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RECURRENCE ANALYSIS OF TIME SERIES

CHEW KAI YE

ABSTRACT

Recurrence plot has gradually become a popular and useful tool to
analyse data. It allows the visualization of structures in a time series. Be-
sides, it also provides quantification analysis of a time series. Through
these, the nonlinearity or deterministic properties of a dynamical system
can be determined by its recurrent behaviours.

In this project, the recurrence analysis technique is applied to analyse
five sets of electroencephalographic (EEG) time series data of healthy peo-
ple and epilepsy patients. These data are obtained from University Hos-
pital of Bonn. The EEG data are collected either from electrodes placed
on the cortex of the brain or implanted electrodes inside the brain. The
analysis methods performed to the EEG data include single, cross and
multi-dimensional recurrence plots as well as recurrence quantifications.
In different types of methods, the comparisons on recurrence of time se-
ries involved are also different. Matlab CRP Toolbox is the tool used for
all the plottings and calculations. The patterns inside each recurrence plot
and the quantification values acquired can convert to certain meanings to
the time series observed.

After the analysis, some conclusions are drawn based on how to dis-
tinguish EEG data of normal people and epilepsy patients. A patients’
EEG may appear to be periodic in recurrence plot whereas a norm may
contain randomness. Most of the recurrence quantification measures may
have a greater value on EEG time series of epileptic patients than healthy
people. Based on the conclusions, epileptic seizures prediction on a newly
received EEG data can be done. The recurrence analysis technique may
also be applied to some other applications such as the human-machine in-
terface (HMI).
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CHAPTER 1: INTRODUCTION

1-1 Introduction

1-1-1 Time Series

Time series is a sequence of discrete-time data points which is listed orderly in time.
It is often taken at successive equally spaced points. The common examples include
the annual Malaysia population data, daily closing stock prices, sales figures, to name
a few. A line chart is well-known to be used and represents a time series plotting.

1-1-2 Recurrence and Recurrence Plot

In the real world, there are many distinct recurrent behaviours occur in natural and
ordinary processes, for instance music resonance, human heartbeat rates, neurotrans-
mission rates and so on. The recurrence of states in particular means that states are
randomly close to the states happened at a certain previous time. In dynamical sys-
tems, recurrence is one of the deterministic properties to exhibit nonlinear behaviours
or chaotic behaviours. The recurrence of position in a time series means that a given
position is randomly similar to another position in another time.

Usually, the recurrence of certain state−→xi of a dynamical system in anm-dimensional
phase space can be visualised from a recurrence plot (RP), which is introduced by Eck-
mann et al. (1987). The use of a recurrence plot is to give a more visually perceptible
graph for a user to look into high-dimensional dynamical systems. Its ability is to turn
recurrences observed in high-dimensional phase space trajectory into two-dimensional
representation (Eckmann et al. 1987, Marwan 2008). Recurrence plot is a graph which
represents a binary symmetric square matrix where both columns and rows represent
the time which a state occurs. In the matrix, the value of each element matches to
certain pair of times to indicate whether the states recur, i.e. the value 1 means the
state recurs whereas the value 0 means the opposite. On the other hand, the recur-
rence plot is an N × N matrix consisted only black and white dots with the features
that a black dot depicts a recurrence, along with two time-axes. A recurrence plot is
mathematically expressed as the equation below:

Ri,j = Θ(εi− ‖ −→x i −−→x j ‖), −→xi εRm i , j = 1 , . . . ,N (1.1)

where the states xi considered have an amount of N ; εi is a threshold distance value
(neighbourhood); ‖ · ‖ is a norm; Θ(·) is the Heaviside function. When the distance
between two states i.e. xi and xj is smaller than the threshold value ε, a recurrence is

1
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defined.

(a) (b)

Figure 1.1: An example of recurrence plot
(a) phase space trajectory of Lorenz system with parameter r=28, σ=10, b=8

3
. (b) The

corresponding recurrence plot of Lorenz system with threshold value ε = 5.

1-2 Objective

The main objective of this project is to use the recurrence plot tools and apply them to
the analysis of real life data sets of time series. The tools provide visualization for the
recurrent behaviour of time series and able to quantify them. Thereby, I would like to
determine the type of recurrence plots as well as computationally analyse the data by
using different measures. