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NUMERICAL AND TEXT DATA AUGMENTATION 

FOR FINANCIAL MARKET DATA 

 
 

LIM SHIN CHYI 
 

ABSTRACT 

Extensive studies and researches have been done on the prediction of financial market 

using text data such as news or numerical data such as stock prices and trading 

volume. However, lesser works can be found on doing prediction using the 

augmented text and numerical data. It is believed that better prediction can be 

obtained by taking into cosideration both text and numerical data. This project aims to 

identify the differences between the results obtained from text data model, numerical 

data model and augmented data model, and more importantly to verify the hypothesis 

that augmented data model will generate better result.  

 

Web scraping and RSS can be used to collect online text data, particularly the 

news articles. On the other hand, numerical data, which are S&P 500 index prices and 

30 stock prices, are obtained through Bloomberg. The text and numerical data is 

processed and used to train different type of models. Text data model, numerical data 

model and augmented data model are developed and analyzed. Classification 

algorithms such as logistic regression, support vector machine, naive bayes, neural 

network and decision tree are employed to build the models. The results obtained 

from this project indicated that model based on augmented data has the highest 

predicting power and accuracy as compared to the other two models. Hence, the 

hypothesis is verified and proved to be true. In future, more data over a longer period 

can be extracted and used to develop the models in order to obtain a more 

comprehensive and accurate results and predictions. Tuning of the algorithms 

employed to train the models can be further studied and investigated. 
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CHAPTER 1: INTRODUCTION  

1.1 Objectives 
This project is designed to archive the following objectives: 

i. To understand how to process textual and numerical data for augmentation 

purpose using Python. 

ii. To identify how to augment numerical and textual data using Python. 

iii. To build a model using only textual data, a model using only numerical data 

and a model using the augmentation of numerical and textual data to predict 

financial market sentiment. 

iv. To evaluate the accuracy of the models in analysing and predicting financial 

market sentiment. 

1.2 Problem Statement 
Most financial sentiment analysis and models consider only the effect of numerical 

data such as stock price. However, textual information such as news is also a 

significant determinant of financial market sentiment. Therefore, there is a need to do 

some research about the financial analysis and model that involving both numerical 

and textual data. It is also important for us to determine the combination of data that 

can produce the best analysis and model. This is to ensure that a better prediction can 

be done by employing the most appropriate analysis and model. Clearly, this is of the 

utmost concern of financial institutions and investors. 

1.3 Motivation 
There are mainly two approaches to analysis and predict of financial market 

movement, which are fundamental approach and technical approach. Fundamental 

analysis relies on the financial data of the business such as dividends, ratios, 

management effectiveness and earnings to get some insight. The main source of 

financial data is the financial report while some may also refer to news and analysis 

report written by economics. Most of the financial data used by fundamental analyst is 

in text form. On the other hand, technical analysis relies on historical data such as past 
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price and trading volume, which are mostly in numeric form (Joshi, Bharathi and 

Jyothi, 2016). It employs various charts and indicators to identify trend in those 

historical data (Schumaker and Chen, 2009). Although both of the methods can be 

used of forecast market trend, it would be even better if we could apply both of them 

by incorporating both numerical and textual data. 

 

  In addition, financial market analysis is significant for investors to determine 

the performance of their securities, decide on how to invest their funds and plan their 

future investment. It can make prediction on some future values such as market index 

and stock price. Financial market is affected by the demand and supply, which are 

determined by investors and investors make decision based on various information. 

Examples of information affecting investors’ decisions are news, journals, historical 

stock prices and social media posts. Among all the data that exist in this universe, 

only a small part of it is in numerical form while a lot more is in textual form. 

Besides, nuances and behavioral expression present only in textual data. Text has 

emotive contents, opinions and connections (Das, 2014). Hence, it plays an important 

role in data analysis specifically in financial market data analysis.  

 

Financial market analysis is considered to be thorough and comprehensive if and only 

if it takes into accounts the effects of both numerical and textual data. Numerical data 

for financial market usually refers to the index prices while textual data refers to news 

and articles. Prediction of market movement is a key purpose of doing financial 

market analysis. This is extremely important for financial institutions such as 

investment firms and banks since an accurate and precise forecast will bring them 

profits and high earnings. Therefore, numerical and text data augmentation for 

financial market data is an important topic to research in order to develop a good 

model for analysis and prediction. 

1.4 Project Scope 
The textual data of this project is limited to be 300 articles from Wall Street Journal 

provided by Dr Goh Yong Kheng while the numerical data will be S&P 500 index 

prices. Both the data are taken from September 2017 to October 2017. This project is 
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only for the analysis and prediction of S&P 500 index prices and not for the other 

financial market instrutments. Although the data collection of articles is performed, it 

is not used to develop any model due to the limitation of time. It is only for the 

demonstration of data collection steps and methods. 

 

 Including this chapter, this report is divided into five parts. The second chapter 

discusses on the past studies and researches related to this project. In Chapter 3, the 

methodology used in this project is explained and elaborated. Chapter 4 presents and 

discusses the results obtained from the three models. Model using text data, model 

using numerical data and model using augmented text and numerical data are 

compared and analysed in this report. The last chapter draws some conclusive 

remarks and addresses the limitation faced in this project. It discusses the possible 

improvements and suggests new direction of future works. 
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CHAPTER 2: LITERATURE REVIEW 

In this chapter, researches regarding the prediction of stock market are investigated in 

Section 2.1. Section 2.2 presents some works related to the development of models 

such as the data used and algorithms employed. Section 2.3 discusses past studies 

about the collection of data. Data collection is divided into three parts which are the 

collection of data using web scraping, collection of data using RSS and the use of 

cloud computing to ease data collection. 

2.1 Prediction of Stock Market 
Early studies on stock market prediction were based on two theories, which are 

random walk theory and efficient market hypothesis (EMH). The random walk theory 

was introduced by Fama (1965) and Malkiel (1985) whereas the EMH was introduced 

by Fama (1970). EMH assumes that stock market prices at any point in time “fully 

reflect” all information available and this indicates that financial market movement 

are driven by “new” information such as news and current events rather than present 

or past prices. Since news and current events are unpredictable, financial market 

prices will follow a random walk pattern and thus impossible to be predicted with 

more than 50% accuracy (Qian & Rasheed, 2007). In the research of Qian and 

Rasheed (2007), several theories opposing the EMH and random walk model had 

been presented and it is proven that prediction is possible through the achievement 

65% prediction accuracy. 

 

Besides, Fortuny et al (2013) argued that stock price movement could be 

predicted based on technical indicators, news data and their sentiments. Fortuny et al 

(2013) presented that models derived from these information tend to perform better 

than random guessing. Schumaker and Chen (2009), and Mittermayer (2006) also 

developed models on the basis of textual information to perform directional 

predictions of stock movement for instance up or down instead of the actual values.  

 

Extensive studies on stock price movement prediction have been done based 

on either textual data such as news or numerical data such as stock prices. However, 
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lesser work can be found on using both textual and numerical data. According to 

Schumaker and Chen (2009) and Li et al (2011) as cited by Fortuny et al (2013), 

models that used only textual data are too limiting. Schumaker and Chen (2009) 

showed that better prediction was obtained using articles (news) and stock price at the 

time of article released as compared to using only article data. Therefore, prediction 

on index (S&P 500) price movement based on only text data, only numerical data, and 

the augmented text and numerical data, is performed in this project. 

 

Although news most certainly influences investor sentiments and stock market 

prices, public mood states and sentiments also play an equally important role in 

influencing the stock market prices. There are numerous studies regarding stock price 

prediction based on public sentiment data extracted from online social media such as 

Twitter. Nowadays social media has become a prefect representation of public 

sentiments and feelings on an incident or event. Twitter is the social media platform 

used by a lot of researchers to study public sentiments. Bollen, Mao and Zeng (2011) 

introduced a model to predict stock market using public mood states from tweets 

posted in Twitter. Besides, Ranco et al (2015) and Pagolu et al (2016) showed the 

existence of strong correlation between the financial market and the Twitter 

sentiment. Ranco et al (2015) investigated the effects of Twitter sentiment on stock 

price returns. Pagolu et al (2016) also developed a sentiment analyzer that is used to 

determine the sentiment of a tweet for predicting the rises and falls in stock market. 

Prediction of financial market sentiment based on social media data is an interesting 

area of study. However, research regarding this topic is not done in this project due to 

the limitation of time. 

2.2 Model Development 
Variety of models used to predict financial market have been developed based on 

different types of data. Schumaker and Chen (2009) presented model using extracted 

article terms and stock price at the time of article released, model using only extracted 

article terms, and model using extracted terms and a regressed estimate of the +20 

minute stock price. For textual representation, they showed that Proper Nouns (hybrid 

go-between for Noun Phrases and Named Entities) performed better as compared to 
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Bag of Words, Noun Phrases and Named Entities.  

 

Schumaker and Chen (2009) used linear regession and support vector machine 

(SVM) to develop models in their research. Fortuny et al (2013) also employed 

Support Vector Machine (SVM) in building their model as it has been proven to be 

successful for text mining by Cohen & Hersh (2005) and Tang et al (2009). Moreover, 

Naïve Bayesian classifier is trained by Gidófalvi (2001) to predict the movement 

of the associated stock price. 

 

On the other hand, Wong, Liu and Chiang (2015) proposed a unified latent 

factor model to characterize the joint correlation between stock prices and news 

articles for predictions on individual stocks. They used sparse matrix factorization to 

formulate model learning. Akita et al (2016) predicted stock prices by using Long 

Short-Term Memory (LSTM) to regress from textual and numerical data while taking 

into account the correlations between multiple companies in the same industry. 

 
 According to Sidana (2017), machine learning has seven type of classification 

algorithms which are linear classifiers (logistic regression and naive bayes classifier), 

support vector machines, decision trees, boosted trees, random forest, neural networks 

and nearest neighbour. Since model predicting financial market sentiment is a 

classification type model, all the algorithms trained in this project are classification 

type. Models using logistic regression, support vector machine, naive bayes, neural 

network and decision tree are developed in this project. 

