short-

circuit current density (Jsc) of solar cells under different irradiances 
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The relationship between FF and Jsc under different irradiances is shown 

in Figure 3.6.  Based on the observations in Chong et al. (2016), the FF vs Jsc 

curve should behave as a logarithmic function. 

𝐹𝐹 =  −0.025 𝑙𝑛(𝐽𝑠𝑐)  +  0.8451 (3.7) 

 

 

Figure 3.6: The relationship between fill factor (FF) and short circuit current 

density (Jsc) of solar cells under different irradiances 

 

Responsitivity of the module type 4 is shown in Figure 3.7.  It can be 

seen that the graph slowly increases to the peak value of 960 nm and then it 

descends quickly. 
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Figure 3.7: The responsivity of the solar cell at various wavelengths 

 

As it is not possible to get the irradiance by increments of 100 W/m2, 

five readings throughout the day were taken.  The efficiency vs irradiance is 

plotted for location Sg Long using solar module type 4 in Figure 3.8.  The 

empirical formula of FF versus Jsc plot can be expressed by the following 

equation: 

𝐸𝑓𝑓 =  0.0036 𝑙𝑛(𝐼𝑟𝑟)  +  0.1267 (3.8) 

 

 

Figure 3.8: The relationship of efficiency under different irradiances 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

300 350 400 450 500 550 600 650 700 750 800 850 900 95010001050

R
e
s
p

o
n

s
iv

it
iy

, 
R

(λ
)

Wavelength (nm)

y = 0.0036ln(x) + 0.1267
R² = 0.946

14.6%

14.7%

14.8%

14.9%

15.0%

15.1%

15.2%

0 200 400 600 800 1000

E
ff

ic
ie

n
c
y

Irradiance (W/m2)



23 

 

3.5 Genetic Algorithm 

 

Genetic Algorithm (GA) (Holland, 1992) is a class of the Evolutionary 

Algorithm (EA).  Borrowing the idea of natural selection and learning process, 

EA establishes an effective computing system for problem-solving (Tan et al., 

2013).  The search progresses in parallel by maintaining a pool of candidate 

solutions; each known as a chromosome in the context of GA.  In turn, an 

individual is associated with a fitness value, which is evaluated through a 

problem-specific objective function.  The fitness value determines the quality 

of the individual.  Fitter individuals are often preferred by GA.  The population 

evolves (iterates) through repeated applications of various operations, such as 

selection, mutation and crossover until some predefined termination conditions 

are satisfied. Each iteration step is referred to as a generation. 

 

GAs have been used from simple to complex engineering problems.  In 

the following sub-sections, the details of three GA variants are given. 

 

 

 

3.5.1 Steady State Genetic Algorithm 

 

Steady State Genetic Algorithm (SSGA) is a GA variant (Vavak & 

Fogarty, 1996; Agapie & Wright, 2014).  The GA is in a steady state, where 

there are no generations.  As compared to the generic GA, the tournament 

selection does not replace the individuals in the population.  Instead, in SSGA, 

two best individuals are added to the population to ensure the population size 

remains constant. 

 

The algorithm is given in Algorithm 3.1, where heuristic functions G 

and Dr both depend on x, the current population.  As such, i is selected from the 

probability distribution G(x), and j is selected from the probability distribution 

Dr(x).  Let  denote the search space for a search problem. 
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Algorithm 3.1: SSGA algorithm (Agapie & Wright, 2014) 

 

Random deletion can be modelled by choosing Dr(x) = x.  If the fitness 

function is injective (the fitnesses of elements are distinct), then reverse ranking, 

and worst-element deletion can be modelled using the framework developed for 

ranking selection, 

𝐷𝑟(𝑥)𝑖 = ∫ 𝜚(𝑠)𝑑𝑠
𝛴

{𝑗:𝑓𝑗≪𝑓𝑖}
𝑥𝑗

𝛴
{𝑗:𝑓𝑗<𝑓𝑖}

𝑥𝑗

 (3.9) 

 

The probability density function 𝜚(𝑠) can be chosen to be 2s to model 

standard ranking selection, and 2 − 2s to model reverse ranking deletion.  If Dr 

is iterated, after the first iteration the populations produced will not necessarily 

correspond to finite populations of size r.  For random deletion and reverse 

ranking deletion, Dr(x) does not depend on the population size and can be shown 

to be differentiable as a function of x.   

