

LICENSE PLATE RECOGNITION USING CONVOLUTIONAL-

RECURRENT NEURAL NETWORK

TEE KAI FENG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Hons.) Actuarial Science

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2019

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Tee Kai Feng

ID No. : 1504044

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “LICENSE PLATE RECOGNITION

USING CONVOLUTIONAL-RECURRENT NEURAL NETWORK” was

prepared by TEE KAI FENG has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Science (Hons.) Actuarial

Science at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr Liew How Hui

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2019, Tee Kai Feng. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my deep gratitude to my research supervisors, Dr.

Liew How Hui and Dr. Tay Yong Haur for their patient guidance, invaluable advice,

and useful critiques throughout the development of the research.

In addition, I would also like to express my gratitude to my loving parents

and friends who had helped and given me encouragement.

vi

LICENSE PLATE RECOGNITION USING CONVOLUTIONAL-

RECURRENT NEURAL NETWORK

ABSTRACT

License plate recognition is a technology that utilises computer vision techniques for

identifying vehicles by their license plates. This technology is commonly used for

traffic law enforcement, automatic toll collection and ticketless parking system. In

this paper, a lightweight, segmentation-free approach for license plate recognition is

proposed. This approach is inspired by the recent trend in deep learning research

community to combine both Convolutional Neural Network (CNN) and Recurrent

Neural Network (RNN) for sequence recognition task. The proposed Convolutional-

Recurrent Neural Network (CRNN) contains a CNN without fully connected layers,

which is used for extracting features from license plate image and these extracted

features are passed to RNN for sequence recognition. This approach combines both

CNN and RNN in a unified framework, which allows it to be end-to-end trainable.

To solve the problem of two-row license plate in Malaysia, a text detection algorithm

is integrated into our framework to detect the location of text in license plate image.

As a result, the proposed CRNN is suitable for real-world deployment in Malaysia

due to its lightweight architecture and state-of-the-art recognition accuracy.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 1

1.3 Aims and Objective 2

1.4 Scope 4

2 LITERATURE REVIEW 5

2.1 Overview 5

2.2 Segmentation Approach 5

2.2.1 Character Segmentation 5

2.2.2 Character Recognition 7

2.3 Segmentation-free Approach 7

2.4 Text Detection Algorithms 8

3 METHODOLOGY 11

3.1 Overview 11

3.2 Data Collection 11

viii

3.3 Efficient and Accuracy Scene Text (EAST) Detector 13

3.4 Convolutional-Recurrent Neural Network (CRNN)

Architecture 14

3.5 Loss Function for Training CRNN 18

3.6 Evaluation Criteria 20

3.6.1 Accuracy 20

3.6.2 Levenshtein distance 21

3.7 Computation of Prediction Confidence 21

3.8 Implementation Details 23

4 RESULTS AND DISCUSSIONS 24

4.1 Result 24

4.1.1 Overview 24

4.1.2 Comparison between Candidate CRNN Models 26

4.1.3 Error Analysis 27

4.1.4 Character Level Accuracy 30

4.2 Comparison with Previous Researches 32

4.3 Problems Faced and Solutions Taken 33

4.3.1 Problem 1: Overfitting 33

4.3.2 Problem 2: Low Prediction Accuracy for Two-row

License Plate 36

4.3.3 Problem 3: Detecting non-license plate texts 38

4.3.4 Problem 4: Overlapping cropped regions 39

4.4 Limitation of Model 40

5 CONCLUSIONS AND FUTURE WORK 41

5.1 Conclusions 41

5.2 Future Work 41

5.2.1 Integrate Text Detection and Recognition in a

Unified Framework 41

5.2.2 Dataset Expansion and Data Augmentation 42

REFERENCES 43

ix

LIST OF TABLES

Table 2.1: A survey on various approaches of Text Detection
Algorithms 10

Table 3.1: Architecture of Proposed CRNN 14

Table 4.1: Comparison of Training Loss and Validation Loss
Between Candidate Models 26

Table 4.2: Comparison of Prediction Accuracy Between
Candidate Models Across Test Datasets 27

Table 4.3: Mislabelled samples in LPR44 28

Table 4.4: Mislabelled samples in LPR45 (Character is close to
the edge) 28

Table 4.5: Mislabelled samples in LPR45 (Character is blocked
by shadow) 29

Table 4.6: Character Level Accuracy for LPR44, LPR45 and
Open Environment Dataset 32

Table 4.7: Comparison between proposed CRNN model and
Soo’s (2017) model 33

Table 4.8: New Architecture of Proposed CRNN 34

x

LIST OF FIGURES

Figure 2.1: Threshold Operation 6

Figure 2.2: Sliding Window Search 6

Figure 2.3: Soo’s (2017) CRNN Architecture (VGG19 + LSTM) 8

Figure 2.4: Text Detection Flowchart 9

Figure 3.1: Proposed ALPR Pipeline 11

Figure 3.2: Train Dataset 12

Figure 3.3: Test Datasets 12

Figure 3.4: Structure of EAST network 13

Figure 3.5: Memory cell of LSTM at each time-step 16

Figure 3.6: Comparison of Architecture Size between Proposed
CRNN and Soo’s (2017) CRNN 18

Figure 3.7: Probability distribution of labels at each time-step 22

Figure 4.1: Front Page of ALPR Web Application 24

Figure 4.2: Prediction Result of ALPR Web Application 25

Figure 4.3: Mobile Page for ALPR Web Application 25

Figure 4.4: LPR44 Confusion Matrix 30

Figure 4.5: LPR45 Confusion Matrix 31

Figure 4.6: Open Environment Dataset Confusion Matrix 31

Figure 4.7: Model Overfitting During Training Process 33

Figure 4.8: Performance of Optimiser on MNIST Dataset 35

Figure 4.9: Effect of Optimiser During Training Process 35

Figure 4.10: Learning Rate Schedule 36

Figure 4.11: Increasing Area of Detected Texts 37

xi

Figure 4.12: Predictions Before and after Increasing Area of
Detected Text Regions 37

Figure 4.13: Predictions Before and after Filtering out Small Text
Regions 38

Figure 4.14: Overlapped Ratio Calculation 39

Figure 4.15: Predictions Before and after Filtering out Highly
Overlapped Text Regions 39

xii

LIST OF SYMBOLS / ABBREVIATIONS

ALPR Automatic License Plate Recognition

CCTV Closed-circuit Television

CNN Convolutional Neural Network

CRNN Convolutional-Recurrent Neural Network

CTC Connectionist Temporal Classification

EAST Efficient and Accurate Scene Text Detector

ER Extremal Region

RNN Recurrent Neural Network

HDRBM Hybrid Discriminative Restricted Boltzmann Machines

LSTM Long short-term memory

MSER Maximally Stable Extremal Regions

OCR Optical Character Recognition

ReLU Rectified Linear Unit

RPN Region Proposal Network

SGD Stochastic Gradient Descent

SWT Stroke Width Transform

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

Industry 4.0 has been a hot topic over the last several years. It is a name given for the

current trend towards interconnectivity and advanced automation that aims to

revolutionize different sectors.