2.3 Data Collection 
Due to the advancing of internet and evolution of World Wide Web (WWW),  a lot of 

users from different backgrounds exchange, share and store infromation online as they 

can easily and fastly get connected to their target audience (Saurkar, Pathare and 

Gode, 2018). Since tons of data available online, there is a need for researchers to 

change their source of obtaining data. This section discusses about the past works 

regarding the collection of online data, particularly text data. 
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Web scraping and RSS are widely used methods to obtain online data. 

Besides, cloud computing is used to ease the process of web scraping and collection 

of data through RSS as it allows a scipt to run continuously. 

2.3.1 Web scraping  

Saurkar, Pathare and Gode (2018) claimed that web scrapping is the technique to 

handle and obtain useful information in least efforts from the infinite data available on 

the Internet. Hoekstra, Bosch & Harteveld (2012) proved the possibility of data 

collection through web scrapping. They stated that it could increase the quality, 

frequency and speed of data collection leading to improved learning.  

 

There are a few application of web scrapping to facilitate data collection and 

analysis. It is used to collect prices from online retailer and construct daily price 

indexes to determine online inflation rate in five Latin American countries (Cavallo, 

2013). At the European level, web scraping is employed to automatically collect 

consumer prices online (Polidoro et al, 2015). Hessisches Statistisches Landesamt 

(2018) stated that German has increasingly used web scraping as part of its pricing 

statistics. European Statistical Systems Network (ESSnet) employed web scraping on 

job vacancies and enterprise characteristic. Web scraping job vacancies involved the 

automated extraction of information from job portals and company websites while 

web scraping enterprise characteristic involves automated search, store, structuring 

and linking of company websites with official statistics’ database (Hessisches 

Statistisches Landesamt, 2018). 

 

However, some problems do arise from the use of web scraping. Krotov and 

Silva (2018) stated that the issue regarding the legality and ethics of web scraping 

remains to be a “grey area” with no definite answer. Therefore, it is necessary for web 

scraping users to comply with some legal and ethical requirement (Krotov and Silva, 

2018). Mattosinho (2010) explained that requesting of data automatically at high 

speed through web scraping might cause Denial-of-Service attack to the requested 

server. This is because substantial amount of requests triggered and sent to the server 

in a short period of time. This has been taken in consideration when web scraping is 

employed to extract data in this project. 



	 8	

2.3.2 Really Simple Syndication (RSS) 

RSS which stands for Really Simple Syndication or Rich Site Summary can also be 

used to obtain online data. It is widely used by news sites to publish articles’ 

information and publishers to collect data automatically (Hurtado, 2015). RSS allows 

users to syndicate and aggregate online content, particularly the frequently updated 

content such as news, blog entries and HTML (O’Shea and Levene, 2011). Hurtado 

(2015) explained that RSS users can receive and syndicate updated data from data 

sources automatically. 

 

Study of Brick Factory in 2007 on America's top 100 newspaper websites, 

with the title of “American Newspapers and the Internet: Threat or Opportunity?", 

showed that 96 out of 100 America’s top online newspapers employed RSS 

technology. Li et al (2007) stated that there are about 75,000 new RSS feeds created 

and 1.2 million new stories posted daily by referring / according to the survey of 

Technorati. 

 

Bross et al (2010) mapped and extracted data from blogosphere using RSS 

feeds. They developed feed crawler software, which is implemented in Groovy, a 

dynamic Java programming language. Hurtado (2015) used feedparser and web 

crawler guided by RSS feed to collect data/information from RSS feeds and HTML 

pages. In this project, feedparser, a Python library for parsing feeds is employed in 

this project to collect data using RSS feed. 

2.3.3 Cloud computing 

Abdulhamid (2019) stated that Eric Schmidt is probably the first to introduce the 

word “cloud computing” in his talk on Search Engine Strategies Conferences in 2006 

as cited in Qian et al (2009). Qian et al (2009) described cloud computing as a kind of 

computing technique that provides IT services with low-cost computing units 

connected by networks. Kumar and Goudar (2012) mentioned that cloud computing is 

a Pay-per-Use-On-Demand mode to users. Users can use the modalities whenever 

demanded and only pay for the services they used (Priyanshu and Rizwan, 2018).  

National Institute of Standards and Technology (NIST) as cited in Kratzke (2018) 



	 9	

defined cloud computing based on three basic services, which are Infrastructure as a 

service (IaaS), Software as a service (PaaS) and Platform as a service (PaaS). 

 
Cloud computing have some features and advantages. For instance, its 

scalability, on-demand services, quality of service, user-centric interface, autonomous 

system and pricing as mentioned by Prasad, Naik and Bapuji (2013). However, there 

are also issues and challenges in adopting cloud computing. Prasad, Naik and Bapuji 

(2013) claimed that the issues and challenges in adopting cloud computing are 

security, reliability, privacy, open standard, performance, bandwidth cost, long-term 

feasibility and legal issues. 

 
 Cloud computing is used in this project to run python script continuously for a 

long period of time. Without using cloud computing, local computer is required to 

turn on and run non-stop for an extensive amount of time. This is not healthy for a 

normal local computer. Other tasks to be done using the computer might also be 

interfered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 10	

CHAPTER 3: RESEARCH METHODOLOGY 

Python programming language is used throughout the entire project. In order to 

achive the objectives of this project and accomplish it, there are some important 

methods and techniques to be employed at different stages. Some methods or 

processes might need to be applied a few number of times for those needed  

unprocessed data when developing models consisting of numerical data and 

augmented data. 

 

This chapter is divided into six parts as follows: Section 3.1 discusses on the 

collection of textual data (articles) and numerical data (index and stock prices). 

Section 3.2 ans 3.3 explains the processing steps for text data and numerical data 

respectively. The prepearation of data for modelling is presented in Section 3.4. 

Section 3.5 explains the development of models with machine learning. Lastly, 

Section 3.6 discusses on the evaluation of models using accuracy. 

3.1 Data Collection 

3.1.1 Textual data 

For textual data, 300 articles from The Wall Street Journal obtained using web 

scraping are provided by Dr. Goh Yong Kheng. The 300 articles are from all 

categories of news in The Wall Street Journal from September 2017 to October 2017 

(2 months). Besides, methods to collect data from the web such as web scraping and 

rss feed have been employed. Cloud computing is also used in some of the data 

collection methods. 

3.1.1.1 Web scraping 
Acoording to Saurkar, Pathare and Gode (2018), web scraping extracts and transforms 

unstructured data from the web into structured comprehensible data such as 

spreadsheets or comma-separated values (CSV) files. It then saves it into a file system 

or central database for future use of visualisation and analysis. Salerno and Boulware 

(2003) as cited in Draxl (2018) claimed that web scraping is the process of querying a 

source through Uniform Resource Locator (URL), retrieving the results page (HTML) 
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and parsing the page to obtain the results. 

 

 
Figure 3.1.1: Phases in Web Scraping (adapted from Krotov and Tennyson (2018) as cited in 

Krotov and Silva (2018)). 
 

Web scraping comprises three main phases that can be intertwined, which are 

website analysis, website crawling, and data organization as shown in Figure 3.1.1. 

However, some degree of human supervision is still needed throughout the whole 

process as it often cannot be fully automated. 

 

Krotov and Silva (2018) explained that website analysis is the examination of 

a website’s underlying structure in order to understand how and where the required 

data is stored, for later retrieval. A basic understanding is needed on the architecture 

and mark-up languages of World Wide Web such as HTML and XML, and several 

Web databases such as MSSQL and MySQL. For web crawling, a script to browse 

website and extract required data automatically is developed and run. The crawling 

script is usually developed using Python and R programming languages due to the 

availability of libraries or packages that allow automatic crawling and parsing of Web 

data. For instance, the Beautiful Soup library in Python and the “rvest” package in R. 

The last phase in web scraping is data organization. Cleaning, preprocessing and 

organization of the parsed data is needed to ensure that it allows further analysis. This 

is often done through programmatic approach using libraries and function. The 

Natural Language Processing (NLP) library and data manipulation functions in R and 

Python are useful for this purpose (Krotov and Silva, 2018). 
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In this project, a few python libraries such as requests, beautiful soup, 

selenium, time and json are needed to collect article data using web scraping. Two 

methods are used to extract online data due to the restrictions of websites. For 

websites that allow the use of requests (get) to extract data through URL, selenium is 

not employed as it requires a lot of computation powers and creates heavier task to the 

source. For instance, “https://www.fool.com”. Selenium is only used when the 

retrieval of page source or data by sending request is prohibited. For instance, 

“https://www.bloomberg.com/markets”. Requests and selenium libraries are used 

alternatively but not simultaneously. Beautiful Soup Core Development Team (2004) 

(as cited in (Hurtado, 2015)) stated that beautiful soup is a Python parser library that 

helps to remove HTML tags from contecnt and provide a clean text. Time module 

allows the script to rest (sleep) for a fixed time period in the web scraping process. 

This can avoid the occurance of Denial-to-service attack to the server. Json library is 

used to save the output data extarcted online.  

 

Web scraping using request module is run in the cloud computer to 

continuously extract data. This is because cloud computing allows a script to be run 

continuously without stop even though exit from the server. A local computer is 

unable to do this without turning off. On the other hand, web scraping using selenium 

module is not run in cloud computer as it requires the server to be connected and 

turned on continuously. This also requires the local computer to be turned on 

continuously and makes no different between running in cloud or local. The cloud 

computing software used in this project is Digital Ocean. 

 

Due to the limitation of time, web scraping is only done for two websites, 

particularly “https://www.fool.com” and “https://www.bloomberg.com/markets”. 

Various websites should be scrapped to have a deeper understanding about web 

scraping. Different problems and challenges will be faced when scraping different 

websites. Some websites may have no or less restriction and some may highly 

restricted web scraping activities. 
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3.1.1.2 Really simple syndication (RSS)  
O’Shea and Levene (2011) stated that RSS provides a method to syndicate and 

aggregate online content, particularly the frequently updated works such as news, 

blog entries and HTML. The collection and syndication of updated data can be done 

automatically. 

 
Figure 3.1.2: The RSS feed structure (Hurtado, 2015). 

 

A RSS feed is composed by items (as shown in Figure 3.1.2). Items and feed 

have specific attributes which decribe each entity respectively. Though, all attributes 

or complete information are not necessary provided (Hurtado, 2015). This is the 

challenge that may be faced by RSS user if there is a lack of important information. 

Hurtado (2015) stated that the most common issues arose are incomplete content, 

non-categorised article, low resolution image, missing main information and missing 

author. The problem faced in this project is the lack of necessary and required 

attributes such as title, summary or published (date), particularly in items. 

 

In this project, feedparser, time and json libraries are imported into Python for 

the aquisition of online frequently updated data using RSS feeds. Feedparser  

(Universal Feed Parder) is a module in Python for downloading and parsing 

syndicated fees such as RSS and Atom. Time module is used to measure the resting 

time for the script in the data acquisition using RSS. Since high frequency data 

collection may result in the same set of data being collected. Json library is for the 

storing of data extrated for future use. 

 

 The Python script to extract data using RSS is run in the cloud computer. This 

is due to the continuous running despite disconnected feature of cloud computing. 
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With this feature, the script can be executed repeatedly to continuously retrieve data. 

Continuous executing a script can only be done on a local computer if the computer is 

switched on. The use of cloud computing can increase the amount of data collected 

without bringing any disadvantages particularly to the local computer. The cloud 

computing software used is also Digital Ocean. 

3.1.2 Numerical data 

For numerical data, the highest, lowest, open and closing index prices for The 

Standard & Poor’s 500 (S&P 500) index prices were downloaded from The Wall 

Street Journal. Besides, stock prices of the top 30 companies with the highest 

component weight listed in S&P 500 as at October 2018 are extracted. The stock 

prices of the 30 companies are used to develope model consisting numerical data, and 

model consisting the augmented textual and mumerical data. The index prices and 

stock prices will also be collected for September 2017 and October 2017 from 

Bloomberg. 

3.2 Processing Textual Data 
The articles are being imported into Python in dictionary data type. The textual data is 

reduced to include only the title and textual content of the article itself while ignoring 

other parts such as the authors, descriptions and keywords. Before starting to process 

the data, the articles with no content are removed. As a result, 4 article data (rows) 

have been removed from the 300 data, remaining 296 data. Textual data including 

both title and content are then being processed. 

 

            The processing of textual data are mainly being done using the Natural 

Language Toolkit (NLTK) library in Python. Firstly, the paragaph or sentences of the 

text data are tokenise using the word_tokenize imported from NLTK library. Next, the 

tokens of words are being cleaned by removing all the stopwords, punctuations and 

numbers, leaving only alphabets. The list of stopwords can be obtained from 

nltk.corpus. The words are then being stemmed using Porter Stemmer imported from 

nltk.stem. The frequency of occurance of words are multiplied by a factor of 2 if it 

presents in the title words. Besides, the list of words are reduced based on list of 
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sentiment words obtained online. The list of sentiment words is made up of positive 

and negative words obtained from http://www.cs.uic.edu/~liub/FBS/sentiment-

analysis.html under “Opinion Lexicon”. This is to ensure that all the words are 

sentimental and significant in predicting the market trend. The number of distinct 

words (columns) reduced from 11168 to 1856.  

 

 The occurance frequency of each word in each article are counted afterwards. 

Both the frequencies and the words  appearing in each article are being fitted into the 

dataframe of pandas library for futher analysis. Besides, some of the articles are being 

removed from the dataset due to the lack of significant information, for instance the 

published date, as the market trend of the day the article is published cannot be 

determined. Words with the total frequency of appearance in all articles less than or 

equal to 3 are also removed. The number of distinct words further reduced from 1856 

to 822. The matrix for textual data now has the size of (296, 822). 

3.3 Processing Numerical Data 
Among all the numerical data obtained, only the closing prices of the top 30 stocks 

with highest weight in S&P 500 and the index itself will be used in this project. The 

historical closing prices of 30 stock and S&P 500 index are imported as a pandas 

dataframe respectively.  

 

 Between the two dataframes created, only the data in S&P index price 

dataframe needs to be further processed. The target, market trend is determined based 

on the percentage change of index price as compared to the day before. All the three 

models are having the same target. Only percentage change of more than 0.05% on 

index price will be considered as increase or decrease, others it is considered 

unchanged. Positive percentage change of more than 0.05% indicates upward trend 

while negative percentage change of more tan 0.05 indicates downward trend. Price 

percentage change of value less than or equal to 0.05% represents neutral as the price 

doesn’t fluctaute much. The percentage change of index price as compared to the day 

before is calculated as below: 
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Percentage Change of index price 

=
Today!s index price− Yesterday!s index price

Yesterday!s index price ×100% 

3.4  Data Preparation for Modelling 
This section explains how to prepare data for the use of model development. For 

model using only text data, the dataframe consisting frequency of words (obtained 

from 3.2 Processing of textual data) and the dataframe consisting target (obtained 

from 3.3 Processing numerical data) are joined together. The dataframes are joined 

while removing the rows that do not have matched index. This is because some of the 

article published during the market closed and some market opening day may not 

have article published. Each input data (article) must have a target (market trend) in 

order to be used to build model. 37 data are removed, remaining 259 data for 

modeling. 

 

 For model using only numerical data, the dataframe consisting the 30 stock 

prices and the dataframe consisting target are joined together. Both of the dataframe 

are obtained from 3.3 Processing numerical data. No data is removed from the 

joining process since the index price of S&P 500 is derived partly from the prices of 

the 30 stocks in S&P 500 index. 

 

 For model using the augmented data of text and numerical, the dataframes 

prepared for building textual data model and numerical data model are joined. No data 

is removed from this joining process as the features without  target or the target 

without features are removed during the data preparation for text data modeling. Since 

there will be duplicate columns of target, one of it is removed. 

3.5 Model Development with Machine Learning 
Scikit-learn library is necessary for all the process in this stage and hence will be 

imported. The algorithms used to develop the models are also obtained from scikit-

learn library such as logistic regression, support vector machine, naive bayes, neural 

network and decision tree. 
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 For textual data model, the features or input data (X) is the part of its 

dataframe (prepared in 3.4 Data preparation for modelling) that consists of textual 

information which are the word counts of each word in each article repectively. 

Whereas, the prediciton or target that the model makes (y) will be the directional 

movement of index prices (which is also the market trend) such as up, neutral or down 

for the day the article is published. The y-value refers the target column of its 

dataframe. 

 

 For numerical data model, the features (X) is the part of the dataframe 

(prepared in 3.4 Data preparation for modelling) with 30 stock prices of companies 

listed in S&P 500 while the prediction (y) will be target in its dataframe. 

 

For augmented data model, the input data (X) is the part of the dataframe 

(prepared in 3.4 Data preparation for modelling) consisting the frequency of words 

and prices of the 30 stocks. Whereas, the prediction (y) is the target in its dataframe. 

 

The prediction for text data model and augmented data model is exactly the 

same. However, the target from the all the three models is also calculated in the same 

way as mentioned in 3.3 Processing of numerical data and originated from the same 

dataframe which obatined from the 3.3 Processing of numerical data. 

 

The following steps are gone through to develop each of the models. Before 

conducting machine learning to develop the model, the data is split into training and 

testing set. 70% of the respective data used to developing model will be used as 

training set to train model and the remaining 30% will be used to test the performance 

of model. There are some basic steps that are necessary to develop all types of 

machine learning algorithms. Firstly, both the data (X and y) are loaded and splitted 

into training set and testing set. Next, a classifier is created depending on the model to 

be used. For example, the classfier for logistic regression is created for model 

employing logistic regression. The model is then trained to make prediction. After the 

training is done, prediciton is performed and the model score is determined. These 
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processes are the same for all three types of models developed. Hence, they are 

performed three times in order to build the three models. 

 

Since the problem of this study is a classification problem, classification type 

algorithm are employed. A few models are developed based on different type of 

classification algorithms such as logistic regression, support vector machines (SVM), 

naive bayes (NB), neural network and decision tree.  

3.5.1 Logistic regression 

Logistic regression is a linear classification algorithm rather than regression. Logistic 

function is used to model the probability of possible outcomes which is the 

probability of success for a trial (scikit-learn, n.d.). 

The logistic function is given by:  

𝑓 𝑥 =
𝐿

1+ 𝑒!!(!!!!)
 

 

where 𝑥 is the 𝑥 − 𝑣𝑎𝑙𝑢𝑒 of the sigmoid’s midpoint, and 𝑥 − 𝑥!  is the horizontal 

translation of the logistic function; L is the curve’s maximum value or horizontal 

asymptote; and k is the steepness of the curve (Cruzan, n.d.). 

3.5.2 Support vector machine (SVM) 

In this study, we are focusing on the classification usage of SVM which known as 

support vector classification (SVC). The decision function of SVC is given by : 

𝑠𝑔𝑛( 𝑦!𝛼!𝐾 𝑥! , 𝑥 + 𝜌)
!

!!!

 

 

There are two main types of SVC that can perform multiclass classfication which are 

linear SVC and SVC (scikit-learn, n.d.). Linear SVC performs linear classification 

while SVC performs non-linear or kernel classification. Linear SVC is also known as 

linear SVM and SVC is also called kernel SVM. 

3.5.3 Naive bayes 

The prediction rule for Naive Bayes method as follow:  
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𝑦 = 𝑎𝑟𝑔 max
!
𝑃 𝑦 𝑃(𝑥!|𝑦)

!

!!!