 

 

 

3.5.2 Non-dominated Sorting Genetic Algorithm II 

 

Non-dominated Sorting Genetic Algorithm II (NSGAII) is designed with 

objectives of overcomes limitations in NSGA, which has high computational 

complexity of non-dominated sorting (Deb et al., 2002).  Specifically, a fast 

non-dominated sorting approach with O(MN2) computational complexity is 

presented. Also, a selection operator is presented that creates a mating pool by 

combining the parent and offspring populations and selecting the best (with 

respect to fitness and spread) solutions. 
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NSGAII has good experimental results in terms of the spread of 

solutions as well as better convergence (near the true Pareto-optimal) 

measurements.  The step-by-step procedure (Figure 3.9) shows that NSGAII 

algorithm is simple and straightforward.  First, a combined population 𝑅𝑡 =

𝑃𝑡 ∪ 𝑄𝑡 is formed.  The population is of size Rt.  Then, the population Rt is sorted 

according to non-domination. Since all previous and current population 

members are included in, elitism is ensured. Now, solutions belonging to the 

best non-dominated set F1 are of best solutions in the combined population and 

must be emphasized more than any other solution in the combined population. 

If the size of F1 is smaller than N, all members of the set F1 are chosen for the 

new population Pt+1.  The remaining members of the population Pt+1 are chosen 

from subsequent non-dominated fronts in the order of their ranking. Thus, 

solutions from the set F2 are chosen next, followed by solutions from the set F3, 

and so on. This procedure is continued until no more sets can be accommodated.  

 

 

Figure 3.9: NSGAII procedure (Deb et al., 2002) 

 

The NSGAII procedure is also shown in Algorithm 3.2. The new 

population Pt+1 of size N is now used for selection, crossover, and mutation to 

create a new population Qt+1 of size N.  The fast non-dominated sorting (FNDS) 

of NSGAII requires O(MN^2) time computations.  All solutions in the first non-

dominated front will have their, domination count as zero.  Now, for each 

solution p with n_p = 0, each member (q) of its set S_p is visited and reduce its 

domination count by one. In doing so, if for any member q the domination count 
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becomes zero, it is put in a separate list Q.  These members belong to the second 

non-dominated front. Now, the above procedure is continued with each member 

of Q, and the third front is identified.  This process continues until all fronts are 

identified and locate the FDNS using Algorithm 3.2. 

 

 

Algorithm 3.2: Fast-non-dominated-sort in NSGAII (Deb et al., 2002) 

 

 

 

3.5.3 Modified micro Genetic Algorithm 

 

The modified micro Genetic Algorithm (MmGA) was proposed in Tan et al. 

(2013).  MmGA is formed with three objectives:  

1. Originality: to preserve the traditional mGA (Coello & Pulido, 2001; 2005) 

principles in the proposed MmGA.  An NSGAII inspired elitism strategy is 

adopted in its algorithm formation. 

2. Efficiency: to achieve improvement in convergence representation as 

indicated by Generational Distance (GD) (Deb et al., 2002; Coello & Pulido, 

2005) indicator.  GD is used for measuring the distance between the 

computed approximation and the optimal Pareto front.  The computed 
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approximation is claimed to locate on the right Pareto front as value GD = 

0.   

3. Simplicity: to preserve the complexity of the proposed model as compared 

with NSGAII.  MmGA has the same time complexity as NSGAII, i.e. 

O(MN2), where M is the number of objectives and N is the population size. 

 

Original mGA is adapted for the formation of MmGA, as shown in 

Algorithm 3.3.  mGA was formulated based on the GA principles (Goldberg, 

1989), but with small population size. It usually contains only three to six 

chromosomes in its population. On the other hands, MmGA covers three main 

components as follows. 

 

An NSGAII inspired elitism strategy is incorporated into the mGA. In 

the elitism method, a user-defined elite-preservation size (ω) of selected 

chromosomes (x) and target chromosomes (y) are derived. The elitism method 

produces a vector z as its outcome, which consists of ω-elite chromosomes.  

Note that x and y are the vectors of chromosomes, which exist in the 

evolutionary and filter processes within both nominal and outlier evolution 

cycles, respectively. 

 

The second component is an extended population formation. The 

population of chromosomes is re-initialised (p) using four main components in 

MmGA.  An adapting of the Pareto dominance sorting concept with the above 

two methods is the last main component of MmGA. It has the aim of improving 

the converged solutions, as measured by GD. 
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Algorithm 3.3: MmGA algorithm (Tan et al., 2013) 

 

 

 

3.5.4 Experimental setup 

 

The first part of the experiments utilize SSGA.  The aim of using SSGA is to 

acquire effective PCE rate at an irradiance of 100 to 1000 W/m2 with an 

increment of 100 W/m2.  Experimental of SSGA was conducted with a set of 

parameters as in Table 3.4. 
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Table 3.4: SSGA settings 

Settings Value 

Population size 100 chromosomes 

Max. evolution 25000 cycles 

Crossover operator 
Simulated Binary Crossover (SBX) with probability 

rate 0.9 and distribution index 20 

Mutation operator 
Polynomial Mutation Operator with probability rate 

1.0 and distribution index 20 

Selection operator Binary Tournament Selection 

Decision variable Spectrum range from 100 to 1000 

Objective variable PCE 

 

The second part of the experiments utilize both MmGA and NSGAII.  

Previous work published the capability of MmGA in tackling the benchmark 

Kursawe equation (Tan et al., 2013) and real-world MOPs (Tan et al., 2015), 

with small population size.  Observation shows that MmGA gives statistical 

similar and better-optimized values in handling the real-world problem with a 

small population.  Experiments are conducted with a similar set of settings, 

except the population size for MmGA, as shown in Table 3.5.  

 

Table 3.5: MmGA and NSGAII settings 

Settings MmGA NSGAII 

Crossover operator  SBX crossover SBX crossover 

Probability rate  0.6 0.6  

Distribution Index 20.0 20.0 

Mutation operator Polynomial mutation Polynomial mutation 

Probability rate 1.0 1.0 

Distribution Index 20.0 20.0 

Selection operator Binary tournament Binary tournament 

Population size 4 100 

Max evaluation cycle 10000 10000 
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To signify the all results statistically from the GA variants, the bootstrap 

method (Efron & Tibshirani, 1993) was utilized.  Typically, a thousand 

bootstrapped samples provide useful estimates, while doubling that amount 

provide useful results (Efron & Tibshirani, 1993).  The performance metrics in 

this study were calculated using a million samples that were bootstrapped with 

95% confidence intervals to give accurate estimated results. 
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CHAPTER 4 

 

 

 

RESULTS AND DISCUSSION 

 

 

 

4.1 Results using SSGA 

 

To view the effect of solar radiance on the PCE, the rates calculated using SSGA.  

Results are shown in Tables 4.1 to 4.5.  Intervals of 100 W/m2 are used as it 

gives a representation of the entire spectrum, with graphs typically plotted in 

this scale (Muneer, 2007).  In general, it can be seen that the minimum and 

maximum PCE values are stable, with a slight variance in between.   

 

 The efficiencies at Sg Long is first taken into account in Table 4.1.  It 

can be seen that module type 10 has the lowest efficiencies and the PCE is stable 

throughout the different irradiance.  Module type 12 has the most significant 

variance in PCE, with a difference of 7.7% from the lowest to the highest point.  

Most other modules have an average difference of 2% to 3%, with the peak of 

1000 W/m2 having the best PCE. 
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Table 4.1: Efficiencies by solar radiance (W/m2) at Sg Long 

Type 100 200 300 400 500 600 700 800 900 1000 

1 11.1% 11.6% 12.2% 12.8% 13.4% 14.0% 14.6% 15.2% 15.8% 16.4% 

2 13.3% 13.7% 14.1% 14.4% 14.8% 15.2% 15.6% 16.0% 16.4% 16.8% 

3 15.6% 15.9% 16.1% 16.4% 16.6% 16.9% 17.1% 17.4% 17.6% 17.9% 

4 13.5% 13.7% 14.0% 14.3% 14.6% 14.8% 15.1% 15.4% 15.7% 16.0% 

5 12.6% 13.2% 13.8% 14.4% 15.0% 15.6% 16.2% 16.8% 17.4% 18.0% 

6 13.4% 13.9% 14.4% 14.8% 15.3% 15.8% 16.2% 16.7% 17.2% 17.6% 

7 13.2% 13.7% 14.2% 14.7% 15.2% 15.7% 16.2% 16.7% 17.2% 17.7% 

8 13.0% 13.4% 13.7% 14.1% 14.4% 14.8% 15.2% 15.5% 15.9% 16.2% 

9 12.5% 12.8% 13.1% 13.3% 13.6% 13.9% 14.2% 14.5% 14.8% 15.1% 

10 7.9% 7.9% 7.8% 7.8% 7.8% 7.7% 7.7% 7.6% 7.6% 7.6% 

11 8.6% 9.3% 9.9% 10.5% 11.1% 11.7% 12.4% 13.0% 13.6% 14.2% 

12 11.2% 12.1% 12.9% 13.8% 14.6% 15.5% 16.3% 17.2% 18.1% 18.9% 

  

Next, efficiencies at Setapak is listed in Table 4.2.  Module type 7 has 

the most significant difference from the lowest to highest, at 4.4%, while the 

other module difference is about 2% to 3%. 

 

Table 4.2: Efficiencies by solar radiance (W/m2) at Setapak 

Type 100 200 300 400 500 600 700 800 900 1000 

1 12.7% 12.9% 13.1% 13.4% 13.6% 13.8% 14.0% 14.2% 14.4% 14.6% 

2 12.7% 12.9% 13.2% 13.5% 13.8% 14.1% 14.4% 14.7% 14.9% 15.2% 

3 13.1% 13.5% 13.9% 14.3% 14.7% 15.0% 15.4% 15.8% 16.2% 16.6% 

4 12.5% 12.7% 12.9% 13.1% 13.3% 13.5% 13.7% 14.0% 14.2% 14.4% 

5 13.7% 14.0% 14.2% 14.5% 14.7% 15.0% 15.3% 15.5% 15.8% 16.0% 

6 13.0% 13.3% 13.6% 14.0% 14.3% 14.6% 14.9% 15.2% 15.6% 15.9% 

7 11.6% 12.1% 12.6% 13.1% 13.6% 14.1% 14.6% 15.0% 15.5% 16.0% 

8 13.0% 13.2% 13.4% 13.6% 13.8% 14.0% 14.2% 14.4% 14.6% 14.8% 

9 11.2% 11.5% 11.8% 12.1% 12.3% 12.6% 12.9% 13.1% 13.4% 13.7% 

10 7.6% 7.6% 7.6% 7.5% 7.5% 7.4% 7.4% 7.3% 7.3% 7.2% 

11 11.3% 11.4% 11.4% 11.5% 11.6% 11.6% 11.7% 11.7% 11.8% 11.9% 

12 15.0% 15.1% 15.3% 15.4% 15.5% 15.6% 15.7% 15.8% 15.9% 16.0% 

 

For the efficiencies at Bangi, module type 4 has the most significant 

difference from the lowest to highest, at 2.2%, as listed in Table 4.3.  The 

difference in most other modules are small, at about 1% or less. 
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Table 4.3: Efficiencies by solar radiance (W/m2) at Bangi 

Type 100 200 300 400 500 600 700 800 900 1000 

1 13.6% 13.7% 13.7% 13.8% 13.8% 13.9% 13.9% 13.9% 14.0% 14.0% 

2 14.0% 14.0% 14.1% 14.1% 14.2% 14.2% 14.2% 14.3% 14.3% 14.3% 

3 14.9% 15.0% 15.0% 15.1% 15.1% 15.1% 15.2% 15.2% 15.3% 15.3% 

4 11.7% 12.0% 12.2% 12.5% 12.7% 13.0% 13.3% 13.5% 13.8% 14.0% 

5 14.7% 14.8% 14.9% 15.0% 15.1% 15.1% 15.2% 15.3% 15.4% 15.4% 

6 14.4% 14.5% 14.5% 14.6% 14.7% 14.7% 14.8% 14.9% 14.9% 15.0% 

7 13.4% 13.6% 13.7% 13.9% 14.1% 14.3% 14.5% 14.6% 14.8% 15.0% 

8 14.0% 14.0% 14.1% 14.1% 14.1% 14.1% 14.1% 14.1% 14.1% 14.1% 

9 12.6% 12.6% 12.6% 12.7% 12.7% 12.7% 12.8% 12.8% 12.8% 12.9% 

10 7.4% 7.3% 7.3% 7.3% 7.2% 7.2% 7.2% 7.2% 7.1% 7.1% 

11 11.0% 11.1% 11.1% 11.2% 11.3% 11.4% 11.4% 11.5% 11.6% 11.7% 

12 15.2% 15.2% 15.3% 15.3% 15.4% 15.4% 15.4% 15.5% 15.5% 15.6% 

 

Next, PCE at Bayan Lepas is looked into in Table 4.4.  Module type 10 

exhibits similar results.  The module with the most significant variance, 

however, is type 1, with a difference of 2.2%.  The difference between the 

lowest and highest PCE for most modules is lower as compared to Sg Long, at 

around 1%. 

 

Table 4.4: Efficiencies by solar radiance (W/m2) at Bayan Lepas 

Type 100 200 300 400 500 600 700 800 900 1000 

1 12.5% 12.7% 13.0% 13.2% 13.5% 13.7% 14.0% 14.2% 14.5% 14.7% 

2 13.8% 14.0% 14.1% 14.2% 14.4% 14.5% 14.7% 14.8% 14.9% 15.1% 

3 15.5% 15.6% 15.6% 15.7% 15.8% 15.9% 16.0% 16.1% 16.1% 16.2% 

4 14.0% 14.0% 14.0% 14.0% 14.1% 14.1% 14.1% 14.1% 14.2% 14.2% 

5 14.0% 14.2% 14.4% 14.7% 14.9% 15.1% 15.4% 15.6% 15.8% 16.1% 

6 14.3% 14.5% 14.6% 14.8% 14.9% 15.1% 15.2% 15.4% 15.5% 15.7% 

7 14.3% 14.4% 14.6% 14.7% 14.9% 15.0% 15.1% 15.3% 15.4% 15.6% 

8 13.5% 13.6% 13.8% 13.9% 14.1% 14.2% 14.3% 14.5% 14.6% 14.8% 

9 12.8% 12.9% 13.0% 13.0% 13.1% 13.2% 13.3% 13.3% 13.4% 13.5% 

10 7.3% 7.3% 7.3% 7.3% 7.3% 7.3% 7.3% 7.3% 7.3% 7.3% 

11 11.6% 11.6% 11.6% 11.7% 11.7% 11.7% 11.8% 11.8% 11.8% 11.9% 

12 14.8% 15.0% 15.1% 15.2% 15.4% 15.5% 15.6% 15.7% 15.9% 16.0% 

 

For the efficiencies at Jitra, module type 7 has the most significant 

difference from the lowest to highest, at 3.6%, as listed in Table 4.5.  The 

difference in most other modules are about 2% to 3%. 
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Table 4.5: Efficiencies by solar radiance (W/m2) at Jitra 

Type 100 200 300 400 500 600 700 800 900 1000 

1 12.8% 13.0% 13.1% 13.3% 13.5% 13.7% 13.9% 14.0% 14.2% 14.4% 

2 13.1% 13.3% 13.5% 13.7% 14.0% 14.2% 14.4% 14.7% 14.9% 15.1% 

3 13.6% 13.9% 14.3% 14.6% 14.9% 15.3% 15.6% 16.0% 16.3% 16.7% 

4 12.9% 13.1% 13.2% 13.4% 13.5% 13.7% 13.8% 14.0% 14.1% 14.3% 

5 14.0% 14.2% 14.4% 14.6% 14.8% 15.0% 15.2% 15.4% 15.6% 15.8% 

6 13.5% 13.8% 14.0% 14.3% 14.5% 14.7% 15.0% 15.2% 15.5% 15.7% 

7 12.4% 12.8% 13.2% 13.6% 14.0% 14.4% 14.8% 15.2% 15.6% 16.0% 

8 13.3% 13.4% 13.6% 13.7% 13.9% 14.0% 14.2% 14.4% 14.5% 14.7% 

9 11.8% 12.0% 12.2% 12.4% 12.6% 12.8% 13.0% 13.2% 13.4% 13.6% 

10 7.4% 7.4% 7.3% 7.3% 7.2% 7.2% 7.1% 7.0% 7.0% 6.9% 

11 11.4% 11.4% 11.4% 11.4% 11.4% 11.4% 11.5% 11.5% 11.5% 11.5% 

12 14.6% 14.7% 14.8% 14.9% 15.1% 15.2% 15.3% 15.4% 15.6% 15.7% 

 

 It can be seen that there is a variation of module PCE based on module 

type by location, and the different modules respond differently to the different 

irradiance levels, with some having smaller differences than the other.  Selecting 

a panel with high PCE and small differences between different irradiances is 

essential in order to generate a stable output. 