 Many breakthroughs in machine vision can be observed over the past few

years due to the rise in artificial intelligence technologies. One of the

implementations of machine vision is automatic license plate recognition (ALPR),

which is a system that utilise machine vision techniques to read vehicle license plate

images that are usually captured by closed-circuit television (CCTV) or dashcam.

This technology aims to automate the process of monitoring vehicles on the road,

which meets the requirements of promoting automation in Industry 4.0. A typical

ALPR system takes two steps to read the license plate, which starts with detecting

the location of license plate in a given image, follows by recognising the contents in

the detected license plate region.

 Beside monitoring vehicles on the road, ALPR system has many other

applications. For example, ALPR system can be used to trace the entry and exit of

vehicles into a premise automatically, and with that issuance of parking ticket can be

avoided. This can save a lot of time and help in reducing traffic congestion. Other

than that, ALPR system can also help users to locate cars in parking lots and detect

stolen cars. Government organisations can also use ALPR as a tool for mass

surveillance by tracking vehicle movements across the country.

1.2 Problem Statement

The main difficulty with creating a sophisticated ALPR system is that the algorithm

needs to cope with a wide range of image qualities. Vehicle images captured by

CCTV or dashcam usually face the following problems:

i. Low resolution (normally because the license plate is too far away from the

camera)

ii. Blur (due to fog or smog)

2

iii. Motion blur

iv. Overexposed / Underexposed (due to lightning condition)

v. Varied viewing angle

vi. Shadow

 Besides, it is also difficult for computer algorithms to differentiate ambiguous

English characters such as “O (capital o)”, “0 (zero)”, “I (capital i)” and “1 (one)”,

which are commonly found in license plates.

 Many existing algorithms, especially those who apply traditional computer

vision techniques tend to work well only under controlled conditions. In other words,

there are hardly any algorithms that can perform well under open environment,

which subject to all the difficulties and problems in ALPR mentioned above.

 Traditional computer vision methods typically handle ALPR problem by

further breaking it down into 2 parts, character segmentation and character

recognition. The major drawback of this method is that character segmentation is

widely regarded as a complicated task and generally do not work well under open

environment. This is because most character segmentation algorithms require image

pre-processing, which requires the programmer to make assumptions and setting

thresholds, especially during the process of determining the segmentation edges for

individual characters. Although there are abundant character recognition algorithms

that can achieve state-of-the-art results, a character segmentation algorithm with poor

performance can easily affect the overall performance since the final result depends

on the interplay of both character segmentation and character recognition algorithms.

 Hence, there is a need to develop a segmentation-free approach to address the

ALPR problem.

1.3 Aims and Objective

Due to the limitation of traditional computer vision methods, modern segmentation-

free approaches are usually favoured by researchers. Soo (2017), for example, uses a

segmentation approaches called convolutional-recurrent neural network (CRNN) to

build an ALPR system. The CRNN model proposed by Soo (2017) consists of a pre-

trained VGG19 CNN layer and uses a single layer long short-term memory (LSTM)

network for sequence labelling. When training the CRNN model, only parameters of

3

LSTM model are being trained while the parameters of VGG19 is fixed. There are a

few disadvantages and limitations in this type of neural network design.

First, it is not end-to-end trainable. Since the weights of CNN layers are fixed

and cannot be trained, we are relying on the performance of the pre-trained CNN

model done by other researchers for features extracting. If the pre-trained CNN

model happened to be performing poorly on our training sets, the accuracy of the

final prediction will be affected greatly.

Second, using large pre-trained CNN architectures in a CRNN model is just

overkill. Most pre-trained CNN architectures are trained on ImageNet datasets and

are designed to recognise the features of daily life objects. These architectures

usually consist of very deep layers to capture large number of features existing in

daily life objects. The features of a license plate that need to be captured, however,

are comparatively much lesser than daily life objects. Theoretically, pre-trained CNN

architectures can definitely extract the features from license plate, though, may

deemed superfluous. However, using pre-trained CNN comes at a cost. Since these

architectures are generally very deep, the numbers of parameters are very high as

well. Large number of parameters will increase the predicting time and might cause

the ALPR software to be impractical in real-world application.

 Therefore, the main objective of this study is to address the limitations of the

CRNN proposed by Soo (2017) and come out with another variant of CRNN that can

overcome these limitations. This study aimed to build an ALPR model that has the

following capabilities:

i. End-to-end trainable

ii. Small architecture

iii. Short execution time

iv. High prediction accuracy

v. Able to recognise both single-row and two-row license plate

4

1.4 Scope

In this paper, we will not cover license plate localisation algorithms but only focus

on the license plate recognition stage, which is to read from an image of localised

license plate. We propose a segmentation free approach that incorporates the usage

of an end-to-end trainable neural network architecture. This end-to-end trainable

neural network architecture is called Convolutional Recurrent Neural Network

(CRNN), which combines both Convolutional Neural Network (CNN) and Recurrent

Neural Network (RNN).

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Overview

Methods used for ALPR can be roughly categorised into 2 groups, particularly

segmentation approaches or segmentation-free approaches. Segmentation approaches

typically involve 2 steps, which is character segmentation, followed by character

recognition. Segmentation-free approaches, on the other hand, do not apply any

character segmentation algorithms.

 For countries having two-row license plate, such as Malaysia, the ALPR

system usually needs text detection algorithms to detect the location of texts in a

two-row license plate.

2.2 Segmentation Approach

Previous work on ALPR typically requires two steps. The characters in license plate

need to be segmented first and then recognised using optical character recognition

(OCR) techniques. The accuracy of character segmentation plays an important role in

this type of ALPR system because an improper segmentation will definitely lead to

an incorrect labelling of individual characters. However, character segmentation

process is considered by many to be a challenging task and had been heavily

researched in the past.

2.2.1 Character Segmentation

Researchers had come out with many different approaches for character

segmentation. For example, Turkyilmaz and Kacan (2017) use a method called

“vertical projection method”. This method requires image pre-processing which

involve a threshold operation that converts each pixels of an image to either white or

black pixel, followed by mean filtering before the segmentation process. Figure 2.1

illustrates how the threshold operation converts the image into black and white pixels.

Besides, Extremal Region (ER) used by Gou, Wang, Yao and Li (2016) is another

commonly used method for character segmentation. Maximally Stable Extremal

Region (MSER), an extension of ER method had also been previously used by

6

researchers for image segmentation, such as Hsu, Chen, and Chung (2013) and

proven to be more effective than ER.

Bu and Xie (2013) proposed another character segmentation method called

“sliding window search”. This approach uses a small window to slide over license

plate image to capture many tentative characters repeatedly and the contents of these

windows are recognised using OCR. The final output is computed by choosing the

characters with highest count consecutively. This method is able to produce an

accuracy level of 98.92% for character level recognition. The process of sliding

window search is illustrated in Figure 2.2.

Figure 2.1: Threshold Operation

Figure 2.2: Sliding Window Search

7

 The Inception-RPN framework proposed by Zhong, Zhang and Feng (2016)

is similar to sliding window search method but showed stronger robustness. The

Inception-RPN framework is a neural network architecture that combined both

Inception Net and Region Proposal Network (RPN). This type pf framework slides

an InceptionNet with multi-scale windows over the top of feature maps extracted by

convolutional layers and associates a set of text characteristic prior bounding boxes

with each sliding position to generate word region proposals. Experimental results

showed that this framework achieved state-of-the-art performance in text detection.

