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ABSTRACT 

 

 

 

The Fundamental Theorem of Calculus reveals a significant ralationship between 

integration and differentiation. The functions involved are continuous. However, the 

following version of the Fundamental Theorem of Calculus is valid.  

 

 If F is differentiable on ],[ ba and if 'F is Riemann integrable on ],,[ ba then 

 )()(' aFxFF

x

a

−=∫ for each ].,[ bax ∈  

 

 Are all derivatives Riemann integrable? A brief search leads one to 

derivatives that are not bounded and, as a result, not Riemann integrable. However, 

there are even bounded derivatives existing at all points that are not Riemann 

integrable. Thus, the hypothesis that the derivative is Riemann integrable is essential.  

 

 The Lebesgue integral was designed to overcome the deficiencies of the 

Riemann integral. Are all derivatives Lebesgue integrable? The answer is no. 

However, all bounded derivatives are Lebesgue integrable so that the following 

version of the Fundamental Theorem of Calculus is valid.  

 

 If F is differentiable on ],[ ba and if 'F is bounded on ],,[ ba then 'F is Lebesgue 

 integrable on ],[ ba and )()(' aFxFF

x

a

−=∫  for each ].,[ bax ∈  

 

 This discussion leads naturally to the following question. Is it possible to 

define an integration process for which the theorem 
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 If F is differentiable on ],,[ ba then the function 'F is integrable on ],[ ba and 

 )()('
aFxFF

x

a

−=∫ for each ].,[ bax ∈  

 

is valid? The answer is yes.  

 

 In 20th century, three integration processes have been developed for which 

this version of the Fundamental Theorem of Calculus is valid. These integrals, 

named after their principal investigators Denjoy, Perron, and Henstock, each 

generalize some aspect of the Lebesgue integral. Since each of these new integrals 

focuses on a different property of the Lebesgue integral, the definitions of the 

integrals are radically different. However, it turns out that all three integrals are 

equivalent. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Problem Statement 

 

By the end of the 19th century, some inadequacies in the Riemann theory of 

integration had become apparent. These failings came primarily from the fact that the 

collection of Riemann integrable functions became inconveniently small as 

mathematics developed. 

 

 For example, the set of functions for which the Newton-Leibniz formula: 

 

∫ −=
b

a

aFbFF )()('  

 

holds, does not include all differentiable functions. These inadequacies led others to 

invent other integration theories, the best known of which was due to Henri 

Lebesgue (1875-1941) and was developed in 1902.  
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1.2 Background Review 

 

The idea of the Lebesgue integral is to enlarge the class of integrable functions so 

that ∫
b

a

dxxf )( will be given a meaning for functions f  that are not Riemann 

integrable. For example, let 
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function  step  a  fdxxdxxf φφφ
 

and 

.1

,|)(inf)(
1

0

1__

0

=








≤= ∫∫
                

function  step  a  fdxxdxxf φφφ
 

Thus f is not Riemann integrable. However it is trivally Lebesgue integrable. f is a 

simple function and 

({1
]1,0[

µ⋅=∫ f rationals ({0])1,0[} µ⋅+I irrationals ])1,0[}I  

                               
.0

1001

=

⋅+⋅=
 

For functions that are Riemann integrable, the Lebesgue theory will assign the same 

numerical value to ∫
b

a

dxxf )(  as the Riemann theory. 

 

 Thus the Lebesgue integration theory can be thought of as a kind of 

completion of the Riemann integration theory. This can be given a precise sense in 

terms of the metric ∫ −=
b

a

dxxgxfgfd )()(),(  on the continuous functions ]),([ baC  

so that the Lebesgue integrable functions are obtainable from the continuous 

functions by the same process as the real numbers are obtained from the rational 

numbers. However, it is best if we observe this fact after we have developed the 

Lebesgue theory in a more concrete way.  
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 Indeed, the Lebesgue theory of integration has become pre-eminent in 

contemporary mathematical research, since it enables one to integrate a much larger 

collection of functions, and to take limits of integrals more freely.  

 

 The Lebesgue theory allows us to say that the sum of an absolutely 

convergent series is a form of integration, and this conceptual framework allows us 

also to give a foundation to probability theory.  

 

  

 

1.3 Motivation/Significance of Study 

 

Before beginning on the rather difficult path of developing the Lebesgue theory we 

will recall some of the weak points of the Riemann theory that can serve as 

motivation for seeking a better theory.  

 

 Firstly, the Riemann integral does not have satisfactory limit properties. That 

is, given a sequence of Riemann integrable functions }{ nf with a limit function 

,lim n
n

ff
∞→

= it does not necessarily follow that the limit function f  is Riemann 

integrable. 

 

 Secondly, the Riemann theory of integration is the lack of a good 

convergence theorem. We have seen that the Riemann integral can be interchanged 

with a uniform limit, but in many applications this is not adequate. For example, with 

Fourier series we frequently do not have uniform convergence, even if the function is 

continuous. Of course even in the Lebesgue theory we will not be able to interchange 

all limits with integration. For example, if  





=
0

)(
n

xf n ,

,

otherwise   

n1/x0 if   <<
 

then ∫ =
1

0

1)( dxxf n  but 0)(lim =
∞→

xf n
n

 at every point, so 
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1

0

1
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=≠= dxxfdxxf n
n

n
n

 

 

 Nevertheless we will find two rather useful criterion for interchanging limits 

and integrals-the monotone convergence theorem and the dominated convergence 

theorem.  

 

 Thirdly, improper integrals have to be treated separately in Riemann theory. 

In the Lebesgue theory we will be able to treat absolutely convergent improper 

integrals on the same footing as proper integrals.  

 

 Fourthly, we have no reasonable criterion for deciding whether or not a 

function is Riemann integrable. Riemann did in fact give such a criterion, but it 

seems no easier to apply than to verify the definition of the Riemann integral. With 

the aid of the Lebesgue theory it is possible to give a criterion for the Riemann 

integral to exist although it must be admitted that we do not have a very good 

criterion for the Lebesgue integral to exist.  

 

 Finally a fifth weakness involves the theory of multiple integrals. We have 

postponed discussing multiple integrals until after the Lebesgue theory because the 

Riemann theory yields only very awkward and incomplete results. 

 

 In addition to overcoming these weaknesses, the Lebesgue theory allows a 

very far reaching and fruitful generalization of the concept of integration. 

 

 

 

1.4 Objectives 

 

The Lebesgue integral is founded on Henri Lebesgue’s theory of measure in 1902. 

The idea of measure theory is that we want to assign a length to each subset of the 

real numbers. Unfortunately, this is impossible to do in a logically consistent fashion. 
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So measure theory tells us how to pick out which sets we can measure and how to 

measure them. 

 

 Lebesgue chose to partition the range rather than partitioning the domain of 

the function, as in the Riemann integral. Thus, for each interval in the partition, 

rather than asking for the value of the function between the end points of the interval 

in the domain, he asked how much of the domain is mapped by the function to some 

value between two end points in the range. 

 

 Partitioning the range of a function and counting the resultant rectangles 

becomes tricky since we must employ some way of determining (or measuring) how 

much of the domain is sent to a particular portion of a partition of the range. Measure 

theory addresses just this problem. 

 

 As it turns out, the Lebesgue integral solves many of the problems left by the 

Riemann integral. 

 

 

 

1.5 Scope of Study 

 

Lebesgue measure is studied in chapter three. It includes Lebesgue outer measure, 

Carathéodory’s measurability criteria, Lebesgue measurable sets, Borel sets, the 

structure of Lebesgue measurable set, and an example of a Lebesgue nonmeasurable 

set.  

 

 In chapter four, we will look into Lebesgue measurable functions, sequences 

of measurable functions, approximating measurable functions, almost uniform 

convergence.  

 

 In chapter five, we will study Lebesgue integration, Riemann integral, 

Lebesgue integral for bounded functions of sets of finite measure, the Lebesgue 
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integral for nonnegative measurable functions, the Lebesgue integral and Lebesgue 

integrability, and two convergence theorems. 

 

 Chapter six is the conclusion and future work. 

 



 

 

 

CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Lebesgue’s Motivation 

 

The span from Newton and Leibniz to Lebesgue covers only 250 years. Lebesgue 

published his dissertation “Intégrale, longueur, aire” (“Integral, length, area”) in the 

Annali di Matematica in 1902. Lebesgue developed “measure of a set” in the first 

chapter and an integral based on his measure in the second. 

 

Part of Lebesgue’s motivation was two problems that had arisen with 

Riemann’s integral. First, there were functions for which the integral of the 

derivative does not recover the original function and others for which the derivative 

of the integral is not the original. Second, the integral of the limit of a sequence of 

functions was not necessarily the limit of the integrals. We have seen that uniform 

convergence allows the interchange of limit and integral, but there are sequences that 

do not converge uniformly yet the limit of the integrals is equal to the integral of the 

limit.  

 

Lebesgue was able to combine Darboux’s work on defining the Riemann 

integral with Borel’s research on the “content” of a set. Darboux was interested in the 

interplay of the definition of integral with discontinuous functions and in the 

convergence problems. Borel (who was Lebesgue’s thesis advisor) needed to 

describe the size of sets of points on which a series converged; he expanded on 

Jordan’s definition of the content of a set which itself was an expansion of Peano’s 

definition of content measuring the size of a set. Peano’s work was motivated by 
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Hankel’s attempts to describe the size of the set of discontinuities of a Riemann 

integrable function and by an attempt to define integration analytically, as opposed to 

geometrically. Rarely, if ever, is revolutionary mathematics done in isolation. 

 

Another problem also provided primary motivation for Lebesgue: the 

question of convergence and integrating series term by term. Newton had used series 

expansions cleverly to integrate functions when developing calculus. Fourier thought 

it was always valid to integrate a trigonometric series representation of a function 

term by term. Cauchy believed continuity of the terms sufficed; Cauchy’s integral 

required continuity to exist. Then Abel gave an example that did not work. 

Weierstrass recognized that uniform convergence was the key to term-by-term 

integration. Dirichlet developed wildly discontinuous counterexamples. Riemann 

defined his integral so as not to require continuity, but uniform convergence of the 

series was still necessary for term-by-term integration. However, some non-

uniformly convergent series could still be integrated term by term. What is the right 

condition? Lebesgue’s theory can answer these questions.         

 

 

 

2.2 The Contribution of Lebesgue 

 

The Lebesgue integral is a generalization of the integral introduced by Riemann in 

1854. As Riemann’s theory of integration was developed during the 1870’s and 

1880’s, a measure-theoretic viewpoint was gradually introduced. This viewpoint was 

made especially prominent in Camille Jordan’s treatment of the integral in his Cours 

d’ analyse (1893) and strongly influenced Lebesgue’s outlook on these matters. The 

significance of placing integration theory within a measure-theoretic context was that 

it made it possible to see that a generalization of the notions of the integral and 

integrability. In 1898, Émile Borel was led through his work on complex function 

theory to introduce radically different notions of measure and measurability. Some 

mathematicians found Borel’s ideas lacking in appeal and relevance, especially since 

they involved assigning measure zero to some dense sets. Lebesgue, however, 

accepted them. He completed Borel’s definitions of measure and measurability so 
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that they represented generalizations of Jordan’s definitions and then used them to 

obtain his generalization of the Riemann integral. 

 

After the work of Jordan and Borel, Lebesgue’s generalizations were 

somewhat inevitable. Thus, W.H. Young and G.Vitali, independently of Lebesgue 

and of each other, introduced the same generalization of Jordan’s theory of measure; 

in Young’s case, it led to a generalization of the integral that was essentially the 

same as Lebesgue’s. In Lebesgue’s work, however, the generalized definition of the 

integral was simply the starting point of his contributions to integration theory. What 

made the new definition important was that Lebesgue was able to recognize in it an 

analytical tool capable of dealing with-and to a large extent overcoming-the 

numerous theoretical difficulties that had arisen in connection with Riemann’s theory 

of integration. In fact, the problems posed by these difficulties motivated all of 

Lebesgue’s major results. 

 

One of the difficulties was the fundamental theorem of calculus, 

∫ −=
b

a

afbfdxxf ).()()('  

 

The work of Dini and Volterra in the period 1878-1881 made it clear that 

functions exist which have bounded derivatives that are not integrable in Riemann’s 

sense, so that the fundamental theorem becomes meaningless for these functions. 

Later further classes of functions were discovered; and additional problems arose in 

connection with Harnack’s extension of the Riemann integral to unbounded 

functions because continuous functions with densely distributed intervals of 

invariability were discovered. These functions provided examples of Harnack-

integrable derivatives for which the fundamental theorem is false. Lebesgue showed 

that for bounded derivatives these difficulties disappear entirely when integrals are 

taken in his sense. He also showed that the fundamental theorem is true for an 

unbounded, finite-valued derivative 'f that is Lebesgue-integrable and this is the case 

if, and only if, f is of bounded variation.  
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Riemann’s definition of the integral also raised problems in connection with 

the traditional theorem positing the identity of double and iterated integrals of a 

function of two variables. Examples were discovered for which the theorem fails to 

hold. As a result, the traditional formulation of the theorem had to be modified, and 

the modifications became drastic when Riemann’s definition was extended to 

unbounded functions. Although Lebesgue himself did not resolve this infelicity, it 

was his treatment of the problem that formed the foundation for Fubini’s proof (1907) 

that the Lebesgue integral does not make it possible to restore to the theorem the 

simplicity of its traditional formulation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 3 

 

 

 

3 LEBESGUE MEASURE 

 

 

 

Lebesgue measure is studied in this chapter. We state the necessary eight properties 

of measure in the first section. Next, we define Lebesgue outer measure and list 

down its eight properties follow by the proofs. In the third section, Lebesgue 

measurable sets are defined by Carathéodory’s measurability criteria. Also, the 

collection of sets that satisfy the criteria forms a σ-algebra and the Lebesgue outer 

measure is countably additive on this σ-algebra. Next, Borel sets and Borel �-algebra 

are introduced follow by the properties of Lebesgue measure. In Section 3.5, we look 

into the structure of Lebesgue measurable sets of real numbers. Finally, we conclude 

this chapter with an example of Lebesgue nonmeasurable set. 

 

Caution: In what follows a “measurable set” means a “Lebesgue measurable set of 

real numbers”.  

 

3.1 Properties of Measure 

 

Lebesgue measure is an extended real-valued set function, a function from a 

collection of sets into ].,0[ ∞ Measure is based on the lengths of open intervals as 

these intervals are the basic building blocks of open sets in the reals. The best 

measure µ would satisfy eight properties: 

 

1. )(Aµ  is defined for every set A of real numbers (we can “measure” all sets); 

2. ∞≤≤ )(0 Aµ  (nonnegative extended real-valued; length is nonnegative and the   
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    “length” of ℝ is ∞); 

3. )()( BA µµ ≤   provided BA ⊂  (monotonic); 

4. 0)( =φµ ; 

5. 0})({ =aµ  (points are dimensionless); 

6. ),()( IlI =µ I an interval (the measure of an interval should be its length); 

7. )()( AAc µµ =+  (translation invariance; location does not affect length, should   

     not affect the measure); 

8. ∑
∞

=

∞

=

=








11

)(
k

k

k

k AA µµ U  for any mutually disjoint sequence }{ kA of subsets of real    

     numbers (countable additivity). 

 

 

 

3.2 Lebesgue Outer Measure 

 

A collection of open intervals },2,1|{ K=kI k
 covers a set A  if .

1
U
∞

=

⊆
k

kIA Since the 

intervals are open, we call }{ kI  an open cover of .A Define the length l  of the open 

interval ),( baI =  to be .)( abIl −= We combine open covers and length to measure 

the size of a set. Since the cover contains the set, we will call it the outer measure. 

The outer measure is extremely close to the measure of Jordan defined in 1892. 

 

Definition 3.2.1 (Lebesgue Outer Measure) For any set ⊆A ℝ, define the 

Lebesgue outer measure *µ  of A  to be  









⊂=
∞

=

∞

=
∑ intervalsopen  ,|)(inf)(

11

*
k

k

k

k

k IIAIlA Uµ  

the infimum of the sums of the lengths of open covers of .A  

 

*µ  has the following properties:  

 

1. *µ  is defined for every set of real numbers; 

2. ∞≤≤ )(0 * Aµ  (nonnegative and extended real-valued); 
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3. )()( ** BA µµ ≤   provided BA ⊂  (monotonic); 

4. 0)(* =φµ ; 

5. 0})({* =aµ  (points are dimensionless); 

6. IIlI  ),()(* =µ an interval (the Lebesgue outer measure of an interval is its length); 

7. )()( ** AAc µµ =+  (translation invariant); 

8. ∑
∞

=

∞

=

≤








1

*

1

* )(
k

k

k

k AA µµ U  for any sequence of sets }{ kA of real numbers (countable  

     subadditivity). 

 

Proof.  

 

3. Monotonicity, property 3, is an immediate consequence of the observation that 

every open cover of B will be an open cover of .A                                                

                

4. and 5. Since the empty set is a subset of every set, we have 

).,(}{ εεφ +−⊂⊂ aaa  

By monotonicity, 

.2)),((})({)(0 *** εεεµµφµ ≤+−≤≤≤ aaa  

Since this is true for arbitrary ,0>ε  

0)(* =φµ and .0})({* =aµ  

 

6. First, consider a bounded, closed interval ],[ baI = . For any ,0>ε  

).
2

,
2

(],[
εε

+−⊂ baba  

Hence, .)(* εµ +−≤ abI  Since 0>ε is arbitrary, .]),([* abba −≤µ  

 Now, let }{ kI be an open cover of ].,[ ba The Heine-Borel theorem states that 

since ],[ ba  is closed and bounded there is a finite subcover },,2,1|{ NkI k K=  for 

.I Order the intervals so they overlap, starting with the first containing a  and ending 

with the last containing .b  Thus 
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ab

ab

abababab

abababIl

N

NNNNN

NN

N

k

k

−>

−≥

−−−−−−−−=

−++−+−=

−−−

=
∑

              

              

)()()(              

)()()()(

1

112211

2211
1

L

L

 

Thus ,)(* abI −≥µ  which combines with the first inequality to yield .)(* abI −=µ  

 Second, let l  be any bounded interval and let .0>ε There is a closed interval 

IJ ⊂ such that ).()( JlIl <− ε Then 

)()()()()()()( *** IlIlIIJJlIl ==≤≤=<− µµµε  

or 

).()()( * IlIIl ≤<− µε  

Since 0>ε is arbitrary, we have ).()(* IlI =µ  

 Last, if l is an infinite interval, for each ∈n ℕ, there is a closed interval 

IJ ⊂ with .)(* nJ =µ Then )()( ** IJn µµ ≤= implies that .)(* ∞=Iµ      

               

7. Translation invariance, property 7, is based on the fact that length, ,l is translation 

invariant: If ),,( baI = then ),,( cbcaIc ++=+ and ).()( IclIl += If I is 

),,( ),,( ab −∞∞ or ),,( +∞−∞ then Ic + is ),,( ),,( cacb +−∞∞+ or 

),,( +∞−∞ respectively, and again ).()( IclIl += If A is an arbitrary subset of ℝ with 

,
1
U
∞

=

⊂
k

kIA then 

,)(
1
U
∞

=

+⊂+
k

kIcAc  

and 

.)()()(
11

* ∑∑
∞

=

∞

=

=+≤+
k

k

k

k IlIclAcµ  

This tells us that )(* Ac +µ  is a lower bound for the “lengths” of covers of ,A and 

because )(* Aµ is the greatest lower bound of such numbers, 

).()( ** AAc µµ ≤+  

By starting with a cover }{ kJ of ,Ac + we have ,)(
1
U
∞

=

−⊂
k

k cJA  

and so 
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1

1

*

∑

∑
∞
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∞

=

=

−≤

k

k

k

k

Jl

cJlAµ
 

This tells us that )(* Aµ  is a lower bound for the “lengths” of covers of ,Ac + and 

because )(* Ac +µ is the greatest lower bound of such numbers, 

).()( ** AcA +≤ µµ  

We conclude ).()( ** AAc µµ =+           

                             

8. We must show ∑
∞

=

∞

=

≤








1

*

1

* )(
k

k

k

k AA µµ U  for any sequence of sets of real numbers. 

Of course if the series∑
∞

=1

* )(
k

kAµ diverges the argument is immediate, so assume 

∞<∑
∞

=1

* )(
k

kAµ and let .0>ε For each nonempty ,kA choose an open cover }{ knI so 

that  

U
∞

=

⊂
1n

knk IA  

and 

.
2

)()()( *

1

*

kk

n

knk AIlA
ε

µµ +<≤ ∑
∞

=

 

We may do this by the definition of greatest lower bound. The collection  

},,,, 

  

;,,,, 

;,,,,{

21

22221

11211

KK

M

KK

KK

knkk

n

n

III

III

III

 

is a countable collection of open intervals that cover the set 

UUU

U

K
∞

=

∞

=

∞

=

∞

=

⊂⊂⊂
11

22
1

11

1

,,,

:

n
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n

n

n

n

k

k
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U UU
∞

=
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∞
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⊂
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k
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Since U
∞

=1
)(

i

iIφ is an open cover of the set ,
1
U
∞

=k

kA  

∑

∑

∑∑

∑

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

+=
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1
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1
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1
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We conclude .)(
1

*

1

* ∑
∞

=

∞

=

≤








k

k

k

k AA µµ U         □ 

 

Theorem 3.2.2 The outer measure of a countable set is zero. 

 

Proof. Let A  be any countable set of real numbers. Since A  is countable, so we can 

enumerate }.,,{ 21 KaaA =  

Let .0>ε Now 
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).
2

,
2

(

)
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,
8
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,
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Then 

.
1
U
∞

=

⊂
k

kIA  

So, 

.)()(
1

** εµµ ≤≤
∞

=
U
k

kIA  

Since this is true for arbitrary ,0>ε  we conclude that .0)(* =Aµ      □ 

 

 As previously indicated, we can only have a workable measure theory if we 

restrict attention to a class of reasonable sets. This class should be closed under 

countable intersection and countable union. In fact, we formalize this idea in next 

section. 

 

 

 

3.3 Lebesgue Measurable Sets 

 

In 1914, Carathéodory formulated a measurability criteria. 

 

Definition 3.3.1 (Carathéodory’s Condition) A set E is Lebesgue measurable iff for 

every set ⊆X ℝ, we have 

).()()( *** cEXEXX II µµµ +=  

Let M be the family of all Lebesgue measurable sets. 

 

 Informally, a set is measurable if it splits every other set into two pieces with 

measures that add correctly. The definition of measurable is symmetric: if E is 
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measurable, so is ;cE i.e., if ,ME ∈  then .ME c ∈ Also, it is easily seen thatφ and 

ℝ .M∈  

 

 In 1915, Giuseppe Vitali gave the first example of a Lebesgue nonmeasurable 

set of real numbers. In Section 3.6, we will have a fuller discussion.  

 

Theorem 3.3.2 If ,0)(* =Eµ then E is measurable. 

 

Proof. For any set ,X it is true that 

).()( ))(  )(()( **** cc EXEXEXEXX IIIUI µµµµ +≤=  

Since , EEX ⊆I we see that .0)()( ** =≤ EEX µµ I Thus .0)(* =EX Iµ Now note 

that , XEX c ⊆I so ).()( ** XEX c µµ ≤I   

Hence, 

).()()()( **** XEXEXX c µµµµ ≤+≤ II  

Thus .ME ∈             □ 

 

 But we certainly cannot base an integration theory on the collection ,{φ ℝ}. It 

is time to define a sigma algebra (σ-algebra) and investigate why they are so 

important.  

 

Definition 3.3.3 In a space Ω, a collection � of subsets of Ω is said to be a σ-algebra, 

provided: 

1. ∈ φ �; 

2. If ∈A �, then Ω ∈c
AI �; 

3. If }{ kA is a sequence of sets in �, then ∈
∞

=
U

1k

kA �. 

 

Lemma 3.3.4 The intersection of two Lebesgue measurable sets is measurable. 

 

Proof. Let 21 , EE be Lebesgue measurable sets. We must show .21 MEE ∈I  

Since for any set ,X  

IX ℝ X=  
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XEEEEX c =))()(( 2121 IUII  

,))(())(( 2121 XEEXEEX c =IIUII  

and the Lebesgue outer measure is subadditive, 

).)(())(()( 21
*

21
** cEEXEEXX IIII µµµ +≤  

It is sufficient to show  

.)())(())(( *
21

*
21

* ∞<≤+ XEEXEEX c µµµ IIII  

Measurability of 2E implies that 

).)(()(

))(())((

21
*

1
*

21
*

21
*

c
EEXEX                                 

EEX  EEX

III

IIII

µµ

µµ

−=

=
 

Since 

),)(()(

))((

))()((

)()(

211

211

2111

2121

cc

cc

ccc

ccc

EEXEX

EEEX

EEEEX

EEXEEX

IIUI

IUI

UIUI

UIII

=

=

=

=

                          

                          

                          
 

and *µ is subadditive, 

).)(()())(( 21
*

1
*

21
* ccc EEXEXEEX IIIII µµµ +≤  

Adding, 

),(

)()())(())((
*

1
*

1
*

21
*

21
*

X

EXEXEEXEEX
cc

µ

µµµµ

=

+≤+

                                                                   

IIIIII
 

where the last equality follows from Lebesgue measurability of .1E  

Thus, MEE ∈21 , implies .21 MEE ∈I                               □ 

 

Lemma 3.3.5 The union of two Lebesgue measurable sets is measurable. 