 

 

There are three types of naive bayes classifier which are bernoulli, multinomial and 

gaussian. Bernoulli naive bayes is for binary data, multinomial naive bayes is for 

count data and gaussian naive bayes is for continuous data.  The difference of the 

three naive bayes classifier are the assumptions they make on the distribution of 

𝑃(𝑥!|𝑦) (scikit-learn, n.d.). 

3.5.4 Neural network 

In this study, we will employed the multi-layer preceptrons (MLP) neural network for 

classification. MLP can learn linear or non-linear function for classification and 

regression. It is not the same as logistic regression because it allows the presence of 

one or more non-linear layers which known as hidden layers in between the input and 

output layer (scikit-learn, n.d.). 

 

 
Figure 3.5.1: One hidden layer MLP (scikit-learn, n.d.). 

3.5.5 Decision tree 

Decision tree is a hierarchy of the possible outcomes of a series of choices leading to 

a decision (Lucidchart, n.d.). It is a tree made up of nodes, branches and leaves. Each 

node represents a test on attribute or feature, each branch represents an outcome of the 
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test and each leaf represents an class label (Saloni, n.d.). Leaf (decision) is the end of 

the branch that doesn’t split anymore (Prashant, 2017). Decision tree can be used for 

regression and classification.  
 

A tree starts with a single node that branches out into possible outcomes and 

each of the outcomes becomes nodes that braches into other possibilities (Lucidchart, 

n.d.). The splitting of data into subsets at node is based the attribute value test. This 

process is repeated until all the subsets at nodes has the same value (outcome) for the 

target variable or when further splitting has no value to the predictions (Saloni, n.d.). 

3.6 Evaluation of Models   
The evaluation of models can be done based on their performance and scoring on 

various parameters such as accuracy and precision by using Scikit-learn library. There 

are some packages that can be imported from sklearn.metrics to evaluate model 

performance such as classification_report, precision_recall_curve and roc_curve. The 

model score of different machine learning algorithms may have different meaning 

depending on their nature. However, all the models developed in this project have  

classification performance and hence their model scores represent (mean) accuracy. 

Accuracy, which is the fraction of correct predictions over n samples, is computed as 

follow:  

𝐿𝑒𝑡 𝑦! 𝑏𝑒 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖!! 𝑠𝑎𝑚𝑝𝑙𝑒,   

𝑦!𝑏𝑒 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖!! 𝑠𝑎𝑚𝑝𝑙𝑒,𝑎𝑛𝑑  

𝑛 𝑏𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑦,𝑦 =
1
𝑛 1(𝑦! = 𝑦!)
!!!

�!!

 

where 1 𝑥  refers to indicator function (scikit-learn, n.d.). 

 
 The prediciting power of the models in this project is evaluated based on the 

model score for training dataset, model score for testing dataset, and the difference 

between the score for training set and score for testing set. The difference between the 

scores is used to determine whether the model developed is overfitted to the training 

dataset. High difference in scores with higher score on training set indicates 
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overfitting. Model score for testing set is used to evalaute the accuracy of the model in 

predicting financial market trends. 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

This chapter is divided into two main parts which are Section 4.1 Data exploration 

and Section 4.2 Model performance. Total frequency of each word (Section 4.1.1), 

average frequency of each word (Section 4.1.2)  and standard deviation of each word 

(Section 4.1.3) are analysed in Section 4.1. On the other hand, Section 4.2.1, 4.2.2 and 

4.2.3 present and discuss the model scores of text data model, numerical data model 

and augmented data model respectively. The comparison between the three models is 

discussed in Section 4.2.4. 

4.1 Data Exploration 
Exploration on the data provided is conducted in order to have a better understanding 

on the dataset and discover any significant pattern that may present. The data 

exploration is done after the processing of data and before the matching of textual and 

numerical data during machine learning. Therefore, we still have 296 sets of data. Our 

data consists of 296 articles and 1856 words. The data collected through web scraping 

and RSS is not explored, analysed and included in the development of models due to 

the limitation of time.  
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4.1.1 Total frequency of each word 

 
Figure 4.1.1: The 30 highest total frequency of words. 

 

Total frequency of a particular word is the sum of the frequencies of that word in all 

articles. The collection of the total frequency for each word is then ranked from the 

highest to the lowest. Words with the highest 30th total frequency are plotted in 

descending order.  

 

From the plot, we noticed that “trump” has the highest total frequency which 

is 1258 among all the words, followed by “tax” with total frequency of 664 and 

“time” with total frequency of 486. The total frequency drops sharply from the highest 

(“tax”) to the second highest (“time”) with approximately half of the value. The less 

steep decrease of total frequency from the “tax” to “time” (second highest to third 

highest) is around 26% which is a lot more lesser as compared to the previous drop. 

There are only slight drops on total frequency after the word ”time”. The total 

frequency starting from “time” decreases steadily with only  slightly significant drops 

from “like” to “use” and from “offici” to “secur”. The word “trump” which most 

likely represents Donald Trump has the highest frequency of occurrence in all articles 

since the United States’ election of president is just ended. Hence, a lot authors 
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discussed and related the events in financial market to Donald Trump who was the 

new elected president. 

4.1.2 Average frequency of each word 

 
Figure 4.1.2: The 30 highest average frequency of words. 

 

Average frequency of each word is calculated by taking the total frequency of that 

word to divide the total number of articles which is 296. The words is arranged in 

descending order based on their average frequency and the 30 highest average 

frequency of words is plotted.  

 

The word with the highest average frequency of 4.25 is “trump”, followed by 

“tax” with average frequency of 2.24 and “time” with average frequency of 1.64. The 

plot has the same pattern as the plot in Figure 4.1.1. Sharp drop from highest to 

second highest value and less steep fall from second highest to third highest while the 

drops afterwards are steady with a slightly obvious drop fom “like” to “use” and 

from”offici” to ”secur”. In addition, the set of words with 30 highest average 

frequency is exactly the same as the set of words with 30 highest total frequency. This 
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is because the computation of average frequency using the total frequency divides the 

total number of articles which is a constant. Hence, the pattern of the plot remains 

unchanged. In average, “trump” has the highest frequency in each article due to the 

same reason as explained in Section 4.1.2. 

4.1.3 Standard deviation of each word 

 
Figure 4.1.3: The 30 highest standard deviation on the frequency of words. 

 

Standard deviation on the frequency of a word is computed based on all the frequency 

in all articles for a particular word. Besides, standard deviation represents the 

volatility of the frequency of a word. The words are ranked according to their 

standard deviation values and the top 30 standard deviation’s  words are plotted. 

 

From this plot, “tax”  becomes the word with highest standard devaition on 

frequency (16.06), followed by “trump” with second highest standard deviation of 

14.55 and “fidel” with third highest standard devation of 10.46. This plot has a 

slightly different pattern as compared to the previous two plots. The drop in the 

standard deviation of the highest (“tax”) to the second highest (“trump”) is less steep 
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as compared to the drop from “trump” (second highest) to “fidel” (third highest) and 

the drop from “fidel” to ”abort”(forth highest). All the falls begin from “abort” is 

relatively steady and less significant. The set of words with 30 highest standard 

deviation is different from the set of words with 30 highest total frequency or with 30 

highest average frequency.  

4.2 Model Performance  
The score for training set and score for testing set for all the algorithms in Table 4.2.1, 

4.2.2 and 4.2.3 is represented by the accuracy of testing data and training data 

respectively, in predicting market trend. For classification algorithms, it is are often to 

represent its scores using accuracy. Our main focus is on the difference between 

training and testing scores that is used to determine the occurance of overfitting. 

Besides, the score for testing set which is used to determine the accuracy of model in 

predicting the testing data is also important in evaluating the model performance. 

Score for training set is used to determine the accuracy of model in predicting the 

training data. Training data is the data used to train the model. Hence, it determines 

how well the model trained by training data is able to predict the training data. It 

appears to be the model fitting score and is for complementing purpose in evaluting 

the model performance. 
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4.2.1 Text data model   

Algorithm Score for 
Training Set 

Score for 
Testing Set 

Difference 
Between Training 
and Testing Scores 

Logistic regression 0.988950276 0.435897436 0.55305284 
Linear support vector 
machine 0.994475138 0.423076923 0.571398215 

Kernel support vector 
machine 0.994475138 0.5 0.494475138 

Bernoulli naive bayes 0.878453039 0.41025641 0.468196628 
Multinomial naive 
bayes 0.82320442 0.525641026 0.297563394 

Gaussian naive bayes 0.939226519 0.538461538 0.400764981 
Neural network 0.994475138 0.346153846 0.648321292 
Decision tree 0.994475138 0.371794872 0.622680266 
Table 4.2.1: The score for training set, score for testing set and difference between scores of 

text data models trained using eight different algorithms respectively. 
 

From Table 4.2.1, the significantly large difference between score for training dataset 

and score for testing dataset for model trained using neural network and model trained 

using decision tree indicates a considerably strong degree of overfitting. Models 

employing logistic regression and linear support vector machine (linear SVM) 

respectively also exhibit overfitting error due to the high difference between scores. 

Moreover, kernel support vector (kernel SVM), bernoulli naive bayes (NB) and 

gaussian naive bayes developed less overfit models with lower difference of training 

data and sting data scores. The lowest difference between scores of multinomial naive 

bayes model indicates that it has only slight overfit error as compared to other models. 

 

Multinomial NB model had the lowest difference of scores among all trained 

models, including bernoulli NB model and gaussian NB. This indicates marginal 

overfitting in multinomial NB model. The model has high score for testing data, 

which is only slightly lower than gaussian NB. Hence, it is the best model among the 

NB classifier and also among all models trained. Multinomial NB is better than the 

other NB classifier in this model because it is for count data while bernoulli NB 

expects binary features and gaussian NB is for continuous data. Only multinomial NB 
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for count data matches the model feature (frequency of word) data type. Hence, it is 

the most suitable and best classifier out of the three NB classifier. 

