

SMART SECURITY CAMERA USING MACHINE LEARNING

FOO JIA LIM

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Electronic and Communication Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

January 2019

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Foo Jia Lim

ID No. : 1503274

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SMART SECURITY CAMERA USING

MACHINE LEARNING” was prepared by FOO JIA LIM has met the required

standard for submission in partial fulfilment of the requirements for the award of

Bachelor of Engineering (Hons.) Electronic and Communication Engineering at

Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr. Tham Mau Luen

Date :

Signature :

Co-Supervisor :

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2019, Foo Jia Lim. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Dr.

Tham Mau Luen for his invaluable advice, guidance and his enormous patience

throughout the development of the research.

In addition, I would also like to express my gratitude to my loving parents

and friends who had helped and given me encouragement.

vi

ABSTRACT

With the emergence of convolutional neural networks (CNN), the application of

object classification and detection using deep learning is getting more and more

common. However, the real-time performance of CNN on embedded system is poor,

it need a few seconds to run an inference on embedded devices due to resource

limitations. In this project, real-time object classification and detection on embedded

system are realised with the use of Intel Movidius Neural Compute Stick (NCS).

Combining the concept of Internet of Things (IoT), a cloud-based security system is

built. This system records and uploads the video clips only when human is detected,

and it subsequently notifies clients for video retrieval. For the deep learning

algorithms, single shot detector (SSD) algorithm with a MobileNet architecture

which is pre-trained with caffe framework is adopted. This project also aims to study

the end-to-end performance of the system by evaluating detection accuracy, image

preprocessing and inference time, video upload time and video qualities. Video

upload time and push notification time are crucial when it comes to the performance

of a real-time system.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 5

1.3 Problem Statement 6

1.4 Aims and Objectives 6

1.5 Scope and Limitation of the Study 6

1.6 Contribution of the Study 7

1.7 Outline of the Report 7

2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Famous CNN architectures 8

2.3 Relevant Applications 14

2.4 Summary 18

3 METHODOLOGY AND WORK PLAN 19

viii

3.1 Introduction 19

3.2 Equipment required 19

3.3 Installation of Operation System (OS), Software and

Dependencies 21

3.4 Machine Learning Model Selection 22

3.5 Integration of Camera, Machine Learning Model and NCS 23

3.6 Measurement of different stages of time 25

3.7 Measurement of precision and recall 25

3.8 Analysis of Video Quality 26

4 RESULTS AND DISCUSSIONS 28

4.1 Introduction 28

4.2 System Overview 28

4.3 Timing Analysis 30

4.4 Precision and Recall 32

4.5 Real-time performance 33

4.5.1 Stability of the system 33

4.5.2 Efficiency of the system 35

4.6 Video Quality Analysis 35

4.6.1 Video Quality Metrics without reference 35

4.6.2 Video Quality Metrics with reference 40

4.6.3 Feasibility in terms of size and compression time 42

4.7 Summary 43

5 CONCLUSIONS AND RECOMMENDATIONS 44

5.1 Conclusions 44

5.2 Recommendations for future work 44

REFERENCES 45

APPENDICES 48

ix

LIST OF TABLES

Table 3.1 Comparison on SDD, Faster-RCNN and YOLO on fps

and mAP (Wei Liu, Dragomir Anguelov, Dumitru

Erhan, Christian Szegedy, Scott Reed, Cheng-

Yang Fu, Alexander C. Berg, 2016) 23

Table 4.1 Different stages of time on different platforms 30

Table 4.2 Value of precision and recall at different threshold

levels 32

Table 4.3 Video quality metrics without reference (MPEG-4

compression) 35

Table 4.4 Video quality metrics without reference (HEVC

compression) 36

Table 4.5 Video quality metrics with reference (MPEG-4 vs

HEVC) 40

x

LIST OF FIGURES

Figure 1.1 A Sunway College student using facial recognition

system (Sunway Campus Library Adopts Facial

Recognition Technology, 2018). 2

Figure 1.2 Prompts on suicidal post (Card, 2018) 2

Figure 1.3 Structure of ANN 4

Figure 1.4 Structure of CNN (joshinishant2305, 2018). 4

Figure 1.5 ReLU Function 5

Figure 2.1 Architecture of AlexNet (Alex Krizhevsky, 2012). 9

Figure 2.2 Architecture of ZFNet (Fergus, 2014). 10

Figure 2.3 Architecture of VGG Net (Karen Simonyan, 2015). 11

Figure 2.4 Architecture of Inception Module (Christian Szegedy,

2015). 12

Figure 2.5 Concept Figure of Proposed Model (Andrej Karpathy,

2017). 13

Figure 2.6 CNN used in producing species-recognising machine

learning model (Mohammad Sadegh Norouzzadeh,

2018). 15

Figure 2.7 Prediction Results (Mohammad Sadegh Norouzzadeh,

2018). 15

Figure 2.8 Architecture of mLeNet and mAlexNet (Giuseppe

Amato, 2016). 16

Figure 2.9 Performance of mLeNet and mAlexNet under different

scenarios (Giuseppe Amato, 2016). 17

Figure 3.1 Intel Movidius Neural Compute Stick Working

Concept 20

Figure 3.2 Flowchart of the system (with NCS) 24

Figure 3.3 Flowchart of the system (without NCS) 25

Figure 4.1 Block Diagram 28

file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849732
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849732
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849732
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849733
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849734
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849735
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849736
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849737
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849740
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849740
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849741
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849741
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849742
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849742
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849742
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849743
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849743
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849744
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849744
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849745
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849745
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849747
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849748

xi

Figure 4.2 Prototype 29

Figure 4.3 Different stages of time on Raspberry Pi 30

Figure 4.4 Different stages of time on Raspberry Pi with NCS 30

Figure 4.5 Different stages of time on laptop 31

Figure 4.6 Different stages of time on laptop with NCS 31

Figure 4.7 Precision-recall curve 32

Figure 4.8 Person detected at low light condition 33

Figure 4.9 Person undetected but caught by camera at low light

condition 33

Figure 4.10 Person detected at extreme bright condition 34

Figure 4.11 Person detected at medium bright condition 34

Figure 4.12 Notifications received by owner 34

Figure 4.13 Blocking metric of MPEG-4 and HEVC

compressions 36

Figure 4.14 Blurring metric of MPEG-4 and HEVC compressions 36

Figure 4.15 Brightness flicking metric of MPEG-4 and HEVC

compressions 37

Figure 4.16 Source 37

Figure 4.17 Blocking metric visualisation 37

Figure 4.18 Blurring metric visualisation 38

Figure 4.19 Brightness flicking metric visualisation 39

Figure 4.20 Drop frame metric visualisation 39

file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849751
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849753
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849755
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849756
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849757
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849757
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849758
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849759
file:///C:/Users/Jia%20Lim/Documents/Y4S2/FYP2/fyp%20report%20(100418).docx%23_Toc5849760

xii

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Network

CNN Convolutional Neural Network

FB Facebook

FN False Negatives

FP False Positives

fps Frames per second

GPU Graphic Processor Unit

ILSVRC ImageNet Large-Scale Visual Recognition Challenge

IoT Internet of Things

IP Internet Protocol

ML Machine Learning

mAP Mean Average Precision

PSNR Peak Signal to Noise Ratio

SSIM Structural Similarity Index

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

RPN Region Proposal Network

SSD Single Shot Detector

SVM Support Vector Machine

TN True Negatives

TP True Positives

VQMT Video Quality Measurement Tool

WHO World Health Organization

YOLO You Only Look Once

xiii

LIST OF APPENDICES

APPENDIX A: Scripts 48

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In this section, background, applications, and some relevant terms of Artificial

Intelligence (AI) are briefly discussed.

AI can be described as the ability of thinking and learning of machines. The

word ‘artificial intelligence’ was first introduced by John McCarthy in 1955. John

McCarthy, the father of AI, had defined seven development aspects of artificial

intelligence in Dartmouth Conference 1956 - the first artificial intelligence

conference. The seven aspects mentioned are simulation of complex activities of

human brain on computer; instructions for a computer to interpret general language;

arrangements of artificial neurons to form concept; ways to identify and diagnose

problem complexity; ability of promoting personal development; stochasticity and

inventiveness. (J. McCarthy, 1956).

It can be seen that a number of AI applications are emerging in today’s

society. Several examples and applications of AI are introduced below.

Starting from 1st of February 2019, Sunway College Malaysia adopted facial

recognition technology in their campus library. Faces of library users are scanned

and verified whether he/she is authorized user at the entrance and exit of library.

Comparing to commonly used methods like ID checking and barcode scanning, the

fast and accurate facial recognition saves up time and helps to prevent identity fraud.

(Sunway Campus Library Adopts Facial Recognition Technology, 2018).

2

Proactive detection, an AI tool launched by Facebook (FB) starting from

September 2018. The tool is used at detecting people who might be at risk of

committing suicide without human’s report. Depending on severity, FB may pop

messages or warnings to reach out to the person’s friends and helpline contacts.