 

Proof.  Let 21 , EE be Lebesgue measurable sets. We must show .21 MEE ∈U  

MEE ∈21 , implies ., 21 MEE cc ∈  

By Lemma 3.3.4,  

MEE
cc ∈21 I  

implies 

,)( 21 MEE
ccc ∈I  

which implies .21 MEE ∈U           □ 
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 Finite intersections and unions follow by induction. 

 

Theorem 3.3.6 (Carathéodory, 1918) The collection of sets ⊆E ℝ, that satisfy 

Carathéodory’s condition;   

)()()( *** cEXEXX II µµµ +=  

for every subset X of ℝ, forms a σ-algebra, .M   

 

Proof. We show that the collection of Lebesgue measurable sets M is a σ-algebra. 

This entails three arguments: 

i. The empty set is Lebesgue measurable: .M∈φ  

).()()()()( ***** XXXX c µµφµφµφµ =+=+ II  

ii. If a set is Lebesgue measurable, then its complement is Lebesgue measurable: 

If ,ME ∈ then ℝ .ME
c ∈I Carathéodory’s criteria is symmetric in E and ℝ ;cEI  

(()()( *** III XEXEX c µµµ =+ ℝ (()) * II XE cc µ+ ℝ )).cEI  

iii. Suppose }{ kE is a mutually disjoint sequence of sets from .M We are trying to 

show 

,
1

ME
k

k ∈
∞

=
U  

that is, 

.)(
1

*

1

**






















+
















≥

∞

=

∞

=

c

k

k

k

k EXEXX UU II µµµ  

We have shown that ,
1

ME
n

k

k ∈
=
U  i.e., 

.)(
1

*

1

**






















+
















=

==

c
n

k

k

n

k

k EXEXX UU II µµµ   

Claim: .)(
1

*

1

* ∑
==

=














 n

k

k

n

k

k EXEX II U µµ  

Certainly true for 1=n and we assume true for 1−n sets .kE We split 










=
UI

n

k

kEX
1
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in an additive manner with .MEn ∈   

).(                             

) (       )()(                             

int)  (       )(                             
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The claim is valid. 

Now split X in an additive manner with ;
1

ME
n

k

k ∈
=
U  
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k
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k
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c
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*
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µµ

µµµ

            

                    

independent of .n  

Therefore, 

).(

)()(

1

*

1

*

1

*

1
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itysubadditivEXEX

EXEXX

c

k

k

k

k

c

k

k

k

k

                  





















+
















≥






















+≥

∞

=

∞

=

∞

=

∞

=
∑

UU

U

II

II

µµ

µµµ

 

The reverse inequality follows from the subadditivity. We have completed argument 

for showing M is a σ-algebra of subsets of ℝ.         □ 

 

Theorem 3.3.7 (Carathéodory, 1918) The Lebesgue outer measure is countably 

additive on ,M that is, 

∑
∞

=

∞

=

=








1

*

1

* )(
k

k

k

k EE µµ U  

for any mutually disjoint sequence of sets }{ kE in .M  
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Proof. Let }{ kE be a sequence of mutually disjoint sets from .M We must show  

.)(
1

*

1

* ∑
∞

=

∞

=

=








k

k

k

k EE µµ U  

But in Theorem 3.3.6, we showed 

∑
==

=














 n

k

k

n

k

k EXEX
1

*

1

* )( II U µµ  

for any ⊂X ℝ. Replacing X with ℝ,  

.)(
1

*

1

* ∑
==

=






 n

k

k

n

k

k EE µµ U  

Finite additivity holds. 

Then, 

)()(

)()(

)()(

1

*

1

*

1

*

1

*

itysubadditivE

tymonotoniciE

EE

k

k

k

k

n

k

kk

n

k

                         

                         

∑

∑

∞

=

∞

=

==

≤

≤

=

µ

µ

µµ

U

U

 

independent of .n Thus, 

∑
∞

=

∞

=

=








1

*

1

* )(
k

k

k

k EE µµ U  

and the conclusion follows.           □ 

 

 We have shown that the Lebesgue outer measure ,*µ written µ when restricted 

to the σ-algebra M of subsets of ℝ satisfying Carathéodory’s condition, is countably 

additive on ,M that is, µ is countably additive on the σ-algebra of Lebesgue 

measurable subsets of ℝ.  

 

Definition 3.3.8 (Lebesgue Measure) The Lebesgue measure µ is the restriction of 

the outer measure *µ to the measurable sets .M That is, for ,ME∈ set ).()( * EE µµ =  

 

 We will show intervals are Lebesgue measurable in Proposition 3.3.9. 
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Theorem 3.3.9 Intervals are Lebesgue measurable.   

 

Proof. The main idea of the proof is that for an interval I that is the union of two 

disjoint intervals 1I and 2I  , length, )(Il is additive:  

If ,, 2121 φ== IIIII IU then ).()()( 21 IlIlIl += We must show intervals 

like ),,(),,( ∞aba etc. satisfy Carathéodory’s condition. Our argument will deal 

with ).,( ∞a Thus, we must show 

)),(()),(()( *** caXaXX ∞+∞= II µµµ  

for every subset X of ℝ. Again, because of subadditivity, we need only 

show )),(()),(()( *** caXaXX ∞+∞≥ II µµµ  for every subset X of ℝ 

with .)(* ∞<Xµ  

 By the definition of Lebesgue outer measure, we have an open cover 

U
∞

=1k

kI of X so that 

.)()()( *

1

* εµµ +<≤ ∑
∞

=

XIlX
k

k
 

Consider ),( ∞aI k I and .),( c

k aI ∞I  

),( ∞aI k I is either empty or an open interval and .)),((),(
1
U II
∞

=

∞⊂∞
k

k aIaX   

c

k aI ),( ∞I is either empty or an open interval and .)),((),(
1
U II
∞

=

∞⊂∞
k

c

k

c aIaX  

Thus 
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∞
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∞
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∞
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∞
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aIaIaXaX

k
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c
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c
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c

k

k

k

c

II

II

IIII UU

 

Similarly, we can show 
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),),(()),(()( *** cbXbXX −∞+−∞= II µµµ  

which implies ),( b−∞ is measurable.   

Now, Ma ∈∞),( implies .],( Ma ∈−∞  

Thus 

.],(),( Mab ∈−∞−∞ I  

i) If ,ba < then ;),[],(),( Mbaab ∈=−∞−∞ I   

ii) If ,ba = then ;],(),( Mab ∈=−∞−∞ φI  

iii) If ,ba > then ;],(],(),( Mabab ∈=−∞−∞ I  

and the proof is complete.            □ 

 

 We have a smallest �-algebra that contains the collection of open intervals of 

ℝ. This smallest �-algebra is called the family of Borel sets, �. 

 

Definition 3.3.10 The �-algebra generated by the collection of all open intervals of 

ℝ is called the Borel �-algebra �. 

 

 We are going to show Borel sets are Lebesgue measurable in Theorem 3.3.11. 

 

Theorem 3.3.11 Every Borel set of real numbers is Lebesgue measurable. 

 

Proof. Immediately follows from Theorem 3.3.9.             □ 

 

 

 

3.4 Properties of Lebesgue Measure 

 

Some previous results are gathered along with some new results to be proved below, 

that are useful in determining the measure of specific sets of real numbers. 

 

Theorem 3.4.1 The following sets are assumed to be Lebesgue measurable sets of 

real numbers: 

 

1. .0})({)( == aµφµ  
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2. ).()( IlI =µ  

3. (µ countable set .0) =  

4. (µ subset of a set of measure zero .0) =  

5. ∑
∞

=

∞

=

≤








11

)(
k

k

k

k EE µµ U with equality whenever the sequence of sets }{ kE is mutually     

disjoint. 

6. ).()()()( 212121 EEEEEE µµµµ +=+ IU   

7. )()( 21 EE µµ ≤ if .21 EE ⊂ If in addition ,)( 2 ∞<Eµ then =− )()( 12 EE µµ  

    ).( 12 EE −µ  

8. If ,321 L⊂⊂⊂ EEE then ).(lim)lim(
1

k
k

k
k

k

k EEE µµµ
∞→∞→

∞

=

==







U   

9. If L⊃⊃⊃ 321 EEE and ,)( 1 ∞<Eµ then ==







∞→

∞

=

)lim(
1

k
k

k

k EE µµ I  

).(lim k
k

Eµ
∞→

 

10. If ,
1

∞<






 ∞

=
U
k

kEµ then .suplim)(suplim 





≤

∞→∞→
k

k
k

k

EE µµ    

11. ).(infliminflim k
kk

k EE µµ
∞→∞→

≤







 

12. If k
k

k
k

EE
∞→∞→

= supliminflim and ,
1

∞<
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=
U
k

kEµ then ).(lim)lim( k
k

k
k

EE µµ
∞→∞→

=   

 

Proof.  

 

Parts 1 through 5 have been discussed earlier. 

 

6. ).()()( 21122121 EEEEEEEE
cc IUIUIU =  

Thus 

).()(

)()()()()()(

21

121221212121

EE                                         

EEEEEEEEEEEE
cc

µµ
µµµµµµ

+=

+++=+ IIIIIU
    

              

7. Follows immediately from part 5:  

Since ,)(, 112221 EEEEEE
c UI=⊂  
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and 
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UI
 

If ,)( 2 ∞<Eµ  we have ∞<)( 1Eµ and we may subtract.   

      

8. If ∞=)( NEµ for some ,N then ∞=)( kEµ for all Nk ≥ and .)(lim ∞=
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k
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Since    

,
1
U
∞

=

⊂
k

kN EE 
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LUIUIUU )()( 23121
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k EEEEEE =
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kk EE I1+ are mutually disjoint, we have 
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9. Since 

LUIUII I )()( 3221
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1
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k EEEEEE =
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and the sets c

kk EE 1+I are mutually disjoint, we have 
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Since ,)( 1 ∞<Eµ we may subtract and the conclusion follows.  

  

10. Recall 

.suplim
1
I U
≥ ≥∞→









=

k km

mk
k

EE  

Then 

LUU ⊃⊃
≥≥ 21 m

m

m

m EE and .U
km

mk EE
≥

⊂  

Thus 









≤

≥
U

km

mk EE µµ )(  

and, hence, 

.suplim

)9(

lim

suplim)(suplim

1







=

















=









=









≤

∞→

≥ ≥

≥
∞→

≥∞→

k
k

k km

m

km

m
k

km

mk
k

E                       

              E                       

E                       

EE

µ

µ

µ

µµ

I U

U

U

 

              

11. Recall .inflim
1
U I
≥ ≥

∞→ 







=

k km

mk
k

EE  

Then 

LII ⊂⊂
≥≥ 21 m

m

m

m EE and .k

km

m EE ⊂
≥
I  



28 

Thus 
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and the conclusion follows.           

 

12. 
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             □ 

 

 

 

3.5 Structure of Lebesgue Measurable Sets 

 

Are there relationships between topological properties (open, closed, etc.) and 

Lebesgue measurability? The next theorem shows that Lebesgue measurable subsets 

of ℝ are “almost open”, “almost closed”, and so forth.  



29 

 

Theorem 3.5.1 For an arbitrary subset E of ℝ, the following statements are 

equivalent: 

 

1. E is Lebesgue measurable in the sense of Carathéodory; 

2. Given 0>ε we can determine an open set ⊂G ℝ with GE ⊂ and εµ <)(* cEG I     

(“exterior” approximation by open sets); 

3. Given 0>ε we can determine a closed set ⊂F ℝ with EF ⊂ and εµ <)(* c
FE I     

(“interior” approximation by closed sets); 

4. There is δG set 1B with 1BE ⊂ and 0)( 1
* =cEB Iµ ( 1B is a countable intersection of    

open sets; if we relax “open”, we can obtain a very good approximation by Borel   

sets);   

5. There is σF set 2B with EB ⊂2 and 0)( 2
* =c

BE Iµ ( 2B is a countable union of    

closed sets; if we relax “closed”, we have very good approximation from the    

“inside” by Borel sets). 

 

Proof.  

 

.2.1 ⇒ Assume E is a Lebesgue measurable subset of ℝ with .)( ∞<Eµ  

By the definition of Lebesgue outer measure, we have an open cover U
∞

=

=
1k

kIG so that 

GE ⊂ and .)()(* εµµ +< EG  

Since 

EEGG c UI )(=  

andG is Lebesgue measurable (Theorem 3.3.11), 

).()()( EEGG c µµµ += I  

Because ,)( ∞<Eµ we may subtract and obtain .)(* εµ <cEG I  

If ,)( ∞=Eµ let ].,[ kkEEk −= I kE is Lebesgue measurable, ,)( ∞<kEµ  

and by what we just showed we have an open set kG so that  

kk GE ⊂ and .
2

)(
k

c

kk EG
ε

µ <I  
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Since ,
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We have constructed an open set U
∞

=

=
1k

kGG with the desired properties.      

 

.3.2 ⇒ Follows by “complementation”: Apply part 2 to .cE We have   

GE c ⊂ and .))((* εµ <cc
EG I  

But then 

EG c ⊂  

and 
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EGGE
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and with ,cGF = the argument is complete.          

 

.4.3 ⇒ Let ⊂E ℝ and apply part 3 to .cE We have a sequence of closed sets }{ kF so 
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So .0)( 1
* =cEB Iµ              
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.5.4 ⇒ Follows by complementation as in .3.2 ⇒         

 

.1.5 ⇒  We must show )()()( *** XEXEX c µµµ =+ II for every subset X of ℝ. 

Let E be an arbitrary subset of ℝ and 2B be the σF set guaranteed by part 5: 

.0)(, 2
*

2 =⊂ cBEEB Iµ  

Since 2B is Lebesgue measurable (Theorem 3.3.11), 
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** cBEXBEXEX IIIII µµµ +=  
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On the other hand, 

).())((

))(())(()(
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2
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cccc

EXBEX                    

BEXBEXEX
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IIIII
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µµµ
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This implies 

.0))(( 2
* =BEX

c IIµ  
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Thus 
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*
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*

2
*

2
*

2
***

X                                          

BXBX                                          

BXBEXEXEX

c

cc

µ

µµ

µµµµ

=
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+≤+
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because 2B is Lebesgue measurable. This yields Carathéodory’s condition on E since 

)()()( *** cEXEXX II µµµ +≤ by subadditivity.       □ 

 

 The next result relates Borel sets and Lebesgue measurable sets.  
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Theorem 3.5.2 Every Lebesgue measurable set of real numbers is the union of a 

Borel set and a set with Lebesgue measure zero (Lebesgue measure is the completion 

of Borel measure). 

 

Proof. Let E be the Lebesgue measurable set of real numbers. We then have a Borel 

set BF )( σ so that 

EB ⊂ and 0)( =cBE Iµ (Theorem 3.5.1). 

But 

);( cBEBE IU=  

B is our desired Borel set and c
BE I is the Lebesgue measurable set with Lebesgue 

measure zero.             □ 

 

 The last theorem of this chapter states that sets of finite Lebesgue measure are 

“almost” finite unions of intervals. 

 

Theorem 3.5.3 Suppose E is any subset of ℝ with .)(* ∞<Eµ Then E is a Lebesgue 

measurable set of real numbers iff we have a finite union of open intervalsU so that 

,)()( ** εµµ <+ cc EUUE II  

for any .0>ε  

 

Proof. We first assume E is Lebesgue measurable. 

Since E is Lebesgue measurable, we have an open setG so that  

GE ⊂ and
2

)(
ε

µ <cEG I (Theorem 3.5.1). 

Since every nonempty open set of real numbers is a countable union of disjoint open 

intervals, 

GIE
k

k =⊂
∞

=
U

1

and .
21

ε
µ <















 ∞

=

c

k

k EI IU  

But ,
11

EEII
c

k

k

k

k UIUU 















=

∞

=

∞

=

and, consequently, 

,
2

)()()(
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∞<+<=







≤ ∑

∞

=

∞

=

ε
µµµµ EIIE

k

k

k

kU  
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that is, the series∑
∞

=1

)(
k

kIµ converges. Choose N so that 

2
)(

1

ε
µ <∑

∞

+=Nk

kI and define .
1
U

N

k

kIU
=

=  

Note: 

i. .
1

φ=






 ∞

+=
UI

Nk

kIU  

ii. cc EGEU II ⊂ and thus .
2

)(* ε
µ <cEU I  

iii. .
11

UUII
∞

+=

∞

+=

⊂







=

Nk

k

Nk

k

c IIEUE  

Then 

.)()( ** εµµ <+ cc EUUE II  

Conversely, assume we have a finite union of open intervalsU so that 

.
2

)()( ** ε
µµ <+ cc EUUE II  

We will construct an open setG so that 

,)(, * εµ <⊂ cEGGE I  

and then conclude from Theorem 3.5.1 that E must be Lebesgue measurable. 

By the definition of Lebesgue outer measure we have an open set 1Ο so that 

1Ο⊂c
UE I and .

2
)()()( *

1
** ε

µµµ +<Ο≤ cc UEUE II  

Let .1 UG UΟ=  

G is an open subset of ℝ, 

,)( 1 GUUEUE c =Ο⊂⊆ UIU  

and 

.
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<
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             □ 
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 We have completed our development of Lebesgue measure. Knowing what 

Legesgue measurable sets are, we are now able to discuss measurable functions in 

next chapter. 

 

 

 

3.6 A Lebesgue Nonmeasurable Set 

 

Giuseppe Vitali discovered the first example of a Lebesgue nonmeasurable set of real 

numbers in1905. In the next few years, several mathematicians such as Van Vleck 

(1908) and F.Bernstein (1908) among others discovered such sets. All of their 

constructions used the Axiom of Choice: for any nonempty collectionC of sets, there 

is a choice function f such that AAf ∈)( for each .CA∈ In 1970, Solovay showed 

that the Axiom of Choice was required to construct a Lebesgue nonmeasurable set of 

real numbers. The construction involves the notions of  equivalence relations and 

equivalence classes. 

 

 Now, we construct a Lebesgue nonmeasurable set of real numbers in ).1,1(−   

 

 Define yx ~ if yx − is rational.  

 

 For ),1,1(−∈x define  }.,|{ rational r rxyIyRx =−∈=  

 

The following are nine properties of .xR We will prove them. 

1. Every real number )1,1(−∈x belongs to one of the sets ;xR  

2. ;)1,1(
)1,1(

U
−∈

−=
x

xR  

3. If 21 ~ xx with ),1,1(21 −∈xx then ;
21 xx RR =  

4. If ,
21

φ≠xx RR I then ;
21 xx RR =  

5. Each set xR is countable; 

6. If )1,1(−∈x is rational, then xR is the set of rationals of );1,1(−   

7. If )1,1(−∈x is irrational, then every element of xR is an irrational number in );1,1(−  
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8. If )1,1(, 21 −∈xx with 21 xx − an irrational number, then ;
21

 RR xx φ=I  

9. The collection of distinct sets
xR is uncountable. 

 

Proof. 

 

1. Let ).1,1(−∈y Then yRy ∈ since 0=− yy is rational. 

 

2. Let ).1,1(−∈x Then 

).1,1()1,1(

)1,1(}{

)1,1(}{

)1,1(

)1,1()1,1(

−⊆⊆−⇒

−⊆⊆⇒

−⊆⊆

−∈

−∈−∈

U

UU

x

x

x

x

x

x

R

Rx

Rx    

 

This implies 

U
)1,1(

).1,1(
−∈

−=
x

xR  

 

3. Suppose .~ 21 xx Then 21 xx − is rational, this implies  

.},|{ 2112
φ≠=−∈= rational r rxxIxRx  

and 

φ≠=−∈= },|{ 1221
rational r rxxIxRx  

Claim .
21 xx RR =  

 Let ,
1xRy ∈ then 1xy − is rational, this implies ,

2xRy ∈ and so
21 xx RR ⊆  since 

y is arbitrary.  

 Similarly, let ,
2

'
xRy ∈ then 2

' xy − is rational, this implies ,
1

'
xRy ∈ and so 

12 xx RR ⊆ since 'y is arbitrary.   

Thus 

.
21 xx RR =  

 

4. Since ,
21

φ≠xx RR I there exists
21 xx RRz I∈ such that

1xRz ∈ and .
2xRz ∈ This 

implies 1xz − is rational and 2xz − is rational. So 
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2112 )()( xxxzxz −=−−−  

is rational. By definition, ,~ yx and from 3.,  

.
21 xx RR =  

 

5. If )1,1(−∈x is rational, then in order for
xRy ∈ and xy − to be rational, 

where ),1,1(−∈y y  must be rationals in ).1,1(− Thus {=xR rationals in )}1,1(− is a 

countable set, for  rational ).1,1(−∈x   

 If )1,1(−∈x is irrational, then in order for xRy ∈ and xy −  to be rational, 

where ),1,1(−∈y y must equal to ,nrx + for some ,22 <<− nr where nr is rational. 

Thus xR is a countable set, for  irrational ).1,1(−∈x  

 

6. Follows immediately from 5. 

 

7. Follows immediately from 5. 

 

8. We prove by contrapositive. Suppose .
21

φ≠xx RR I Then by 4., .
21 xx RR =  Let 

,
1x

Rz ∈ then
2xRz ∈ since .

21 xx RR = This implies 1xz − is rational and 2xz − is rational. . 

So 

2112 )()( xxxzxz −=−−−  

is rational. By definition, .~ yx   

 

9. Suppose )1,1(
),1,1(

−=
−∈
U

distinctR x

x

x

R is countable. But this contradicts the fact that )1,1(− is 

uncountable. Thus the collection of distinct sets xR is uncountable.      □ 

 

 In conclusion, we have decomposed )1,1(− into an uncountable collection of 

pairwise disjoint sets, each of these sets is itself countable, one such set consisting of 

the rationals in ),1,1(− and each of the others consisting only of irrational numbers. 
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 Pick a point from each of these disjoint subsets ,xR call this set NN. is an 

uncountable set, a subset of ),1,1(− and xRN I is a single point. We intend to 

show N is nonmeasurable. 

 

 Enumerate the rationals in .,,,:)2,2( 321 Krrr− Define },|{ NxrxrN nn ∈+=+  

nn rr ,22 <<− rational. Since ).3,3(),1,1( −⊂+−⊂ nrNN  Claim I)( nrN +  

φ=+ )( mrN if .mn rr ≠ Suppose .)()( φ≠++ mn rNrN I Then there exists 

,mn ryrxz +=+= or yx − is rational, with ., Nyx ∈ This implies yx RR =  with 

., yx RRyx =∈ But N is constructed by taking points from mutually disjoint sets, so 

x must equal ,y or .mn rr = This contradicts that .mn rr ≠ So,  

).3,3()()1,1(
1

−⊂+⊂−
∞

=
U
n

nrN  

 

 Suppose N is measurable, nrN + is also measurable. We have 

.6))3,3((

)(

)(

)())1,1((2

1

1

1

=−≤

=

+=









+≤−=

∑

∑
∞

=

∞

=

∞

=

µ

µ

µ

µµ

                           

N                           

rN                           

rN     

n

n

n

n

nU

 

This implies .6)(2
1

≤≤ ∑
∞

=

N
n

µ  

 

 The left-hand inequality, ),(2
1

N
n

∑
∞

=

≤ µ implies .0)( >Nµ The right-hand 

inequality ,6)(
1

≤∑
∞

=

N
n

µ implies .0)( =Nµ 0)( >Nµ and 0)( =Nµ cannot hold at the 

same time.Thus N must be nonmeasurable. 

 

 

 



 

 

 

CHAPTER 4 

 

 

 

4 LEBESGUE MEASURABLE FUNCTIONS 

 

 

 

In this chapter Lebesgue measurable functions are introduced follow by sequences of 

Lebesgue measurable functions. Characteristic function, simple function and 

Approximation Theorem are mentioned in Section 4.3. We conclude this chapter 

with Egoroff’s theorem and Lusin’s theorem.  

 

Caution: In what follows a “measurable function” means a “Lebesgue measurable 

function”. For any function, the domain will always be a subset of ℝℝℝℝ and the 

range will be a subset of    ℝℝℝℝ or    ℝℝℝℝ
e (real-valued or extended real-valued). 

 

4.1 Measurable Functions 

 

We begin this section by giving the definition of a Lebesgue measurable function and 

its equivalent forms. 