 

Comparing the two SVM alogorithms, the scores for training set of both SVM 

are the same while the score for testing set of kernel (non-linear) SVM is higher than 

that of linear SVM. This is because kernel SVM is used to perform non-linear or 

kernel classification whereas linear SVM is for linear classification. Since the data 

used to train the model is not linear, kernel SVM algorithm is more suitable and 

accurate than linear SVM in predicting the target.  

 

Same training data scores are obtained by four models each employing 

different algorithm, for instance the linear SVM, kernel SVM, neural network and 

decision tree. However, the testing data scores are different, with the highest among 

the four is kernel SVM followed by linear SVM, decision tree and lastly neural 

network. The increasing overfitting degree sequence among the four is the decreasing 

sequence in score for testing data. The higher the score for testing data, the lower the 

degree of overfitting, when the score for traing data is constant. Hence, kernel SVM 

trained the best model among the four algorithms. Bernoulli NB also has very low 

difference between scores for training and testing data than the others. 

 

Although the model developed using gaussian NB has the highest score for 

testing data, its score for training data is a lot more higher than the testing data score. 

This high difference indicates strong overfitting of the model. In fact, multinomial NB 

built the best models among the alogorithms used as it has the lowest difference of 

scores, reasonable score for training set and high score for testing set. On the other 

hand, the worst algorithm used to develop model is neural network as it has the 

highest overfitting (difference between scores) and lowest score for testing data. 

 

All models built based on text data has a significant amount of difference 

between training and testing scores (ranges from 0.47 to 0.65) besides multinomial 

NB model (0.30). All models except multinomial NB model have strong indication of 

overfitting. The minimum and maximum difference between scores in this model are 

widely dispersed with a difference of about 0.35. Low testing data scores (less than or 
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around 0.5) are also obtained by all the models trained. This shows that the prediction 

power of the models developed is more worse or the same as random guessing 

(accuracy of 0.5). Text data extracted from news articles is unable to predict the 

directional movement of index prices well. 

4.2.2 Numerical data model 

Algorithm Score for 
Training Set 

Score for 
Testing Set 

Difference 
Between Training 
and Testing Scores 

Logistic regression 0.964285714 0.384615385 0.57967033 
Linear support vector 
machine 0.75 0.461538462 0.288461538 

Kernel support vector 
machine 1 0.461538462 0.538461538 

Bernoulli naive bayes 0.75 0.461538462 0.288461538 
Multinomial naive 
bayes 0.75 0.461538462 0.288461538 

Gaussian naive bayes 0.535714286 0.153846154 0.381868132 
Neural network 0.75 0.461538462 0.288461538 
Decision tree 1 0.461538462 0.538461538 
Table 4.2.2: The score for training set, score for testing set and difference between scores of 

numerical data models trained using eight different algorithms respectively. 
 

From Table 4.2.2, models developed using logistic regression, kernel SVM and 

decision tree repectively exhibit strong overfitting due to high difference between 

training and testing data scores as compared to other alogorithms. Whilst kernel SVM 

and decision tree are having the same difference between scores thus contain 

approximately same amount of overfitting error. Overfitting is indicated in the 

gaussian NB model by the moderate difference between scores for training and testing 

data. The difference of scores for the remaining algorithms model are the same. 

Linear SVM, bernoulli NB, multinomial NB and neural network have the lowest 

difference between scores and hence are the least overfitted in all the models using 

numerical data. Most of the models obtain the same set of scores with others. Only 

logistic regression and gaussian NB have their own set of score for training data, 

score for testing data and difference in scores.  
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Among the NB algorithms, bernoulli NB and multinomial NB have the same 

score for training set, scorefor testing set and difference of scores. They have lower 

difference between scores, higher training data score and higher testing data score 

than that of gaussian NB. Therefore, gaussian NB model is more overfitted as 

compared to bernoulli NB model and multinomial NB model. Bernoulli NB and 

multinomial NB can build better model with higher accuracy than gaussian NB. 

 

For SVM, both the testing dataset scores for linear and kernel SVM are the 

same. Kernel SVM has higher score for training data compared to linear SVM, 

leading to larger difference between score and stronger indication of overfitting. 

Hence, linear SVM model is a better model than kernel SVM to predict financial 

market sentiment. This implies that linear classification algorithm is more accurate 

and suitable in fitting and predicting data. The numerical data (features) of this model 

and the relationship with its target is in linear form. 

 

In addition, the score for testing data of six algorithm models which are linear 

SVM, kernel SVM, bernoulli NB, multinomial NB, neural network and decision tree 

are the same. Among the six algorithms, linear SVM, bernoulli NB, multinomial NB 

and neural network have the same low degree of overfitting (lowest difference in 

scores) due to equal score for training data. Hence, the predicting performance and 

power for them are excatly the same in this numerical data model. They will make the 

best and most accurate predictions as compared to the other alogorithm trained 

models. Kernel SVM and decision tree also have same (medium) predicting power 

due to same score for training data and thus same (moderate) overfitting. Furthermore, 

gaussian NB has below avearage score for training data and score for testing data. 

 

To conclude, there are a few best algorithms employed for the numerical data 

model which are equally good. These are linear SVM, bernoulli NB, multinomial NB 

and neural network as they are having the lowest degress of overfitting (lowest 

difference between training data and testing scores), reasonable score for training set 

and the highest score for testing set. Although models using kernel SVM and decision 

tree respectively also have the highest testing data scores, they are not considered as 

the best model due to stong indication of overfitting (resulted from high difference of 
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scores). This is because these models might get lower score for testing set when tested 

on other datasets since they are overfitted to the original dataset and obtain high (the 

maximum) score for training set. On the other hand, the worst algorithm build model 

is logistic regression due to its substantial amount of difference between training 

(fitting) and testing (performance) scores despite It has very strong indication of 

overfitting even though it obtains moderate score for testing data. Its values are a lot 

lower than the others but its difference between score is still considered normal. 

 

All the models trained using numerical data has an obvious and near amount 

of difference between scores (ranges from 0.29 to 0.58). They exhibit significant 

overfitting. The difference between the lowest and highest difference of scores is 

around 0.29. Less than 0.5 of scores for testing set are obtained by all the models. All 

models developed based on numerical data performed more worse than random 

guessing (accuracy of 0.5). Model using numerical data is not useful in predicting the 

market sentiments. 

4.2.3 Augmented data model 

Algorithm Score for 
Training Set 

Score for 
Testing Set 

Difference 
Between Training 
and Testing Scores 

Logistic regression 1 0.923076923 0.076923077 
Linear support vector 
machine 0.895027624 0.730769231 0.164258394 

Kernel support vector 
machine 1 0.512820513 0.487179487 

Bernoulli naive bayes 0.834254144 0.525641026 0.308613118 
Multinomial naive 
bayes 

0.817679558 0.512820513 0.304859045 

Gaussian naive bayes 0.994475138 0.602564103 0.391911036 
Neural network 0.867403315 0.807692308 0.059711007 
Decision tree 1 0.987179487 0.012820513 
Table 4.2.3: The score for training set, score for testing set and difference between scores of 

augmented data models trained using eight different algorithms respectively. 
 
From Table 4.2.3, model employing kernel SVM shows the strongest overfitting 

behaviour due to its highest difference between training and testing scores. The three 

NB classifier, bernoulli NB, multinomial NB and gaussian NB obtain high difference 
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between scores implying overfitting. Model trained using linear SVM indicates 

gradual overfitting as it has an unsignificant difference of scores. Logistic regression, 

neural network and decision tree models can be concluded as no overfitting. This is 

because they have realtively small difference between training data and testing data  

score (less than 0.08). 

 

Among the NB classifier, gaussian NB trained model has the highest 

difference between training set and testing set scores, followed by bernoulli NB 

trained model and the lowest is multinomial NB trained model. The amount of 

difference beatween scores of gaussian NB is significantly larger than bernoulli NB 

and multinomial NB. Gaussian NB shows relatively strong indication of overfitting 

while other two NB classifier exihibits about the same degree of overfitting. This is 

because gaussian NB is for continuous data whereas bernoulli NB for binary data and 

multinomial for count data. The dataset for this model is not in continuous form hence 

obtaining poor performance in model employing gaussian NB. Bernoulli NB has 

slightly higher difference of scores and thus overfitting than multinomial NB since the 

features are not only made up of two values. The augmented data consists of text 

(word frequency) data and numerical (index prices) data. Multinomial NB is more 

suitable to be employed. 

 

Model employing linear SVM performs better than the one employing kernel 

SVM. Linear SVM has significantly lower difference between training and testing 

scores and hence indicates marginal overfitting as compared to kernel SVM. The 

testing dataset score of linear SVM is also a lot more higher than that of kernel SVM. 

This results shows that linear algorithm (linear SVM) is more suitable and accurate 

than non-linear algorithm (kernel SVM) to predict the target. However, this is 

illogical since the data is not linearand should not have any linear relationship. 

Illogical result obatined is probably due to the bias and insufficient data. This might 

be solved by using larger and balance dataset in training the model. 

 

Kernel SVM is having the same score for testing set as multinomial NB. 

However, they do not have the same model fitting score, and difference between 

training and testing score. Since multinomial NB has lower indication of overfitting 
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due to smaller difference of scores, it develops a better model as compared to kernel 

SVM. The high difference of scores and unreasonable score for training set (1) of 

kernel SVM model indicates a very stong overfitting. In fact, it has highest difference 

of scores and strongest indication of overfitting among all models trained. 

 

The best algorithm to train the augmented model is decision tree. Model 

employing decision tree has the lowest and marginal difference between training and 

testing scores, showing almost no overfitting. It also obtains the highest performace 

score with a reasonable amount of model fitting score. Decision tree model has the 

best predicting power to determine the market trend. On the other hand, the worst 

algorithm for this model is kernel SVM. Kernel SVM trained model has the highest 

and significant amount of difference between training and testing scores, indicating 

high degree of overfitting. It also obtains the lowest score for testing and an 

unreasonable score for training data of 1.  