 

Table 4.6 lists the PCE, gain, and annual energy yield by location and 

solar module type.  The minimum and maximum output for all modules are 106 

and 341 kWh/m2 per year, respectively.  The highest value is recorded at Bayan 

Lepas using module type 1 (SunPower SPR-X21-345).  The average value is 

237 kWh/m2 per year. 

 

At the same time, a comparison of PCE for commercial PV modules 

under the local spectral irradiances relative to AM1.5G spectrum is done by 

defining the following new parameter: 

𝐺𝑎𝑖𝑛 =  100% ×  
(PCELSI – PCEAM1.5G)

PCEAM1.5G
 (4.1) 

where PCELSI and PCEAM1.5G are the power-conversion efficiencies for local 

spectral irradiances and under AM1.5G conditions, respectively. 
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In terms of gain, the most stable module is module type 10, which also 

has the lowest PCE.  The most significant gain loss is at Bangi using module 

type 3 with -15.8% difference with AM1.5G.  The general gain loss is about 6%. 

 

The annual energy yields, in kWh/m2 is also given.  It can be seen that 

the various modules at different locations all give different results.  The PCE 

values fluctuate from each module at a different location. 

 

Figure 4.1 shows the annual energy yields using modules 1 to 12 at the 

five locations.  The chart is first separated by the 12 different types of modules, 

and for each module type, 5 locations are taken into account.  At a glance, it can 

be seen that the highest energy yield for every single module comes from Bayan 

Lepas, mainly due to the amount of irradiance it receives.  On the other hand, 

while Bangi has the least irradiance, the module outputs are not the lowest 

among all module types. 

 

From the results, it can be seen and said that the amount of energy yield 

varies significantly by type of module and location.  As such, selecting the right 

module at the specific location is vital to maximize the energy yield. 
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Table 4.6: PCE, gain, and annual energy yield by location and solar module type 

Type 
Sg Long Setapak Bangi Bayan Lepas Jitra 

PCE Gain kWh/m2 PCE Gain kWh/m2 PCE Gain kWh/m2 PCE Gain kWh/m2 PCE Gain kWh/m2 

1 20.4% -3.8% 320 19.1% -9.7% 300 18.4% -12.9% 274 18.9% -10.9% 341 18.3% -13.3% 321 

2 16.1% -1.5% 254 14.9% -8.9% 235 14.3% -13.0% 212 14.8% -9.7% 268 14.5% -11.8% 253 

3 17.5% -3.0% 276 16.1% -10.7% 254 15.2% -15.8% 226 16.1% -11.1% 291 15.7% -13.3% 274 

4 15.5% 0.9% 244 14.2% -7.8% 223 13.5% -12.1% 201 14.1% -8.2% 256 13.8% -10.2% 242 

5 16.8% -1.0% 264 15.8% -7.0% 248 15.3% -9.9% 227 15.6% -7.9% 283 15.2% -10.2% 267 

6 16.8% -1.3% 264 15.5% -8.9% 244 14.9% -12.8% 221 15.4% -9.7% 278 15.0% -11.9% 263 

7 16.9% 0.2% 265 15.5% -8.2% 243 14.7% -13.0% 218 15.3% -9.0% 277 14.9% -11.8% 260 

8 15.6% -0.5% 245 14.6% -6.9% 229 14.1% -10.1% 209 14.5% -7.6% 262 14.2% -9.4% 249 

9 14.6% -2.4% 230 13.4% -10.5% 211 12.8% -14.6% 190 13.3% -11.0% 241 13.0% -13.0% 228 

10 7.6% 6.7% 119 7.3% 2.0% 114 7.1% 0.1% 106 7.3% 2.0% 131 7.0% -1.1% 123 

11 12.8% 5.1% 201 11.8% -2.7% 186 11.5% -5.3% 171 11.8% -2.9% 214 11.5% -5.8% 200 

12 17.0% 4.1% 267 15.9% -2.8% 249 15.5% -5.1% 230 15.8% -3.4% 285 15.3% -6.1% 268 
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Figure 4.1: Annual energy yield by modules 1 to 12 at various locations 
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4.2 Results using MmGA and NSGAII 

 

In addition to the effect of the solar radiance using SSGA, the experiments are 

expended using a multi-objective problem.  A total of three objectives are 

defined, as follows: 

1. PCE, where a higher value preferred, 

2. Weight per output power, where a smaller value preferred, 

3. Panel area per output power, where a smaller value preferred. 

 

These objectives are optimized using two GA variants, i.e., MmGA and 

NSGAII.  Optimization is done for the irradiance level at NOC, which is at 800 

W/m2.  Results from Sg Long is first taken into account in Table 4.7.  It can be 

seen that module type 3 offers the highest PCE, lowest weight and smallest 

panel area per output power. 