 

Definition 4.1.1 An extended real-valued function ,f defined on a Lebesgue 

measurable set of real numbers ,E is said to be Lebesgue measurable on E if 

})(|{]),((1 cxfExcf >∈=∞−  

is a Lebesgue measurable subset of E for every real number .c  

 

Theorem 4.1.2 Suppose f is an extended real-valued function whose domain is a 

Lebesgue measurable set of real numbers ,E and c is any real number. Then the 

following statements are equivalent: 
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1. f is a Lebesgue measurable function on .E  

2. })(|{]),((1 cxfExcf >∈=∞− is a Lebesgue measurable subset of .E  

3. })(|{]),([1 cxfExcf ≥∈=∞− is a Lebesgue measurable subset of .E  

4. })(|{)),([1 cxfExcf <∈=−∞− is a Lebesgue measurable subset of .E  

5. })(|{]),([1 cxfExcf ≤∈=−∞− is a Lebesgue measurable subset of .E  

 

Proof. 

 

.2.1 ⇔ Definition 4.1.1.            

.3.2 ⇒ II
∞

=

−
∞

=

−−















∞−=













∞−=∞
1

1

1

11 .,
1

,
1

]),([
kk k

cf
k

cfcf       

.4.3 ⇒ =∞=−∞ −− )],([)),([ 11 ccfcf ℝ .])),([( 1 ccf ∞−I              

.5.4 ⇒ II
∞

=

−
∞

=

−−














 +∞−=













 +∞−=−∞
1

1

1

11 .
1

,
1

,]),([
kk k

cf
k

cfcf      

.2.5 ⇒ =−∞=∞ −− )],([]),(( 11 ccfcf ℝ .])),([( 1 ccf −∞−I         □ 

 

Theorem 4.1.3 Continuous functions defined on measurable sets are measurable 

functions. 

 

Proof. Let f be a continuous function on the measurable set ,E and c any real number. 

We must show })(|{ cxfExA >∈= is a measurable subset of .E  

 If ,φ=A the proof is immediate since the empty set is measurable.  

 Otherwise, let .Ax ∈ Then ,)( cxf > and because f is continuous at ,x we 

have 0>xδ so that for .)(,))(),(( czfExxxxz >+−∈ Iδδ   

Thus 

.))(),((

)))(),(((

Exxxx    

ExxxxA

Ax

Ax

I

I

U

U









+−=

+−=

∈

∈

δδ

δδ

 

A is the intersection of an open set (measurable) and the measurable set .E The set 

A is measurable and the argument is complete.        □ 
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 We can weaken continuity to continuity except on a set of measure zero, 

commonly referred to as “continuous almost everywhere.” Sets of measure zero do 

not affect measurability of a function. 

 

Definition 4.1.4 A property is said to hold almost everywhere on a measurable set if 

the set of points where it fails to hold has measure zero. In particular, two 

functions f and g are said to be equal almost everywhere if they have the same 

domain and .0)})()(|({ =≠ xgxfxµ We sometimes write gf = a.e. on .E  

 

Theorem 4.1.5 Suppose f and g are extended real-valued functions defined on a 

measurable set .E If f is a measurable function on E and if gf = except on a set of 

measure zero, then g is a measurable function on .E  

 

Proof. Let c be any real number. We must show })(|{ cxgEx >∈ is a measurable 

subset of .E Define }.|{ gfExA ≠∈= By assumption, A is measurable with 

measure zero. Then fg = on the measurable set },|{ gfExAE c =∈=I and 

}.)(|{))(})(|({

})(|{})(|{

})(|{})(|{})(|{

cxgAxAEcxfEx                            

cxgAxcxfAEx                            

cxgAxcxgAExcxgEx

c

c

c

>∈>∈=

>∈>∈=

>∈>∈=>∈

UII

UI

UI

 

The set })(|{ cxgAx >∈ is measurable since it is a subset of a set of measure zero. 

Because f is a measurable function on })(|{, cxfExE >∈ is a measurable subset of 

,E as is .c
AE I             □ 

 

Proposition 4.1.6 Let f be a Lebesgue measurable function defined on a Lebesgue 

measurable set .E If A is any Lebesgue measurable subset of ,E then f is a Lebesgue 

measurable function on .A  

 

Proof. .})(|{})(|{ AcxfExcxfAx I>∈=>∈  
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By assumptions, })(|{ cxfEx >∈ and A are Lebesgue measurable subsets of .E Thus, 

})(|{ cxfAx >∈ is a Lebesgue measurable subset of ,E and so f is a Lebesgue 

measurable function on .A  

             □ 

 

Theorem 4.1.7 Suppose f and g are real-valued measurable functions, defined on a 

measurable set ,E and k is any real number. Then the following functions are 

measurable functions on :E  

 

0(
1

,|,|,, 2 ≠+ g
g

ffkfkf on 0(,,), ≠⋅+ g
g

f
gfgfE on ).E  

 

Proof. The arguments are sketched: 

i. }.)(|{})(|{ kcxfExckxfEx −>∈=>+∈  

 

ii. If ,0=k then 0=kf and




<

≥
=>∈

.0,

0,
})(|{

cE

c
cxkfEx

φ
 

If ,0>k then .)(|})(|{






 >∈=>∈

k

c
xfExcxkfEx  

If ,0<k then .)(|})(|{






 <∈=>∈

k

c
xfExcxkfEx  

 

iii. 




≥−<∈>∈

<
=>∈

.0},)(|{})(|{

0,
}|)(||{

c   cxfExcxfEx

c                                                              E
cxf   Ex

U
 

 

iv. 




≥>∈

<
=>∈

.0},|)(||{

0,
})(|{ 2

c   cxf   Ex

c                                  E
cxfEx  

 

v. 















<






 <∈>∈

>






 <∈>∈

=>∈

=








>∈

.0,
1

)(|}0)(|{

0,
1

)(|}0)(|{

0},0)(|{
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1

c   
c

xgExxgEx
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c

xgExxgEx
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c
xg

    Ex

U
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vi. We use the fact that the rationals are dense in ℝ and are a countable subset of ℝ 

and 

 xgrExrxfExxgxfx
kr

kk ,)})(|{})(|({)}()(|{ U I <∈<∈=<   

where kr is rational. 

Then 

  xfrExxgrcEx                                        

xfrExrxgcEx                                        

xfxgcExcxgxfEx

k

k

r

kk

r

kk

,)})(|{)}(|({

)})(|{})(|({

)}()(|{})()(|{

U

U

I

I

<∈<−∈=

<∈<−∈=

<−∈=>+∈

 

where kr is rational. 

 

vii.  









≥−<+∈

>+∈
<

=>+∈

.0},)()(|{

})()(|{
0,

})]()([|{ 2

c                 cxgxfEx

cxgxfEx   

c                                                             E

cxgxfEx

U

 









≥−<+∈

>+∈
<

=

.0)},()(|{

})()(|{
0,

c                  xgxfcEx

cxgxfEx    

c                                                              E

U

 

Thus 2)( gf +  is a measurable function on .E  









≤−<−∈

−<−−∈
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≤−<−<−−∈

>
=>−−∈

.0},)()(|{

)}()(|{
0,

.0},)()(|{

0,
})]()([|{ 2

c                cxgxfEx

xgxfcEx    

c                                                              

                                              

c    cxgxfcEx

c                                                             
cxgxfEx

I

φ

φ

 

Thus 2)( gf −−  is a measurable function on .E  

 



43 

U

U

I

I

k

k

r k

k

r k

k

        xgxfr| Ex    
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where 
kr is rational.   

Similar reasoning for .
1








⋅=

g
f

g

f
          □ 

 

 If we replace measurability of f and g in Theorem 4.1.7 with continuity, we 

still have a valid proposition. The operations performed with measurable functions in 

Theorem 4.1.7 in no way distinguish measurable functions from continuous 

functions.    

 

Proposition 4.1.8 Suppose f and g are measurable functions defined on a 

measurable set .E Then the following functions are measurable on :E  

 

1. ).,min(),,max( gfgf  

2. .||),0,min(),0,max( fffff −== −+  

Note: .||, −+−+ +=−= ffffff  

 

Proof.  

 

1. })(|{})(|{}))(),(max(|{ cxgExcxfExcxgxfEx >∈>∈=>∈ U  

and }.)(|{})(|{}))(),(min(|{ cxgExcxfExcxgxfEx >∈>∈=>∈ I  

 

2. 




<

≥−<∈>∈
=>∈

.0,

0},)(|{})(|{
}|)(||{

c                                                              E

ccxfExcxfEx
cxf  Ex

U
 

             □ 
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4.2 Sequences of Measurable Functions 

 

We are ready to discuss sequences of Lebesgue measurable functions. Pointwise 

limits preserve measurability with some relatively mild additional conditions 

imposed on the sequence). The next theorem is crucial. 

 

Theorem 4.2.1 Suppose }{ kf is a sequence of measurable functions defined on a 

measurable set .E Then the following functions are measurable functions on :E  

 

1. },,sup{ 1 K+= kkk fff and },,inf{ 1 K+= kkk
fff  for ;,2,1 K=k  

2. k
k

k
k

ff
∞→∞→

= limsuplim  and .liminflim k
k

k
k

ff
∞→∞→

=  

3. If k
k

f
∞→

lim (finite or infinite) exists for every point of ,E then the limit function k
k

f
∞→

lim     

    is a measurable function on .E     

4. If f is a function defined on E and k
k

ff
∞→

= lim almost everywhere on ,E then f is a     

measurable function on .E    

 

Proof.  

 

1. U
∞

=

>∈=>∈
kn

nk cxfExcfEx })(|{}|{  

and .})(|{}|{ I
∞

=

>∈=>∈
kn

nk cxfExcfEx  

 

2. The sequence }{ kf is a nonincreasing sequence of measurable functions and since 

},,,inf{limsuplim 21 Kffff k
k

k
k

==
∞→∞→

measurability follows from part 1.  

The sequence }{ kf is a nondecreasing sequence of measurable functions and since 

},,,sup{liminflim 21 Kffff k
k

k
k

==
∞→∞→

measurability follows from part 1.  
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3. .suplimliminflim k
k

k
k

k
k

fff
∞→∞→∞→

==    

 

4. Suppose a function f on E is the almost everywhere limit of }{ kf and let 

)(lim|{ xfExA k
k ∞→

∈= is not defined or )}.()(lim xfxf k
k

≠
∞→

The A has measure zero. 

Define a new sequence of functions }{ kg on E by 





∈

∉
=

,,0

),(
)(

Ax             

Ax     xf
xg

k

k  

and let g be given by 





∈

∉
=

.,0

),(
)(

Ax             

Ax      xf
xg  

 Since each function kg equals a measurable function, ,kf almost everywhere 

on kgE,  is measurable (Theorem 4.1.5).  

 If ).(0)(lim, xgxgAx
k

k ==∈
∞→

 

 If ),()()(lim)(lim, xgxfxfxgAx
k

k
k

k ===∉
∞→∞→

 

that is,  

gg
k

k =
∞→

lim for every point of .E  

By part 3, g is measurable on .E  

By Theorem 4.1.5, since f equals to g a.e. on ,E and so f is measurable on .E    □ 

 

 

 

4.3 Approximating Measurable Functions 

 

In this section, we will show that every measurable function is the limit of a 

sequence of simple functions. 

 

Definition 4.3.1 Let A be any set of real number. The characteristic function 

on ,A denoted ,Aχ is defined as follows: 





∉

∈
=

.,0

,1
)(

Ax     

Ax     
xAχ  
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Definition 4.3.2 Suppose ,
1
U

n

k

kEE
=

= where the sets kE are measurable, mutually 

disjoint, subsets of ℝ, and nccc ,,, 21 K are real numbers. Then a functionϕ defined 

on E by ,)()(
1

∑
=

=
n

k

Ek xcx
k

χϕ is called a simple function.  

 

 A simple function assumes a finite number of real values and assumes each of 

these on a measurable set, that is, 

kcx =)(ϕ on .1, nkEk ≤≤  

 

Theorem 4.3.3 If Eχ is a characteristic function defined on a measurable set ,E  

then Eχ is a measurable function on .E  

 

Proof.  









≥

<≤

<

=>∈

.1,

10,

0,

})(|{

c         

c    E

c         E

cxEx E

φ
χ  

             □ 

 

Theorem 4.3.4 Ifϕ is a simple function defined on a measurable set ,E thenϕ is a        

measurable function on .E  

 

Proof.  Letϕ be a simple function defined on E by ∑
=

=
n

k

Ek xcx
k

1

)()( χϕ  

and E be a measurable set such that 

,
1
U

n

k

kEE
=

=  

where the sets ⊆kE ℝ are measurable and mutually disjoint and nccc ,,, 21 K be any 

real numbers.  

Now, we have 
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}|{ '
kEk cEx

k
>∈ χ for .,,2,1 nk K=  

and so by Theorem 4.3.3,
kEχ is a measurable function on kE for .,,2,1 nk K=   

By Theorem 4.1.7, 
kEkc χ is a measurable function on EEk ⊆ for .,,2,1 nk K=  

and so by applying Theorem 4.1.7 again, we concludeϕ is a measurable function 

on .E              □ 

 

Theorem 4.3.5 (Approximation Theorem, Lebesgue) Let f be a measurable 

function defined on a measurable set .E Then there exists a sequence of simple 

functions }{ kϕ on ,E so that 

fk
k

=
∞→
ϕlim (finite or infinite) 

for all .Ex ∈  

If f is bounded on ,E then 

fk
k

=
∞→
ϕlim (unif) 

on .E  

If f is nonnegative, the sequence }{ kϕ may be constructed so that it is a 

monotonically increasing sequence. 

 

Proof. Suppose that f is nonnegative on .E We want to construct a monotonically 

increasing sequence }{ kϕ with .lim fk
k

=
∞→
ϕ Divide the range of f and approximate by 

level curves. Since ],,0[)( ∞⊆Ef we partition :],0[ ∞  

 

 Step 1. 

].,1[1,
2

1

2

1
,0

],1[)1,0[],0[

∞












=

∞=∞

UU

U

          
 

Define ]),,1([,1,
2

1
,

2

1
,0 1

1
1

12
1

11 ∞=













=













= −−− fEfEfE  

and .1
2

1
0

112111 EEE χχχϕ ⋅+⋅+⋅= Clearly f≤1ϕ on .E  

 

 Step 2. 
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].,2[
4

8
,

4

7

4

7
,

4

6

4

6
,

4

5

4

5
,11,

4

3

4

3
,

2

1

2

1
,

4

1

4

1
,0

],2[)2,1[)1,0[],0[

∞






















































=

∞=∞

UUUUUUUU

UU

          

 

We have decomposed ],0[ ∞ into 122
2

22 ++321 subintervals at the 2nd step. 

 

 

Form pre-images 

]).,2([,
4

8
,

4

7
,,

2

1
,

4

1
,

4

1
,0 1

2
1

28
1

22
1

21 ∞=













=













=













= −−−−
fEfEfEfE K  

Define ,2
4

7

4

1
0

22822212 EEEE χχχχϕ ⋅+⋅++⋅+⋅= L  

or 

.2
2

1
2

2

2

22

1
22 E

i

E i

i
χχϕ +⋅

−
= ∑

⋅

=

 

Note that 

iii EEE 221221 U−=  

for .2,1=i  

 

M  

 

 Step k. ],[),1[)2,1[)1,0[],0[ ∞−=∞ kkk UULUU and partition into 

121222 +⋅=++++ k

k

kkk k44 344 21 L disjoint subintervals and form inverse images.  

Thus, 

.
2

12

1
k

k

ki E

k

i

Ekk k
i

χχϕ +
−

=∑
⋅

=

 

Note that .21121 ikikki EEE +−+= U To construct ,1+kϕ divide the intervals 





 −
kk

ii

2
,

2

1
in 

half, and then kϕ to 1+kϕ at those x ’s where kϕ changes. 
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 Surely kϕ are nonnegative simple functions. We must show 

1+≤ kk ϕϕ and fk
k

=
∞→
ϕlim  on .E  

 

 Now, we are going to prove 1+≤ kk ϕϕ  on .E  Recall that 

.21121 ikikki EEE +−+= U If ,0 kiEx ∈  for some ,i then
kk

i
x

2

1
)( 0

−
=ϕ  and so 

kkk

ii
x

2

1

2

22
)(

101

−
=

−
=

++ϕ or ,
2

12
)(

101 ++

−
=

kk

i
xϕ  and thus ).()( 010 xx kk +≤ ϕϕ If ,0 kiEx ∉  

for ,2,,2,1 kki ⋅= K then ]).,1([))1,([]),([ 111
0 ∞++=∞=∈ −−− kfkkfkfEx k U  

 

Thus  

)),1,([1
0 +∈ − kkfx   

and so kxk =)( 0ϕ  and )(
2

22

2
)( 01101 xk

kj
x kk

k

kk ϕϕ ==
⋅

>=
+++  

 

or 

]),,1([1
0 ∞+∈ − kfx  

and so ).(1)( 001 xkkx kk ϕϕ =>+=+  

 

 We are left with proving fk
k

=
∞→
ϕlim  on .E  If ,)( 0 ∞=xf  then kkxk ∀=)( 0ϕ  

and .)(lim 0 ∞=
∞→

xk
k

ϕ If ,)( 0 ∞<xf then for 
kk xxfxfk

2

1
)()(0),( 000 <−≤> ϕ  and 

).()(lim 00 xfxk
k

=
∞→
ϕ  

 

 If f is nonnegative and bounded on ,E say Mf ≤≤0, on ,E then for all 

kk xxfMk
2

1
)()(0, <−≤> ϕ for all ,Ex ∈ that is )(lim, uniffk

k
=

∞→
ϕ on .E    

 

 In the general case ( f may be negative), recall that −+ −= fff  where 

−+ ff , are nonnegative measurable functions on E (Proposition 4.1.8). Apply the 
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above arguments to +f and ,−f noting that the difference of simple functions is again 

a simple function. This completes the proof.        □ 

 

 

 

4.4 Almost Uniform Convergence 

 

In this section, we will prove a remarkable theorem due to Egoroff: If we have point-

wise convergence of a sequence of measurable functions on a set of finite measure, 

then we have uniform convergence on a “large” subset of that set. 

 

Theorem 4.4.1 (Egoroff, 1911) Let E be a measurable set of real numbers with finite 

measure. If }{ kf is a sequence of measurable functions which converge to a real-

valued function f almost everywhere on ,E then, given ,0>ε there exists a 

measurable subset εE of E such that εµ ε <)( EE I and the sequence }{ kf converges 

uniformly to f on .εE  

 

Proof. By using the sequence },{ kf we want to construct a monotonically decreasing 

sequence of nonnegative measurable functions, }.{ kg This new sequence will be 

shown to converge uniformly to zero on ,εE from which it will immediately follow 

that )(lim unifff k
k

=
∞→

on .εE  

 

 Let }.lim|{ ffExA k
k

≠∈=
∞→

Since A has measure zero, ),()( cAEE Iµµ = and  

ff k
k

=
∞→

lim on .cAE I Since the limit of a sequence of measurable functions is 

measurable (Theorem 4.2.1), f is a measurable function on .c
AE I Define 

}|,||,sup{| 1 Kffffg kkk −−= + for ,,2,1 K=k we have from Theorem 4.1.7,  

Proposition 4.1.8 and Theorem 4.2.1, that
kg is measurable on .cAE I  Furthermore,  

kk gg ≤≤ +10 and 0lim =
∞→

k
k

g on .c
AE I This implies the sequence kg is a  monotone 

decreasing sequence of nonnegative measurable functions converging to zero   

on .cAE I  
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 The technical aspect of the argument begins: Let 0>ε be given. 

 

Stage 1:  

 Construct an increasing sequence of measurable subsets of cAE I : 

}.1)(|{1 <∈≡ xgAExE k

c

k I Clearly ,1
2

1
1 L⊂⊂ EE 1

1

1 , k

c

k

k EAEE IU =
∞

=

is 

measurable. By Theorem 3.4.1, ),()(lim 1 c

k
k

AEE Iµµ =
∞→

so for k   sufficiently large, 

say ,1K .
2

)()(0 1

1

ε
µµ <−≤ K

c EAE I 10 <≤ kg for all .1Kk ≥  

 

Stage 2:  

 Construct another increasing sequence of measurable subsets of c
AE I : 

.
2

1
)(|2







 <∈≡ xgAExE k

c

k I Clearly ,2
2

2
1 L⊂⊂ EE 2

1

2 , k

c

k

k EAEE IU =
∞

=

is 

measurable. By Theorem 3.4.1, ),()(lim 2 c

k
k

AEE Iµµ =
∞→

so for k  sufficiently large, 

say ,2K .
2

)()(0
2

2

2

ε
µµ <−≤ K

c EAE I
2

1
0 <≤ kg for all 2Kk ≥ on .2

2KE   

M  

Stage n:  

 Construct another increasing sequence of measurable subsets of c
AE I : 

.
1

)(|






 <∈≡

n
xgAExE k

cn

k I Clearly ,21 L⊂⊂ nn EE n

k

c

k

n

k EAEE ,
1

IU =
∞

=

is 

measurable. By Theorem 3.4.1, ),()(lim cn

k
k

AEE Iµµ =
∞→

so for k  sufficiently large, 

say ,nK
n

n

K

c

n
EAE

2
)()(0

ε
µµ <−≤ I with

n
gk

1
0 <≤ for all 

nKk ≥ on .n

Kn
E   

 

 Each of the sets KK ,,,, 21

21

n

KKK n
EEE is “almost” .c

AE I We will show that 

I
∞

=

=
1n

n

Kn
EEε  

 is “almost” c
AE I and that we have uniform convergence on .εE  
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)(])[(

)(
cccc

c

EAEAEEE

AAEE     

εεε IUIII

UI

=⇒

=
 

Thus 

.

2

))()((

))((

))((

0)(

)()(

)(])[(

))(])([()(

1

1

1

1

1

1

ε

ε

µµ

µ

µ

µ

µµ

µµ

µµ

εε

εεε

=

<

−=

≤









=

+





















=

+





















≤

+=

=

∑

∑

∑

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

                     

                     

EAE                     

EAE                     

EAE                     

EAE                     

AEAE                     

EAEAE                     

EAEAEEE   

n
n

n

n

K

c

cn

K

c

n

n

cn

K

c

c

n

n

K

c

c

n

n

K

c

ccc

cccc

n

n

n

n

n

I

II

II

II

II

III

IUIII

U

I

I

 

 It remains to show uniform convergence on .
1
I
∞

=

=
n

n

Kn
EEε  

 Let 0>δ be given. We want to show δ<− |0| kg on I
∞

=

=
1n

n

Kn
EEε  for k  

sufficiently large. 

  

 Choose N so that .
1

δ<
N

Recall .
1

|






 <∈=

N
gAExE

NN K

cN

K I For all 

,NKk ≥ ,
1

N

K

n

n

K Nn
EEE ⊂=

∞

=
Iε and .

NKk gg ≤ This implies 

δ<− |0| kg  for all ,NKk ≥  

and all 

.
1
I
∞

=

∈
n

n

Kn
Ex   

             □ 
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 In 1912, Lusin proved that measurable functions are “almost” continuous. We 

use Egoroff s Theorem (Theorem 4.4.1) to establish this result. Before that, we have 

the next lemma. 

 

Lemma 4.4.2 Let }{ nf be a sequence of real-valued functions, each of which is 

continuous at a point .Ec ∈ Suppose )(lim unif ff n
n

=
∞→

on .E Then f is continuous at 

.Ec ∈  

 

Proof. .|)()(||)()(||)()(||)()(| cfcfcfxfxfxfcfxf nnnn −+−+−≤− The first 

and third terms on the right-hand side are small by uniform convergence 

on E for ).(εNn ≥ Once )(εN is selected, the middle term can be made small under 

the assumption that )(εNf is continuous at .Ec ∈        □ 

 

Theorem 4.4.3 (Lusin, 1912) Let E be a measurable set of real numbers with finite 

measure. If f is a real-valued measurable function defined on ,E then we may 

construct a closed subset εE of E so that εµ ε <)( EE I and f  is continuous on .εE  

 

Proof.  

 The idea here is to approximate f with a sequence of simple functions }{ kϕ   

(Theorem 4.3.5), each being continuous except possibly at a finite set of points, and  

thus the set of discontinuities of all members, being a countable set, has measure zero.   