2.2.2 Character Recognition

Character recognition is another important component of ALPR but is considered by

many to be a less challenging task. Many different approaches used for character

recognition had achieved state-of-the-art results. For example, Turkyilmaz and

Kacan (2017) integrated CNN into their framework for character recognition and

achieved 96.92% accuracy for character level recognition. Meanwhile, Hsu, Chen,

and Chung (2013) use a probabilistic classifier for character recognition called

Hybrid Discriminative Restricted Boltzmann Machines (HDRBM). With the

combination of MSER for character segmentation and HDRBM for character

recognition, they achieved 98.2% for character level recognition accuracy. Template

matching method is also applicable for character recognition. For example, Gillyand

and Raimond (2013) applied thresholding techniques for character segmentation and

utilise template matching for character recognition. Template matching method

compares the portions of input image against the template images. The input image is

then classified by choosing the label of the template images that has the highest

correlation with the input image. Although this method is easy to implement, the

results are not very satisfactory. Any font change, rotation or noise in the input image

can easily lead to errors.

2.3 Segmentation-free Approach

ALPR that utilises character segmentation and character recognition face the same

limitation. All input images for this kind of ALPR system requires pre-processing to

facilitate the segmentation process because segmentation process by itself is a

complicated process. Therefore, to avoid dealing with the hassles of character

8

segmentation, segmentation-free approaches are more preferred. Shi, Bai and Yao

(2015) proposed a novel neural network architecture named Convolutional Recurrent

Neural Network (CRNN), which combines both CNN and RNN. The CNN layers are

used to extract features from the input images. The extracted feature maps will then

be passed into RNN layers for sequence labelling. Experimental results showed that

this kind of architecture is efficient for sequence labelling process, including ALPR.

For instance, Choi, Fazekas and Sandler (2016) applied CRNN for music

classification while Bartz et al. (2017) utilised CRNN for language identification.

Besides, Soo (2017) also used CRNN architecture for his ALPR model. Figure 2.3

shows the CRNN architecture used by Soo (2017).

2.4 Text Detection Algorithms

Some ALPR system has a text detector model embedded in it in order to be able to

read multiple-row license plates. Traditional text detection approaches can be

roughly classified into three groups, mainly:

i. Region-based approaches, which gather pixels based on the similarity of

characteristics of text, such as size, stroke width and edges

ii. Texture-based approaches, which find and merge candidate text regions

based of textural properties

Figure 2.3: Soo’s (2017) CRNN Architecture (VGG19 + LSTM)

9

iii. Hybrid approaches, which utilise the advantage of region-based approaches

and texture-based approaches

 There are two important steps involved in a text detection algorithm, which is

finding letter candidates and grouping these letter candidates into regions of text.

 Epshtein, Ofek and Wexler (2010), for example, made use of Stroke Width

Transform (SWT) to find and filter letter candidate and utilised connected

component algorithm for grouping these letter candidates into text regions. SWT is a

local image operator that computes per pixel the width of the most likely stroke

containing the pixel. The flowchart of Epshtein, Ofek and Wexler’s (2010) text

detection algorithm is shown in the figure below.

González et al. (2012), on the other hand, used MSER to find letter

candidates but still utilised SWT to filter out these candidates. The similar approach

was also adopted by Li and Lu (2012), which applied both MSER and SWT when

extracting letter candidates from input image.

Though traditional approaches in text detection had demonstrated promising

results across various benchmarks, they usually fall short when dealing with

challenging scenarios. The main reason for this occurrence is because the overall

performance of these traditional approaches typically relied on the interplay of

multiple stages and components in the pipelines (such as extracting, filtering and

grouping letter candidates). In order to avoid having stages in the text detection

pipeline, Zhou et al. (2017) proposed a single neural network that directly predicts

Figure 2.4: Text Detection Flowchart

10

text lines of arbitrary orientations and quadrilateral shapes without intermediate steps.

The model proposed by them is named EAST (An Efficient and Accurate Scene Text

Detector).

There are also some other text detection algorithms, which had been

summarised by Shanbhag, Thakkar and Patel (2015). The details of these algorithms

can be found in the table below. However, do note that all these methods are not

robust because they only work well under certain controlled environment.

Table 2.1: A survey on various approaches of Text Detection Algorithms

11

CHAPTER 3

3 METHODOLOGY

3.1 Overview

In order to be able to recognise both single-row and two-row license plate, we

proposed a pipeline that consists of 2 stages. The first stage is text detection using a

model named EAST, which was proposed by Zhou et al. (2017) and the second stage

is text recognition using CRNN model. The following diagram gives an overview on

how single-row and two-row license plate are being processed in the proposed model.

3.2 Data Collection

Our training datasets contain 25720 localised license plate images cropped from

images captured by ALPR camera deployed in a real-world setting. The dimension of

these images is fixed at 240px (width) x 120px (height) so that the neural network

Figure 3.1: Proposed ALPR Pipeline

12

model is easier to parallelize at training time. Besides, our training data sets only

consists of single line license plate. Samples of our training dataset are shown below:

The quality of the training datasets varies. Some images are blurred, noisy while

others are sharp and clear.

 For benchmarking purpose, we use 3 different test datasets, which we will

name them as LPR44, LPR45 and Open Environment Datasets. The image quality

deteriorates across these datasets, with LPR44 having the least noise level and Open

Environment Datasets having the most noise in images, such as blurring and shadows.

Samples from LPR44, LPR45 and Open Environment Datasets are shown in

the figure below.

 Figure 3.2: Train Dataset

Figure 3.3: Test Datasets

13

3.3 Efficient and Accuracy Scene Text (EAST) Detector

EAST is a text detector with robust performance. It is a version of the U-Net, which

is well known for its performance in extracting features that varies in size. Figure 3.4

shows the structure of EAST network.

 The original implementation of this network output two types of bounding

boxes, which is standard rectangular bounding box with rotation angle or a

quadrangle with all 4 coordinates of the vertices. However, in our implementation of

EAST detector, we only output rectangular bounding boxes without rotation angle

for simplicity. Besides, we did not retrain the EAST network with our own datasets

since our train dataset was not labelled with the coordinates of bounding boxes

containing license plate text. Instead, we use the weights of pre-trained EAST model,

which had been trained on ICDAR 2013 and ICDAR2015 with much more

sophisticated computational resources.

Figure 3.4: Structure of EAST network

14

3.4 Convolutional-Recurrent Neural Network (CRNN) Architecture

Since the features that need to be extracted from license plate images is very limited,

we propose a simple CNN architecture for feature extraction in our CRNN model.

