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ABSTRACT

The Fundamental Theorem of Calculus reveals a significant ralationship between
integration and differentiation. The functions involved are continuous. However, the

following version of the Fundamental Theorem of Calculus is valid.

If F is differentiable on[a,b]and if F'is Riemann integrable on[a,b], then

jc'F' = F(x)— F(a) for each x €[a,b].

Are all derivatives Riemann integrable? A brief search leads one to
derivatives that are not bounded and, as a result, not Riemann integrable. However,
there are even bounded derivatives existing at all points that are not Riemann

integrable. Thus, the hypothesis that the derivative is Riemann integrable is essential.

The Lebesgue integral was designed to overcome the deficiencies of the
Riemann integral. Are all derivatives Lebesgue integrable? The answer is no.
However, all bounded derivatives are Lebesgue integrable so that the following

version of the Fundamental Theorem of Calculus is valid.

If F is differentiable on[a,b]and if F"'is bounded on[a,b],then F'is Lebesgue

integrable on[a,b] andJ‘F' = F(x)— F(a) for eachx €[a,b].

This discussion leads naturally to the following question. Is it possible to

define an integration process for which the theorem
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If F is differentiable on[a,b],then the function F"'is integrable on[a,b]and

jiF' = F(x) - F(a) for eachx €[a,b].

is valid? The answer is yes.

In 20™ century, three integration processes have been developed for which
this version of the Fundamental Theorem of Calculus is valid. These integrals,
named after their principal investigators Denjoy, Perron, and Henstock, each
generalize some aspect of the Lebesgue integral. Since each of these new integrals
focuses on a different property of the Lebesgue integral, the definitions of the
integrals are radically different. However, it turns out that all three integrals are

equivalent.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

By the end of the 19th century, some inadequacies in the Riemann theory of
integration had become apparent. These failings came primarily from the fact that the
collection of Riemann integrable functions became inconveniently small as

mathematics developed.
For example, the set of functions for which the Newton-Leibniz formula:

jF'z F(b)- F(a)

a

holds, does not include a// differentiable functions. These inadequacies led others to
invent other integration theories, the best known of which was due to Henri

Lebesgue (1875-1941) and was developed in 1902.



1.2 Background Review

The idea of the Lebesgue integral is to enlarge the class of integrable functions so

b
that I f(x)dx will be given a meaning for functions f that are not Riemann

a

integrable. For example, let

1, x rational, 0<x<1

f(x)={

0, x irrational, 0 < x <1’

jf(x)dx = sup{j p(x)dx | @< f,0 a step ﬁmction}

=0,

and

Tf(x)dx =inf{j¢(x)dx | f<d,0 a step function}

=1.
Thus f is not Riemann integrable. However it is trivally Lebesgue integrable. f'is a
simple function and
J.[O ' f =1- u({rationals } ([0,1]) + 0 u({irrationals } [0,1])
=1-0+0-1
=0.

For functions that are Riemann integrable, the Lebesgue theory will assign the same

b
numerical value to I f(x)dx as the Riemann theory.

a

Thus the Lebesgue integration theory can be thought of as a kind of

completion of the Riemann integration theory. This can be given a precise sense in
b
terms of the metric d(f,g) = I ‘ f(x) - g(x)‘dx on the continuous functions C([a,b])

so that the Lebesgue integrable functions are obtainable from the continuous
functions by the same process as the real numbers are obtained from the rational
numbers. However, it is best if we observe this fact after we have developed the

Lebesgue theory in a more concrete way.



Indeed, the Lebesgue theory of integration has become pre-eminent in
contemporary mathematical research, since it enables one to integrate a much larger

collection of functions, and to take limits of integrals more freely.

The Lebesgue theory allows us to say that the sum of an absolutely
convergent series is a form of integration, and this conceptual framework allows us

also to give a foundation to probability theory.

1.3 Motivation/Significance of Study

Before beginning on the rather difficult path of developing the Lebesgue theory we
will recall some of the weak points of the Riemann theory that can serve as

motivation for seeking a better theory.

Firstly, the Riemann integral does not have satisfactory limit properties. That

is, given a sequence of Riemann integrable functions {f,} with a limit function

S =limf it does not necessarily follow that the limit function f is Riemann
n—»w

integrable.

Secondly, the Riemann theory of integration is the lack of a good
convergence theorem. We have seen that the Riemann integral can be interchanged
with a uniform limit, but in many applications this is not adequate. For example, with
Fourier series we frequently do not have uniform convergence, even if the function is
continuous. Of course even in the Lebesgue theory we will not be able to interchange
all limits with integration. For example, if

n if0<x<lI/n,

0 otherwise,

fn(X)={

1
then J f,(x)dx =1 but lim f, (x) =0 at every point, so
0 H—>0



1 1
[1im £, (x)dx = 0% 1= lim [ £, (x)dkx.
0 0

Nevertheless we will find two rather useful criterion for interchanging limits
and integrals-the monotone convergence theorem and the dominated convergence

theorem.

Thirdly, improper integrals have to be treated separately in Riemann theory.
In the Lebesgue theory we will be able to treat absolutely convergent improper

integrals on the same footing as proper integrals.

Fourthly, we have no reasonable criterion for deciding whether or not a
function is Riemann integrable. Riemann did in fact give such a criterion, but it
seems no easier to apply than to verify the definition of the Riemann integral. With
the aid of the Lebesgue theory it is possible to give a criterion for the Riemann
integral to exist although it must be admitted that we do not have a very good

criterion for the Lebesgue integral to exist.

Finally a fifth weakness involves the theory of multiple integrals. We have
postponed discussing multiple integrals until after the Lebesgue theory because the

Riemann theory yields only very awkward and incomplete results.

In addition to overcoming these weaknesses, the Lebesgue theory allows a

very far reaching and fruitful generalization of the concept of integration.

14 Objectives

The Lebesgue integral is founded on Henri Lebesgue’s theory of measure in 1902.
The idea of measure theory is that we want to assign a length to each subset of the

real numbers. Unfortunately, this is impossible to do in a logically consistent fashion.



So measure theory tells us how to pick out which sets we can measure and how to

measure them.

Lebesgue chose to partition the range rather than partitioning the domain of
the function, as in the Riemann integral. Thus, for each interval in the partition,
rather than asking for the value of the function between the end points of the interval
in the domain, he asked how much of the domain is mapped by the function to some

value between two end points in the range.

Partitioning the range of a function and counting the resultant rectangles
becomes tricky since we must employ some way of determining (or measuring) how
much of the domain is sent to a particular portion of a partition of the range. Measure

theory addresses just this problem.

As it turns out, the Lebesgue integral solves many of the problems left by the

Riemann integral.

1.5 Scope of Study

Lebesgue measure is studied in chapter three. It includes Lebesgue outer measure,
Carathéodory’s measurability criteria, Lebesgue measurable sets, Borel sets, the
structure of Lebesgue measurable set, and an example of a Lebesgue nonmeasurable

set.

In chapter four, we will look into Lebesgue measurable functions, sequences
of measurable functions, approximating measurable functions, almost uniform

convergence.

In chapter five, we will study Lebesgue integration, Riemann integral,

Lebesgue integral for bounded functions of sets of finite measure, the Lebesgue



integral for nonnegative measurable functions, the Lebesgue integral and Lebesgue

integrability, and two convergence theorems.

Chapter six is the conclusion and future work.



CHAPTER 2

LITERATURE REVIEW

2.1 Lebesgue’s Motivation

The span from Newton and Leibniz to Lebesgue covers only 250 years. Lebesgue
published his dissertation “Intégrale, longueur, aire” (“Integral, length, area”) in the
Annali di Matematica in 1902. Lebesgue developed “measure of a set” in the first

chapter and an integral based on his measure in the second.

Part of Lebesgue’s motivation was two problems that had arisen with
Riemann’s integral. First, there were functions for which the integral of the
derivative does not recover the original function and others for which the derivative
of the integral is not the original. Second, the integral of the limit of a sequence of
functions was not necessarily the limit of the integrals. We have seen that uniform
convergence allows the interchange of limit and integral, but there are sequences that
do not converge uniformly yet the limit of the integrals is equal to the integral of the

limit.

Lebesgue was able to combine Darboux’s work on defining the Riemann
integral with Borel’s research on the “content” of a set. Darboux was interested in the
interplay of the definition of integral with discontinuous functions and in the
convergence problems. Borel (who was Lebesgue’s thesis advisor) needed to
describe the size of sets of points on which a series converged; he expanded on
Jordan’s definition of the content of a set which itself was an expansion of Peano’s

definition of content measuring the size of a set. Peano’s work was motivated by



Hankel’s attempts to describe the size of the set of discontinuities of a Riemann
integrable function and by an attempt to define integration analytically, as opposed to

geometrically. Rarely, if ever, is revolutionary mathematics done in isolation.

Another problem also provided primary motivation for Lebesgue: the
question of convergence and integrating series term by term. Newton had used series
expansions cleverly to integrate functions when developing calculus. Fourier thought
it was always valid to integrate a trigonometric series representation of a function
term by term. Cauchy believed continuity of the terms sufficed; Cauchy’s integral
required continuity to exist. Then Abel gave an example that did not work.
Weierstrass recognized that uniform convergence was the key to term-by-term
integration. Dirichlet developed wildly discontinuous counterexamples. Riemann
defined his integral so as not to require continuity, but uniform convergence of the
series was still necessary for term-by-term integration. However, some non-
uniformly convergent series could still be integrated term by term. What is the right

condition? Lebesgue’s theory can answer these questions.

2.2 The Contribution of Lebesgue

The Lebesgue integral is a generalization of the integral introduced by Riemann in
1854. As Riemann’s theory of integration was developed during the 1870’s and
1880’s, a measure-theoretic viewpoint was gradually introduced. This viewpoint was
made especially prominent in Camille Jordan’s treatment of the integral in his Cours
d’ analyse (1893) and strongly influenced Lebesgue’s outlook on these matters. The
significance of placing integration theory within a measure-theoretic context was that
it made it possible to see that a generalization of the notions of the integral and
integrability. In 1898, Emile Borel was led through his work on complex function
theory to introduce radically different notions of measure and measurability. Some
mathematicians found Borel’s ideas lacking in appeal and relevance, especially since
they involved assigning measure zero to some dense sets. Lebesgue, however,

accepted them. He completed Borel’s definitions of measure and measurability so
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that they represented generalizations of Jordan’s definitions and then used them to

obtain his generalization of the Riemann integral.

After the work of Jordan and Borel, Lebesgue’s generalizations were
somewhat inevitable. Thus, W.H. Young and G.Vitali, independently of Lebesgue
and of each other, introduced the same generalization of Jordan’s theory of measure;
in Young’s case, it led to a generalization of the integral that was essentially the
same as Lebesgue’s. In Lebesgue’s work, however, the generalized definition of the
integral was simply the starting point of his contributions to integration theory. What
made the new definition important was that Lebesgue was able to recognize in it an
analytical tool capable of dealing with-and to a large extent overcoming-the
numerous theoretical difficulties that had arisen in connection with Riemann’s theory
of integration. In fact, the problems posed by these difficulties motivated all of

Lebesgue’s major results.

One of the difficulties was the fundamental theorem of calculus,

[ £ dx = f(b) - f(a).

The work of Dini and Volterra in the period 1878-1881 made it clear that
functions exist which have bounded derivatives that are not integrable in Riemann’s
sense, so that the fundamental theorem becomes meaningless for these functions.
Later further classes of functions were discovered; and additional problems arose in
connection with Harnack’s extension of the Riemann integral to unbounded
functions because continuous functions with densely distributed intervals of
invariability were discovered. These functions provided examples of Harnack-
integrable derivatives for which the fundamental theorem is false. Lebesgue showed
that for bounded derivatives these difficulties disappear entirely when integrals are

taken in his sense. He also showed that the fundamental theorem is true for an
unbounded, finite-valued derivative f that is Lebesgue-integrable and this is the case

if, and only if, f is of bounded variation.
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Riemann’s definition of the integral also raised problems in connection with
the traditional theorem positing the identity of double and iterated integrals of a
function of two variables. Examples were discovered for which the theorem fails to
hold. As a result, the traditional formulation of the theorem had to be modified, and
the modifications became drastic when Riemann’s definition was extended to
unbounded functions. Although Lebesgue himself did not resolve this infelicity, it
was his treatment of the problem that formed the foundation for Fubini’s proof (1907)
that the Lebesgue integral does not make it possible to restore to the theorem the

simplicity of its traditional formulation.



CHAPTER 3

LEBESGUE MEASURE

Lebesgue measure is studied in this chapter. We state the necessary eight properties
of measure in the first section. Next, we define Lebesgue outer measure and list
down its eight properties follow by the proofs. In the third section, Lebesgue
measurable sets are defined by Carathéodory’s measurability criteria. Also, the
collection of sets that satisfy the criteria forms a c-algebra and the Lebesgue outer
measure is countably additive on this c-algebra. Next, Borel sets and Borel g-algebra
are introduced follow by the properties of Lebesgue measure. In Section 3.5, we look
into the structure of Lebesgue measurable sets of real numbers. Finally, we conclude

this chapter with an example of Lebesgue nonmeasurable set.

Caution: In what follows a “measurable set” means a “Lebesgue measurable set of

real numbers”.

3.1 Properties of Measure

Lebesgue measure is an extended real-valued set function, a function from a

collection of sets into[0,00]. Measure is based on the lengths of open intervals as

these intervals are the basic building blocks of open sets in the reals. The best

measure ¢ would satisfy eight properties:

1. u(A) is defined for every set A of real numbers (we can “measure” all sets);

2. 0L u(A) £ o (nonnegative extended real-valued; length is nonnegative and the
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“length” of Ris ©);
u(A) < u(B) provided A c B (monotonic);
(@) =0;
H({a}) =0 (points are dimensionless);

u(l) =1(I), I an interval (the measure of an interval should be its length),

NS A

u(c+ A) = u(A) (translation invariance; location does not affect length, should

not affect the measure);

8. y(U AkJ = Z U(A,) for any mutually disjoint sequence {4, } of subsets of real
k=1

k=1

numbers (countable additivity).

3.2 Lebesgue Outer Measure

A collection of open intervals {/, |k =1,2,...} covers aset 4 if Ac U]k.Since the
k=1

intervals are open, we call {/,} an open cover of A.Define the length [ of the open

interval I = (a,b) to be /() =b—a.We combine open covers and length to measure

the size of a set. Since the cover contains the set, we will call it the outer measure.

The outer measure is extremely close to the measure of Jordan defined in 1892.

Definition 3.2.1 (Lebesgue Outer Measure) For any set Ac R define the

Lebesgue outer measure 1" of A to be

1 (A4)= inf{Zl(Ik) |Ac Ulk , 1, open intervals}
k=1 k=1

the infimum of the sums of the lengths of open covers of A.

4 has the following properties:

1. u" is defined for every set of real numbers;

2. 0< 4 (A) < o (nonnegative and extended real-valued);
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o

. 1 (A< ' (B) provided Ac B (monotonic);

4. 41’ (¢)=0;

. 1" ({a}) = 0 (points are dimensionless);

n

6. 1" (I)=1(1), 1 an interval (the Lebesgue outer measure of an interval is its length);

7. 1 (c+ A) = ' (A) (translation invariant);

Co

: y*(U Akj < Z,u* (4,) for any sequence of sets{ A, } of real numbers (countable
=1

k=1

subadditivity).
Proof.

3. Monotonicity, property 3, is an immediate consequence of the observation that

every open cover of B will be an open cover of A.

4. and 5. Since the empty set is a subset of every set, we have
pclalc(a—¢g,a+¢).
By monotonicity,
0<u (P <p (la) <p'((a-ga+e)<2e

Since this is true for arbitrary & > 0,

#'(¢)=0and 1" ({a}) =0.

6. First, consider a bounded, closed interval / =[a,b]. For any £ > 0,
£ £
a,blc(a——,b+—).
[a,0] = ( 2 2)

Hence, " (I) <b—a+¢. Since ¢ > 0 is arbitrary, 1" ([a,b]) < b —a.
Now, let {/, } be an open cover of [a,b]. The Heine-Borel theorem states that
since [a,b] is closed and bounded there is a finite subcover {/, |k =1,2,...,N} for

1.Order the intervals so they overlap, starting with the first containing @ and ending

with the last containing b. Thus
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il(lk):(bl _a1)+(b2 _a2)+"'+(bN —ay)

=by —(ay—by,)—(ay,—by,)——(a,—b)—q
>2b, —a,

>b—a
Thus " (I) > b —a, which combines with the first inequality to yield " (I) = b —a.
Second, let / be any bounded interval and let & > 0. There is a closed interval

J c Isuchthat [(I)—¢ <I(J).Then
(- <I(J)y=p" ()< p' (D)< p” (D)= 1) =I(])
or
1) —¢ < u (I)<I).
Since & > 0is arbitrary, we have u" (1) = I(]).
Last, if /is an infinite interval, for each n € N, there is a closed interval

J c Iwith 4" (J)=nThen n= " (J)< " (I)implies that " (I) = .

7. Translation invariance, property 7, is based on the fact that length, /,is translation
invariant: If [=(a,b), then c+[=(a+c,b+c), and [(I)=Il(c+1). If I is
(b,©),(-0,a), or (—oo+0), then c¢+/1 is (b+c,o),(—w0,a+c), or

(—o0,+0), respectively, and again /() =[(c + I).If Ais an arbitrary subset of R with

A COIk,then

k=1

c+AcU(c+[k),

k=1

and
y*(c+A)$il(c+1k) :il(lk).

This tells us that z"(c+ A4) is a lower bound for the “lengths” of covers of 4, and

because u (A)is the greatest lower bound of such numbers,
H(c+ A< p'(A).

By starting with a cover {J, } of ¢+ 4,we have 4 c U(Jk —-c),

k=1

and so



15
© AU, —e)
k=1
= Z IJ 8-
k=1
This tells us that z"(4) is a lower bound for the “lengths” of covers of ¢+ 4,and

because 4" (c + A)is the greatest lower bound of such numbers,

p (A< p(c+ A).

We conclude 1" (c+ A) = 1" (A).

0

8. We must show y(U AkJ < Z,u*(Ak) for any sequence of sets of real numbers.
k=1

k=1

Of course if the series Z 1" (A,) diverges the argument is immediate, so assume
k=1

Z 1 (A,) <oand let & >0.For each nonempty A4, , choose an open cover {/, }so
k=1

that
4, c O[,m
and
W(4,) < fl;lu,m) <H A+

We may do this by the definition of greatest lower bound. The collection
VYTV R SR
I, 1y, 1

sdoyaeees

Lo dinreindy s}

is a countable collection of open intervals that cover the set

Cs

A,

>~
LN

4 CCJIWA2 cOIzn,...,Ak COI,m
n=l1 n=l1

n=1

and

OAk = O(GIkJ

k=1 k=1 \n=
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0(01101\]: 111U112U"'U11nU...

k=1 \_n=1

U

L,UI,U-UL, U
U
U

1, UL, U-UI, U--
U

111 U[21 UllZ U[31 Ulzz U113 U
= U1¢(i>-
i=1

Since UIW) is an open cover of the set UAk ,
i=1 k=1
/“[U Akj <20 y)
k=1 i=1
=22 1Uy0)
k=1 n=1
T £
< Z(# (4 + _")
[ 2
= Zﬂ* (4) +e.
k=1
We conclude ,u*(U Akj <Y ul(A4,). O
k=1 k=1

Theorem 3.2.2 The outer measure of a countable set is zero.

Proof. Let A be any countable set of real numbers. Since 4 is countable, so we can
enumerate 4 = {a,,a,,...}.

Lete > 0.Now
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& &
I, =(a, _E’al +E)

&
1,=(a, —Z,az +-)

£
1,=(a, —g,a3 +—

& &
Ik =(ak —Z—k,ak +2_k)

Then
A1,
k=1
So,
p < (Jr<e
k=1
Since this is true for arbitrary ¢ > 0, we conclude that z"(4) = 0. O

As previously indicated, we can only have a workable measure theory if we
restrict attention to a class of reasonable sets. This class should be closed under
countable intersection and countable union. In fact, we formalize this idea in next

section.

33 Lebesgue Measurable Sets

In 1914, Carathéodory formulated a measurability criteria.

Definition 3.3.1 (Carathéodory’s Condition) A set E is Lebesgue measurable iff for
every set X < R, we have
u(X)=p (XNE)+u (XNE).

Let M be the family of all Lebesgue measurable sets.

Informally, a set is measurable if it splits every other set into two pieces with

measures that add correctly. The definition of measurable is symmetric: if £ is
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measurable, so is E“;i.e., if E € M, then E° € M. Also, it is easily seen that¢ and

Re M.

In 1915, Giuseppe Vitali gave the first example of a Lebesgue nonmeasurable

set of real numbers. In Section 3.6, we will have a fuller discussion.
Theorem 3.3.2 If 11 (E)=0, then E is measurable.

Proof. For any set X, it is true that
LX) = (XNEUXNE )< (XNE)+u (XNE®).
Since X N E ¢ E, we see that 4 (X N E)< " (E) =0.Thus £ (X N E) = 0.Now note
that YNE‘ c X,sou (X NE)< u' (X).
Hence,
p X)) S (XNE)+u (XNES)< ' (X).
Thus £ e M. o

But we certainly cannot base an integration theory on the collection{¢, R}.It

is time to define a sigma algebra (c-algebra) and investigate why they are so

important.