 

 Cover this set with discontinuities, with a sequence of open intervals }{ kI so 

that   

.
21

ε
µ <







 ∞

=
U
k

kI  

 

 On the closed set ,
1

c

k

kIE 






 ∞

=
UI the simple functions are continuous and 

converge to .f  
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 Apply Egoroff s Theorem (Theorem 4.4.1), we have εE so that  

.
2

,
11

ε
µ εε <












































⊂

∞

=

∞

=

EIEIEE

c

k

k

c

k

k III UU  

  

This implies 

).()(

)()()(

)(

)(

11

11

11

11

c

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

EEIEIE

EEIEIE

EIEI

EIEI    

εε

εε

εε

εε

µµµµ

µµµµµ

µµµ

µµµ

IU

U

U

U

UU

UU

UU

UU

+







−≥
















−⇒

−+







−≥
















−⇒

−







−≥
















−⇒

+







≤

















∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

 

Thus 

,
22

)()(

11

11

ε

εε

µµ

µµµµ

ε

εε

=

+<









+






















=









+
















−≤

∞

=

∞

=

∞

=

∞

=

                  

                  

IEIE                  

IEIEEE

k

k

c

c

k

k

k

k

k

k

c

UU

UU

II

UI

 

and so fk →ϕ uniformly on .εE  

 

 Since the uniform limit of a sequence of continuous functions is continuous 

(Lemma 4.4.2), the proof is complete.            □

           

 

 

 

 



 

 

 

CHAPTER 5 

 

 

 

5 LEBESGUE INTEGRATION  

 

 

 

The Riemann integral is introduced in Section 5.1. A similar approach via simple 

functions yields the Lebesgue integral for bounded functions on Lebesgue 

measurable sets of finite measure in the next section. Next, we restrict our attention 

to nonnegative Lebesgue measurable functions whose domain need not have finite 

measure, and then in the next section remove the condition that f be nonnegative. 

Finally, Section 5.5 is concerned with the applications of Lebesgue Dominated 

Convergence Theorem.  

 

5.1 The Riemann Integral 

 

The Riemann integral of a step function is defined in the obvious way. The extension 

to more general bounded functions f on ],[ ba is via approximation from above and 

below by step functions. 

 

Definition 5.1.1 A real-valued functionφ with domain ],[ ba is called a step function if 

there is a partition  

bxxxa n =<<<= L10  

of the interval such thatφ is constant on each subinterval );,( 1 kkk xxI −=  

that is, 

kcx =)(φ for ,,,2,1, nkIx k K=∈  

with .,,1,0,)( nkdx kk K==φ  
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Definition 5.1.2 Letφ be a step function on :],[ ba  





==

=<<
= −

.,,1,0,,

,,2,1,,
)(

1

nk            xx   d

nk  xxx   c
x

kk

kkk

K

K
φ  

The Riemann integral ofφ on ],,[ ba denoted by .)()(
1

1∑∫
=

−−=
n

k

kkk

b

a

xxcdxxφ  

  

 We could write ,
0

}{

1

),( 1 ∑∑
==

+=
−

n

k

xk

n

k

xxk kkk
dc χχφ   

and 

.)(

})({)),(()(

1

1

01

1

∑

∑∑∫

=
−

==
−

−=

+=

n

k

kkk

n

k

kk

n

k

kkk

b

a

xxc               

ddxxcdxx µµφ
 

 

 The step function’s values at the endpoints of the subintervals have no 

bearing on the existence or value of the Riemann integral of a step function ( kd does 

not appear in the definition of the integral). 

 

 The value of the Riemann integral of a step function is independent of the 

choice of the partition of ],[ ba as long as the step function is constant on the open 

subintervals of the partition. 

 

 More formally, the Riemann integral of a step function is well defined; it is 

independent of the particular representation of .φ  

 

Lemma 5.1.3 Ifφ andψ are two step functions, then there is a common partition 

}{ 10 nxxxP <<<= L such thatφ andψ are step functions with  partition ,P  so that 

∑∑
==

+=
−

n

i

xi

n

j

xxj ijj
xa

0

}{

1

),( )(
1

χφχφ  

and 

.)(
0

}{

1

),( 1 ∑∑
==

+=
−

n

i

xi

n

j

xxj ijj
xb χψχψ  
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Proof. Suppose φ and ψ are two step functions so that ,)( jcx =φ  where   

),( 1 jj zzj −∈ for some finite partition }{
1101 nzzzP <<<= L ),,2,1( 1nj K= and 

,)( kdx =ψ where ),( 1 kk zzk −∈ for some finite partition }{
2102 nyyyP <<<= L  

).,,2,1( 2nk K=  

0)( =xφ for
1n

zx > or .0zx <  

0)( =xψ for
2n

yx > or .0yx <  

Then 21 PP U is finite and so can be rearranged to a finite partition 

}{ 1021 nxxxPPP <<<== LU  

which works for both step functionsφ and ,ψ with ji ca = for some j  or ;0=ia  and 

ki db = for some k or .0=ib              □ 

 

Theorem 5.1.4 If φ andψ are step functions on ],[ ba and k is any real number, then 

 

1. )( φk is a step function on ],,[ ba and ∫∫ =
b

a

b

a

dxxkdxxk )())(( φφ  (homogeneous); 

2. )( ψφ + is a step function on ],,[ ba and ∫∫∫ +=+
b

a

b

a

b

a

dxxdxxdxx )()())(( ψφψφ    

     (additive); 

3. ∫∫ ≤
b

a

b

a

dxxdxx )()( ψφ if ψφ ≤ on ],[ ba  (monotone); 

4. If ,bca << the integrals ∫∫
b

c

c

a

dxxdxx )(,)( φφ exist, and ∫∫∫ =+
b

a

b

c

c

a

dxxdxxdxx )()()( φφφ    

(additive on the domain). 

 

Proof. Let φ  and ψ  be two arbitrary step functions on :],[ ba  





==

=<<
= −

.,,1,0,,

,,2,1,,
)(

1

nk             xx   d

nk  xxx   c
x

kk

kkk

K

K
φ  





==

=<<
= −

.,,1,0,,

,,2,1,,
)(

''

''

1

'

nk             xx   d

nk  xxx   c
x

kk

kkk

K

K
ψ  
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The respective Riemann integrals of φ  and ψ  on ],,[ ba are denoted by 

∑∫
=

−−=
n

k

kkk

b

a

xxcdxx
1

1)()(φ and .)()(
1

'

1

''∑∫
=

−−=
n

k

kkk

b

a

xxcdxxψ  

 

1. Clearly, φk is a step function on ].,[ ba =−=∑∫
=

−

n

k

kkk

b

a

xxkcdxxk
1

1 )())(( φ       

.)()(
1

1 ∫∑ =−
=

−

b

a

n

k

kkk dxxkxxck φ  

 

2. By Lemma 5.1.3, there exists a common partition }{ 10 nxxxP <<<= L forφ    

and ,ψ so that  

∑∑
==

+=
−

n

i

xi

n

j

xxj ijj
xa

0

}{

1

),( )(
1

χφχφ  

and 

,)(
0

}{

1

),( 1 ∑∑
==

+=
−

n

i

xi

n

j

xxj ijj
xb χψχψ  

with respective Riemann integrals 

∑∫
=

−−=
n

j

jjj

b

a

xxadxx
1

1)()(φ  

and 

.)()(
1

1∑∫
=

−−=
n

j

jjj

b

a

xxbdxxψ  

Thus 

∑∑
==

+++=+
−

n

i

xii

n

j

xxjj ijj
xxba

0

}{

1

),( )]()([)(
1

χψφχψφ  

and so ψφ + is a step function on ].,[ ba  

Also 
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.)()(

)()(

)]()([

))(())((

1

1

1

1

1

11

1

1

∫∫

∑∑

∑

∑∫

+=

−+−=

−+−=

−+=+

=
−

=
−

=
−−

=
−

b

a

b

a

n

j

jjj

n

j

jjj

n

j

jjjjjj

n

j

jjjj

b

a

dxxdxx                        

xxbxxa                        

xxbxxa                        

xxbadxx

ψφ

ψφ

 

            

3. Suppose ,ψφ ≤ then by Lemma 5.1.3, we have 

∑∑
==

+=
−

n

i

xi

n

j

xxj ijj
xa

0

}{

1

),( )(
1

χφχφ  

and 

,)(
0

}{

1

),( 1 ∑∑
==

+=
−

n

i

xi

n

j

xxj ijj
xb χψχψ  

with jj ba ≤ and respective Riemann integrals 

∑∫
=

−−=
n

j

jjj

b

a

xxadxx
1

1)()(φ  

and 

.)()(
1

1∑∫
=

−−=
n

j

jjj

b

a

xxbdxxψ  

Since ,jj ba ≤ this implies .)()( ∫∫ ≤
b

a

b

a

dxxdxx ψφ  

 

4. If c is one of the endpoints of subintervals between a  and ,b then we are done. 

Assume c  is any point inside some subinterval ),( 111 +nn xx of ],[ ba for some positive 

integer ,1n then we have: 

),()()(
11

1

1

1

1 nn

n

k

kkk

c

a

xccxxcdxx −+−= +
=

−∑∫φ  

and 

).()()( 11

2

1 11

1

cxcxxcdxx nn

n

nk

kkk

b

c

−+−= ++
+=

−∑∫φ  
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Adding them gives 

.)()()( ∫∫∫ =+
b

a

b

c

c

a

dxxdxxdxx φφφ  

             □ 

 

 We now define the Riemann integral for more general functions f on ].,[ ba   

Since we will be approximating f from above and below by step functions it is 

imperative that f be a bounded function on ].,[ ba  

 

Definition 5.1.5 Let f be a bounded function on ],,[ ba  say, ,)( βα ≤≤ xf  for 

].,[ bax∈ Let ψφ , denote arbitrary step functions on ],[ ba such that .ψφ ≤≤ f  

 

The lower Riemann integral of f on ,)(],,[
__

∫
b

a

dxxfba is denoted by 

.,|)(sup)(
__ 








≤= ∫∫ function step a fdxxdxxf

b

a

b

a

φφφ   

The upper Riemann integral of f on ,)(],,[

__

∫
b

a

dxxfba is denoted by 

.,|)(inf)(

__









≤= ∫∫ function step a fdxxdxxf

b

a

b

a

ψψψ  

 

 We would hope that the approximation from “above” and “below” approach a 

common value, to be called the Riemann integral of f on ].,[ ba  

 

Definition 5.1.6 A bounded function f is Riemann integrable on ],[ ba whenever 

.)()(

__

__

∫∫ =
b

a

b

a

dxxfdxxf Denote the common value by =∫∫
b

a

b

a

dxxfdxxf
__

)(;)(   

.)()(

__

∫∫ =
b

a

b

a

dxxfdxxf  

 



61 

 We have defined what it means for a bounded function f on ],[ ba to be 

Riemann integrable; a common value for the lower and upper Riemann integrals. An 

equivalent condition, that is frequently easier to apply, is given by Theorem 5.1.6.  

 

Theorem 5.1.7 A bounded function f is Riemann integrable iff for every ,0>ε we 

have step functionsφ and ψφψ ≤≤ f, on ],,[ ba so that 

.)]()([)()(0 εφψφψ <−=−≤ ∫∫∫
b

a

b

a

b

a

dxxxdxxdxx  

 

Proof. Assume the bounded function f is Riemann integrable on ],[ ba and let 0>ε be 

given. From Definition 5.1.4, we have step functions
^

φ and ,,
^^^

ψφψ ≤≤ f so that 

.
2

)(

2
)()()(

)()(
2

)(
2

)(

__
^

__

__

^

__

ε

ε
ψ

φ
εε

+=

+<≤≤

≤<−=−

∫

∫∫∫

∫∫∫∫

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

dxxf                     

dxxfdxxdxxf                     

dxxfdxxdxxfdxxf

 

So 

.

22

2
)()()()(0

2
)()()(

^

__

^^

__
^^

ε

εε

ε
φφψ

ε
ψφ

=

+<

+−<−≤⇒

+<≤

∫∫∫∫

∫∫∫

                                           

                                           

dxxdxxfdxxdxx

dxxfdxxdxx     

b

a

b

a

b

a

b

a

b

a

b

a

b

a

 

Thus 

.)]()([)()(0 εφψφψ <−=−≤ ∫∫∫
b

a

b

a

b

a

dxxxdxxdxx  

Conversely, let 0>ε be given and assume we have step functionsφ and ψφψ ≤≤ f,   

on ],,[ ba so that 

.)]()([)()(0 εφψφψ <−=−≤ ∫∫∫
b

a

b

a

b

a

dxxxdxxdxx  

But, for any bounded function f on ],,[ ba  
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.)()()()(

__

__

∫∫∫∫ ≤≤≤
b

a

b

a

b

a

b

a

dxxdxxfdxxfdxx ψφ  

So 

.

)]()([

)()(

)()()()(0
____

__

ε

φψ

φψ

ψ

<

−=

−≤

−≤−≤

∫

∫∫

∫∫∫∫

                                         

dxxx                                         

dxxdxx                                         

dxxfdxxdxxfdxxf

b

a

b

a

b

a

b

a

b

a

b

a

b

a

 

We conclude that 

.)()(0
__

__

ε<−≤ ∫∫
b

a

b

a

dxxfdxxf  

By the arbitrary nature of ,ε  

,)()()(

__

__

∫∫∫ ==
b

a

b

a

b

a

dxxfdxxfdxxf  

that is, ,f is Riemann integrable on ].,[ ba         □ 

 

Theorem 5.1.8 Every continuous function f on ],[ ba is Riemann integrable. 

 

Proof. Since f is a continuous function on a compact interval ],,[ ba so f is  

bounded, ∫
b

a

dxxf
__

)( and ∫
b

a

dxxf

__

)( are well-defined and f is uniformly continuous 

on ].,[ ba  

 

 Thus given ,0>ε choose ,0>δ so that   

ab
yfxf

−
<−

ε
|)()(|  

whenever ,|| δ<− yx for all ].,[, bayx ∈  

 

 Take any partition }{ 10 nxxxP <<<= L of ],[ ba so that ,|| 1 δ<− −kk xx   

nk ,,2,1 K= and, thus, 
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ab
yfxf

ab −
<−<

−
−

εε
)()( for all ),,(, 1 kk xxyx −∈  

that is, 
ab

yfxf
−

+<
ε

)()(  for all ).,( 1 kk xxx −∈ Therefore, .)(sup
),( 1 ab

yff
kk xx −

+≤
−

ε
 

 

 Similarly, )()( xf
ab

yf <
−

−
ε

for all ).,( 1 kk xxx −∈ We conclude that 

.inf)(
),( 1

f
ab

yf
kk xx −

≤
−

−
ε

 

 

 It follows that .
2

infsup
),(),( 1

1 ab
ff

kk
kk

xxxx −
≤−

−−

ε
 

 Define ff inf,sup == φψ on ),( 1 kk xx − and ,f otherwise. 

So ,2)(
2

)()( ε
ε

φψ =−
−

≤−∫ ∫ ab
ab

dxxdxx

b

a

b

a

and now apply Theorem 5.1.7 to 

conclude f is Riemann integrable on ].,[ ba          □ 

 

Theorem 5.1.9 Every monotone function f on ],[ ba is Riemann integrable. 

 

Proof. Without loss of generality, assume f is nondecreasing. Then 

)()()( bfxfaf ≤≤ for all ],[ bax∈ and f is bounded. 

 

 Form the partition  .2 b
n

ab
na

n

ab
a

n

ab
aa =







 −
+<<







 −
+<

−
+< L  

Define 














 −
−+=

n

ab
kafx )1()(φ and 















 −
+=

n

ab
kafx)(ψ for

kk x
n

ab
kax

n

ab
kax =







 −
+<<







 −
−+=− )1(1

and ,f otherwise. 

 

Hence 
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.))()((

)1()(

)()1(

2)()(

n

ab
afbf                                

n

ab

n

ab
naf

n

ab

n

ab
af

n

ab
af                                    

n

ab
bf

n

ab

n

ab
naf                                    

n

ab

n

ab
af

n

ab

n

ab
afdxxdxx

b

a

b

a

−
⋅−≤








 −
⋅






 −
⋅−+++

−
⋅






 −
++

−
⋅−




−
⋅+

−
⋅






 −
⋅−+++




 −
⋅






 −
⋅++

−
⋅






 −
+=− ∫∫

L

L

φψ

 

By Theorem 5.1.7, f is Riemann integrable on ].,[ ba       □ 

 

 The next result characterizes Riemann integrability. 

 

Theorem 5.1.10 (Lebesgue, 1902) A bounded function on a closed bounded interval 

is Riemann integrable iff the function is continuous almost everywhere. (The set of 

discontinuities is limited to a set of Lebesgue measure zero.) 

 

Proof. We will use Theorem 5.1.7: A bounded function f on ],[ ba is Riemann 

integrable iff we can approximate f from below and above by step functions whose 

integrals can be made arbitrarily close to each other: If we have step 

functions ,ψφ ≤≤ f the difference φψ − is a measure of how much f may vary on 

any subinterval of a partition.  

 

The standard means of measuring this variation of f on an interval J is by  

calculating ]},,[|)(inf{]},[|)(sup{ baJxxfbaJxxf II ∈−∈  traditionally denoted  

by ).(Jfω This real number )(Jfω ( f is bounded on ],[ ba ) is nonnegative. It is  

natural then to measure the variation of f at a point ],,[0 bax ∈ denoted by ),( 0xfω    

as IIx ff |)(inf{)( 0 ωω = any open interval containing }.0x  

 

We would expect that for a function continuous at .0)(, 00 =xx fω In fact, for a 

bounded function f on fba ],,[ is continuous at
0x iff .0)( 0 =xfω  

 

Here is a rough sketch of the argument to establish this result.   
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Suppose f is continuous at ],[0 bax ∈ and 0>ε is given. We have 0>δ so that 

for ,)()(],,[),( 000 εεδδ <−<−+−∈ xfxfbaxxx I that is 

,)()( 0 ε+< xfxf  

and  

.)(]},[),(|)(sup{ 000 εδδ +≤+−∈ xfbaxxxxf I  

On the other hand,   

),()( 0 xfxf <− ε   

and 

.)(]},[),(|)(inf{ 000 εδδ −≥+−∈ xfbaxxxxf I  

Subtracting gives .2)),(( 00 εδδω ≤+− xxf Then εδδωω 2)),(()( 0 ≤+−≤ xxx ff for 

every .0>ε So .0)( 0 =xfω  

 

 Conversely, suppose 0)( 0 =xfω for some ],[0 bax ∈ and let .0>ε Then 

IIx ff |)(inf{)(0 0 ωω ==  any open interval containing }0x implies we have an open 

interval *I containing 0x so that .)(0 * εω <≤ If Since *I is open, choose 0>δ so that 

.),( *

00 Ixx ⊂+− δδ Then ,)()(],[),( 000 εεδδ <−<−⇒+−∈ xfxfbaxxx I in 

other words, f is continuous at 0x and the result is established.  

 

 At points x of discontinuity of .0)(, >xf fω This implies that the set of 

discontinuities of ,f say, ,D may be written as 

,
1

U
∞

=

=
n

nDD  

where .
1

)(|],[






 ≥∈=

n
xbaxD fn ω  

 

 We claim nD is a closed set in ],,[ ba or, equivalenly,  







 <∈=

n
xbaxD f

c

n

1
)(|],[ ω is an open set in ].,[ ba Let .cnDx∈ We will determine a 

0>δ so that .],[),( c

nDbaxx ⊂+− Iδδ  
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 Since IIx ff |)(inf{)( ωω = any open interval containing ,
1

}
n

x < it follows  

that ,)()()( * εωωω +<≤ xIx fff where 0>ε is arbitrary. Take ,0)(
1

>−= x
n

fωε we  

have an open interval *I containing x so that  .
1

)( *

n
If <ω Since *I is open, there exists  

a 0>δ such that ].,[],[),( * baIbaxx II ⊂+− δδ We are done if we can show 

.],[),( c

nDbaxx ⊂+− Iδδ  

 

 Let ],,[),( baxxz Iδδ +−∈ then
n

Ixxz fff

1
)()),(()( * <≤+−≤ ωδδωω  

implies .cnDz∈ Thus nD is a closed set in ].,[ ba  

 

 The technical aspect of the argument begins: First suppose f is continuous a.e.  

on ],,[ ba that is, the set of discontinuities of ,,Df has measure zero, and let Bf <||   

on ].,[ ba We want to show f is Riemann integrable on ].,[ ba Since 







 ≥∈=

n
xbaxD fn

1
)(|],[ ω is a subset of nDD, has measure zero.Thus we have 

k

k

kn IID ,
1

U
∞

=

⊂ open intervals, .
4

)(
1 B
Il

k

k

ε
<∑

∞

=

But
nD is a closed and bounded subset of 

],,[ ba hence compact. It follows that we have a finite subcover of nD by the open 

intervals, ,kI that is, 

ii k

m

i

kn IID ,
1

U
=

⊂ open intervals. 

Then the set
c

kkk m
IIIba )(],[

21
ULUUI is a finite union of closed intervals  

.,,, 21 LJJJ K That is 

.],[
2121 mkkkL IIIJJJba ULUUUULUU=  

Recall that all points of nD are in .
21 mkkk III ULUU Thus 

n
xf

1
)( <ω on 

.21 LJJJ ULUU This means
n

xf

1
)( <ω for each ,iJx∈ and so we have an open  
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interval containing xI so that .
1

)(
n

I xf <ω But then the collection }{ xI is an open cover  

of the closed, bounded, and hence compact set, .iJ A finite subcover must 

cover .iJ We have a partition of ,iJ and the “sup of f ”-“inf of f ” over any of the 

subintervals of this partition is less than .
1

n
Do this for each .,,2,1, LiJ i K= We have a  

finite collection of subintervals whose union is ,21 LJJJ ULUU and on any one of  

these subintervals, say ,*J  

.
1

]},[|)(inf{]},[|)(sup{)( ***

n
baJxxfbaJxxfJf <∈−∈= IIω  

 Now define step functions ψφ , in the obvious way: 

finf=φ on the subintervals of LJJJ ,,, 21 K and ,,,,
21 mkkk III L  

fsup=ψ on the subintervals of LJJJ ,,, 21 K and .,,,
21 mkkk III L  

Then 

(
1

)]()([
1

∑∫
=

≤−
L

i

b

a

l
n

dxxx φψ subintervals of ∑
=

+
m

n

ki n
IlBJ

1

)(2)  

ε

ε

<








+−≤
B

Bab
n 4

2)(
1

 

for n sufficiently large. 

By Theorem 5.1.7, f is Riemann integrable on ].,[ ba  

 

 Next suppose f is Riemann integrable on ].,[ ba We want to show the bounded 

function f is continuous a.e. on ].,[ ba Since the set of discontinuities of ,,Df is given 

by UU
∞

=

∞

= 





 ≥∈==

11

,
1

)(|],[
n

f

n

n
n

xbaxDD ω if we can show ,0)( =nDµ we would be 

done, since a countable union of sets of measure zero is a set of measue zero. Fix an 

,n say, ,N and consider the set 

,
1

)(|],[






 ≥∈=

N
xbaxD fN ω with .0>ε  
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By asumption, f is Riemann integrable on ],,[ ba so we have step functions ψφ ≤≤ f  

with .)]()([
N

dxxx

b

a

ε
φψ <−∫ Let bxxxa n =<<<= L10 be a partition associated 

with φ and ,ψ and split the collection )},(,),,{( 110 nn xxxx −K into two 

subcollections 1C and ,2C as follows: If ,),( 1 φ≠− Nkk Dxx I put it in .1C Otherwise, put  

it in .2C Then every point of ND is in 1C or a member of the set }.,,,,,{ 121 bxxxa n−K So 

.)]()([
1 2

∑ ∑∫ <+=−
C C

b

a
N

dxxx
ε

φψ  

  

 For∑
1

,
C

some point of ND is in each subinterval, i.e., each subinterval of 1C  

contains a point xwith .
1

)(
N

xf ≥ω But then
N

1
≥−φψ on this subinterval. As a result, 

∑∑≥> (
1

1
NN C

ε
lengths of subintervals that contain points of ),ND  

so .)(
1

1 ε<−∑ −
C

kk xx The intervals of ,1C along with the finite set },,,,,{ 121 bxxxa n−K  

contain all points of .ND So ,)( εµ <ND this completes the proof.      □ 

 

 We now show that the integral properties that hold for step functions 

(Theorem 5.1.4) remain valid for Riemann integrable functions. 

 

Theorem 5.1.11 If bounded functions f and g are Riemann integrable on ],,[ ba  and 

k is any real number, then 

 

1. )(kf is Riemann integrable on ],,[ ba and 

∫∫ =
b

a

b

a

dxxfkdxxkf )())((  (homogeneous); 

2. )( gf + is Riemann integrable on ],,[ ba and 

∫∫∫ +=+
b

a

b

a

b

a

dxxgdxxfdxxgf )()())((  (additive); 
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3. ∫∫ ≤
b

a

b

a

dxxgdxxf )()( if gf ≤ on ],[ ba  (monotone); 

4. If fbca ,<< is Riemann integrable on ],[ ca and ],,[ bc and 

∫∫∫ +=
b

c

c

a

b

a

dxxfdxxfdxxf )()()(  (additive on the domain); 

5. If βα ≤≤ )(xf on ],,[ ba then 

)()()( abdxxfab

b

a

−≤≤− ∫ βα  (mean value). 

 

Proof. 