 

All algorithms developed models with moderate or marginal overfitting. Most 

of the models have average amount of difference between training and testing scores 

(0.30 to 0.41) while some obtain a relatively minimal difference of scores (less than 

0.08). The dispersion between the lowest and largest difference of scores are high 

with the difference of (0.474). In general, the models built predict better than random 

guessing (scores for testing set more than 0.5). Only three out of the eight algorithms 

trained model with approximately the same predicting power as random guessing 

(accuracy of 0.5). 

4.2.4 Comparison between models 

Among the three type of models built, which are text data model, numerical data 

model and augmented data model, in general, augmented data model makes the best 

predictions, followed by text data model and the last is numerical data model. Model 

based on augmented data has scores for testing set of more than or equal to 0.5. The 

scores for testing set of model based on text data are less than or equal to 0.5. 

Numerical data model obtain scores for testing set of less than 0.5 (less than 0.46 in 

actual fact). Prediction better than random guessing (accuracy of 0.5) is only made by 

augmented data model. Whilst, the other two models are more worse or just the same 
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as random guessing. Hence, it is showed that models consisting of only text data and 

only numerical data are unable to predict the financial market sentiment. It is only 

possible when model is built based on the augmented data of both the text and 

numerical data.  

 

Moreover, the dispersion in the scores for testing set of augmented data model 

is the highest (difference between maximum and minimum of 0.47) which ranges 

from 0.51 to 0.99. Numerical data model has the medium dispersion of 0.31 (ranges 

from 0.15 to 0.46) due to the presence of an outlier (relatively low score for testing set 

of gaussian NB). The scores for testing set of numerical data model are mostly the 

same (0.46) except two values. One of them is from the abovementioned gaussian NB 

(0.15) and the other belongs to logistic regression (0.38). The scores for testing set of  

gaussian NB in numerical data model is also the lowest among all the scores for 

testing set (including those from augmented and text data model). Text data model has 

the lowest dispersion in scores for testing set (0.19) which ranges from 0.35 to 0.54. 

 

Besides, in overall, the differences between training set and testing set scores 

are generally lowest in augmented data model, followed by numerical data model and 

text data model. Model using only text data shows strongest indication of overfitting. 

Overfitting is lesser in numerical data model and the minimal in model using 

augmented data. Some of the models developed using augmented data even do not 

show indication of overfitting as the differences are too marginal.  

 

Furthermore, the dispersion in the differences between training and testing 

scores is the highest in augmented data model (0.47) and lowest in numerical data 

model (0.29). The difference between maximum and minimum of model based on text 

data is 0.35 which falls between that of augmented data model and numerical data 

model. The dispersion in difference of scores is the highest in model based on 

augmented data despite having the lowest difference of scores among all models. This 

is because its lowest difference of scores is very low (0.01) as compared to all the 

difference of scores including those from text data model and numerical data model. 
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In addition, the dispersion in score for training set of numerical data model is the 

highest (0.46) which ranges from 0.54 to 1, due to the very low score for training set 

of gaussian NB (outlier). The scores for training set of model based on numerical data 

are mostly from 0.75 to 1 except the one from gaussian NB (0.54). Text data model 

and augmented data model have almost the same dispersion in score for training set 

(0.17 and 0.18 respectively). The training set scores of the respective model do not 

differ much from one another. 
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CHAPTER 5: CONCLUSION 

This chapter is divided into three parts as follows: Section 5.1 discusses on the 

conclusion obtained in this report. Section 5.2 presents the limitation of this project. 

Section 5.3 gives suggestions on possible inprovements and future works. 

5.1 Conclusion 
The main purpose of this project is to develop model with augemented text and 

numerical data and compare it with model using only textual data and model using 

only numerical data. The text data is the news articles from The Wall Street Journal 

and the frequency of words in each article is used in developing models. There are 

two types of numerical data in this project, which are S&P 500 index prices and the 

individual stock prices. The S&P 500 index prices is used as our target for machine 

learning since index price can capture the financial market sentiment better as 

compared to individual stock prices. This is because it involved a lot of individual 

stocks in different industries. Index prices is used to find the financial market 

sentiment for that particular day and financial market sentiment is the thing that we 

want to predict and analyse. Wheras the individual stock prices is used in developing 

model consisting only numerical data and model consisting the augmented data to 

predict the movement of index price and the overall financial market trend. 

Movement of stock prices or market trend is based on the financial market sentiment. 

Therefore, we can achieve our goal to analyse financial market sentiment by using 

news article and/or prices of individual stocks. At the same time, we manage to 

predict the market trend.  

 

It is proved that model developed based on the augmented data predicts the 

directional movements of index prices better than the model based on only text data 

and model based on only numerical data. Model considering both the effects in text 

and numerical data can better analyse and predict the financial market sentiment. In 

addition, it is shown that only model using the augmented data has better predicting 

power than random guessing. Model using text data and model using numerical data 

have about the same or more worst predicting power than random guessing. It is 
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proposed that useful, valuable and accurate prediction can only be done using the 

augmented text and numerical data. From all of the foregoing, augmented model has 

great potential in predicting the financial market sentiment. 

5.2 Limitation  
The limitation of time is the main limitation of this project. Due to the restricted time, 

the data collected using web scraping and RSS is not explored and analysed. The data 

is not used to train models as the data is not processed. Short period and marginal 

amount of articles has been collected. Besides, constricted data is obtained as most of 

the websites with news articles need to be paid and require subscription.  

 

The algorithms employed in developing models are not studied and 

investigated thoroughly. As a result, models developed might be inaccurate and bias. 

The features, particularly word frequency are not selected in a perfect way. Further 

understanding of the data is required to select better features and employ more 

suitable algorithm in training models. 

 

Moreover, model built using word frequency is unable to predict the market 

sentiment as the sentiment and meaning of a sentence can be different from the 

meaning of the individual word. Hence, the models developed in this project have 

limitation in predicting the market trend. 

5.3 Future Work 
In future, more data over a longer period can be extracted and used to develop the 

models in order to obtain a more comprehensive results and predictions. More work is 

necessary to improve the model through some refinement techniques. Tuning of the 

algorithms employed to train the models can be further studied and investigated. 

Further understanding and exploration on the features is needed to employ a more 

appropriate algorithm in developing models. Variety of data from various sources 

such as social media (Twitter) can be used in predicting the financial market 

sentiment. In addition, phrases or pattern of words should be taken into consideration 

in predicting the sentiment of that particular data. This is because a single word is 
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unable to represent a sentiment as the meaning might be inverted if “not” presents in 

front of that particular word. 
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APPENDICES 

Appendix 1: Python script for processing of text and numerical data, and 

developing of models. 

import json 
from nltk import word_tokenize 
from nltk.corpus import stopwords 
import pandas as pd 
from nltk.stem import PorterStemmer 
import datetime 
 
factor = 2 
PctChgTh = 0.05   
MinTFreqTh = 3 
 
 
### textual data processing 
eng_stop=stopwords.words('english') 
porter = PorterStemmer() 
 
j = json.load(open('text.json','r'))  
 
keys=j.keys() 
 
error={k:j[k] for k in j  if 'ERROR' in j[k]['title']} 
for k in error: 
    del j[k] 
 
engstop_stem=[porter.stem(t) for t in eng_stop] 
 
def func(article): 
    tokens=word_tokenize(article.lower()) 
    stem_tokens=[porter.stem(t) for t in tokens] 
    red_tokens=[] 
      
    for w in stem_tokens: 
        if w not in engstop_stem and w.isalpha() : 
            red_tokens.append(w) 
              
    wordcnt_d=dict([w,red_tokens.count(w)] for w in set(red_tokens)) 
    return wordcnt_d 
 
 
master_d=dict([k,func(j[k]['article'])]for k in j) 
title_d=dict([k,func(j[k]['title'])] for k in j) 
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for k in j: 
    for w in master_d[k]: 
        if w in title_d[k]: 
            master_d[k][w]*=factor 
 
articlewords=[list(master_d[k]) for k in master_d] 
 
all_words = list(set([item for sublist in articlewords for item in sublist])) 
 
pos_words = open('positive-words.txt','r', encoding='latin').read().split('\n')  
neg_words = open('negative-words.txt','r', encoding='latin').read().split('\n') 
 
def processw (words): 
    sentimental_words=[] 
    stem_words=[porter.stem(w) for w in words] 
    for w in stem_words: 
        if w not in eng_stop and w.isalpha() : 
            sentimental_words.append(w) 
    return sentimental_words 
 
pos_words=processw(pos_words) 
neg_words=processw(neg_words) 
 
words=[w for w in all_words if w in pos_words or w in neg_words] 
 
def cleanwrd(wordlist,wordcnt_d): 
    words_by_doc={} 
    for w in wordlist: 
        words_by_doc[w]=[] 
        for k in j: 
            if w in wordcnt_d[k]: 
                words_by_doc[w].append(wordcnt_d[k][w]) 
            else : 
                words_by_doc[w].append(0) 
    return words_by_doc 
 
words_by_doc=cleanwrd(words,master_d)  
 
valid_date={k:j[k] for k in j  if not j[k]['publish_date'] == ''} 
for k in valid_date: 
    date=j[k]['publish_date'].split('T',1)[0] 
    j[k]['publish_date']=datetime.datetime.strptime(date,'%Y-%m-
%d').strftime('%m/%d/%y') 
 
tmatrix=pd.DataFrame(data=words_by_doc,index=list(j[k]['publish_date'] for k in j)) 
 
tmatrix.loc['TOTAL']= tmatrix.sum() 
 
#consist of words with total freq > MinTFreqTh 
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tsig_matrix = tmatrix.T.loc[tmatrix.T['TOTAL'] > MinTFreqTh].T  
 
totalsigcnt=dict(tsig_matrix.loc['TOTAL',]) 
desc_sigtotal_col=sorted(totalsigcnt,key=totalsigcnt.get,reverse=True) 
tsig_matrix=tsig_matrix.reindex(columns=desc_sigtotal_col) 
tsig_matrix.drop('TOTAL',inplace=True) 
 
tsig_matrix.to_csv('t'+'matrix display.csv') 
 
