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LICENSE PLATE RECOGNITION USING CONVOLUTIONAL-

RECURRENT NEURAL NETWORK 

 

 

ABSTRACT 

 

 

License plate recognition is a technology that utilises computer vision techniques for 

identifying vehicles by their license plates. This technology is commonly used for 

traffic law enforcement, automatic toll collection and ticketless parking system. In 

this paper, a lightweight, segmentation-free approach for license plate recognition is 

proposed. This approach is inspired by the recent trend in deep learning research 

community to combine both Convolutional Neural Network (CNN) and Recurrent 

Neural Network (RNN) for sequence recognition task. The proposed Convolutional-

Recurrent Neural Network (CRNN) contains a CNN without fully connected layers, 

which is used for extracting features from license plate image and these extracted 

features are passed to RNN for sequence recognition. This approach combines both 

CNN and RNN in a unified framework, which allows it to be end-to-end trainable. 

To solve the problem of two-row license plate in Malaysia, a text detection algorithm 

is integrated into our framework to detect the location of text in license plate image. 

As a result, the proposed CRNN is suitable for real-world deployment in Malaysia 

due to its lightweight architecture and state-of-the-art recognition accuracy.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background 

Industry 4.0 has been a hot topic over the last several years. It is a name given for the 

current trend towards interconnectivity and advanced automation that aims to 

revolutionize different sectors.  

 Many breakthroughs in machine vision can be observed over the past few 

years due to the rise in artificial intelligence technologies. One of the 

implementations of machine vision is automatic license plate recognition (ALPR), 

which is a system that utilise machine vision techniques to read vehicle license plate 

images that are usually captured by closed-circuit television (CCTV) or dashcam. 

This technology aims to automate the process of monitoring vehicles on the road, 

which meets the requirements of promoting automation in Industry 4.0. A typical 

ALPR system takes two steps to read the license plate, which starts with detecting 

the location of license plate in a given image, follows by recognising the contents in 

the detected license plate region.  

 Beside monitoring vehicles on the road, ALPR system has many other 

applications. For example, ALPR system can be used to trace the entry and exit of 

vehicles into a premise automatically, and with that issuance of parking ticket can be 

avoided. This can save a lot of time and help in reducing traffic congestion. Other 

than that, ALPR system can also help users to locate cars in parking lots and detect 

stolen cars. Government organisations can also use ALPR as a tool for mass 

surveillance by tracking vehicle movements across the country.  

 

1.2 Problem Statement 

The main difficulty with creating a sophisticated ALPR system is that the algorithm 

needs to cope with a wide range of image qualities. Vehicle images captured by 

CCTV or dashcam usually face the following problems:  

i. Low resolution (normally because the license plate is too far away from the 

camera) 

ii. Blur (due to fog or smog)  
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iii. Motion blur 

iv. Overexposed / Underexposed (due to lightning condition)  

v. Varied viewing angle  

vi. Shadow 

 Besides, it is also difficult for computer algorithms to differentiate ambiguous 

English characters such as “O (capital o)”, “0 (zero)”, “I (capital i)” and “1 (one)”, 

which are commonly found in license plates.  

 Many existing algorithms, especially those who apply traditional computer 

vision techniques tend to work well only under controlled conditions. In other words, 

there are hardly any algorithms that can perform well under open environment, 

which subject to all the difficulties and problems in ALPR mentioned above.  

 Traditional computer vision methods typically handle ALPR problem by 

further breaking it down into 2 parts, character segmentation and character 

recognition. The major drawback of this method is that character segmentation is 

widely regarded as a complicated task and generally do not work well under open 

environment. This is because most character segmentation algorithms require image 

pre-processing, which requires the programmer to make assumptions and setting 

thresholds, especially during the process of determining the segmentation edges for 

individual characters. Although there are abundant character recognition algorithms 

that can achieve state-of-the-art results, a character segmentation algorithm with poor 

performance can easily affect the overall performance since the final result depends 

on the interplay of both character segmentation and character recognition algorithms.  

 Hence, there is a need to develop a segmentation-free approach to address the 

ALPR problem.  

 

1.3 Aims and Objective 

Due to the limitation of traditional computer vision methods, modern segmentation-

free approaches are usually favoured by researchers. Soo (2017), for example, uses a 

segmentation approaches called convolutional-recurrent neural network (CRNN) to 

build an ALPR system. The CRNN model proposed by Soo (2017) consists of a pre-

trained VGG19 CNN layer and uses a single layer long short-term memory (LSTM) 

network for sequence labelling. When training the CRNN model, only parameters of 
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LSTM model are being trained while the parameters of VGG19 is fixed. There are a 

few disadvantages and limitations in this type of neural network design. 

First, it is not end-to-end trainable. Since the weights of CNN layers are fixed 

and cannot be trained, we are relying on the performance of the pre-trained CNN 

model done by other researchers for features extracting. If the pre-trained CNN 

model happened to be performing poorly on our training sets, the accuracy of the 

final prediction will be affected greatly.   

Second, using large pre-trained CNN architectures in a CRNN model is just 

overkill. Most pre-trained CNN architectures are trained on ImageNet datasets and 

are designed to recognise the features of daily life objects. These architectures 

usually consist of very deep layers to capture large number of features existing in 

daily life objects. The features of a license plate that need to be captured, however, 

are comparatively much lesser than daily life objects. Theoretically, pre-trained CNN 

architectures can definitely extract the features from license plate, though, may 

deemed superfluous. However, using pre-trained CNN comes at a cost. Since these 

architectures are generally very deep, the numbers of parameters are very high as 

well. Large number of parameters will increase the predicting time and might cause 

the ALPR software to be impractical in real-world application. 

 Therefore, the main objective of this study is to address the limitations of the 

CRNN proposed by Soo (2017) and come out with another variant of CRNN that can 

overcome these limitations. This study aimed to build an ALPR model that has the 

following capabilities: 

i. End-to-end trainable 

ii. Small architecture  

iii. Short execution time  

iv. High prediction accuracy 

v. Able to recognise both single-row and two-row license plate 
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1.4 Scope 

In this paper, we will not cover license plate localisation algorithms but only focus 

on the license plate recognition stage, which is to read from an image of localised 

license plate. We propose a segmentation free approach that incorporates the usage 

of an end-to-end trainable neural network architecture. This end-to-end trainable 

neural network architecture is called Convolutional Recurrent Neural Network 

(CRNN), which combines both Convolutional Neural Network (CNN) and Recurrent 

Neural Network (RNN).  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Overview 

Methods used for ALPR can be roughly categorised into 2 groups, particularly 

segmentation approaches or segmentation-free approaches. Segmentation approaches 

typically involve 2 steps, which is character segmentation, followed by character 

recognition. Segmentation-free approaches, on the other hand, do not apply any 

character segmentation algorithms.    

 For countries having two-row license plate, such as Malaysia, the ALPR 

system usually needs text detection algorithms to detect the location of texts in a 

two-row license plate.  

 

2.2 Segmentation Approach 

Previous work on ALPR typically requires two steps. The characters in license plate 

need to be segmented first and then recognised using optical character recognition 

(OCR) techniques. The accuracy of character segmentation plays an important role in 

this type of ALPR system because an improper segmentation will definitely lead to 

an incorrect labelling of individual characters. However, character segmentation 

process is considered by many to be a challenging task and had been heavily 

researched in the past.  

 

2.2.1 Character Segmentation 

Researchers had come out with many different approaches for character 

segmentation. For example, Turkyilmaz and Kacan (2017) use a method called 

“vertical projection method”. This method requires image pre-processing which 

involve a threshold operation that converts each pixels of an image to either white or 

black pixel, followed by mean filtering before the segmentation process. Figure 2.1 

illustrates how the threshold operation converts the image into black and white pixels. 

Besides, Extremal Region (ER) used by Gou, Wang, Yao and Li (2016) is another 

commonly used method for character segmentation. Maximally Stable Extremal 

Region (MSER), an extension of ER method had also been previously used by 
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researchers for image segmentation, such as Hsu, Chen, and Chung (2013) and 

proven to be more effective than ER.   

 

 

 

 

 

 

 

 

Bu and Xie (2013) proposed another character segmentation method called 

“sliding window search”. This approach uses a small window to slide over license 

plate image to capture many tentative characters repeatedly and the contents of these 

windows are recognised using OCR. The final output is computed by choosing the 

characters with highest count consecutively. This method is able to produce an 

accuracy level of 98.92% for character level recognition. The process of sliding 

window search is illustrated in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Threshold Operation 

Figure 2.2: Sliding Window Search 
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 The Inception-RPN framework proposed by Zhong, Zhang and Feng (2016) 

is similar to sliding window search method but showed stronger robustness. The 

Inception-RPN framework is a neural network architecture that combined both 

Inception Net and Region Proposal Network (RPN). This type pf framework slides 

an InceptionNet with multi-scale windows over the top of feature maps extracted by 

convolutional layers and associates a set of text characteristic prior bounding boxes 

with each sliding position to generate word region proposals. Experimental results 

showed that this framework achieved state-of-the-art performance in text detection.  

 

2.2.2 Character Recognition 

Character recognition is another important component of ALPR but is considered by 

many to be a less challenging task. Many different approaches used for character 

recognition had achieved state-of-the-art results. For example, Turkyilmaz and 

Kacan (2017) integrated CNN into their framework for character recognition and 

achieved 96.92% accuracy for character level recognition. Meanwhile, Hsu, Chen, 

and Chung (2013) use a probabilistic classifier for character recognition called 

Hybrid Discriminative Restricted Boltzmann Machines (HDRBM). With the 

combination of MSER for character segmentation and HDRBM for character 

recognition, they achieved 98.2% for character level recognition accuracy. Template 

matching method is also applicable for character recognition. For example, Gillyand 

and Raimond (2013) applied thresholding techniques for character segmentation and 

utilise template matching for character recognition. Template matching method 

compares the portions of input image against the template images. The input image is 

then classified by choosing the label of the template images that has the highest 

correlation with the input image. Although this method is easy to implement, the 

results are not very satisfactory. Any font change, rotation or noise in the input image 

can easily lead to errors. 

 

2.3 Segmentation-free Approach 

ALPR that utilises character segmentation and character recognition face the same 

limitation. All input images for this kind of ALPR system requires pre-processing to 

facilitate the segmentation process because segmentation process by itself is a 

complicated process. Therefore, to avoid dealing with the hassles of character 



8 

segmentation, segmentation-free approaches are more preferred. Shi, Bai and Yao 

(2015) proposed a novel neural network architecture named Convolutional Recurrent 

Neural Network (CRNN), which combines both CNN and RNN. The CNN layers are 

used to extract features from the input images. The extracted feature maps will then 

be passed into RNN layers for sequence labelling. Experimental results showed that 

this kind of architecture is efficient for sequence labelling process, including ALPR. 

For instance, Choi, Fazekas and Sandler (2016) applied CRNN for music 

classification while Bartz et al. (2017) utilised CRNN for language identification. 

Besides, Soo (2017) also used CRNN architecture for his ALPR model. Figure 2.3 

shows the CRNN architecture used by Soo (2017).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Text Detection Algorithms 

Some ALPR system has a text detector model embedded in it in order to be able to 

read multiple-row license plates. Traditional text detection approaches can be 

roughly classified into three groups, mainly:  

i. Region-based approaches, which gather pixels based on the similarity of 

characteristics of text, such as size, stroke width and edges  

ii. Texture-based approaches, which find and merge candidate text regions 

based of textural properties 

Figure 2.3: Soo’s (2017) CRNN Architecture (VGG19 + LSTM) 
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iii. Hybrid approaches, which utilise the advantage of region-based approaches 

and texture-based approaches  

 There are two important steps involved in a text detection algorithm, which is 

finding letter candidates and grouping these letter candidates into regions of text.  

 Epshtein, Ofek and Wexler (2010), for example, made use of Stroke Width 

Transform (SWT) to find and filter letter candidate and utilised connected 

component algorithm for grouping these letter candidates into text regions. SWT is a 

local image operator that computes per pixel the width of the most likely stroke 

containing the pixel. The flowchart of Epshtein, Ofek and Wexler’s (2010) text 

detection algorithm is shown in the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

González et al. (2012), on the other hand, used MSER to find letter 

candidates but still utilised SWT to filter out these candidates. The similar approach 

was also adopted by Li and Lu (2012), which applied both MSER and SWT when 

extracting letter candidates from input image.  

Though traditional approaches in text detection had demonstrated promising 

results across various benchmarks, they usually fall short when dealing with 

challenging scenarios. The main reason for this occurrence is because the overall 

performance of these traditional approaches typically relied on the interplay of 

multiple stages and components in the pipelines (such as extracting, filtering and 

grouping letter candidates). In order to avoid having stages in the text detection 

pipeline, Zhou et al. (2017) proposed a single neural network that directly predicts 

Figure 2.4: Text Detection Flowchart 



10 

text lines of arbitrary orientations and quadrilateral shapes without intermediate steps. 

The model proposed by them is named EAST (An Efficient and Accurate Scene Text 

Detector).  

There are also some other text detection algorithms, which had been 

summarised by Shanbhag, Thakkar and Patel (2015). The details of these algorithms 

can be found in the table below. However, do note that all these methods are not 

robust because they only work well under certain controlled environment.  

 

Table 2.1: A survey on various approaches of Text Detection Algorithms 
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CHAPTER 3 

 

3 METHODOLOGY  

3.1 Overview 

In order to be able to recognise both single-row and two-row license plate, we 

proposed a pipeline that consists of 2 stages. The first stage is text detection using a 

model named EAST, which was proposed by Zhou et al. (2017) and the second stage 

is text recognition using CRNN model.  The following diagram gives an overview on 

how single-row and two-row license plate are being processed in the proposed model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Data Collection 

Our training datasets contain 25720 localised license plate images cropped from 

images captured by ALPR camera deployed in a real-world setting. The dimension of 

these images is fixed at 240px (width) x 120px (height) so that the neural network 

Figure 3.1: Proposed ALPR Pipeline 
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model is easier to parallelize at training time. Besides, our training data sets only 

consists of single line license plate. Samples of our training dataset are shown below: 

 

 

 

 

 

 

 

 

 

The quality of the training datasets varies. Some images are blurred, noisy while 

others are sharp and clear.  

 For benchmarking purpose, we use 3 different test datasets, which we will 

name them as LPR44, LPR45 and Open Environment Datasets. The image quality 

deteriorates across these datasets, with LPR44 having the least noise level and Open 

Environment Datasets having the most noise in images, such as blurring and shadows.  

Samples from LPR44, LPR45 and Open Environment Datasets are shown in 

the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.2: Train Dataset 

Figure 3.3: Test Datasets 
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3.3 Efficient and Accuracy Scene Text (EAST) Detector 

EAST is a text detector with robust performance. It is a version of the U-Net, which 

is well known for its performance in extracting features that varies in size. Figure 3.4 

shows the structure of EAST network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The original implementation of this network output two types of bounding 

boxes, which is standard rectangular bounding box with rotation angle or a 

quadrangle with all 4 coordinates of the vertices. However, in our implementation of 

EAST detector, we only output rectangular bounding boxes without rotation angle 

for simplicity. Besides, we did not retrain the EAST network with our own datasets 

since our train dataset was not labelled with the coordinates of bounding boxes 

containing license plate text. Instead, we use the weights of pre-trained EAST model, 

which had been trained on ICDAR 2013 and ICDAR2015 with much more 

sophisticated computational resources.  

 

 

 

 

 

 

Figure 3.4: Structure of EAST network 
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3.4 Convolutional-Recurrent Neural Network (CRNN) Architecture  

Since the features that need to be extracted from license plate images is very limited, 

we propose a simple CNN architecture for feature extraction in our CRNN model. 

This CNN architecture was inspired by Shi, Bai and Yao’s (2015) work and is shown 

below:  

 

Table 3.1: Architecture of Proposed CRNN 

Layer Name Output size 
(channels x 
height x width) 

Parameters 

Input 1 x 32 x 100 - 
Conv1 64 x 32 x 100 #filters: 64, k=3x3, s=1, p=1 
Maxpool1 64 x 16 x 50 k=2, s=2, p=0 
Conv2 128 x 16 x 50 #filters: 128, k=3x3, s=1, p=1 
Maxpool2 128 x 8 x 25 k=2, s=2, p=0 
Conv3 256 x 8 x 25 #filters: 256, k=3x3, s=1, p=1 
BatchNorm - - 
Conv4 256 x 8 x 25 #filters: 256, k=3x3, s=1, p=1 
Maxpool3 256 x 4 x 26 k=2, s=2x1, p=0x1 
Conv5 512 x 4 x 26 #filters:512, k=3x3, s=1, p=1 
BatchNorm - - 
Conv6 512 x 4 x 26 #filters: 512, k=3x3, s=1, p=1 
Maxpool4 512 x 2 x 27 k=2, s=2x1, p=0x1 
Conv7 512 x 1 x 26 #filters: 512, k=2x2, s=1, p=0 
BatchNorm - - 
Bidirectional-LSTM  #hidden unit: 256 
Bidirectional-LSTM  #hidden unit: 256 
Transcription - - 

 

Note that kernel size, stride and paddings of a convolutional layers are denoted by k, 

s, and p respectively in Table 3. 

 

There are 7 layers of convolutional layers in this architecture. All the 

convolutional layers, except Conv7 has stride 1 convolution with kernel size of 3 and 

1 padding on both sides of the images. This configuration ensures that the width and 

height of the feature maps remain the same after each convolutional layer. Rectified 

Linear Units (ReLU) is added after each convolutional layer to perform element-wise 

activation. ReLU function can be written in the follow way: 

 𝑓(𝑥) = max (0, 𝑥) (3.1) 
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where x is the activation of the feature maps. Dimension reduction of feature maps is 

solely done by MaxPooling layers. There is a total of 4 MaxPooling layers in our 

proposed architecture. Both MaxPool1 and MaxPool2 will reduce the feature maps’ 

width and height by half while MaxPool3 and MaxPool4 will only reduce the height 

of feature maps by half while maintaining the dimension of the width.  

 

 BatchNorm layers are also added throughout the architecture to accelerate the 

training process. BatchNorm layers normalise the activations to ease the training 

process. The following are the parameters in a BatchNorm layer: 

 
𝜇 =

1

𝑚
 𝑥



ୀଵ

  
(3.2) 

 
𝜎

ଶ =
1

𝑚
(𝑥 − 𝜇)ଶ



ୀଵ

 
(3.3) 

 𝑥పෝ =
𝑥 − 𝜇

ඥ(𝜎
ଶ + 𝜖)

 (3.4) 

    𝐵𝑁ఊ,ఉ = 𝑦 = 𝛾𝑥ො + 𝛽 (3.5) 

where 𝜇 is the mini-batch mean,  𝜎
ଶ is the mini-batch variance, 𝑥పෝ  is the normalised 

activation, and 𝑦  is the output value after scale and shift. Note that 𝛾, 𝛽  are the 

learnable parameters in a BatchNorm layer.  

 

For the recurrent layers, LSTM is used instead of normal RNN to prevent 

exploding gradient problem. Instead of using one layer of LSTM, we stacked two bi-

directional LSTM together to capture more details and to increase the accuracy of 

per-frame predictions. LSTM is just a variant of RNN with more complex units for 

activation. The memory cell of LSTM at single time-step, 𝑡 is illustrated in the figure 

below: 
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There are five important components in a typical LSTM memory cell, 

particularly the forget gate, 𝑓௧ , input gate,  𝑖௧ , candidate values, 𝐶௧
෩  , cell state, 𝐶௧ and 

output state, 𝑜௧ .  

 

In order to avoid the vanishing gradient problem in traditional RNN, we 

included a forget gate that looks at previous hidden state, ℎ௧ିଵ and input vector, 𝑥௧ , 

which then output a value between 0 and 1 (because of sigmoid function, 𝜎). This 

output value suggests how much we need to “forget” about the previous state and it 

can be calculated using the formula below: 

 𝑓௧ = 𝜎൫𝑊 . [ℎ௧ିଵ, 𝑥௧] + 𝑏൯ (3.6) 

 

Next, we need to determine how much new information need to be stored in 

the cell state and this will be decided by the value of input gate, 𝑖௧ , which can be 

computed from: 

Figure 3.5: Memory cell of LSTM at each time-step 
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 𝑖௧ = 𝜎(𝑊 . [ℎ௧ିଵ, 𝑥௧] + 𝑏) (3.7) 

 

Candidate value, 𝐶௧
෩  are calculated by passing it into 𝑡𝑎𝑛ℎ activation function, 

which maps the resulting values into the range of -1 to 1.  

 𝐶௧
෩ = tanh(𝑊  . [ℎ௧ିଵ, 𝑥௧] + 𝑏) (3.8) 

 

In order to find the current cell state, 𝐶௧  , we sum previous cell state and 

current candidate value up, weighted by the forget gate and input gate respectively. 

This is to adjust the amount of information we want to “forget” and “remember” 

from past and present states.  

 𝐶௧ = 𝑓௧ ∗ 𝐶௧ିଵ + 𝑖௧ ∗ 𝐶௧
෩  (3.9) 

 

The last step is to calculate the output gate, 𝑜௧ which conditionally decides 

what to output from the memory cell. 

 𝑜௧ = 𝜎(𝑊 [ℎ௧ିଵ, 𝑥௧] + 𝑏) (3.10) 

 

Finally, we output the value of current hidden state, ℎ௧ by multiplying output 

gate and cell state activated by 𝑡𝑎𝑛ℎ function.  

 ℎ௧ = 𝑜௧ ∗ tanh (𝐶௧) (3.11) 

 

Transcription layer is added at the end to convert the per-frame predictions 

made by LSTM into a label sequence. 

 

 Note that there are only around 5 million trainable parameters for the 

convolutional layers in our proposed architecture, which is much lesser than the 

VGG19 network used in Soo’s (2017) CRNN model, which has around 2 billion 

parameters. The main reason for the huge difference in number of parameters is 

because the convolutional layers in our proposed CRNN abandons the usage of fully 

connected layers that typically have large number of parameters. The reduction in 

number of trainable weights is an added advantage because it can speed up the 

training time and reduce the prediction time, which is an important aspect in real-

world application. Figure 3.5 shows the number of trainable parameters in each 

convolutional layer of CRNN.  
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3.5 Loss Function for Training CRNN   

Loss function is one of the main components in neural networks. The purpose of loss 

function is to evaluate the inconsistency between predicted and actual values. By 

taking the derivatives of the loss function with respect to trainable weights, we can 

then determine the changes needed on the trainable weights in order to reduce the 

loss function. This process is called “backpropagation”.  

For this particular neural network, we utilised a special loss function called 

Connectionist Temporal Classification (CTC) loss that is first proposed by Graves, 

Fernandez, Gomez, and Schmidhuber (2006). Under this loss function, the output of 

a network is treated as conditional probability distribution over all possible label 

sequence. An objective function can be derived from this conditional probability to 

directly maximise the probabilities of the correct labelling. Backpropagation through 

time is possible because the objective function is differentiable.  

Figure 3.6: Comparison of Architecture Size between Proposed CRNN and Soo’s (2017) 

CRNN 
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According to Graves, Fernandez, Gomez and Schmidhuber (2006), a CTC 

network need to use softmax function as output layer and the number of unit in this 

softmax layer should be 1 unit more than 𝐿, where 𝐿 is a set containing all possible 

labels in framewise prediction, that is {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, 

Q, R, S, T, U, V, W, X, Y, Z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The activations of the first 𝐿 

units represent the probabilities of observing the corresponding labels while the extra 

unit represents the probabilities of observing a “blank” at particular times. The 

probabilities of a given label sequence can then be calculated by multiplying the 

probabilities of getting individual characters in the sequence.  

To put all these in a more formal way, let us convert the concepts stated 

above into a more mathematical way. Assume that we have an input sequence 𝑥 of 

length 𝑇, a recurrent neural network with 𝑚 inputs, 𝑛 outputs and weight vector 𝑤 

can be defined as a continuous map 𝑁௪: (ℝ)் → (ℝ)் . Let 𝑦 = 𝑁௪(𝑥) be the 

sequence of network outputs, and denote by 𝑦
௧  the activation of output unit 𝑘 at time 

𝑡. Then 𝑦
௧  can be treated as the chances of observing label 𝑘 at time 𝑡, which define 

a distribution over the set 𝐿ᇱ் of length 𝑇  sequence over the alphabet 𝐿ᇱ = 𝐿 ∪

{𝑏𝑙𝑎𝑛𝑘} : 

 
𝑝(𝜋|𝑥) =  ෑ 𝑦గ

௧

்

௧ୀଵ

 , ∀𝜋 ∈ 𝐿ᇱ் 
(3.12) 

where 𝜋 in equation (3.12) is referring to paths, which is the elements of 𝐿ᇱ். Note 

that we have implicitly assumed that the outputs of the network at different time are 

conditionally independent.  

Next, we define a many-to-one mapping, 𝐵 ∶ 𝐿ᇱ் →  𝐿ஸ், where 𝐿ஸ் is the set 

of possible labellings. This set of possible labelling are computed by removing all 

blanks and repeated labels from the path. For example, 𝐵 maps “--aa-p-p-ll-e--” (‘-

‘ represents a “blank”) onto “apple”. Lastly, we use 𝐵  to define the conditional 

probability of a given labelling 𝑙 ∈ 𝐿ஸ் as the sum of the probabilities of all the paths 

corresponding to it: 

 𝑝(𝑙|𝑥) =   𝑝(𝜋|𝑥)

గ∈షభ()

 (3.13) 

Directly computing equation (3.13) would be computationally infeasible due to the 

exponentially large number of summation items. Therefore, we adopted a faster 
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parallel implementation of CTC, named “Warp CTC”, developed by Amodei et al. 

(2015).  

 

If we assume that the path with highest probability corresponds to the most 

probable labelling, then ℎ(𝑥) can be approximated with the following equation:  

 ℎ(𝑥) ≈  𝐵(𝜋∗), 𝑤ℎ𝑒𝑟𝑒 𝜋∗ = arg max
గ∈ே

𝑝(𝜋|𝑥) (3.14) 

 

When training a network, we want to minimize the negative log-likelihood of 

conditional probabilities. Let us denote the training dataset by 𝜒 = {𝐼 , 𝑙}, where 𝐼 is 

the training image and 𝑙  is the actual label of the license plate image. Then, the 

negative log-likelihood of conditional probability can be written as: 

 𝑂 =  −  log 𝑝(𝑙|

ூ,∈ఞ

𝑥) (3.15) 

where 𝑥  is the sequence produced by the CRNN model from 𝐼 . This objective 

function calculates a cost value directly from an image and its actual label. This 

allows our model to be end-to-end trainable on pairs of images and labels, which 

cannot be done using other loss functions.  

 

3.6 Evaluation Criteria 

3.6.1 Accuracy 

The accuracy of prediction is calculated using the simple equation below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑝𝑙𝑎𝑡𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑝𝑙𝑎𝑡𝑒
 𝑥 100% 

 

A license plate can only be considered correctly labelled if all individual characters 

in the license plate are predicted correctly.  

 Although the equation above is able to reflect the actual performance of 

ALPR system, we are unable to evaluate how well is the system performing in 

character level recognition. So, we will calculate the character level recognition 

accuracy using the following equation: 

 

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#  ௧௬ ௗ ௧

ௌ௨  #  ௧௦   ௦ ௧௦
 𝑥 100%  
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3.6.2 Levenshtein distance 

We also introduce another indicator for error analysis called Levenshtein distance, 

sometimes known as edit distance to measure the difference between the actual and 

predicted label of license plate. Levenshtein distance measures the minimum number 

of single-characters edits (insertion, deletion or substitution) required to convert one 

string to another. For example, if our actual license plate is “WWB1327” while the 

predicted license plate is “WVB1327”, then the Levenshtein distance is 1 because we 

only need to substitute “V” in predicted license plate to “W” to make it become 

“WWB1327”. 

The formula for Levenshtein distance is given as follow: 

 

 

 

where 𝑎 and 𝑏 is the actual and predicted labels of license plate with length |𝑎| and 

|𝑏| respectively. 𝑙𝑒𝑣,(𝑖, 𝑗) is the distance between the first 𝑖 characters of 𝑎 and the 

first 𝑗 characters of 𝑏.  

 

3.7 Computation of Prediction Confidence  

It is important to have an indicator to reflect the confidence level of a prediction. 

This is to alert us for any potential prediction mistakes so that we can take necessary 

actions to reduce the impact from these errors.  

Recall that at each time-step, the last LSTM layer in our model will output a 

hidden state, ℎ௧  , which is essentially just a vector of 36 real numbers (the total 

number of all possible labels in framewise prediction). We pass this vector to a 

softmax function, which then outputs the discrete probability distribution of all labels 

at each time-step. The formula of softmax function is shown below: 

 
𝜎(ℎ௧) =

𝑒()

∑ 𝑒()ೖଷ


 
(3.166) 

for 𝑖 = 1, 2, … , 36 

One possible way to find the top most probable sequences is by treating the 

probability distribution at each time-step as sets, and then sort the product of each 

element in the n-fold Cartesian product of these sets in ascending order. However, 

this method can be computationally expensive as the number of possible 

combinations increases exponentially with the number of time-steps. In fact, since 
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our model has 26 time-steps and each time-step has 36 possible labels, there are a 

total of 3626 elements in the Cartesian product and sorting these elements might takes 

a long time.  

 Therefore, we proposed a heuristic method to find the top predictions with 

highest confidence level. For the sake of simplicity, let us assume that there are only 

3 time-steps and 3 possible labels, namely “A”, “B” and “C” and the softmax 

function gives us the following probability distributions at each time-step:  

 

 

 

 

 

 

 

 

 

 

Clearly, the most probable label sequence resulted from these sample 

probability distributions is “BBA”, which was obtained by selecting the labels with 

highest probability from each time-step.  

In order to find the second most probable label sequence, we need to search 

for the label with highest probability among labels that had yet to appear in the most 

probable sequence at every time-step. We will then substitute this new label with the 

label in most probable sequence within the same time-step. For the example given 

above, we will substitute “A” at time-step 3 with “C” because “C” has a probability 

of 0.4, higher than other candidate labels that had yet to appear in the sequence.  

The next most probable sequence can be found by repeating the steps above, 

by searching for the highest probability among remaining labels and update the 

previous most probable sequence with the new label, until there is no any other 

combination of sequences left.  

 

 

Figure 3.7: Probability distribution of labels at each time-step 
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3.8 Implementation Details 

We implemented the whole CRNN network using PyTorch 0.4.1 framework with 

CUDA version 8.0. All experiments are carried out on a cloud platform named 

Google Colab that is equipped with single 2.3GHz Intel Xeon Processor and 

NVIDIA Tesla K80 GPU that has 2496 CUDA cores and 12GB GDDR5 VRAM. 

The training process that involves 25720 input images took us around 30 minutes on 

average.  

 For the EAST detector in our model, due to lack of resources, we did not 

retrain the whole network using our own data but instead utilised the weights of a 

pre-trained model. The weights used for our EAST detector can be found inside 

OpenCV Library, called “frozen_east_text_detection.pb”.  
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CHAPTER 4 

 

4 RESULTS AND DISCUSSIONS 

 

4.1 Result 

4.1.1 Overview 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A simple web application prototype was built in order to demonstrate the recognition 

ability of the final ALPR model. This web application was built using Flask (Python 

Microframework) and it can be deployed to cloud providers such as Amazon Web 

Services, Google Cloud and Heroku. Figure 4.1 shows the home page of the web 

application.  

Users need to click “Choose File” button to select a vehicle license plate 

image and then click “Upload” button to recognise the text inside the input image.  

 

 

 

Figure 4.1: Front Page of ALPR Web Application 



25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Once the “Upload” button is clicked, the input image will be shown below. 

Top 5 predictions made by the ALPR model and their corresponding prediction 

confidence will be displayed under the input image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Prediction Result of ALPR Web Application 

Figure 4.3: Mobile Page for ALPR Web Application 
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If the user is accessing the web application using smartphone, they can 

choose to upload the images from camera or select pre-existing files.  

 

4.1.2 Comparison between Candidate CRNN Models 

During the CRNN model development process, we trained the model with 60 epochs. 

After each epoch, the training loss and validation loss are calculated. By comparing 

the difference between training loss and validation loss, we can roughly speculate 

whether the model is overfitting or underfitting. If the training loss is much higher 

than validation loss, this suggests that our model is overfitting whereas a situation 

when validation loss is much higher than training loss suggests that the model is 

underfitting. Therefore, it is best to select model with the least difference in training 

loss and validation loss. The top 3 models with least difference in training loss and 

validation loss happened during 30th, 36th and 39th epoch and their corresponding 

values are recorded in the table below.  

 

Table 4.1: Comparison of Training Loss and Validation Loss Between Candidate 

Models 

Model Training Loss Validation Loss |Training Loss – Validation 

Loss| 

CRNN30 0.356654 0.322708 0.033946 

CRNN36 0.328760 0.324879 0.003881 

CRNN39 0.327699 0.323998 0.003701 

 

The difference between training loss and validation loss should only serves as 

an indicator of whether the model is overfitting or underfitting. Since, all three 

models above have relative low difference in training loss and validation loss, we are 

not able to further deduce which model is better using this indicator. In order to 

select the best model among these 3 models, we need to look at their performance on 

our test datasets.  

 To evaluate the performance of CRNN model, we use 3 separate test datasets 

for benchmarking purpose, mainly LPR44, LPR45 and Open Environment Dataset. 

The difficulty level increases across these datasets due to the variation in image 

quality and noise level with LPR44 having the best image quality and least noise and 
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Open Environment Dataset having the worst image quality and highest noise level.  

The overall prediction accuracy for each model are shown in the tables below:  

 

Table 4.2: Comparison of Prediction Accuracy Between Candidate Models Across 

Test Datasets 

Model Accuracy 

LPR44 

(409 samples) 

[Difficulty Level -

Low] 

LPR45  

(553 samples) 

[Difficulty Level – 

Medium] 

Open Environment 

Dataset 

(2533 samples) 

[Difficulty Level – High] 

CRNN30 99.2665% 93.4900% 78.7998% 

CRNN36 99.2665% 93.6709% 78.4445% 

CRNN39 99.2665% 93.4900% 78.6814% 

 

All 3 models performed equally well on the easiest dataset, LPR44 while 

CRNN36 slightly outperformed other models in LPR45. CRNN30 model, however, 

achieved the highest accuracy in Open Environment Datasets. Since we want to have 

a model that generalise well under different environments, CRNN30 was selected as 

our final model due to its performance in the most difficult dataset.  

Note that although the image quality of Open Environment Dataset is very 

different from our training dataset, we still managed to achieve accuracy level of 

around 78%. This shows that our model has robust performance due to its ability in 

handling noises that never appeared in training dataset.  

 

4.1.3 Error Analysis 

In order to find out the weaknesses and limitation of our final model (CRNN30), we 

first list out all 3 mislabelled samples (out of 409 samples) in LPR44 and compute 

the Leveinshtein distance for each of these samples. The results are shown in the 

table below: 
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Table 4.3: Mislabelled samples in LPR44 
 

Predicted Actual Leveinshtein 

Distance 

Input Image 

1 BKM4122 BKW4122 1 

 

2 W9GL486 BGL486 2 

 

3 WLY872 WLY8725 1 

 

From the table above, we noticed that the Leveinshtein distance for each 

sample are within 1 to 2, which suggests that the predictions made are not too far 

from actual label. After reviewing the mislabelled samples, we observed that one of 

the license plates, “WLY8725” is difficult to be recognised, even at a human level 

because the last digit “5” was mostly covered by shadow.  

Due to the low error rate in LPR44, we could not observe any noticeable 

weaknesses in our model. Therefore, we looked into the all the mislabelled samples 

in LPR45 (36 out of 553 samples) in order to look for any patterns in the errors made. 

Upon further inspection, there are 2 noticeable situations where the model fails 

consistently. First, the model is unable to predict a character if it is too close to the 

edge of the image or if only part of the character is shown at the edge. Second, the 

model is unable to recognise a character if it is partially or fully covered by shadows. 

Samples of these mislabelled images can be found in the tables below: 

 

Table 4.4: Mislabelled samples in LPR45 (Character is close to the edge) 

Predicted Actual Leveinshtein 

Distance 

Input Image 

AEQ56 AEQ561 1 
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WXG43 WXG431 1 

 

AJN1 AJN17 1 

 

BNL95 BNL954 1 

 

BMD41 BMD415 1 

 

 

Table 4.5: Mislabelled samples in LPR45 (Character is blocked by shadow) 

Predicted Actual Leveinshtein 

Distance 

Input Image 

WTT7151 WTT7191 1 

 

JKQ94 JKQ92 1 

 

SGX8284 BGX8284 1 

 

JMK5707 BMK5707 1 

 

WLH202 WLH203 1 
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 One possible solution to overcome these limitations is by performing image 

augmentation at training time. We can introduce additional noises to our train data by 

purposely cropping some of the images so that the characters are close to the edge. 

Besides, we can also simulate the effect of shadows on train data by purposely 

blackening out the pixels of random parts in images.  