  

1. 0=k is obvious. Assume 0>k and f is Riemann integrable on ].,[ ba Let 0>ε  be 

given. By Theorem 5.1.7, we have step functionsφ andψ on ],[ ba so that ,ψφ ≤≤ f  

,)()()( ∫∫∫ ≤≤
b

a

b

a

b

a

dxxdxxfdxx ψφ  

and 

.)()(
k

dxxdxx

b

a

b

a

ε
φψ <− ∫∫  

Since ∫∫ =
b

a

b

a

dxxkdxxk )())(( φφ and ∫∫ =
b

a

b

a

dxxkdxxk )())(( ψψ by Theorem 5.1.4, 

∫

∫

∫

∫∫

=

≤

≤

=

b

a

b

a

b

a

b

a

b

a

dxxk                    

dxxk                    

dxxfk                    

dxxkdxxk

))((

)(

)(

)())((

ψ

ψ

φφ

 

and 

.))(())(( εφψ <− ∫∫
b

a

b

a

dxxkdxxk  

But, 
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ψφ kkfk ≤≤  

on ].,[ ba That is, we have step functions )(),( ψφ kk so that  

.))(())(( εφψ <− ∫∫
b

a

b

a

dxxkdxxk  

By Theorem 5.1.7, )(kf is Riemann integrable on ].,[ ba  

Thus    

.))(())(())(( ∫∫∫ ≤≤
b

a

b

a

b

a

dxxkdxxkfdxxk ψφ  

Previously we have 

.))(()())(( ∫∫∫ ≤≤
b

a

b

a

b

a

dxxkdxxfkdxxk ψφ  

So 

.))(()())(( ∫∫∫ −≤−≤−
b

a

b

a

b

a

dxxkdxxfkdxxk φψ  

Now 

∫∫∫∫∫∫ −≤−≤−
b

a

b

a

b

a

b

a

b

a

b

a

dxxkdxxkdxxfkdxxkfdxxkdxxk  ))(())(()())(())(())(( φψψφ  

.)())((0

)())((

))(())((

)())((

))(())((

ε

εε

εφψ

φψε

<−≤⇒

<−<−⇒

<−≤

−≤









−−<−⇒

∫∫

∫∫

∫∫

∫∫

∫∫

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

dxxfkdxxkf

dxxfkdxxkf

dxxkdxxk           

dxxfkdxxkf           

dxxkdxxk 

 

Since 0>ε is arbitrary, 

0)())(( =− ∫∫
b

a

b

a

dxxfkdxxkf and so .)())(( ∫∫ =
b

a

b

a

dxxfkdxxkf  
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 Assume 0<k and f is Riemann integrable on ].,[ ba Let 0>ε  be given. By 

Theorem 5.1.7, we have step functionsφ andψ on ],[ ba so that ,ψφ ≤≤ f  

,)()()( ∫∫∫ ≤≤
b

a

b

a

b

a

dxxdxxfdxx ψφ  

and 

.)()(
k

dxxdxx

b

a

b

a
−

<− ∫∫
ε

φψ  

Since ∫∫ =
b

a

b

a

dxxkdxxk )())(( φφ and ∫∫ =
b

a

b

a

dxxkdxxk )())(( ψψ by Theorem 5.1.4, 

∫

∫

∫

∫∫

=

≤

≤

=

b

a

b

a

b

a

b

a

b

a

dxxk                    

dxxk                    

dxxfk                    

dxxkdxxk

))((

)(

)(

)())((

φ

φ

ψψ

 

and 

.))(())(( εψφ <− ∫∫
b

a

b

a

dxxkdxxk  

But, 

φψ kkfk ≤≤  

on ].,[ ba That is, we have step functions )(),( φψ kk so that  

.))(())(( εψφ <− ∫∫
b

a

b

a

dxxkdxxk  

By Theorem 5.1.7, )(kf is Riemann integrable on ].,[ ba  

Thus    

.))(())(())(( ∫∫∫ ≤≤
b

a

b

a

b

a

dxxkdxxkfdxxk φψ  

Previously we have 

.))(()())(( ∫∫∫ ≤≤
b

a

b

a

b

a

dxxkdxxfkdxxk φψ  
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So 

.))(()())(( ∫∫∫ −≤−≤−
b

a

b

a

b

a

dxxkdxxfkdxxk ψφ  

Now 

∫∫∫∫∫∫ −≤−≤−
b

a

b

a

b

a

b

a

b

a

b

a

dxxkdxxkdxxfkdxxkfdxxkdxxk  ))(())(()())(())(())(( ψφφψ  

.)())((0

)())((

))(())((

)())((

))(())((

ε

εε

εψφ

ψφε

<−≤⇒

<−<−⇒

<−≤

−≤









−−<−⇒

∫∫

∫∫

∫∫

∫∫

∫∫

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

dxxfkdxxkf

dxxfkdxxkf

dxxkdxxk          

dxxfkdxxkf          

dxxkdxxk

 

Since 0>ε is arbitrary, 

0)())(( =− ∫∫
b

a

b

a

dxxfkdxxkf and so .)())(( ∫∫ =
b

a

b

a

dxxfkdxxkf  

 

2. By Theorem 5.1.7, we have 

ff f ψφ ≤≤ and ,)()()( ∫∫∫ ≤≤
b

a

f

b

a

b

a

f dxxdxxfdxx ψφ  

and 

gg g ψφ ≤≤ and .)()()( ∫∫∫ ≤≤
b

a

g

b

a

b

a

g dxxdxxgdxx ψφ  

Adding, ,gfgf gf ψψφφ +≤+≤+ by Theorem 5.1.4 yields 
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.)()(

))((

))((

))((

))(()()(

__

__

∫∫

∫

∫

∫

∫∫∫

+=

+≤

+≤

+≤

+=+

b

a

g

b

a

f

b

a

gf

b

a

b

a

b

a

gf

b

a

g

b

a

f

dxxdxx                                    

dxx                                    

dxxgf                                    

dxxgf                                    

dxxdxxdxx

ψψ

ψψ

φφφφ

 

Apply Theorem 5.1.7 again yields existence of ,))((∫ +
b

a

dxxgf and it along with 

,)()( ∫∫ +
b

a

b

a

dxxgdxxf lies between ∫∫ +
b

a

g

b

a

f dxxdxx )()( φφ and .)()( ∫∫ +
b

a

g

b

a

f dxxdxx ψψ  

 

3. 

.)(

)(

,,|)(sup

,|)(sup)()(

__

__

∫

∫

∫

∫∫∫

=

=

≤








≤≤









≤==

b

a

b

a

b

a

b

a

b

a

b

a

dxxg                                  

dxxg                                  

gffunction step a gdxx                                  

function step a fdxxdxxfdxxf

φφφ

φφφ

 

 

4. Let .bca << Since f is Riemann integrable on ],,[ ba we have step functions ,,ψφ a 

common partition including ,c so that ψφ ≤≤ f  on ],[ ba and 

εφψ <− ∫∫
b

a

b

a

dxxdxx )()(  

by Theorem 5.1.7. But 

∫∫∫∫ ≤≤≤
c

a

c

a

c

a

c

a

dxxdxxfdxxfdxx )()()()(

__

__

ψφ  

and 
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ε

φψ

φψ

φψ

<

−≤

−=

−≤

∫

∫

∫∫

   

dxx   

dxx   

dxxdxx

b

a

c

a

c

a

c

a

))((

))((

)()(0

 

by Theorem 5.1.4 and so ∫
c

a

dxxf )( is Riemann integrable on ],[ ca by Theorem 5.1.7. 

On the other hand 

∫∫∫∫ ≤≤≤
b

c

b

c

b

c

b

c

dxxdxxfdxxfdxx )()()()(

__

__

ψφ  

and 

ε

φψ

φψ

φψ

<

−≤

−=

−≤

∫

∫

∫∫

   

dxx   

dxx   

dxxdxx

b

a

b

c

b

c

b

c

))((

))((

)()(0

 

by Theorem 5.1.4 and so ∫
b

c

dxxf )( is Riemann integrable on ],[ bc by Theorem 5.1.7. 

So we have 

∫∫∫ ≤≤
c

a

c

a

c

a

dxxdxxfdxx )()()( ψφ  

and 

.)()()( ∫∫∫ ≤≤
b

c

b

c

b

c

dxxdxxfdxx ψφ  

Adding them gives 

.)()()()( ∫∫∫∫ ≤+≤
b

a

b

c

c

a

b

a

dxxdxxfdxxfdxx ψφ  

Since f is Riemann integrable on ],,[ ba therefore 
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.)()()( ∫∫∫ ≤≤
b

a

b

a

b

a

dxxdxxfdxx ψφ  

This implies 

∫∫∫ −≤−≤−
b

a

b

a

b

a

dxxdxxfdxx )()()( φψ  

and so 

∫∫∫∫∫∫∫ −≤−+≤−
b

a

b

a

b

a

b

c

c

a

b

a

b

a

dxxdxxdxxfdxxfdxxfdxxdxx )()()()()()()( φψψφ  

.)()()(0

)()(

)()()(

)()(

ε

εφψ

φψε

<−+≤⇒

<−≤

−+≤









−−<−⇒

∫∫∫

∫∫

∫∫∫

∫∫

b

a

b

c

c

a

b

a

b

a

b

a

b

c

c

a

b

a

b

a

dxxfdxxfdxxf

dxxdxx           

dxxfdxxfdxxf           

dxxdxx

 

By the arbitrary nature of ,0>ε  

.)()()( ∫∫∫ +=
b

c

c

a

b

a

dxxfdxxfdxxf  

 

5. The constant functionsα andβ are step functions satisfying βα ≤≤ f  on ].,[ ba  

From part 3, 

)()()( abdxdxxfdxab

b

a

b

a

b

a

−=≤≤=− ∫∫∫ ββαα  

and so 

).()()( abdxxfab

b

a

−≤≤− ∫ βα    

               □ 

 

 The uniform limit of a sequence of Riemann integrable functions is Riemann 

integrable and the integral of the limit is the limit of the integral. 
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Theorem 5.1.12 Suppose }{ kf is a sequence of Riemann integrable functions on 

].,[ ba If )(lim unifff k
k

=
∞→

on ],,[ ba then 

 

1. )lim( k
k

f
∞→

is Riemann integrable on ];,[ ba  

2. .))(lim()()(lim ∫∫∫ ∞→∞→
==

b

a

k
k

b

a

b

a

k
k

dxxfdxxfdxxf  

 

Proof.  

 

1. Let .0>ε From uniform convergence of }{ kf on ],,[ ba we have a positive 

integerK such that 

)(4
)()(

)(4
)(

ab
xfxf

ab
xf kk −

+≤≤
−

−
εε

 

for all .],,[ Kkbax ≥∈ So f is bounded on ],,[ ba and since kf is Riemann integrable 

on ],,[ ba there exists step functions kφ and kkkk f ψφψ ≤≤,  on ],,[ ba  and 

,
2

)]()([
ε

φψ <−∫
b

a

kk dxxx for all .Kk ≥  

But 

)(4
)(

)(4
)(

)(

)(4
)(

)(4
)(

ab
x                           

ab
xf                           

xf                           

ab
xf

ab
x

k

k

kk

−
+≤

−
+≤

≤

−
−≤

−
−

ε
ψ

ε

εε
φ

 

on ],,[ ba for all .Kk ≥  

 This shows there are step functions
)(4 ab

k −
−

ε
φ and ,

)(4 ab
k −
+

ε
ψ  

bracketing ,f and 

,
2

)]()([
)(4

)(
)(4

)( ε
ε

φψ
ε

φ
ε

ψ <+−=
















−
−−









−
+ ∫∫

b

a

kk

b

a

kk dxxxdx
ab

x
ab

x  

for all .Kk ≥ So f is Riemann integrable on ].,[ ba  
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2. Integrate ,
)(4

)()(
)(4

)(
ab

xfxf
ab

xf kk −
+≤≤

−
−

εε
we obtain 

,
4

)()(
4

)(
εε

+≤≤− ∫∫∫
b

a

k

b

a

b

a

k dxxfdxxfdxxf  

for all ,Kk ≥ that is, 

,
4

)()(
ε

≤− ∫∫
b

a

k

b

a

dxxfdxxf  

for all ,Kk ≥ and this completes the proof.        □ 

 

 Next two theorems are the Fundamental Theorem of Calculus. 

 

Theorem 5.1.13 (Fundamental Theorem of Calculus for Riemann Integral Part 

1) Let f be a bounded function on ].,[ ba If f is Riemann integrable on ],[ ba  and 

,)()( ∫=
x

a

dttfxF then F is continuous on ].,[ ba In addtition, if f is continuous at 

),,(0 bax ∈ then F is differentiable at ),(0 bax ∈ and ).()( 00

' xfxF =  

 

Proof. Firstly, we show F is continuous on ],,[ ba or equivalently, 

0)]()([lim 0
0

=−
→

xFxF
xx

 for ).,(0 bax ∈  

 

 Since f is bounded on ],,[ ba .  ,)( btaBtfB ≤≤≤≤− Integrate f since f is 

Riemann integrable on ],,[ ba by assumption, and so 

,      ,)()( 0

000

bxxaBdtdttfdtB

x

x

x

x

x

x

≤≤≤≤≤− ∫∫∫  

that is, 

.      ),()()()( 0000 bxxaxxBxFxFxxB ≤≤≤−≤−≤−−  

This means 

.0)]()([lim 0
0

=−
+→

xFxF
xx

 

On the other hand, 
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,      ,)()( 0

000

bxxaBdtdttfdtB

x

x

x

x

x

x

≤≤≤≤≤− ∫∫∫  

that is, 

.      ),()()()( 0000 bxxaxxBxFxFxxB ≤≤≤−≤−≤−−  

This means 

.0)]()([lim 0
0

=−
−→

xFxF
xx

 

So 

0)]()([lim 0
0

=−
→

xFxF
xx

 for ).,(0 bax ∈  

 

 Secondly, we show F is differentiable at ),(0 bax ∈ and ).()( 00

' xfxF =  

Equivalently, 

).,(,0)(
)()(

lim 00

0

0

0

bax      xf
xx

xFxF

xx
∈=








−

−

−
→

 

 

 Since we have proved f is continuous at ),,(0 bax ∈ thus given ,0>ε there 

exists 0>δ so that 

].,[),(,)()()( 0000 baxxt      xftfxf Iδδεε +−∈+<<−  

 

 Theorem 5.1.8 states that every continuous function is Riemann integrable on 

a closed and bounded interval. Thus, we can integrate  

,])([)(])([

000

00 ∫∫∫ +≤≤−
x

x

x

x

x

x

dtxfdttfdtxf εε  

for ].,[),[ 00 baxxx Iδ+∈  

That is, 

),]()([)()()]()([ 00000 xxxfxFxFxxxf −+≤−≤−− εε  

for ].,[),[ 00 baxxx Iδ+∈  

Therefore  

,)(
)()(

0

0

0 εε ≤−
−

−
≤− xf

xx

xFxF
 

for ].,[),( 00 baxxx Iδ+∈  
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Hence 

.0)(
)()(

lim 0

0

0

0

=







−

−

−
+→

xf
xx

xFxF

xx
 

On the other hand, 

,])([)(])([
000

00 ∫∫∫ +≤≤−
x

x

x

x

x

x

dtxfdttfdtxf εε  

for ].,[],( 00 baxxx Iδ−∈  

That is, 

),]()([)()()]()([ 00000 xxxfxFxFxxxf −+≤−≤−− εε  

for ].,[],( 00 baxxx Iδ−∈  

Therefore  

,)(
)()(

0

0

0 εε ≤−
−
−

≤− xf
xx

xFxF
 

for ].,[),( 00 baxxx Iδ−∈  

Hence 

.0)(
)()(

lim 0

0

0

0

=







−

−
−

−→
xf

xx

xFxF

xx

 

This implies 

).()(

)(lim
)()(

lim

0)(lim
)()(

lim

).,(,0)(
)()(

lim

00

'

0

0

0

0

0

0

00

0

0

00

00

0

xfxF

xf
xx

xFxF

xf
xx

xFxF

bax      xf
xx

xFxF
     

xxxx

xxxx

xx

=⇒

=
−

−
⇒

=−
−

−
⇒

∈=







−

−

−

→→

→→

→

 

             □ 

 

 Next is the Fundamental Theorem of Calculus we often use for evaluating 

integrals. 
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Theorem 5.1.14 (Fundamental Theorem of Calculus for Riemann Integral Part 

2) If f is continuous on ],,[ ba differentiable on ],,[ ba and if the derivative, 'f is 

Riemann integrable on ],,[ ba then ).()()(
'

afbfdxxf

b

a

−=∫     

 

Proof. By assumption, 'f is Riemann integrable on ],,[ ba so there are step functions 

ψφ ≤≤ 'f on ],[ ba with ,)()()(
' ∫∫∫ ≤≤

b

a

b

a

b

a

dxxdxxfdxx ψφ and εφψ <− ∫∫
b

a

b

a

dxxdxx )()( f

or any .0>ε   

 

 Take the common partition formed byφ and ,ψ say }.,,,,,{ 121 bxxxaP n−= K  

Suppose ∑∑
==

+=
−

n

j

xj

n

i

xxi jii
xc

0

}{

1

),( )(
1

χφχφ and .)(
0

}{

1

),( 1 ∑∑
==

+=
−

n

j

xj

n

i

xxi jii
xd χψχψ  

Since 

,,))((

)]()([)()(

1

1

1

'

1

1

iii

n

i

iii

n

i

ii

xx      xxf                    

xfxfafbf

<<−=

−=−

−
=

−

=
−

∑

∑

ξξ
 

by the Mean Value Theorem, thus
ii dfc ≤≤ ' on ),( 1−− ii xx and so 

,)()()()(

)())(()(

1

1

1

1

1

1

1

1

'

1

1

∑∑

∑∑∑

=
−

=
−

=
−

=
−

=
−

−≤−≤−⇒

−≤−≤−

n

i

iii

n

i

iii

n

i

iii

n

i

iii

n

i

iii

xxdafbfxxc

xxdxxfxxc     ξ
 

that is, 

.)()()()( ∫∫ ≤−≤
b

a

b

a

dxxafbfdxx ψφ  

So )()( afbf − and ∫
b

a

dxxf )(' lie between ∫
b

a

dxx)(φ and .)(∫
b

a

dxxψ  

Thus 

.)()()(
' ε<−− ∫

b

a

dxxfafbf  

By the nature of arbitrary ,0>ε  
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).()()(' afbfdxxf

b

a

−=∫  

             □ 

 

 This concludes our treatment of the Riemann integral. 

 

 

 

5.2 Lebesgue Integral for Bounded Functions on Lebesgue Measurable Sets 

of Finite Measure 

 

In this section, the Lebesgue integral for bounded functions f on a set E of finite 

Lebesgue measure is developed. The treatment parallels that of the Riemann integral, 

replacing step functions with simple functions. 

 

Definition 5.2.1 Supposeφ is a simple function defined on a measurable set ,E that is, 

,)()(
1

∑
=

=
n

k

Ek xcx
k

χφ  

with 
k

n

k

k EEE ,
1

=
=
U mutually disjoint, kcE ,)( ∞<µ real.   

The Lebesgue integral of simple functionφ on a measurable set ,, ∫EE φ is defined as 

.)(
1

∑∫
=

=
n

k

kk
E

Ec µφ  

 

Proposition 5.2.2 The Lebesgue integral of a simple function defined on a Lebesgue 

measurable set of finite measure is independent of the representation. 

 

Proof. Suppose .
11

UU
m

j

j

n

i

i FEE
==

== Note that .)()(
1 11 1

UUUU II
m

j

n

i

ji

n

i

m

j

ji FEFEE
= == =

==  

Now suppose }{,
11

i

m

j

Fj

n

i

Ei Edc
ji ∑∑

==

== χχφ and }{ jF mutually disjoint collection of 

Lebesgue measurable sets with .)( ∞<Eµ We want to show 
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.)()(
11

∑∑
==

=
m

j

jj

n

i

ii FdEc µµ  

Since 

,
11

UU
m

j

j

n

i

i FEE
==

==  

,)(

)(

)(

)(

)()(

1

1 1

1 1

1 1

1 11

∑

∑ ∑

∑∑

∑∑

∑ ∑∑

=

= =

= =

= =

= ==

=









=

=

=









=

m

j

jj

m

j

n

i

jij

m

j

n

i

jij

n

i

m

j

jii

n

i

m

j

jii

n

i

ii

Fd                  

FEd                  

FEd                  

FEc                  

FEcEc

µ

µ

µ

µ

µµ

I

I

I

I

 

since if ,φ≠ji FE I then there exists ji FEx I∈ such that  

.)( ddccx
ji FjiEi ==== χχφ  

Our argument is complete. 

             □ 

 

Theorem 5.2.3 If ψφ , are simple functions defined on a set E with finite measure, 

and k is any real number, then 

 

1. )( φk is a simple function on ,E and ∫∫ =
EE

kk φφ)(   (homogeneous); 

2. )( ψφ + is a simple function on ,E and ∫∫∫ +=+
EEE
ψφψφ )(  (additive); 

3. ∫∫ ≤
EE
ψφ  if ψφ ≤ onE      (monotone); 

4. If 1E and 2E are disjoint measurable subsets of E with ,21 EEE U= the  

    integrals ∫
1E
ψ and ∫

2E
ψ exist, and ∫∫∫ +=

21 EEE
ψψψ  (additive on the domain). 
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Proof. Suppose ,,
11

∑∑
==

==
m

j

Fj

n

i

Ei ji
dc χψχφ where }{,

11

i

m

j

j

n

i

i EFEE UU
==

== and }{ jF are 

mutually disjoint collections of measurable subsets of .E  

 

1. .)()(
11

∫∑∑∫ ===
==

E

n

i

Ei

n

i

Ei
E

kckkck
ii

φχχφ  

 

2. Let .jiij FEA I= The nonempty sets in the collections of ,1,1, mjniAij ≤≤≤≤ are 

mutually disjoint measurable sets whose union is .E Then 

,)()(
1 1

∑∑
= =

+=+
n

i

m

j

Aji ij
dc χψφ  

and 

.                

)()(                

)()(                

)()(                

)()()(

11

1111

1 11 1

1 1

∫∫

∑∑

∑∑∑∑

∑∑∑∑

∑∑∫

+=

+=

+=

+=

+=+

==

====

= == =

= =

EE

m

j

ji

n

i

ii

n

i

ji

m

j

j

m

j

ji

n

i

i

m

j

n

i

jij

n

i

m

j

jii

n

i

m

j

ijji
E

FdEc

FEdFEc

FEdFEc

Adc

ψφ

µµ

µµ

µµ

µψφ

II

II

 

 

3. If ,ψφ ≤ then φψ − is a nonnegative simple function on ,E whose integral will be 

nonnegative by the definition of the integral, and then from parts 1 and 2, we have 

∫∫∫∫∫ −=−+=−≤
EEEEE
φψφψφψ )()(0  

and so 

.∫∫ ≤
EE
ψφ  

 

4. Observe that ., 2121 φ== EEEEE IU  
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.)()(

))()((

)(

1

2

1

1

1

21

1

∑∑

∑

∑∫

==

=

=

+=

=

=

m

j

jj

m

j

jj

m

j

jjj

m

j

jj
E

EFdEFd        

EFEFd        

Fd

II

IUI

µµ

µ

µψ

 

But }{},{ 21 EFEF jj II are collections of mutually disjoint measurable subsets 

of ,, 21 EE respectively, with 

,)(,)(
1

22

1

11 UU II
m

j

j

m

j

j EFEEFE
==

== and since 

the integral is independent of representation, we have 

,)(,)(
1

2

1

1
21

∑∫∑∫
==

==
m

j

jj
E

m

j

jj
E

EFdEFd II µψµψ  

and so 

.
21
∫∫∫ +=
EEE
ψψψ  

                                                                                                                                     □ 

 Now, we extend the definition of the Lebesgue integral from simple functions 

to bounded functions. 

 

Definition 5.2.4 Suppose f is a bounded function defined on a measurable set E with 

finite measure; say βα ≤≤ f on .)(, ∞<EE µ Let φ andψ denote simple functions 

such that ψφ ≤≤ f on .E  

 

The lower Lebesgue integral of f on ,,
__∫ E

fE is given by 

{ }.,|sup
__

function simple a  f f
EE

φφφ∫∫ ≤=  

The upper Lebesgue integral of f on ,,

__

∫ fE E is given by 

{ }.,|inf

__

function simple a  f f
E

E ψψψ∫∫ ≤=  
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We would hope that the approximation from “above” and “below” approach a 

common value, to be called the Lebesgue integral of f on a measurable set Ewith 

finite measure. 

 

Definition 5.2.5 A bounded function f on a measurable setE with finite measure is 

Lebesgue integrable on E if .

__

__ ∫∫ = ff E
E

Denote the common value by .∫E f  

 

 The next theorem shows Riemann integrability implies Lebesgue integrability.  