Definition 3.3.3 /n a space Q, a collection O of subsets of Q is said to be a o-algebra,
provided:
1. 9O

2.1If A€ O, then QA€ O:

3. If{A, } is a sequence of sets in O, then UAke 0.

k=1
Lemma 3.3.4 The intersection of two Lebesgue measurable sets is measurable.

Proof. Let E,, E,be Lebesgue measurable sets. We must show E, N E, € M.
Since for any set X,

XNR=X



XN(E NEHUE NE,))=X
X NENENUXNE NE) ) =X,
and the Lebesgue outer measure is subadditive,
£ X< (XNENE)) +u (XN(E NE,)).
It is sufficient to show
#XNENED+u (XN(ENE,) )< (X) <o
Measurability of £, implies that
H(XN(ENEy)) =u (XNE)NE,)
=4 (XNE)-pu (XNENNES).
Since
XMN(ENE) =XN(EUE;)
=XN((ET UE)N(E UEY))
=XNEUENEY)
=X NEHUWXNENNEY),
and g is subadditive,
HXNENE)) S @ (XNEH+p (XNEHNES).
Adding,
W XNENE)+u (XN(ENE) )< (XNE)+u (XNE)
= 1’ (X),
where the last equality follows from Lebesgue measurability of E.

Thus, E,,E, € M impliesE, N E, € M.

Lemma 3.3.5 The union of two Lebesgue measurable sets is measurable.

Proof. Let E,,E,be Lebesgue measurable sets. We must show E, UE, € M.
E,E, e M impliesE[ ,E; € M.
By Lemma 3.3.4,
ESNESeM
implies
(EY NE)) eM,
which implies £, UE, € M.

19
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Finite intersections and unions follow by induction.

Theorem 3.3.6 (Carathéodory, 1918) The collection of sets E — R, that satisfy

Carathéodory s condition;
p(X)=p (XNE)+u (XNE)

for every subset X of R forms a o-algebra, M.

Proof. We show that the collection of Lebesgue measurable sets M is a c-algebra.
This entails three arguments:

i. The empty set is Lebesgue measurable: ¢ € M.

HXNG+u (XN = w1 (@) + 1" (X) = p (X).
ii. If a set is Lebesgue measurable, then its complement is Lebesgue measurable:

IfE € M,then R (| E° € M.Carathéodory’s criteria is symmetric in Eand R () E°;
4 (XNE)+ i (XNE) =’ (X N(RNEY)+ 4 (X N(RNE)).
iii. Suppose {E, }is a mutually disjoint sequence of sets from M.We are trying to

show

OEk eM,

o]

that s,

Cs

#*(X)Zﬂ*(Xﬂ{

=~
Il

We have shown that UEk eM, ie.,

k=1

H(X)= lu*(XH{QEI{DJFH*[XHLQEI{T}

Claim: ,u*(X H{OE,CD = i,u*(XﬂEk).

k=1

Certainly true for n = 1and we assume true forn —1sets E,. We split

|
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in an additive manner with £, € M.

s o e i o

n—1

=1 (XNE, )+y*[Xﬂ{UEk D (E, mutually disjoint)

k=1

n—1
=u (XNE, )+Z 1 (XNE,)  (induction hypothesis)
k=1

=>4 (XNE,).
k=1
The claim is valid.

Now split X in an additive manner withU E, eM;

k=1
Us ] |
k=1 k= i

X
> y*[XﬂmEkD+y*[X

:mmw*{m{o@}

—_

1" (X) =,u*[Xﬂ{UEkD+,u*( N

k=

N O E, J (monotonicity)

k=1

independent of n.

Therefore,

H(X)= iﬂ*(XﬂEkHﬂ*{Xﬂ{UEk} }

k=1 k=1

k=1

> y*[Xﬂ{OEk D-’-ﬂ*{Xﬂ[OEk} J (subadditivity).

The reverse inequality follows from the subadditivity. We have completed argument

for showing M is a c-algebra of subsets of R. i

Theorem 3.3.7 (Carathéodory, 1918) The Lebesgue outer measure is countably

additive on M , that is,
u*(UEk j => 1'(E)
k=1 k=1

for any mutually disjoint sequence of sets{E, }in M.
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Proof. Let{E, }be a sequence of mutually disjoint sets from M. We must show
,U*[UEk = ZIU*(Ek)'
k=1 k=1
But in Theorem 3.3.6, we showed
IU*[XH|:UE/¢ J = Z,U*(X NE)
k=1 a k=1
for any X < R. Replacing X with R,

#*[OEk}iu*(Ek)-

Finite additivity holds.
Then,

Su' &)= (JED
< ﬂ*(U E,)  (monotonicity)

< iy*(Ek) (subadditivity)

ﬂ*( Ekj=iu*(Ek)

and the conclusion follows. O

independent of n. Thus,

s

=~
Il

1

We have shown that the Lebesgue outer measure 2, written 2 when restricted

to the c-algebra M of subsets of R satisfying Carathéodory’s condition, is countably
additive on M, that is, u is countably additive on the o-algebra of Lebesgue

measurable subsets of R.

Definition 3.3.8 (Lebesgue Measure) The Lebesgue measure p1is the restriction of

the outer measure u’" to the measurable sets M. That is, for EeM ,set u(E)=u" (E).

We will show intervals are Lebesgue measurable in Proposition 3.3.9.
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Theorem 3.3.9 Intervals are Lebesgue measurable.

Proof. The main idea of the proof is that for an interval / that is the union of two
disjoint intervals /, and /, , length, /([) is additive:
If 1=1,UIl,I,NI,=¢, then [(I)=I[(I,)+I(I,). We must show intervals
like (a,b),(a,»), etc. satisfy Carathéodory’s condition. Our argument will deal
with (a, ). Thus, we must show

4 (X) = 1 (X N (@,00)) + 1" (X N (a,)°)
for every subset X of R. Again, because of subadditivity, we need only
show 4 (X)>u (X N(a,0)+ 1 (X N(a,©)°) for every subset X of R
with 1" (X) < oo

By the definition of Lebesgue outer measure, we have an open cover

Ulk of X so that

k=1

W< <1 (X)+e
k=1
Consider/, ((a,o)and, (a,©).
I, N (a,) s either empty or an open interval and X (1 (a,») U([ . N(a,)).

k=1

I, N(a,»)*is either empty or an open interval and X () (a,©)" < U(Ik N(a,®)°).

k=1

Thus

ﬂ*(Xﬂ(a,OO))Hf(Xﬂ(a,OO)E)Sﬂ*(U(I N(a, 00))}/4 (O(lk ﬁ(a,OO)E)j

k=1 k=1

il([ N(a, oo))+ZZ(I N (a,0))

k=1

=3l a0, NGaor )]

-Sua,)
<u (X)+e.

Similarly, we can show
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H(X) = 4 (X N (=00,b)) + 1" (X N (=o0,b)°),
which implies (o0, b) is measurable.
Now, (a,©) € M implies(—wo,a]e M.
Thus
(—00,b) N (-0,ale M.
i) Ifa < b,then (—o0,b) () (—0,a] =[a,b) e M
i) Ifa = b,then(—o0,b)( (—0,al=¢ € M;
iii) Ifa > b,then (—o0,b) () (—0,a] = (b,ale M;

and the proof is complete. i

We have a smallest o-algebra that contains the collection of open intervals of

R. This smallest g-algebra is called the family of Borel sets, B.

Definition 3.3.10 The o-algebra generated by the collection of all open intervals of
Ris called the Borel o-algebra B.

We are going to show Borel sets are Lebesgue measurable in Theorem 3.3.11.

Theorem 3.3.11 Every Borel set of real numbers is Lebesgue measurable.

Proof. Immediately follows from Theorem 3.3.9. i

34 Properties of Lebesgue Measure

Some previous results are gathered along with some new results to be proved below,

that are useful in determining the measure of specific sets of real numbers.

Theorem 3.4.1 The following sets are assumed to be Lebesgue measurable sets of

real numbers:

1. () = u(ia}) = 0.



25

2. w()=1(1).
3. u(countable set) = 0.

4. p(subset of a set of measure zero) = 0.

5. y(U E k] < Z U(E, ) with equality whenever the sequence of sets {E, } is mutually
k=1 k=1

disjoint.
6. u(E, UE2)+,U(E1 ﬂEz) = u(E\) + u(E,).
7. W(E) S w(E,))if E, c E,. If in addition u(E,) < o,then u(E,)— pu(E,) =

H(E, —E)).

8IfE CE,CcE,C ---,then,u(UEkj = p(lim E,) = lim u(E, ).
ol —0 —

9IfE, DE,DE, o --and u(E)) < oo,theny[ﬂEkJ = ,u(}imEk) =
k=1 —>0
lim p(E, ).

10. If,u(U Ekj < oo, thenlimsup p(E,) < y(limsupEkj.

k=1 k—o k—

11. ,u(liminfEk) < lirkninf,u(E,().

k—o

12. IflirkninfEk =limsup E, and,u(UEkJ < oo, then,u(llcimEk) = llfim,u(Ek ).

k—w k=1

Proof.

Parts 1 through 5 have been discussed earlier.

6. E, UEz = (£, ﬂEzc)U(Ez ﬂEIC)U(El mEz)
Thus
H(E, UE2)+/1(E1 mEz) = u(E, ﬂE;)"‘ﬂ(El mEz)"',U(Ez ﬂEl")+,u(E2 ﬁE1)
= p(E)) + pu(E,).

7. Follows immediately from part 5:

SinceE, c E,,E, =(E,NE)UE,
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and

M(E,)) = p((E, N EY) U E)
= u(E, N EY)+ u(E).

If (E,) < o, we have u(E,) < « and we may subtract.

8. If u(E, ) = cofor some N,then u(E, ) = o for allk > Nandllfim,u(E,() = o0,

Since

Ey c UEka H(Ey) < /{UEkjand thus /{UEkj = /J(IICEEE/C) =
k=1 k=1

k=1

}im H(E,) =.So we may suppose u(E, ) < oo for all k.

Since

UE, = E UE, NEHUE NEHU--

k=1

and the sets £, , () E,“are mutually disjoint, we have
#(UEkJ=ﬂ(E1)+Zﬂ(Ek+1 NEY) )
k=1 =
= u(E)+ Y [H(E, )~ H(E)] (7)
k=1

= (B +lim Y [u(E, )~ u(E,)]

= p(E,)+ lim p(E, ) - u(E,)

= lim u(E,).

9. Since
E, ﬂ(ﬁEkj =(E,NEHUE, NESHU-

and the sets £, (] E;,, are mutually disjoint, we have



u(Eo—u(ﬁ EJ

k=1

u&w{@@IJ ()

HENEL) ©)

M Ts

[(E}) = (Ey )] (7

=~
1l

1

= lim Y [u(E,) - #(E, )]
= w(E) - lim u(E,).

Since u(E,) < o, we may subtract and the conclusion follows.

10. Recall
limsupE, = ﬂ[UEm]
k—o k=1 \m>k

Then

UE, 2 JE, oandE, = | JE,.

m>1 m=2 m>k
Thus

lu(Ek) < /’l(UEmJ
m>k

and, hence,

limsup p#(E,) < limsup ,u(UEmJ

k—x m>k

An(us)) o

= ,u(lim sup E, )

k—ow

k=1 \ m2k

11. Recall liminf £, = U[ﬂEm J
Then

E, <()E, =-and ()E, CE,.

m21 m>2 m=k
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Thus
Iu(ﬂEmJ S 1U(Ek)‘
m>k
Hence
.. <Tirms
hrkllglfﬂ(gEmj < llIkILlilf U(E,).
But

liminf y(ﬂ EJ = lim y[ﬂ Emj

m=k m=k

Adne)) o

= y[lim inf £, ]
k—o
and the conclusion follows.
12.
limsup u(E,) < ,u(limsup Ek) 10)
k—o0 k—o

{n(y=.)
-{Y(n=)

= ,u(lim inf Ekj

k—o

< lirkninf H(E).

3.5 Structure of Lebesgue Measurable Sets

Are there relationships between topological properties (open, closed, etc.) and
Lebesgue measurability? The next theorem shows that Lebesgue measurable subsets

99 ¢

of R are “almost open”, “almost closed”, and so forth.



29

Theorem 3.5.1 For an arbitrary subset E of R the following statements are

equivalent:

1. Eis Lebesgue measurable in the sense of Carathéodory,

2. Given > 0 we can determine an open setG — RwithE c Gand u' (GNE‘)< ¢
(“exterior” approximation by open sets),

3. Given & > 0 we can determine a closed setF — RwithF c Eand ' (ENF)< ¢
(“interior” approximation by closed sets);

4. There is Gz set BywithE < Byand u" (B, E) = 0( B, is a countable intersection of
open sets, if we relax “open”, we can obtain a very good approximation by Borel
sets),

5. There is F_set B,withB,  E and y" (E(\ BS) = 0 ( B, is a countable union of

closed sets, if we relax “closed”, we have very good approximation from the

“inside” by Borel sets).
Proof.

1.= 2. Assume E is a Lebesgue measurable subset of R with y(F) < .

By the definition of Lebesgue outer measure, we have an open cover G = U I, so that
k=1

EcGandu (G)< u(E)+e.
Since
G=(GNE)YUE
and G is Lebesgue measurable (Theorem 3.3.11),
#(G)=u(GNE")+ u(E).
Because u(E) < oo, we may subtract and obtain ' (GN E°) < ¢.
If u(E)=oo,1etE, = E(\[-k,k]. E, is Lebesgue measurable, u(E, ) < o,

and by what we just showed we have an open set G, so that

e &
E, cG,and (G, ﬂE,()<?.
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Since E = UEk c UGk = G, it follows that
k=1

k=1 =

4 (GNE) = u(GNE)
S%O@de

<3 u(G, NE)

<é&.

We have constructed an open setG = U G, with the desired properties.
k=1

2.= 3.Follows by “complementation”: Apply part 2 to £°. We have
E°cGandu (GN(E))<e.
But then
G CE
and
K (ENG))=p (GN(E))
<g,

and with F' = G, the argument is complete.

3.= 4.Let E c R and apply part 3 to E°. We have a sequence of closed sets {F, } so

that

F, cE‘andu (E°NFY) <%.

LetB, = ﬂch.Bl isaGyset, E c B,and

k=1

IU*(BI ﬂEC):/U*(EC NB)

ool

< i (ENFY)

1

<-—, k=12,....
k

Sou (B,NE)=0.
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4.= 5.Follows by complementation as in2. = 3.

5.=1. We must show zz (X NE)+ ¢ (XN E) = u (X) for every subset X of R.
Let E be an arbitrary subset of R and B, be the F_ set guaranteed by part 5:
B,cE,u" (ENB)=0.
Since B, is Lebesgue measurable (Theorem 3.3.11),
W (XNE)=x (XNE)NB,)+u (XNE)NB;).
Because
(XNEYNB;, c ENB;,
)
1 (XNE)NB;) =0,
and we have " (X NE) = " (X NE)N B,).
On the other hand,
W (XNE)= i (XNEYNB) +u' (X NE)NBY)
= 4" (XNEHNB,) +u (X NE).
This implies
4 (XNE)NB,)=0.
Thus
WXNEY=u (XNEYNB)+u (X NE)NBE)
=0+ 4 (XNE)NB;)
<4’ (XN BY).
Thus
W (XNE)+u (XNE)< 4 (XNE)NB,)+ 4 (X NBY)
< (XNB)+u (XNB)
= (X).

because B, is Lebesgue measurable. This yields Carathéodory’s condition on E since

W (X)< ' (XNE)+ 1" (XN E)by subadditivity. 0

The next result relates Borel sets and Lebesgue measurable sets.
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Theorem 3.5.2 Every Lebesgue measurable set of real numbers is the union of a
Borel set and a set with Lebesgue measure zero (Lebesgue measure is the completion

of Borel measure).

Proof. Let E be the Lebesgue measurable set of real numbers. We then have a Borel
set(F, )B so that
Bc Eand u(E( B°)=0(Theorem 3.5.1).
But
E=BU(ENB);
Bis our desired Borel set and £ () B¢ is the Lebesgue measurable set with Lebesgue

measure zero. o

The last theorem of this chapter states that sets of finite Lebesgue measure are

“almost” finite unions of intervals.

Theorem 3.5.3 Suppose E is any subset of R with 1’ (E) < o.Then E is a Lebesgue

measurable set of real numbers iff we have a finite union of open intervalsU so that
L(ENUY+ " (UNE ) <e,

forany e > 0.

Proof. We first assume E is Lebesgue measurable.

Since E is Lebesgue measurable, we have an open set G so that
EcGand u(GNE®) < % (Theorem 3.5.1).

Since every nonempty open set of real numbers is a countable union of disjoint open

intervals,

o0 o0 8
Ecl| ]I, =Gand I, |NES |<=.
Ui -cmas[Un Jo )<
k= k=1

But| |1, = ((U I, j NE® J U E, and, consequently,
1

U(E) < u(OlkJ = iﬂ(lk) < ,U(E)Jr% <o,

k=1



that is, the series Z u(1,)converges. Choose N so that

k=1
© & N
> (1) <= and defineU = J1,.
k=N+1 2 k=1

Note:
1. Uﬂ( leJ:¢'
k=N+1

iLUﬂEchnEmmmmy%UmEﬂ<§

iii. ENU® :Eﬂ[ ['jszc Ur,.
k=N+1 k=N+1
Then
L(ENUHY+u (UNE)<e.
Conversely, assume we have a finite union of open intervalsU so that
ﬂ%Ean+yYUﬂE3<§.

We will construct an open setG so that

EcG,u (GNE%)<e,

and then conclude from Theorem 3.5.1 that £ must be Lebesgue measurable.

By the definition of Lebesgue outer measure we have an open set O, so that
‘EﬂU”c(hmﬂy%EfMﬂ)Sy%OJ<yXEFMﬂ)+§‘

LetG=0, UU.
G is an open subset of R,
EcCUU(ENU)cUUO, =G,
and
H(GNEY)=p (UUO)NE")
=4 (UNEHUO,NE?))

< (UNE)+u (0)
<é&.

33
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We have completed our development of Lebesgue measure. Knowing what
Legesgue measurable sets are, we are now able to discuss measurable functions in

next chapter.

3.6 A Lebesgue Nonmeasurable Set

Giuseppe Vitali discovered the first example of a Lebesgue nonmeasurable set of real
numbers in1905. In the next few years, several mathematicians such as Van Vleck
(1908) and F.Bernstein (1908) among others discovered such sets. All of their
constructions used the Axiom of Choice: for any nonempty collection C of sets, there

is a choice function f such that f(A) € 4 for each 4 € C.In 1970, Solovay showed

that the Axiom of Choice was required to construct a Lebesgue nonmeasurable set of
real numbers. The construction involves the notions of equivalence relations and

equivalence classes.

Now, we construct a Lebesgue nonmeasurable set of real numbers in (—1,1).
Define x ~ yifx — y is rational.
Forx e (-Ll),define R ={yel|y—x=r,rrational}.

The following are nine properties of R . We will prove them.

1. Every real number x € (—1,1) belongs to one of the sets R ;

2. R, =(-11;

xe(-11)
3. Ifx; ~ x, withx,x, € (=L1),thenR_ =R, ;
4. IfR, NR,_#¢,thenR, =R ;
5. Each set R is countable;
6. If x € (—1,1) is rational, then R _is the set of rationals of (—1,1);

7. If x € (=1,1) is irrational, then every element of R _is an irrational number in(—1,1);
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8. Ifx,,x, € (=L1) with x, — x, an irrational number, thenR_ (1R,

P

9. The collection of distinct sets R is uncountable.

Proof.

1. Lety e (-11).Then y € R since y —y = 0is rational.

2. Letx e (-1,1). Then
{x}c R c(-L])
= Uixte JR c(-1D

xe(-1,1) xe(-1,1)

=(Lhe R =(-LD.

xe(=1,1)

This implies
R, =(-1D.

ye(-1,1)
3. Suppose x, ~ x,. Then x, — x, is rational, this implies
R, ={x el|x —x,=r,rrational} # §.
and
R, ={x,el|x,—x, =r,rrational} # ¢
ClaimR =R, .
Let ye R, ,theny—x,is rational, this impliesye R,_,and soR,_ < R since
y is arbitrary.
Similarly, let y e R, then y' —x, is rational, this implies y' € R, ,and so
R, C R, since y'is arbitrary.

Thus

4. Since R, (1R, # ¢, there exists ze R, (1R, such that ze R and zeR_. This

implies z — x, is rational and z — x, is rational. So
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(z-x)—(z-x)=x—x,
is rational. By definition, x ~ y,and from 3.,
R, =R_.
5. If xe(-11) is rational, then in order for ye R and y—x to be rational,
where y € (—1,1), y must be rationals in (=L11). Thus R_= { rationals in (-1,1)}is a
countable set, for rational x € (—L1).
If xe(-1,1)1s irrational, then in order for y € R_and y —x to be rational,
where y € (-1,1), y must equal to x+r,, for some —2 <r, <2, where r, is rational.

Thus R is a countable set, for irrational x e (-L1).