 

4.1.4 Character Level Accuracy 

Although the most important performance metric in an ALPR system is the accuracy 

of final predictions, it is also crucial to investigate the performance of character level 

recognition in our model because a poor character recogniser can ultimately lead to 

low final prediction accuracy. To do so, we use confusion matrix to get an overview 

of the misclassification rate at character level recognition. The diagrams below show 

the confusion matrix for LPR44, LPR45 and Open Environment Dataset:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: LPR44 Confusion Matrix 
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Figure 4.5: LPR45 Confusion Matrix 

Figure 4.6: Open Environment Dataset Confusion Matrix 
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 From Figure 4.4 and Figure 4.5, we observed that most mislabelled characters 

only happened once, which suggest that we can treat them as outlier cases and 

conclude that there is no any noticeable weakness in our model’s character 

recognition ability in predicting LPR44 and LPR45 datasets. However, the same 

cannot be said for predicting Open Environment Datasets as the model seemed more 

likely to mislabel certain pairs of characters, mainly 

i. “8” and “9” (mislabelled 18 times) 

ii. “8” and “6” (mislabelled 22 times) 

iii. “M” and “W” (mislabelled 14 times)  

 One possible reason for this occurrence is due to the low image quality in 

Open Environment Datasets. Notice that the appearance of number “6”, “8” and “9” 

are visually similar as all of them consist of circle shape in them. When the image 

quality is low, some of the circle shape might not be obvious and would easily trick 

the model into falsely recognising these digits.  

Regardless, the overall character level recognition ability of the model is 

satisfactory as the character level accuracy in all 3 test datasets are close to 100%. 

The table below summarized the character level accuracies across all three test 

datasets.  

 

Table 4.6: Character Level Accuracy for LPR44, LPR45 and Open Environment 

Dataset 

Test Datasets Character Level Accuracy  

LPR44 (2805 characters) 99.8574% 

LPR45 (3577 characters) 99.3570% 

Open Environment Dataset (14878 

characters)  

98.6759% 

 

4.2 Comparison with Previous Researches 

As mentioned previously in “Section 1.3: Aims and Objectives”, the main research 

objective of this research is to improve the CRNN model proposed by Soo (2017). 

The table below summarizes the difference in performance of our proposed model 

and Soo’s (2017) model.  
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Table 4.7: Comparison between proposed CRNN model and Soo’s (2017) model 

Criteria Final CRNN Model Soo’s (2017) 
CRNN Model 

Accuracy LPR44 99.27% 98.04% 
LPR45 93.49% 94.84% 

Open Environment 78.80% 54.85% 
Character 

Level 
Accuracy 

LPR44 99.86% 99.70% 
LPR45 99.36% 98.91% 

Open Environment 98.68% 84.15% 
Average Prediction Time < 1 second 7~8 seconds 

Architecture Size ~5.5 million 
parameters 

~1.9 billion 
parameters 

End-to-end Trainable Yes No 
Ability to Recognize Two-row 

License Plate 
Yes No 

Ability to Predict Sequence with 
Varied Length 

Yes No 

 

 Notice that our proposed CRNN model outperformed Soo’s (2017) model in 

most aspects, such as prediction accuracy, prediction time, architecture size and the 

ability to predict sequence with varied length and two-row license plate, except 

having slight lower prediction accuracy on LPR45 dataset.  

 

4.3 Problems Faced and Solutions Taken 

4.3.1 Problem 1: Overfitting  

When training the model, we observed that the training loss quickly dropped below 

the test loss. This is a sign that our model is overfitting too quickly.  

 

 

 

 

 

 

 

 

 
Figure 4.7: Model Overfitting During Training Process 
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 From the figure above, we can notice that the training loss at 25th epoch is 

0.041407, much lesser than the test loss of 0.30581, which is a clear sign of 

overfitting. 

Therefore, we added Dropout layers after Conv1, Conv2 and Conv3 layers to 

regularize the neural networks. Dropout layers will randomly set the activations in 

our feature maps to 0. This can effectively remove unwanted noise and prevent 

overfitting. 

 

Table 4.8: New Architecture of Proposed CRNN 

Layer Name Output size 
(channels x 
height x width) 

Parameters 

Input 1 x 32 x 100 - 
Conv1 64 x 32 x 100 #filters: 64, k=3x3, s=1, p=1 
Dropout  p=0.5 
Maxpool1 64 x 16 x 50 k=2, s=2, p=0 
Conv2 128 x 16 x 50 #filters: 128, k=3x3, s=1, p=1 
Dropout  p=0.2 
Maxpool2 128 x 8 x 25 k=2, s=2, p=0 
Conv3 256 x 8 x 25 #filters: 256, k=3x3, s=1, p=1 
Dropout  p=0.2 
BatchNorm - - 
Conv4 256 x 8 x 25 #filters: 256, k=3x3, s=1, p=1 
Maxpool3 256 x 4 x 26 k=2, s=2x1, p=0x1 
Conv5 512 x 4 x 26 #filters:512, k=3x3, s=1, p=1 
BatchNorm - - 
Conv6 512 x 4 x 26 #filters: 512, k=3x3, s=1, p=1 
Maxpool4 512 x 2 x 27 k=2, s=2x1, p=0x1 
Conv7 512 x 1 x 26 #filters: 512, k=2x2, s=1, p=0 
BatchNorm - - 
Bidirectional-LSTM  #hidden unit: 256 
Bidirectional-LSTM  #hidden unit: 256 
Transcription  - - 

 

The parameter p in Dropout layers is the probability of randomly setting 

activations to 0.  

Besides, we also noticed that the decreasing rate of training loss is too slow. 

Consequently, we added Adadelta optimiser to our model to optimise the Stochastic 

Gradient Descent (SGD) process. There are many different optimisers available to 

speed up the SGD process, such as Adam, RMSProp and AdaGrad. The performance 

of each optimiser on MNIST datasets is shown in the figure below:  
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 After adding Adadelta optimiser into our model, we observed that the training 

loss decreased at a much faster rate. The training loss started at 73.391541 and 

quickly decreased to 18.055309 and 7.281705 during the second and third epoch.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nevertheless, the decreasing rate of training loss slowed down rapidly after 

around 10th epoch, when the training loss had been reduced to less than 1. This 

suggests that there is a need to adjust the learning rate after 10th epoch because lower 

Figure 4.8: Performance of Optimiser on MNIST Dataset 

Figure 4.9: Effect of Optimiser During Training Process 
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learning rate is usually needed if the training loss is already very low. Thus, we 

adopted the Cosine Annealing learning rate scheduler to adjust the learning rate as 

the number of epochs decrease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The figure above showed the learning rate schedule in our model. As the 

number of epochs increases, the learning rate decreases following the shape of a 

cosine curve. The initial learning rate is set at 0.1 and gradually decreased to 0.01.  