 

Theorem 5.2.6 Let f be a bounded function on ].,[ ba If f is Riemann integrable on 

],,[ ba then f is Lebesgue integrable on ],,[ ba and .)(
],[∫∫ =
ba

b

a

fdxxf  

 

Proof.  

{ }
{ }

{ }
{ }

∫

∫

∫

∫

∫

∫

∫

∫

∫∫

=









≤=

≤=

≤=

≤

=

≤=

≤=









≤=

b

a

b

a

ba

ba

ba

ba

ba

ba

b

a

b

a

dxxf                

function step a  f(x)dx                 

function step a  f                 

function simple a  f                 

f                

f                

function simple a  f                 

function step a  f                 

function step a  fdxxdxxf

__

],[

],[

__

],[

],__[

],[

],[

__

.)(

,|inf

,|inf

,|inf

,|sup

,|sup

,|)(sup)(

ψψψ

ψψψ

ψψψ

φφφ

φφφ

φφφ

 

Since f is Riemann integrable, ∫∫ =
b

a

b

a

dxxfdxxf

__

__

)()(  

This implies 
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,

__

],[
],__[ ∫∫ = ff ba
ba

 

and 

.)(
],[∫∫ =
ba

b

a

fdxxf  

             □ 

 

 Next, we have Theorem 5.2.7 on the criteria for Lebesgue integrability. 

 

Theorem 5.2.7 Let f  be a bounded function on a set E with finite measure. f is 

Lebesgue integrable on E iff for every ,0>ε there exists simple 

functionsφ and ψφψ ≤≤ f, on E such that 

.)(0 εφψφψ <−=−≤ ∫∫∫ EEE
 

 

Proof. Suppose the bounded function f is Lebesgue integrable on the measurable set 

,E ,)( ∞<Eµ and let .0>ε By the definition of infimum and supremum, we have 

simple functionsφ and ψφψ ≤≤ f, onE such that 

.
22

22
____

____

εε
ψ

φ
εε

+=+<≤≤

≤<−=−

∫∫∫∫

∫∫∫∫

E
E

E
E

EEEE

fff              

fff

 

Thus   

.
2

__ ε
ψφ +<≤ ∫∫∫ fE

EE
 

Therefore 
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.

22

2

2
0

2

__

__

__

ε

εε

ε
φ

ε
φφψ

ε
ψφ

=

+<

+−=

+−<−≤⇒

+<≤

∫∫

∫∫∫∫

∫∫∫

                            

                            

f                            

f

f     

EE

E
E

EE

E
EE

 

Hence 

.)(0 εφψφψ <−=−≤ ∫∫∫ EEE
 

 

Conversely, let 0>ε be given with simple functions φ  and ψφψ ≤≤ f,  on 

E such that 

.)(0 εφψφψ <−=−≤ ∫∫∫ EEE
  

By the definition of infimum and supremum, 

.

__

__ ∫∫∫∫ ≤≤≤ ψφ ff E
EE

 

Hence 

εφψφψψ <−=−<−≤−≤ ∫∫∫∫∫∫∫ EEE
E fff )(0

____

__

 

and the conclusion follows from the arbitrary nature of .0>ε      □ 

 

 The next theorem illustrates the characterization of Lebesgue integrability in 

terms of Lebesgue measurable functions. 

 

Theorem 5.2.8 Let f be a bounded function on E with finite measure. Then f is 

Lebesgue integrable on E  iff f is Lebesgue measurable on .E  

 

Proof. Let Mf ≤|| on E and assume f is measurable on .E We need to show f is 

Lebesgue integrable onE by constructing simple functionsφ and ψφψ ≤≤ f, on E so 

that 
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.)(0 εφψ <−≤ ∫E  

Let .,)(
1

| nknM
n

k
xfM

n

k
ExEk ≤≤−







 ≤<

−
∈= Then k

n

nk

k EEE ,U
−=

= mutua

lly disjoint measurable sets. Define :,ψφ  

∑
−=

−=
n

nk

Ek
k

n

M
χφ )1( and .∑

−=

=
n

nk

Ek
k

n

M
χψ  

Clearly .ψφ ≤≤ f  

Since 

∑
−=

=−
n

nk

Ekn

M
χφψ  

and so 

,)()()(0 εµµφψ <==−≤ ∑∫
−=

E
n

M
E

n

M n

nk

k
E

 

for sufficiently large .n   

Hence f is Lebesgue integrable onE by Theorem 5.2.7. 

 

 

Now, assume f is Lebesgue integrable and bounded on set E with finite 

measure. We need to show f is a Lebesgue measurable function on .E  

 

Since f is bounded and Lebesgue integrable on set ,E  there exists simple 

functions nφ and nψ so that nn f ψφ ≤≤ on ,, ∫∫∫ ≤≤
E

n
EE

n fE ψφ and 

.,3,2,1  ,
1

)( K=<−∫ n
nE

nn φψ  

Define two measurable functions (Theorem 4.2.1): 

},,sup{ 21

*
Kφφφ =  and }.,,inf{ 21

*
Kψψψ =  

 

Clearly
nn f ψψφφ ≤≤≤≤ ** on E for all .1≥n We need to 

show ** ψφ = almost everywhere on E  and thus conclude *ψ=f almost everywhere 

on ,E and by Theorem 4.1.5, f will be measurable on .E Consider 
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U

U

m   integer   positive

nn

m   integer   positive

m
xxEx                                          

m
xxExxxEx







 >−∈⊂







 >−∈=>−∈

1
)()(|

1
)()(|}0)()(|{ ****

φψ

φψφψ

 

for all .1≥n  We are done if we show






 >−∈

m
xxEx

1
)()(|

** φψ has measure zero. 

This set is measurable because ** φψ − is a measurable function on .E  

 

 By Theorem 5.2.3, we can splitE into two disjoint measurable subsets 1E  and 

2E with 







 >−∈=

m
xxExE nn

1
)()(|1 φψ  and .

1
)()(|2







 ≤−∈=

m
xxExE nn φψ  

Thus 

,
1

)()(|
1

                         

)(
1

                         

)(
1

                         

)(                         

)(                         

)()()(
1

1

1

1

1

11

1

21
















 >−∈=

=

>

=

−≥

−+−=−>

∑

∑

∫

∫∫∫

=

=

m
xxEx

m

E
m

E
m

Ec

n

nn

j

p

j

p

j

jj

E
nn

E
nn

E
nn

E
nn

φψµ

µ

µ

µ

φψ

φψφψφψ

 

since on ,,
1

11 1∑
=

=−
p

j

Ejnn j
cE χφψ where jE1 mutually disjoint measurable sets, 

U
p

j

jEE
1

11

=

=  and .
1

1
m

c j >   

Hence 

n

m

m
xxEx nn <















 >−∈

1
)()(| φψµ for all ,1≥n  

i.e., 0
1

)()(| =














 >−∈

m
xxEx nn φψµ and so







 >−∈

m
xxEx

1
)()(| ** φψ has 

measure zero since a countable union of sets of measure zero is a measurable set of 
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measure zero. This implies ** ψφ = almost everywhere onE and thus *ψ=f almost 

everywhere on .E By Theorem 4.1.5, f is Lebesgue measurable on .E     □  

 

 The Lebesgue integral has the properties of linearity and monoticity. 

 

Theorem 5.2.9 If the bounded functions f and g are Lebesgue measurable on 

,)(, ∞<EE µ  and k  is any real number, then f and g are Lebesgue integrable on E  

and 

 

1. )(kf is Lebesgue integrable on ,E and ∫∫ =
EE
fkkf )(  (homogeneous); 

2. )( gf + is Lebesgue integrable on ,E and ∫∫∫ +=+
EEE
gfgf )(  (additive); 

3. ∫∫ ≤
EE
gf if gf ≤ on E  (monotone); 

4. If 1E and 2E are disjoint measurable subsets of E with fEEE ,21 U= is Lebesgue    

integrable on 1E and ,2E and ∫∫∫ +=
21 EEE
fff  (additive on the domain); 

5. If βα ≤≤ f on ,E then )()( EfE
E

βµαµ ≤≤ ∫  (mean value). 

 

Proof.  

 

1. 0>k is obvious. Assume .0>k Since f is Lebesgue integrable on ,E there exists 

simple functions φ  andψ so that ∫∫∫ ≤≤≤≤
EEE

ff ψφψφ ,  and .)(
kE

ε
φψ <−∫  

But then  

∫∫∫ ≤≤≤≤
EEE

kfkkkkfk ψφψφ ,  and .)()( εφψφψ <−=− ∫∫ EE
kkk  

The last inequality implies kf is Lebesgue integrable. Thus 

.∫∫∫∫∫ =≤≤=
EEEEE

kkkfkk ψψφφ  

Hence 

( ) ( )
.ε

εφψφψψφφψε

φψψφ

<−⇒

<−=−≤−≤−=−−<−⇒

−≤−≤−

∫∫

∫∫∫∫∫∫∫∫∫∫
∫∫∫∫∫∫

EE

EEEEEEEEEE

EEEEEE

fkkf

kkkfkkfkkk

kkfkkfkk     
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Since 0>ε is arbitrary, 0=− ∫∫ EE
fkkf and so .∫∫ =

EE
fkkf  

 

 Assume .0<k  Since f is Lebesgue integrable on ,E there exists simple 

functions φ  andψ so that ∫∫∫ ≤≤≤≤
EEE

ff ψφψφ ,  and .)(
kE −

<−∫
ε

φψ  

But then  

∫∫∫ ≤≤≤≤
EEE

kfkkkkfk φψφψ ,  and .)()( εψφψφ <−=− ∫∫ EE
kkk  

The last inequality implies kf is Lebesgue integrable. Thus 

.∫∫∫∫∫ =≤≤=
EEEEE
kkkfkk φφψψ  

Hence 

( ) ( )
.ε

εψφψφφψψφε

ψφφψ

<−⇒

<−=−≤−≤−=−−<−⇒

−≤−≤−

∫∫

∫∫∫∫∫∫∫∫∫∫
∫∫∫∫∫∫

EE

EEEEEEEEEE

EEEEEE

fkkf

kkkfkkfkkk

kkfkkfkk     

 

Since 0>ε is arbitrary, 0=− ∫∫ EE
fkkf and so .∫∫ =

EE
fkkf  

 

2. f is Lebesgue integrable implies ∫∫∫ ≤≤≤≤
E

f
EE

fff ff ψφψφ , with  

.
2

)(
ε

φψ <−∫E ff  

g is Lebesgue integrable implies ∫∫∫ ≤≤≤≤
E

g
EE

ggg gg ψφψφ , with  

.
2

)(
ε

φψ <−∫E gg  

Adding, we obtain ∫∫∫∫ +≤+≤++≤+≤+
E

gf
EEE

gfgfgf gfgf )()(, ψψφφψψφφ  

with .)]()[( εφφψψ <+−+∫E gfgf The last inequality implies gf + is Lebesgue 

integrable onE and 

.)()()( ∫∫∫ +≤+≤+
E

gf
EE

gf gf ψψφφ  

Thus ∫∫ +
EE
gf and ∫ +

E
gf )( lie between ∫ +

E
gf )( φφ and ∫ +

E
gf )( ψψ and so 

,)( ∫∫∫ +=+
EEE
gfgf  

by the arbitrary nature of .0>ε  
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3. By parts 1 and 2, .)(∫∫∫ −=−
EEE

fgfg  Since ,0≥− fg  let .0≡φ  Then 

.)(0 ∫∫ −≤=
EE

fgφ   

 

4. Since f is Lebesgue integrable on ,E there exists simple functions 

ψφ ≤≤ f on E so that 

∫∫∫ ≤≤
EEE

f ψφ  

and .)( εφψ <−∫E   

 

 Since ∫∫∫ +=
21 EEE
φφφ and ∫∫∫ +=

21 EEE
ψψψ  (Theorem 5.2.3), we conclude 

ψφ ≤≤ f on 1E and ,)(
1

εφψ <−∫E and ψφ ≤≤ f on 2E and .)(
2

εφψ <−∫E Hence f is 

Lebesgue integrable on 1E and 2E and 

.
212121

∫∫∫∫∫∫∫∫ =+≤+≤+=
EEEEEEEE

ff ψψψφφφ  

 

 ∫∫ +
21 EE
ff and ∫E f lie between ∫Eφ and .∫Eψ Therefore ∫∫∫ +=

21 EEE
fff by 

the arbitrary nature of .0>ε  

 

5. From part 3, ).()( EfE
EEE

βµβααµ =≤≤= ∫∫∫        □ 

 

 We conclude this section with the next theorem. 

 

Theorem 5.2.10 If f is a bounded, Lebesgue integrable function on a setE of finite 

measure, and g is a bounded function on E such that fg = almost everywhere 

on ,E then g is Lebesgue integrable onE and .∫∫ =
EE
fg   

 

Proof. The function f is Lebesgue measurable by Theorem 5.2.8 and application of 

Theorem 4.1.5 yields measurability for ,g and thus integrability for g (Theorem 5.2.8). 



93 

Let )}.()(|{ xgxfxA ≠= The set A has measure zero, thus A is Lebesgue measurable 

by Theorem 3.3.2, and so c
AE I is measurable by Lemma 3.3.4and 

,

0

0

∫
∫∫

∫
∫
∫

∫∫∫

=

+=

+=

=

+=

+=

E

AAE

AE

AE

AE

AAEE

g       

gg       

g       

g       

f       

fff

c

c

c

c

c

I

I

I

I

I

 

by Theorem 5.2.9.           □ 

 

 

 

5.3 Lebesgue Integral for Nonnegative Measurable Functions 

 

We begin this section by defining nonnegative simple function on ℝ and the 

Lebesgue integral of a nonnegative simple function φ defined on a Lebesgue 

measurable set .E  

 

Definition 5.3.1 Let φ be a nonnegative simple function on ℝ, that is, 

,)()(
1

∑
=

=
n

k

Ek xcx
k

χφ where
kE are mutually disjoint Lebesgue measurable subsets of ℝ,   

ℝ ,
1

U
n

k

kE
=

= and
kc are nonnegative real numbers. 

 

Definition 5.3.2 The Lebesgue integral of a nonnegative simple function ,φ on a 

Lebesgue measurable set ,E written ,∫Eφ is defined by 

,)(
1

∑∫
=

=
n

k

kk
E

EEc Iµφ  

where k

n

k

Ek Ec
k
,

1

∑
=

= χφ mutually disjoint, ℝ .0,
1

≥=
=

k

n

k

k cEU  
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Theorem 5.3.3 The Lebesgue integral of a nonnegative simple function defined on a 

Lebesgue measurable set is independent of representation. 

 

Proof. Suppose 

0,
1

≥=∑
=

k

n

k

Ek cc
k

χφ  

and 

0,
1

≥=∑
=

j

m

j

Fj dd
j

χφ  

with 

ℝ ,
11

UU
m

j

j

n

k

k FE
==

==  

kE and jF mutually disjoint Lebesgue measurable subsets of ℝ. We need to show 

.)()(
11

∑∑
==

=
m

j

jj

n

k

kk FEdEEc II µµ  

Note that 

UU II
m

j

jk

m

j

jkk FEFEE
11

)(
==

=









=  

and 

.)(
11

UU II
n

k

jk

n

k

kjj FEEFF
==

=







=  

Hence 
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k
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FEd

FEEd

FEEd

FEEd

FEEd

FEEd

FEEc

FEEc

FEEcEEc

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 11

)(                         
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)(                         

)(                         

)(                         

)(                         

)(                         

)(                         

)()(

I

II

II

II

II

II

II

II

III

U

U

U

U

µ

µ

µ

µ

µ

µ

µ

µ

µµ

 

since, for ,, jFjEkkjk ddccFEE
jk
====≠ χφχφII and if ,φ=jk FEE II no 

contribution because .0)( =φµ            □ 

 

Theorem 5.3.4 If ψφ , are nonnegative simple functions on ℝ, if E is any Lebesgue 

measurable subset of ℝ, and k is any nonnegative real number, then 

 

1. )( φk is a nonnegative simple function on ,E and 

∫∫ =
EE

kk φφ)(   (homogeneous); 

2. )( ψφ + is a nonnegative simple function on ,E and 

∫∫∫ +=+
EEE
ψφψφ )(   (additive); 

3. ∫∫ ≤
EE
ψφ if ψφ ≤≤0 on E   (monotone); 

4. If 1E and 2E are disjoint Lebesgue measurable subsets of E with ,21 EEE U= the  

integrals ∫∫∫ +=
21 EEE
ψψψ   (additive on the domain).  
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Proof.  

 

1. Suppose .0,
1

≥=∑
=

i

n

i

Ei cc
i

χφ Then ∑
=

=
n

i

Ei i
kck

1

χφ and 

.           

)(           

)()()(

1

1

∫

∑

∑∫

=

=

=

=

=

E

n

i

ii

n

i

ii
E

k

EEck

EEkck

φ

µ

µφ

I

I

 

 

2. Let ∑
=

=
n

k

Ek k
c

1

χφ and ∑
=

=
m

j

Fj j
d

1

χψ with .,0 jk dc≤ The idea is to form the mn ⋅ sets: 

.,,,

,,,

,,,
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22212

12111

mnnn

m

m

FEFEFE

FEFEFE

FEFEFE

IKII

M

IKII

IKII

 

If ,φ≠jk FE I  define ψφ + as .jk dc + The nonempty jk FE I are mutually disjoint 

Lebesgue measurable subsets of ℝ, 

ℝ ,)(
1 1

UU I
n

k

m

j

jk FE
= =

=  

and 

.)(
1 1

∑∑
= =

+=+
n

k

m

j

FEjk jk
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I
χψφ  

Hence 
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1 11 1
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+=+

==
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jkj

n

k

m
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3. Suppose
k

n

k

Ek Ec
k
,

1

∑
=

= χφ mutually disjoint, and j

m

j

Fj Fd
j
,

1

∑
=

= χψ mutually disjoint, 

where 

ℝ .
11

UU
m

j

j

n

k

k FE
==

==  

Since jk dc ≤≤≤≤ 0,0 ψφ on nonempty jk FE I and thus 
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)(                                   

)(                                   

)()(

1

1 1

1 11

∫

∑

∑ ∑

∑ ∑∑∫

=

=

≤

==

=

= =
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k
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4.  

.       

)()(       

)]()([       
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1

2

1

1

1
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1
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1

∫∫

∑∑

∑

∑
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=
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j
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EFEFd

EEFd

EFd

ψψ

µµ

µµ

µ

µψ

II

II

UI

I

 

              □ 

 

 Next, we define the Lebesgue integral of a nonnegative measurable function. 

We give two commonly used definitions and show their equivalence. 

 

Definition 5.3.5 If f is a nonnegative measurable function, defined on a Lebesgue 

measurable set ,E  the Lebesgue integral of f over ,, ∫E fE is given by 

{ }.,|sup simple  and  enonnegativ  ff
EE

φφφ ≤≡ ∫∫  
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Definition 5.3.6 If f is a nonnegative measurable function, defined on a Lebesgue 

measurable set ,E and nφ is a nonnegative monotone sequence of simple functions, 

10 +≤≤ nn φφ on ,E with 

)()(lim xfxn
n

=
∞→
φ  finite or infinite 

for all ,Ex∈ the Lebesgue integral of f over ,, ∫E fE is given by 

.)lim(lim ∫∫∫ ∞→∞→
=≡

E
n

nE
n

nE
f φφ  

 

Lemma 5.3.7 Let .0, >ba If ,10 <<∀≥ ααba then .ba ≥  

 

Proof. Assume .ba < Then .010 bb <<⇒<< αα Since ,ba < it follows that 

ba α<<0 or .0 bab <<<α When ,0 ba α<< a contradiction occurs. When 

,0 bab <<<α take 10 <=<
b

a
α since α is arbitrary.Then ,0 baab

b

a
<<=⋅< a 

contradiction occurs.           □ 

 

Proposition 5.3.8 ,∫E f as given by Definition 5.3.6 is well-defined. 

 

Proof. Suppose we have sequences of simple functions
1

^

0,},{ +≤≤








nnmn φφφφ and 

1

^^

0 +≤≤ mm φφ on Ewith .limlim
^

fm
m

n
n

==
∞→∞→
φφ  

We claim 

.limlim
^

∫∫ ∞→∞→
=

E
m

mE
n

n
φφ  

 

 Pick .0 fn ≤≤ φ Then nm
m

f φφ ≥=
∞→

^

lim on .E We will show 

.lim
^

∫∫ ≥
∞→ E

n
E

m
m

φφ  

Since nφ is nonnegative and simple, we have 

,0,)(
1

≥=∑∫
=

k

N

k

kk
E

n c  EEc Iµφ  
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where U I
N

k

kEEE
1

)(
=

= and the nonempty kEE I are mutually disjoint Lebesgue 

measurable subsets of .E Hence we must show 

.)(lim
1

^

∑∫
=

∞→
≥

N

k

kk
E

m
m

EEc Iµφ  

But the integral is additive on the domain (Theorem 5.3.4). Thus 

.
1

^^

∑∫∫
=

=
N

k
EE

m
E

m
kI
φφ  

 

 Our claim will be justified provided we can show 

.0),(lim
^

≥≥∫∞→ kkk
EE

m
m

c  EEc
k

I
I

µφ  

 

 It is immediate if .0=kc Assume .0>kc Let .10 <<α (This idea has been 

attributed to W. Rudin.) We construct a sequence of sets }{ mB as follows: 

.)(|
^







 ≥∈= kmkm cxEExB αφI  

mB is measurable, 1+⊆ mm BB since ,1

^^

+≤ mm φφ and .
1

UI
∞

=

=
m

mk BEE This is because 

knk cpEEp =∈ )(,φI since kEp∈ and ∑
=

=
l

k

Ekn k
cx

1

)( χφ and so  

,)()()(lim
^

kknm
m

ccppfp αφφ >=≥=
∞→

 

i.e.,
km cp αφ >)(

^

for sufficiently large ,m in other words, mBp∈  for sufficiently 

large .m  

 

 So }{ mB is an increasing sequence of Lebesgue measurable subsets 

of .kEE I Then )}({ mBµ is monotone increasing with 

)()(lim km
m

EEB Iµµ =
∞→

 (Theorem 3.4.1). 

 

 But







∫

kEE
m

I

^

φ is also monotone increasing with 
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).(
^^

mk
B

m
EE

m Bc
mk

µαφφ ≥≥ ∫∫ I
 

Hence 

).()]([limlim
^

kkmk
mEE

m
m

EEcBc
k

I
I

µαµαφ =≥
∞→∞→ ∫  

But this holds for anyα between 0 and .1 By Lemma 5.3.7, we have 

  EEc kk
EE

m
m k

),(lim
^

I
I

µφ ≥∫∞→  

and the argument is complete. The reverse inequality is obtained by interchanging 

m

^

φ and .nφ              □ 

 

Proposition 5.3.9 The Definition 5.3.5 and 5.3.6 of the Lebesgue integral of a 

nonnegative measurable function are equivalent. 

 

Proof. By the Approximation Theorem 4.3.5, we have a monotone sequence of 

nonnegative simple functions, 1

^^

0 +≤≤ nn φφ on ,E with 

fn
n

=
∞→

^

limφ on ,E and .1

^^

∫∫ +≤
E

n
E

n φφ  

We must show 

{ }.|suplim
^

f
EE

n
n

≤= ∫∫∞→ φφφ  

  

 Suppose .0 * f≤≤ φ Then *
^

lim φφ ≥=
∞→

fn
n

on E and the argument in 

Propostition 5.3.8 yields 

∫∫ ∞→
≤

E
n

nE

^
* lim φφ  (finite or infinite). 

 

 In other words, ∫∞→ E
n

n

^

lim φ is an upper bound for the set{ }.| f
E

≤∫ φφ  

Hence, 

{ } .lim|sup
^

∫∫ ∞→
≤≤

E
n

nE
f φφφ  
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 On the other hand, { }f
EE

n ≤∈ ∫∫ φφφ |
^

for all ,n and the sequence







∫E n

^

φ is 

nondecreasing (Theorem 5.3.4). So { }.|suplim
^

f
EE

n
n

≤≤ ∫∫∞→ φφφ Combining, 

{ }.|suplim
^

f
EE

n
n

≤= ∫∫∞→ φφφ           □ 

 

 We also have properties of the integral. 

 

Theorem 5.3.10 If f and g are nonnegative measurable functions defined on a 

Lebesgue measurable set ,E and k is any nonnegative real number, then 

 

1. )(kf is nonnegative, measurable, and ∫∫ =
EE
fkkf )(  (homogeneous); 

2. )( gf + is nonnegative, measurable, and ∫∫∫ +=+
EEE
gfgf )(  (additive); 

3. ∫∫ ≤
EE
gf if gf ≤≤0  (monotone); 

4. If 1E and 2E are disjoint measurable subsets of E with ,21 EEE U= the   

    integrals ∫
1E
f and ∫

2E
f exist inℝ ,e and  

∫∫∫ +=
21 EEE
fff  (additive on domain). 