6. Follows immediately from 5.
7. Follows immediately from 5.

8. We prove by contrapositive. Suppose R, N R_#¢. Then by 4, R, =R, . Let
zeR, ,thenze R _since R, =R _.This implies z — x, is rational and z — x, is rational. .
So

(z=-x)—-(z—x)=x,—x,

is rational. By definition, x ~ y.

9. Suppose URX =(—L1) is countable. But this contradicts the fact that(—1,1)is

xe(-1,1), R distinct

uncountable. Thus the collection of distinct sets R is uncountable. O

In conclusion, we have decomposed(—1,1)into an uncountable collection of

pairwise disjoint sets, each of these sets is itself countable, one such set consisting of

the rationals in (—1,1), and each of the others consisting only of irrational numbers.
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Pick a point from each of these disjoint subsets R ,call this set N.N is an
uncountable set, a subset of (—11),and N(\R_is a single point. We intend to

show N is nonmeasurable.

Enumerate the rationals in(-2,2): 1, 7,,7;,....Define N+r, ={x+r, | x € N},
-2<r,<2,r, rational. Since N c(-L1),N+r, <(-3,3). Claim (N+r)N
(N+r,)=¢ if r,#r,. Suppose (N+r)\(N+r,)#¢. Then there exists
z=x+r,=y+r,, or x—y is rational, with x,y e N. This implies R, =R, with
x,y € R =R,.ButNis constructed by taking points from mutually disjoint sets, so

xmust equal y,orr, =r,.This contradicts thatr, # r,.So,

(-1,1) CJ(N +r)c (=33).

Suppose N is measurable, N +r, is also measurable. We have

2= (1) < y(['J(N v mJ

n=l

n=l
< p((=3,3)) =6.
This implies 2 < Zy(N) <6.

n=1

The left-hand inequality, 2SZ M(N), implies w(N)>0. The right-hand

n=1
inequality Zy(N) <6,implies (N)=0. u(N)>0and x(N) =0 cannot hold at the
n=1

same time.Thus N must be nonmeasurable.



CHAPTER 4

LEBESGUE MEASURABLE FUNCTIONS

In this chapter Lebesgue measurable functions are introduced follow by sequences of
Lebesgue measurable functions. Characteristic function, simple function and
Approximation Theorem are mentioned in Section 4.3. We conclude this chapter

with Egoroff’s theorem and Lusin’s theorem.

Caution: In what follows a “measurable function” means a “Lebesgue measurable

function”. For any function, the domain will always be a subset of R and the

range will be a subset of R or R’ (real-valued or extended real-valued).

4.1 Measurable Functions

We begin this section by giving the definition of a Lebesgue measurable function and

its equivalent forms.

Definition 4.1.1 An extended real-valued function f, defined on a Lebesgue
measurable set of real numbers E, is said to be Lebesgue measurable on E if

[ (e, ={xe E| f(x)>c}

is a Lebesgue measurable subset of E for every real number c.

Theorem 4.1.2 Suppose [ is an extended real-valued function whose domain is a
Lebesgue measurable set of real numbers E, and cis any real number. Then the

following statements are equivalent:
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1. fis a Lebesgue measurable function on E.

2. f'((e,o]) = {x € E| f(x) > c}is a Lebesgue measurable subset of E.
3. f'([e,]) = {x € E| f(x) > c} is a Lebesgue measurable subset of E.
4. ' ([~o,c)) = {x € E| f(x) < c} is a Lebesgue measurable subset of E.

5. f'([~o,c]) = {x € E| f(x) < ¢} is a Lebesgue measurable subset of E.

Proof.

1. < 2.Definition 4.1.1.

2.=3. f1([c,oo])=fl(ﬁ(c—%,ooDzﬁfl((c—%,ooD.

3.2 4 [ ([~0,0) = £ ([e,0]) =RN (S ([e,0]))".
4.=5. 1 ([~0,c]) = £ (ﬁ{— oo,c+%jj = ﬁf" @_ oo,c+%}],

5.2 2. [ ((e;0]) = £ ([=o0,¢]) =RN (/" ([—o0,c]))". O

Theorem 4.1.3 Continuous functions defined on measurable sets are measurable

functions.

Proof. Let f be a continuous function on the measurable set £, and ¢ any real number.
We must show 4 = {x € E'| f(x) > ¢} is a measurable subset of E.
If A = ¢, the proof is immediate since the empty set is measurable.
Otherwise, let x € 4. Then f(x) > ¢, and because f is continuous at x, we
have 5, > 0so that for z € (x—5(x),x+(x)) N E, f(z) > c.
Thus
A=J((x=6),x+5x)NE)

xeAd

= [U(x —-5(x),x+ 5(x))J NE.

xeA

Ais the intersection of an open set (measurable) and the measurable set £. The set

A is measurable and the argument is complete. O
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We can weaken continuity to continuity except on a set of measure zero,
commonly referred to as “continuous almost everywhere.” Sets of measure zero do

not affect measurability of a function.

Definition 4.1.4 A property is said to hold almost everywhere on a measurable set if
the set of points where it fails to hold has measure zero. In particular, two

functions f and g are said to be equal almost everywhere if they have the same

domain and u({x| f(x) # g(x)}) = 0. We sometimes write f = ga.e. onE.

Theorem 4.1.5 Suppose f and g are extended real-valued functions defined on a
measurable set E.If f is a measurable function on E and if f = g except on a set of

measure zero, then g is a measurable function on E.

Proof. Let cbe any real number. We must show {x € F | g(x) > ¢} is a measurable

subset of E. Define A={xe E| f # g}. By assumption, 4 is measurable with

measure zero. Then g = f on the measurable set E(1 4° ={x e E | f = g},and
(xeE|g(x)>c}={xe ENA°|g(x)>c}U{xe 4| g(x)>c}

={xe ENA“ | f(x)>ctU{xe 4] g(x)>c}
=(xeE[ f(0)>cMENA)U{xe 4] g(x)>c}.
The set{x € 4| g(x) > c}is measurable since it is a subset of a set of measure zero.

Because [ is a measurable function on £, {x € E'| f(x) > c}is a measurable subset of

E,asisE[) A°. ]

Proposition 4.1.6 Let f be a Lebesgue measurable function defined on a Lebesgue
measurable set E.If Ais any Lebesgue measurable subset of E,then f is a Lebesgue

measurable function on A.

Proof. {xe A| f(x)>c}={xeE| f(x)>c}A.
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By assumptions, {x € E'| f(x) > c} and 4 are Lebesgue measurable subsets of £. Thus,
{xe A| f(x)>c}is a Lebesgue measurable subset of £, and so f is a Lebesgue

measurable function on 4.

Theorem 4.1.7 Suppose f and g are real-valued measurable functions, defined on a
measurable set E, and k is any real number. Then the following functions are

measurable functions on E :
2 1 f
f+k’kf>|f|sf ,E(g¢OonE)af+gaf'g,§(g¢00nE)'

Proof. The arguments are sketched:

i{xeE|f(x)+k>ct={xeFE| f(x)>c—k}.

¢,c>0

ii. Ifk = 0,thenkf =0and {x € E | kf (x) > ¢} ={
E,c<0.

Itk > 0,then {x € E | kf (x) > ¢} = {x cE| f(x)> %}

Ifk < 0,then {x € E | kf (x) > ¢} = {x cE| f(x)< %}

. [E, c<0
i Axe Bl [f(x)>ep= (XeE|f(x)>c}UxeE| f(x)<—c}, ¢>0.

. - , N ~ E, c<0
WA B> = B 0N e20.

{xe E|g(x)>0}, c=0
V.{er ! >c}= {xeE|g(x)>0}ﬂ{er|g(x)<l}, c>0
g(x) c

{xeE|g(x)>0}U{er|g(x)<l}, ¢<0.
c
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vi. We use the fact that the rationals are dense in R and are a countable subset of R

and

xlf()<g={JxeEl f(x) <riNixe E|r, <g(x))),

where 7, is rational.
Then
xeE[f(0)+gx)>ci={xe E|c—gx) < f(x)}
=J(xeElc-g) <niNxeEln < f(x)})

=JlxeElc—r <g@}Nixe E|r < f(0)}),

where 7, is rational.

Vil.

E, c<0
(xeE|[f(x)+g(x)] >c}—{ xeE| f(x)+g(x) >}
Ulxe E| f(x)+g(x) < —c}, c>0.
E, c<0
{ (xeE| f(x)+g(x)> e}
Ulxe E Ve + f(x) < —g(x)}, ¢>0.

Thus (f +g)’ is a measurable function on E.

) s c>0
e E|-[f(x)-g@)] >C}:{{ieE|_J__c<f(x)_g(x)<J__c}, 0
P, c>0
_{ xeE|-J-c< f(x)-gx)}
Nixe E| f(x)—g(x)<—c}, c<0.

Thus — (f — g)* is a measurable function on E.
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{er|f(x)-g(x)>c}={er

/() + g [/ () - g@T c}
4

={xeEl[4c+[f(x)-g@] <[f(x)+g()I’}
:U( xeEldc+[f(x)-g)]* <}
R0 xeEln <[/()+gI} )
ZU( xeE[{f(0)-g®) >4c—r}
2N xeEln <[/(M+g@I'} )
where 7, is rational.

Similar reasoning for i =f- (lj O
g g

If we replace measurability of f and gin Theorem 4.1.7 with continuity, we

still have a valid proposition. The operations performed with measurable functions in
Theorem 4.1.7 in no way distinguish measurable functions from continuous

functions.

Proposition 4.1.8 Suppose f and g are measurable functions defined on a

measurable set E.Then the following functions are measurable on E :

1. max(f,g),min(f,g).
2. /7 =max(f,0), /" =-min(f,0),] /.
Note: f=f"—f | fl=f"+f".

Proof.

l. {xe E|max(f(x),g(x))>c}={xeE|f(x)>ctU{xe E|g(x)>c}
and{x € E |min(f(x),g(x))>c}={xeE| f(x)>c}N{xe E|g(x)>c}.

(xeE|f(x)>cU{xeE]| f(x)<—c},c>0

2. {erIIf(x)|>C}={E’ c<0.
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4.2 Sequences of Measurable Functions

We are ready to discuss sequences of Lebesgue measurable functions. Pointwise
limits preserve measurability with some relatively mild additional conditions

imposed on the sequence). The next theorem is crucial.

Theorem 4.2.1 Suppose{f,}is a sequence of measurable functions defined on a

measurable set E. Then the following functions are measurable functions on E :

L f, =Supify. fras-band f =inf{f,, fo,...} for k=12,..;
2. limsup f, =11(im7,C and lirkninffk =11{irnfk.
k—oo —>0 —0 —>00 —

3.If llim [, (finite or infinite) exists for every point of E, then the limit function ]l(im fi
k—>0 —>®©

is a measurable function on E.

4. If f is a function defined on E and f = llim [, almost everywhere on E, then f is a

measurable function on E.

Proof.

1. {er|]7k>c}=0{er|fn(x)>c}

and{xe E| f, >c} =[x E| f,(x)>c}
_ n=k
2. The sequence {ka} is a nonincreasing sequence of measurable functions and since

limsup f, = }iijk =inf {71,72,...}, measurability follows from part 1.

k—o

The sequence {f, } is a nondecreasing sequence of measurable functions and since

1irkninf fi = llcim fi =supif,,f,,...}, measurability follows from part 1.
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3. lirkninffk zllcimfk = limsup f,.
—0 —0 ko0
4. Suppose a function f on E is the almost everywhere limit of {f,} and let

A={xeFE| }im f(x)1is not defined or ]1im fi(x) # f(x)}. The 4 has measure zero.

Define a new sequence of functions {g, } on E by

fi(x), xeAd

gk(x):{o, xed,

and let g be given by

[ S0 e
£, xed

Since each function g, equals a measurable function, f,, almost everywhere
onE, g, is measurable (Theorem 4.1.5).

Ifxe 4,limg, (x) =0= g(x).

k—o
Ifx & 4,limg, (x) = lim f, (x) = f(x) = g(x),
k—o0 k—o

that s,

limg, = g for every point of E.

k—o

By part 3, gis measurable on E.

By Theorem 4.1.5, since f equals to g a.e. on £, and so f is measurable on E. i

4.3 Approximating Measurable Functions

In this section, we will show that every measurable function is the limit of a

sequence of simple functions.

Definition 4.3.1 Let A be any set of real number. The characteristic function
on A, denoted y ,,is defined as follows:

1, xed

Zal) :{0, xg A
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Definition 4.3.2 Suppose E = UE ., Where the sets E, are measurable, mutually

k=1

disjoint, subsets of R andc,,c,,...,c, are real numbers. Then a function ¢ defined

onE by p(x) = ch X, (x), is called a simple function.
k=1

A simple function assumes a finite number of real values and assumes each of

these on a measurable set, that is,

p(x)=c,onE, 1<k<n.

Theorem 4.3.3 If y,.is a characteristic function defined on a measurable set E,

then y . is a measurable function on E.

Proof.
E, c<0
(xeE|ly.(x)>ct=1E, 0<c<l1
@, c>1.

Theorem 4.3.4 [fpis a simple function defined on a measurable setE,then@is a

measurable function on E.

Proof. Letpbe a simple function defined on E by ¢(x) = ZC X, (%)
k=1

and E be a measurable set such that

E=)JE,,
k=1
where the sets £, — R are measurable and mutually disjoint andc,,c,,...,c,be any

real numbers.

Now, we have
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xeE | xg > c tfork=12,...,n.
and so by Theorem 4.3.3, . is a measurable function on £, fork =1,2,...,n.
By Theorem 4.1.7, ¢, 7, is a measurable function on £, ¢ Efork =1.2,...,n.

and so by applying Theorem 4.1.7 again, we conclude ¢ is a measurable function

onk. |

Theorem 4.3.5 (Approximation Theorem, Lebesgue) Let f be a measurable
function defined on a measurable set E. Then there exists a sequence of simple

Sfunctions {¢, } on E, so that
llcim @, = f (finite or infinite)
—>0

forallx e E.
If fis bounded on E, then

lim g, = f (unif
onk.

If f is nonnegative, the sequence {¢,} may be constructed so that it is a

monotonically increasing sequence.

Proof. Suppose that f is nonnegative on £. We want to construct a monotonically

increasing sequence {@, } with }im @, = f.Divide the range of f'and approximate by

level curves. Since f(E) < [0,], we partition[0, ] :

Step 1.
[0,00] =[0,1) U[1,0]

1 1
Define E,, = £~ ({O,%D,Elz =1 {[%,ID,EI = /7' ([L,)),

andp, =0 7, +%-ZE12 +1- yg . Clearlyp, < fonE.

Step 2.



48

[0,00]=[0,) U[L,2) U[2,0]
1 11 13 3 5 56 6 7 7 8
aIRFE R R By e R R e e

We have decomposed[0,o0]into 2> + 22 + 1subintervals at the 2™ step.
2

Form pre-images

_ p-l l _*111 =*IZ§ = (2,00
E21 _f (|:094J}E22 _f (I:4JQJ}”WE28 f £|:4’4jjvE2 f ([Za ])

Definep, =0- +i-;{522 +---+%-;{E28 +2- Xe»
or

2‘221'—1

®, :Z 32 Xk, +2ZEZ

i=1

Note that
Eli EZ 2i-1 UEZ 2i

for i =1,2.

Step k. [0,00]=[0,)H)U[1,2)U---U[k —1,k)U[k,0] and partition into

28 42% 4.4 2% +1=k 2" +1disjoint subintervals and form inverse images.
%,—/
k

Thus,

K2k .

i
Oy :zz_kZEk, +kZEk-

i=1
. . i-1 i),
Note thatE,, = E,,, ,,,UE,,, ,,.To constructg,,,,divide the intervals [2—k,2—k) in

half, and then ¢, to ¢, ,, at those x ’s where ¢, changes.
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Surely ¢, are nonnegative simple functions. We must show

P < Pra andll(im ¢, =/ onkE.

Now, we are going to prove ¢, <@, on E. Recall that

i —1
E,=E,, ,,UE, ,. If x,€E,, for some i, then (pk(xo):lz—k and so

2i-2 i-1 2i
Pra (%) = SE T or O P (X)) = e and thus ¢, (x,) <@, (x,).1f x, € E};,

fori=12,...,k-2" thenx, € E, = £ ([k,0]) = £~ (k. k + ))U £~ ([k +1,0]).

Thus
xy € 7 ([k,k +1)),

. k
J oo 2k -2
2k+l 2k+|

and so @, (x,) =k and gy, (x,) =

or
x, € /7 ([k +1,00]),
andsog,, (x,)=k+1>k=¢,(x,).
We are left with proving }im @, = f onE. If f(x,) =0, then ¢, (x,) =kVk
and llcimgok(xo) =oo. If f(x,) <oo, then for k> f(x,),0< f(x))—@,(x,) < 2% and

lim g, (x,) = /(x,).

If f is nonnegative and bounded on F, say ,0< f <M on E, then for all

k>M,0Sf(x)—(pk(x)<%foraller,thatis,}im(pk = f(unif)onE.

In the general case ( f may be negative), recall that /' = f" — /'~ where

[, f are nonnegative measurable functions on E (Proposition 4.1.8). Apply the
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above arguments to /“and /', noting that the difference of simple functions is again

a simple function. This completes the proof. o

4.4 Almost Uniform Convergence

In this section, we will prove a remarkable theorem due to Egoroftf: If we have point-
wise convergence of a sequence of measurable functions on a set of finite measure,

then we have uniform convergence on a “large” subset of that set.

Theorem 4.4.1 (Egoroff, 1911) Let E be a measurable set of real numbers with finite

measure. If {f,}is a sequence of measurable functions which converge to a real-
valued function f almost everywhere on E, then, given ¢ >0, there exists a
measurable subset E_of E such that y(E(\ E,) < € and the sequence{f,} converges

uniformly to f onE .

Proof. By using the sequence{ f, }, we want to construct a monotonically decreasing
sequence of nonnegative measurable functions, {g,}. This new sequence will be

shown to converge uniformly to zero on £, from which it will immediately follow

thatlimfk = f(unif)onE,.

LetA={xe E| I{im f, # f}.Since 4 has measure zero, u(E) = u(E(1 A°),and
Il{im f, =/ on E(1A4°. Since the limit of a sequence of measurable functions is

measurable (Theorem 4.2.1), f is a measurable function on E[)A4°. Define
g, =supdl f, = f .| fosy—f ..} for k=12,..., we have from Theorem 4.1.7,
Proposition 4.1.8 and Theorem 4.2.1, that g, is measurable on E() A°. Furthermore,

0<g,, <g,and Ilcim g, =0onE () A°.This implies the sequence g,is a monotone

decreasing sequence of nonnegative measurable functions converging to zero

onE) 4.
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The technical aspect of the argument begins: Let & > 0 be given.

Stage I:

Construct an increasing sequence of measurable subsets of E[)A° :

E,={xeENA"|g,(x)<1}. Clearly E/cE,c--, |JE =ENAE, s

k=1

measurable. By Theorem 3.4.1, ,I{im W(E) = u(EN A°),so fork sufficiently large,

sayK,, OS,u(EﬂA“’)—,u(E}q)<§. 0<g, <lforallk>K,.

Stage 2:

Construct another increasing sequence of measurable subsets of £ () A° :

E,fz{erﬂA"|gk(x)<%}. Clearly E}cEjc--, |JE;=ENAE; is

k=1

measurable. By Theorem 3.4.1, llcirn w(E}) = u(EN A°),so0 fork sufficiently large,

say K, OSy(EﬂAC)—y(E,2<2)<2—i.0§gk <%forall kZKzonEf{z.

Stage n:

Construct another increasing sequence of measurable subsets of £ () A° :

E:z{erﬂAng(xKl}' Clearly E! < B -+, [JE{ = ENA%E] s
n

k=1

measurable. By Theorem 3.4.1, lim U(E!)=u(ENA),s0 fork sufficiently large,

sayK,,0< ,u(EﬂA")—/z(E,Z”) <2inwith0£gk <%for all k> K onEy .

Each of the sets E , Ey, ..., Ey ,...is “almost” E () 4°.We will show that

E = ﬁ Ey
n=l

is “almost” E () A and that we have uniform convergence on E .



E=(ENA)U 4
= ENES =[(EN AN ESJUANE?)
Thus
WENES) = p([(EN AN EJUANED)
— W(EN A NVES T+ (AN ES)
<u (EﬂA“m(ﬁE;;J ]w(A)

n=l1

p (EﬂA”)ﬂ(ﬁE};J J+o

n=1

u O«EﬂACmE;,")J

IA

S U(ENAYNEL)

S (U(ENA°) - u(EL )

A
NgE
N

=
1,

0
It remains to show uniform convergence on £, = ﬂ E; .

n=1
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Let 6 >0 be given. We want to show | g, —0|<d on E, :ﬂE,'}” for k

n=1

sufficiently large.

Choose N so that %< 0. Recall E,’;’V = {x eENA" | gy, <%} For all

k2K, E, =(\E; cEj ,andg, <g, .Thisimplies

n=1

lg, —0|<o forall k> K,
and all

0
n
vefEz.
n=1
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In 1912, Lusin proved that measurable functions are “almost” continuous. We
use Egoroff s Theorem (Theorem 4.4.1) to establish this result. Before that, we have

the next lemma.

