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ABSTRACT 

 

With the emergence of convolutional neural networks (CNN), the application of 

object classification and detection using deep learning is getting more and more 

common. However, the real-time performance of CNN on embedded system is poor, 

it need a few seconds to run an inference on embedded devices due to resource 

limitations. In this project, real-time object classification and detection on embedded 

system are realised with the use of Intel Movidius Neural Compute Stick (NCS).  

Combining the concept of Internet of Things (IoT), a cloud-based security system is 

built. This system records and uploads the video clips only when human is detected, 

and it subsequently notifies clients for video retrieval. For the deep learning 

algorithms, single shot detector (SSD) algorithm with a MobileNet architecture 

which is pre-trained with caffe framework is adopted. This project also aims to study 

the end-to-end performance of the system by evaluating detection accuracy, image 

preprocessing and inference time, video upload time and video qualities. Video 

upload time and push notification time are crucial when it comes to the performance 

of a real-time system. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

 

In this section, background, applications, and some relevant terms of Artificial 

Intelligence (AI) are briefly discussed.  

 

AI can be described as the ability of thinking and learning of machines. The 

word ‘artificial intelligence’ was first introduced by John McCarthy in 1955. John 

McCarthy, the father of AI, had defined seven development aspects of artificial 

intelligence in Dartmouth Conference 1956 - the first artificial intelligence 

conference. The seven aspects mentioned are simulation of complex activities of 

human brain on computer; instructions for a computer to interpret general language; 

arrangements of artificial neurons to form concept; ways to identify and diagnose 

problem complexity; ability of promoting personal development; stochasticity and 

inventiveness. (J. McCarthy, 1956). 

 

It can be seen that a number of AI applications are emerging in today’s 

society. Several examples and applications of AI are introduced below.  

 

Starting from 1st of February 2019, Sunway College Malaysia adopted facial 

recognition technology in their campus library. Faces of library users are scanned 

and verified whether he/she is authorized user at the entrance and exit of library. 

Comparing to commonly used methods like ID checking and barcode scanning, the 

fast and accurate facial recognition saves up time and helps to prevent identity fraud. 

(Sunway Campus Library Adopts Facial Recognition Technology, 2018). 
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Proactive detection, an AI tool launched by Facebook (FB) starting from 

September 2018. The tool is used at detecting people who might be at risk of 

committing suicide without human’s report. Depending on severity, FB may pop 

messages or warnings to reach out to the person’s friends and helpline contacts. 

When forthcoming of self-harm is detected, FB may contact local authorities. (Card, 

2018). According to World Health Organization (WHO), death caused by suicide 

happens every 40 seconds. (Suicide data, 2019). From 1960s, the number of suicide 

cases of Malaysia has raised by 60 %, from information provided by Malaysian 

Psychiatric Association. (Dudley, 2018). With this tool, the lives can be saved as 

quickly as possible.  

Figure 1.1 A Sunway College student using facial recognition system 

(Sunway Campus Library Adopts Facial Recognition Technology, 2018). 

Figure 1.2 Prompts on suicidal post (Card, 2018) 
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How is AI developed? The answer is Machine Learning (ML). ML is the art 

of making computers to learn by itself, without being explicitly taught or instructed. 

Two definitions of ML are introduced. Arthur Samuel described ML as: "the field of 

study that gives computers the ability to learn without being explicitly programmed." 

(Samuel, 1959). After several decades, Tom Mitchell gave a more particular 

statement: “A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E." (Mitchell, 1997). For example in 

predicting the probability of raining in Kuala Lumpur, 

 

E = the past records of rain in Kuala Lumpur 

 

T = the temperature of Kuala Lumpur 

 

P = the probability that Kuala Lumpur will rain 

 

In general, machine learning algorithm can be assigned to one of two broad 

classifications: supervised learning or unsupervised learning. 

 

For supervised learning, the data set is well-labelled. The computer learns 

from the data set and make prediction on new examples, these processes are referred 

as training and inferring respectively. Supervised learning is further divided into 

“regression” and “classification”. Regression gives predictions of continuous value 

while classification gives predictions of discrete value. An example of regression is 

age prediction because age is continuous value instead of just ‘yes’ or ‘no’ answer. 

For classification, the example would be gender classification, the output of gender 

classification is discrete with just two values, either male or female.  

 

Unsupervised learning is used to find implicit relations from an unlabelled 

data set. The structure of data set would be derived by clustering. For example, given 

a data set of humans with different races, they would be automatically sorted by skin 

colours, facial features, clothing and so on. Unsupervised data can be used on the 

field where the effect of its variables is not well-understand yet, for example, 

biological data analysis. The structures of brain tumours and neural networks were 



4 

able to be detected using unsupervised learning. (Chien-Chang Chen, Hung-Hui Juan, 

Meng-Yuan Tsai & Henry Horng-Shing Lu, 2018). 

  

ML can be applied through different types of model, for examples, artificial 

neural network (ANN), Bayesian networks, support vector machines (SVM), and etc. 

ANN is the most popular machine learning model nowadays. ANN has the similar 

structure with biological neural network that constitutes animal brain. ANN is 

formed by interconnected artificial neurons. The connections between neurons act 

like biological synapses, to transmit signal from one neuron to another. Neurons 

could be activated by input signal. The behaviour of neurons is controlled by each 

activation function. Some common activation functions are Rectified Linear Unit 

(ReLU), step function, sigmoid function, tanh function and linear function.  

 

ANN has many variants and convolutional neural network (CNN) is one of it. 

CNN is generally used for image classification.  

Figure 1.3 Structure of ANN 

Figure 1.4 Structure of CNN (joshinishant2305, 2018). 
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CNN consists of four types of layer: firstly, convolution layer, secondly, 

ReLU layer following by pooling layer and fully connected layer. Convolutional 

layers are core layers that handle most computational tasks. It reads image spatially 

into width, height and depth. Width and height refer to the dimension of image while 

depth refer to the colour channels of the image. The depth has a size of 3 to cover all 

three colour channels which are red, green and blue. ReLU layers are actually layers 

of activation function, in these layers, the negative values of the images are 

suppressed and left only positive values. Pooling layers are used progressively 

reduce the size of samples to prevent overfitting. Overfitting refers to the amount of 

data is too much for a model could handle. Fully connected layers are layers where 

every neurons are interconnected. The function of fully connected layers is to 

generated desired amount of outputs. For CNN, input layer is often followed by 

convolutional layers lining with ReLU layers and pooling layers. Fully-connected 

layers are lastly added. 

 

1.2 Importance of the Study 

 

The limited performance of embedded system on deploying machine learning 

applications has been overcome by using NCS. A real-time cloud-based security 

system is built on embedded platform with machine learning algorithm, and its end-

to-end performance is analysed. This system detects human using machine learning 

algorithm and records when human is detected. As an implementation of IoT, this 

system alerts clients through Internet Protocol (IP) messaging apps and uploads 

Figure 1.5 ReLU Function 
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video clips to cloud for further retrieval. Existing literature generally analyse the 

performance of machine learning system regarding to detection accuracy and 

inference time, not the overall process including push notifications. In real-time 

applications, time has to be critically controlled in order to guarantee outcome within 

short time. In this project, performance of the proposed system is completely studied 

on speed, accuracy, real-time stability and video quality.  

 

1.3 Problem Statement 

 

Current IP camera is likely to raise false alarm in the event of brightness change, 

curtain flapping, pet running and etc. of curtain/kids and require huge storage for 

footage as the camera is recording at all the time. This project aims to reduce false 

alarm and shorten the length of video using machine learning algorithm. IP camera is 

best to be small in size, providing satisfactory performance and affordable in prices. 

CNN is usually utilized on home computer (PC) or portable computer (laptop) as it 

requires lots of computational power. Overcoming hardware constrains, a CNN 

application on a single-board computer which is small in size and low-power is 

required to build.   

 

1.4 Aims and Objectives 

 

 To create a smart security system using machine learning at least hardware 

and affordable price 

 To integrate suitable machine learning model with camera and single-board 

computer 

 To study end-to-end performance of the system 

 

1.5 Scope and Limitation of the Study 

 

The time performance – frame per second (fps) of the system is successfully 

improved to 3.5 which is 70 times of its original performance. Due to hardware 

limitations, the system is unable to achieve the same fps as what a laptop does.  
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1.6 Contribution of the Study 

 

This project makes the following contributions: 

 A cloud-based real-time smart security system was built at least hardware and 

affordable price 

 End-to-end performance of smart security camera system is evaluated in 

terms of time required, accuracy, real-time stability and video quality. 

 Use readily available machine learning model, less training overhead 

 

1.7 Outline of the Report 

 

This report covers a total 5 chapters of the following:  

 
1. Chapter 1: Introduction  

2. Chapter 2: Literature Review  

3. Chapter 3: Methodology and Work Plan  

4. Chapter 4: Results and Discussion  

5. Chapter 5: Conclusion and Recommendations 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

 

In this chapter, famous examples of CNN architecture are introduced. In addition, the 

applications in relevant fields such like surveillance camera, object detection, 

machine learning and etc., are discussed.   

 

2.2 Famous CNN architectures 

 

In this section, the neural network architectures and their remarkable achievements 

on computer vision in recent years are analysed.  

  

The paper titled “ImageNet Classification with Deep Convolutional Networks” 

published at Neural Information Processing Systems Conference 2012 cited for 

26900 times, is considered as one of the must-read papers for beginners to deep 

learning. It can be said that the trend of deep learning had been brought up by this 

paper during year 2012. The CNN named AlexNet published in this paper had won 

2012 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) with its 14.5 % 

top-5 error rate. Top-5 error rate refers to the rate that first five predictions of model 

are all wrong. AlexNet is a CNN trained on 15 million labelled images of over 22000 

categories. In this paper, architecture of AlexNet is discussed. (Alex Krizhevsky, 

2012). 
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There are five convolutional layers and three fully-connected layers in 

Alexnet. The second fully-connected layer which is also the output layer is connected 

to a 1000-way softmax regression because the network is purposed to classify 1000 

objects. Softmax regression as known as multinomial logistic regression is a 

classification method that handle outputs of multiple classes. The training of network 

was done on two GTX 580 Graphic Processor Units (GPU) using five to six days. 

The GPUs do not communicate at all layers but only at certain layers for example in 

third convolutional layer and fully-connected layers. This is the reason why the 

network architecture is split into two pipelines. This helps to achieve good 

performance as communication overhead is kept low. The training time is 

successfully decreased with the use of non-saturating ReLU activation function 

which is several times faster than tanh function and sigmoid function. The data 

augmentation and dropout technique are introduced in this paper to reduce overfitting. 

Data augmentation is an image processing technique including image translations, 

horizontal reflections and patch extraction. Dropout is a technique that sets output of 

random neurons to zero such that complex co-adaptions of neurons are reduced. 

Dropout was applied at the first two fully-connected layer. Without dropout, 

substantial overfitting would have occurred in the network. However, drop out 

doubles the number of iterations required to converge. In this paper, it is shown that 

CNN is capable of achieving high accuracy and short training time in computer 

vision. (Alex Krizhevsky, 2012). 

 

Figure 2.1 Architecture of AlexNet (Alex Krizhevsky, 2012). 
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 CNN had successfully grabbed everyone’s attention since its success in 2012. 

In 2013, ILSVRC is won by convolutional neural network again. With top-5 error 

rate of 11.2%, ZFNet had defeated other opponents. ZFNet is a convolutional neural 

network built by Matthew Zeiler and Rob Fergus from New York University. The 

network is published through a paper titled “Visualizing and Understanding 

Convolutional Neural Networks” by them in 2013. The architecture of ZFNet is 

similar to AlexNet. It is a fine-tuned version of AlexNet. (Fergus, 2014). 

 

 

Figure 2.2 Architecture of ZFNet (Fergus, 2014). 

 

Similar to AlexNet, it consists of five convolutional layers and three fully-

connected layers. Minor modifications are made on first layer, 11x11 sized filters are 

used in Alexnet while 7x7 sized filters are used in ZFNet. The reason to decrease 

size of filter is to capture more original pixel information of input image. 

Deconvolutional network is proposed in this paper. Deconvolutional network does 

the opposite of convolutional layer; it maps features to pixel. By using this technique, 

the problems and inner activities such as feature evolution during training and feature 

invariance are illustrated and thus the network become easier for debugging and 

improvement. In this paper, the Alexnet is remodelled to have higher performance. 

Detail explanations on how a CNN works, which was a limited knowledge 

previously, are provided. The useful technique to visualise inner activities of CNN is 

revealed. This has helped in future improvements of CNN; CNNs are able to be 

adjusted based on inner activities to obtain better performance. In addition, ablation 

study to investigate performance contribution of different model layers is carried out. 

It is also revealed that the minimum depth of the network is vital to the performance 

of model. (Fergus, 2014). 
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There is another remarkable paper titled “Very Deep Convolutional Networks 

for Large-scale Image Recognition”. This paper is said remarkable because it 

proposed a concept that CNN have to be deep and simple. In this paper, the 

performance of CNN is manipulated by the depth of network while other parameters 

remained constant. 3x3 sized filters are used in convolutional layer while 2x2 sized 

filters are used in pooling layer. In such condition, two convolutional layers can 

produce effective receptive field equally to single 5x5 filter. An effective receptive 

field of a 7x7 filter can be made when connecting three convolutional layers. The 

benefit of using multiple layers of 3x3 filter instead of one 5x5 or 7x7 filter is the 

output of model is more discriminative. The size of filters could be remained with the 

increase of depth of network by adding more convolutional layers.  (Karen Simonyan, 

2015). 

 

 

Figure 2.3 Architecture of VGG Net (Karen Simonyan, 2015). 

 

The proposed CNN in this paper is VGG Net. Total six configurations of 

VGG Net are compared. Configuration D of total 16 layers has acquired the best 
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performance with top-5 error rate of 6.8 % among six configurations. In this paper, 

the importance of depth of CNN in computer vision is presented. A simple yet 

effective CNN architecture is introduced; the size of filters is kept constant and the 

only parameter to control is number of convolutional layers. However, the drawback 

is longer training time required, VGGNet consists of 138 million parameters, and it 

took 2 to 3 weeks to train on 4 Nvidia Titan Black GPUs. (Karen Simonyan, 2015). 

 

When the simplicity of CNN architecture is the main stream, the winner of 

ILSVRC 2014, GoogLeNet from Google held the different point of view. 

GoogLeNet impressively won the competition at the top-5 error rate of 6.67% which 

is very close to or even exceeds human level. To measure the performance of 

GoogLeNet, organisers of ILSVRC invited an artificial intelligence expert, Andrej 

Karpathy, to challenge the same image classification task given to GoogLeNet. 

Everyone might think that human accuracy would be 100 %, however, it is not due to 

limitations of memory, knowledge and cognitive ability. After few days of training, 

Andrej Karpathy achieved a top-5 error rate of 5.1 %. This had proven that the 

performance of GoogLeNet is close to human in object classification. GoogLeNet 

was published in the paper titled “Going Deeper with Convolutions”. The 

architecture of GoogLeNet is complex and deep. Inception module was first 

introduced in the paper. (Christian Szegedy, 2015). 

 

 

Figure 2.4 Architecture of Inception Module (Christian Szegedy, 2015). 
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 The architecture of inception module is shown in Fig. 2.4. Inception module 

consists of six convolution layers of different sizes and one max-pooling layer. The 

reason of using different sizes of convolution layers is to extract pixel information in 

a more completed attitude. The max-pooling layer helps in lowering the size of 

samples and thus solves overfitting. Inception module is able to perform tasks of 

multiple layers in parallel therefore the computational time can remain efficient. 

GoogLeNet consists of 9 inception modules and the depth of whole network is about 

100 layers. To improve computational efficiency, fully-connected layer is rarely used 

in GoogLeNet as fully-connected layer consumes huge number of parameters. Fully-

connected layers are removed from the main trunk of network and could only be 

found in side branches. This paper has proposed novel architecture idea that connects 

the essential layers in the form of module.  (Christian Szegedy, 2015). 

 

 CNN is good for image and video processing. When it comes to text and 

speech processing, recurrent neural network (RNN) is an ideal choice. Combining 

both CNN and RNN, a model that able to generate multiple natural language 

descriptions and object classifications is proposed. (Andrej Karpathy, 2017). 

 

Figure 2.5 Concept Figure of Proposed Model (Andrej Karpathy, 2017). 
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Fig. 2.5 shows concept figure of the model, each object in the figure is 

classified and labelled with natural language descriptions. The natural language 

description is realised by setting short sentences as weak labels corresponding to 

unknown segments of the image. The function of CNN is to infer the alignment 

between sentences and the region of object. While multimodal RNN is used to 

produce object descriptions in text. In training phase, a set of images labelled with 

short descriptions is used as input. Multimodal embedding in deep learning refers to 

the mixture of different types of media. The results generated by the model are used 

for training data for the second model which learns to generate object descriptions. 

This paper is impressive as the application is a combine of computer vision and 

natural language processing. (Andrej Karpathy, 2017). 

 

2.3 Relevant Applications 

 

In this section, the applications related to object classification and detection are 

discussed. In the paper titled “Automatically Identifying, Counting, and Describing 

Wild Animals in Camera-Trap Images with Deep Learning”, a smart camera with 

animal identification, counting and behaviour describing functions is proposed. 

Motion-sensored cameras are widely used in wildlife conservation. Motion-sensored 

cameras are usually installed in the habitats of wildlife to observe their living habits 

and perform population count. Information in the captured images is required to be 

manually extracted by human which is very time-consuming. Implementing deep 

neural network, valuable information can be automatically extracted. In this paper, 

machine learning models which recognise 48 wildlife species are trained with 

different types of CNN. Figure 2.6 shows brief introduction of CNN used in this 

paper. (Mohammad Sadegh Norouzzadeh, 2018). 
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There are total 9 models trained. Four of the models are trained on AlexNet, 

NiN Net, GoogLeNet while the rest of five were trained on ResNet with different 

numbers of layer. The 9 trained models are gathered to form an ensemble model, by 

doing so, the accuracy of prediction is improved. Benchmarking on the expert-

labelled test images set, the ensemble model has shown a 99.1 % of top-5 accuracy. 

For single model, ResNet-152 trained model has achieved the best performance by 

having top-5 accuracy of 98.8 %. Fig. 2.7 shows the predictions of the model. The 

left figure was predicted correctly while the right figure was given a wrong 

prediction. The animals of right figure were too far from camera and made 

classification difficult. (Mohammad Sadegh Norouzzadeh, 2018). 

Figure 2.6 CNN used in producing species-recognising machine learning model 

(Mohammad Sadegh Norouzzadeh, 2018). 

Figure 2.7 Prediction Results (Mohammad Sadegh Norouzzadeh, 2018). 
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The drawback of this model is that multi-species detection is not available. 

When there is more than one species on screen, only one species can be recognised. 

This paper has demonstrated how deep learning helps in wildlife conservation. 

Cameras with animal classification and behaviour description function has eased the 

process of analysing photos; the labour cost and time cost are greatly reduced. 

(Mohammad Sadegh Norouzzadeh, 2018). 

 

Another application of smart camera is car park occupancy detection system. 

The paper title is “Car Parking Occupancy Detection Using Smart Camera 

Networks and Deep Learning”. The car parking occupancy detection system is 

designed to run real-time occupancy detection using CNN and Raspberry Pi Camera 

Module on Raspberry Pi. Ground sensors are widely used in parking occupancy 

detection system, however, it requires lots of human effort to install and maintain 

quality of every sensor. This parking occupancy detection system has addressed the 

problem, it can simultaneously monitor 50 parking lots using one camera. The 

datasets use in model training and testing are created by themselves. The datasets 

contain images of car park taken from different points of view under various light 

conditions. The datasets are made public such that science community working on 

car parking occupancy detection system could use. Two CNNs are used in training 

the model; one is mLeNet while another is mAlexNet. The ‘m’ stands for mini. Fig. 

2.8 shows the architecture of both CNN. (Giuseppe Amato, 2016). 

 

 

Figure 2.8 Architecture of mLeNet and mAlexNet (Giuseppe Amato, 2016). 
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Figure 2.9 shows the performances of different CNNs under single camera 

and multiple cameras while A and B represent different data sets.  

 

The performance of mAlexNet model is better than mLeNet model. Accuracy 

of mAlexNet model has achieved a maximum of 99.6 % in single camera scenario 

and 90.7 % in multi-camera scenario.  (Giuseppe Amato, 2016). 

 

Figure 2.10 Performance of mAlexNet model and Radian Basis Function Kernel 

models  (Giuseppe Amato, 2016). 

 

 

 

Figure 2.9 Performance of mLeNet and mAlexNet under different scenarios 

(Giuseppe Amato, 2016). 
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The performance of mAlexNet model is compared to other type of model 

instead of CNN model.  The compared model is trained on radian basis function 

kernel which is a commonly used function in support vector machine classification. 

From the table, it can be seen that CNN has significantly defeated radian basis 

function kernel in capability of detecting occupancy. This paper highlights how 

capable is CNN in real life application. Contrasting with other method like using 

ground sensors or other mathematic algorithm, CNN still performs the best. 

(Giuseppe Amato, 2016). Unfortunately, the statistic of time of the car park detection 

system is not shown in this paper.  

 

2.4 Summary 

 

The literature of CNN applications are usually focusing on comparing 

accuracy of several CNN model while timing performance is barely mentioned.   
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

 

In this chapter, the components and equipment used in this project are introduced. 

The methods are introduced stage by stage.  

 

3.2 Equipment required 

 

This is a brief introduction on equipment used in this project, both hardware and 

software. The hardware required are Intel Movidius Neural Compute Stick (NCS), 

Raspberry Pi Zero W, laptop and Raspberry Pi Camera Module. The software 

required are Ubuntu 16.04 Operating System, Raspbian Operating System, Software 

Development Kit for NCS (NCSDK), OpenCV, Caffe, Telegram and Google Drive.  

 

Intel Movidius Neural Computer Stick is a deep learning hardware 

development platform consisting vision processing unit that allows the process of 

prototyping, tuning and deploying Convolutional neural network for real-time 

inferencing with low power consumption. With Intel Movidius Neural Computer 

Stick, the real-time inference time can be greatly scaled down to a few milliseconds. 

Loaded with example apps such as live-time image classifier, gender-age classifier 

and etc., it is suitable for beginner of deep learning application development. User 

can leverage the existing example applications and tune it to meet own requirements. 

Intel Movidius Neural Computer Stick is chosen for this project due to its low power 

consumption, convenient size, low price, and powerful performance on real-time 

inferencing and user-friendly. 
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Figure 3.1 Intel Movidius Neural Compute Stick Working Concept 

 

Raspberry Pi Zero W is a computer packed into a single board, it is very 

small in size compared to normal computer. Raspberry Pi Zero W supports Wi-Fi, 

Bluetooth and USB on-to-go. It can also work in companion with camera modules 

and micro SD card. It is ideal for this project due to its small size, low power 

consumption, low cost and complete function. 

 

Raspberry Pi Camera Module is designed for Raspberry Pi. There are 

different version of Raspberry Pi Camera Module with different resolutions. The 

resolution of camera used in this project is 5 Megapixel (MP). It has still picture 

resolution of 2592 x 1944 and supports video recording at 1080p at 30fps. 

 

Raspbian is the optimized operating system of Raspberry Pi. It is Debian-

based as known as Unix-like operation system. Raspbian without graphical interface 

uses a command line interface named Unix-shell. Bash language is the command 

language used in Unix-shell. Ubuntu is a widely used free open source operating 

system. It is chosen because it is same Debian-based like Raspbian. High similarity 

of operation systems allows the project to go more conveniently.  

 

NCSDK is a software environment for NCS to be deployed. Currently, it only 

supports two operation system - Ubuntu 16.04 and Raspbian Stretch. It consists of 

some basic machine learning applications which allows user to further deploy.  

 

OpenCV is a machine learning library consisting functions for real-time 

computer vision such as frame capturing, image processing and etc.   
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The deep learning framework used in this project is Caffe. Caffe is originally 

developed by Berkeley Vision and Learning Center (BVLC) and dedicated 

contributors. It is written in C++ and it supports Python. Caffe is used in this project 

because Caffe is developed for image classification purpose; it is widely used in 

computer vision. In addition, Caffe consists of many pre-trained models with many 

types of neural networks allowing user to deploy models without writing any script. 

Users can just edit the existing configuration files. This feature is useful for fine-

tuning existing network.  

 

Telegram is an open source messaging and voice over IP apps which can be 

configured in Unix-based operation system.  

 

Google Drive is an online data storing service for user to save files on their 

servers. One of the advantage of Google Drive is that users are allowed to access 

their files across many types of device. Customized solutions are designed to make 

Google Drive compatible with most of the OS and devices.  

 

3.3 Installation of Operation System (OS), Software and Dependencies 

 

The version of Raspbian OS installed is 2018 Raspbian Stretch Lite. This lite version 

does not have graphical interface, it is much smaller than normal version. The size of 

lite version image is 1.8 GB while the size of normal version image is 4.8 GB. After 

OS installation, Wi-Fi and Secure Shell Protocol (SSH) connection have to be set up. 

With SSH, the Raspberry Pi Zero W can be accessed by any devices wirelessly 

connected to the same local network. All of the following tasks are done through 

SSH. Next, Software Development Kit for NCS (NCSDK) is installed. NCSDK is a 

software environment for NCS to be deployed. The installation of NCS includes the 

installation of machine learning framework and library such as Caffe and OpenCV. 

Then, Telegram and Google Drive are installed and set up in Raspberry Pi Zero W.  
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3.4 Machine Learning Model Selection 

 

The machine learning model selected for this project is MobileNet-SSD caffemodel 

trained by a Github user named chuanqi305. (chuanqi305, 2017) The MobileNet-

SSD model is trained on MS-COCO datasets and then fine-tuned on VOC0712. It 

has a mean average precision (mAP) of 0.727. Caffe is a framework for 

convolutional neural network training. (Center, 2015) Caffemodel is machine 

learning model that trained with Caffe framework. MobileNet-SSD is formed by a 

base network - MobileNets and an object detection framework – SSD (Single Shot 

Multibox Detector). Base networks are usually trained for classification on huge 

image dataset. ILSVRC is an annual competition for base networks. The examples of 

base networks include AlexNet, GoogLeNet, VGGNet and etc. Object detection 

frameworks are algorithms to find the bounding boxes of objects in images. Object 

detection frameworks cannot work on their own, they must be combined with base 

networks. RCNN, SSD, YOLO are famous object detection frameworks. MobileNets 

is a class of computer vision models which are released by Google at 2017, they are 

designed to allow the use of convolutional neural network on embedded devices or 

mobile phones. Object recognition is highly dependent on computational power of 

the platform, platform with weak computational power would cause the object 

recognition to be slow or not accurate. The publishing of MobileNets have addressed 

the problem. MobileNets is a group of low-power, small-size, and low-latency 

models parameterized to suit a variety of use cases on limited resources. Like other 

large scale models (e.g. Inception), MobileNets can be developed for classification, 

detection, embeddings and segmentation. (Andrew G Howard, Menglong Zhu, Bo 

Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, 

Hartwig Adam, 2017). SSD is an object detection network proposed by Google at 

2016. It detects object at an easier, faster and more accurate way. SSD takes one 

single shot to detect multiple objects within the image while another popular object 

detection framework, Faster-RCNN, requires two shots. Faster-RCNN is RPN 

(Region Proposal Network)-based network, the algorithm of RPN in object detection 

is to generate region proposal at first shot then detect the object in each proposal at 

the second shot. SSD eliminates the step of generating region proposal and 

subsequent step of resampling and encapsulation of pixel. SSD makes prediction at 
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one shot. SSD produces a collection of fixed-size bounding boxes and object 

prediction scores for each boxes following by non-maxima suppression to remove 

duplicated predictions describing the same object. Not only RPN-based network, 

SSD also outperforms the previous most recent single shot detection network, YOLO. 

The following table shows a comparison on performances of SSD, Faster R-CNN 

and YOLO. The mean average precision is measured on VOC2007 data set. 

 

 SSD Faster R-CNN YOLO 

fps 59 7 45 

Mean average precision (mAP) 74.3 % 73.2 % 63.4 % 

Table 3.1 Comparison on SDD, Faster-RCNN and YOLO on fps and mAP 

 (Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, 

Cheng-Yang Fu, Alexander C. Berg, 2016) 

 

Combining MobileNets which is suitable for embedded devices and SSD 

which currently is the best object detection framework, MobileNet-SSD has become 

a fast, powerful deep learning-based method for real-time object detection.  

 

3.5 Integration of Camera, Machine Learning Model and NCS 

 

The script that used to integrate camera, machine learning model and NCS is written 

in Python. Flowchart of the python script is shown in Fig. 3.2. It can be seen as two 

parts. One is main loop part, another is video recording part. The main loop part 

consists of two functions –image processing and inference. The camera is capturing 

frame continuously. The captured frame is resized and sent for mean subtraction and 

scaling. The new size of frame depends on the type of network. For the case of 

MobileNet-SSD, the required size of input image is 300 x 300. Mean subtraction and 

scaling is used to centre the image. After image processing, the frame is ready to be 

sent for inference. For the case of using NCS, the inference is done by using graph 

file. Graph file is a file that converted from the caffemodel and it is compatible with 

NCSDK. Instead of using recording function of OpenCV, the video is saved frame 

by frame. This is because this function is blocking function, once using it, it is unable 

to proceed to next inference. If person is detected, the frame is saved to buffer. If the 
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person left, the consecutive frames is still being saved for a period of time. When the 

length of consecutive frames has reached expectation, those frames are saved as 

video file and uploaded to Google Drive. ‘q’ is the quit button which can be pressed 

to stop the system.   

 

The system can run without NCS, a little modifications on python scripts are 

needed. When NCS is not used, the inference is done by directly using the 

caffemodel and prototxt. As mentioned above, caffemodel is the machine learning 

model trained using Caffe framework. While prototxt is the human-readable file 

describing network architecture of the machine learning model. The flowchart is 

presented in Fig. 3.3. 

 

Figure 3.2 Flowchart of the system (with NCS) 
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3.6 Measurement of different stages of time 

 

The average runtimes of each of the following processes are taken: 

  

 Camera Read – to capture image  

 Image Process – to resize and centre the image 

 Loop – to finish processing and infer one frame 

 Inference – to perform object detection 

 

    The readings are averaged from running 5000 loops at each of the following 

platforms: 

 

 laptop 

 laptop + NCS 

 Raspberry Pi Zero W 

 Raspberry Pi Zero W + NCS 

 

 

3.7 Measurement of precision and recall 

 

Precision and recall are a measure of correctness of prediction for data set with 

imbalanced classes. Precision refers to the correct prediction within returned results. 

Figure 3.3 Flowchart of the system (without NCS) 
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Recall refers to the ability of model to return results. Precision and recall are 

represented as: 

 

Equation 3.1 Precision 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Equation 3.2 Recall 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where 

TP = true positives, 

FP = false positives, 

TN = true negatives, 

FN = false negatives. 

 

      To obtain precision and recall, a data set consisting at least 1000 samples of 

interested class and non-interested class is needed. (Md Modasshir, Alberto Quattrini 

Li, and Ioannis Rekleitis, 2018). Threshold value of the machine learning model is 

modified and thus changing the values of precision and recall. For the application 

with human-triggered recording, human is treated as interested class. 1000 samples 

consisting human and non-human are prepared. If a human was truly identified as 

human, it would be a true positive case. If a human was identified as non-human, it 

would be a false negative case. True negative case refers to case when a non-human 

was identified as non-human, while false positive case refers to a non-human was 

identified as human. By manipulating the threshold value, the values of precision and 

recall are obtained and plotted into a graph. 

 

3.8 Analysis of Video Quality  

 

Video quality is an important assessment for security camera because whether the 

details of detected person can be shown clearly in the footage or not is depending on 

it. Video quality can vary with compression method, type of camera, human and 

environmental factor causing camera shake and etc. Video quality is usually 
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evaluated by human perception, whether the video suits the human’s preferences in 

clearness, smoothness, size and etc. In a more scientific way, video quality can be 

evaluated through video quality analysis tool. The video quality analysis tool utilised 

in this section is MSU Video Quality Measurement Tool (VQMT) free version. 

VQMT free version provides several metrics measurements for low resolution video. 

Generally, metric measurements can be divided into two types – with reference and 

without reference. Metric measurements with reference requires at least two inputs to 

proceed, they are usually purposed to compare video quality before and after 

transmission. For examples, Peak signal to noise ratio (PSNR) and Structural 

similarity index (SSIM). Metric measurements without reference provide quality 

assessment for single video. The metric measurements without reference include 

blocking, blurring, brightness flicking, frame drop and etc. 5 HEVC-compressed 

video clips and 5 MPEG-4 compressed video clips each containing 100 frames are 

evaluated under both metric measurements without reference including blocking, 

blurring, brightness flicking and frame drop and metric measurements with reference 

including PSNR and SSIM. MPEG-4 and HEVC are known as H264 and H265 

respectively.  

 

HEVC is the successor of MPEG-4. In comparison of data compression, 

HEVC has 25% to 50% higher data compression rate at the same level of video 

quality than MPEG-4. (H265, 2019). Currently, MPEG-4 is the most widely adopted 

video compression standard in digital video compression. Its applications include 

HDTV broadcasting, normal internet streaming, video compression in Blu-Ray disc 

and etc. HEVC is not popular yet although it had been released at 2013. (Philippo, 

2018). The reason of this is that, HEVC has a few patent pools with different pricing 

and terms & conditions while MPEG-4 has only one patent pool. This has leaded to 

unclarity and confusion to consumers and resulted in no support or partly support by 

major browsers. (Lloyd, 2018). The emergence of new codec, AVI, which is created 

by Alliance for Open Media has become a strong competitor of HEVC. Alliance for 

Open Media is a non-profit organization co-founded by Google, Amazon, Netflix, 

Microsoft, Intel, Cisco and Mozilla. AVI is royalty free and supported by major 

browsers like Chrome, Firefox, Edge and Safari.  
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CHAPTER 4 

 

4 RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

 

In this chapter, the results are presented and discussions are made based on the 

results.  

 

4.2 System Overview 

 

 

Figure 4.1 Block Diagram 

 

Fig. 4.1 shows the block diagram of a cloud-based security system which detects 

human and records video only if human is detected. At the moment a person is 

detected, notification is sent to client through Telegram. The system keeps recording 

until the person left. Footage is uploaded immediately after the recording ends. The 

client is able to retrieve the footage at Google Drive. The equipment used and their 

roles and relationships are shown. The system are formed by Raspberry Pi Zero W, 

NCS and Raspberry Pi Camera Module. Raspberry Pi Zero W acts like the “brain” of 

the system which controls and processes all signal to or from its peripheral devices. 
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NCS consists of vision processing unit which helps in accelerating the inference of 

neural networks. Pi Camera Module is an input device which captures image.  

 

Work flow of the system can be explained starting from a frame captured by 

the camera module. Once the frame is captured, Raspberry Pi Zero W reads the 

frame from the camera module. The frame is then be processed by Raspberry Pi Zero 

W using OpenCV. The processes include resize, mean subtraction and scaling which 

are purposed to shape the frame into suitable size and center the data. The processed 

frame is loaded to NCS for inference. The inference is done in NCS and the results 

are returned to Raspberry Pi Zero W. Raspberry Pi Zero W analyzes the returned 

results, and decide whether to take any further actions like saving frames into video, 

sending notifications and uploading video clips.  

 

 

Figure 4.2 Prototype 

 

The prototype is presented in Fig. 4.2. Dimension of the prototype is less than 10cm 

x 5cm x 5cm. This system is small in size which allows it to be conveniently placed 

at any flat surfaces or mounted on wall.   
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4.3 Timing Analysis 

 

 
Camera Read (s) Image Process (s) Inference Time (s) Loop Time (s) 

Raspberry Pi 1.162 × 10-4 1.121 × 10-1 1.732 × 10 1.743 × 10 

Raspberry Pi + NCS 5.966 × 10-4 2.450 × 10-1 7.996 × 10-2 2.867 × 10-1 

Laptop 5.155 × 10-6 4.509 × 10-3 1.197 × 10-1 2.207 × 10-1 

Laptop + NCS 1.652 × 10-5 2.690 × 10-2 8.045 × 10-2 2.022 × 10-1 

Table 4.1 Different stages of time on different platforms 

 

Figure 4.4 Different stages of time on Raspberry Pi with NCS 
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Figure 4.3 Different stages of time on Raspberry Pi 
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Figure 4.6 Different stages of time on laptop with NCS 

 

In the cases without NCS, time spent on inferring a frame occupied the most of loop 

time. On Raspberry Pi, the inference time occupies almost 99.33 % of loop time. On 

Laptop, the inference time occupies almost 54.26 % of loop time. It is concluded that 

inference time affects loop time significantly. As the video is saved frame by frame 

in every loop, the loop time also indicating the frame could be saved in a period of 

time. Hence, inference time is the decisive factor on quality of video, the more the 

frames could be saved, the better the quality of video. Comparing the overall 

readings for cases of Raspberry Pi and Raspberry Pi with NCS, it can be seen that 

there is a great difference in inference time. The inference time after using NCS has 
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Figure 4.5 Different stages of time on laptop 
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shorten 17.24 s compared to case of just using Raspberry Pi. The inference time is 

also found shorten 0.039 s after using NCS on laptop. Comparing the performance of 

Raspberry Pi and Laptop, Raspberry Pi has longer camera read time, image process 

time and loop time than laptop. This is because the processor of Raspberry Pi is less 

powerful than laptop’s. With the use of NCS, Raspberry Pi can achieve almost same 

loop time with laptop – 0.29 s on Raspberry Pi + NCS vs 0.22 s on laptop vs 0.20 s 

on laptop + NCS. In short, NCS can greatly improve the performance of embedded 

system with weak computational power.  

 

4.4 Precision and Recall 

 

 

Table 4.2 Value of precision and recall at different threshold levels 

 

Using 1000 samples of human and non-human, 500 for each category. The number 

of TP, FP, TN and FN at threshold levels of 0.1 to 0.9 are recorded. Precision and 

recall are calculated using Eqn. 3.1 and Eqn. 3.2. It is found that with the increment 

of threshold level, the precision increases while the recall decreases. A system with 

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Precision 0.936345 0.936475 0.941053 0.946309 0.949339 0.955711 0.958128 0.971279 0.976744 

Recall 0.912 0.908549 0.894 0.862 0.846 0.82 0.778 0.744 0.672 
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Figure 4.7 Precision-recall curve 
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higher recall and lower precision returns greater number of results with lower 

credibility. Oppositely, a system with higher precision and lower recall returns very 

few number of results with high credibility. An ideal system should have balanced 

value of precision and recall such that it returns optimum amount of results with high 

correctness. Threshold level shall be adjusted to achieve this. From Table 2, it can be 

concluded that 0.6 is the optimum threshold level because from 0.5 to 0.6, there is a 

large increment in precision (0.006) with a little sacrifice of recall (0.026).      

 

4.5 Real-time performance 

 

4.5.1 Stability of the system  

 

 

Figure 4.8 Person detected at low light condition 

Figure 4.9 Person undetected but caught by camera 

at low light condition 
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Figure 4.11 Person detected at medium bright 

condition 

Figure 4.10 Person detected at extreme bright 

condition 

Figure 4.12 Notifications 

received by owner 
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If a system does not have consistent performance, the system is useless. To evaluate 

the stability of our system, the system was placed in a room under different light 

conditions. The system was able to run smoothly most of the time. Humans were 

able to be detected and notifications were sent instantly. The system was found 

possible to crash when there was no enough resource on Raspberry Pi Zero W. The 

feature of extended recording was able to record the full scene even the person was 

blur and undetected during bad lightning.  