 

Table 4.7: Multi-objective results for Sg Long 

Type 
Objective 1 Objective 2 Objective 3 

MmGA NSGAII MmGA NSGAII MmGA NSGAII 

1 15.205% 15.205% 0.04758 0.04759 7.54836 7.54852 

2 16.013% 16.013% 0.04165 0.04166 7.38629 7.38647 

3 17.365% 17.365% 0.02866 0.02867 6.87104 6.87118 

4 15.407% 15.407% 0.04631 0.04631 7.71364 7.71381 

5 16.787% 16.787% 0.04214 0.04215 6.92905 6.92931 

6 16.704% 16.704% 0.04333 0.04333 7.05268 7.05285 

7 16.733% 16.733% 0.03553 0.03554 7.03360 7.03392 

8 15.526% 15.526% 0.04445 0.04445 7.60620 7.60641 

9 14.480% 14.480% 0.05807 0.05808 8.20402 8.20416 

10 7.021% 7.138% 0.20861 0.22189 16.79640 17.86512 

11 12.975% 12.975% 0.08987 0.08988 8.71392 8.71413 

12 17.199% 17.199% 0.07136 0.07137 6.56512 6.56528 

 

 A similar pattern can be seen for the results from Setapak, with module 

type 3 having the best results, as listed in Table 4.8. 
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Table 4.8: Multi-objective results for Setapak 

Type 
Objective 1 Objective 2 Objective 3 

MmGA NSGAII MmGA NSGAII MmGA NSGAII 

1 14.212% 14.212% 0.11251 0.11252 9.85811 9.85833 

2 14.656% 14.656% 0.10513 0.10513 9.60485 9.60516 

3 15.792% 15.792% 0.07695 0.07695 8.96343 8.96379 

4 13.965% 13.965% 0.11367 0.11367 10.03643 10.03670 

5 15.527% 15.527% 0.10123 0.10123 9.04019 9.04044 

6 15.234% 15.234% 0.11141 0.11141 9.25595 9.25622 

7 15.047% 15.047% 0.10793 0.10794 9.51164 9.51202 

8 14.391% 14.391% 0.10442 0.10442 9.72669 9.72687 

9 13.150% 13.150% 0.15068 0.15069 10.72312 10.72358 

10 7.020% 7.140% 0.20834 0.22505 16.77470 18.11997 

11 11.735% 11.735% 0.19715 0.19715 11.82881 11.82911 

12 15.784% 15.784% 0.14555 0.14556 8.73317 8.73352 

 

In the case of Bangi (Table 4.9), module type 12 had the best results for 

the highest PCE and smallest panel per output power.  However, module type 3 

had the lowest weight.  As module type 12 had two of the three best objectives, 

module type 12 should be given the consideration. 

 

Table 4.9: Multi-objective results for Bangi 

Type 
Objective 1 Objective 2 Objective 3 

MmGA NSGAII MmGA NSGAII MmGA NSGAII 

1 13.943% 13.943% 0.09357 0.09357 8.19787 8.19800 

2 14.263% 14.263% 0.08889 0.08889 8.12121 8.12143 

3 15.223% 15.223% 0.06612 0.06612 7.70170 7.70194 

4 13.516% 13.516% 0.09830 0.09830 8.67950 8.67973 

5 15.288% 15.288% 0.08314 0.08314 7.42422 7.42444 

6 14.866% 14.866% 0.09324 0.09324 7.74680 7.74695 

7 14.650% 14.650% 0.08869 0.08869 7.81611 7.81629 

8 14.088% 14.088% 0.08766 0.08766 8.16527 8.16550 

9 12.789% 12.789% 0.12743 0.12743 9.06829 9.06855 

10 7.141% 7.139% 0.22777 0.22293 18.33865 17.94894 

11 11.513% 11.513% 0.16696 0.16696 10.01737 10.01753 

12 15.484% 15.484% 0.12471 0.12472 7.48278 7.48293 
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 Results from Bayan Lepas (Table 4.10) show a similar pattern as with 

the rest, with module type 3 coming out as the winner.  Similarly, in Jitra (Table 

4.11), module type 3 again emerged as the winner for all three objectives. 