This CNN architecture was inspired by Shi, Bai and Yao’s (2015) work and is shown

below:

Table 3.1: Architecture of Proposed CRNN

Layer Name Output size
(channels x
height x width)

Parameters

Input 1 x 32 x 100 -
Conv1 64 x 32 x 100 #filters: 64, k=3x3, s=1, p=1
Maxpool1 64 x 16 x 50 k=2, s=2, p=0
Conv2 128 x 16 x 50 #filters: 128, k=3x3, s=1, p=1
Maxpool2 128 x 8 x 25 k=2, s=2, p=0
Conv3 256 x 8 x 25 #filters: 256, k=3x3, s=1, p=1
BatchNorm - -
Conv4 256 x 8 x 25 #filters: 256, k=3x3, s=1, p=1
Maxpool3 256 x 4 x 26 k=2, s=2x1, p=0x1
Conv5 512 x 4 x 26 #filters:512, k=3x3, s=1, p=1
BatchNorm - -
Conv6 512 x 4 x 26 #filters: 512, k=3x3, s=1, p=1
Maxpool4 512 x 2 x 27 k=2, s=2x1, p=0x1
Conv7 512 x 1 x 26 #filters: 512, k=2x2, s=1, p=0
BatchNorm - -
Bidirectional-LSTM #hidden unit: 256
Bidirectional-LSTM #hidden unit: 256
Transcription - -

Note that kernel size, stride and paddings of a convolutional layers are denoted by k,

s, and p respectively in Table 3.

There are 7 layers of convolutional layers in this architecture. All the

convolutional layers, except Conv7 has stride 1 convolution with kernel size of 3 and

1 padding on both sides of the images. This configuration ensures that the width and

height of the feature maps remain the same after each convolutional layer. Rectified

Linear Units (ReLU) is added after each convolutional layer to perform element-wise

activation. ReLU function can be written in the follow way:

 𝑓(𝑥) = max (0, 𝑥) (3.1)

15

where x is the activation of the feature maps. Dimension reduction of feature maps is

solely done by MaxPooling layers. There is a total of 4 MaxPooling layers in our

proposed architecture. Both MaxPool1 and MaxPool2 will reduce the feature maps’

width and height by half while MaxPool3 and MaxPool4 will only reduce the height

of feature maps by half while maintaining the dimension of the width.

 BatchNorm layers are also added throughout the architecture to accelerate the

training process. BatchNorm layers normalise the activations to ease the training

process. The following are the parameters in a BatchNorm layer:

𝜇 =

1

𝑚
 𝑥

ୀଵ

(3.2)

𝜎

ଶ =
1

𝑚
(𝑥 − 𝜇)ଶ

ୀଵ

(3.3)

 𝑥పෝ =
𝑥 − 𝜇

ඥ(𝜎
ଶ + 𝜖)

 (3.4)

 𝐵𝑁ఊ,ఉ = 𝑦 = 𝛾𝑥ො + 𝛽 (3.5)

where 𝜇 is the mini-batch mean, 𝜎
ଶ is the mini-batch variance, 𝑥పෝ is the normalised

activation, and 𝑦 is the output value after scale and shift. Note that 𝛾, 𝛽 are the

learnable parameters in a BatchNorm layer.

For the recurrent layers, LSTM is used instead of normal RNN to prevent

exploding gradient problem. Instead of using one layer of LSTM, we stacked two bi-

directional LSTM together to capture more details and to increase the accuracy of

per-frame predictions. LSTM is just a variant of RNN with more complex units for

activation. The memory cell of LSTM at single time-step, 𝑡 is illustrated in the figure

below:

16

There are five important components in a typical LSTM memory cell,

particularly the forget gate, 𝑓௧ , input gate, 𝑖௧ , candidate values, 𝐶௧
෩ , cell state, 𝐶௧ and

output state, 𝑜௧ .

In order to avoid the vanishing gradient problem in traditional RNN, we

included a forget gate that looks at previous hidden state, ℎ௧ିଵ and input vector, 𝑥௧ ,

which then output a value between 0 and 1 (because of sigmoid function, 𝜎). This

output value suggests how much we need to “forget” about the previous state and it

can be calculated using the formula below:

 𝑓௧ = 𝜎൫𝑊 . [ℎ௧ିଵ, 𝑥௧] + 𝑏൯ (3.6)

Next, we need to determine how much new information need to be stored in

the cell state and this will be decided by the value of input gate, 𝑖௧ , which can be

computed from:

Figure 3.5: Memory cell of LSTM at each time-step

17

 𝑖௧ = 𝜎(𝑊 . [ℎ௧ିଵ, 𝑥௧] + 𝑏) (3.7)

Candidate value, 𝐶௧
෩ are calculated by passing it into 𝑡𝑎𝑛ℎ activation function,

which maps the resulting values into the range of -1 to 1.

 𝐶௧
෩ = tanh(𝑊 . [ℎ௧ିଵ, 𝑥௧] + 𝑏) (3.8)

In order to find the current cell state, 𝐶௧ , we sum previous cell state and

current candidate value up, weighted by the forget gate and input gate respectively.

This is to adjust the amount of information we want to “forget” and “remember”

from past and present states.

 𝐶௧ = 𝑓௧ ∗ 𝐶௧ିଵ + 𝑖௧ ∗ 𝐶௧
෩ (3.9)

The last step is to calculate the output gate, 𝑜௧ which conditionally decides

what to output from the memory cell.

 𝑜௧ = 𝜎(𝑊 [ℎ௧ିଵ, 𝑥௧] + 𝑏) (3.10)

Finally, we output the value of current hidden state, ℎ௧ by multiplying output

gate and cell state activated by 𝑡𝑎𝑛ℎ function.

 ℎ௧ = 𝑜௧ ∗ tanh (𝐶௧) (3.11)

Transcription layer is added at the end to convert the per-frame predictions

made by LSTM into a label sequence.

 Note that there are only around 5 million trainable parameters for the

convolutional layers in our proposed architecture, which is much lesser than the

VGG19 network used in Soo’s (2017) CRNN model, which has around 2 billion

parameters. The main reason for the huge difference in number of parameters is

because the convolutional layers in our proposed CRNN abandons the usage of fully

connected layers that typically have large number of parameters. The reduction in

number of trainable weights is an added advantage because it can speed up the

training time and reduce the prediction time, which is an important aspect in real-

world application. Figure 3.5 shows the number of trainable parameters in each

convolutional layer of CRNN.

18

3.5 Loss Function for Training CRNN

Loss function is one of the main components in neural networks. The purpose of loss

function is to evaluate the inconsistency between predicted and actual values. By

taking the derivatives of the loss function with respect to trainable weights, we can

then determine the changes needed on the trainable weights in order to reduce the

loss function. This process is called “backpropagation”.

For this particular neural network, we utilised a special loss function called

Connectionist Temporal Classification (CTC) loss that is first proposed by Graves,

Fernandez, Gomez, and Schmidhuber (2006). Under this loss function, the output of

a network is treated as conditional probability distribution over all possible label

sequence. An objective function can be derived from this conditional probability to

directly maximise the probabilities of the correct labelling. Backpropagation through

time is possible because the objective function is differentiable.

Figure 3.6: Comparison of Architecture Size between Proposed CRNN and Soo’s (2017)

CRNN

19

According to Graves, Fernandez, Gomez and Schmidhuber (2006), a CTC

network need to use softmax function as output layer and the number of unit in this

softmax layer should be 1 unit more than 𝐿, where 𝐿 is a set containing all possible

labels in framewise prediction, that is {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P,

Q, R, S, T, U, V, W, X, Y, Z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The activations of the first 𝐿

units represent the probabilities of observing the corresponding labels while the extra

unit represents the probabilities of observing a “blank” at particular times. The

probabilities of a given label sequence can then be calculated by multiplying the

probabilities of getting individual characters in the sequence.