 

4.5.2 Efficiency of the system 

 

Measured under Internet speed of 180 Mbps, the average video upload speed is 

155.55 kb/s. The average time spent to send a notification is 0.533 s. Speed of 

uploading video and sending notification is crucial when evaluating the performance 

of real-time system. In this application, the sooner the client receives notification and 

retrieves video, the faster the client can take action, the higher the chance to stop the 

unpleasant event from happening.  

 

4.6 Video Quality Analysis 

 

4.6.1 Video Quality Metrics without reference 

 

In this section, video quality metrics without reference of MPEG-4-compressed 

video and HEVC-compressed video are compared.  

 

 Blocking 

Metric 

Blurring Metric Brightness 

Flicking Metric 

Drop Frame 

Metric  

Video 1 18.4 0.0139 2.74 0 

Video 2 18.3 0.0141 6.50 0 

Video 3 17.2 0.0050 5.84 0 

Video 4 17.5 0.0179 0.40 0 

Video 5 16.4 0.0210 4.20 0 

Average 17.6 0.0143 3.936 0 

Table 4.3 Video quality metrics without reference (MPEG-4 compression) 
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 Blocking 

Metric 

Blurring Metric Brightness 

Flicking Metric 

Drop Frame 

Metric  

Video 6 16.4 0.0123 1.89 0 

Video 7 15.2 0.0259 1.25 0 

Video 8 16.6 0.0188 1.43 0 

Video 9 14.0 0.0279 0.35 0 

Video 10 13.8 0.0078 0.40 0 

Average 15.2 0.0185 1.064 0 

 

Table 4.4 Video quality metrics without reference (HEVC compression) 

 

 

Figure 4.13 Blocking metric of MPEG-4 and HEVC compressions 

 

 

Figure 4.14 Blurring metric of MPEG-4 and HEVC compressions 
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Figure 4.15 Brightness flicking metric of MPEG-4 and HEVC compressions 

 

 

Figure 4.16 Source 

 

 

Figure 4.17 Blocking metric visualisation 
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Blocking metric is a measure of blocking effect in a video. The blocking is 

more noticeable in smooth areas of the video comparing to contrast areas. 

Information in previous frame is required to achieve better accuracy in detecting 

blocking. Lower value of blocking metric indicates better quality of video. As shown 

in Fig. 4.13, HEVC-compressed video has lower blocking metric than MPEG-4-

compressed video. Hence, HEVC has better video quality in term of blocking.  

 

 

 

Figure 4.18 Blurring metric visualisation 

 

Blurring metric is measured by comparing two consequent frames. The more 

blurred frame gets lower score than the less blurred frame. Therefore, it is preferred 

to have higher value of blurring metric. In Fig. 4.14, it is shown that HEVC-

compressed video has higher value of blurring metric compared to MPEG-4-

compressed video. It is found that HEVC compression provides slightly clearer video 

than MPEG-4 compression.  
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Figure 4.19 Brightness flicking metric visualisation 

 

Brightness flicking metric is purposed to measure flicking rate of two 

consequent frames. Modulus of difference of average brightness of the frames is 

calculated. The larger the modulus the higher the brightness flicking between two 

frames. Brightness flicking can be seen as update of brightness. From Fig. 4.15, it 

can be concluded that the update of brightness in HEVC-compressed video is less 

than MPEG-4-compressed video. 

 

 

Figure 4.20 Drop frame metric visualisation 

 

Drop Frame Metric measures drop-frame in a video. There are two possible 

output of drop frame metric – zero or one. Zero indicates existing frame while 1 

indicates drop-frame. Both compression methods show a perfect result with zero 

frame-drop.  
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4.6.2 Video Quality Metrics with reference 

 

Reference 1 Reference 2 PSNR SSIM 

Video 1 Video 6 48.8 0.992 

Video 2 Video 7 50.9 0.998 

Video 3 Video 8 48.8 0.998 

Video 4 Video 9 49.0 0.996 

Video 5 Video 10 46.7 0.991 

Average 48.84 0.995 

 

Table 4.5 Video quality metrics with reference (MPEG-4 vs HEVC) 

 

In this section, HEVC-compressed video is used as first source while MPEG-4-

compressed video is used as second source for video quality metrics with reference. 

PSNR, SSIM and VQM of these two types of video will be measured.  

 

PSNR stands for “Peak Signal to Noise Ratio”, which is a ratio of the 

maximum signal over the mean-squared error between two references where these 

two references are usually formed by one original sample and one distorted or 

reconstructed sample. This ratio is usually used as the quality assessment between 

two images or videos. PSNR can be mathematically expressed as Eqn. 4.1. It can be 

seen that as the value of mean-squared error approaches zero, the value of PSNR 

approaches infinity. The larger the value of PSNR, the lower the mean-squared error, 

the higher the similarity between original and reconstructed sample indicating the 

better visual quality of distorted or reconstructed sample.  

 

Equation 4.1 Mean-squared error (MSE) 

𝑀𝑆𝐸 =
∑ ∑ [ 𝐼1(𝑚, 𝑛) −  𝐼2(𝑚, 𝑛)]2𝑁

𝑛=1
𝑀
𝑚=1

𝑀 × 𝑁
 

 

Equation 4.2 PSNR 

𝑃𝑆𝑁𝑅 = 10 log10

𝑅2

𝑀𝑆𝐸
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where 

I1 = first sample, 

I2 = second sample, 

M = number of rows of input images 

N = number of columns of input images 

R = maximum fluctuation in input image data type 

 

From Table. 4.5, the average PSNR of MPEG-4-compressed video and 

HEVC-compressed video is found to be 48.84. PSNR value does not have absolute 

meaning. It is used for comparison purpose.  

 

Structural Similarity Index as known as SSIM, is another standard in 

measuring image or video quality. Both PSNR and SSIM compare the similarity 

between two samples, however, they have different sensitivity varying with the 

format of samples. (Alain Horé, Djemel Ziou, 2010) Unlike PSNR which emphasizes 

on error of samples, SSIM tends to evaluate the quality of samples like human visual 

system (HVS) where distortion of luminance, distortion of contrast and loss of 

correlation will be considered. (Zhou Wang, Alan Conrad Bovik, Hamid Rahim 

Sheikh, Eero P. Simoncelli, 2004) SSIM is illustrated through Eqn. 4.3.  

 

Equation 4.3 SSIM 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦)𝑐(𝑥, 𝑦)𝑠(𝑥, 𝑦) 

 

Equation 4.4 Luminance comparison function 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 +  𝐶1

𝜇𝑥
2 +  𝜇𝑥

2 +  𝐶1
 

 

Equation 4.5 Contrast comparison function 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 +  𝐶2

𝜎𝑥
2 +  𝜎𝑥

2 +  𝐶2
 

 

Equation 4.6 Structure comparison function 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 +  𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
 



42 

 

where 

μx = mean intensity of sample ‘x’ 

μy = mean intensity of sample ‘y’ 

σx = standard deviation of intensity of sample ‘x’ 

σy = standard deviation of intensity of sample ‘y’ 

C1, C2, C3 = constant to avoid instability when denominator is close to zero  

The maximum value of SSIM is 1, and the minimum value of SSIM is -1, 

representing best quality and poorest quality respectively. As in Table. 4.5, the SSIM 

is 0.995, since video with MPEG compression is used as the second source, it can be 

explained that the quality of video with MPEG compression did not significantly 

drop in comparison with HVEC-compressed video. 

 

4.6.3 Feasibility in terms of size and compression time 

 

Comparing both standards, it is found that MPEG-4 is more feasible. The main 

reason that HEVC is less feasible is long encoding time. OpenCV does not directly 

support HEVC codec. (Getting Started with Videos, 2017) Therefore, it requires 

extra lines of code to convert the compression of video from MPEG-4 to HEVC 

format. Time taken for the conversion is extremely long because the conversion 

speed is low. It is found that the average conversion speed is 0.25 fps. This problem 

does not exist when using MPEG-4, because it is supported by OpenCV, the 

encoding is done along with OpenCV function - VideoWriter() without extra time.  

 

The advantage of HEVC over MPEG-4 is higher compression efficiency. The 

size of HEVC-compressed video is much less than MPEG-4-compressed video. For 

video length of 30 secs, the average size of HEVC-compressed video is 67 kb while 

for MPEG-4-compressed video is 211 kb. 68 % of video size is reduced when HEVC 

compression standard is used.    
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4.7 Summary  

 

In this chapter, the performance of the system is discussed and analysed in 

aspects of time, accuracy, real-time performance and video quality. Inference time is 

proven to be greatly reduced with the use of NCS. The optimum threshold level is 

0.6 where the values of precision and recall at that level are 0.9557 and 0.82 

respectively. The system is found to be stable enough for real-time application. 

When it comes to video quality, the video quality of MPEG-4-compressed video is 

slightly lower than HEVC-compressed video. However, MPEG-4 compression is still 

preferred because it is much more efficient in time.  
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

In conclusion, a smart security camera with human-triggered recording was built. 

The use of NCS and MobileNet-SSD machine learning model had made object 

detection on low-powered embedded platform possible. The time required for the 

system running on Raspberry Pi Zero W with NCS to capture, process and infer a 

frame was 0.29s. In other words, the timing performance of the system is 3.5 frames 

per second. The highest achieved precision is 0.9767 at threshold level of 0.9 while 

for recall is 0.912 at 0.1 threshold level. The final threshold level is set to be 0.6 to 

ensure high amount of results and high accuracy, balanced values of precision and 

recall are required. At threshold level of 0.6, the precision and recall are 0.9557 and 

0.82 respectively. For video compression method, it is found that MPEG-4 

compression is more suitable for this application as it is more efficient in time 

without significantly reducing video quality. Finally, this system is put to the 

practical test and found stable at most of the time.  

 

5.2 Recommendations for future work 

 

System fps is still very low compared to normal video recording. Future work shall 

be working on improvement of fps which is related to timing parameters studied in 

this paper i.e. camera read time, image process time, inference time and etc. In 

addition, the problem of long time spent on compressing video with HVEC codec 

shall be overcome such that compression codec of newer generation can be used 

without increasing burden on the system. This system can be further modified to be 

used for different purpose for example ATM monitoring, wild-life counting, traffic 

light signal control and etc.  
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APPENDICES 

 

APPENDIX A: Scripts 

 

Security Camera with NCS (Laptop and Raspberry Pi share the same script) 

#!/usr/bin/python3 
 
# **************************************************************************** 
# Copyright(c) 2017 Intel Corporation.  
# License: MIT See LICENSE file in root directory. 
# **************************************************************************** 
 
# Detect objects on a LIVE camera feed using 
# Intel® Movidius™ Neural Compute Stick (NCS) 
 
import argparse 
import cv2 
import numpy 
import ntpath 
import os 
import sys 
import select 
import time 
import telepot 
import upload 
import mvnc.mvncapi as mvnc 
from time import localtime, strftime 
from utils import visualize_output 
from utils import deserialize_output 
from imutils.video import VideoStream 
from kcw import KeyClipWriter 
 
# ---- Pre-start settings ----------------------------------------------------     
     
# "Class of interest" - Display detections only if they match this class ID 
CLASS_PERSON         = 15 
 
# Detection threshold: Minimum confidance to tag as valid detection 
CONFIDANCE_THRESHOLD = 0.60 # 60% confidant 
 
# Variable to store commandline arguments 
ARGS                 = None 
 
# OpenCV object for video capture 
camera               = None 
 
#Initialize global variable 
consecFrames=0 
 
#Initialize telegram pass token 
bot = telepot.Bot('625446283:AAGva0AVLPMYjCbOHbVlrImmVyjEdLihceQ') 
 
 
# ---- Step 1: Open the enumerated device and get a handle to it ------------- 
 
def open_ncs_device(): 
 
    # Look for enumerated NCS device(s); quit program if none found. 
    devices = mvnc.EnumerateDevices() 
    if len( devices ) == 0: 
        print( "No devices found" ) 
        quit() 
 
    # Get a handle to the first enumerated device and open it 
    device = mvnc.Device( devices[0] ) 
    device.OpenDevice() 
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    return device 
 
# ---- Step 2: Load a graph file onto the NCS device ------------------------- 
 
def load_graph( device ): 
 
    # Read the graph file into a buffer 
    with open( ARGS.graph, mode='rb' ) as f: 
        blob = f.read() 
 
    # Load the graph buffer into the NCS 
    graph = device.AllocateGraph( blob ) 
 
    return graph 
 
# ---- Step 3: Pre-process the images ---------------------------------------- 
 
def pre_process_image( frame ): 
 
    # Resize image [Image size is defined by choosen network, during training] 
    img = cv2.resize( frame, tuple( ARGS.dim ) ) 
 
    # Convert RGB to BGR [OpenCV reads image in BGR, some networks may need RGB] 
    if( ARGS.colormode == "rgb" ): 
        img = img[:, :, ::-1] 
 
    # Mean subtraction & scaling [A common technique used to center the data] 
    img = img.astype( numpy.float16 ) 
    img = ( img - numpy.float16( ARGS.mean ) ) * ARGS.scale 
 
    return img 
 
# ---- Step 4: Read & print inference results from the NCS ------------------- 
 
def infer_image( graph, img, frame ): 
     
    # Use global variable in local 
    global consecFrames  
    global updateConsecFrames 
    global cur_time 
 
    # Load the image as a half-precision floating point array 
    graph.LoadTensor( img, 'user object' ) 
 
    # Get the results from NCS 
    output, userobj = graph.GetResult() 
 
    # Get execution time 
    inference_time = graph.GetGraphOption( mvnc.GraphOption.TIME_TAKEN ) 
 
    #print(str(numpy.sum(inference_time))) 
 
    # Deserialize the output into a python dictionary 
    output_dict = deserialize_output.ssd(  
                      output,  
                      CONFIDANCE_THRESHOLD,  
                      frame.shape ) 
    # When no object is detected   
    if(output_dict['num_detections'] == 0): 
        updateConsecFrames=True 
        if kcw.recording: 
            kcw.update(frame) 
        if kcw.recording and consecFrames == ARGS.buffer_size: 
            kcw.finish() 
            upload.upload(cur_time) 
            os.remove(cur_time+'.avi') 
 
    # Print the results (each image/frame may have multiple objects) 
    for i in range( 0, output_dict['num_detections'] ): 
 
        # Filter a specific class/category 
        # When object detected is person 
        if( output_dict.get( 'detection_classes_' + str(i) ) == CLASS_PERSON ):  
            (y1, x1) = output_dict.get('detection_boxes_' + str(i))[0] 
            (y2, x2) = output_dict.get('detection_boxes_' + str(i))[1] 
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            # Extract top-left & bottom-right coordinates of detected objects  
            (y1, x1) = output_dict.get('detection_boxes_' + str(i))[0] 
            (y2, x2) = output_dict.get('detection_boxes_' + str(i))[1] 
 
            # Prep string to overlay on the image 
            display_str = (  
                labels[output_dict.get('detection_classes_' + str(i))] 
                + ": " 
                + str( output_dict.get('detection_scores_' + str(i) ) ) 
                + "%" ) 
 
            # Overlay bounding boxes, detection class and scores 
            frame = visualize_output.draw_bounding_box(  
                        y1, x1, y2, x2,  
                        frame, 
                        thickness=4, 
                        color=(255, 255, 0), 
                        display_str=display_str ) 
 
            consecFrames = 0 
            updateConsecFrames = False 
 
            if not kcw.recording: 
                cur_time = strftime( "%Y_%m_%d_%H_%M_%S", localtime() ) 
                print("person detected at " + str(cur_time)) 
                bot.sendMessage(749556817,"Person Detected at " + str(cur_time)) 
                cur_time = strftime( "%Y_%m_%d_%H_%M_%S", localtime() ) 
                kcw.start( cur_time + '.avi',fourcc,ARGS.fps) 
         
        # When object other than person is detected 
        else: 
 
            updateConsecFrames = True 
 
            if kcw.recording and consecFrames == ARGS.buffer_size: 
                kcw.finish() 
                print("video saved") 
                upload.upload(cur_time) 
                os.remove(cur_time+'.avi') 
         
        if kcw.recording:     
            kcw.update(frame) 
 
    if updateConsecFrames: 
        consecFrames = consecFrames + 1             
 
    # If a display is available, show the image on which inference was performed 
    if 'DISPLAY' in os.environ: 
        cv2.imshow( 'NCS live inference', frame ) 
 