 
#target 
indexprice=pd.read_csv('HistoricalPrices.csv') 
indexprice.set_index(['Date'],inplace=True) 
indexprice.sort_index(inplace=True) 
 
indexprice['PctChg']=indexprice['Close'].pct_change()  #in decimal, not % 
indexprice.dropna(subset=['PctChg'],inplace=True) #no effect 
indexprice['PctChg']=indexprice['PctChg']*100   
 
indexprice.loc[:,'Target'] = 0 
indexprice.loc[indexprice['PctChg'] > PctChgTh, 'Target'] = 1 
indexprice.loc[indexprice['PctChg'] < -PctChgTh, 'Target'] = -1 
 
 
 
### textual data: final matrix 
tfinalmatrix=tsig_matrix.join(indexprice['Target']) 
tfinalmatrix.dropna(subset=['Target'],inplace=True) # 259 data 
tfinalmatrix.to_csv('textual '+'matrix display.csv') 
 
 
 
### textual data: model building 
score = {} 
scoreindex = [ 'Logisitc', 'LinearSVC', 'SVC',  
              'GaussianNB', 'BinomialNB', 'MultinomialNB',  
               'MLPC_lbfgs', 'DecisionTree'] 
score['t_fit'] = [] 
score['t_pref'] = [] 
 
from sklearn.model_selection import train_test_split as split 
X=tfinalmatrix.drop(columns=['Target']) 
y=tfinalmatrix.loc[:,'Target'] 
X_train, X_test, y_train, y_test = split(X,y, train_size=0.7, 
test_size=0.3,random_state=50) #random_state=seed 
 
from sklearn.linear_model import LogisticRegression 
logistic = LogisticRegression().fit(X_train, y_train) 
print( logistic.score( X_train, y_train) )         
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print( logistic.score( X_test, y_test) )    
prediction = logistic.predict(X_test) 
score['t_fit'].append(logistic.score( X_train, y_train)) 
score['t_pref'].append(logistic.score( X_test, y_test)) 
 
from sklearn.svm import LinearSVC  
lsvm = LinearSVC().fit(X_train,y_train) 
prediction = lsvm.predict(X_test) 
print( lsvm.score( X_train, y_train) )    
print( lsvm.score( X_test, y_test) )      
score['t_fit'].append(lsvm.score( X_train, y_train)) 
score['t_pref'].append(lsvm.score( X_test, y_test)) 
 
from sklearn.svm import SVC 
svm = SVC(kernel='rbf', C=10, gamma=0.1).fit(X_train,y_train) 
prediction = svm.predict(X_test) 
print( svm.score( X_train, y_train) )    
print( svm.score( X_test, y_test) )      
score['t_fit'].append(svm.score( X_train, y_train)) 
score['t_pref'].append(svm.score( X_test, y_test)) 
  
#BernoulliNB - for binary data  
#MultinomialNB - for count data  
#GaussianNB - for continous data 
from sklearn.naive_bayes import GaussianNB 
gnb = GaussianNB().fit(X_train, y_train)  
prediction = gnb.predict(X_test) 
print( gnb.score( X_train, y_train) )                 
print( gnb.score(X_test, y_test) )                    
score['t_fit'].append(gnb.score( X_train, y_train)) 
score['t_pref'].append(gnb.score( X_test, y_test)) 
 
from sklearn.naive_bayes import MultinomialNB 
mnb = MultinomialNB().fit(X_train, y_train)  
prediction = mnb.predict(X_test) 
print( mnb.score( X_train, y_train) )               
print( mnb.score(X_test, y_test) )                    
score['t_fit'].append(mnb.score( X_train, y_train)) 
score['t_pref'].append(mnb.score( X_test, y_test)) 
 
from sklearn.naive_bayes import BernoulliNB 
bnb = BernoulliNB().fit(X_train, y_train)  
prediction = bnb.predict(X_test) 
print( bnb.score( X_train, y_train) )        
print( bnb.score(X_test, y_test) )            
score['t_fit'].append(bnb.score( X_train, y_train)) 
score['t_pref'].append(bnb.score( X_test, y_test)) 
 
from sklearn.neural_network import MLPClassifier  
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mlp = MLPClassifier(solver='lbfgs', random_state=0)  
mlp.fit(X_train,y_train) 
print( mlp.score(X_train, y_train) )        
print( mlp.score(X_test, y_test) )          
score['t_fit'].append(mlp.score( X_train, y_train)) 
score['t_pref'].append(mlp.score( X_test, y_test)) 
 
from sklearn.tree import DecisionTreeClassifier 
dtree = DecisionTreeClassifier(random_state=0) 
dtree.fit(X_train, y_train) 
print( dtree.score(X_train, y_train) )  
print( dtree.score(X_test, y_test) )    
score['t_fit'].append(dtree.score( X_train, y_train)) 
score['t_pref'].append(dtree.score( X_test, y_test)) 
 
 
 
 
### numerical data processing 
ind_prices=pd.ExcelFile("30 stock prices.xlsx") 
print(ind_prices.sheet_names) 
stocklist=list(ind_prices.sheet_names) 
stocklist.remove('Sheet1') 
 
nmatrix = ind_prices.parse('AAPL US Equity',skiprows=5) 
nmatrix.set_index(['Dates'],inplace=True) 
nmatrix=pd.DataFrame({'AAPL US Equity': nmatrix['PX_OFFICIAL_CLOSE']}) 
 
for k in stocklist: 
    add = ind_prices.parse(k,skiprows=5) 
    add.set_index(['Dates'],inplace=True) 
    nmatrix[k]=add['PX_OFFICIAL_CLOSE'] 
     
nmatrix.drop(nmatrix.index[0],inplace=True) 
 
newdatesindex=[] 
for d in nmatrix.index.values: 
    d=str(d) 
    date = d.split('T',1)[0] 
    date=datetime.datetime.strptime(date,'%Y-%m-%d').strftime('%m/%d/%y') 
    newdatesindex.append(date) 
nmatrix = nmatrix.reindex(newdatesindex)  
 
 
 
### numerical data: final matrix 
nfinalmatrix=nmatrix.join(indexprice['Target']) 
nfinalmatrix.dropna(subset=['Target'],inplace=True)  
nfinalmatrix.to_csv('matrix display.csv') 
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### numerical data: model building 
score['n_fit'] = [] 
score['n_pref'] = [] 
 
X=nfinalmatrix.drop(columns=['Target']) 
y=nfinalmatrix.loc[:,'Target'] 
X_train, X_test, y_train, y_test = split(X,y, train_size=0.7, 
test_size=0.3,random_state=50)  
 
logistic = LogisticRegression().fit(X_train, y_train) 
prediction = logistic.predict(X_test) 
print( logistic.score( X_train, y_train) ) 
print( logistic.score( X_test, y_test) )    
score['n_fit'].append(logistic.score( X_train, y_train)) 
score['n_pref'].append(logistic.score( X_test, y_test)) 
 
lsvm = LinearSVC().fit(X_train,y_train) 
prediction = lsvm.predict(X_test) 
print( lsvm.score( X_train, y_train) )  
print( lsvm.score( X_test, y_test) )      
score['n_fit'].append(lsvm.score( X_train, y_train)) 
score['n_pref'].append(lsvm.score( X_test, y_test)) 
 
svm = SVC(kernel='rbf', C=10, gamma=0.1).fit(X_train,y_train) 
prediction = svm.predict(X_test) 
print( svm.score( X_train, y_train) )                    
print( svm.score( X_test, y_test) )     
score['n_fit'].append(svm.score( X_train, y_train)) 
score['n_pref'].append(svm.score( X_test, y_test)) 
 
gnb = GaussianNB().fit(X_train, y_train)  
prediction = gnb.predict(X_test) 
print( gnb.score( X_train, y_train) ) 
print( gnb.score(X_test, y_test) )     
score['n_fit'].append(gnb.score( X_train, y_train)) 
score['n_pref'].append(gnb.score( X_test, y_test)) 
 
mnb = MultinomialNB().fit(X_train, y_train)  
prediction = mnb.predict(X_test) 
print( mnb.score( X_train, y_train) )   
print( mnb.score(X_test, y_test) )         
score['n_fit'].append(mnb.score( X_train, y_train)) 
score['n_pref'].append(mnb.score( X_test, y_test)) 
 
bnb = BernoulliNB().fit(X_train, y_train)  
prediction = bnb.predict(X_test) 
print( bnb.score( X_train, y_train) )    
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print( bnb.score(X_test, y_test) )          
score['n_fit'].append(bnb.score( X_train, y_train)) 
score['n_pref'].append(bnb.score( X_test, y_test)) 
 
mlp = MLPClassifier(solver='lbfgs', random_state=0)  
mlp.fit(X_train,y_train) 
print( mlp.score(X_train, y_train) )                      
print( mlp.score(X_test, y_test) )     
score['n_fit'].append(mlp.score( X_train, y_train)) 
score['n_pref'].append(mlp.score( X_test, y_test)) 
 
dtree = DecisionTreeClassifier(random_state=0) 
dtree.fit(X_train, y_train) 
print( dtree.score(X_train, y_train) )  
print( dtree.score(X_test, y_test) )    
score['n_fit'].append(dtree.score( X_train, y_train)) 
score['n_pref'].append(dtree.score( X_test, y_test)) 
 
 
 
 
### augmented data: final matrix ### 
afinalmatrix=tfinalmatrix.join(nfinalmatrix,lsuffix='_extra')  
afinalmatrix.drop(columns=['Target_extra'],inplace=True) 
afinalmatrix.dropna(inplace=True)   #no effect 
 
 
 