 

Table 4.10: Multi-objective results for Bayan Lepas 

Type 
Objective 1 Objective 2 Objective 3 

MmGA NSGAII MmGA NSGAII MmGA NSGAII 

1 14.224% 14.224% 0.10031 0.10031 8.78872 8.78886 

2 14.796% 14.796% 0.09257 0.09257 8.45740 8.45749 

3 16.056% 16.056% 0.06689 0.06689 7.79217 7.79226 

4 14.127% 14.127% 0.10029 0.10029 8.85519 8.85527 

5 15.587% 15.587% 0.08981 0.08981 8.01986 8.01995 

6 15.367% 15.367% 0.09791 0.09791 8.13476 8.13488 

7 15.294% 15.294% 0.09275 0.09275 8.17372 8.17386 

8 14.475% 14.475% 0.09280 0.09280 8.64445 8.64453 

9 13.318% 13.318% 0.13201 0.13201 9.39463 9.39472 

10 7.085% 7.139% 0.21963 0.22420 17.68325 18.05122 

11 11.804% 11.804% 0.17639 0.17639 10.58321 10.58331 

12 15.747% 15.747% 0.13229 0.13229 7.93733 7.93744 

 

Table 4.11: Multi-objective results for Jitra 

Type 
Objective 1 Objective 2 Objective 3 

MmGA NSGAII MmGA NSGAII MmGA NSGAII 

1 14.034% 14.034% 0.07343 0.07343 6.43362 6.43378 

2 14.670% 14.670% 0.06542 0.06542 5.97712 5.97746 

3 15.992% 15.992% 0.04505 0.04506 5.24816 5.24840 

4 13.959% 13.959% 0.07237 0.07238 6.39038 6.39061 

5 15.430% 15.430% 0.06516 0.06517 5.81906 5.81936 

6 15.240% 15.240% 0.06927 0.06927 5.75520 5.75539 

7 15.224% 15.224% 0.06158 0.06159 5.42719 5.42744 

8 14.353% 14.353% 0.06736 0.06737 6.27492 6.27514 

9 13.221% 13.221% 0.09288 0.09289 6.61008 6.61044 

10 7.144% 7.141% 0.23131 0.22737 18.62358 18.30646 

11 11.468% 11.468% 0.13849 0.13849 8.30924 8.30952 

12 15.431% 15.431% 0.10649 0.10650 6.38970 6.38988 
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It can be seen that both MmGA and NSGAII results are quite similar, 

with some of the results from MmGA showing a lower value, especially for the 

third objective.  In general, it can be seen that module type 3 (Sanyo HIT-

H250E01) performs best in all three objectives for most of the locations, which 

would result optimum PCE with the lightest weight and smallest size.  
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CHAPTER 5 

 

 

 

CONCLUSIONS 

 

 

 

5.1 Conclusions 

 

In this thesis, a comprehensive methodology for discussing the effects of local 

spectral irradiance on solar PV modules has been detailed.  As a case study, 5 

different locations in Malaysia were taken, with 12 types of solar modules.  The 

actual performance of the solar cells at these specific locations was of interest.  

The baseline PCE referred to the AM1.5G, as given in the datasheet.  From the 

experiments, it can be seen a big gap of PCE from the datasheet, as compared 

with different locations.  The difference could be up to 15%, as compared to 

AM1.5G values.  Based on the single objective results using GA, module type 

1 (SunPower SPR-X21-345) at Bayan Lepas showed the best performance, in 

terms of PCE, yielding a total of 341 kWh/m2 of annual energy yield.  When it 

came to the three objectives using MmGA and NSGAII, results shifted over to 

module type 3 (Sanyo HIT-H250E01) had the best results across all objectives 

in most of the locations. 

 

Selecting the right module at the specific location is vital to maximize 

the energy yield.  Lastly, this analysis provides the direction and guidance in 

selecting the most appropriate module that can perform best in the particular 

location to optimize the investment. 
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5.2 Future work 

 

Future work will look into a more extensive selection of locations across 

Malaysia and a range of various solar panels.  It is also envisioned to have a 

simple-to-use Android and iOS app for users to select the best panel for their 

location. 
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