When forthcoming of self-harm is detected, FB may contact local authorities. (Card,

2018). According to World Health Organization (WHO), death caused by suicide

happens every 40 seconds. (Suicide data, 2019). From 1960s, the number of suicide

cases of Malaysia has raised by 60 %, from information provided by Malaysian

Psychiatric Association. (Dudley, 2018). With this tool, the lives can be saved as

quickly as possible.

Figure 1.1 A Sunway College student using facial recognition system

(Sunway Campus Library Adopts Facial Recognition Technology, 2018).

Figure 1.2 Prompts on suicidal post (Card, 2018)

3

How is AI developed? The answer is Machine Learning (ML). ML is the art

of making computers to learn by itself, without being explicitly taught or instructed.

Two definitions of ML are introduced. Arthur Samuel described ML as: "the field of

study that gives computers the ability to learn without being explicitly programmed."

(Samuel, 1959). After several decades, Tom Mitchell gave a more particular

statement: “A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E." (Mitchell, 1997). For example in

predicting the probability of raining in Kuala Lumpur,

E = the past records of rain in Kuala Lumpur

T = the temperature of Kuala Lumpur

P = the probability that Kuala Lumpur will rain

In general, machine learning algorithm can be assigned to one of two broad

classifications: supervised learning or unsupervised learning.

For supervised learning, the data set is well-labelled. The computer learns

from the data set and make prediction on new examples, these processes are referred

as training and inferring respectively. Supervised learning is further divided into

“regression” and “classification”. Regression gives predictions of continuous value

while classification gives predictions of discrete value. An example of regression is

age prediction because age is continuous value instead of just ‘yes’ or ‘no’ answer.

For classification, the example would be gender classification, the output of gender

classification is discrete with just two values, either male or female.

Unsupervised learning is used to find implicit relations from an unlabelled

data set. The structure of data set would be derived by clustering. For example, given

a data set of humans with different races, they would be automatically sorted by skin

colours, facial features, clothing and so on. Unsupervised data can be used on the

field where the effect of its variables is not well-understand yet, for example,

biological data analysis. The structures of brain tumours and neural networks were

4

able to be detected using unsupervised learning. (Chien-Chang Chen, Hung-Hui Juan,

Meng-Yuan Tsai & Henry Horng-Shing Lu, 2018).

ML can be applied through different types of model, for examples, artificial

neural network (ANN), Bayesian networks, support vector machines (SVM), and etc.

ANN is the most popular machine learning model nowadays. ANN has the similar

structure with biological neural network that constitutes animal brain. ANN is

formed by interconnected artificial neurons. The connections between neurons act

like biological synapses, to transmit signal from one neuron to another. Neurons

could be activated by input signal. The behaviour of neurons is controlled by each

activation function. Some common activation functions are Rectified Linear Unit

(ReLU), step function, sigmoid function, tanh function and linear function.

ANN has many variants and convolutional neural network (CNN) is one of it.

CNN is generally used for image classification.

Figure 1.3 Structure of ANN

Figure 1.4 Structure of CNN (joshinishant2305, 2018).

5

CNN consists of four types of layer: firstly, convolution layer, secondly,

ReLU layer following by pooling layer and fully connected layer. Convolutional

layers are core layers that handle most computational tasks. It reads image spatially

into width, height and depth. Width and height refer to the dimension of image while

depth refer to the colour channels of the image. The depth has a size of 3 to cover all

three colour channels which are red, green and blue. ReLU layers are actually layers

of activation function, in these layers, the negative values of the images are

suppressed and left only positive values. Pooling layers are used progressively

reduce the size of samples to prevent overfitting. Overfitting refers to the amount of

data is too much for a model could handle. Fully connected layers are layers where

every neurons are interconnected. The function of fully connected layers is to

generated desired amount of outputs. For CNN, input layer is often followed by

convolutional layers lining with ReLU layers and pooling layers. Fully-connected

layers are lastly added.

1.2 Importance of the Study

The limited performance of embedded system on deploying machine learning

applications has been overcome by using NCS. A real-time cloud-based security

system is built on embedded platform with machine learning algorithm, and its end-

to-end performance is analysed. This system detects human using machine learning

algorithm and records when human is detected. As an implementation of IoT, this

system alerts clients through Internet Protocol (IP) messaging apps and uploads

Figure 1.5 ReLU Function

6

video clips to cloud for further retrieval. Existing literature generally analyse the

performance of machine learning system regarding to detection accuracy and

inference time, not the overall process including push notifications. In real-time

applications, time has to be critically controlled in order to guarantee outcome within

short time. In this project, performance of the proposed system is completely studied

on speed, accuracy, real-time stability and video quality.

1.3 Problem Statement

Current IP camera is likely to raise false alarm in the event of brightness change,

curtain flapping, pet running and etc. of curtain/kids and require huge storage for

footage as the camera is recording at all the time. This project aims to reduce false

alarm and shorten the length of video using machine learning algorithm. IP camera is

best to be small in size, providing satisfactory performance and affordable in prices.

CNN is usually utilized on home computer (PC) or portable computer (laptop) as it

requires lots of computational power. Overcoming hardware constrains, a CNN

application on a single-board computer which is small in size and low-power is

required to build.

1.4 Aims and Objectives

 To create a smart security system using machine learning at least hardware

and affordable price

 To integrate suitable machine learning model with camera and single-board

computer

 To study end-to-end performance of the system

1.5 Scope and Limitation of the Study

The time performance – frame per second (fps) of the system is successfully

improved to 3.5 which is 70 times of its original performance. Due to hardware

limitations, the system is unable to achieve the same fps as what a laptop does.

7

1.6 Contribution of the Study

This project makes the following contributions:

 A cloud-based real-time smart security system was built at least hardware and

affordable price

 End-to-end performance of smart security camera system is evaluated in

terms of time required, accuracy, real-time stability and video quality.

 Use readily available machine learning model, less training overhead

1.7 Outline of the Report

This report covers a total 5 chapters of the following:

1. Chapter 1: Introduction

2. Chapter 2: Literature Review

3. Chapter 3: Methodology and Work Plan

4. Chapter 4: Results and Discussion

5. Chapter 5: Conclusion and Recommendations

8

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In this chapter, famous examples of CNN architecture are introduced. In addition, the

applications in relevant fields such like surveillance camera, object detection,

machine learning and etc., are discussed.

2.2 Famous CNN architectures

In this section, the neural network architectures and their remarkable achievements

on computer vision in recent years are analysed.

The paper titled “ImageNet Classification with Deep Convolutional Networks”

published at Neural Information Processing Systems Conference 2012 cited for

26900 times, is considered as one of the must-read papers for beginners to deep

learning. It can be said that the trend of deep learning had been brought up by this

paper during year 2012. The CNN named AlexNet published in this paper had won

2012 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) with its 14.5 %

top-5 error rate. Top-5 error rate refers to the rate that first five predictions of model

are all wrong. AlexNet is a CNN trained on 15 million labelled images of over 22000

categories. In this paper, architecture of AlexNet is discussed. (Alex Krizhevsky,

2012).

9

There are five convolutional layers and three fully-connected layers in

Alexnet. The second fully-connected layer which is also the output layer is connected

to a 1000-way softmax regression because the network is purposed to classify 1000

objects. Softmax regression as known as multinomial logistic regression is a

classification method that handle outputs of multiple classes. The training of network

was done on two GTX 580 Graphic Processor Units (GPU) using five to six days.

The GPUs do not communicate at all layers but only at certain layers for example in

third convolutional layer and fully-connected layers. This is the reason why the

network architecture is split into two pipelines. This helps to achieve good

performance as communication overhead is kept low. The training time is

successfully decreased with the use of non-saturating ReLU activation function

which is several times faster than tanh function and sigmoid function. The data

augmentation and dropout technique are introduced in this paper to reduce overfitting.

Data augmentation is an image processing technique including image translations,

horizontal reflections and patch extraction. Dropout is a technique that sets output of

random neurons to zero such that complex co-adaptions of neurons are reduced.

Dropout was applied at the first two fully-connected layer. Without dropout,

substantial overfitting would have occurred in the network. However, drop out

doubles the number of iterations required to converge. In this paper, it is shown that

CNN is capable of achieving high accuracy and short training time in computer

vision. (Alex Krizhevsky, 2012).

Figure 2.1 Architecture of AlexNet (Alex Krizhevsky, 2012).

10

 CNN had successfully grabbed everyone’s attention since its success in 2012.

In 2013, ILSVRC is won by convolutional neural network again. With top-5 error

rate of 11.2%, ZFNet had defeated other opponents. ZFNet is a convolutional neural

network built by Matthew Zeiler and Rob Fergus from New York University. The

network is published through a paper titled “Visualizing and Understanding

Convolutional Neural Networks” by them in 2013. The architecture of ZFNet is

similar to AlexNet. It is a fine-tuned version of AlexNet. (Fergus, 2014).

Figure 2.2 Architecture of ZFNet (Fergus, 2014).

Similar to AlexNet, it consists of five convolutional layers and three fully-

connected layers. Minor modifications are made on first layer, 11x11 sized filters are

used in Alexnet while 7x7 sized filters are used in ZFNet. The reason to decrease

size of filter is to capture more original pixel information of input image.

Deconvolutional network is proposed in this paper. Deconvolutional network does

the opposite of convolutional layer; it maps features to pixel. By using this technique,

the problems and inner activities such as feature evolution during training and feature

invariance are illustrated and thus the network become easier for debugging and

improvement. In this paper, the Alexnet is remodelled to have higher performance.

Detail explanations on how a CNN works, which was a limited knowledge

previously, are provided. The useful technique to visualise inner activities of CNN is

revealed. This has helped in future improvements of CNN; CNNs are able to be

adjusted based on inner activities to obtain better performance. In addition, ablation

study to investigate performance contribution of different model layers is carried out.

It is also revealed that the minimum depth of the network is vital to the performance

of model. (Fergus, 2014).

11

There is another remarkable paper titled “Very Deep Convolutional Networks

for Large-scale Image Recognition”. This paper is said remarkable because it

proposed a concept that CNN have to be deep and simple. In this paper, the

performance of CNN is manipulated by the depth of network while other parameters

remained constant. 3x3 sized filters are used in convolutional layer while 2x2 sized

filters are used in pooling layer. In such condition, two convolutional layers can

produce effective receptive field equally to single 5x5 filter. An effective receptive

field of a 7x7 filter can be made when connecting three convolutional layers. The

benefit of using multiple layers of 3x3 filter instead of one 5x5 or 7x7 filter is the

output of model is more discriminative. The size of filters could be remained with the

increase of depth of network by adding more convolutional layers. (Karen Simonyan,

2015).

Figure 2.3 Architecture of VGG Net (Karen Simonyan, 2015).

The proposed CNN in this paper is VGG Net. Total six configurations of

VGG Net are compared. Configuration D of total 16 layers has acquired the best

12

performance with top-5 error rate of 6.8 % among six configurations. In this paper,

the importance of depth of CNN in computer vision is presented. A simple yet

effective CNN architecture is introduced; the size of filters is kept constant and the

only parameter to control is number of convolutional layers. However, the drawback

is longer training time required, VGGNet consists of 138 million parameters, and it

took 2 to 3 weeks to train on 4 Nvidia Titan Black GPUs. (Karen Simonyan, 2015).

When the simplicity of CNN architecture is the main stream, the winner of

ILSVRC 2014, GoogLeNet from Google held the different point of view.

GoogLeNet impressively won the competition at the top-5 error rate of 6.67% which

is very close to or even exceeds human level. To measure the performance of

GoogLeNet, organisers of ILSVRC invited an artificial intelligence expert, Andrej

Karpathy, to challenge the same image classification task given to GoogLeNet.

Everyone might think that human accuracy would be 100 %, however, it is not due to

limitations of memory, knowledge and cognitive ability. After few days of training,

Andrej Karpathy achieved a top-5 error rate of 5.1 %. This had proven that the

performance of GoogLeNet is close to human in object classification. GoogLeNet

was published in the paper titled “Going Deeper with Convolutions”. The

architecture of GoogLeNet is complex and deep. Inception module was first

introduced in the paper. (Christian Szegedy, 2015).

Figure 2.4 Architecture of Inception Module (Christian Szegedy, 2015).

13

 The architecture of inception module is shown in Fig. 2.4. Inception module

consists of six convolution layers of different sizes and one max-pooling layer. The

reason of using different sizes of convolution layers is to extract pixel information in

a more completed attitude. The max-pooling layer helps in lowering the size of

samples and thus solves overfitting. Inception module is able to perform tasks of

multiple layers in parallel therefore the computational time can remain efficient.

GoogLeNet consists of 9 inception modules and the depth of whole network is about

100 layers. To improve computational efficiency, fully-connected layer is rarely used

in GoogLeNet as fully-connected layer consumes huge number of parameters. Fully-

connected layers are removed from the main trunk of network and could only be

found in side branches. This paper has proposed novel architecture idea that connects

the essential layers in the form of module. (Christian Szegedy, 2015).

 CNN is good for image and video processing. When it comes to text and

speech processing, recurrent neural network (RNN) is an ideal choice. Combining

both CNN and RNN, a model that able to generate multiple natural language

descriptions and object classifications is proposed. (Andrej Karpathy, 2017).

Figure 2.5 Concept Figure of Proposed Model (Andrej Karpathy, 2017).

14

Fig. 2.5 shows concept figure of the model, each object in the figure is

classified and labelled with natural language descriptions. The natural language

description is realised by setting short sentences as weak labels corresponding to

unknown segments of the image. The function of CNN is to infer the alignment

between sentences and the region of object. While multimodal RNN is used to

produce object descriptions in text. In training phase, a set of images labelled with

short descriptions is used as input. Multimodal embedding in deep learning refers to

the mixture of different types of media. The results generated by the model are used

for training data for the second model which learns to generate object descriptions.

This paper is impressive as the application is a combine of computer vision and

natural language processing. (Andrej Karpathy, 2017).

2.3 Relevant Applications

In this section, the applications related to object classification and detection are

discussed. In the paper titled “Automatically Identifying, Counting, and Describing

Wild Animals in Camera-Trap Images with Deep Learning”, a smart camera with

animal identification, counting and behaviour describing functions is proposed.

Motion-sensored cameras are widely used in wildlife conservation. Motion-sensored

cameras are usually installed in the habitats of wildlife to observe their living habits

and perform population count. Information in the captured images is required to be

manually extracted by human which is very time-consuming. Implementing deep

neural network, valuable information can be automatically extracted. In this paper,

machine learning models which recognise 48 wildlife species are trained with

different types of CNN. Figure 2.6 shows brief introduction of CNN used in this

paper. (Mohammad Sadegh Norouzzadeh, 2018).

15

There are total 9 models trained. Four of the models are trained on AlexNet,

NiN Net, GoogLeNet while the rest of five were trained on ResNet with different

numbers of layer. The 9 trained models are gathered to form an ensemble model, by

doing so, the accuracy of prediction is improved. Benchmarking on the expert-

labelled test images set, the ensemble model has shown a 99.1 % of top-5 accuracy.

For single model, ResNet-152 trained model has achieved the best performance by

having top-5 accuracy of 98.8 %. Fig. 2.7 shows the predictions of the model. The

left figure was predicted correctly while the right figure was given a wrong

prediction. The animals of right figure were too far from camera and made

classification difficult. (Mohammad Sadegh Norouzzadeh, 2018).

Figure 2.6 CNN used in producing species-recognising machine learning model

(Mohammad Sadegh Norouzzadeh, 2018).

Figure 2.7 Prediction Results (Mohammad Sadegh Norouzzadeh, 2018).

16

The drawback of this model is that multi-species detection is not available.

When there is more than one species on screen, only one species can be recognised.

This paper has demonstrated how deep learning helps in wildlife conservation.

Cameras with animal classification and behaviour description function has eased the

process of analysing photos; the labour cost and time cost are greatly reduced.

(Mohammad Sadegh Norouzzadeh, 2018).

Another application of smart camera is car park occupancy detection system.

The paper title is “Car Parking Occupancy Detection Using Smart Camera

Networks and Deep Learning”. The car parking occupancy detection system is

designed to run real-time occupancy detection using CNN and Raspberry Pi Camera

Module on Raspberry Pi. Ground sensors are widely used in parking occupancy

detection system, however, it requires lots of human effort to install and maintain

quality of every sensor. This parking occupancy detection system has addressed the

problem, it can simultaneously monitor 50 parking lots using one camera. The

datasets use in model training and testing are created by themselves. The datasets

contain images of car park taken from different points of view under various light

conditions. The datasets are made public such that science community working on

car parking occupancy detection system could use. Two CNNs are used in training

the model; one is mLeNet while another is mAlexNet. The ‘m’ stands for mini. Fig.

2.8 shows the architecture of both CNN. (Giuseppe Amato, 2016).

Figure 2.8 Architecture of mLeNet and mAlexNet (Giuseppe Amato, 2016).

17

Figure 2.9 shows the performances of different CNNs under single camera

and multiple cameras while A and B represent different data sets.

The performance of mAlexNet model is better than mLeNet model. Accuracy

of mAlexNet model has achieved a maximum of 99.6 % in single camera scenario

and 90.7 % in multi-camera scenario. (Giuseppe Amato, 2016).

Figure 2.10 Performance of mAlexNet model and Radian Basis Function Kernel

models (Giuseppe Amato, 2016).

Figure 2.9 Performance of mLeNet and mAlexNet under different scenarios

(Giuseppe Amato, 2016).

18

The performance of mAlexNet model is compared to other type of model

instead of CNN model. The compared model is trained on radian basis function

kernel which is a commonly used function in support vector machine classification.

From the table, it can be seen that CNN has significantly defeated radian basis

function kernel in capability of detecting occupancy. This paper highlights how

capable is CNN in real life application. Contrasting with other method like using

ground sensors or other mathematic algorithm, CNN still performs the best.

(Giuseppe Amato, 2016). Unfortunately, the statistic of time of the car park detection

system is not shown in this paper.

2.4 Summary

The literature of CNN applications are usually focusing on comparing

accuracy of several CNN model while timing performance is barely mentioned.

19

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this chapter, the components and equipment used in this project are introduced.

The methods are introduced stage by stage.