### augmented data: model building 
score['a_fit'] = [] 
score['a_pref'] = [] 
 
X=afinalmatrix.drop(columns=['Target']) 
y=afinalmatrix.loc[:,'Target'] 
X_train, X_test, y_train, y_test = split(X,y, train_size=0.7, 
test_size=0.3,random_state=50)  
 
logistic = LogisticRegression().fit(X_train, y_train) 
prediction = logistic.predict(X_test) 
print( logistic.score( X_train, y_train) ) 
print( logistic.score( X_test, y_test) )    
score['a_fit'].append(logistic.score( X_train, y_train)) 
score['a_pref'].append(logistic.score( X_test, y_test)) 
 
lsvm = LinearSVC().fit(X_train,y_train) 
prediction = lsvm.predict(X_test) 
print( lsvm.score( X_train, y_train) )   
print( lsvm.score( X_test, y_test) )     
score['a_fit'].append(lsvm.score( X_train, y_train)) 
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score['a_pref'].append(lsvm.score( X_test, y_test)) 
 
svm = SVC(kernel='rbf', C=10, gamma=0.1).fit(X_train,y_train) 
prediction = svm.predict(X_test) 
print( svm.score( X_train, y_train) )                
print( svm.score( X_test, y_test) )     
score['a_fit'].append(svm.score( X_train, y_train)) 
score['a_pref'].append(svm.score( X_test, y_test)) 
 
gnb = GaussianNB().fit(X_train, y_train)  
prediction = gnb.predict(X_test) 
print( gnb.score( X_train, y_train) )  
print( gnb.score(X_test, y_test) )       
score['a_fit'].append(gnb.score( X_train, y_train)) 
score['a_pref'].append(gnb.score( X_test, y_test)) 
 
mnb = MultinomialNB().fit(X_train, y_train)  
prediction = mnb.predict(X_test) 
print( mnb.score( X_train, y_train) )   
print( mnb.score(X_test, y_test) )          
score['a_fit'].append(mnb.score( X_train, y_train)) 
score['a_pref'].append(mnb.score( X_test, y_test)) 
 
bnb = BernoulliNB().fit(X_train, y_train)  
prediction = bnb.predict(X_test) 
print( bnb.score( X_train, y_train) )   
print( bnb.score(X_test, y_test) )          
score['a_fit'].append(bnb.score( X_train, y_train)) 
score['a_pref'].append(bnb.score( X_test, y_test)) 
 
mlp = MLPClassifier(solver='lbfgs', random_state=0)  
mlp.fit(X_train,y_train) 
print( mlp.score(X_train, y_train) )          
print( mlp.score(X_test, y_test) )    
score['a_fit'].append(mlp.score( X_train, y_train)) 
score['a_pref'].append(mlp.score( X_test, y_test)) 
 
dtree = DecisionTreeClassifier(random_state=0) 
dtree.fit(X_train, y_train) 
print( dtree.score(X_train, y_train) )  
print( dtree.score(X_test, y_test) )    
score['a_fit'].append(dtree.score( X_train, y_train)) 
score['a_pref'].append(dtree.score( X_test, y_test)) 
 
 
 
scorematrix = pd.DataFrame(score, scoreindex) 
scorematrix.to_csv(str(factor)+"factor_"+str(MinTFreqTh)+"mtfreq_"+"model 
score.csv") 
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Appendix 2: Python script for data collection using RSS (running in cloud 

computer). 

import feedparser 
import time 
import json 
 
data_wd = 'DATA_' 
i=0 
 
try: 
    while True: 
        i=i+1 
        with open('c_rss_list.txt','r') as rss_f: 
            rss_l = rss_f.readlines() 
         
        rss_list = [ rss.partition('#')[0].strip() for rss in rss_l ] 
        rss_list = list(filter(None, rss_list)) #remove empty string 
         
        print(i,'rss_list') 
             
        rdata_d={} 
        for rss in rss_list: 
            feed=feedparser.parse(rss) 
            if not feed['items'] == []: 
                rdata_d[rss]=feed['items'] 
         
        print(i,'rdata_d',len(rdata_d)) 
         
        data_d={} 
        for k in rdata_d.keys(): 
            print(k) 
            for d in range (len(rdata_d[k])): 
                try: 
                    link = rdata_d[k][d]['link']   
                    
data_d[link]={'title':rdata_d[k][d]['title'],'summary':rdata_d[k][d]['summary'],'publishe
d':rdata_d[k][d]['published']} 
                    print(d,link) 
                except: 
                    print(d,"-- Sth wrong") 
 
        print(i,'data_d') 
        time.sleep(60)  
         
        with open(data_wd + 'rss.json' ,'a') as f:  
            json.dump(data_d, f) 
            f.write('\n') 
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        print(i,"pass") 
        time.sleep(600)    
         
except KeyboardInterrupt: 
    print ('Terminated') 
except:                        
    print ('Sth wrong') 
 
 
Appendix 3: Python script for data collection using web scraping with request 

(running in cloud computer). 

import requests 
from bs4 import BeautifulSoup 
import json 
import time 
 
#only for one website 
 
webpg_wd = 'WEBPAGE_' 
data_wd = 'DATA_' 
 
url = 'https://www.fool.com' 
i=0 
 
try: 
    while True: 
        i=i+1 
        r = requests.get(url) 
        r.text 
 
        soup = BeautifulSoup(r.text,'html.parser') 
        with open(webpg_wd + 'Fool.txt', 'w',encoding='utf-8') as f: 
            f.write(soup.prettify()) 
    
        samples = soup.find(class_="hp-trending-articles-list") 
        samples = samples.find_all('a', href=True) 
         
        print(i,"ori_soup", len(samples)) 
 
        data_d = {} 
        for l in samples:      
            link = 'https://www.fool.com' + l.attrs['href'] 
            data_d[link] = {} 
            title = l.string.strip()   
            data_d[link]['title'] = title 
      
            lsoup = BeautifulSoup(requests.get(link).text,'html.parser') 
            filename = webpg_wd + "Fool-" + title.replace(' ','_') + '.html' 
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            with open(filename, 'w',encoding='utf-8') as f: 
                f.write(soup.prettify()) 
     
            content = lsoup.find(class_="article-content") 
            txt = content.get_text(strip=True,separator=' ') 
 
            article = txt.replace('\xa0', ' ') 
            data_d[link]['content'] = article 
             
            print(link) 
            time.sleep(180)  
         
        print(i,'data_d') 
         
        with open(data_wd + 'Fool(soup).json' , 'a') as f:  
            json.dump(data_d, f, sort_keys=True) 
            f.write('\n') 
         
        print(i,"pass") 
        time.sleep(1800)   #1800 
             
except KeyboardInterrupt: 
    print ('Terminated') 
except:                        
    print ('Sth wong') 
 
Appendix 4: Python script for data collection using web scraping with selenium 

(running in local computer). 

from selenium import webdriver 
from bs4 import BeautifulSoup 
 
import json 
import time 
 
 
webpg_wd = '/Users/home/Documents/FYP/WEBPAGE/' 
data_wd = '/Users/home/Documents/FYP/DATA/' 
 
driver = webdriver.Safari() 
 
url = "https://www.bloomberg.com/markets" 
c_names = ["single-story-module__headline-link",  
           "single-story-module__related-story-link", 
           "story-list-story__info__headline-link"] 
 
output = open(data_wd+'OUTPUT_sel.txt','w') 
i=0 
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try: 
    while True: 
        i=i+1 
        driver.get(url) 
        with open(webpg_wd + 'Bloomberg-Markets.html', 'w') as f: 
            f.write(driver.page_source) 
        soup = BeautifulSoup(driver.page_source, 'lxml')  
         
        output.write(str(i)) 
        output.write('ori_soup 3\n') 
        print(i,'ori_soup 3') 
         
        data_d = {} 
        try: 
            for c in c_names: 
                tags = soup.findAll('a', {'href':True, 'class':c}) 
             
                output.write(str(i)) 
                output.write(str(c)) 
                output.write(str(len(tags))) 
                output.write('\n') 
                print(i,c, len(tags)) 
             
                for t in tags:  
 
                    link = "https://www.bloomberg.com" + t['href'] 
                    data_d[link] = {} 
                    title = t.get_text(strip=True,separator=' ') 
                    data_d[link]['title'] = title 
         
                    driver.get(link) 
                    filename = webpg_wd + 'Bloom-' + title.replace(' ','_') + '.html' 
                    with open(filename, 'w') as f: 
                        f.write(driver.page_source) 
             
                    lsoup = BeautifulSoup(driver.page_source, 'lxml')     
                    content = lsoup.find_all({'p'}) 
                    txt = [s.get_text(strip=True,separator=' ') for s in content] 
                    fulltxt = ' '.join(txt) 
 
                    data_d[link]['content'] = fulltxt 
                 
                    output.write(link) 
                    output.write('\n') 
                    print(link) 
                    time.sleep(60) #300 
         
            output.write(str(i)) 
            output.write('data_d\n') 
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            print(i,'data_d') 
             
            with open(data_wd + 'Bloom(sel).json', 'a') as f:  
                json.dump(data_d, f, sort_keys=True) 
                f.write('\n') 
             
            output.write(str(i)) 
            output.write("pass\n") 
            print(i,"pass") 
            time.sleep(300)    #1800 
         
        except KeyboardInterrupt: 
            with open(data_wd + 'Bloom(sel).json', 'a') as f:  
                json.dump(data_d, f, sort_keys=True) 
                f.write('\n') 
            output.write(str(i)) 
            output.write("fail\n") 
            print(i,"fail") 
            time.sleep(300)    #1800 
        except: 
            with open(data_wd + 'Bloom(sel).json', 'a') as f:  
                json.dump(data_d, f, sort_keys=True) 
                f.write('\n') 
            output.write(str(i)) 
            output.write("fail\n") 
            print(i,"fail") 
            time.sleep(300)    #1800 
 
except KeyboardInterrupt: 
    output.write ('Terminated') 
    print ('Terminated') 
except:                        
    output.write ('Sth wong') 
    print('Sth wong') 
     
output.close() 
 