To put all these in a more formal way, let us convert the concepts stated

above into a more mathematical way. Assume that we have an input sequence 𝑥 of

length 𝑇, a recurrent neural network with 𝑚 inputs, 𝑛 outputs and weight vector 𝑤

can be defined as a continuous map 𝑁௪: (ℝ)் → (ℝ)் . Let 𝑦 = 𝑁௪(𝑥) be the

sequence of network outputs, and denote by 𝑦
௧ the activation of output unit 𝑘 at time

𝑡. Then 𝑦
௧ can be treated as the chances of observing label 𝑘 at time 𝑡, which define

a distribution over the set 𝐿ᇱ் of length 𝑇 sequence over the alphabet 𝐿ᇱ = 𝐿 ∪

{𝑏𝑙𝑎𝑛𝑘} :

𝑝(𝜋|𝑥) = ෑ 𝑦గ

௧

்

௧ୀଵ

 , ∀𝜋 ∈ 𝐿ᇱ்
(3.12)

where 𝜋 in equation (3.12) is referring to paths, which is the elements of 𝐿ᇱ். Note

that we have implicitly assumed that the outputs of the network at different time are

conditionally independent.

Next, we define a many-to-one mapping, 𝐵 ∶ 𝐿ᇱ் → 𝐿ஸ், where 𝐿ஸ் is the set

of possible labellings. This set of possible labelling are computed by removing all

blanks and repeated labels from the path. For example, 𝐵 maps “--aa-p-p-ll-e--” (‘-

‘ represents a “blank”) onto “apple”. Lastly, we use 𝐵 to define the conditional

probability of a given labelling 𝑙 ∈ 𝐿ஸ் as the sum of the probabilities of all the paths

corresponding to it:

 𝑝(𝑙|𝑥) = 𝑝(𝜋|𝑥)

గ∈షభ()

 (3.13)

Directly computing equation (3.13) would be computationally infeasible due to the

exponentially large number of summation items. Therefore, we adopted a faster

20

parallel implementation of CTC, named “Warp CTC”, developed by Amodei et al.

(2015).

If we assume that the path with highest probability corresponds to the most

probable labelling, then ℎ(𝑥) can be approximated with the following equation:

 ℎ(𝑥) ≈ 𝐵(𝜋∗), 𝑤ℎ𝑒𝑟𝑒 𝜋∗ = arg max
గ∈ே

𝑝(𝜋|𝑥) (3.14)

When training a network, we want to minimize the negative log-likelihood of

conditional probabilities. Let us denote the training dataset by 𝜒 = {𝐼 , 𝑙}, where 𝐼 is

the training image and 𝑙 is the actual label of the license plate image. Then, the

negative log-likelihood of conditional probability can be written as:

 𝑂 = − log 𝑝(𝑙|

ூ,∈ఞ

𝑥) (3.15)

where 𝑥 is the sequence produced by the CRNN model from 𝐼 . This objective

function calculates a cost value directly from an image and its actual label. This

allows our model to be end-to-end trainable on pairs of images and labels, which

cannot be done using other loss functions.

3.6 Evaluation Criteria

3.6.1 Accuracy

The accuracy of prediction is calculated using the simple equation below:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑝𝑙𝑎𝑡𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑝𝑙𝑎𝑡𝑒
 𝑥 100%

A license plate can only be considered correctly labelled if all individual characters

in the license plate are predicted correctly.

 Although the equation above is able to reflect the actual performance of

ALPR system, we are unable to evaluate how well is the system performing in

character level recognition. So, we will calculate the character level recognition

accuracy using the following equation:

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
௧௬ ௗ ௧

ௌ௨ # ௧௦ ௦ ௧௦
 𝑥 100%

21

3.6.2 Levenshtein distance

We also introduce another indicator for error analysis called Levenshtein distance,

sometimes known as edit distance to measure the difference between the actual and

predicted label of license plate. Levenshtein distance measures the minimum number

of single-characters edits (insertion, deletion or substitution) required to convert one

string to another. For example, if our actual license plate is “WWB1327” while the

predicted license plate is “WVB1327”, then the Levenshtein distance is 1 because we

only need to substitute “V” in predicted license plate to “W” to make it become

“WWB1327”.

The formula for Levenshtein distance is given as follow:

where 𝑎 and 𝑏 is the actual and predicted labels of license plate with length |𝑎| and

|𝑏| respectively. 𝑙𝑒𝑣,(𝑖, 𝑗) is the distance between the first 𝑖 characters of 𝑎 and the

first 𝑗 characters of 𝑏.

3.7 Computation of Prediction Confidence

It is important to have an indicator to reflect the confidence level of a prediction.

This is to alert us for any potential prediction mistakes so that we can take necessary

actions to reduce the impact from these errors.

Recall that at each time-step, the last LSTM layer in our model will output a

hidden state, ℎ௧ , which is essentially just a vector of 36 real numbers (the total

number of all possible labels in framewise prediction). We pass this vector to a

softmax function, which then outputs the discrete probability distribution of all labels

at each time-step. The formula of softmax function is shown below:

𝜎(ℎ௧) =

𝑒()

∑ 𝑒()ೖଷ

(3.166)

for 𝑖 = 1, 2, … , 36

One possible way to find the top most probable sequences is by treating the

probability distribution at each time-step as sets, and then sort the product of each

element in the n-fold Cartesian product of these sets in ascending order. However,

this method can be computationally expensive as the number of possible

combinations increases exponentially with the number of time-steps. In fact, since

22

our model has 26 time-steps and each time-step has 36 possible labels, there are a

total of 3626 elements in the Cartesian product and sorting these elements might takes

a long time.

 Therefore, we proposed a heuristic method to find the top predictions with

highest confidence level. For the sake of simplicity, let us assume that there are only

3 time-steps and 3 possible labels, namely “A”, “B” and “C” and the softmax

function gives us the following probability distributions at each time-step:

Clearly, the most probable label sequence resulted from these sample

probability distributions is “BBA”, which was obtained by selecting the labels with

highest probability from each time-step.

In order to find the second most probable label sequence, we need to search

for the label with highest probability among labels that had yet to appear in the most

probable sequence at every time-step. We will then substitute this new label with the

label in most probable sequence within the same time-step. For the example given

above, we will substitute “A” at time-step 3 with “C” because “C” has a probability

of 0.4, higher than other candidate labels that had yet to appear in the sequence.

The next most probable sequence can be found by repeating the steps above,

by searching for the highest probability among remaining labels and update the

previous most probable sequence with the new label, until there is no any other

combination of sequences left.

Figure 3.7: Probability distribution of labels at each time-step

23

3.8 Implementation Details

We implemented the whole CRNN network using PyTorch 0.4.1 framework with

CUDA version 8.0. All experiments are carried out on a cloud platform named

Google Colab that is equipped with single 2.3GHz Intel Xeon Processor and

NVIDIA Tesla K80 GPU that has 2496 CUDA cores and 12GB GDDR5 VRAM.

The training process that involves 25720 input images took us around 30 minutes on

average.