3.2 Equipment required

This is a brief introduction on equipment used in this project, both hardware and

software. The hardware required are Intel Movidius Neural Compute Stick (NCS),

Raspberry Pi Zero W, laptop and Raspberry Pi Camera Module. The software

required are Ubuntu 16.04 Operating System, Raspbian Operating System, Software

Development Kit for NCS (NCSDK), OpenCV, Caffe, Telegram and Google Drive.

Intel Movidius Neural Computer Stick is a deep learning hardware

development platform consisting vision processing unit that allows the process of

prototyping, tuning and deploying Convolutional neural network for real-time

inferencing with low power consumption. With Intel Movidius Neural Computer

Stick, the real-time inference time can be greatly scaled down to a few milliseconds.

Loaded with example apps such as live-time image classifier, gender-age classifier

and etc., it is suitable for beginner of deep learning application development. User

can leverage the existing example applications and tune it to meet own requirements.

Intel Movidius Neural Computer Stick is chosen for this project due to its low power

consumption, convenient size, low price, and powerful performance on real-time

inferencing and user-friendly.

20

Figure 3.1 Intel Movidius Neural Compute Stick Working Concept

Raspberry Pi Zero W is a computer packed into a single board, it is very

small in size compared to normal computer. Raspberry Pi Zero W supports Wi-Fi,

Bluetooth and USB on-to-go. It can also work in companion with camera modules

and micro SD card. It is ideal for this project due to its small size, low power

consumption, low cost and complete function.

Raspberry Pi Camera Module is designed for Raspberry Pi. There are

different version of Raspberry Pi Camera Module with different resolutions. The

resolution of camera used in this project is 5 Megapixel (MP). It has still picture

resolution of 2592 x 1944 and supports video recording at 1080p at 30fps.

Raspbian is the optimized operating system of Raspberry Pi. It is Debian-

based as known as Unix-like operation system. Raspbian without graphical interface

uses a command line interface named Unix-shell. Bash language is the command

language used in Unix-shell. Ubuntu is a widely used free open source operating

system. It is chosen because it is same Debian-based like Raspbian. High similarity

of operation systems allows the project to go more conveniently.

NCSDK is a software environment for NCS to be deployed. Currently, it only

supports two operation system - Ubuntu 16.04 and Raspbian Stretch. It consists of

some basic machine learning applications which allows user to further deploy.

OpenCV is a machine learning library consisting functions for real-time

computer vision such as frame capturing, image processing and etc.

21

The deep learning framework used in this project is Caffe. Caffe is originally

developed by Berkeley Vision and Learning Center (BVLC) and dedicated

contributors. It is written in C++ and it supports Python. Caffe is used in this project

because Caffe is developed for image classification purpose; it is widely used in

computer vision. In addition, Caffe consists of many pre-trained models with many

types of neural networks allowing user to deploy models without writing any script.

Users can just edit the existing configuration files. This feature is useful for fine-

tuning existing network.

Telegram is an open source messaging and voice over IP apps which can be

configured in Unix-based operation system.

Google Drive is an online data storing service for user to save files on their

servers. One of the advantage of Google Drive is that users are allowed to access

their files across many types of device. Customized solutions are designed to make

Google Drive compatible with most of the OS and devices.

3.3 Installation of Operation System (OS), Software and Dependencies

The version of Raspbian OS installed is 2018 Raspbian Stretch Lite. This lite version

does not have graphical interface, it is much smaller than normal version. The size of

lite version image is 1.8 GB while the size of normal version image is 4.8 GB. After

OS installation, Wi-Fi and Secure Shell Protocol (SSH) connection have to be set up.

With SSH, the Raspberry Pi Zero W can be accessed by any devices wirelessly

connected to the same local network. All of the following tasks are done through

SSH. Next, Software Development Kit for NCS (NCSDK) is installed. NCSDK is a

software environment for NCS to be deployed. The installation of NCS includes the

installation of machine learning framework and library such as Caffe and OpenCV.

Then, Telegram and Google Drive are installed and set up in Raspberry Pi Zero W.

22

3.4 Machine Learning Model Selection

The machine learning model selected for this project is MobileNet-SSD caffemodel

trained by a Github user named chuanqi305. (chuanqi305, 2017) The MobileNet-

SSD model is trained on MS-COCO datasets and then fine-tuned on VOC0712. It

has a mean average precision (mAP) of 0.727. Caffe is a framework for

convolutional neural network training. (Center, 2015) Caffemodel is machine

learning model that trained with Caffe framework. MobileNet-SSD is formed by a

base network - MobileNets and an object detection framework – SSD (Single Shot

Multibox Detector). Base networks are usually trained for classification on huge

image dataset. ILSVRC is an annual competition for base networks. The examples of

base networks include AlexNet, GoogLeNet, VGGNet and etc. Object detection

frameworks are algorithms to find the bounding boxes of objects in images. Object

detection frameworks cannot work on their own, they must be combined with base

networks. RCNN, SSD, YOLO are famous object detection frameworks. MobileNets

is a class of computer vision models which are released by Google at 2017, they are

designed to allow the use of convolutional neural network on embedded devices or

mobile phones. Object recognition is highly dependent on computational power of

the platform, platform with weak computational power would cause the object

recognition to be slow or not accurate. The publishing of MobileNets have addressed

the problem. MobileNets is a group of low-power, small-size, and low-latency

models parameterized to suit a variety of use cases on limited resources. Like other

large scale models (e.g. Inception), MobileNets can be developed for classification,

detection, embeddings and segmentation. (Andrew G Howard, Menglong Zhu, Bo

Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,

Hartwig Adam, 2017). SSD is an object detection network proposed by Google at

2016. It detects object at an easier, faster and more accurate way. SSD takes one

single shot to detect multiple objects within the image while another popular object

detection framework, Faster-RCNN, requires two shots. Faster-RCNN is RPN

(Region Proposal Network)-based network, the algorithm of RPN in object detection

is to generate region proposal at first shot then detect the object in each proposal at

the second shot. SSD eliminates the step of generating region proposal and

subsequent step of resampling and encapsulation of pixel. SSD makes prediction at

23

one shot. SSD produces a collection of fixed-size bounding boxes and object

prediction scores for each boxes following by non-maxima suppression to remove

duplicated predictions describing the same object. Not only RPN-based network,

SSD also outperforms the previous most recent single shot detection network, YOLO.

The following table shows a comparison on performances of SSD, Faster R-CNN

and YOLO. The mean average precision is measured on VOC2007 data set.

 SSD Faster R-CNN YOLO

fps 59 7 45

Mean average precision (mAP) 74.3 % 73.2 % 63.4 %

Table 3.1 Comparison on SDD, Faster-RCNN and YOLO on fps and mAP

 (Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, Alexander C. Berg, 2016)

Combining MobileNets which is suitable for embedded devices and SSD

which currently is the best object detection framework, MobileNet-SSD has become

a fast, powerful deep learning-based method for real-time object detection.

3.5 Integration of Camera, Machine Learning Model and NCS

The script that used to integrate camera, machine learning model and NCS is written

in Python. Flowchart of the python script is shown in Fig. 3.2. It can be seen as two

parts. One is main loop part, another is video recording part. The main loop part

consists of two functions –image processing and inference. The camera is capturing

frame continuously. The captured frame is resized and sent for mean subtraction and

scaling. The new size of frame depends on the type of network. For the case of

MobileNet-SSD, the required size of input image is 300 x 300. Mean subtraction and

scaling is used to centre the image. After image processing, the frame is ready to be

sent for inference. For the case of using NCS, the inference is done by using graph

file. Graph file is a file that converted from the caffemodel and it is compatible with

NCSDK. Instead of using recording function of OpenCV, the video is saved frame

by frame. This is because this function is blocking function, once using it, it is unable

to proceed to next inference. If person is detected, the frame is saved to buffer. If the

24

person left, the consecutive frames is still being saved for a period of time. When the

length of consecutive frames has reached expectation, those frames are saved as

video file and uploaded to Google Drive. ‘q’ is the quit button which can be pressed

to stop the system.

The system can run without NCS, a little modifications on python scripts are

needed. When NCS is not used, the inference is done by directly using the

caffemodel and prototxt. As mentioned above, caffemodel is the machine learning

model trained using Caffe framework. While prototxt is the human-readable file

describing network architecture of the machine learning model. The flowchart is

presented in Fig. 3.3.

Figure 3.2 Flowchart of the system (with NCS)

25

3.6 Measurement of different stages of time

The average runtimes of each of the following processes are taken:

 Camera Read – to capture image

 Image Process – to resize and centre the image

 Loop – to finish processing and infer one frame

 Inference – to perform object detection

 The readings are averaged from running 5000 loops at each of the following

platforms:

 laptop

 laptop + NCS

 Raspberry Pi Zero W

 Raspberry Pi Zero W + NCS

3.7 Measurement of precision and recall

Precision and recall are a measure of correctness of prediction for data set with

imbalanced classes. Precision refers to the correct prediction within returned results.

Figure 3.3 Flowchart of the system (without NCS)

26

Recall refers to the ability of model to return results. Precision and recall are

represented as:

Equation 3.1 Precision

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Equation 3.2 Recall

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

where

TP = true positives,

FP = false positives,

TN = true negatives,

FN = false negatives.

 To obtain precision and recall, a data set consisting at least 1000 samples of

interested class and non-interested class is needed. (Md Modasshir, Alberto Quattrini

Li, and Ioannis Rekleitis, 2018). Threshold value of the machine learning model is

modified and thus changing the values of precision and recall. For the application

with human-triggered recording, human is treated as interested class. 1000 samples

consisting human and non-human are prepared. If a human was truly identified as

human, it would be a true positive case. If a human was identified as non-human, it

would be a false negative case. True negative case refers to case when a non-human

was identified as non-human, while false positive case refers to a non-human was

identified as human. By manipulating the threshold value, the values of precision and

recall are obtained and plotted into a graph.

3.8 Analysis of Video Quality

Video quality is an important assessment for security camera because whether the

details of detected person can be shown clearly in the footage or not is depending on

it. Video quality can vary with compression method, type of camera, human and

environmental factor causing camera shake and etc. Video quality is usually

27

evaluated by human perception, whether the video suits the human’s preferences in

clearness, smoothness, size and etc. In a more scientific way, video quality can be

evaluated through video quality analysis tool. The video quality analysis tool utilised

in this section is MSU Video Quality Measurement Tool (VQMT) free version.

VQMT free version provides several metrics measurements for low resolution video.

Generally, metric measurements can be divided into two types – with reference and

without reference. Metric measurements with reference requires at least two inputs to

proceed, they are usually purposed to compare video quality before and after

transmission. For examples, Peak signal to noise ratio (PSNR) and Structural

similarity index (SSIM). Metric measurements without reference provide quality

assessment for single video. The metric measurements without reference include

blocking, blurring, brightness flicking, frame drop and etc. 5 HEVC-compressed

video clips and 5 MPEG-4 compressed video clips each containing 100 frames are

evaluated under both metric measurements without reference including blocking,

blurring, brightness flicking and frame drop and metric measurements with reference

including PSNR and SSIM. MPEG-4 and HEVC are known as H264 and H265

respectively.

HEVC is the successor of MPEG-4. In comparison of data compression,

HEVC has 25% to 50% higher data compression rate at the same level of video

quality than MPEG-4. (H265, 2019). Currently, MPEG-4 is the most widely adopted

video compression standard in digital video compression. Its applications include

HDTV broadcasting, normal internet streaming, video compression in Blu-Ray disc

and etc. HEVC is not popular yet although it had been released at 2013. (Philippo,

2018). The reason of this is that, HEVC has a few patent pools with different pricing

and terms & conditions while MPEG-4 has only one patent pool. This has leaded to

unclarity and confusion to consumers and resulted in no support or partly support by

major browsers. (Lloyd, 2018). The emergence of new codec, AVI, which is created

by Alliance for Open Media has become a strong competitor of HEVC. Alliance for

Open Media is a non-profit organization co-founded by Google, Amazon, Netflix,

Microsoft, Intel, Cisco and Mozilla. AVI is royalty free and supported by major

browsers like Chrome, Firefox, Edge and Safari.

28

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter, the results are presented and discussions are made based on the

results.

4.2 System Overview

Figure 4.1 Block Diagram

Fig. 4.1 shows the block diagram of a cloud-based security system which detects

human and records video only if human is detected. At the moment a person is

detected, notification is sent to client through Telegram. The system keeps recording

until the person left. Footage is uploaded immediately after the recording ends. The

client is able to retrieve the footage at Google Drive. The equipment used and their

roles and relationships are shown. The system are formed by Raspberry Pi Zero W,

NCS and Raspberry Pi Camera Module. Raspberry Pi Zero W acts like the “brain” of

the system which controls and processes all signal to or from its peripheral devices.

29

NCS consists of vision processing unit which helps in accelerating the inference of

neural networks. Pi Camera Module is an input device which captures image.

Work flow of the system can be explained starting from a frame captured by

the camera module. Once the frame is captured, Raspberry Pi Zero W reads the

frame from the camera module. The frame is then be processed by Raspberry Pi Zero

W using OpenCV. The processes include resize, mean subtraction and scaling which

are purposed to shape the frame into suitable size and center the data. The processed

frame is loaded to NCS for inference. The inference is done in NCS and the results

are returned to Raspberry Pi Zero W. Raspberry Pi Zero W analyzes the returned

results, and decide whether to take any further actions like saving frames into video,

sending notifications and uploading video clips.

Figure 4.2 Prototype

The prototype is presented in Fig. 4.2. Dimension of the prototype is less than 10cm

x 5cm x 5cm. This system is small in size which allows it to be conveniently placed

at any flat surfaces or mounted on wall.

30

4.3 Timing Analysis

Camera Read (s) Image Process (s) Inference Time (s) Loop Time (s)

Raspberry Pi 1.162 × 10-4 1.121 × 10-1 1.732 × 10 1.743 × 10

Raspberry Pi + NCS 5.966 × 10-4 2.450 × 10-1 7.996 × 10-2 2.867 × 10-1

Laptop 5.155 × 10-6 4.509 × 10-3 1.197 × 10-1 2.207 × 10-1

Laptop + NCS 1.652 × 10-5 2.690 × 10-2 8.045 × 10-2 2.022 × 10-1

Table 4.1 Different stages of time on different platforms

Figure 4.4 Different stages of time on Raspberry Pi with NCS

0 2 4 6 8 10 12 14 16 18

Camera Read

Image Process

Inference Time

Loop Time

Different Stages of time on Raspberry Pi

0 0.05 0.1 0.15 0.2 0.25 0.3

Camera Read

Image Process

Inference Time

Loop Time

Different Stages of time on Raspberry Pi with NCS

Figure 4.3 Different stages of time on Raspberry Pi

31

Figure 4.6 Different stages of time on laptop with NCS

In the cases without NCS, time spent on inferring a frame occupied the most of loop

time. On Raspberry Pi, the inference time occupies almost 99.33 % of loop time. On

Laptop, the inference time occupies almost 54.26 % of loop time. It is concluded that

inference time affects loop time significantly. As the video is saved frame by frame

in every loop, the loop time also indicating the frame could be saved in a period of

time. Hence, inference time is the decisive factor on quality of video, the more the

frames could be saved, the better the quality of video. Comparing the overall

readings for cases of Raspberry Pi and Raspberry Pi with NCS, it can be seen that

there is a great difference in inference time. The inference time after using NCS has

0 0.05 0.1 0.15 0.2 0.25

Camera Read

Image Process

Inference Time

Loop Time

Time (s)

Different Stages of Time on Laptop with NCS

0 0.05 0.1 0.15 0.2 0.25

Camera Read

Image Process

Inference Time

Loop Time

Time (s)

Different Stages of Time on Laptop

Figure 4.5 Different stages of time on laptop

32

shorten 17.24 s compared to case of just using Raspberry Pi. The inference time is

also found shorten 0.039 s after using NCS on laptop. Comparing the performance of

Raspberry Pi and Laptop, Raspberry Pi has longer camera read time, image process

time and loop time than laptop. This is because the processor of Raspberry Pi is less

powerful than laptop’s. With the use of NCS, Raspberry Pi can achieve almost same

loop time with laptop – 0.29 s on Raspberry Pi + NCS vs 0.22 s on laptop vs 0.20 s

on laptop + NCS. In short, NCS can greatly improve the performance of embedded

system with weak computational power.

4.4 Precision and Recall

Table 4.2 Value of precision and recall at different threshold levels

Using 1000 samples of human and non-human, 500 for each category. The number

of TP, FP, TN and FN at threshold levels of 0.1 to 0.9 are recorded. Precision and

recall are calculated using Eqn. 3.1 and Eqn. 3.2. It is found that with the increment

of threshold level, the precision increases while the recall decreases. A system with

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Precision 0.936345 0.936475 0.941053 0.946309 0.949339 0.955711 0.958128 0.971279 0.976744

Recall 0.912 0.908549 0.894 0.862 0.846 0.82 0.778 0.744 0.672

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

P
re

ci
si

o
n

Recall

Precision-Recall Curve

Figure 4.7 Precision-recall curve

33

higher recall and lower precision returns greater number of results with lower

credibility. Oppositely, a system with higher precision and lower recall returns very

few number of results with high credibility. An ideal system should have balanced

value of precision and recall such that it returns optimum amount of results with high

correctness. Threshold level shall be adjusted to achieve this. From Table 2, it can be

concluded that 0.6 is the optimum threshold level because from 0.5 to 0.6, there is a

large increment in precision (0.006) with a little sacrifice of recall (0.026).

4.5 Real-time performance

4.5.1 Stability of the system

Figure 4.8 Person detected at low light condition

Figure 4.9 Person undetected but caught by camera

at low light condition

34

Figure 4.11 Person detected at medium bright

condition

Figure 4.10 Person detected at extreme bright

condition

Figure 4.12 Notifications

received by owner

35

If a system does not have consistent performance, the system is useless. To evaluate

the stability of our system, the system was placed in a room under different light

conditions. The system was able to run smoothly most of the time. Humans were

able to be detected and notifications were sent instantly. The system was found

possible to crash when there was no enough resource on Raspberry Pi Zero W. The

feature of extended recording was able to record the full scene even the person was

blur and undetected during bad lightning.