Lemma 4.4.2 Let{f,} be a sequence of real-valued functions, each of which is

continuous at a pointc € E. Suppose lim f, = f (unif’) on E.Then f is continuous at
n—x©

cek.

Proof. | f(x) = f(O) I f()= [, () [+] f,(x)= [, ([ +] f,(c) = f(c)|. The first
and third terms on the right-hand side are small by uniform convergence

on E forn > N(&).Once N(¢&)is selected, the middle term can be made small under

the assumption that £, is continuous atc € E. O

Theorem 4.4.3 (Lusin, 1912) Let E be a measurable set of real numbers with finite

measure. If f is a real-valued measurable function defined on E, then we may

construct a closed subset E, of E so that y(E(\E,) < € and [ is continuous on E .

Proof.

The idea here is to approximate f with a sequence of simple functions {¢, }

(Theorem 4.3.5), each being continuous except possibly at a finite set of points, and

thus the set of discontinuities of all members, being a countable set, has measure zero.

Cover this set with discontinuities, with a sequence of open intervals{/, } so

that

dUn )<

k=1

N | &

On the closed setEﬂ(UI kJ , the simple functions are continuous and

k=1

converge to f.
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Apply Egoroff' s Theorem (Theorem 4.4.1), we have E, so that

E, cED(QI,(JC,#{[EH(QIJJHEEJ<%.

This implies
ﬂ((glk]UEg Sﬂ(glk}#(Eg)
:>—ﬂ[ QlkJUEgJZ—ﬂ Qlkj—ﬂ(Ec)
Dﬂ(E)—ﬂL(ka}UEE Z—ﬂ@lk}ﬂ(E)—u(Eg)
:»u(E)—u{(QlkJUEé Z—u(glk}uwmﬂ:).
Thus

and so@, — funiformly onE, .

Since the uniform limit of a sequence of continuous functions is continuous

(Lemma 4.4.2), the proof is complete. i



CHAPTER 5

LEBESGUE INTEGRATION

The Riemann integral is introduced in Section 5.1. A similar approach via simple
functions yields the Lebesgue integral for bounded functions on Lebesgue
measurable sets of finite measure in the next section. Next, we restrict our attention
to nonnegative Lebesgue measurable functions whose domain need not have finite

measure, and then in the next section remove the condition that f be nonnegative.

Finally, Section 5.5 is concerned with the applications of Lebesgue Dominated

Convergence Theorem.

5.1 The Riemann Integral

The Riemann integral of a step function is defined in the obvious way. The extension

to more general bounded functions f on[a,b]is via approximation from above and

below by step functions.

Definition 5.1.1 4 real-valued function ¢ with domain|[a,blis called a step function if
there is a partition
a=x,<x <--<x,=b
of the interval such that ¢ is constant on each subinterval I, = (x,_,,x,);
that is,
d(x)=c,forxel, k=12,..,n,

withg(x,)=d, , k=0,l,...,n.
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Definition 5.1.2 Let ¢ be a step function on[a,b]:

Cir X, <x<Xx,,k=12,...,n

¢(x):{dk, X=x,, k=0,1,...,n.

b n
The Riemann integral of ¢ on|a,b],denoted byj.¢(x)dx = ch (x, =x;, ).
p p

n n
We could write ¢ = chl(xk,l,m + delm} ,
k=1 k=0

and
Jo00de =Y G w )+ Y dy i, )

n
= Z ¢ (o = x4)-
=1

The step function’s values at the endpoints of the subintervals have no

bearing on the existence or value of the Riemann integral of a step function (d, does

not appear in the definition of the integral).

The value of the Riemann integral of a step function is independent of the
choice of the partition of[a,b]as long as the step function is constant on the open

subintervals of the partition.

More formally, the Riemann integral of a step function is well defined; it is

independent of the particular representation of ¢.

Lemma 5.1.3 If ¢ andy are two step functions, then there is a common partition

P={x, <x, <---<x, }such that andy are step functions with partition P, so that

n n
¢ = Zajl(x/,,,x,) + Z¢('x[)Z{x,}
Jj=1 i=0

and

V=200 0t WD) L
i=0

J=1
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Proof. Suppose ¢ and y are two step functions so that ¢(x)=c;, where
Jje€(z;,,z;) for some finite partition A ={z, <z, <--<z, } (j=12,...,n) and
w(x)=d,, where ke(z,_,,z,) for some finite partition P, ={y, <y <--<y, }
(k=12,...,ny).

¢(x)=0forx>z, orx<z,

w(x)=0forx>y, orx<y,.
Then B, U P, is finite and so can be rearranged to a finite partition

P=BUP ={x,<x, <---<x,}

which works for both step functions ¢ andy, witha, = ¢, for some j or a, =0; and

b, =d, for somek orb, =0. O

Theorem 5.1.4 If ¢ andy are step functions on[a,b]and k is any real number, then

1. (k@) is a step function onla,b],and J.(k¢)(x)dx = kj P(x)dx (homogeneous);

2. (p+w)is a step function on|a,b], andj(¢ + ) (x)dx = I¢(x)dx + Iw(x)dx
(additive);

3. I¢(x)dx < _[y/(x)dx if ¢ <wonla,b] (monotone);

4. Ifa < ¢ < b, the integrals jgf)(x)dx, [ px)dx exist, andj p)dx+ [ p(x)dx = [ p(x)dx

(additive on the domain).

Proof. Let ¢ and y be two arbitrary step functions on[a,b]:

Crr X, <x<Xx,, k=12,...,n

P(x) = {

d,, x=x,, k=0,1,...,n

c ', X, <X<X ', k=12,....,n
w(x) = k S k
d,, x=x,, k=0,1,...,n.
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The respective Riemann integrals of ¢ and yw on [a,b], are denoted by

Jo(ds =3 e, (v —xiyand [y = 3 e, (5 =)

b n
1. Clearly, k¢ is a step function on [a,b]. I(k¢)(x)dx=2kck(xk—xk7,)=
u k=1

ki ¢, (v =%, ) = k[ p(x)dx.

2. By Lemma 5.1.3, there exists a common partition P = {x, < x, <---<x,}for¢

andy, so that
¢ = Zaﬂ(x,-,l.x,) + D 0002,
j=1 i=0
and
v = Zb.iz(xj—l’x/‘) + Z l//(xi )I{Xl’} 2
j=1 i=0
with respective Riemann integrals
b n
Igb(x)dx = Zaj(xj -X;)
a J=1
and
b n
Iw(x)dx =2.b,(x; —x,).
a Jj=1

Thus

n

p+y = Zn:(aj +bj)l(x,»,],x,') +Z[¢('xi) ’H//(xi)]z{x‘%

and so ¢ + v is a step function on[a,b].

Also
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n

[@+y)0dr =3 (a, +b)(x, ~x,.)

=
= Z[a/' (x; =x, ) +b,(x; —=x,,)]
=
= Zaj (x; =x;)+ Zb‘/ (x; =x;)
= =

= j‘¢(x)dx + jl//(x)dx.

3. Suppose ¢ <, then by Lemma 5.1.3, we have
¢ = Zaj;{(x/-,l,x,) + Z¢(xi)/1/{x,}
j=1 i=0
and
V=200t 2V
j=1 i=0
with @, < b, and respective Riemann integrals
b 0
[#0odx=a,(x, = x,.)
a Jj=1
and

jz//(x)dx = ibj (x; =X,,):

b b
Since a, <b,, this implies [ (x)dx < [y (x)dx.

4. If cis one of the endpoints of subintervals between a and b, then we are done.

Assume c¢ is any point inside some subinterval (x, ,x, ,,)of [a,b]for some positive

integer n,,then we have:

I¢(x)dx =Z ¢ (x, —x, )+ ol (c— X, ),
a k=1
and

[900dr = e, (5 =, )+ €2, =0

k=n;+2



60

Adding them gives

j¢(x)dx + jl¢(x)dx = ]’.¢(x)dx.

We now define the Riemann integral for more general functions f on[a,b].
Since we will be approximating f from above and below by step functions it is

imperative that f be a bounded function on[a,b].

Definition 5.1.5 Let f be a bounded function on [a,b], say, a < f(x)< f, for

x €la,b].Let ¢,y denote arbitrary step functions on[a,b]such thatp < f <y.

b
The lower Riemann integral of f on[a,b], j f(x)dx, is denoted by

j‘f(x)dx = sup{j. d(x)dx | @ < f,pastep funclion}.

b
The upper Riemann integral of f onla,b], J f(x)dx,is denoted by

Tf(x)dx = inf{jl//(x)dx | f <,y astep function}.

We would hope that the approximation from “above” and “below” approach a
common value, to be called the Riemann integral of f on[a,b].
Definition 5.1.6 A bounded function f is Riemann integrable on|[a,b] whenever

I f(x)dx = T f(x)dx. Denote the common value by I f(x)dx; f f(x)dx =

i F(x)dx = T F(x)dx.
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We have defined what it means for a bounded function f on[a,b]to be

Riemann integrable; a common value for the lower and upper Riemann integrals. An

equivalent condition, that is frequently easier to apply, is given by Theorem 5.1.6.

Theorem 5.1.7 A bounded function f is Riemann integrable iff for every & > 0,we

have step functions pandy,¢ < f <y onla,b],so that

b

0< J'y/(x)dx - j #(x)dx = j [y (x) — p(x)]dx < &.

a

Proof. Assume the bounded function f is Riemann integrable on[a,b]and lete > 0 be

A AA A

given. From Definition 5.1.4, we have step functionsgandy,¢ < f <y, so that
b c b c b A b
! f)dv === | af(x)dx -5 < j pydx < | af(x)dx

< __!:bf(x)dx < j;l;/(x)dx < _ff(x)dx +§

[ &
= !f(x)dx + >
So
b oa b oA b .
J s = [y < [ fnde+7
AN b A b b .
—0< j y (x)dx — j pydx < | af(x)dx - j Px)dx +
JELE
22
=£&.
Thus

0< [y (x)dx - [ gx)dx = [[p (x) - p(x)]dx < &.

Conversely, lete > 0 be given and assume we have step functionsgand y,¢ < f <

on [a,b],so that

0 < [y (x)dx - [ gx)dx = [y (x) — p(0)Jdx < &.

But, for any bounded function f on[a,b],
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i(ﬁ(x)dx < _lif(x)dx < T[f(x)dx < jlgz/(x)dx.
So

0< T}(x)dx - i F(x)dx < }t//(x)dx - } F(x)dx

< [y (x)dx - [ px)dx

[y (x) = $(x)]dx

Il
M 2> ] —

A

We conclude that
_ b b
0< [f()dx— [ f(x)dx<e.
By the arbitrary nature of g,
b _ b b
[ f@adx= [ f(0dx=[ f(x)dx.

that is, f,is Riemann integrable on [a,b]. O
Theorem 5.1.8 Every continuous function f on[a,blis Riemann integrable.

Proof. Since f is a continuous function on a compact interval [a,b], so f is

b _b
bounded, j f(x)dx and '[ f(x)dx are well-defined and f is uniformly continuous

on[a,b].

Thus given & > 0,choose d > 0, so that

| f(0) = ()< bi
—da

whenever| x — y |< d,for all x, y €[a, b].

Take any partition P ={x, <x, <---<x,} of [a,b] so that |x, —x,_, |<O,

k=1,2,...,nand, thus,
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—L<f(x)—f(y)< ¢ forallx,y e (x, ,,x,),
b—a b—a
thatis, f(x)< f(y)+ 5 ¢ forallxe (x,_;,x; ). Therefore, sup f < f(y)+bi.
—a (Xp_1Xg) -

Similarly, f (y)—ﬁ< f(x) for all xe(x,,,x,). We conclude that

fO)-—5—< inf 1.
b—a

(xp15%)

It follows that sup f— inf f < 2¢
(Xp-15%g) (e-r>%e) b-a
Definey =sup f,¢ =inf f on(x, ,,x,)and f, otherwise.
b b 28
So Ig//(x)dx - Iqﬁ(x)dx < E(b —a)=2¢, and now apply Theorem 5.1.7 to

conclude f is Riemann integrable on[a,b]. O
Theorem 5.1.9 Every monotone function f on|a,b)is Riemann integrable.

Proof. Without loss of generality, assume f is nondecreasing. Then

f(a) < f(x) < f(b)forall x €[a,b] and f is bounded.

Form the partition a<a+b_a<a+2(b_aj<---<a+n(b_aj:b.
n n

Define d(x) = f(a + (k- 1)([) —4 D and v(x)= f(a + k(b — aD for
n

n

Xy =a+ (k- 1)(b;aj <x<a+ k( aj = x, and /', otherwise.
n

n

Hence
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Il//(x)dx—j¢(x)dx=(f(a+b_aj.b_a+f(a+2.b—a).b—a
a a n n n
+"'+f((l+(l’l—1)-b_aj-b_a+f(b).b_aj
n n n
_(f(a).b;a+f(a+b—a),b—a+ --+f(a+(n—1)- —aj
n n n n
< ()~ flap-=2.
By Theorem 5.1.7, fis Riemann integrable on[a,b]. -

The next result characterizes Riemann integrability.

Theorem 5.1.10 (Lebesgue, 1902) A bounded function on a closed bounded interval
is Riemann integrable iff the function is continuous almost everywhere. (The set of

discontinuities is limited to a set of Lebesgue measure zero.)

Proof. We will use Theorem 5.1.7: A bounded function f on [a,b] is Riemann
integrable iff we can approximate f from below and above by step functions whose
integrals can be made arbitrarily close to each other: If we have step
functions ¢ < f <y, the differencey — ¢ is a measure of how much f may vary on

any subinterval of a partition.

The standard means of measuring this variation of f on an interval J is by
calculatingsup{ f(x) | x € J N[a,b]} —inf{ f(x) | x € J N\ [a,b]}, traditionally denoted

by @,(J). This real number @,(J) ( f is bounded on[a,b]) is nonnegative. It is
natural then to measure the variation of f at a pointx, €[a,b],denoted by o (x,),

as®,(x,) =inf{w, (1) I any open interval containing x, }.

We would expect that for a function continuous atx,,® (x,) = 0.In fact, for a

bounded function f on[a,b], f is continuous at x, iffw . (x,) = 0.

Here is a rough sketch of the argument to establish this result.
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Suppose f'is continuous atx, €[a,b]and e > 0 is given. We have o > 0so that

forx e (x, —d,x, +8)N[a,bl,—¢ < f(x)— f(x,) < &, that is

S < f(x)+e,
and
sup{f(x)| x € (x, —I,x, + ) N[a,b]} < f(x,) +é&.
On the other hand,
S(x)—&< f(x),
and

inf{f(x)|xe(x, = 8,x, +0)N[a,b]} > f(x,)—&.
Subtracting givesw ,((x, — J,x, +0)) < 2¢.Thenw, (x,) < w,((x - J,x + J)) < 2¢ for

everye >0.Som,(x,) = 0.

Conversely, suppose @,(x,)=0 for some x, €[a,b] and let &> 0. Then
0=w,(x,)=inf{w (/)| ] any open interval containing x, } implies we have an open
interval /" containing x, so that0 < @ (1 ") < &.Since I"is open, choose 5 > 0so that
(x,=38,x,+58)cI". Then xe(x,—3,x,+0)N[a,b]= - < f(x)— f(x,)<é&, in

other words, 1 is continuous at x,, and the result is established.

At points x of discontinuity of f,®,(x)>0. This implies that the set of

discontinuities of f', say, D, may be written as

p=Jn,

n=1

where D, = {x €la,b]| o, (x) 2 l}
‘ n

We claim D, is a closed set in [a,b], or, equivalenly,
D: = {x €la,b]| o, (x) < l} is an open set in[a,b].Letx € D;. We will determine a
: n

6 > 0so that(x —d,x+ ) [a,b] < D;.
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Since @, (x) =inf{w, (/)| ] any open interval containing x} < %, it follows
thato, (x) < o, (IH< @, (x)+¢&,wheree > 0is arbitrary. Takee = % —w,(x)>0,we

. * .« . * 1 . * . .
have an open interval /' containing x so that @, (/ ) <—.Since/ is open, there exists
‘ n

ad >0such that (x—3,x+0)N[a,b]c I N[a,b]. We are done if we can show
(x—0,x+06)N[a,b]< D;.

Let ze(x—0,x+08)[a,b], then a)f(z)sa)f(()c—5,)c+§))sa)f(l*)<l
. . . n

impliesz € D; . Thus D, is a closed set in[a,b].

The technical aspect of the argument begins: First suppose f is continuous a.e.
on[a,b], that is, the set of discontinuities of f, D, has measure zero, and let| f |< B

on [a,b]. We want to show f is Riemann integrable on [a,b]. Since

D, = {x €la,b]|w,(x) 2 l} is a subset of D,D, has measure zero.Thus we have
n

D, c UI «»1, open intervals, kZ_;l ()< %.Bu‘[ D, is a closed and bounded subset of

k=1
[a,b], hence compact. It follows that we have a finite subcover of D, by the open

intervals, /,, that is,

D, c Ulk ,1, open intervals.

i=1
Then the set [a,b]((/, UZ, U---UI, ) is a finite union of closed intervals
Ji»J,y,...,J, . Thatis

la,b]=J,UJ,U--UJ, UL, UL, U--UI, .

Recall that all points of D, are in I U[kZU"'UIk . Thus a)/(x)<l on
" n

J,UJ,U---UJ,. This meansa)f(x)<lfor each x € J,,and so we have an open
n
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. - 1 : .
interval containing /, so thatw ,(/,) <—.But then the collection{/_}is an open cover
n

of the closed, bounded, and hence compact set, J,. A finite subcover must

coverJ,. We have a partition of J,, and the “sup of /' ”-“inf of ' over any of the

. . o 1 .
subintervals of this partition is less than—. Do this for eachJ,,i =1,2,...,L.We have a
n

finite collection of subintervals whose union isJ, UJ, U---UJ,,and on any one of

these subintervals, sayJ ",
* * . * 1
o, (J)=sup{f(x)|xeJ N[a,bl}—inf{f(x)|xeJ N[a,b]} < —.
Now define step functions ¢, in the obvious way:
¢ = inf f on the subintervals of J,,J,,...,J; andlkl Aoty s

w = sup f on the subintervals of J,J,,....J and [, , [} ,-+-, 1, .

Then

Q C—

[ (x)—@(x)]dx < 1 ZL: [(subintervals of J,) + ZBi I(1, )
n s

n=1

<Lp—ay+28 £
n 4B
<&
for n sufficiently large.

By Theorem 5.1.7, f'is Riemann integrable on[a, b].

Next suppose f is Riemann integrable on[a,b]. We want to show the bounded

function f is continuous a.e. on[a,b].Since the set of discontinuities of f, D, is given

by D = UDn = U{x €la,b]lw,(x) 2 %}, if we can show u(D,) =0, we would be

n=1 n=1
done, since a countable union of sets of measure zero is a set of measue zero. Fix an

n,say, N, and consider the set

D, = {x €la,b]|w,(x) 2 %},Withé‘ > 0.
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By asumption, f is Riemann integrable on[a, ], so we have step functions¢ < f <y
T &
with I[l//(x) —@(x)]dx < N Leta=x, <x <---<x,=b be a partition associated

with ¢ and w, and split the collection {(x,,x,),...,(x, ,,x,)} into two
subcollections C,and C, , as follows: If(x, ,,x, )1 D, # ¢, put it inC,. Otherwise, put

it in C,. Then every point of D is in C, or a member of the set{a,x,,x,,...,x, ,,b}.So

Jlv -gondr=3+3 <+

G G

Forz, some point of D, is in each subinterval, i.e., each subinterval of C,
Cl

contains a pointx withw ,(x) 2 % But theny —¢ > %on this subinterval. As a result,

% > z 2% Z (lengths of subintervals that contain points of D),
G

soZ(xk —x,_,) < &.The intervals of C|, along with the finite set{a,x,,x,,...,x, ,b}
G

contain all points of D,,.So u(D,, ) < &, this completes the proof. i

We now show that the integral properties that hold for step functions

(Theorem 5.1.4) remain valid for Riemann integrable functions.

Theorem 5.1.11 If bounded functions f and g are Riemann integrable on [a,b], and

k is any real number, then

1. (kf)is Riemann integrable on[a,b),and

J(kf )(x)dx = kj f(x)dx (homogeneous);

2. (f + g)is Riemann integrable on[a,b),and

I(f + g)(x)dx = If(x)dx + Ig(x)dx (additive);
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b b
3. If(x)dx < Ig(x)dx if f<gonla,b] (monotone);
4. Ifa < c < b, f is Riemann integrable on[a,c]and[c,b], and
b c b
j F(x)dx = j F(x)dx + j F(x)dx (additive on the domain);
5. Ifa £ f(x) < fonla,b],then

ab—a) < jf(x)dx <pBb-a) (mean value).

Proof.

1.k =0is obvious. Assumek >0 and f is Riemann integrable on[a,b].Lete >0 be

given. By Theorem 5.1.7, we have step functions ¢ and s on[a,b]so that ¢ < f <y,

j¢(x)dx < j F(x)dx < j w(x)dx,
and

jjt//(x)dx - :[glﬁ(x)dx < %

Since [ (kg)(x)dx = k | ¢(x)dx and [ (ky )(x)dx = k [ (x)dx by Theorem 5.1.4,

a

[ k)01 = ks
< kj‘ f(x)dx
< kj‘y/(x)dx

= [ (ey ) ()l
and
[ ey )y = [ (e (x)ex < .

But,



k¢ <kf <ky
on[a,b]. That is, we have step functions (k¢), (ky) so that

[ ey (oydx = [ (e (x)x < .

By Theorem 5.1.7, (kf)is Riemann integrable on[a,b].
Thus

i(k¢)(X)dx < j.(kf )(x)dx < ]b.(k ) (x)dx.
Previously we have a a a
j(k¢)(x)dx < ki f(x)dx < jl(kl//)(x)dx.
N g g g
- f (ky)(x)dx < —kjl f(x)dx < —i (k$)(x)dx.

Now

b b

J k)~ [ (ky) e < [ (fYx)dx = k[ f ()dx < [ (k) )~

a a

= —& <~ [(ky)(x)dx - [ (k)(x)dx
< j(kf)(x)dx " j F(x)dx
< [(kp)(x)dx = [ (kgp)(x)dx < &

= & < [ )\(x)dx k[ f(x)dx < &

b

= 0<|[ (e Yx)dx—k [ f(x)x <.

a

Since ¢ > 0 is arbitrary,

[ G ))x — k[ £ (x)dx = 0and so [ (kf )(x)dx = k[ f(x)dx.

b

[ kg)(x)ax

a

70



Assume k < 0and f is Riemann integrable on[a,b].Let& >0 be given.

Theorem 5.1.7, we have step functions ¢ and i on[a,b]so that ¢ < f <y,

j¢(x)dx < jf(x)dx < jil//(x)dx,
and

:[l//(x)dx - ! d(x)dx < —ik
Since [ (kg)(x)dx = k [ ¢(x)dx and [ (ky )(x)dx = k [ (x)dix by Theorem 5.1.4,

I(kl// )(x)dx = kjl// (x)dx
< ki [ (x)dx
< k} B(x)dx
- s
and a

[ (k) () = [ (e )(x)elx < .

But,
kwy <kf <k¢
on[a,b]. That is, we have step functions (ky ), (k¢) so that

[ (kg)(xyx = [ ey ) ()l < .

By Theorem 5.1.7, (kf)is Riemann integrable on[a,b].
Thus

J tky) ) < [ (k) < [ (k).
Previously we have

[y )oydx < k[ f(x)ax < [ (eg)(x)dx.

71

By
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So
- j (k$)(x)dx < —kj F(x)dx < —j(ky/)(x)dx.
Now

J Ry )x = [ (k) < [ (kF Yx)dx =k [ £ ()l < [ (k) = [ (k)

b b

= —& < [(kg)(x)dx = [ (ky)(x)dlx
< i(kf)(x)dx - k.b[ f(x)dx
< f(k¢)(x)dx - j(kt,y)(x)dx <&
=< j‘(kf)(x)dx - ki fx)dx <€
=0< j(kf)(x)dx - k]j f(x)dx| < &.
Since & > 0 is arbitrary, a a

j:(kf )(x)dx — kji f(x)dx=0and soi(kf )(x)dx = kj‘ f(x)dx.

2. By Theorem 5.1.7, we have
b b b
b, < f < and [ g, (¥)dx < [ f(x)dx < [y (x)dbx,
and
b b b
4, <g <y, and [, (x)dx < [g(x)dx < [y, (x)ax.

Adding, ¢, +¢, < f+g <y, +y,, by Theorem 5.1.4 yields
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j¢> , (0)dx + jqﬁg (x)dx = }(¢ -+, )(x)dx
< [+ 9o
< Ib(f + )(x)dx

< [, +v, )@

[ — > 8 —

W, (x)dx + J.l// ¢ (X)dx.

b
Apply Theorem 5.1.7 again yields existence of f( f+g)(x)dx, and it along with

Jf(x)dx + jg(x)dx, lies between I ¢, (x)dx + J¢g (x)dx andJ't//f (x)dx + IWg (x)dx.

j f(x)dx = j f(x)dx = sup{ji d(x)dx| ¢ < f,¢astep function}

a

< sup{j¢(x)dx | < g,dastep function},f <g

g(x)dx

a

Il
‘ — >

g(x)dx.

EUE—

4. Leta < ¢ < b.Since f is Riemann integrable on[a,b], we have step functions ¢,/, a

common partition includingc, so that¢g < f <y on[a,b]and
b b
[y (ode— [ gdx < &
by Theorem 5.1.7. But
[pCodx< [ f(x)dx< T S()dx < [y (x)dx

and
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0< jw(x)dx - Jc.¢(x)dx

(¥ = P)(x)dx

<

(¥ — P)(x)dx

M Ve &

A

by Theorem 5.1.4 and soj f(x)dx is Riemann integrable on[a,c]by Theorem 5.1.7.
On the other hand

b b _b b

[peodx< [ fdx< [ f(x)dx < [y (x)dx
and

0< j.l//(x)dx - jgb(x)dx

(v — @) (x)dx

<

(¥ — ) (x)dx

M e, O —

A

b
by Theorem 5.1.4 and soj f(x)dx is Riemann integrable on[c¢,b]by Theorem 5.1.7.

So we have
j¢(x)dx < j f(x)dx < jt//(x)dx
and a a a
j¢(x)dx < f f(x)dx < jit//(x)dx.
Adding them gives | c L

j‘¢(x)dx < jf(x)dx + j.f(x)dx < j‘//(x)dx-

Since f is Riemann integrable on[a, 5], therefore
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i¢(x)dx < i f(x)dx < jw(x)dx.
This implies a a a
- jit//(x)dx < —j f(x)dx < —Ij H(x)dx
and so

j’.¢(x)dx - jlt//(x)dx < jf(x)dx + jlf(x)dx - jlf(x)dx < ]).w(x)dx - j‘¢(x)dx

= -—¢< —ﬁ' w(x)dx — ji¢(x)dx}

a a

<

SEdx+ [ fx)de— [ £ (x)x
<

w(x)dx — I d(x)dx < &

=0< <é.

jf(x)dx + if(x)dx - if(x)dx

By the arbitrary nature of ¢ > 0,

if(x)dx = jf(x)dx + _lff(x)dx,

5. The constant functions & and f are step functions satisfying a < f < £ on [a,b].

From part 3,
a(b—a)=[adx < [ f(x)dx < [ pdx = p(b—a)
and so

a(b-a)< jif(x)dx < B(b-a).

The uniform limit of a sequence of Riemann integrable functions is Riemann

integrable and the integral of the limit is the limit of the integral.
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Theorem 5.1.12 Suppose {f,} is a sequence of Riemann integrable functions on

[a,b].]f}l{irgfk = f(unif)onla,b], then

1. (}(13; f:)is Riemann integrable on[a,b];

2. 1im [ f, (0)dx = [ £ ()dx = [ (lim £ )(@)db.

Proof.

1. Let &£ >0. From uniform convergence of {f,} on [a,b], we have a positive

integer K such that

Si(x) - <f)<fio)+

4(b— a) 4(b— a)
for allx € [a,b],k > K.So fis bounded on[a,b], and since f, is Riemann integrable

on [a,b], there exists step functions ¢, and y,,4, < f, <y, on [a,b], and

[, (0 - g, (o < g for allk > K.

But
G e e A e
</
fk(x)+4(b_ )
£
Sy (x)+ Mb—a)
on[a,b], for allk > K.
. . &£ &
This shows there are step functions ¢, —m and y, +4(b——a)’

bracketing 1, and

b

J‘HW]((X)_FﬁJ [¢k( )— Ab—a) ji| I[Wk (x)— ¢k(x)]dx+ <eg,

a

for allk > K.So f is Riemann integrable on|[a,b].
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S < )< S0+

£
2. Integrate f, (x)— 45 —a) 4(b-a)

, We obtain
b c b b e
! filode = < j f(x)dx < !fk ()dr+,
for allk > K, that is,

&
S_a
4

[ e[ £, (e

for allk > K, and this completes the proof. i

Next two theorems are the Fundamental Theorem of Calculus.

Theorem 5.1.13 (Fundamental Theorem of Calculus for Riemann Integral Part

1) Let f be a bounded function onla,b).If f is Riemann integrable on|[a,b] and
F(x)zj.f(t)dt, then F is continuous on[a,b]. In addtition, if f is continuous at

x, € (a,b), then F is differentiable at x, € (a,b) and F (x,) = f(x,).

Proof. Firstly, we show F is continuous on [a,b], or equivalently,

lim[F'(x) - F(x,)] =0 for x, € (a,b).

Since f is bounded on [a,b], — B < f(t) < B, a <t <b. Integrate f since f is

Riemann integrable on [a,b], by assumption, and so
[Byat < f@)dt<[Bdt, a<x,<x<b,

that s,
-B(x—x))SF(x)-F(x,))<B(x—x,), a<x,<x<b.
This means

lim[F(x) — F(x,)] = 0.

On the other hand,
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]O(—B)dt < j f(tydt < TBdt, a<x<x,<b,

X X

that s,
—B(xy—x)<F(x))-F(x)<B(x,—x), a<x<x,<b.
This means
lim[F(x) - F(x,)]=0.
So
lim[F (x) - F(x,)] =0 for x, € (a,b).
Secondly, we show F is differentiable at x, € (a,b) and F'(x,) = f(x,).
Equivalently,

X—>Xg

X=X,

lim{M - f(xo)} =0, x,e(ab).

Since we have proved f is continuous at x, € (a,b), thus given ¢ > 0, there

exists & > 0so that

fx)—e<fO)<f(x))+e, te(x,—0,x,+05)[a,b].

Theorem 5.1.8 states that every continuous function is Riemann integrable on

a closed and bounded interval. Thus, we can integrate

[Lr G = et < [ £(0)de < [Lf (xy) + e,

for x €[x,,x, +0)N[a,b].
That is,
[f(xg) = &](x = x,) < F(x) = F(x,) <[f (%) + £](x = x,),
for x €[x,,x, +0)N[a,b].
Therefore

L F0-F(x)
X=X,

—f(x)<e,

for x € (x,,x, +0)[a,b].
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Hence

m{n@—n%>

X—>Xg

_f(xo)} =0.

Xo

On the other hand,
JLrGo)=elde < [ fdr < [Lf () + e,

for x e (x, - 5,x,]N[a,b].
That is,
[/ (x0) = €](xy = x) < F(x0) = F(x) <[ () + £1(x, = %),
for x € (x, —,x,]N[a,b].
Therefore

< Fn)-F()

—f(xO)Sg,

Xo
for x e (x, - J,x,)N[a,b].

Hence

- {w f(xo)} o

X=X _XO
This implies

lim{w - f(xo)} =0, x,e€(ab).

X*))CO x f— xo

= hmM_hmf(xo) =0
X=X X=X, XX

- hmw = lim f(x,)
X=Xy X — xo X=X,

ij(xo):f(xo)-

Next is the Fundamental Theorem of Calculus we often use for evaluating

integrals.
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Theorem 5.1.14 (Fundamental Theorem of Calculus for Riemann Integral Part

2) If f is continuous on[a,b], differentiable on[a,b), and if the derivative, f is

Riemann integrable on [a,b], then If'(x)dx = f(b)- f(a).

Proof. By assumption, f is Riemann integrable on[a,b], so there are step functions
b b b b b
$< /" <y on[a,bwith [$(x)dx < [ £ (x)dx < [y (x)dx,and [y (x)dx - [ p(x)dx < & £

or any ¢ > 0.

Take the common partition formed by ¢ andy, say P = {a,x,,x,,...,x, ,,b}.

SUPPOSE = 36171,y + D070 80V =D d 21y + W5

i = p= =
Since

Sf(b)~f(a)= 2[f(x,~) = f(x)]
=3 L@, ma<E<x,
by the Mean Value Theorem, thusc, < f < d on(x, —x, ,),and so
Z:ci(xi -x,_ )< Zf'(fi)(xi -x,_ )< gdl.(xi -X )
= ik,(x, -x, )< f(b)-f(a)< i‘,d;(xi -X )

that s,

[#rdr< 1)~ f(a) < [y )dx.

So f(b)— f(a)and [ f'(x)dxlie between [ ¢(x)dxand [y (x)dx.
Thus
f(b)—f(a)—jf'(x)dx <e.

By the nature of arbitrary ¢ > 0,
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[ £ (dx = £(b) - f(a).

This concludes our treatment of the Riemann integral.

5.2 Lebesgue Integral for Bounded Functions on Lebesgue Measurable Sets

of Finite Measure

In this section, the Lebesgue integral for bounded functions f on a set £ of finite

Lebesgue measure is developed. The treatment parallels that of the Riemann integral,

replacing step functions with simple functions.

Definition 5.2.1 Suppose ¢ is a simple function defined on a measurable set E, that is,

6= cozs (1),

k=1

with UEk = E, E, mutually disjoint, u(E) < o,c, real.

k=1

The Lebesgue integral of simple function ¢ on a measurable set E, L @, is defined as

J .= Y conEy)

Proposition 5.2.2 The Lebesgue integral of a simple function defined on a Lebesgue

measurable set of finite measure is independent of the representation.

Proof. Suppose E =LHJEI. :LmJFj. Note that E =OLMJ(E1. NF)) =UU(E,. NF)).
j=1

i-1 i=1 j=1 Jj=1i=1

Now suppose ¢ = ZCI. X, = Zd./ Xr, ,{E,;} and {F;} mutually disjoint collection of
J=1

i=1

Lebesgue measurable sets with z(E) < co. We want to show
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Y GH(E) =Y d u(F).
i=1 Jj=1
Since

£=Us =Ur,
i=1 j=1

> cu(E) = Z{CZ/J(E N F,)}

=3 u(ENF)

i=1 j=I

:iidfﬂ(Ei NF)

j=1i=1

- [d]z": H(ENF, )}

3

J

= : ldjﬂ(F}):

j=

since if E, F.#4, then there existsx € E, F, such that
P(x) = CiXeg, =6 = deFJ =d.

Our argument is complete.

Theorem 5.2.3 If ¢, are simple functions defined on a set £ with finite measure,

and & is any real number, then

1. (k@) is a simple function on E, and IE (ko) = kjE @ (homogeneous),
2. (¢ +w)is a simple function on E, andJ.E (p+w)= IE o+ IEW (additive);

3. IE¢ < J.E;// if¢<wonkE (monotone);
4. IfE and E, are disjoint measurable subsets of E withE = E, UE,, the

integrals L w and IE v exist, and IEt// = jE W+ IE 7% (additive on the domain).
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i=1 j=1 i=l

Proof. Suppose ¢ = Zc,.;(Ei,t// =Zdj;(Fj, where E =UE,. =UFJ.,{E,.} and {F } are
j=1

mutually disjoint collections of measurable subsets of .
L[ (k) =D (ke gy, =k Y ez = k|, 6.
i=1 i=1

2. Let 4, = E; (1 F,. The nonempty sets in the collections of 4;,1 <i<n,1 < j <m,are

mutually disjoint measurable sets whose union is £. Then

G+ =Y +d)z
and
[[@+1)=2D( +d)u4)

i=1 j=1

m n

=SB N )+ Y 3 d uE, N F)

i=1 j=1 j=1 i=l

ziciiﬂ(E[ nFj)""idji;u(Ei ﬂFj)

i=l =l

=Y CuE)+ S du(F)

:IE¢+IEW'

3. Ifg <y, theny — ¢ is a nonnegative simple function on £, whose integral will be

nonnegative by the definition of the integral, and then from parts 1 and 2, we have
0<f-p=[v+]cH=[y-]¢

and so

o<l

4. Observe that E=E,UE,,E,NE, =¢.
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IEV/ :Zm:dj/u(Fj)

S u((F, NEYU(F, N E,))

m

dj;u(Fj nEl)+Zdj/u(Fj NE,).
Jj=1 J=1

But {F; N E,},{F, N E,} are collections of mutually disjoint measurable subsets

of E|, E, ,respectively, with

E, =U(Fj NE),E, =LmJ(Fj (N E,),and since

m
Jj=1

J=1

the integral is independent of representation, we have
[y =2d,uF,NE[ v =3d uF NE,),
J=l ’ =]

and so

IEW - JEIW +J‘E2 v

o
Now, we extend the definition of the Lebesgue integral from simple functions

to bounded functions.

Definition 5.2.4 Suppose f is a bounded function defined on a measurable set E with
finite measure; say a < f < fon E,u(E) <. Let ¢ and y denote simple functions

such thatp < f <wonkE.

The lower Lebesgue integral of f on E, I . f,is given by

LEfZSUPUEW¢Sf,¢asimplefunction}

The upper Lebesgue integral of f on E, j. - f,is given by

TEf = inf{JEl// | f <w,w asimple function}
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We would hope that the approximation from “above” and “below” approach a

common value, to be called the Lebesgue integral of f on a measurable set £ with
finite measure.
Definition 5.2.5 4 bounded function f on a measurable set E with finite measure is

Lebesgue integrable on E if j . f= T » f-Denote the common value by L f.

The next theorem shows Riemann integrability implies Lebesgue integrability.

Theorem 5.2.6 Let f be a bounded function on [a,b].If f is Riemann integrable on

b
[a,b], then f is Lebesgue integrable on|a,b], andj.f(x)dx =J; z]f'

Proof.
I f(x)dx = sup{j d(x)dx | @ < f, ¢ astep function}

= sup{J‘[a‘b]gé |p< f,¢astep function}
=sup J.[a,b]¢ | < f,¢asimple function}
B I_[a,b] /

< Junt

= inf{J‘[a’b]t// | f <w,w asimple function}

=inf L b]z//|fSt//,t//astep function}

= inf{ jt//(x)dx | f <w,w astep function}
= [ f(x)x.

b _b
Since f'is Riemann integrable, I f(x)dx = I f(x)dx

a a

This implies
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LMMfZTMMﬁ

and

Iﬂ@ﬁ:L”ﬁ

Next, we have Theorem 5.2.7 on the criteria for Lebesgue integrability.

Theorem 5.2.7 Let f be a bounded function on a set E with finite measure. [ is
Lebesgue integrable on E iff for every &>0, there exists simple

Sfunctions g andy,¢ < f <w on E such that

o<y Lo=fw-oee

Proof. Suppose the bounded function f is Lebesgue integrable on the measurable set
E, u(E) <o, and lete > 0.By the definition of infimum and supremum, we have

simple functionsg andy,¢ < f < on E such that
Jor=5=1 =5 <=l s
STEfS.[EW<TEf+§:.[Ef+§'
Thus
jE¢SIEW<TEf+§'

Therefore
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T g
IE¢SIEW< .[Ef+5
T &£
:>OSJ‘EV/_J‘5¢< J-Ef_J‘E¢+5
&£
=[Sl
& ¢
<—+—
2 2
=&
Hence
OSIEW_IE¢:IE(W_¢)<8'
Conversely, lete > 0be given with simple functions ¢ and w,¢ < f <y on
E such that

0<fy-fo=fw-9<e

By the definition of infimum and supremum,
Joo<l s<ferslv
Hence
o[ =] refw=] r<fv-[o=[w-o<e

and the conclusion follows from the arbitrary nature of ¢ > 0. O

The next theorem illustrates the characterization of Lebesgue integrability in

terms of Lebesgue measurable functions.

Theorem 5.2.8 Let f be a bounded function on E with finite measure. Then f is

Lebesgue integrable on E iff [ is Lebesgue measurable on E.

Proof. Let| f|< M on E and assume f is measurable on E. We need to show f is
Lebesgue integrable on £ by constructing simple functionsgandy,¢ < f <y on E so

that
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OSIE(W—¢)<£.

Iﬁug={ery@iU4<f@gs5M};nsksWTMnE=[JEwammma
n n

k=-n

lly disjoint measurable sets. Define ¢, :

M M I
¢:7Z(k—1))(1;A andl//:72k;55‘.
k=—n

k=-—n
Clearlyg < f <w.
Since
M n
V= ¢ = Z Zﬁk
Ly —
and so

0< [ w-h="" Y u(E) =2 u(E) <z,

for sufficiently large n.

Hence f'is Lebesgue integrable on £ by Theorem 5.2.7.

Now, assume f is Lebesgue integrable and bounded on set E with finite

measure. We need to show f'is a Lebesgue measurable function on £.

Since f is bounded and Lebesgue integrable on set E, there exists simple

functions ¢,and i/, so thatg, < f <y onE, L @, < J.E f< L v,,and

I(wn—%)<l,n=Lzaun
E n
Define two measurable functions (Theorem 4.2.1):

¢* :Sup{¢la¢25"'} and l//* :inf{l/llal/lza"‘}'

Clearly ¢ <¢ ' <f<wy <y, on E for all n>1. We need to

show¢” =y almost everywhere on E and thus conclude f =y almost everywhere

on £, and by Theorem 4.1.5, f will be measurable on £. Consider
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eEly' - @>0= {erw*(x)—qé*(x)ﬁ}

positive integer m

c U {erwn(x)—cbn(x)ﬁ}

positive integer m
. * * 1
for alln >1. We are done if we show {x eEly (x)—¢ (x)> —} has measure zero.
m

This set is measurable becausew  — ¢’ is a measurable function on E.

By Theorem 5.2.3, we can split £ into two disjoint measurable subsets £, and

E,with
E, ={er|wn(x>—¢n<x>>i} and E, ={er|wn<x)—¢n<x)si}.
m m
Thus

%>IE(% ~¢)=[, w. -9+ [, .~ 4)
= IE W, 4,

P
= chjﬂ(Eu)
=
r 1 -
> — )
;mﬂ( ]])

zl:u(El)
m

=iu[{er|wn<x)—¢n(x> >l}}
m m

)4
since on E.y,—¢, :ch X » where E,, mutually disjoint measurable sets,
j=1

P
1
E, ZUEU and ¢; >—.
j=1 m
Hence

y({xeE|z//,,(x)—¢n(x)>i}J<ﬂforalln >1,
m n

ie., y({er|1//n(x)—¢n(x)>l}j:0 and so {er|1//*(x)—¢*(x)>l} has
m m

measure zero since a countable union of sets of measure zero is a measurable set of



90

measure zero. This implies¢” =y almost everywhere on E and thus f =y almost

everywhere on £.By Theorem 4.1.5, f'is Lebesgue measurable on E. i

The Lebesgue integral has the properties of linearity and monoticity.

Theorem 5.2.9 If the bounded functions f and g are Lebesgue measurable on
E, u(E) <o, andk is any real number, then f and g are Lebesgue integrable on E

and

1. (kf)is Lebesgue integrable on E, andIE (k) = kIE f (homogeneous);

2. (f + g)is Lebesgue integrable on E, andL (f+2)= IEf + .Lg (additive);

3. Lf < IEgiff <gonE  (monotone);

4. IfE,and E, are disjoint measurable subsets of EwithE = E, UE,, f is Lebesgue

integrable on E and E , andIEf = J.E f+ IE f (additive on the domain);

Slfa<f<fonE, thenau(E)< Lf < pu(k) (mean value).

Proof.

1. k> 0is obvious. Assume k > 0.Since f is Lebesgue integrable on E, there exists

simple functions ¢ andy so thatg < f < W,IE¢ < L f< jEy/ and L (v —@)< %
But then
k< kf < ky/,kquﬁs kjEf < kjEy/ and kIE(w—¢) = IE(kw—k¢) <e.
The last inequality implies f is Lebesgue integrable. Thus
o= Lo <] kv =il .
Hence
ot <[4, <kl -0
= o<t o)k] ok 4l <kl ko=t -] o)<e
- UEkf—kjE f‘ <e.
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Since £ > 0 is arbitrary, _[Ekf —k.[Ef =0and sojEkf = k.[Ef.

Assume k£ < 0. Since f is Lebesgue integrable on E, there exists simple

functions ¢ andy so that¢§f§W’JE¢SJEf§_[EW andIE((//—¢)<_ik.
But then
kz//slcfskgzﬁ,kjEy/SkjEfSkngzﬁ and kIE(¢—w)=jE(k¢—kw)<g.

The last inequality implies &f is Lebesgue integrable. Thus
[ty =il <Larsi] o= oo
Hence
Ky —kf o< =kl 1<k o=k[v
= e <kl 9= w)=k[y ko< [ ar k[ r<if o=kl y =kl o-[v)<e
=|[ 4 k[, /<.

Since ¢ > 0 is arbitrary, IElgf—kIEf:Oand so_fEkf:kIEf.

2. fis Lebesgue integrable implies g, < f <v/ [ 4, <[ f<[ v, with
&
v, —2)<
g is Lebesgue integrable implies¢, < g <y, ,IE 9, < JEg < JEt//g with

[(w.~8)<3.

Adding, we obtain ¢, +¢, < f+g <y, +v,.[ (4, +d)<[ f+[ e<[ W, +v,)
with L[(l// sty )— (9, +¢,)]<e The last inequality implies f+g is Lebesgue
integrable on E and

[@+o)<| (F+r<] W, +v,).
Thus IEf + IE gand IE (f + g) lie between J.E (¢, +¢,)and IE (¥, +y,)andso

[(+o=]r+] e

by the arbitrary nature of e > 0.
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3. By parts 1 and 2, IEg—fEfzj.E(g—f). Since g—f >0, let ¢=0. Then

0=[¢<[ (g- /).

4. Since f is Lebesgue integrable on E, there exists simple functions

¢ < f <wonE so that

Joo<l 1<y
ande(y/—¢)<5.

Since JE¢ = jE o+ jE ¢ and Lt// = IE W+ IE v (Theorem 5.2.3), we conclude

p< f<yonk, andIE (1//—¢)<g,and¢gf£y/onEzandIE (w — @) < e.Hence f is

Lebesgue integrable on £, and £, and

Joo=l vl o<l el <l vl v=lv

_[E f+ jE f and IE f lie between IE¢ and L . Therefore jE f= IE f+ IE f by

the arbitrary nature of ¢ > 0.
5. From part 3, aqu(E) = IEa < Lf < IEﬂ = Pu(E). o

We conclude this section with the next theorem.

Theorem 5.2.10 If f is a bounded, Lebesgue integrable function on a set E of finite

measure, and g is a bounded function on E such that g = f almost everywhere

on E, then g is Lebesgue integrable on E and L g= IE f.

Proof. The function f is Lebesgue measurable by Theorem 5.2.8 and application of

Theorem 4.1.5 yields measurability for g, and thus integrability for g (Theorem 5.2.8).
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Let A={x| f(x)# g(x)}.The set A has measure zero, thus 4is Lebesgue measurable
by Theorem 3.3.2, and so E () A°is measurable by Lemma 3.3.4and
J-Ef - J‘EﬁAC f + -[Af
- J‘EﬂA( f + O
- EﬂA‘g

= g+0

ENA

= [, e+[ ¢

ENA

=[e

by Theorem 5.2.9. m

5.3 Lebesgue Integral for Nonnegative Measurable Functions

We begin this section by defining nonnegative simple function on R and the
Lebesgue integral of a nonnegative simple function ¢ defined on a Lebesgue

measurable set E.

Definition 5.3.1 Let ¢ be a nonnegative simple function on R, that is,

d(x)= ch X i, (x),where E, are mutually disjoint Lebesgue measurable subsets of R,
k=1

n
R= UEk ,and c, are nonnegative real numbers.
k=1

Definition 5.3.2 The Lebesgue integral of a nonnegative simple function ¢, on a

Lebesgue measurable set E, written jE @, is defined by
[[#=2 cnENE),
k=1

where ¢ = ch;(Ek , E, mutually disjoint, R= UEk ,¢;, 20,

k=1 k=1
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Theorem 5.3.3 The Lebesgue integral of a nonnegative simple function defined on a

Lebesgue measurable set is independent of representation.

Proof. Suppose
¢=ch15k,ck >0
and
¢=Zm;dj;(ﬂ,dj20
=
with
R= ' E, =LmJF.,

J

=

J=

E, and F;mutually disjoint Lebesgue measurable subsets of R. We need to show

S ENE) =Y d u(ENE)

Note that
E, =E, H(OFJ:U(E/{ ﬂF,)

and
E=Eﬂ(0EkJ=O(Ekﬂﬂ)-
k=1

k=1

Hence
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i@mmnm=iq%éﬂ@k&ﬂﬂﬂJ
=iq{0wﬂ@ﬂﬂﬂ

J=1

=36, S WENENF)

=1 j=l

=

S d uENENE)

k=1 j=I

I
M=

du(ENENF)

k=1

~.
N

I
M=

4,3 w(ENENE)

k=

~.
N

Il

<
N

4ﬂfYEﬂEﬁwwj

o)

d,u(ENF,)

I
NgE

~.
IIN

M=

~.
I

since, for ENE,NF,#¢,c,=c,x, =¢p=d,x, =d;, and if ENE,NF,=4¢, no

contribution because u(¢) = 0. o

Theorem 5.3.4 [f¢,y are nonnegative simple functions on R, ifE is any Lebesgue

measurable subset of R, and k is any nonnegative real number, then

1. (k@) is a nonnegative simple function on E, and
j (k¢) = kj @ (homogeneous);
E E
2. (¢ +w)is a nonnegative simple function on E, and
IE (p+w)= IE o+ J.E 7% (additive);
3. .L¢ < IEW if0<¢g<wonkE (monotone);
4. IfE, and E, are disjoint Lebesgue measurable subsets of E withE = E, U E,, the

integrals Lw = L W+ L 7 (additive on the domain,).
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Proof.

1. Suppose ¢ = ZCI%E, ,¢; 20.Thenk¢ = ch,.;(E‘_ and

J, )= > (ke pu(ENE,)
= kY cuENE)
- k.[E 2

2. Letgp= ZCk;(Ek andy = Zdj;(F with0 <¢,,d,.The idea is to form the n - m sets:
/= = !

ENF,ENF,,...ENF,
E,NF,E,NF,....E,NF,
E NF,E NF,,....,E NF,.
IfE,NF; #¢, define g+ as ¢, +d,. The nonempty E, (1 F; are mutually disjoint

Lebesgue measurable subsets of R,

R= UU(Ek NF),
k=1 j=1
and
Pty = ZZ(Ck + d‘j)ZE,{ﬂF,-'
k=1 j=1
Hence

[[@+)=3 (e, +d )u(E,NF,NE)
k=1 j=1
=Y e Y HENENE)+Yd,S w(E,NF,NE)
=3 B, N E)+ Y d u(F, N E)

ZIE¢+IEW'
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3. Suppose ¢ = ZCk X, » £, mutually disjoint, andy = Zd e F mutually disjoint,

k=1 j=1

where

Since 0 < ¢ <y,0<¢, <d;on nonempty E, (1 F,and thus
IE¢:chﬂ(EknE):zck u(E, ﬂFj NE)
k=1 1

k=l j=

<

4,3 wENF,NE)

1

J

I
M

d;u(F;NE)

~.
N

v.

Il
h',j—a

IE,,,:édjy(FjﬂE)
:idju(Fj N(E UE,)
2201_/[#(1?/ NE)+u(F,NE,))]
zidjy(pj ﬂEl)+Zm;djy(Fj NE,)

:.[Ely/+.[52¥/'

Next, we define the Lebesgue integral of a nonnegative measurable function.

We give two commonly used definitions and show their equivalence.

Definition 5.3.5 If f is a nonnegative measurable function, defined on a Lebesgue

measurable set E, the Lebesgue integral of f over E, .[5 f,is given by

Lf = sup{jE¢ | ¢ < f,¢ nonnegative and simple}
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Definition 5.3.6 If f is a nonnegative measurable function, defined on a Lebesgue
measurable set E,and ¢, is a nonnegative monotone sequence of simple functions,

0<¢, 6 <¢, onE, with
limg¢, (x)= f(x) finite or infinite

for all x € E, the Lebesgue integral of f over E, IE f,is given by

|,/ =lim][ ¢, =], dimg,).
Lemma 5.3.7 Leta,b > 0.If a > abV0 < a < 1, thena > b.

Proof. Assume a<b. Then O<a<1=0<ab<b. Since a<b, it follows that

O<a<ab or O<ab<a<b. When O0<a<ab, a contradiction occurs. When

0<ab<a<b, take 0<a=%<1 since a is arbitrary.Then 0<2-b=a<a<b, a

contradiction occurs. O

Proposition 5.3.8 IE f,as given by Definition 5.3.6 is well-defined.

Proof. Suppose we have sequences of simple functions {¢n},{¢m},0 <¢,<¢, and

0<¢, <¢,  onEwithlimg, =limg, = f.
We claim

lim [ 4, = lim qusm

n—>00 m—>o0

Pick0<¢ < f.Then f =lim¢,k >¢ onE.We will show

r}grolo.[E;é’" = .[E¢"

Since ¢, is nonnegative and simple, we have

N
[.6,=2 ctENE,), ¢, >0,
k=1
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N
where £ = U(E N E,) and the nonempty E()E, are mutually disjoint Lebesgue

k=1

measurable subsets of £. Hence we must show

lim jE¢m >> ¢, l(ENE,).
k=1

m—>0

But the integral is additive on the domain (Theorem 5.3.4). Thus

.L ;’" - ;Igﬂgk ;ﬁ’"

Our claim will be justified provided we can show

lim Lnﬁm >c,u(ENE,), ¢, 0.

m—»0

It is immediate if ¢, =0. Assume ¢, > 0. Let 0 <a <1. (This idea has been

attributed to W. Rudin.) We construct a sequence of sets {B,, } as follows:

B, ={erﬂEk |;5,n(x)2ack}.

and ENE, = UBm. This is because

m=1

B, is measurable, B, c B, , since ¢, < ¢

m+1°

!
peENE, ¢, (p)=c,since peE andg, (x)= ch)(Ek and so

k=1

lzl—rilo;m(p):f(p)2¢n(p)zck >aCk,

A

re., @, (p)>ac, for sufficiently large m, in other words, p € B, for sufficiently

large m.

So {B,} is an increasing sequence of Lebesgue measurable subsets
of EN E,.Then{u(B, )} is monotone increasing with

lim u(B,)=u(ENE),) (Theorem 3.4.1).

N

But {Igmg ¢m} is also monotone increasing with
k
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Hence

lim [ 4, > limlac,u(B,)]=ac,u(ENE,).

m—>0

But this holds for any o between 0 and1. By Lemma 5.3.7, we have

m—>0

lim [ ¢, > c(ENE,),

and the argument is complete. The reverse inequality is obtained by interchanging

¢,andg, . O

Proposition 5.3.9 The Definition 5.3.5 and 5.3.6 of the Lebesgue integral of a

nonnegative measurable function are equivalent.

Proof. By the Approximation Theorem 4.3.5, we have a monotone sequence of

A A

nonnegative simple functions,0 < ¢ < ¢ . onE, with

n+l

limg, = fon E,and[ §, <[ 4,.

We must show

tim [ ¢, =sup{[ 419 < /]

n—o0

Suppose 0<¢ < f. Then limg, = f>¢" on E and the argument in
Propostition 5.3.8 yields
IE¢ < ’111_1)2 IE¢" (finite or infinite).
In other words, lim IE ¢, is an upper bound for the set {Lgb lg< f ;

Hence,

supl[ 419 < rl<tim] o,
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On the other hand, JE¢” € {[E¢|¢S f }for all n, and the sequence {IE¢”} is

nondecreasing (Theorem 5.3.4). So lim L¢” < sup{[E¢ lg< f } Combining,

tim .6, =supl], #14 <} :
We also have properties of the integral.

Theorem 5.3.10 If f and g are nonnegative measurable functions defined on a

Lebesgue measurable set E, and k is any nonnegative real number, then

1. (kf)is nonnegative, measurable, and IE (K)=k IE f (homogeneous);
2. (f + g) is nonnegative, measurable, ande (f+g)= J.Ef + Lg (additive);

3. Lf < Lg if0< f<g (monotone);
4. IfE,and E, are disjoint measurable subsets of E withE = E, JE, , the

integrals IE fand IE f existinR*, and

Lf = IE f+.[5 [ (additive on domain).

Proof. Measurability of the appropriate functions follows from Theorem 4.1.7.

A

1. By the Approximation Theorem 4.3.5, we have a sequence {%} of simple

functions satisfying0< ¢, <¢, , withlim¢ = fonE.But then, 0< k¢, <k¢, , with

n+l

n—»0

Iim[k ¢"j = kf. Using Definition 5.3.6,
{], =i 4, =tim{ k[ 6, ) =tim] (15, )= [ 0.

2. limg, = f,limy, =g implies lim(¢, +y, )= f+g. Thus, lim L¢n = L £,

lim jE v, = L g implies lim jE (¢, +v,)= L (f +g).Hence

n—>0
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IEf+IEg =}11ij{01J.E¢n +1imIEW,, = limUEgzﬁn +IEV/"):}1i£2IE(¢" +Wn)=j5(f+g)-

n—>0 n—»0

3.1f0< f <g,theng < g.Thus{¢|$< f} < {#| #< g}.So

sup{[ ¢1g< /|<supif #lo<gf

that is, IEf < IE g.

4. By Theorem 5.3.4, L @, = IE @, + IE ¢,. The sequences {J'E @, ﬁ ﬂE @, ; and UE @, }are

monotone increasing, limits are defined and nonnegative, possibly in the extended

reals. Therefore,

J.E ¢" - .[El ¢” + J.Ez ¢”
=lm[.4,=lim] 4, +lim, 4

jIEf:IEIf+szf'

Next example serves to illustrate the concepts used.

Example 5.3.11 CalculateJ‘ €L

o1y

Solution. §,(x)=1, 0<x<I. J'(O’l](zﬁl =1.

$,(x) =

N v N
N\
INIIN
N——

o)
A
=
IA
VR
W |
N——
[\ 5)
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]

2
3

)

2
2

I

2
4

)

2
3

l

+_
2

1

2
J-o]

1
)

2
4

|
o

o

o
S N N ~ ~ ~ ~ o~ N :
4_2 — 0\J\|/\|/\|/\|/\|l/
= 2 T2 w1 Fle G im S0 < n < | <

VI VI VI VI Vi VI VI VI VI
= = = = = = = = =
M\v Vv Vv Vv \% Vv \Y \% \

(o]

o o o o (o] [l o

4_u < |= 4_w TN oo |~ [0 '« |n
D e A U U N

u_4 =< m_4 Al wo|t NI O »n|Y <<

#(x)



104

|
S RIS
it

n- 2n71 _ kn 2",1 2 2n71 2
E (m] <x£(m} 1<k, <(n=1)-2""

Now, we show0< ¢ <¢ ., foralln>1.

Clearly, 0 < ¢,(x) < ¢,(x),0 < 8, (x) < ¢, (x).

Considerg,,,.



10

S

2
When 0 < x<|——— |, we have 0<x < . Thus 0 < x < > <i2.
(n+1)-2" (n+1) (n+D” n
Hence0< g, (x)=n<n+1=¢,,(x),for0<x< 5 <L2.
(n+1)" n

When

2 2 2 2 2
2" - 2" < 2" o2
n-2"" =k, +1) \(n+1)-2" -k, +1 \m+D)-2" -k, ) \n-2"" -

we have

2n 2 2n—1 2
<
(n+1)-2" -k, n-2""—k,

2n 2n—1
= <
(n+1)-2"-k,, n-2""' -k

=>n-2"-2k,<n-2"+2" -k, ,

= —k, <2" K
2

_ - 4k
:n.znl_knsn'2n1+2nl_ n+l

n-2"" 42! K
2

n-2""'—k,
= 2n—1 - 2)1—1
ne2" 42" -k,
2n
n-2"" -k
=0<Z ¢n (X) = Tn
< n-2"+2" -k,
< X
= ¢n+l ()C)

By induction,0 < ¢, < ¢

n+l1

on(0,1],for alln > 1.