 For the EAST detector in our model, due to lack of resources, we did not

retrain the whole network using our own data but instead utilised the weights of a

pre-trained model. The weights used for our EAST detector can be found inside

OpenCV Library, called “frozen_east_text_detection.pb”.

24

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Result

4.1.1 Overview

A simple web application prototype was built in order to demonstrate the recognition

ability of the final ALPR model. This web application was built using Flask (Python

Microframework) and it can be deployed to cloud providers such as Amazon Web

Services, Google Cloud and Heroku. Figure 4.1 shows the home page of the web

application.

Users need to click “Choose File” button to select a vehicle license plate

image and then click “Upload” button to recognise the text inside the input image.

Figure 4.1: Front Page of ALPR Web Application

25

 Once the “Upload” button is clicked, the input image will be shown below.

Top 5 predictions made by the ALPR model and their corresponding prediction

confidence will be displayed under the input image.

Figure 4.2: Prediction Result of ALPR Web Application

Figure 4.3: Mobile Page for ALPR Web Application

26

If the user is accessing the web application using smartphone, they can

choose to upload the images from camera or select pre-existing files.

4.1.2 Comparison between Candidate CRNN Models

During the CRNN model development process, we trained the model with 60 epochs.

After each epoch, the training loss and validation loss are calculated. By comparing

the difference between training loss and validation loss, we can roughly speculate

whether the model is overfitting or underfitting. If the training loss is much higher

than validation loss, this suggests that our model is overfitting whereas a situation

when validation loss is much higher than training loss suggests that the model is

underfitting. Therefore, it is best to select model with the least difference in training

loss and validation loss. The top 3 models with least difference in training loss and

validation loss happened during 30th, 36th and 39th epoch and their corresponding

values are recorded in the table below.

Table 4.1: Comparison of Training Loss and Validation Loss Between Candidate

Models

Model Training Loss Validation Loss |Training Loss – Validation

Loss|

CRNN30 0.356654 0.322708 0.033946

CRNN36 0.328760 0.324879 0.003881

CRNN39 0.327699 0.323998 0.003701

The difference between training loss and validation loss should only serves as

an indicator of whether the model is overfitting or underfitting. Since, all three

models above have relative low difference in training loss and validation loss, we are

not able to further deduce which model is better using this indicator. In order to

select the best model among these 3 models, we need to look at their performance on

our test datasets.

 To evaluate the performance of CRNN model, we use 3 separate test datasets

for benchmarking purpose, mainly LPR44, LPR45 and Open Environment Dataset.

The difficulty level increases across these datasets due to the variation in image

quality and noise level with LPR44 having the best image quality and least noise and

27

Open Environment Dataset having the worst image quality and highest noise level.

The overall prediction accuracy for each model are shown in the tables below:

Table 4.2: Comparison of Prediction Accuracy Between Candidate Models Across

Test Datasets

Model Accuracy

LPR44

(409 samples)

[Difficulty Level -

Low]

LPR45

(553 samples)

[Difficulty Level –

Medium]

Open Environment

Dataset

(2533 samples)

[Difficulty Level – High]

CRNN30 99.2665% 93.4900% 78.7998%

CRNN36 99.2665% 93.6709% 78.4445%

CRNN39 99.2665% 93.4900% 78.6814%

All 3 models performed equally well on the easiest dataset, LPR44 while

CRNN36 slightly outperformed other models in LPR45. CRNN30 model, however,

achieved the highest accuracy in Open Environment Datasets. Since we want to have

a model that generalise well under different environments, CRNN30 was selected as

our final model due to its performance in the most difficult dataset.

Note that although the image quality of Open Environment Dataset is very

different from our training dataset, we still managed to achieve accuracy level of

around 78%. This shows that our model has robust performance due to its ability in

handling noises that never appeared in training dataset.

4.1.3 Error Analysis

In order to find out the weaknesses and limitation of our final model (CRNN30), we

first list out all 3 mislabelled samples (out of 409 samples) in LPR44 and compute

the Leveinshtein distance for each of these samples. The results are shown in the

table below:

28

Table 4.3: Mislabelled samples in LPR44

Predicted Actual Leveinshtein

Distance

Input Image

1 BKM4122 BKW4122 1

2 W9GL486 BGL486 2

3 WLY872 WLY8725 1

From the table above, we noticed that the Leveinshtein distance for each

sample are within 1 to 2, which suggests that the predictions made are not too far

from actual label. After reviewing the mislabelled samples, we observed that one of

the license plates, “WLY8725” is difficult to be recognised, even at a human level

because the last digit “5” was mostly covered by shadow.

Due to the low error rate in LPR44, we could not observe any noticeable

weaknesses in our model. Therefore, we looked into the all the mislabelled samples

in LPR45 (36 out of 553 samples) in order to look for any patterns in the errors made.

Upon further inspection, there are 2 noticeable situations where the model fails

consistently. First, the model is unable to predict a character if it is too close to the

edge of the image or if only part of the character is shown at the edge. Second, the

model is unable to recognise a character if it is partially or fully covered by shadows.

Samples of these mislabelled images can be found in the tables below:

Table 4.4: Mislabelled samples in LPR45 (Character is close to the edge)

Predicted Actual Leveinshtein

Distance

Input Image

AEQ56 AEQ561 1

29

WXG43 WXG431 1

AJN1 AJN17 1

BNL95 BNL954 1

BMD41 BMD415 1

Table 4.5: Mislabelled samples in LPR45 (Character is blocked by shadow)

Predicted Actual Leveinshtein

Distance

Input Image

WTT7151 WTT7191 1

JKQ94 JKQ92 1

SGX8284 BGX8284 1

JMK5707 BMK5707 1

WLH202 WLH203 1

30

 One possible solution to overcome these limitations is by performing image

augmentation at training time. We can introduce additional noises to our train data by

purposely cropping some of the images so that the characters are close to the edge.

Besides, we can also simulate the effect of shadows on train data by purposely

blackening out the pixels of random parts in images.

4.1.4 Character Level Accuracy

Although the most important performance metric in an ALPR system is the accuracy

of final predictions, it is also crucial to investigate the performance of character level

recognition in our model because a poor character recogniser can ultimately lead to

low final prediction accuracy. To do so, we use confusion matrix to get an overview

of the misclassification rate at character level recognition. The diagrams below show

the confusion matrix for LPR44, LPR45 and Open Environment Dataset:

Figure 4.4: LPR44 Confusion Matrix

31

Figure 4.5: LPR45 Confusion Matrix

Figure 4.6: Open Environment Dataset Confusion Matrix

32

 From Figure 4.4 and Figure 4.5, we observed that most mislabelled characters

only happened once, which suggest that we can treat them as outlier cases and

conclude that there is no any noticeable weakness in our model’s character

recognition ability in predicting LPR44 and LPR45 datasets. However, the same

cannot be said for predicting Open Environment Datasets as the model seemed more

likely to mislabel certain pairs of characters, mainly

i. “8” and “9” (mislabelled 18 times)

ii. “8” and “6” (mislabelled 22 times)

iii. “M” and “W” (mislabelled 14 times)

 One possible reason for this occurrence is due to the low image quality in

Open Environment Datasets. Notice that the appearance of number “6”, “8” and “9”

are visually similar as all of them consist of circle shape in them. When the image

quality is low, some of the circle shape might not be obvious and would easily trick

the model into falsely recognising these digits.