4.5.2 Efficiency of the system

Measured under Internet speed of 180 Mbps, the average video upload speed is

155.55 kb/s. The average time spent to send a notification is 0.533 s. Speed of

uploading video and sending notification is crucial when evaluating the performance

of real-time system. In this application, the sooner the client receives notification and

retrieves video, the faster the client can take action, the higher the chance to stop the

unpleasant event from happening.

4.6 Video Quality Analysis

4.6.1 Video Quality Metrics without reference

In this section, video quality metrics without reference of MPEG-4-compressed

video and HEVC-compressed video are compared.

 Blocking

Metric

Blurring Metric Brightness

Flicking Metric

Drop Frame

Metric

Video 1 18.4 0.0139 2.74 0

Video 2 18.3 0.0141 6.50 0

Video 3 17.2 0.0050 5.84 0

Video 4 17.5 0.0179 0.40 0

Video 5 16.4 0.0210 4.20 0

Average 17.6 0.0143 3.936 0

Table 4.3 Video quality metrics without reference (MPEG-4 compression)

36

 Blocking

Metric

Blurring Metric Brightness

Flicking Metric

Drop Frame

Metric

Video 6 16.4 0.0123 1.89 0

Video 7 15.2 0.0259 1.25 0

Video 8 16.6 0.0188 1.43 0

Video 9 14.0 0.0279 0.35 0

Video 10 13.8 0.0078 0.40 0

Average 15.2 0.0185 1.064 0

Table 4.4 Video quality metrics without reference (HEVC compression)

Figure 4.13 Blocking metric of MPEG-4 and HEVC compressions

Figure 4.14 Blurring metric of MPEG-4 and HEVC compressions

14 14.5 15 15.5 16 16.5 17 17.5 18

MPEG-4

HEVC

Blocking Metric

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

MPEG-4

HEVC

Blurring Metric

37

Figure 4.15 Brightness flicking metric of MPEG-4 and HEVC compressions

Figure 4.16 Source

Figure 4.17 Blocking metric visualisation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

MPEG-4

HEVC

Brightness Flicking Metric

38

Blocking metric is a measure of blocking effect in a video. The blocking is

more noticeable in smooth areas of the video comparing to contrast areas.

Information in previous frame is required to achieve better accuracy in detecting

blocking. Lower value of blocking metric indicates better quality of video. As shown

in Fig. 4.13, HEVC-compressed video has lower blocking metric than MPEG-4-

compressed video. Hence, HEVC has better video quality in term of blocking.

Figure 4.18 Blurring metric visualisation

Blurring metric is measured by comparing two consequent frames. The more

blurred frame gets lower score than the less blurred frame. Therefore, it is preferred

to have higher value of blurring metric. In Fig. 4.14, it is shown that HEVC-

compressed video has higher value of blurring metric compared to MPEG-4-

compressed video. It is found that HEVC compression provides slightly clearer video

than MPEG-4 compression.

39

Figure 4.19 Brightness flicking metric visualisation

Brightness flicking metric is purposed to measure flicking rate of two

consequent frames. Modulus of difference of average brightness of the frames is

calculated. The larger the modulus the higher the brightness flicking between two

frames. Brightness flicking can be seen as update of brightness. From Fig. 4.15, it

can be concluded that the update of brightness in HEVC-compressed video is less

than MPEG-4-compressed video.

Figure 4.20 Drop frame metric visualisation

Drop Frame Metric measures drop-frame in a video. There are two possible

output of drop frame metric – zero or one. Zero indicates existing frame while 1

indicates drop-frame. Both compression methods show a perfect result with zero

frame-drop.

40

4.6.2 Video Quality Metrics with reference

Reference 1 Reference 2 PSNR SSIM

Video 1 Video 6 48.8 0.992

Video 2 Video 7 50.9 0.998

Video 3 Video 8 48.8 0.998

Video 4 Video 9 49.0 0.996

Video 5 Video 10 46.7 0.991

Average 48.84 0.995

Table 4.5 Video quality metrics with reference (MPEG-4 vs HEVC)

In this section, HEVC-compressed video is used as first source while MPEG-4-

compressed video is used as second source for video quality metrics with reference.

PSNR, SSIM and VQM of these two types of video will be measured.

PSNR stands for “Peak Signal to Noise Ratio”, which is a ratio of the

maximum signal over the mean-squared error between two references where these

two references are usually formed by one original sample and one distorted or

reconstructed sample. This ratio is usually used as the quality assessment between

two images or videos. PSNR can be mathematically expressed as Eqn. 4.1. It can be

seen that as the value of mean-squared error approaches zero, the value of PSNR

approaches infinity. The larger the value of PSNR, the lower the mean-squared error,

the higher the similarity between original and reconstructed sample indicating the

better visual quality of distorted or reconstructed sample.

Equation 4.1 Mean-squared error (MSE)

𝑀𝑆𝐸 =
∑ ∑ [𝐼1(𝑚, 𝑛) − 𝐼2(𝑚, 𝑛)]2𝑁

𝑛=1
𝑀
𝑚=1

𝑀 × 𝑁

Equation 4.2 PSNR

𝑃𝑆𝑁𝑅 = 10 log10

𝑅2

𝑀𝑆𝐸

41

where

I1 = first sample,

I2 = second sample,

M = number of rows of input images

N = number of columns of input images

R = maximum fluctuation in input image data type

From Table. 4.5, the average PSNR of MPEG-4-compressed video and

HEVC-compressed video is found to be 48.84. PSNR value does not have absolute

meaning. It is used for comparison purpose.

Structural Similarity Index as known as SSIM, is another standard in

measuring image or video quality. Both PSNR and SSIM compare the similarity

between two samples, however, they have different sensitivity varying with the

format of samples. (Alain Horé, Djemel Ziou, 2010) Unlike PSNR which emphasizes

on error of samples, SSIM tends to evaluate the quality of samples like human visual

system (HVS) where distortion of luminance, distortion of contrast and loss of

correlation will be considered. (Zhou Wang, Alan Conrad Bovik, Hamid Rahim

Sheikh, Eero P. Simoncelli, 2004) SSIM is illustrated through Eqn. 4.3.

Equation 4.3 SSIM

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑙(𝑥, 𝑦)𝑐(𝑥, 𝑦)𝑠(𝑥, 𝑦)

Equation 4.4 Luminance comparison function

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑥

2 + 𝐶1

Equation 4.5 Contrast comparison function

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑥

2 + 𝐶2

Equation 4.6 Structure comparison function

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3

42

where

μx = mean intensity of sample ‘x’

μy = mean intensity of sample ‘y’

σx = standard deviation of intensity of sample ‘x’

σy = standard deviation of intensity of sample ‘y’

C1, C2, C3 = constant to avoid instability when denominator is close to zero

The maximum value of SSIM is 1, and the minimum value of SSIM is -1,

representing best quality and poorest quality respectively. As in Table. 4.5, the SSIM

is 0.995, since video with MPEG compression is used as the second source, it can be

explained that the quality of video with MPEG compression did not significantly

drop in comparison with HVEC-compressed video.

4.6.3 Feasibility in terms of size and compression time

Comparing both standards, it is found that MPEG-4 is more feasible. The main

reason that HEVC is less feasible is long encoding time. OpenCV does not directly

support HEVC codec. (Getting Started with Videos, 2017) Therefore, it requires

extra lines of code to convert the compression of video from MPEG-4 to HEVC

format. Time taken for the conversion is extremely long because the conversion

speed is low. It is found that the average conversion speed is 0.25 fps. This problem

does not exist when using MPEG-4, because it is supported by OpenCV, the

encoding is done along with OpenCV function - VideoWriter() without extra time.

The advantage of HEVC over MPEG-4 is higher compression efficiency. The

size of HEVC-compressed video is much less than MPEG-4-compressed video. For

video length of 30 secs, the average size of HEVC-compressed video is 67 kb while

for MPEG-4-compressed video is 211 kb. 68 % of video size is reduced when HEVC

compression standard is used.

43

4.7 Summary

In this chapter, the performance of the system is discussed and analysed in

aspects of time, accuracy, real-time performance and video quality. Inference time is

proven to be greatly reduced with the use of NCS. The optimum threshold level is

0.6 where the values of precision and recall at that level are 0.9557 and 0.82

respectively. The system is found to be stable enough for real-time application.

When it comes to video quality, the video quality of MPEG-4-compressed video is

slightly lower than HEVC-compressed video. However, MPEG-4 compression is still

preferred because it is much more efficient in time.

44

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In conclusion, a smart security camera with human-triggered recording was built.

The use of NCS and MobileNet-SSD machine learning model had made object

detection on low-powered embedded platform possible. The time required for the

system running on Raspberry Pi Zero W with NCS to capture, process and infer a

frame was 0.29s. In other words, the timing performance of the system is 3.5 frames

per second. The highest achieved precision is 0.9767 at threshold level of 0.9 while

for recall is 0.912 at 0.1 threshold level. The final threshold level is set to be 0.6 to

ensure high amount of results and high accuracy, balanced values of precision and

recall are required. At threshold level of 0.6, the precision and recall are 0.9557 and

0.82 respectively. For video compression method, it is found that MPEG-4

compression is more suitable for this application as it is more efficient in time

without significantly reducing video quality. Finally, this system is put to the

practical test and found stable at most of the time.