 

Proof. Measurability of the appropriate functions follows from Theorem 4.1.7. 

1. By the Approximation Theorem 4.3.5, we have a sequence








n

^

φ of simple 

functions satisfying 1

^^

0 +≤≤ nn φφ with fn
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 Next example serves to illustrate the concepts used. 
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 In these calculations, many simplifications arise if ( )∫∫ ∞→∞→
=

E
n

nE
n

n
ff limlim is 

valid for monotone sequences of nonnegative measurable functions, not just 

monotone sequences of nonnegative simple functions. 

 

Theorem 5.3.12 Lebesgue Monotone Convergence Theorem (LMCT), Beppo 

Levi, 1906. Let }{ kf be a monotone increasing sequence of nonnegative measurable 

functions on a Lebesgue measurable set L≤≤≤ 210: ffE on .E Then 

 

( ).limlim ∫∫ ∞→∞→
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E
k

kE
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Proof. We give two arguments. The first is based on Definition 5.3.5 for the integral 

of a nonnegative measurable function. Note that ( )k
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lim is nonnegative )0( kf≤ and 

measurable onE (Theorem 4.2.1). So 
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 If ,0=ic done. Assume .0>ic The idea is to construct an increasing sequence 

of Lebesgue measurable sets }.{ kB The ingenious idea is due to W. Rudin. 
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measurable, ,1+⊆ kk BB since ,1+≤ kk ff and .
1

i

k

k EEB IU =
∞

=

This is because if 

ii cxEEx =∈ )(, 00 φI since iEx ∈0 and ∑
=

=
N

i

Ei i
cx

1

)( χφ and so 

,)()(lim 00 iik
k

ccxxf αφ >=≥
∞→

 

i.e., ik cxf α>)( 0 for sufficiently large ,k in other words, kBx ∈0  for sufficiently 

large .k  

 

 The sequence )}({ kBµ is nondecreasing, and )()(lim ik
k

EEB Iµµ =
∞→

by 

Theorem 3.4.1. But ).( ki
B

k
EE

k Bcff
ki

µα≥≥ ∫∫ I
Hence 

.10),()(limlim <<=≥
∞→∞→ ∫ αµαµα   EEcBcf iik

k
i

EE
k

k i

I
I

 

 

 Therefore ),(lim ii
EE

k
k

EEcf
i

I
I

µ≥∫∞→ by Lemma 5.3.7 and the theorem is 

proved using Definition 5.3.5. 

 

 The second argument is based on Definition 5.3.6, the Approximation 

Theorem 4.3.5, and extensive use of Proposition 5.3.10. From the Approximation 

Theorem, we have: 

11111211 lim,0 ff n
n

n =≤≤≤≤≤≤
∞→
φφφφ LL on ,E and ;lim 11 ∫∫ =

∞→ EE
n

n
fφ  

22222221 lim,0 ff n
n

n =≤≤≤≤≤≤
∞→
φφφφ LL on ,E and ;lim 22 ∫∫ =

∞→ EE
n

n
fφ  

M  

kkn
n

kknkk ff =≤≤≤≤≤≤
∞→
φφφφ lim,0 21 LL on ,E and ;lim ∫∫ =

∞→ E
k

E
kn

n
fφ  

etc. 

 

 Construct a new sequence of simple functions, ,
^









kφ with ( )k
k

k
k

f
∞→∞→

= limlim
^

φ as 

follows: 

;111

^

φφ =  

=2

^

φ max ;},{ 1

^

11122212 φφφφφ =≥≥  
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M  

=k

^

φ max ;},,,,{ 1

^

121 −− ≥ kkkkkkk φφφφφ K  

etc. 

 

 The
k

^

φ are simple and ,0
^

2

^

1

^

LL ≤≤≤≤≤ kφφφ with ( ).limlim
^

k
k

k
k

f
∞→∞→

=φ By 

Definition 5.3.6, ( ).limlim
^

∫∫ ∞→∞→
=

E
k

kE
k

k
fφ However, ( )k

k
kk ff

∞→
≤≤≤ lim0

^

φ and, since the 

integral preserves monotonicity for nonnegative measurable functions, we have 

( ).lim
^

∫∫∫ ∞→
≤≤

E
k

kE
k

E
k ffφ Taking limits, 

( ).limlimlim
^

∫∫∫ ∞→∞→∞→
≤≤

E
k

kE
k

kE
k

k
ffφ  

Recalling ( )∫∫ ∞→∞→
=

E
k

kE
k

k
flimlim

^

φ from above, we have 

( ) ( ).limlimlim ∫∫∫ ∞→∞→∞→
≤≤

E
k

kE
k

kE
k

k
fff  

and so 

( ).limlim ∫∫ ∞→∞→
=

E
k

kE
k

k
ff  

             □ 

 

 Next example shows that we approximate unbounded Lebesgue measurable 

function on set of finite measure with bounded measurable function.  

 

Example 5.3.13 Calculate .
1

1

)1,0[ 2∫
− 
t

 

 

Solution. Let







−=
,0

,
1

1

)( 2ttf k .

1
1

1

1
10

<<−

−≤≤

t
k

k
t

Then 

 







−=+

,0

,
1

1

)( 2
1 ttf k .

1
1

1
1

1

1
10

<<
+

−

+
−≤≤

t
k

k
t
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When ).(
1

1
)(,

1
10 1

2
tf

t
tf

k
t kk +=

−
=−≤≤  

When ).(
1

1
0)(,

1

1
1

1
1 1

2
tf

t
tf

k
t

k
kk +=

−
<=

+
−≤<−  

When ).(0)(,1
1

1
1 1 tftft

k
kk +==<<

+
−  

 

Thus 

10 +≤≤ kk ff on ).1,0[  

Clearly, 

21

1
)(lim

t
tf k

k −
=

∞→
for all ).1,0[∈t  

Therefore 

( )

[ ]

.
2

1sin

0sin
1

1sinlim

sinlim

1

1
lim

lim

lim

lim
1

1

1

11

1
1

0

1

1
1

0
2

]
1

1,0[

)1,0[

)1,0[)1,0[ 2

π
=

=









−






 −=

=

−
=

=

=

=
−

−

−−

∞→

−=

=
−

∞→

−

∞→

−∞→

∞→

∞→

∫

∫

∫

∫∫

                   

                   

k
                   

t                   

dt
t

                   

f                   

f                   

f
t

k

k
t

t
k

k

k

k
 

k
k

 
k

k

 
k

k 

 

             □ 

 

 Next example shows that we approximate bounded Lebesgue measurable 

function on set of infinite measure with bounded measurable function. 

 

Example 5.3.14 Calculate .
),0[∫ ∞

−te      
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Solution. Let




=
−

,0

,
)(

t

k

e  
tf .

0

tk

kt

<

≤≤
Then 

 





=
−

+
,0

,
)(1

t

k

e  
tf .

1

10

tk

kt

<+

+≤≤
 

 

When ).()(,0 1 tfetfkt k

t

k +
− ==≤≤  

When ).(0)(,1 1 tfetfktk k

t

k +
− =<=+≤<   

When ).(0)(,1 1 tftftk kk +==<+  

 

Thus 

10 +≤≤ kk ff on ).,0[ ∞  

Clearly, 

t

k
k

etf −

∞→
=)(lim for all ).,0[ ∞∈t  

Therefore 

( )

[ ]
( )

.1

1lim

lim

lim

lim

lim

lim

0

0

],0[

),0[

),0[),0[

=

−=

−=

=

=

=

=

−

∞→

=

=
−

∞→

−

∞→

∞→

∞∞→

∞ ∞→∞

−

∫

∫

∫

∫∫

             

e             

e             

dte             

f             

f             

fe     

k

k

kt

t

t

k

k

t

k

k
k

k

k
k

k
k

t

 

             □ 

 

Theorem 5.3.15 If }{ kg is a sequence of nonnegative measurable functions defined 

on a measurable set ,E then 

.
11

∑∫∫ ∑
∞

=

∞

=

=
k

E
k

E
k

k gg  
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Proof: Let .21 nn gggf +++= L Then }{ nf is a monotone increasing sequence of 

nonnegative measurable functions defined on a measurable set .E We use LMCT. 

( ) .limlimlimlim
1111

∑∫∑∫∫ ∑∫∫∫ ∑
∞

==
∞→

=
∞→∞→∞→

∞

=

=====
k

E
k

n

k
E

k
nE

n

k

k
nE

n
nE

n
nE

k

k gggffg  

                        □ 

   

Theorem 5.3.16 (Fatou, 1906) If }{ kf is a sequence of nonnegative measurable 

functions defined on a Lebesgue measurable set ,E then 

( ) .infliminflim k
kE

k
k

ff
∞→∞→

≤∫  

 

Proof. Let
1211

}.,,inf{ ffff K≡ is measurable, nff ≤≤
1

0 for all ,1≥n and 

∫∫ ≤
E

n
E

ff
1

for all .1≥n  

In other words, ∫E f 1
is a lower bound for the set{ }.,,,, 21 KK ∫∫∫ E

n
EE

fff We have 

{ }.,,,,inf 2111
KK ∫∫∫∫∫ ≡≤

E
n

EEEE
fffff  

Define
2322

}.,,inf{ ffff K≡ is measurable, ,0
21
ff ≤≤  

∫∫ ≤
EE
ff

21
and { }.,,inf 3221 K∫∫∫∫ ≡≤

EEEE
ffff  

In general, if 

},,,inf{ 1 K+≡ mmm
fff  

then 

,0
21

LL ≤≤≤≤≤
m
fff and { }.,,inf 1 K∫∫∫∫ +=≤

E
m

E
m

E
m

E m
ffff  

 

The sequences { }{ }∫∫ E
m

E m
ff , are nonnegative, monotone increasing 

sequences of perhaps extended-real numbers, and so have limits in the extended reals: 

.limlim ∫∫ ∞→∞→
≤

E
m

mE mm
ff  

But, application of the LMCT tells us that 

( ) ( ).inflimlimlim ∫∫∫ ∞→∞→∞→
==

E
k

kE mmE mm
fff  

Therefore 
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( ) ,inflimliminflim ∫∫∫ ∞→∞→∞→
=≤

E
k

kE
m

mE
k

k
fff  

and this is what we intended to prove.         □ 

 

Example 5.3.17 Let .
1

],0[ nn
n

f χ= Then 

.lim01lim
),0[),0[ ∫∫ ∞ ∞→∞∞→

=≠= n
n

n
n

ff  

But  

.inflim10liminflim
),0[),0[),0[ ∫∫∫ ∞∞→∞ ∞→∞ ∞→

=≤== n
n

n
n

n
n

fff  

               □ 

 

 Monotone increasing is necessary. 

 

Example 5.3.18 Let .
1

],0[ nn
n

f χ−= Then 0→nf (unif) on ).,0[ ∞  

We have 

,lim01lim
),0[),0[ ∫∫ ∞ ∞→∞∞→

=≠−= n
n

n
n

ff  

but 

.inflim10inflim
),0[),0[ ∫∫ ∞∞→∞ ∞→

=−>= n
n

n
n

ff  

             □ 

 

 Nonnegative is necessary, even with uniform convergence. 

  

 This concludes our treatment of the Lebesgue integral for nonnegative 

measurable functions defined on arbitrary measurable sets of real numbers. 

 

 

 

5.4 Lebesgue Integral and Lebesgue Integrability 

 

The requirement that f be nonnegative is eliminated. We discuss Lebesgue 

measurable functions defined on any Lebesgue measurable set of real numbers. 
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Definition 5.4.1 Let f be a measurable function defined on a measurable 

set .E Recall that −+ −= fff (Propostition 4.1.8), where )0,max( ff =+  and 

)0,min( ff −=−  are nonnegative measurable functions. ∫ +

E
f and ∫ −

E
f can be 

calculated according to Definition 5.3.5 or Definition 5.3.6. 

 

 If both ∫ +

E
f and ∫ −

E
f are ,∞ then the Lebesgue integral of f on E is not 

defined ( ∞−∞ is not defined inℝ e ). 

 

 If either ∫ +

E
f or ∫ −

E
f (but not both) are finite, then the Lebesgue integral of 

f on E is defined by 

.∫∫∫ −+ −=
EEE
fff  

 

If both ∫ +

E
f and ∫ −

E
f are finite, then f is Lebesgue integrable onE  

and  

.∫∫∫ −+ −=
EEE
fff  

 In this case, ∈∫E f ℝ. 

 

Caution: In what follows “integrable” means “Lebesgue integrable”. 

  

 Now, we discuss the relationships between ,||, ∫∫ EE
ff and ∫E g when fg =  

almost everywhere on .E  

 

Propostition 5.4.2 Suppose f is a measurable function defined on a measurable 

set .E  Then f is integrable on E iff || f  is integrable on .E  

Moreover, 

.||∫∫ ≤
EE
ff  
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Proof. Assume f is integrable on .E We want to show || f is integrable on E  and 

.||,|| ∞<∫∫ −+

EE
ff  

 

 Since f is measurable on ||, fE  is measurable on E (Propostition 4.1.8), 

,0|| =∫ −

E
f  and ∞<+=+== ∫∫∫∫∫ −+−++

EEEEE
ffffff )(||||  because f is 

integrable on .E Thus || f is integrable on .E  

 

 Assume || f is integrable on .E We want to show f is integrable on .E  Since 

f is measurable by assumption, and  

,||||)( ∞<==+=+ ∫∫∫∫∫ +−+−+

EEEEE
ffffff  

we have .||,|| ∞<∫∫ −+

EE
ff Thus, f is integrable on .E   

.||

)(

∫
∫

∫∫
∫∫∫∫∫

=

+=

+=

+≤−=

−+

−+

−+−+

E

E

EE

EEEEE

f                                   

ff                                   

ff                                   

fffff

 

             □ 

 

Proposition 5.4.3 If f is integrable on ,E then f is real-valued (finite) a.e. on .E  

 

Proof. We need to prove .0}))(|({ =±∞=∈ xfExµ  

For },)(|{ +∞=∈ xfEx  

+∞=− −+ )()( xfxf      

+∞=⇒ + )(xf and +∞<≤ − )(0 xf    or   +∞<≤ + )(0 xf and .)( −∞=− xf  

The last case is unacceptable, and so 

}.)(|{})(|{ +∞=∈=+∞=∈ + xfExxfEx  

For },)(|{ −∞=∈ xfEx  

−∞=− −+ )()( xfxf      

−∞=⇒ + )(xf and +∞<≤ − )(0 xf    or   +∞<≤ + )(0 xf and .)( +∞=− xf  

The first case is unacceptable, and so 
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}.)(|{})(|{ +∞=∈=−∞=∈ − xfExxfEx  

This implies 

}.)(|{})(|{

})(|{})(|{})(|{

+∞=∈+∞=∈=

−∞=∈+∞=∈=±∞=∈
−+ xfExxfEx                                

xfExxfExxfEx

U

U
  

Then 

}))(|({
})(|{

+∞=∈≥≥>∞ +

+∞=∈

++ ∫∫ +
xfExnff

xfExE
µ  

for all .1≥n We have a contradiction unless .0}))(|({ =+∞=∈ + xfExµ  

Similarly,  

.0}))(|({ =+∞=∈ − xfExµ  

Hence 

.0}))(|({ =±∞=∈ xfExµ  

                        □ 

  

 However, the converse of Proposition 5.4.3 is not true. Let’s say we have 

.10,
1

)( ≤<= x
x

xf Then f is real-valued everywhere, but is not integrable. 

 

Example 5.4.4 Suppose 








+

−
=

,0

,
)1(

)1(

)( 2nxf

n

.

,2,1,0,)1(

otherwise

nnxn K=+<< ππ
 

Show f is integrable on ).,0[ ∞  

 

Solution. This is equivalent to show || f  is integrable on ),,0[ ∞ by Proposition 5.4.2.  

Then  







+=
,0

,
)1(

1

)(|| 2nxf
.

,2,1,0,)1(

otherwise

nnxn K=+<< ππ
 

Let  







+=
,0

,
)1(

1

)(|| 2nxf k
.

1,,1,0,)1(

otherwise

knnxn −=+<< Kππ
 

Then 
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+=+

,0

,
)1(

1

)(|| 2
1 nxf k

.

,1,,1,0,)1(

otherwise

kknnxn −=+<< Kππ
 

 

When ,0<x ).(||0)(|| 1 xfxf kk +==   

When i) ,,,1,0, knnx K== π ).(||0)(|| 1 xfxf kk +==  

          ii) ,)1( π+= kx ).(||0)(|| 1 xfxf kk +==  

When ,1,,1,0,)1( −=+<< knnxn Kππ ).(||
)1(

1
)(|| 12

xf
n

xf kk +=
+

=  

When ,)1( ππ +<< kxk ).(||
)1(

1
0)(|| 12

xf
n

xf kk +=
+

<=  

When ,)1( π+> kx ).(||0)(|| 1 xfxf kk +==  

 

1||||0 +≤≤∴ kk ff  on ).,( ∞−∞  

 

.

)1(
lim

)1(

1
lim

||lim

||lim||

2

)1(

2

),0[

),0[),0[

∞<

+
=

+
=

=

=∴

∞→

+

∞→

∞∞→

∞ ∞→∞

∫

∫

∫∫

                 

n
                 

dx
n

                 

f                 

ff

k

n

n
k

k
k

k
k

π

π

π

 

             □ 

 

Proposition 5.4.5 If f is a measurable function defined on a measurable set ,E  and 

g is integrable onE with |,||| gf ≤ then ∫∫ ≤
EE
gf |||| and f is integrable on .E  

 

Proof. We have ∞<≤ ∫∫ EE
gf |||| from Theorem 5.3.10 and Proposition 5.4.2. It 

remains to show f is integrable onE by showing f is measurable on E (given), and 

both ∫ +

E
f and ∫ −

E
f are finite. Given f is measurable on ,E and 

,||0 ∞<=+≤ ∫∫∫ −+

EEE
fff and the argument is complete.     □ 
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Proposition 5.4.6 If gf = a.e. on a measurable set ,E and if g is integrable on ,E  

then f is integrable on E and 

.∫∫ =
EE
gf  

 

Proof. g is measurable on E by the assumption of being Lebesgue integrable on .E  

Since f is equal a.e. to a measurable function fg, is measurable on E (Theorem 

4.1.5). Application of Proposition 4.1.8 yields measurability of +
f and −

f on .E   

Let )}.()(|{ xgxfExA ≠∈= Then 

++ === ggff )0,max()0,max( and −− =−=−= ggff )0,min()0,min(  

on ,cAE I and 

∫∫ ++ =
cc AEAE
gf

II
and ,∫∫ −− =

cc AEAE
gf

II
 

that is, 

f is measurable on ,cAE I fff
cc AEAE

:, ∞<∫∫ −+

II
is integrable on .cAE I  

Since A is a measurable subset of fE, is measurable on A (Proposition 4.1.6), 

,0)( =Aµ and hence .0, =∫∫ −+

AA
ff But ,∞<+= ∫∫∫ +++

AAEE
fff

c
I

that is, f is 

integrable on .E  

Then 

( ) ( )
( ) ( )
( ) ( )

.

00

∫
∫∫

∫∫∫∫
∫∫

∫∫∫∫
∫∫∫

=

−=

+−+=

+−+=

+−+=

−=

−+

−−++

−+

−−++

−+

E

EE

AAEAAE

AEAE

AAEAAE

EEE

f       

ff       

ffff       

ff       

gggg       

ggg

cc

cc

cc

II

II

II

 

             □ 
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Example 5.4.7 Suppose



−

=
,1

,
)(

x

x
xf

,

,

irrational  x

rational  x
,

10

10

≤≤

≤≤

x

 x
 

and 

.10,1)( ≤≤−= xxxg  

Then 

gf = a.e. on ]1,0[  

and 

.
2

1

)1(

1

0

]1,0[]1,0[

=

−=

=

∫

∫∫

          

dxx          

gf

 

             □ 

 

Proposition 5.4.8 If gf , are integrable on a measurable set ,E and k is any real 

number, then 

 

1. )(kf is integrable on ,E and ∫∫ =
EE
fkkf )(   (homogeneous); 

2. )( gf +  is integrable on ,E and ∫∫∫ +=+
EEE
gfgf )(  (additive); 

3. ∫∫ ≤
EE
gf if gf ≤ onE   (monotone); 

4. If 1E and 2E are disjoint measurable subsets of E with fEEE ,21 U= is integrable   

     on 1E and ,2E and 

∫∫∫ +=
21 EEE
fff (additive on the domain). 

 

Proof. 

 

1. If ,0≥k then ∞<== ∫∫∫ +++

EEE
fkkfkf )( and ∞<= ∫∫ −−

EE
fkkf )(  because 

−+ kfkf , are nonnegative measurable functions (Theorem 5.3.10).  

By definition, )(kf  is integrable on .E Moreover 

,)()()( ∫∫∫∫∫∫ =−=−= −+−+

EEEEEE
fkfkfkkfkfkf  
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where the last equality is the definition of f  being integrable on .E  

 

 If ,)(,)()(,)()(,0 ∞<−=−=−=< ∫∫ −++−−+

EE
fkkffkkffkkfk and 

,)( ∞<−= ∫∫ +−

EE
fkkf that is, )(kf is integrable on .E Then 

[ ]
.

)()(

)()()(

∫
∫∫
∫∫
∫∫∫

=

−=

−−−=

−=

−+

+−

−+

E

EE

EE

EEE

fk           

ffk           

fkfk           

kfkfkf

 

 

2. Since gf , are integrable on ,E |||,| gf are integrable on E (Proposition 5.4.2). 

Since ,||||,|||| ∞<=∞<= ∫∫∫∫ ++

EEEE
ggff and |,||||| gfgf +≤+ and so 

∞<+=+≤+ ∫∫∫∫ EEEE
gfgfgf |||||)||(||| (Theorem 5.3.10). 

But |||| gfgf +=+ + and ,||,||,0|| ∞<+∞<+=+ ∫∫ −+−

EE
gfgfgf that is, 

|| gf + is integrable on ,E but then (Proposition 5.4.2) gf + is integrable on .E  

 

 Now, ),()( −−++ +−+=+ gfgfgf that is, the integrable function )( gf +  

has been written as the difference of two nonnegative measurable functions, 

)(
++ + gf and ),(

−− + gf whose integrals are finite. 

.

)()()(

∫∫
∫∫∫∫

∫∫∫

+=

−−+=

+−+=+

−−++

−−++

EE

EEEE

EEE

gf                

gfgf                

gfgfgf

 

 

3. 

Since gf ≤ on ,,
−+−+ −≤− ggffE i.e., .

−+−+ +≤+ fggf Because ),(
−+ + gf

)( −+ + fg are nonnegative measurable functions we may apply Proposition 5.4.2 to 

conclude 

.)()( ∫∫∫∫∫∫ −+−+−+−+ +=+≤+=+
EEEEEE
fgfggfgf  
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Since all terms are finite, we may subtract and obtain .∫∫ ≤
EE
gf  

 

4. By Proposition 5.4.2, 

.
21

2121

∫∫

∫∫∫∫
∫∫∫

+=

−−+=

−=

−−++

−+

EE

EEEE

EEE

ff       

ffff       

fff

 

             □ 

 

 In the next section, we are going to prove the major convergence theorem of 

Lebesgue integration, the so-called Lebesgue Dominated Convergence Theorem 

(LDCT). 

 

 

 

5.5         Convergence Theorems 

 

“Monotone” and “nonnegative” are the restrictions that we seek to modify or 

eliminate, although, other requirements must be imposed. The new requirements do 

not severely restrict applications of the Lebesgue integral, and in fact result in a very 

powerful tool for analysis, the so-called Lebesgue Dominated Convergence Theorem 

(LDCT). 

 

Theorem 5.5.1 (Lebesgue Dominated Convergence Theorem, 1910) Let }{ kf be a 

sequence of measurable functions defined on a measurable set ,E such that 

ff k
k

=
∞→

lim a.e. on .E  

Suppose we have an integrable function g on E such that gf k ≤|| on .E  

Then f is integrable onE and 

( ) .limlim ∫∫∫ ∞→∞→
==

E
k

kEE
k

k
fff  
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Proof. Since kf is a measurable function on ,E it follows that || kf is also a measurable 

function on ,E by Proposition 4.1.8. By assumption, g is integrable on ,E and so || kf  

is integrable on ,E this implies kf is integrable onE (Proposition 5.4.2).  

 

 Moreover, ,f as the limit of a sequence of measurable functions, is 

measurable (Theorem 4.2.1). Since gfg k ≤≤− for all 1≥k  on ,E  thus 

gfg k
k

≤≤−
∞→

lim or .gfg ≤≤− g is integrable onE implies f is integrable on .E  

 

 For a sequence of functions }{ kf we may construct two related monotone 

sequences of  functions 

{ }
k
f and{ },

k
f  

where },,inf{ 1 K+= kkk
fff and },,sup{ 1 K+= kkk

fff respectively. 