 

4.3.2 Problem 2: Low Prediction Accuracy for Two-row License Plate 

When we first test for our ALPR model performance, the prediction accuracy for 

two-row license plate was not performing well. Upon further investigation, we 

realised that the underlying problem was because the text in detected text regions are 

too close to the edge. Since our training data for CRNN were consisted of single-row 

license plate images which typically have spaces between the edge of image and the 

characters, our CRNN model struggled to recognise these cropped images that 

looked too different from the training data.  

In order to resolve this issue, we introduced some noises to the detected text 

regions by increasing the area of detected text regions suggested by EAST model. 

This is to ensure that the cropped images are visually similar to our train data, which 

has spaces between characters and edges of images.   

 

Figure 4.10: Learning Rate Schedule 
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Figure 4.12 shows the cropped regions for detected texts before and after 

introducing noises and the improvement in prediction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Predictions Before and after Increasing Area of Detected Text Regions 

Figure 4.11: Increasing Area of Detected Texts 
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4.3.3 Problem 3: Detecting non-license plate texts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another problem that we observed during the model testing process is that texts that 

are not part of license plate, such as the car brand name and car distributor name that 

are written under the license plate were also detected and recognised by our model.  

In order to prevent this occurrence, we need to set a threshold to filter out text 

regions that are comparatively smaller than other text regions. This can be done by 

computing the ratio of area of each text regions to area of largest text region and 

remove the regions with ratio less than a pre-set threshold set.  

 

 

 

 

 

 

𝑇𝑒𝑥𝑡 𝑅𝑒𝑔𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡𝑒𝑥𝑡 𝑟𝑒𝑔𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑡𝑒𝑥𝑡 𝑟𝑒𝑔𝑖𝑜𝑛
 

 

Figure 4.13: Predictions Before and after Filtering out Small Text Regions 
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4.3.4 Problem 4: Overlapping cropped regions   

While testing our model performance, we also realised that there are cases where the 

detected text regions are overlapped. This will cause the final prediction to have 

duplicated texts.  

To avoid this situation, we decided to compute the overlapped ratio of 

detected text regions and drop the regions where overlapped ratio is at an 

unacceptable range. Figure 4.12 shows how the overlapped ratio is computed. 

 

 

 

 

 

 

 

 

 

 

The improvement in prediction before and after considering the overlapped 

ratio is shown in Figure 4.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Overlapped Ratio Calculation 

Figure 4.15: Predictions Before and after Filtering out Highly Overlapped Text Regions 
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4.4 Limitation of Model  

The main limitation of our ALPR model is that it can only recognise uppercase 

letters. With that said, it cannot recognise some of the vanity license plate that 

contains lowercase letters, such as “Putrajaya” or “BAMbee”, a plate that was 

introduced during 2000 Thomas and Uber Cup which was held in Kuala Lumpur.  

Besides, our model is designed for detecting Malaysia license plate only, 

which either has single-row or two-row. Therefore, its performance on foreign 

license plate is not guaranteed due to differences in license plate format and font type.  

Moreover, there are two noticeable situations where our model fails 

consistently. First situation is when the characters in license plate is very close to the 

edge of image and the second situation is when there are shadows covering part of or 

whole input image.  

Another drawback of our suggested pipeline is that it contains two stages, text 

detection (for two-row license plate) and text recognition. The main disadvantage of 

having multiple stages is that the overall performance is highly determined by the 

interplay of these stages or components. In other words, if either component fails, the 

final prediction will most likely be inaccurate. Besides, post-processing is usually 

required when 1 or more stages are involved. In our case, we need to filter out 

detected text regions that has much smaller area compared to other detected regions 

to remove any potential noises. Also, we have to ensure that the overlapped regions 

among the detected text regions are within an acceptable range. We also had to 

explicitly increase the size of detected text regions to ensure that the characters are 

not too close to the edge.   
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CHAPTER 5 

 

5 CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

In this study, we had developed an ALPR system that can be used to recognise both 

single-row and two-row license plates that are available in Malaysia. We combined 

two neural networks in a single pipeline, mainly EAST for text detection and CRNN 

for text recognition. We proposed a small CRNN architecture design which abandons 

the usage of fully connected layers and this design is proven to be more effective 

compared to larger CRNN architecture.  

 Our model had successfully outperformed Soo’s (2017) CRNN model in the 

following aspects: 

i. Higher Overall Accuracy  

ii. Higher Character Level Accuracy 

iii. Shorter Average Prediction Time 

iv. Smaller Architecture Size 

v. End-to-end Trainable 

vi. Is Able to Recognize Two-row License Plate 

vii. Is Able to Predict Sequence with Varied Length 

 Besides, due to the nature of a CRNN model, we avoided using any character 

segmentation algorithms, which in turn allows us to skip all pre-processing that 

usually requires by segmentation algorithms. Also, due to the usage of deep neural 

network, our model shows high robustness in performance due to its capability in 

handling noises.  

 

5.2 Future Work 

5.2.1 Integrate Text Detection and Recognition in a Unified Framework 

Our current model consists of two stages, text detection and text recognition that 

utilised two different networks, particularly EAST and CRNN. The main 

disadvantage of using two separate neural networks is that we have two 

convolutional layers that are used for the same purpose — feature extraction, which 
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can be deemed to be redundant. Instead, a better approach is to extract features from 

input images using only one convolutional layer and the extracted feature maps will 

be utilised for both text detection and text recognition tasks. This can effectively 

make our network more compact by reducing the architecture size and at the same 

time avoid post-processing that might be required after text detection. Ideally, this 

novel neural network architecture should be end-to-end trainable, which means that 

we are able to train the convolutional layers, text detector (regressor) and text 

recogniser (classifier) within the same neural network concurrently. Training a multi-

output neural network is possible by using weighted sum of regression loss and 

classification loss.  

 

5.2.2 Dataset Expansion and Data Augmentation 

In order to make our model more robust, we can collect and add license plate images 

from foreign country into our train datasets so that it can predict license plates from 

not only Malaysia, but also from other countries.  

Besides, we can also expand our current train datasets by performing data 

augmentation. The augmentation techniques that need to be applied should simulates 

the problems that commonly face by images captured in the real world. For example, 

we can randomly blacken out the pixels of part of an image to simulate the effect of 

shadows on license plate.  
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