5.2 Recommendations for future work

System fps is still very low compared to normal video recording. Future work shall

be working on improvement of fps which is related to timing parameters studied in

this paper i.e. camera read time, image process time, inference time and etc. In

addition, the problem of long time spent on compressing video with HVEC codec

shall be overcome such that compression codec of newer generation can be used

without increasing burden on the system. This system can be further modified to be

used for different purpose for example ATM monitoring, wild-life counting, traffic

light signal control and etc.

45

REFERENCES

Alain Horé, Djemel Ziou. (2010). Image Quality Metrics: PSNR vs. SSIM. 2010

International Conference on Pattern Recognition, 2366-2369.

Alex Krizhevsky, I. S. (2012). ImageNet Classification with Deep Convolutional

Networks. Lake Tahoe, Nevada, USA: Neural Information Processing

Systems Conference .

Andrej Karpathy, L. F.-F. (2017). Deep Visual-Semantic Alignments for Generating

Image Descriptions. IEEE Transactions on Pattern Analysis and Machine

Intelligence , 39(4), 664-676.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, Hartwig Adam. (2017). Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861.

Card, C. (2018). Facebook Newsroom. Retrieved February 25, 2019, from

https://newsroom.fb.com/news/2018/09/inside-feed-suicide-prevention-and-

ai/

Center, B. V. (2015, May 27). Caffe: a fast open framework for deep learning.

Retrieved from Github: https://github.com/BVLC/caffe

Chien-Chang Chen, Hung-Hui Juan, Meng-Yuan Tsai & Henry Horng-Shing Lu.

(2018). Unsupervised Learning and Pattern Recognition of Biological Data

Structure with Density Functional Theory and Machine Learning. Nature.

Christian Szegedy, W. L. (2015). Going Deeper with Convolutions. Boston,

Massachusetts: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

chuanqi305. (2017, June 8). MobileNet-SSD. Retrieved from Github:

https://github.com/chuanqi305/MobileNet-SSD

Dhanashree Vijayrao Madhekar, Prof. Mrinal Rahul Bachute. (2017). Real Time

Object Detection and Tracking using Raspberry Pi. International Journal of

Engineering Science and Computing, 13233-13236.

Dudley, R. (2018). The Star Online. Retrieved February 25, 2019, from

https://www.thestar.com.my/opinion/letters/2018/06/15/suicide-epidemic-is-

a-concern/

46

Fergus, M. Z. (2014). Visualizing and Understanding Convolutional Neural

Networks. Zurich, Switzerland: European Conference on Computer Vision.

Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas Wiegand. (2012).

Overview of the High Efficiency Video Coding. IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1649-1667.

Getting Started with Videos. (2017, December 7). Retrieved from OpenCV:

https://docs.opencv.org/3.4.0/dd/d43/tutorial_py_video_display.html

Giuseppe Amato, F. C. (2016). Car Parking Occupancy Detection Using Smart

Camera Networks and Deep Learning. IEEE Symposium on Computers and

Communication (ISCC), 10.1109/ISCC.2016.7543901 .

Google. (2018). Google Trends. Retrieved June 24, 2018, from

https://trends.google.com/trends/explore?date=all&geo=US&q=machine%20l

earning

H265. (2019, January 7). Retrieved from FFMPEG:

https://trac.ffmpeg.org/wiki/Encode/H.265

joshinishant2305. (2018, December 20). Transfer Learning in Object Detection and

API Used in Object Detection. Retrieved from Medium:

https://medium.com/@joshinishant2305/transfer-learning-in-object-detection-

and-api-used-in-object-detection-4673244cf

Kalva, H. (2006). The H.264 Video Coding Standard. IEEE Multimedia, 86-90.

Karen Simonyan, A. Z. (2015). Very Deep Convolutional Networks for Large-Scale

Image Recognition. International Conference on Learning Representations.

Lloyd, R. (2018, April 9). HEVC Patent Pool . Retrieved from IAM Media:

https://www.iam-media.com/patent-pools/despite-patent-pools-comeback-

video-compression-market-shows-licensees-still-have

M, D. (2018, November 19). Data Science Using Unsupervised Learning &

Visualization of Astronomy Data. Retrieved from Towards Data Science:

https://towardsdatascience.com/data-science-using-unsupervised-learning-

visualization-of-astronomy-data-b6b1c61f6922

Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill

Science/Engineering/Math.

Mohammad Sadegh Norouzzadeh, A. N. (2018). Automatically Identifying,

Counting, and Describing Wild Animals in Camera-Trap Images with Deep

47

Learning. Proceedings of the National Academy of Sciences of the United

States of America, 115(25), 5716-5725.

Philippo, E. J. (2018, January 24). 5 reasons why h.265 is not the future of video

compression technology. Retrieved from Eagle Eye Networks:

https://www.een.com/h-265/

Rodigues, A. (2016, June 9). A technical comparison of H264 vs H265 . Retrieved

from Medium: https://medium.com/advanced-computer-vision/h-264-vs-h-

265-a-technical-comparison-when-will-h-265-dominate-the-market-

26659303171a

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of

Checkers. IBM Journal of Research and Development , 210-229.

Suicide data. (2019, March 20). Retrieved from World Health Organization:

https://www.who.int/mental_health/prevention/suicide/suicideprevent/en/

Sunway Campus Library Adopts Facial Recognition Technology. (2018, February 1).

Retrieved from Sunway College :

https://college.sunway.edu.my/news/2019/sunway-campus-library-adopts-

facial-recognition-technology

Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard, Ajay Luthra. (2003).

Overview of the H.264/AVC Video Coding Standard. IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 560-576.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, Alexander C. Berg. (2016). SSD: Single Shot MultiBox

Detector. arXiv:1512.02325.

Xiao, F. (2000). Dct-based Video Quality Evaluation. Final Project for EE392J, 769.

Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, Eero P. Simoncelli. (2004).

Image Quality Assessment: From Error Visibility to Structural Similarity.

IEEE TRANSACTIONS ON IMAGE PROCESSING, 600-612.

48

APPENDICES

APPENDIX A: Scripts

Security Camera with NCS (Laptop and Raspberry Pi share the same script)

#!/usr/bin/python3

**
Copyright(c) 2017 Intel Corporation.
License: MIT See LICENSE file in root directory.
**

Detect objects on a LIVE camera feed using
Intel® Movidius™ Neural Compute Stick (NCS)

import argparse
import cv2
import numpy
import ntpath
import os
import sys
import select
import time
import telepot
import upload
import mvnc.mvncapi as mvnc
from time import localtime, strftime
from utils import visualize_output
from utils import deserialize_output
from imutils.video import VideoStream
from kcw import KeyClipWriter

---- Pre-start settings --

"Class of interest" - Display detections only if they match this class ID
CLASS_PERSON = 15

Detection threshold: Minimum confidance to tag as valid detection
CONFIDANCE_THRESHOLD = 0.60 # 60% confidant

Variable to store commandline arguments
ARGS = None

OpenCV object for video capture
camera = None

#Initialize global variable
consecFrames=0

#Initialize telegram pass token
bot = telepot.Bot('625446283:AAGva0AVLPMYjCbOHbVlrImmVyjEdLihceQ')

---- Step 1: Open the enumerated device and get a handle to it -------------

def open_ncs_device():

 # Look for enumerated NCS device(s); quit program if none found.
 devices = mvnc.EnumerateDevices()
 if len(devices) == 0:
 print("No devices found")
 quit()

 # Get a handle to the first enumerated device and open it
 device = mvnc.Device(devices[0])
 device.OpenDevice()

49

 return device

---- Step 2: Load a graph file onto the NCS device -------------------------

def load_graph(device):

 # Read the graph file into a buffer
 with open(ARGS.graph, mode='rb') as f:
 blob = f.read()

 # Load the graph buffer into the NCS
 graph = device.AllocateGraph(blob)

 return graph

---- Step 3: Pre-process the images --

def pre_process_image(frame):

 # Resize image [Image size is defined by choosen network, during training]
 img = cv2.resize(frame, tuple(ARGS.dim))

 # Convert RGB to BGR [OpenCV reads image in BGR, some networks may need RGB]
 if(ARGS.colormode == "rgb"):
 img = img[:, :, ::-1]

 # Mean subtraction & scaling [A common technique used to center the data]
 img = img.astype(numpy.float16)
 img = (img - numpy.float16(ARGS.mean)) * ARGS.scale

 return img

---- Step 4: Read & print inference results from the NCS -------------------

def infer_image(graph, img, frame):

 # Use global variable in local
 global consecFrames
 global updateConsecFrames
 global cur_time

 # Load the image as a half-precision floating point array
 graph.LoadTensor(img, 'user object')

 # Get the results from NCS
 output, userobj = graph.GetResult()

 # Get execution time
 inference_time = graph.GetGraphOption(mvnc.GraphOption.TIME_TAKEN)

 #print(str(numpy.sum(inference_time)))