Hence, 

 gfffg kkk
≤≤≤≤− ++ 11

and gfffg
kk
≤≤≤≤− +1

on .E               (1) 

All functions being integrable on ,E along with monotonicity, yield (Proposition 5.4.8) 

∫∫∫∫ ≤≤≤−<∞− ++ EE
k

E kE
gffg 11

and .
1

+∞<≤≤≤− ∫∫∫∫ +
EE

k
EE

gffg  

If we can show ,limlim ∫∫ ∞→∞→
=

E
k

kE kk
ff then ∫∞→ E

k
k

flim exists and  

( ),limlim ∫∫∫ ∞→∞→
==

E
k

kEE
k

k
fff  

which is the conclusion we want. Returning to (1), we have 

gfgfg
kk

20
1
≤+≤+≤

+
and .20

1
gfgfg

kk
≤−≤−≤ +  

 

 Our first argument will be based on the Lebesgue Monotone Convergence 

Theorem. The sequences }{
k
fg + and }{

k
fg − are nonnegative, monotone 

increasing, and have limits fg + and fg − respectively. Apply LMCT yields 

∫∫∫∫∫∫ +=+=+=+
∞→∞→ EEEE kkE kkE

fgfgfgfg )()(limlim  

and 

,)()(limlim ∫∫∫∫∫∫ −=−=−=−
∞→∞→ EEEE

k
kE

k
kE

fgfgfgfg  

that is, 
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,limlim ∫∫∫ ∞→∞→
==

E
k

kEE kk
fff  

and this argument is complete. 

 

 The next argument is an application of Fatou’s Theorem. 

“Fatou” for :kfg +  

( )
,inflim

inflim

)(inflim)(inflim)(

∫∫
∫∫

∫∫∫∫∫

∞→

∞→

∞→∞→

+=

+=

+≤+=+=+

E
k

kE

E
k

Ek

E
k

kE
k

kEEE

fg                                                                     

fg                                                                     

fgfgfgfg

 

and so .inflim ∫∫ ∞→
≤

E
k

kE
ff   

“Fatou” for :kfg −  

( )
,suplim

inflim

)(inflim)(inflim)(

∫∫
∫∫

∫∫∫∫∫

∞→

∞→

∞→∞→

−=

−=

−≤−=−=−

E
k

kE

E
k

Ek

E
k

kE
k

kEEE

fg                                                                     

fg                                                                     

fgfgfgfg

 

and so .suplim ∫∫ ≤
∞→ EE

k
k

ff Combining, .inflimsuplim ∫∫∫ ∞→∞→
≤

E
k

kEE
k

k

fff  

Thus 

∫∫ =
∞→ EE

k
k

fflim  

and hence 

( ) .limlim ∫∫∫ ∞→∞→
==

E
k

kEE
k

k
fff  

             □ 

 

 The next two examples illustrate some applications of the convergence 

theorems that we have discussed in Chapter 5. They partially answer “Why 

Lebesgue?” 

 

Example 5.5.2 Show .
2),0[

2 π
=∫ ∞

−xe      

 

Solution. Let 
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−=

,0

,1
)(

2
k

k k

t
tf

kt

kt

>

≤≤0
 

and 

.1)()(
2

k

t
tftg kk −⋅=  

Recall ,1 k

t

e
k

t
≤+ where ,tk ≤− and .1lim,1 t

k

k

t

k

e
k

t
e

k

t
=







 +≤






 +
∞→

 

Then 

1. ,)(
2
t

k etf −≤ 0≥t and ,)(lim
2t

k
k

etf
−

∞→
= .0≥t  

2. ,)(
2
t

k etg −≤ 0≥t and ,)(lim
2t

k
k

etg
−

∞→
= .0≥t  

3. Integration by part will be used. 

3)12)(12(

2)22)(2(
            

)(cos
2

0

12

),0[

L

L

−+
−

⋅=

= ∫∫ +

∞

kk

kk
k

dttkf
k

k

π

 

and 

.
22)2)(22(

1)12)(12(

)(cos
2

0

22

),0[

π

π

⋅
+

−+
⋅=

= ∫∫ +

∞

L

L

kk

kk
k             

dttkg k

k

 

4. Since kk gf , are dominated by the integrable function ,0,
2

≥− te t we have 

.lim

limlim

),0[

),0[

],0[),0[

2

∫

∫

∫∫

∞∞→

∞

−

∞→∞∞→

=

=

=

k
k

t

k
k

k
k

k

g                   

e                        

ff

 

5. 

.
4

lim

limlim

),0[),0[

),0[),0[

2

),0[

2

π
=






 ⋅=











=







∫∫

∫∫∫

∞∞∞→

∞∞→∞∞→∞

−

                    

gf                    

gfe     

kk
k

k
k

k
k

t
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6. 

.
24),0[

2 ππ
==∫ ∞

−te      

             □ 

 

Example 5.5.3 Evaluate .)cos(
),0[

2

∫ ∞

− te t  

 

Solution. 

.
)!2(

)1(
lim)cos(

0

222








 −
= ∑

=

−

∞→

−
n

k

k
k

t

n

t t
k

ete  

Here, 






 −
= ∑

=

−

,0

,
)!2(

)1(

)(
0

2
2

n

k

k
k

t

n

t
k

e
tf ,

0

tn

nt

<

≤≤
 

and 

),cos()(lim
2

tetf
t

n
n

−

∞→
= ,0 ∞<≤ t .|)(|

22

2
2

1

4

1

2

1







 −−+






 −−
− ⋅<=≤

tt
tt

n eeeetf  

Recall 








 −+
Γ=∫

∞
−

q

qp

q
dxex

qxp 11

0

when 0>q and ,1>+ qp  

and 

π⋅
−⋅

=






 +Γ
k

k
k

2

)12(31

2

1 L
for all positive integers .k   

Apply LDCT and the above facts: 
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.
2

                        

2!2

)1(

!22

1

!12

1
1lim                        

2!2

)1(
lim                        

!2

1

2

)!2(
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)!2(

)1(
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)!2(
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2
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)!2(

)1(
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2

1

2

1

)!2(

)1(
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2
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2

1

)!2(

)1(
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)!2(

)1(
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)!2(

)1(
lim                        

)!2(

)1(
lim                        

)!2(

)1(

!6

1

!4

1

!2

1
1lim                        

)!2(

)1(
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)(lim)cos(

4

1

242

0
2

0

0

0

0

0

0 0

2

0
],0[

2

0
],0[

2

],0[

2642

],0[
0

2

),0[),0[

2

2

2

2

2

2

π

π

π

π

π

π
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−
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             □ 

 

 

 



 

 

 

CHAPTER 6 

 

 

 

5 CONCLUSION AND FUTURE WORK  

 

 

 

Our target for this report is the Fundamental Theorem of Calculus for Lebesgue 

integral. I can only finished up to Lebesgue Dominated Convergence Theorem in 

Chapter 5 because of time constraint. Here, I only list down all the lemmas and 

theorems without proofs that lead to the Fundamental Theorem of Calculus for 

Lebesgue integral.  

 

6.1          Conclusion 

 

The notions of bounded variation and absolute continuity on an interval play a key 

role in the theory of the Lebesgue integral. Two intervals I and J are non-overlapping 

if JI I consists of at most one point. 

  

Definition 6.1.1 The variation ofF on ],[ ba is defined by 









−= ∑
=

n

i

ii cFdFbaFV
1

|)()(|sup]),[,(  

where the supremum is over all finite collections }1|],{[ nidc ii ≤≤ of non-      

overlapping intervals in ].,[ ba The function F is of bounded variation on ],[ ba if   

]),[,( baFV is finite. 
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Definition 6.1.2 The function F is absolutely continuous on ],[ ba if for each ,0>ε  

there exists 0>δ such that ε<−∑
=

n

i

ii cFdF
1

|)()(|  whenever }1|],{[ nidc ii ≤≤ is a 

finite collection of non-overlapping intervals in ],[ ba that satisfy .)(
1

δ<−∑
=

n

i

ii cd   

 

 The next theorem shows that absolute continuity is stronger than bounded 

variation. Before that, a lemma is needed.  

 

Lemma 6.1.3 Let →],[: baF ℝ. 

(a) If F is of bounded variation on ],,[ ba then F is of bounded variation on every    

      subinterval of ],[ ba and ]),[,(]),[,(]),[,( bcFVcaFVbaFV += for each ].,[ bac∈  

(b) If F is of bounded variation on ],[ ca and ],,[ bc then F is of bounded variation on  

      ].,[ ba  

 

Theorem 6.1.4 If →],[: baF ℝ is absolutely continuous on ],,[ ba then F is of 

bounded variation on ].,[ ba  

 

 A monotone function is of bounded variation on ].,[ ba Hence, the difference 

of two monotone functions is of bounded variation. The converse is also true; a 

function of bounded variation can be written as the difference of two monotone 

functions. 

 

Theorem 6.1.5 If →],[: baF ℝ is of bounded variation on ],,[ ba then there exist 

nondecreasing functions 1F and 2F such that .21 FFF −=  

 

 To prove a monotone function is differentiable a.e. on an interval, we need 

Vitali Covering Lemma. 

 

Definition 6.1.6 Let ⊆E ℝ. A collection � of intervals is a Vitali cover of E if for 

each Ex∈ and ,0>ε there exists an interval ∈I  � such that Ix∈ and .)( εµ <I   
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Lemma 6.1.7 (Vitali Covering Lemma) Let ⊆E ℝ with .)(* ∞<Eµ If � is a Vitali 

cover of ,E then for each 0>ε there exists a finite collection }1|{ nkI k ≤≤ of disjoint 

intervals in � such that .
1

* εµ <






















=

c
n

k

kIE UI In addition, there exists a 

sequence }{ kI  of disjoint intervals in � such that .0
1

* =




















 ∞

=

c

k

kIE UIµ   

 

 The next definition establishes the notation for various limits of difference 

quotients. These derivates are often more useful than the ordinary derivative since 

they are defined at each point. 

 

Definition 6.1.8 Let →],[: baF ℝ. The upper right and lower right derivates of F  at  

),[ bax∈ are defined by 

;
)()(

suplim)(
0 








+<<
−
−

=
+→

+ δ
δ

xyx
xy

xFyF
xFD  

.
)()(

inflim)(
0 








+<<
−
−

=
+→

+ δ
δ

xyx
xy

xFyF
xFD  

Similarly, the upper left and lower left derivates of F  at ],( bax∈ are defined by 

;
)()(

suplim)(
0 








<<−
−
−

=
+→

− xyx
xy

xFyF
xFD δ

δ
 

.
)()(

inflim)(
0 








<<−
−
−

=
+→

− xyx
xy

xFyF
xFD δ

δ
 

 

 A lemma is required before we show a nondecreasing function is 

differentiable a.e. on ].,[ ba   

 

Lemma 6.1.9 If F is nondecreasing on ],,[ ba then all four derivates of F are finite a.e. 

on ].,[ ba  

 

Theorem 6.1.10 If F is nondecreasing on ],,[ ba thenF is differentiable a.e. on ].,[ ba  
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 The next theorem shows that the function 'F is in fact Lebesgue integrable on 

],[ ba and gives an upper bound for the value of its integral. Consequently, the 

derivative of a function of bounded variation is Lebesgue integrable on ].,[ ba   

 

Theorem 6.1.11 If F is nondecreasing on ],,[ ba then the function 'F is Lebesgue 

integrable on ],[ ba and ).()(
'

aFbFF

b

a

−≤∫  

 

 Now, we consider the first part of the Fundamental Theorem of Calculus for 

Lebesgue integral. 

 

Lemma 6.1.12 Let →],[: baf ℝ be bounded and measurable. If ∫=
x

a

fxF )( for each 

],,[ bax∈ thenF is absolutely continuous on ],[ ba and fF =' a.e. on ].,[ ba  

 

Theorem 6.1.13 (Fundamental Theorem of Calculus for Lebesgue Integral Part 

1) Let →],[: baf ℝ be Lebesgue integrable on ].,[ ba If ∫=
x

a

fxF )(  for each 

],,[ bax∈  then F is absolutely continuous on ],[ ba and fF =' a.e. on ].,[ ba  

 

 A function F with the property that 0' =F  a.e. on ],[ ba is called a singular 

function. One way to guarantee that a singular function is constant is to insist that it 

be absolutely continuous as well. After proving the next theorem, it is easy to prove 

the second part of the Fundamental Theorem of Calculus for Lebesgue integral. 

 

Theorem 6.1.14 Suppose that →],[: baF ℝ is absolutely continuous on ].,[ ba  If 

0' =F a.e. on ],,[ ba thenF is constant on ].,[ ba  
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Theorem 6.1.15 (Fundamental Theorem of Calculus for Lebesgue Integral Part 

2) If →],[: baF ℝ is absolutely continuous on ],,[ ba then 'F is Lebesgue integrable 

on ],[ ba and )()(
'

aFxFF

x

a

−=∫ for each ].,[ bax∈  

 

 Theorem 6.1.13 and 6.1.15 together yield the following theorem. This 

statement is usually referred to as the descriptive definition of the Lebesgue integral. 

 

Theorem 6.1.16 A function →],[: baf ℝ is Lebesgue integrable on ],[ ba iff there 

exists an absolutely continuous function →],[: baF ℝ such that fF =' a.e. on ].,[ ba  

 

 Is it possible to define an integration process for which the theorem 

 

 If F is differentiable on ],,[ ba then the function 'F is integrable on ],[ ba  and 

)()(
'

aFxFF

x

a

−=∫ for each ].,[ bax∈  

 

is valid? 

 

 

 

6.2          Future Work 

 

In 20
th

 century, three integration processes have been developed for which this 

version of the Fundamental Theorem of Calculus is valid. These integrals, named 

after their principal investigators Denjoy, Perron, and Henstock, each generalize 

some aspect of the Lebesgue integral. Since each of these new integrals focuses on a 

different property of the Lebesgue integral, the definitions of the integrals are 

radically different. However, it turns out that all three integrals are equivalent. 

 

 Here, we only introduce the Perron integral. In 1914, O. Perron developed 

another extension of the Lebesgue integral and proved that his integral also had the 
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property that every derivative is integrable. His work was independent of Denjoy and 

hence has a very defferent flavor. 

 

 The first step is to introduce the notion of major and minor functions. These 

functions are defined using the upper and lower derivates that were first discussed in 

Section 6.1.   

 

Definition 6.2.1 Let →],[: baf ℝ .e  

(a) A function →],[: baU ℝ is a major function of f on ],[ ba if −∞>)(xUD  and   

     )()( xfxUD ≥ for all ].,[ bax∈  

(b) A function →],[: baV ℝ is a minor function of f on ],[ ba if +∞<)(xVD  and  

     )()( xfxVD ≤ for all ].,[ bax∈  

 

 We write b

aU for ).()( aUbU −  

 

Theorem 6.2.2 A measurable function →],[: baf ℝ e is Lebesgue integrable on ],[ ba  

iff for each ,0>ε there exist absolutely continuous major and minor functions U  and 

V of f on ],[ ba such that .ε<− b

a

b

a VU  

 

 The Perron integral is defined in terms of major and minor functions. The 

generalization of the Lebesgue integral occurs by dropping the requirement that the 

major and minor functions be absolutely continuous. Recall thatF is differentiable at 

c if and only if )(cFD and )(cFD are finite and equal. 

 

Proposition 6.2.3 LetU  and V be functions defined on ],[ ba and let ].,[ bac∈ Then 

(a) );()( cUDcUD ≤  

(b) );())(( cUDcUD −=−  

(c) );()())(( cVDcUDcVUD +≤+  

(d) );()())(( cVDcUDcVUD +≥+  

(e) If −∞>)(cUD and ,)( +∞<cVD then ).()())(( cVDcUDcVUD −≥−  



136 

 

Theorem 6.2.4 Let →],[: baF ℝ. If 0≥FD on ],,[ ba then F is nondecreasing on 

].,[ ba   

 

 The quantities in the next definition are finite-valued. 

 

Definition 6.2.5 A function →],[: baf  ℝ e  is Perron integrable on ],[ ba if f has at 

least one major and one minor function on ],[ ba and the numbers 

UU b

a |inf{ is a major function of f on ]},,[ ba  

VV b

a |sup{ is a minor function of f on ]},[ ba  

are equal. This common value is the Perron integral of f on ],[ ba and denoted by .∫
b

a

f  

 

 The following theorem is an immediate consequence of the definition. In 

particular, a Lebesgue integrable function is Perron integrable and the integrals are 

equal.   

 

Theorem 6.2.6 A function →],[: baf  ℝ e  is Perron integrable on ],[ ba iff for each 

,0>ε there exist a major functionU and a minor functionV of f on ],[ ba such that 

.ε<− b

a

b

a VU  

 

 F is differentiable on ],[ ba in the next theorem can be replaced by F is 

differentiable nearly everywhere on ],[ ba in Theorem 6.2.26.  

 

Theorem 6.2.7 Let →],[: baF  ℝ be continuous on ].,[ ba If F is differentiable on 

],,[ ba then 'F is Perron integrable on ],[ ba and )()(' aFxFF

x

a

−=∫ for each ].,[ bax∈  

 

 Next consider the relationship between Perron integrability and subintervals. 

 

Theorem 6.2.8 Let →],[: baf  ℝ e and let ).,( bac∈  
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(a) If f is Perron integrable on ],,[ ba then f is Perron integrable on every subinterval  

      of ].,[ ba  

(b) If f is Perron integrable on each of the intervals ],[ ca and ],,[ bc then f is Perron  

      integrable on ],[ ba and .∫∫∫ +=
b

c

c

a

b

a

fff  

 

 It is sufficient to consider finite-valued functions only. This will avoid 

difficulties when it comes to adding functions as gf + may not be defined if both f  

and g assume infinite values.  

 

Theorem 6.2.9 If →],[: baf  ℝ e is Perron integrable on ],,[ ba then f is finite-valued 

a.e. on ].,[ ba  

 

Theorem 6.2.10 Let →],[: baf  ℝ e be Perron integrable on ].,[ ba If fg = a.e. on 

],,[ ba then g is Perron integrable on ],[ ba and .∫∫ =
b

a

b

a

fg  

 

 The next proposition lists the linearity properties of the Perron integral. 

 

Proposition 6.2.11 Suppose that f and g are Perron integrable on ].,[ ba Then 

(a) kf is Perron integrable on ],[ ba and ∫∫ =
b

a

b

a

fkkf for each ∈k ℝ; 

(b) gf + is Perron integrable on ],[ ba and ;)( ∫∫∫ +=+
b

a

b

a

b

a

gfgf  

(c) if gf ≤ a.e. on ],,[ ba then ;∫∫ ≤
b

a

b

a

gf  

(d) if gf = a.e. on ],,[ ba then .∫∫ =
b

a

b

a

gf  

 

 We next consider the properties of the indefinite Perron integral.  
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Lemma 6.2.12 Let →],[: baf  ℝ be Perron integrable on ],[ ba and let ∫=
x

a

fxF )( for 

each ].,[ bax∈ IfU is a major function andV a minor function of f on ],,[ ba then the 

functions FU − and VF − are nondecreasing on ].,[ ba  

 

Theorem 6.2.13 Let →],[: baf  ℝ be Perron integrable on ],[ ba and 

let ∫=
x

a

fxF )( for each ].,[ bax∈ Then 

(a) F is continuous on ];,[ ba  

(b) F is differentiable a.e. on ],[ ba and fF =' a.e. on ];,[ ba  

(c) f is measurable on ].,[ ba  

 

Theorem 6.2.14 Let →],[: baf  ℝ be Perron integrable on ].,[ ba  

(a) If f is bounded on ],,[ ba then f is Lebesgue integrable on ].,[ ba  

(b) If f is nonnegative on ],,[ ba then f is Lebesgue integrable on ].,[ ba  

(c) If f is Perron integrable on every measurable subset of ],,[ ba then f is Lebesgue  

      integrable on ].,[ ba  

 

Theorem 6.2.15 Let →],[: baf  ℝ be Perron integrable on ].,[ ba If E is a perfect set 

in ],,[ ba then there exists a perfect portion ],[ dcE I of E such that f is Lebesgue 

integrable on ].,[ dcE I Moreover, the series∑ ∫
∞

=














1

],[,
k

x

c

kk

k

dcfω converges where   

.),(],[
1

U
∞

=

=−
k

kk dcEdc  

 

Definition 6.2.16 A function →],[: baf  ℝ e  is cP integrable on ],[ ba if f has at least 

one continuous major and one continuous minor function on ],[ ba and the numbers 

UU b

a |inf{ is a continuous major function of f on ]},,[ ba  

VV b

a |sup{ is a continuous minor function of f on ]},[ ba  

are equal. This common value is the cP integral of f on ].,[ ba  
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 The function f is cP  integrable on a measurable set ],[ baE ⊆  if Efχ  is cP  

integrable on ].,[ ba The symbol cP  stands for Perron continuous, that is, Perron 

integrable with continuous major and minor functions. 

 

Lemma 6.2.17 LetW be a continuous function on ].,[ ba Then for each ,0>ε there 

exists a continuous functionU on ],[ ba such that WDUD ≥  on ,)(],,[ +∞=bUDba  

and .ε+< b

a

b

a WU  

 

Theorem 6.2.18 Suppose that →],[: baf  ℝ is cP integrable on each interval 

).,(],[ badc ⊆  If ∫
d

c

f converges to a finite limit as +→ ac  and ,−→ bd  then f  is 

cP integrable on ],[ ba  and .lim ∫∫
−

+

→

→
=

d

c
bd

ac

b

a

ff   

 

Theorem 6.2.19 Let E be a bounded, closed set with bounds a and b and let 

)},{( kk ba  be the sequence of intervals contiguous to E in ].,[ ba Suppose that 

→],[: baf  ℝ is cP  integrable on E and on each interval ].,[ kk ba If the 

series∑ ∫
∞

=














1

],[,
k

x

a

kk

k

bafω converges, then f is cP  integrable on ],[ ba and 

.
1

∑ ∫∫∫
∞

=

+=
k

b

a

b

a

E

b

a

k

k

fff χ  

 

 The next theorem is due to Marcinkiewicz. Theorem 6.2.2 states that a 

measurable function is Lebesgue integrable if it has one absolutely continuous major 

function and one absolutely continuous minor function. A similar result holds to the 

Perron integral with absolute continuity replaced by continuity.  

 

Theorem 6.2.20 Let →],[: baf  ℝ be measurable. If f has at least one continuous 

major function and at least one continuous minor function on ],,[ ba then f is Perron 

integrable on ].,[ ba  
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 Now, we look at one other change in the definition of major and minor 

function. This change involves the derivate inequalities being satisfied at “most 

points” rather than at all points. 

 

Definition 6.2.21 Let →],[: baf  ℝ .e  

(a) A continuous function →],[: baU ℝ is an ex-major function of f on ],[ ba if  

     −∞>)(xUD nearly everywhere on ],[ ba and )()( xfxUD ≥ a.e. on ].,[ ba  

(a) A continuous function →],[: baV ℝ is an ex-minor function of f on ],[ ba if   

     +∞<)(xVD nearly everywhere on ],[ ba and )()( xfxVD ≤ a.e. on ].,[ ba  

 

 The ex represents extended. We can define
xP integral using the extended 

major and minor functions. Several lemmas are required to show every cP integrable 

function is xP integrable and its converse is also true.  

 

Lemma 6.2.22 Let →],[: baW ℝ be continuous on ],,[ ba let ],,[ bac∈ and let .0>ε  

Then there exist a nondecreasing, continuous function →],[: baψ ℝ and a positive 

number δ such that ,)(,0)( εψψ ≤= ba and 

0
)()()()(
≥

−
−+−

cx

cxcWxW ψψ
 

for all ],[ bax∈ that satisfy .||0 δ<−< cx  

 

Lemma 6.2.23 Let →],[: baW ℝ be continuous, let ,0>ε and suppose that 

−∞>WD  nearly everywhere on ].,[ ba Then there exists a continuous function 

→],[: baY ℝ such that WDYD ≥ and −∞>YD on ],[ ba and .ε+≤ b

a

b

a WY  

 

Lemma 6.2.24 Let →],[: baf ℝ .e IfW is an ex-major function of f on ],[ ba  and 

,0>ε there exists a continuous major functionU of f on ],[ ba such that .ε+< b

a

b

a WU  
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Theorem 6.2.25 A function →],[: baf  ℝ e  is
cP integrable on ],[ ba  iff f  is xP  

integrable on ].,[ ba  

 

Theorem 6.2.26 Let →],[: baF  ℝ be continuous on ].,[ ba If F is differentiable 

nearly everywhere on ],,[ ba then 'F is Perron integrable on ],[ ba  and 

)()(
'

aFxFF

x

a

−=∫ for each ].,[ bax∈  
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