Regardless, the overall character level recognition ability of the model is

satisfactory as the character level accuracy in all 3 test datasets are close to 100%.

The table below summarized the character level accuracies across all three test

datasets.

Table 4.6: Character Level Accuracy for LPR44, LPR45 and Open Environment

Dataset

Test Datasets Character Level Accuracy

LPR44 (2805 characters) 99.8574%

LPR45 (3577 characters) 99.3570%

Open Environment Dataset (14878

characters)

98.6759%

4.2 Comparison with Previous Researches

As mentioned previously in “Section 1.3: Aims and Objectives”, the main research

objective of this research is to improve the CRNN model proposed by Soo (2017).

The table below summarizes the difference in performance of our proposed model

and Soo’s (2017) model.

33

Table 4.7: Comparison between proposed CRNN model and Soo’s (2017) model

Criteria Final CRNN Model Soo’s (2017)
CRNN Model

Accuracy LPR44 99.27% 98.04%
LPR45 93.49% 94.84%

Open Environment 78.80% 54.85%
Character

Level
Accuracy

LPR44 99.86% 99.70%
LPR45 99.36% 98.91%

Open Environment 98.68% 84.15%
Average Prediction Time < 1 second 7~8 seconds

Architecture Size ~5.5 million
parameters

~1.9 billion
parameters

End-to-end Trainable Yes No
Ability to Recognize Two-row

License Plate
Yes No

Ability to Predict Sequence with
Varied Length

Yes No

 Notice that our proposed CRNN model outperformed Soo’s (2017) model in

most aspects, such as prediction accuracy, prediction time, architecture size and the

ability to predict sequence with varied length and two-row license plate, except

having slight lower prediction accuracy on LPR45 dataset.

4.3 Problems Faced and Solutions Taken

4.3.1 Problem 1: Overfitting

When training the model, we observed that the training loss quickly dropped below

the test loss. This is a sign that our model is overfitting too quickly.

Figure 4.7: Model Overfitting During Training Process

34

 From the figure above, we can notice that the training loss at 25th epoch is

0.041407, much lesser than the test loss of 0.30581, which is a clear sign of

overfitting.

Therefore, we added Dropout layers after Conv1, Conv2 and Conv3 layers to

regularize the neural networks. Dropout layers will randomly set the activations in

our feature maps to 0. This can effectively remove unwanted noise and prevent

overfitting.

Table 4.8: New Architecture of Proposed CRNN

Layer Name Output size
(channels x
height x width)

Parameters

Input 1 x 32 x 100 -
Conv1 64 x 32 x 100 #filters: 64, k=3x3, s=1, p=1
Dropout p=0.5
Maxpool1 64 x 16 x 50 k=2, s=2, p=0
Conv2 128 x 16 x 50 #filters: 128, k=3x3, s=1, p=1
Dropout p=0.2
Maxpool2 128 x 8 x 25 k=2, s=2, p=0
Conv3 256 x 8 x 25 #filters: 256, k=3x3, s=1, p=1
Dropout p=0.2
BatchNorm - -
Conv4 256 x 8 x 25 #filters: 256, k=3x3, s=1, p=1
Maxpool3 256 x 4 x 26 k=2, s=2x1, p=0x1
Conv5 512 x 4 x 26 #filters:512, k=3x3, s=1, p=1
BatchNorm - -
Conv6 512 x 4 x 26 #filters: 512, k=3x3, s=1, p=1
Maxpool4 512 x 2 x 27 k=2, s=2x1, p=0x1
Conv7 512 x 1 x 26 #filters: 512, k=2x2, s=1, p=0
BatchNorm - -
Bidirectional-LSTM #hidden unit: 256
Bidirectional-LSTM #hidden unit: 256
Transcription - -

The parameter p in Dropout layers is the probability of randomly setting

activations to 0.

Besides, we also noticed that the decreasing rate of training loss is too slow.

Consequently, we added Adadelta optimiser to our model to optimise the Stochastic

Gradient Descent (SGD) process. There are many different optimisers available to

speed up the SGD process, such as Adam, RMSProp and AdaGrad. The performance

of each optimiser on MNIST datasets is shown in the figure below:

35

 After adding Adadelta optimiser into our model, we observed that the training

loss decreased at a much faster rate. The training loss started at 73.391541 and

quickly decreased to 18.055309 and 7.281705 during the second and third epoch.

Nevertheless, the decreasing rate of training loss slowed down rapidly after

around 10th epoch, when the training loss had been reduced to less than 1. This

suggests that there is a need to adjust the learning rate after 10th epoch because lower

Figure 4.8: Performance of Optimiser on MNIST Dataset

Figure 4.9: Effect of Optimiser During Training Process

36

learning rate is usually needed if the training loss is already very low. Thus, we

adopted the Cosine Annealing learning rate scheduler to adjust the learning rate as

the number of epochs decrease.

 The figure above showed the learning rate schedule in our model. As the

number of epochs increases, the learning rate decreases following the shape of a

cosine curve. The initial learning rate is set at 0.1 and gradually decreased to 0.01.

4.3.2 Problem 2: Low Prediction Accuracy for Two-row License Plate

When we first test for our ALPR model performance, the prediction accuracy for

two-row license plate was not performing well. Upon further investigation, we

realised that the underlying problem was because the text in detected text regions are

too close to the edge. Since our training data for CRNN were consisted of single-row

license plate images which typically have spaces between the edge of image and the

characters, our CRNN model struggled to recognise these cropped images that

looked too different from the training data.

In order to resolve this issue, we introduced some noises to the detected text

regions by increasing the area of detected text regions suggested by EAST model.

This is to ensure that the cropped images are visually similar to our train data, which

has spaces between characters and edges of images.

Figure 4.10: Learning Rate Schedule

37

Figure 4.12 shows the cropped regions for detected texts before and after

introducing noises and the improvement in prediction.

Figure 4.12: Predictions Before and after Increasing Area of Detected Text Regions

Figure 4.11: Increasing Area of Detected Texts

38

4.3.3 Problem 3: Detecting non-license plate texts

Another problem that we observed during the model testing process is that texts that

are not part of license plate, such as the car brand name and car distributor name that

are written under the license plate were also detected and recognised by our model.

In order to prevent this occurrence, we need to set a threshold to filter out text

regions that are comparatively smaller than other text regions. This can be done by

computing the ratio of area of each text regions to area of largest text region and

remove the regions with ratio less than a pre-set threshold set.

𝑇𝑒𝑥𝑡 𝑅𝑒𝑔𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡𝑒𝑥𝑡 𝑟𝑒𝑔𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑡𝑒𝑥𝑡 𝑟𝑒𝑔𝑖𝑜𝑛

Figure 4.13: Predictions Before and after Filtering out Small Text Regions

39

4.3.4 Problem 4: Overlapping cropped regions

While testing our model performance, we also realised that there are cases where the

detected text regions are overlapped. This will cause the final prediction to have

duplicated texts.

To avoid this situation, we decided to compute the overlapped ratio of

detected text regions and drop the regions where overlapped ratio is at an

unacceptable range. Figure 4.12 shows how the overlapped ratio is computed.