 # Deserialize the output into a python dictionary
 output_dict = deserialize_output.ssd(
 output,
 CONFIDANCE_THRESHOLD,
 frame.shape)
 # When no object is detected
 if(output_dict['num_detections'] == 0):
 updateConsecFrames=True
 if kcw.recording:
 kcw.update(frame)
 if kcw.recording and consecFrames == ARGS.buffer_size:
 kcw.finish()
 upload.upload(cur_time)
 os.remove(cur_time+'.avi')

 # Print the results (each image/frame may have multiple objects)
 for i in range(0, output_dict['num_detections']):

 # Filter a specific class/category
 # When object detected is person
 if(output_dict.get('detection_classes_' + str(i)) == CLASS_PERSON):
 (y1, x1) = output_dict.get('detection_boxes_' + str(i))[0]
 (y2, x2) = output_dict.get('detection_boxes_' + str(i))[1]

50

 # Extract top-left & bottom-right coordinates of detected objects
 (y1, x1) = output_dict.get('detection_boxes_' + str(i))[0]
 (y2, x2) = output_dict.get('detection_boxes_' + str(i))[1]

 # Prep string to overlay on the image
 display_str = (
 labels[output_dict.get('detection_classes_' + str(i))]
 + ": "
 + str(output_dict.get('detection_scores_' + str(i)))
 + "%")

 # Overlay bounding boxes, detection class and scores
 frame = visualize_output.draw_bounding_box(
 y1, x1, y2, x2,
 frame,
 thickness=4,
 color=(255, 255, 0),
 display_str=display_str)

 consecFrames = 0
 updateConsecFrames = False

 if not kcw.recording:
 cur_time = strftime("%Y_%m_%d_%H_%M_%S", localtime())
 print("person detected at " + str(cur_time))
 bot.sendMessage(749556817,"Person Detected at " + str(cur_time))
 cur_time = strftime("%Y_%m_%d_%H_%M_%S", localtime())
 kcw.start(cur_time + '.avi',fourcc,ARGS.fps)

 # When object other than person is detected
 else:

 updateConsecFrames = True

 if kcw.recording and consecFrames == ARGS.buffer_size:
 kcw.finish()
 print("video saved")
 upload.upload(cur_time)
 os.remove(cur_time+'.avi')

 if kcw.recording:
 kcw.update(frame)

 if updateConsecFrames:
 consecFrames = consecFrames + 1

 # If a display is available, show the image on which inference was performed
 if 'DISPLAY' in os.environ:
 cv2.imshow('NCS live inference', frame)

---- Step 5: Unload the graph and close the device -------------------------

def close_ncs_device(device, graph):
 graph.DeallocateGraph()
 device.CloseDevice()
 camera.stop()
 if kcw.recording:
 kcw.finish()
 upload.upload(cur_time)
 os.remove(cur_time+'.avi')
 cv2.destroyAllWindows()

---- Main function (entry point for this script) --------------------------

def main():

 device = open_ncs_device()
 graph = load_graph(device)

 # Main loop: Capture live stream & send frames to NCS
 while(True):
 frame = camera.read()

51

 img = pre_process_image(frame)
 infer_image(graph, img, frame)
 # Display the frame for 5ms, and close the window so that the next
 # frame can be displayed. Close the window if 'Enter' is pressed.
 i,o,e = select.select([sys.stdin],[],[],0.1)
 if(i):
 break

 close_ncs_device(device, graph)

---- Define 'main' function as the entry point for this script -------------

if __name__ == '__main__':

 parser = argparse.ArgumentParser(
 description="DIY smart security camera PoC using \
 Intel® Movidius™ Neural Compute Stick.")

 parser.add_argument('-g', '--graph', type=str,
 default='../../caffe/SSD_MobileNet/graph',
 help="Absolute path to the neural network graph file.")

 parser.add_argument('-l', '--labels', type=str,
 default='../../caffe/SSD_MobileNet/labels.txt',
 help="Absolute path to labels file.")

 parser.add_argument('-M', '--mean', type=float,
 nargs='+',
 default=[127.5, 127.5, 127.5],
 help="',' delimited floating point values for image mean.")

 parser.add_argument('-S', '--scale', type=float,
 default=0.00789,
 help="Absolute path to labels file.")

 parser.add_argument('-D', '--dim', type=int,
 nargs='+',
 default=[300, 300],
 help="Image dimensions. ex. -D 224 224")

 parser.add_argument('-C', '--colormode', type=str,
 default="bgr",
 help="RGB vs BGR color sequence. This is network dependent.")

 parser.add_argument("-f", "--fps", type=int, default=3,
 help="FPS of output video")

 parser.add_argument("-b", "--buffer-size", type=int, default=64,
 help="buffer size of video clip writer")

 ARGS = parser.parse_args()

 #Load the labels file
 labels =[line.rstrip('\n') for line in
 open(ARGS.labels) if line != 'classes\n']

 #Initialize Video Writer
 kcw=KeyClipWriter(bufSize=ARGS.buffer_size)
 fourcc = cv2.VideoWriter_fourcc(*'XVID')

---- Camera Initialization ---

 print("WARMING UP CAMERA")
 camera = VideoStream(src=0).start()
 time.sleep(2.0)
---- Start ---

 main()

==== End of file ===

52

Security Camera without NCS (Laptop and Raspberry Pi share the same script)

#!/usr/bin/python3
Detect objects on a LIVE camera feed
import argparse
import imutils
import cv2
import csv
import os
import select
import sys
import time
import numpy as np
from kcw import KeyClipWriter
from imutils.video import VideoStream
from time import localtime, strftime

def pre_process_image(frame):

 # Mean subtraction and scaling

 blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
 0.007843, (300, 300), 127.5)
 return(blob)

def infer_image(frame,blob):

 global consecFrames
 global updateConsecFrames
 global cur_time
 (h, w) = frame.shape[:2]
 # Set the new input value for the network
 net.setInput(blob)
 # send the input value for inference
 out = net.forward()
 # loop over the detections
 # When no object is detected
 if(out.shape[2] == 0):
 updateConsecFrames=True
 if kcw.recording:
 kcw.update(frame)
 if kcw.recording and consecFrames == ARGS.buffer_size:
 kcw.finish()

 for i in np.arange(0, out.shape[2]):

 idx = int(out[0, 0, i, 1])
 if (idx == 15):

 # extract the confidence (i.e., probability) associated with
 # the prediction

 confidence = out[0, 0, i, 2]

 # filter out weak detections by ensuring the `confidence` is
 # greater than the minimum confidence

 if confidence > ARGS.confidence:

 # extract the index of the class label from the
 # `detections`, then compute the (x, y)-coordinates of
 # the bounding box for the object

 box = out[0, 0, i, 3:7] * np.array([w, h, w, h])
 (startX, startY, endX, endY) = box.astype("int")

 # draw the prediction on the frame

 label = "{}: {:.2f}%".format(CLASSES[idx],confidence * 100)
 cv2.rectangle(frame, (startX, startY), (endX, endY),COLORS[idx], 2)

53

 y = startY - 15 if startY - 15 > 15 else startY + 15
 cv2.putText(frame, label, (startX, y),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)

 consecFrames = 0
 updateConsecFrames = False
 if not kcw.recording:
 cur_time = strftime("%Y_%m_%d_%H_%M_%S", localtime())
 kcw.start(cur_time + '.avi',fourcc,20)
 else:
 updateConsecFrames = True
 if kcw.recording and consecFrames == ARGS.buffer_size:
 kcw.finish()

 if kcw.recording:
 kcw.update(frame)

 if updateConsecFrames:
 consecFrames = consecFrames + 1

 # If a display is available, show the image on which inference was performed
 ## cv2.imshow('Live Inference', frame)
def shut_down ():

 camera.stop()
 if kcw.recording:
 kcw.finish()
 cv2.destroyAllWindows()

def main ():

 while (True):

 frame = camera.read()
 blob = pre_process_image(frame)
 infer_image(frame,blob)
 i,o,e = select.select([sys.stdin],[],[],0.1)
 if(i):
 break
 shut_down()

---- Define 'main' function as the entry point for this script -------------

if __name__ == '__main__':

 parser = argparse.ArgumentParser()

 parser.add_argument("-p", "--prototxt",
 default='MobileNetSSD_deploy.prototxt',
 help="path to Caffe 'deploy' prototxt file")

 parser.add_argument("-m", "--model",
 default='MobileNetSSD_deploy.caffemodel',
 help="/")

 parser.add_argument("-c", "--confidence", type=float, default=0.4,
 help="minimum probability to filqter weak detections")

 parser.add_argument("-f", "--fps", type=int, default=20,
 help="FPS of output video")

 parser.add_argument("-b", "--buffer-size", type=int, default=32,
 help="buffer size of video clip writer")

 ARGS = parser.parse_args()

 CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
 "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
 "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
 "sofa", "train", "tvmonitor"]

 COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

54

 fourcc = cv2.VideoWriter_fourcc(*'XVID')
---- Camera Initialization ---

 print("WARMING UP CAMERA")
 camera = VideoStream(src=0).start()
 time.sleep(2.0)
 consecFrames=0
 kcw=KeyClipWriter(bufSize=ARGS.buffer_size)
 net = cv2.dnn.readNetFromCaffe(ARGS.prototxt, ARGS.model)
---- Start ---

 main()

==== End of file ===