1

N

Next, we show lim ¢, (x) = for all x € (0,1].
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n-1 2 n-1
When 0< x < 2 - |, we have 0<+/x < 2 lzl. So ¢n(x):nsi, for
n-2" 2" n Jx
n-1 2
0<x£{ 2 1].
n‘2ﬂ—
n—1 2 2n—1 2
When| ————— | <x<|————— | ,wherel <k, <(n-1)-2"", we
n-2"" -k, +1 n-2"" -k,
n-1 n-1 ‘2n—1_k
have 21—<\/;S2—1. Thus ¢n(x)=n—l”ﬁi, for
n-2"" —k, +1 n-2"" —k, 2" Jx

2n—1 2 2n—l 2
— = | <x<|—"—— |, wherel <k, <(n—1)-2"".
n2" —k, +1 n2" —k,

By induction, ¢, (x) < L, foralln >1.Solimg, (x) = Lfor all x € (0,1].
X n—ow

Jx

J‘ ¢ _ n- 2n—1 2n—1 2 ~ 02 s (n—f"’1 n- 2n—l —k 2n—1 2
ORI U I L pa 2! n-2"" —k
2n71 2
n-2"" —k+1
n- 2n—1 2n—1 2 n- 2n—1 _1 2n—1 2 2n—1 2
= -0 |+ -
n—1 n—1 n—1 n—1 n-1
2 n-2 2 n-2" -1 n-2
n'2n71 _2 anl 2 2n—1 2
+ -1 -1 a -1 +
2" n-2" =2 n-2"" -1
o2 -2 ] 2! ’
2 n 2" —[(n-1)-2"" —1]

~ 2n—l 2
n-2"" —[(n=1)-2"" =1]+1




+n‘2n—l_(n_1)‘2n—l 2n—l 2
2n—1 n‘zn—l _(n_l)'zn—l

~ 2n—1 2
n-2"" —[(n=1)-2"" =1]
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n-1 2 n—1 n-1 n-1 2 n—1
2 n-2 n-2" -1 2 n-2"" -1
- n.znfl 2n71 - 2n71 + n.2n—1 _1 2n—l

n-2"" -2
- 2n—l

. e 2" Z[(n=1)-2"" —1]
n2" _[(n—1)-2"" —1] 2

n-2"" —(n-1)-2""
- 2/1—1

n_zn—l _(n_l).zn—l 2)1—1 2
2n—l n.zn—l _(n_l).zn—l

( -l Jz( 1 j ( -l JZ( 1 j
= +
n- 2n—] 2n—1 n- 2n—l _1 2:7—1
( -l JZ( 1 ]
n-2"" —[(n-1)-2""-1]) \ 2"

. n.2n71 _(n_l)‘znfl 2n71 2
2n—l n.2n—1 _(n_l).zn—l

2n—1 2n—1 2;1—1

+

= + et +1
(n‘2n71)2 (n'2n71_1)2 (n‘znfl_[(n_l)‘znfl_l])Z

:1-|-2"71 %4....4_;12 i
2"+ (n-2"7)
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Since
1 1 1 1
el ytoe T woIn2 Al P Rl )
2"+ (n-2"7) "7 +D2" +) 27 +2)2" +2)
1 1
Tt ] 1 + 1 ]
(n-2""=D)(n-2""=1) (n-2"")(n-2"")
1 1
2 +
(2”'1 + 1)(2”'1 +2) (2"—1 + 2)(2”‘1 +3)
1 1
Tt 1 ot - 1
(n-2""=D)(n-2"7) (n-2")(m-2""+1)
( 1 1 j ( 1 1 j
= n-1 - n—1 + n-1 - n—1
2" +1 2" +2 27 +2 2" 43
1 1 1 1
Tt ] - o |t 0 =]
n-2""-1 n-2" n-2" n-2""+1
_ 1 B 1
241 pe2" el
and
1 1 1 1
1 ;o a2 Anl 1 Rl 1
2" +1) (n-2"") T +DR" +D) Q2" +2)2" +2)
1 1
Tt n-1 n-1 + n-1 n-1
(n-2"" =) (n-2""=-1) (n-2"")(n-2"")
1 1
< +
277"+ 7 DR +2)
1 1
Tt n-1 n—1 + n-1 n—1
(n- 2" =2)(n-2""=-1) (n-2"" =1)(n-2"")
(1 1 J ( 1 1 J
= n—1 - n—1 + n—1 - n—1
2 2" +1 2" +1 2" +2
( 1 1 j [ 1 1 j
+...+ p— + —
n-2"'-2 n.2"" -1 n-2"'-1 np.2""
_ o
2n—1 n.zn—l'
Thus
1 1 < 1 1 < 1 1

— < +...J’_ < —
271—1+1 n.2n—1+1 (2n—1+1)2 (n.2n—1)2 2n—1 n.2n—l

and so
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1 1 1 1 1 1
— < EE < —
2" 41 ne2" 41 (27 ) (n-2""* " 2mt g2t

=2" 11 - 11 32"4%*'*% <2" 11— 11
241 ne27 41 2" +1) (n-2"") 2 2

P Q2" +1) (n-2"") n
2}171 21171
=1+ 11 - 11 Sl+2”1|:ﬁ+"'+ﬁi|gz—l
+ n- n
1+ 2)1—1 n+ 2n—1
1 1 1
=1 1 1 SL0,1]¢ "
1+2n_1 ”+2n_1

=N hmj =2.
n—>o (0,1]¢”

Hence,

1
¥ J'
J.(O,l]\/; ngl;} (0,1]¢”

=2.

In these calculations, many simplifications arise if limIE £, =J‘E(1irn fn)is
n—o n—>00

valid for monotone sequences of nonnegative measurable functions, not just

monotone sequences of nonnegative simple functions.

Theorem 5.3.12 Lebesgue Monotone Convergence Theorem (LMCT), Beppo

Levi, 1906. Let{f, } be a monotone increasing sequence of nonnegative measurable

functions on a Lebesgue measurable setE:0< f, < f, <---on E.Then

JI{EEJ'Efk ZJ‘EQEE]{]‘)

Proof. We give two arguments. The first is based on Definition 5.3.5 for the integral

of a nonnegative measurable function. Note that (lim i )is nonnegative (0 < £, ) and

measurable on £ (Theorem 4.2.1). So
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L(}iggfk# sup{[Eqﬁ |4 < Qir?ofkl 0<4, ¢ simple|

Since the integral preserves monotonicity for nonnegative measurable functions, and

0<f, < fyy < <lim £, Jon £, we have 0< [ f, <[ fi, << [lim £, | that is,

}E?OJ.Ef" < IEQEEfk)

We will show JE (}im fk)s }imJ.E f; to complete the argument. Let ¢ be any

simple function such that(0<¢ < nglo fk)If we can show 11{133 IE fi 2 L @, then this

would saylim | f, is an upper bound for the set || ¢|d<\lim f, | 0< @, @ simple
k—o JE k E -0 k

But the least upper bound of this set, IE Qim i onuld be less than or equal the upper

bound, ym IE /,»and the conclusion would follow.

We now show }{iﬁrgLfk ZJE¢, ¢£Qi$130fk), 0<¢, ¢ simple. Since ¢ is

N N
nonnegative and simple, IE¢ = Zciy(E NE)c =20 andU (ENE,)=Ewhere ENE,
i=1

i=1

are mutually disjoint measurable subsets of £. Since IE f, 1s additive for nonnegative

measurable functions (Theorem 5.3.10), it is sufficient to show

hm(ﬁ . fk] >3 e MENE),

k—o
and this will be accomplished, if we show
i > ,
lim ij.- feze(ENE).
Ifc, = 0,done. Assumec, > 0. The idea is to construct an increasing sequence
of Lebesgue measurable sets {B,}. The ingenious idea is due to W. Rudin.

Let 0<a<l, and define B, ={xeENE,|f,(x)>ac,}. {B,} are Lebesgue
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measurable, B, c B,,,, since f, < f,,,, and UB,C =E(E,. This is because if

k=1

N
x, € ENE, #(x,)=c;sincex, € E,and ¢(x) = ZC[ZE,. and so

i=l1
ll{imfk(xo) > d(x,)=c, >ac,,
re., f;(x,)>ac, for sufficiently large k, in other words, x, € B, for sufficiently

large k.

The sequence {u(B,)} is nondecreasing, and Il{irn,u(Bk)z,u(EﬂEi) by
Theorem 3.4.1. ButJ.EﬂE‘ fi = Lk fy 2 oc,u(B,).Hence

IHI;LOE i 2o, iljgy(Bk)zaciy(EﬂEi), O<a<l.

Therefore /{imJ‘EﬂE fi 2c¢u(ENE,), by Lemma 5.3.7 and the theorem is

proved using Definition 5.3.5.

The second argument is based on Definition 5.3.6, the Approximation
Theorem 4.3.5, and extensive use of Proposition 5.3.10. From the Approximation

Theorem, we have:

0<¢, <p, < <¢, << f,limg, = fionE,andlim | ¢, = [ /;

0<¢, <¢,, <<, S"'sza’llii’g%n =f20nE,andli$2.[E¢2n ZJ.Efz;

0£¢k1 S¢k2 S"'S¢lm S."ka’liig¢kn =ﬁ{0nE,andli$I;IE¢kn :_[Efk;

etc.

Construct a new sequence of simple functions, {gﬁ k}, with chim¢ P = Qim fk)as
—>0 —>00

follows:

A

¢ =
;2 =max{@,,p,} 24, =2 ¢, :%l;
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A

P =max{@, .y s by Pi } 2 ;51(71;

etc.

The ¢, are simple and 0< ¢, <¢, <---< g, <---, with }im¢k = Qimfk) By

Definition 5.3.6, 11(1333 IE¢ P = JE (/1«133 fk)However, 0<¢,<f, < (1(133 f,()and, since the

integral preserves monotonicity for nonnegative measurable functions, we have
_[E(;k < JEfk < IE (}Lr{ifk)Taking limits,

im0 <lim], 7 < i )
Recalling Il{l_r)g J‘E% P = J.E Qgg i )from above, we have

and so

11¢1_>I£10JAEfk - IE(/I«I—IE/[")

Next example shows that we approximate unbounded Lebesgue measurable

function on set of finite measure with bounded measurable function.

Example 5.3.13 Calculate J‘[O ) =.
PAl-t

1 OSzSI—l

Solution. Let f,()=1 ;" | K.Then
0, 1—z<t<1

1 0931—L

fa={Jp kL

0 l-——<t<1
’ k+1
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1

SO = g = fin ().

Whenl—%<t£1—

WhenOStSl—

SO = 0<\/: Jea ().

1
Whel’ll—m<t<1,fk(t):0:fk+l(l)-

Thus
0< f, < f,,,0n[0,1).
Clearly,
. 1
Il(l_r)r;fk ()= m for allz €[0,1).
Therefore

J‘[O,l)\/ll__t -[[o 1)({< fk)

=1imj
k—w [0,1)f"
=1lim _[

ko0 J[0,1— ]f

1_,
= lim j
k—o0

\/_

= hm[sm t]t 1_7
. . ,1 1 . ,1
= hm{sm (1 — —) —sin 0}
k—o0 k
=sin"'1
_r
2

Next example shows that we approximate bounded Lebesgue measurable

function on set of infinite measure with bounded measurable function.

Example 5.3.14 Calculate [ e,

[0,00)
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Solution. Let £, (7) e’ 0st<k
olunion. L€ = . en
g 0, k<t
e’ 0<t<k+l
£ =
fk+l() { 0, k+1<f

When0<t<k, f,(t)=e" = f,, ().
Whenk <t<k+1,f,(t)=0<e™ = f,,(1).

Whenk +1<t, f,(t)=0= f,, ().

Thus
0< f, < f,,,0n[0,00).
Clearly,
]1{1_{2 f, () =e " for allt €[0,0).
Therefore

= .
e =I lim )
I[Om) [0,0) %f k

=1lim f
k—n [o,oo)fk

= hrnJ‘[qu]fk
k

k—o
=lim | e™'dt
k—o
BT _t =k
—llm[—e ]t:O

k—o

= lirn(l —et )

k—o

=1.

Theorem 5.3.15 If{g, }is a sequence of nonnegative measurable functions defined

on a measurable set E, then

IE;gk = ;JEgk‘
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Proof: Let f, =g, +g,+---+g,. Then {f,} is a monotone increasing sequence of

nonnegative measurable functions defined on a measurable set £. We use LMCT.

L Ze=Llims)=tim[ s, =tim [ Se <t 3 [ e = 3 e

Theorem 5.3.16 (Fatou, 1906) If{f, }is a sequence of nonnegative measurable

functions defined on a Lebesgue measurable set E, then

[ limint £, )< timinf 7,.

Proof. Let ]_”1 Einf{fl,fz,...}.j_”1 is measurable, 0< /' < f for all n>1, and
[ £, <] 1, foralln>1.
In other words, IEJ_‘I is a lower bound for the set UEﬁ,J.EfZ,...,J.Efn,...}We have

I R R WA
Define / =inf{f,, f;,...}.f is measurable, 0< f < f |
Jo£ <l amd [ n< g =int | fuf,
In general, if -

So=mf{f

then

The sequences {_‘.E f HJE fm; are nonnegative, monotone increasing
—m

sequences of perhaps extended-real numbers, and so have limits in the extended reals:

lim [ f <lim [ f,.

m—>o0 m m—»0

But, application of the LMCT tells us that
timf, £, = [{im 7, )= [, limint £,

Therefore
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[ )t 1. =i ] 5.

and this is what we intended to prove. i

Example 5.3.17 Let f, = 1 Xion- Then
n

1imJ‘[0qw) f,=1%0= I[o,m)lif.l 1.

H—>0

But

J.[O’w)hmmf [ = J.[O lim £, =0 <1=liminf J.[O’m)fn.

n—>0 ,00) n—»00 n—0

m
Monotone increasing is necessary.
Example 5.3.18 Let f/, = —l;([o’n].Then £, = 0(unif) on[0,0).
n
We have
lggj.[o,mf” =-1=0= J.[o,ao)ll—glf"’
but
j[o,w) liminf /, =0> -1 = liminf I[O,w) fo.

m

Nonnegative is necessary, even with uniform convergence.

This concludes our treatment of the Lebesgue integral for nonnegative

measurable functions defined on arbitrary measurable sets of real numbers.

5.4 Lebesgue Integral and Lebesgue Integrability

The requirement that f be nonnegative is eliminated. We discuss Lebesgue

measurable functions defined on any Lebesgue measurable set of real numbers.
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Definition 5.4.1 Let f be a measurable function defined on a measurable
set E. Recall that f = f"— f~ (Propostition 4.1.8), where f =max(f,0) and
f~ =—min(f,0) are nonnegative measurable functions. L " and IE f~ can be

calculated according to Definition 5.3.5 or Definition 5.3.6.

If both IEf+ and Lf’ are o, then the Lebesgue integral of f on E is not

defined (o — w0 is not defined inR¢).

If either_[E f"or L f (but not both) are finite, then the Lebesgue integral of

f on E is defined by
J‘Ef:J‘Ef+_J'Ef_'

Ifboth | f"and| [~ are finite, then f is Lebesgue integrable on E
E E

and

el =L =1s

In this case, IE ferR

Caution: In what follows “integrable” means “Lebesgue integrable”.

Now, we discuss the relationships between L_ f ,IE| f],and IEg wheng = f

almost everywhere on E.

Propostition 5.4.2 Suppose f is a measurable function defined on a measurable
set E. Then f'is integrable on E iff| f | is integrable on E.

Moreover,

fA=f1 1
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Proof. Assume f is integrable on £. We want to show| f |is integrable on £ and

[1r1[1r1 <

Since f is measurable on E,| /| is measurable on E (Propostition 4.1.8),

[ =0 and [ 111 =[1f 1=/ +f)=[ 1 +]f" <o because fis

integrable on £. Thus| f|is integrable on E.

Assume| f'|is integrable on £. We want to show f'is integrable on E. Since

£ is measurable by assumption, and
[r+] = +m=[IrI=]I/ <=,

we haveL|f|+,L| f|” <. Thus, fis integrable on E.

A1 =lr = L=l el
=[./ s
=, +)
=[1 /1

J’_

Proposition 5.4.3 If f is integrable on E, then f is real-valued (finite) a.e. on E.

Proof. We need to prove u({x € E | f(x) = oo}) = 0.
For{x e E| f(x) = +o0},
JT@) = (%) =+
= fT(x)=+0and0< [ (x) <40 or 0< f7(x)<+ooand f (x) =—o.
The last case is unacceptable, and so
{xeE|f(x)=+0}={xe E| ["(x) = +o}.
For{xe E| f(x) = o0},
ST = (x)=—
= fT(x)=—wand0< f (x) <400 or 0< f"(x)<+owand f (x)=+on.

The first case is unacceptable, and so



119

{xeE|f(x)=-0f={xe E|f (x)=+o0}.
This implies
(xeE| f(x)=to}={xeE| f(x)=+no}U{x e E| f(x) = —»}
={xeE|fT(x)=+ofU{xe E| [ (x)=+oo}.
Then

e IE}H > Lerl/*<x):+m}f+ >nu({x e E| f7(x) = +w})

for alln > 1. We have a contradiction unless p({x € E | f " (x) = +o0}) = 0.
Similarly,

u({xe E[ f(x) =+oo}) =0.
Hence

p(ix € E| f(x) = Foo}) = 0.

However, the converse of Proposition 5.4.3 is not true. Let’s say we have

f(x)= 1 ,0 < x <1.Then f is real-valued everywhere, but is not integrable.
X

Example 5.4.4 Suppose

ﬂ nr<x<(n+)r,n=0,12,...
f)=y(mn+1)*’

otherwise.
0,

Show f'is integrable on[0, ).

Solution. This is equivalent to show| f | is integrable on[0,), by Proposition 5.4.2.
Then

| f](x)= ﬁ,nﬂ<x<(n+1)7z,n:0,1,2"”
=9(n

0, otherwise.

Let

;2, nr<x<mn+O)rz,n=0,1,.. k-1
[ [ (D =1(n+1)

0, otherwise.

Then
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|f| (x)_ —( :1)2,l’lﬂ<x<(n+1)7[,n:0’1’”"]{_1,](
k+1 - n

0, otherwise.

Whenx <0, | £], (1) =0=] f],., (x).
Wheni) x=nz,n=01,....k,| f ], (x)=05 1|, (x).
i) x=(k+D7z, [ [, (x)=0=]f 1, ().

When nzr <x<(n+)z,n=0,1,....,k=1,] f|, (>c)=;2=|f|k+1 (x).
(n+1)
When kz <x<(k+Dzx,| f|, (x)=0< ! == f i (0.
(n+1

When x> (k+ D7z, [ /[, (x)=0=]f [, (x).
20 f 1S S i on (=o0,0).

o 1= m A

0,0) k—o0
= lim j
lim [O’w)l an

(n+)z

m —dx
koo S (n+1)

=lim
k—x

Vs
(n+1)°

< 00,

Proposition 5.4.5 If f is a measurable function defined on a measurable set E, and

g is integrable on E with| f |<| g |, then _[E| f1< .[5' g land f is integrable on E.

Proof. We have JE| [ _[E| g | < oo from Theorem 5.3.10 and Proposition 5.4.2. It
remains to show f'is integrable on E by showing f is measurable on E (given), and

both J.E /" and IE f~ are finite. Given f is measurable on £E, and

0< J.Ef + Lf' = L| f | <o, and the argument is complete. O
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Proposition 5.4.6 If f = ga.e. on a measurable set E,and if g is integrable onE,

then f is integrable on E and

Jof ==

Proof. g is measurable on E by the assumption of being Lebesgue integrable on E.

Since f is equal a.e. to a measurable function g, f is measurable on E (Theorem
4.1.5). Application of Proposition 4.1.8 yields measurability of /" and /' on E.
LetA={xeE| f(x)# g(x)}.Then

f7 =max(f,0) =max(g,0)=g"and /'~ = —min(f,0) =—min(g,0) =g~
on E()A4°,and

J‘EﬂA“ fr= J‘EﬂA“ g andIEﬂA" = J‘EﬂA‘ g
that is,

f is measurable on E (] 4°, I

ENA

S ’J‘EﬂA' f~ <oo: fis integrable on E (] 4°.
Since 4 is a measurable subset of E, f is measurable on 4 (Proposition 4.1.6),
u#(A)=0, and hence Lf ,Lf‘ =0. But IEf = J.Emcf +Lf < oo, that is, [ is

integrable on E.

Then
Je=[e -[e
e+ Lo e ] )
(1.7 0, 1 +0)
SLRIWARS WAD S ARSI
A
- L 7.
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E le 5.4.7 S f( ) X, xratiOnal’ 0<x<1
xamplie d>.4. uppose f(x) = ,
’ oP 1-x, x irrational, 0 < x <1

and
g(x)=1-x0<x<1.
Then
f =ga.e.on[0,]]
and
J.[o,l]f ~Jon®
1
= [a-x)ax
0
_1
5

Proposition 5.4.8 If f, g are integrable on a measurable set E, and k is any real

number, then

1. (kf)is integrable on E, and L (k) = kIE f (homogeneous);
2. (f +g) is integrable on E, andJE (f+2)= IEf + Lg (additive);
3. .Lf < JEgiff <gonkE (monotone);

4. If E,and E, are disjoint measurable subsets of EwithE = E,UE,, f is integrable
onE and E,,and

JEf: J.E, f+ IEZ [ (additive on the domain,).
Proof.

1. If k>0, then IE(kf)* = ka* oy jE f* <o and L(kf)’ = kjE £~ <o because

kf*,kf ~ are nonnegative measurable functions (Theorem 5.3.10).

By definition, (k') is integrable on £. Moreover

[ =] Gy = ) =k[ 17 =k[ 1~ =K] 1.
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where the last equality is the definition of f* being integrable on E.

£k <0.(k)" = (k) (k)" = () f".[ (k)" =—k[ f~ <o0,and

jE () =—k L f* < oo, that is, (kf) is integrable on E. Then

[ =] )y =] ()
= [, =] s
1]
k[ f.

2. Since f, g are integrable on E, | f|,| g | are integrable on E (Proposition 5.4.2).

Since [ | f1=[,1 /" <e,[ |g|=,|g]" <w,and| f+g|<| /|+] gl,and s0
[1r+gl<[ (f1+1gh=]1/1+]|g|<e(Theorem 53.10).

But |f+g|'df+g|and |f+g[=0,]|f+g| <e,[|/f+g| <o, that is,

| £+ g |is integrable on E, but then (Proposition 5.4.2) f + g is integrable on E.

Now, f+g=(f"+g")—(f +g ),that is, the integrable function (f + g)
has been written as the difference of two nonnegative measurable functions,

(f"+g")and(f + g ),whose integrals are finite.
[Fro=[(+e)-[(f +g)
[l -l
=[/+]e

3.
Since f<gonkE,f " —f <g'—g,ie, fT+g <g'+f .Because (f +g"),
(g" + f)are nonnegative measurable functions we may apply Proposition 5.4.2 to

conclude

[+l e =[+er<|+r)=]e+] .
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Since all terms are finite, we may subtract and obtain L f< IE g.

4. By Proposition 5.4.2,

o=l =1s
o AR AR A e
:IElf+IEzf'

In the next section, we are going to prove the major convergence theorem of
Lebesgue integration, the so-called Lebesgue Dominated Convergence Theorem

(LDCT).

5.5 Convergence Theorems

“Monotone” and ‘“nonnegative” are the restrictions that we seek to modify or
eliminate, although, other requirements must be imposed. The new requirements do
not severely restrict applications of the Lebesgue integral, and in fact result in a very
powerful tool for analysis, the so-called Lebesgue Dominated Convergence Theorem

(LDCT).