The improvement in prediction before and after considering the overlapped

ratio is shown in Figure 4.15.

Figure 4.14: Overlapped Ratio Calculation

Figure 4.15: Predictions Before and after Filtering out Highly Overlapped Text Regions

40

4.4 Limitation of Model

The main limitation of our ALPR model is that it can only recognise uppercase

letters. With that said, it cannot recognise some of the vanity license plate that

contains lowercase letters, such as “Putrajaya” or “BAMbee”, a plate that was

introduced during 2000 Thomas and Uber Cup which was held in Kuala Lumpur.

Besides, our model is designed for detecting Malaysia license plate only,

which either has single-row or two-row. Therefore, its performance on foreign

license plate is not guaranteed due to differences in license plate format and font type.

Moreover, there are two noticeable situations where our model fails

consistently. First situation is when the characters in license plate is very close to the

edge of image and the second situation is when there are shadows covering part of or

whole input image.

Another drawback of our suggested pipeline is that it contains two stages, text

detection (for two-row license plate) and text recognition. The main disadvantage of

having multiple stages is that the overall performance is highly determined by the

interplay of these stages or components. In other words, if either component fails, the

final prediction will most likely be inaccurate. Besides, post-processing is usually

required when 1 or more stages are involved. In our case, we need to filter out

detected text regions that has much smaller area compared to other detected regions

to remove any potential noises. Also, we have to ensure that the overlapped regions

among the detected text regions are within an acceptable range. We also had to

explicitly increase the size of detected text regions to ensure that the characters are

not too close to the edge.

41

CHAPTER 5

5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this study, we had developed an ALPR system that can be used to recognise both

single-row and two-row license plates that are available in Malaysia. We combined

two neural networks in a single pipeline, mainly EAST for text detection and CRNN

for text recognition. We proposed a small CRNN architecture design which abandons

the usage of fully connected layers and this design is proven to be more effective

compared to larger CRNN architecture.

 Our model had successfully outperformed Soo’s (2017) CRNN model in the

following aspects:

i. Higher Overall Accuracy

ii. Higher Character Level Accuracy

iii. Shorter Average Prediction Time

iv. Smaller Architecture Size

v. End-to-end Trainable

vi. Is Able to Recognize Two-row License Plate

vii. Is Able to Predict Sequence with Varied Length

 Besides, due to the nature of a CRNN model, we avoided using any character

segmentation algorithms, which in turn allows us to skip all pre-processing that

usually requires by segmentation algorithms. Also, due to the usage of deep neural

network, our model shows high robustness in performance due to its capability in

handling noises.

5.2 Future Work

5.2.1 Integrate Text Detection and Recognition in a Unified Framework

Our current model consists of two stages, text detection and text recognition that

utilised two different networks, particularly EAST and CRNN. The main

disadvantage of using two separate neural networks is that we have two

convolutional layers that are used for the same purpose — feature extraction, which

42

can be deemed to be redundant. Instead, a better approach is to extract features from

input images using only one convolutional layer and the extracted feature maps will

be utilised for both text detection and text recognition tasks. This can effectively

make our network more compact by reducing the architecture size and at the same

time avoid post-processing that might be required after text detection. Ideally, this

novel neural network architecture should be end-to-end trainable, which means that

we are able to train the convolutional layers, text detector (regressor) and text

recogniser (classifier) within the same neural network concurrently. Training a multi-

output neural network is possible by using weighted sum of regression loss and

classification loss.

5.2.2 Dataset Expansion and Data Augmentation

In order to make our model more robust, we can collect and add license plate images

from foreign country into our train datasets so that it can predict license plates from

not only Malaysia, but also from other countries.

Besides, we can also expand our current train datasets by performing data

augmentation. The augmentation techniques that need to be applied should simulates

the problems that commonly face by images captured in the real world. For example,

we can randomly blacken out the pixels of part of an image to simulate the effect of

shadows on license plate.

43

REFERENCES

Amodei, D., et al. 2015. Deep Speech 2: End-to-End Speech Recognition in English
and Mandarin. [online]. https://arxiv.org/abs/1512.02595

Bartz, C., Herold, T., Yang, H. and Meinel, C. 2017. Language Identification Using
Deep Convolutional Recurrent Neural Networks. [online].
https://arxiv.org/abs/1708.04811

Bu, Y. J. and Xie, M., 2013. A New Method for License Plate Characters
Recognition Based on Sliding Window Search. IEEE 11th International Conference
on Dependable, Autonomic and Secure Computing, Chengdu, China, 21-22
December, 2013, pp. 304-307.

Choi, K., Fazekas, G. and Sandler, M. 2016. Convolutional Recurrent Neural
Network for Music Classification. [online]. https://arxiv.org/abs/1609.04243

Epshtein, B., Ofek, E., and Wexler, Y. 2010. Detecting text in natural scenes with
stroke width transform. 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 2963–2970

Gilly, D. and Raimond, K., 2013. License Plate Recognition – A Template Matching
Method. International Journal of Engineering Research and Applications, pp. 1240-
2345.

González, Á., Bergasa, L. M., Yebes, J. J. and Bronte, S. 2012. Text location in
complex images. Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012), pp. 617–620

Gou, C., Wang, K., Yao, Y. and Li, Z. 2016., Vehicle License Plate Recognition
Based on Extremal Regions and Restricted Boltzmann Machines. IEEE Transactions
on Intelligent Transportation Systems, 17(4), pp. 1096-1107.

Graves, A., Fernandez, S., Gomez, F. and Schmidhuber, J. 2006. Connectionist
Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Network. Proceedings of 23rd International Conference on Machine Learning,
Pittsburgh, 2006.

Hsu, G.S., Chen, J. C. and Chung, Y. Z., 2013. Application-Oriented License Plate
Recognition. IEEE Transactions on Vehicular Technology, 62(2), pp. 552-561.

Li, Y. and Lu, H. 2012. Scene text detection via stroke width. Proceedings of the 21st
International Conference on Pattern Recognition (ICPR2012), pp. 681–684

44

Shanbhag, A., Thakkar, R. and Patel, H. (2015). A Comparative Study of Text
Detection Algorithms for Natural Scenes. International Journal of Research in
Computer and Communication Technology, vol. 4, no. 9, pp. 735-740

Shi, B., Bai, X. and Yao, C., 2015. An End-to-End Trainable Neural Network for
Image-based Sequence Recognition and Its Application to Scene Text Recognition.
[online]. https://arxiv.org/abs/1507.05717

Soo, C. P. 2017. Segmentation-free License Plate Recognition using Deep Learning.
[online].
http://eprints.utar.edu.my/2747/1/FYP2_SooChingPau_1305682_SE.doc.pdf

Turkyilmaz, I. and Kacan, K., 2017. License Plate Recognition System Using
Artificial Neural Networks. ETRI Journal, 39(2), pp. 163-172.

Zhong, Z., Jin, L., Zhang, S. and Feng, Z. 2016. DeepText: A Unified Framework for
Text Proposal Generation and Text Detection in Natural Images. [online].
https://arxiv.org/pdf/1605.07314.pdf

Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W. and Liang, J. 2017. EAST:
An Efficient and Accurate Scene Text Detector. [online].
https://arxiv.org/pdf/1704.03155.pdf