 
# ---- Step 5: Unload the graph and close the device ------------------------- 
 
def close_ncs_device( device, graph ): 
    graph.DeallocateGraph() 
    device.CloseDevice() 
    camera.stop() 
    if kcw.recording: 
        kcw.finish() 
        upload.upload(cur_time) 
        os.remove(cur_time+'.avi') 
    cv2.destroyAllWindows() 
 
# ---- Main function (entry point for this script ) -------------------------- 
 
def main(): 
 
    device = open_ncs_device() 
    graph = load_graph( device ) 
     
    # Main loop: Capture live stream & send frames to NCS 
    while( True ): 
        frame = camera.read() 
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        img = pre_process_image( frame ) 
        infer_image( graph, img, frame ) 
        # Display the frame for 5ms, and close the window so that the next 
        # frame can be displayed. Close the window if 'Enter' is pressed. 
        i,o,e = select.select([sys.stdin],[],[],0.1) 
        if( i ): 
            break 
 
    close_ncs_device( device, graph ) 
 
# ---- Define 'main' function as the entry point for this script ------------- 
 
if __name__ == '__main__': 
 
    parser = argparse.ArgumentParser( 
                         description="DIY smart security camera PoC using \ 
                         Intel® Movidius™ Neural Compute Stick." ) 
 
    parser.add_argument( '-g', '--graph', type=str, 
                         default='../../caffe/SSD_MobileNet/graph', 
                         help="Absolute path to the neural network graph file." ) 
 
    parser.add_argument( '-l', '--labels', type=str, 
                         default='../../caffe/SSD_MobileNet/labels.txt', 
                         help="Absolute path to labels file." ) 
 
    parser.add_argument( '-M', '--mean', type=float, 
                         nargs='+', 
                         default=[127.5, 127.5, 127.5], 
                         help="',' delimited floating point values for image mean." ) 
 
    parser.add_argument( '-S', '--scale', type=float, 
                         default=0.00789, 
                         help="Absolute path to labels file." ) 
 
    parser.add_argument( '-D', '--dim', type=int, 
                         nargs='+', 
                         default=[300, 300], 
                         help="Image dimensions. ex. -D 224 224" ) 
 
    parser.add_argument( '-C', '--colormode', type=str, 
                         default="bgr", 
                         help="RGB vs BGR color sequence. This is network dependent." ) 
     
    parser.add_argument("-f", "--fps", type=int, default=3, 
                  help="FPS of output video") 
 
    parser.add_argument("-b", "--buffer-size", type=int, default=64, 
                  help="buffer size of video clip writer") 
     
    ARGS = parser.parse_args() 
 
    #Load the labels file 
    labels =[ line.rstrip('\n') for line in 
              open( ARGS.labels ) if line != 'classes\n'] 
 
    #Initialize Video Writer 
    kcw=KeyClipWriter(bufSize=ARGS.buffer_size) 
    fourcc = cv2.VideoWriter_fourcc(*'XVID') 
     
# ---- Camera Initialization ------------------------------------------------- 
     
    print("WARMING UP CAMERA") 
    camera = VideoStream(src=0).start() 
    time.sleep(2.0) 
# ---- Start ------------------------------------------------- 
 
    main() 
 
# ==== End of file =========================================================== 
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Security Camera without NCS (Laptop and Raspberry Pi share the same script) 

#!/usr/bin/python3 
# Detect objects on a LIVE camera feed  
import argparse 
import imutils 
import cv2 
import csv 
import os 
import select 
import sys 
import time 
import numpy as np 
from kcw import KeyClipWriter 
from imutils.video import VideoStream 
from time import localtime, strftime 
 
 
def pre_process_image( frame ): 
 
    # Mean subtraction and scaling 
 
    blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 
  0.007843, (300, 300), 127.5) 
    return( blob ) 
     
def infer_image(frame,blob): 
 
    global consecFrames 
    global updateConsecFrames 
    global cur_time 
    (h, w) = frame.shape[:2] 
    # Set the new input value for the network 
    net.setInput(blob) 
    # send the input value for inference 
    out = net.forward() 
     # loop over the detections 
        # When no object is detected 
    if(out.shape[2] == 0): 
        updateConsecFrames=True 
        if kcw.recording: 
            kcw.update(frame) 
        if kcw.recording and consecFrames == ARGS.buffer_size: 
            kcw.finish() 
 
    for i in np.arange(0, out.shape[2]): 
 
        idx = int(out[0, 0, i, 1]) 
        if (idx == 15): 
 
        # extract the confidence (i.e., probability) associated with 
        # the prediction 
 
            confidence = out[0, 0, i, 2] 
 
        # filter out weak detections by ensuring the `confidence` is 
        # greater than the minimum confidence 
 
            if confidence > ARGS.confidence: 
 
                # extract the index of the class label from the 
                # `detections`, then compute the (x, y)-coordinates of 
                # the bounding box for the object 
 
                box = out[0, 0, i, 3:7] * np.array([w, h, w, h]) 
                (startX, startY, endX, endY) = box.astype("int") 
 
                # draw the prediction on the frame 
 
                label = "{}: {:.2f}%".format(CLASSES[idx],confidence * 100) 
                cv2.rectangle(frame, (startX, startY), (endX, endY),COLORS[idx], 2) 
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                y = startY - 15 if startY - 15 > 15 else startY + 15 
                cv2.putText(frame, label, (startX, y), 
                       cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) 
 
                consecFrames = 0 
                updateConsecFrames = False 
                if not kcw.recording: 
                    cur_time = strftime( "%Y_%m_%d_%H_%M_%S", localtime() ) 
                    kcw.start(cur_time + '.avi',fourcc,20) 
        else: 
            updateConsecFrames = True    
            if kcw.recording and consecFrames == ARGS.buffer_size: 
                kcw.finish()    
 
        if kcw.recording: 
            kcw.update(frame)   
 
    if updateConsecFrames: 
        consecFrames = consecFrames + 1             
 
    # If a display is available, show the image on which inference was performed 
    ##  cv2.imshow( 'Live Inference', frame ) 
def shut_down (): 
 
    camera.stop() 
    if kcw.recording: 
        kcw.finish() 
    cv2.destroyAllWindows() 
 
def main (): 
 
    while (True): 
          
        frame = camera.read() 
        blob = pre_process_image(frame) 
  infer_image(frame,blob) 
        i,o,e = select.select([sys.stdin],[],[],0.1) 
        if( i ): 
            break 
        shut_down() 
 
# ---- Define 'main' function as the entry point for this script ------------- 
 
if __name__ == '__main__': 
 
    parser = argparse.ArgumentParser() 
 
    parser.add_argument("-p", "--prototxt",  
                     default='MobileNetSSD_deploy.prototxt', 
              help="path to Caffe 'deploy' prototxt file") 
 
    parser.add_argument("-m", "--model", 
                     default='MobileNetSSD_deploy.caffemodel', 
              help="/") 
 
    parser.add_argument("-c", "--confidence", type=float, default=0.4, 
              help="minimum probability to filqter weak detections") 
 
    parser.add_argument("-f", "--fps", type=int, default=20, 
                  help="FPS of output video") 
 
    parser.add_argument("-b", "--buffer-size", type=int, default=32, 
                  help="buffer size of video clip writer") 
 
    ARGS = parser.parse_args() 
 
    CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", 
     "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", 
     "dog", "horse", "motorbike", "person", "pottedplant", "sheep", 
     "sofa", "train", "tvmonitor"] 
 
    COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) 
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    fourcc = cv2.VideoWriter_fourcc(*'XVID') 
# ---- Camera Initialization ------------------------------------------------- 
 
    print("WARMING UP CAMERA") 
    camera = VideoStream(src=0).start() 
    time.sleep(2.0) 
    consecFrames=0 
    kcw=KeyClipWriter(bufSize=ARGS.buffer_size) 
    net = cv2.dnn.readNetFromCaffe(ARGS.prototxt, ARGS.model) 
# ---- Start ----------------------------------------------------------------- 
 
    main() 
 
# ==== End of file =========================================================== 