Theorem 5.5.1 (Lebesgue Dominated Convergence Theorem, 1910) Let{f, } be a
sequence of measurable functions defined on a measurable set E, such that

}viglof" = fae onkE.
Suppose we have an integrable function g on E such that| f, |< gonE.

Then f is integrable on E and
[ bim )= 1, =t 7
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Proof. Since f, is a measurable function on E, it follows that| f, |is also a measurable
function on E, by Proposition 4.1.8. By assumption, g is integrable on £, and so | f, |

is integrable on £, this implies f, is integrable on E (Proposition 5.4.2).

Moreover, f, as the limit of a sequence of measurable functions, is
measurable (Theorem 4.2.1). Since —g< f, <g for all k=21 on E, thus

-g< Il{im fy Sgor —g< f<g gisintegrable on E implies f is integrable on E.

For a sequence of functions {f,} we may construct two related monotone

sequences of functions

{zk}and {J_fk}a

Where]_"k =inf{f,, f;.,.-.y and 7k =sup{ fi, fi.»--- respectively.

Hence,
~gsf,<f

All functions being integrable on £, along with monotonicity, yield (Proposition 5.4.8)

-~ < L—g < IEJ_”,M < Lfk+1 < Lg andIE—g < Lf < wa < Lg < o0,

kaﬂﬁgand—gﬁfﬁj_’kﬂﬁj_’kSgonE. (1)

If we can show }(1_)11010 J;; [, = 113_% IE f»then ll(l_rg IE f; exists and

tim, /i = [, = [ lim 7.}
which is the conclusion we want. Returning to (1), we have

O<g+f <g+/, <2gand0<g-/,<g-f, <2g

Our first argument will be based on the Lebesgue Monotone Convergence

Theorem. The sequences {g+ f k} and {g—?k} are nonnegative, monotone

increasing, and have limits g + f and g — f respectively. Apply LMCT yields

k—o

and

Jg-tim[ 7, =] lime-7)=[(-N=[e-[/

k—o©

that s,
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llgloJAEJ—Fk - -[Ef - /I(EEJ.EJ_F’“

and this argument is complete.

The next argument is an application of Fatou’s Theorem.

“Fatou” forg + f; :
[0 L = it 1 < 501
- hIkILio?qug + IEfk)
S ng + li?iiilfIEfk,
and so Lf <liminf JE Je-
“Fatou” forg — f, :
L= e =it =i e 1)
:hmmeg—Lﬁ)

k—o
=Lg—hT§mLIL
and SOlkaS;lp Lfk < Lf. Combining, lmklsllp IE fi < '[Efllirililf IE S
Thus
/lclg.i IE = J‘Ef
and hence

[ bim )= J.s =im 7

The next two examples illustrate some applications of the convergence
theorems that we have discussed in Chapter 5. They partially answer “Why

Lebesgue?”

Example 5.5.2 Show J‘[O )e’x2 ===

Solution. Let



and

2

g ()= £,(0)- 1—%.

k—o

t k k
Recalll+£ <ek,where—k <t, and(l%—éj < e’,lim(l+éj =e'.

Then

1. f()<e™, t 2 Oandlim £, () =e,t20.

2. g (<e" 1> Oandlim g, (1) = e, t>0.

3. Integration by part will be used.

Jon i =

_ 7. @k)Qk=2)-2
T Qk+DQk-1)---3

cos™(¢)dt

St N

and

cos ™2 (t)dt

O o | N

Jl[o,w)gk = \/z

o Qk+DRk=1)1
=k 2k +2)(2k)---2

N
>

t

4. Since f, , g, are dominated by the integrable functione™ : ,t 20,we have

lim J‘[o,oo) Ji= J‘[O,k]llcl—{l; Ji

k—o0
.[ 0 ’
[0,0)

= lim g

k—o0 J[0,00)

2
(J‘[O,oo) ¢ j - [Ilclan;lo I[O,oo) Je )(llcgg [o,w)gk)

= lim j :
k—w [o,oo)f" [o,oo)g"

127
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J- e |7 T
e’ =,—=—.
[0.00) 4 2

Example 5.5.3 Evaluatej e cos(t).

[0,0)

Solution.
n_(_1\k
e cos(t) = lim[et2 z( D t* }
oo i (2k)!
Here,
o ¢S D’ * 0<t<n
= | .
e T
and

1V 1 Ly
5 5 =+ - t—=
lim f,(t)=e" cos(t), 0<t<oo,| f,(t)[<e™ =e ( 2) t<e-e [ ZJ .
Recall

J.x”equx:ll"(Lq_ljwhenq >0and p+q>1,
0 q q

and
r( k+ %) = % 7 for all positive integers k.

Apply LDCT and the above facts:
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J[O’w)e_’ cos(t)_hm J.[ 7.

0.%0)

= (D!
_}zaoc-.‘[On]|:e — ﬁt :|
—11 |: ( ——[ 4—lt6+...+_(_1)” lz”j:|
i 4 6 (2n)!
_1; N (= 1)
_}.1_{2; J.[O,n]Le (zk)gt ﬂ
—1i N _(_l)k 2k -1
=2 i }

n [ kon
— hmz (=D J‘tzke—t2
n—® 1= i (2k)| 0

e (—1)"_1_ 2k+2-1
“lm2, (k) 2 r( 2 ﬂ

n _ k
~1imY D .l.r(“lj
e | (2k)! 2 2
R S ) L B P PO o) 2 )
=1 .
153; | (2k)! 2 2* Nz
7 _ k . D _— . . e
~lim3 (-DF 113 (ka D, 7. 2:4:6-(2h)
i (2K) 2 2 2-4-6---(2k)
W=D 12! 1
=1 i . .
133;; k) 2 2* Vr 2k k!
n _ k
=1imZ (Ml) ﬁ
nA)ock:O 2 k] 2
— lim| 1— ) LN GtV 1 4
_}lljlcl[l 22 1' 24.2! 22}1”') 2
_i 37
>



CHAPTER 6
CONCLUSION AND FUTURE WORK

Our target for this report is the Fundamental Theorem of Calculus for Lebesgue
integral. I can only finished up to Lebesgue Dominated Convergence Theorem in
Chapter 5 because of time constraint. Here, I only list down all the lemmas and
theorems without proofs that lead to the Fundamental Theorem of Calculus for

Lebesgue integral.
6.1 Conclusion

The notions of bounded variation and absolute continuity on an interval play a key
role in the theory of the Lebesgue integral. Two intervals / and J are non-overlapping

if I () J consists of at most one point.

Definition 6.1.1 The variation of F on[a,b]is defined by
V(F,[a,b]) = sup{2| F(d,)-F(c,) |}
i=1
where the supremum is over all finite collections {[c,,d;]|1<i<n} of non-
overlapping intervals in[a,b). The function F is of bounded variation on|a,b] if

V(F,[a,b))is finite.
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Definition 6.1.2 The function F is absolutely continuous onla,b]if for each & >0,

there exists & > 0such that 2| F(d,)—F(c;)| <& whenever {[c;,d;]|1<i<n}is a

i=1

finite collection of non-overlapping intervals in[a,b]that satisﬁ/Z(di —c;)<0.

i=1

The next theorem shows that absolute continuity is stronger than bounded

variation. Before that, a lemma is needed.

Lemma 6.1.3 Let F :[a,b] > R

(a) If F is of bounded variation on[a,b],then F is of bounded variation on every
subinterval of [a,blandV (F,[a,b]) =V (F,[a,c])+V(F,[c,b])for each c €[a,b].

(b) If F is of bounded variation on[a,c]and]c,b], then F is of bounded variation on

[a,b].

Theorem 6.1.4 If F:[a,b] > R is absolutely continuous on [a,b], then F is of

bounded variation on|a,b].

A monotone function is of bounded variation on[a,b]. Hence, the difference
of two monotone functions is of bounded variation. The converse is also true; a
function of bounded variation can be written as the difference of two monotone

functions.

Theorem 6.1.5 If F :[a,b] > R is of bounded variation on|a,b], then there exist

nondecreasing functions F,and F, such that F = F, - F,.

To prove a monotone function is differentiable a.e. on an interval, we need

Vitali Covering Lemma.

Definition 6.1.6 Let E — R A collection 7 of intervals is a Vitali cover of E if for

eachx € E and € > 0,there exists an interval | € Jsuch thatx € [ and pu(I) < .
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Lemma 6.1.7 (Vitali Covering Lemma) Let E — R with y1 (E) < o.If 7 is a Vitali
cover of E,then for each s > 0 there exists a finite collection{l, |1 < k < n} of disjoint

n

intervals in J such that ,u*[Eﬂ(Ulkj J<g. In addition, there exists a

k=1

sequence{l} of disjoint intervals in J such that,u*[E N (U ij J =0.

k=1

The next definition establishes the notation for various limits of difference
quotients. These derivates are often more useful than the ordinary derivative since

they are defined at each point.

Definition 6.1.8 Let F' :[a,b] > R The upper right and lower right derivates of F at
x €[a,b) are defined by

D'F(x)= limsup{wx <y<x+ 5};
50" y—=x

Djm:mmﬁﬂﬂiﬂx<www}
50" y—Xx

Similarly, the upper left and lower left derivates of F at x € (a,b]are defined by

D F(x)= limsup{wx—5 <y< x};
50" y—-Xx

Qﬂmﬂmmgﬁtﬂﬁwﬁqx%

50" y—x

A lemma is required before we show a nondecreasing function is

differentiable a.e. on[a,b].

Lemma 6.1.9 If F is nondecreasing onla,b], then all four derivates of F are finite a.e.

onla,b].

Theorem 6.1.10 If F is nondecreasing on[a,b], then F is differentiable a.e. on[a,b].
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The next theorem shows that the function F''is in fact Lebesgue integrable on

[a,b] and gives an upper bound for the value of its integral. Consequently, the

derivative of a function of bounded variation is Lebesgue integrable on[a,b].

Theorem 6.1.11 If F is nondecreasing on[a,b), then the function F'is Lebesgue

b
integrable on[a,b] andJ.F' <F(b)-F(a).

Now, we consider the first part of the Fundamental Theorem of Calculus for
Lebesgue integral.
Lemma 6.1.12 Let f :[a,b] > R be bounded and measurable. If F(x) = jffor each

x €[a,b], then F is absolutely continuous on[a,bland F' = f a.e. on[a,b].

Theorem 6.1.13 (Fundamental Theorem of Calculus for Lebesgue Integral Part

1) Let f:[a,b] > R be Lebesgue integrable on [a,b]. ]fF(x)zIf for each

x €[a,b], then F is absolutely continuous on[a,bland F' = f a.e. on[a,b].

A function F with the property that ¥ =0 a.e. on[a,b]is called a singular

function. One way to guarantee that a singular function is constant is to insist that it
be absolutely continuous as well. After proving the next theorem, it is easy to prove

the second part of the Fundamental Theorem of Calculus for Lebesgue integral.

Theorem 6.1.14 Suppose that F :[a,b] - R is absolutely continuous on [a,b]. If

F' =0a.e. on[a,b],then F is constant on[a,b].
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Theorem 6.1.15 (Fundamental Theorem of Calculus for Lebesgue Integral Part

2) IfF :[a,b] > R is absolutely continuous on[a,b), then F'is Lebesgue integrable

on [a,b] andj.F' = F(x)— F(a) for each x €|a,b].

Theorem 6.1.13 and 6.1.15 together yield the following theorem. This

statement is usually referred to as the descriptive definition of the Lebesgue integral.

Theorem 6.1.16 A function f :[a,b] > R is Lebesgue integrable on|a,b]iff there

exists an absolutely continuous function F :[a,b] = R such that F' = f a.e. on[a,b].
Is it possible to define an integration process for which the theorem

IfF is differentiable on[a,b],then the function F'is integrable on[a,b] and

j.F' = F(x)— F(a) for each x €[a,b].

is valid?

6.2 Future Work

In 20™ century, three integration processes have been developed for which this
version of the Fundamental Theorem of Calculus is valid. These integrals, named
after their principal investigators Denjoy, Perron, and Henstock, each generalize
some aspect of the Lebesgue integral. Since each of these new integrals focuses on a
different property of the Lebesgue integral, the definitions of the integrals are

radically different. However, it turns out that all three integrals are equivalent.

Here, we only introduce the Perron integral. In 1914, O. Perron developed

another extension of the Lebesgue integral and proved that his integral also had the
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property that every derivative is integrable. His work was independent of Denjoy and

hence has a very defferent flavor.

The first step is to introduce the notion of major and minor functions. These
functions are defined using the upper and lower derivates that were first discussed in

Section 6.1.

Definition 6.2.1 Let f :[a,b] —> R°.

(a) A functionU :[a,b] — Ris a major function of f on[a,b]if DU (x) > -0 and
DU(x) > f(x)forallx €[a,b].

(D) A functionV :[a,b] —> Ris a minor function of f on[a,b] ZfBV(x) <+ and

BV(x) < f(x)forallx ela,b].

We writeU” forU (b) — U (a).

Theorem 6.2.2 4 measurable function f :[a,b] > R°is Lebesgue integrable on[a,b]

iff for each & > 0,there exist absolutely continuous major and minor functions U and

V of f on[a,b]such thatU’ -V} < e.

The Perron integral is defined in terms of major and minor functions. The
generalization of the Lebesgue integral occurs by dropping the requirement that the

major and minor functions be absolutely continuous. Recall that F' is differentiable at

cif and only if DF'(c) and DF (c) are finite and equal.

Proposition 6.2.3 LetU and V be functions defined on[a,bland letc € [a,b]. Then
(@) DU(c) < DU(c);

(b) D(-U)(c) =—DU(c);

(c) D(U +V)(c) < DU(c)+ DV (c);

(d) D(U +V)(c) 2 DU(c) + DV (c);

(e) If DU(c) > - and DV (c) < +o, then D(U —V)(c) = DU(c) — DV (c).
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Theorem 6.2.4 Let F :[a,b] > R If DF >0 on|a,b], then F is nondecreasing on
[a,b].

The quantities in the next definition are finite-valued.

Definition 6.2.5 A function f :[a,b] > R° is Perron integrable on|a,blif f has at
least one major and one minor function onla,bland the numbers
inf{U" |U is a major function of f onla,b]},

sup{V'" | V is a minor function of f on[a,b]}

b
are equal. This common value is the Perron integral of f on|a,b]and denoted byj f.

a

The following theorem is an immediate consequence of the definition. In
particular, a Lebesgue integrable function is Perron integrable and the integrals are

equal.

Theorem 6.2.6 A4 function f :[a,b] > R° is Perron integrable on|a,b]iff for each
& > 0,there exist a major functionU and a minor functionV of f onl[a,b]such that

b b
U -V <e.

F is differentiable on [a,b]in the next theorem can be replaced by F is

differentiable nearly everywhere on [a,b]in Theorem 6.2.26.

Theorem 6.2.7 Let F :[a,b] > R be continuous onla,b].If F is differentiable on

[a,b],then F'is Perron integrable on[a,b] andJ‘F‘ = F(x)— F(a) for eachx €a,b].
Next consider the relationship between Perron integrability and subintervals.

Theorem 6.2.8 Let f :[a,b] > R°and letc € (a,b).
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(a) If f is Perron integrable onla,b],then f is Perron integrable on every subinterval

of [a,b].
(b) If f is Perron integrable on each of the intervals [a,c]and|c,b], then f is Perron

integrable on [a,b]andjf = j;f+ j.f

It is sufficient to consider finite-valued functions only. This will avoid

difficulties when it comes to adding functions as f + g may not be defined if both f

and g assume infinite values.

Theorem 6.2.9 If f :[a,b] > R‘is Perron integrable onla,b],then f is finite-valued

a.e. on [a,b].
Theorem 6.2.10 Let f :[a,b] > R°be Perron integrable onl[a,b).lf g = f a.e. on

b b
[a,b],then gis Perron integrable on|a,b] andjg = .[f.

The next proposition lists the linearity properties of the Perron integral.

Proposition 6.2.11 Suppose that f and g are Perron integrable on[a,b]. Then

b b
(a) kf is Perron integrable on[a,b] andjkf = kj f foreachk € R;
b b b
(b) f + gis Perron integrable on|a,b] and_[(f +g)= Jf + Ig;
b b
(c)if f<ga.e. on[a,b],thenjf < Ig;

(d)iff=ga.e on[a,b],thenj.f = ig.

We next consider the properties of the indefinite Perron integral.
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Lemma 6.2.12 Let f :[a,b] > R be Perron integrable on[a,b]and let F(x) = Iffor

eachx €[a,b].IfU is a major function andV a minor function of f on|a,b], then the

functionsU — F and F —V are nondecreasing on|a,b].

Theorem 6.2.13 Let f:[a,b]> R be Perron integrable on [a,b] and
let F(x) = Iffor eachx €[a,b].Then

(a) F is continuous onla,b];
(b) F is differentiable a.e. on[a,bland F' = f a.e. on[a,b];

(c) fis measurable on[a,b].

Theorem 6.2.14 Let [ :[a,b] —> R be Perron integrable onla,b].

(a) If f is bounded on|a,b), then f is Lebesgue integrable on|a,b].

(b) If f is nonnegative onla,b], then f is Lebesgue integrable on[a,b].

(c) If f is Perron integrable on every measurable subset of|a,b], then f is Lebesgue

integrable on[a,b].

Theorem 6.2.15 Let f :[a,b] > R be Perron integrable on|a,b).If E is a perfect set

in [a,b], then there exists a perfect portion E(\[c,d]of E such that f is Lebesgue

k=1

integrable on E(\[c,d]. Moreover, the series Za{ J f ,[ck,dk]} converges where

Ck

e.d]- E = )¢, dy).

Definition 6.2.16 A4 function f :[a,b] - R° is P, integrable on[a,blif f has at least
one continuous major and one continuous minor function on|a,b]and the numbers
inf{U" |U is a continuous major function of f on[a,b]},
sup{V'” |V is a continuous minor function of f on[a,b]}

are equal. This common value is the P_integral of f on[a,b].
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The function f is P, integrable on a measurable set £ < [a,b] if fy, is P,

c

integrable on[a,b]. The symbol P, stands for Perron continuous, that is, Perron

&

integrable with continuous major and minor functions.

Lemma 6.2.17 LetW be a continuous function onla,b]. Then for each e > 0,there
exists a continuous function U on[a,b] such that DU > DW on[a,b], DU (b) =+,

andU" <W! +e¢.

Theorem 6.2.18 Suppose that f :[a,b]—> R is P, integrable on each interval

d
[e,d] < (a,b). Ifjf converges to a finite limit as ¢ —>a” and d — b~ , then f is

b d
P integrable on[a,b] andjf = lim jf

d—b~

Theorem 6.2.19 Let E be a bounded, closed set with bounds a and b and let

{(a,,b,)} be the sequence of intervals contiguous to E in [a,b]. Suppose that

f:la,b]—> R is P, integrable on E and on each interval [a,,b,]. If the

c

seriesZa)[J.f,[ak,bk ]] converges, then f is P integrable on[a,b]and

=

0

[r=lim+3ir

k=1 g

The next theorem is due to Marcinkiewicz. Theorem 6.2.2 states that a
measurable function is Lebesgue integrable if it has one absolutely continuous major
function and one absolutely continuous minor function. A similar result holds to the

Perron integral with absolute continuity replaced by continuity.

Theorem 6.2.20 Let f :[a,b] > R be measurable. If f has at least one continuous
major function and at least one continuous minor function onla,b],then f is Perron

integrable on[a,b].
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Now, we look at one other change in the definition of major and minor
function. This change involves the derivate inequalities being satisfied at “most

points” rather than at all points.

Definition 6.2.21 Let f :[a,b] > R°.

(a) A continuous functionU :[a,b] = R is an ex-major function of f onla,b]if
DU (x) > —wonearly everywhere on[a,b]land DU (x) > f(x) a.e. on[a,b].

(a) A continuous functionV :[a,b] — R is an ex-minor function of f on|[a,b]if

BV(x) < +oo nearly everywhere onla,b] andBV(x) < f(x)a.e. onla,b).

The ex represents extended. We can define P integral using the extended
major and minor functions. Several lemmas are required to show every P, integrable

function is P, integrable and its converse is also true.

Lemma 6.2.22 LetW :[a,b] > R be continuous on|a,b],letc €|a,b],and let € > 0.
Then there exist a nondecreasing, continuous functiony :[a,b] - R and a positive

number & such thaty(a) =0,y (b) < ¢, and
W(x) W) +y() -yl .
x—c

for all x e[a,b] that satisfy0 <| x —c |< O.

Lemma 6.2.23 Let W :[a,b] > R be continuous, let € >0, and suppose that
DW > -0 nearly everywhere on [a,b]. Then there exists a continuous function

Y :[a,b] = R such that DY > DW and DY > —won[a,blandY’ <W' +¢.

Lemma 6.2.24 Let f :[a,b]— R°.IfW is an ex-major function of f on [a,b] and

& > 0,there exists a continuous major functionU of f on[a,b]such thatU" < W' +¢.
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Theorem 6.2.25 A function f :[a,b] > R° is P, integrable on[a,b] iff [ is P,

X

integrable on [a,b].

Theorem 6.2.26 Let F :[a,b] > R be continuous on[a,b). If F is differentiable

nearly everywhere on [a,b], then F is Perron integrable on [a,b] and

jF' = F(x)— F(a) for eachx € [a,b].
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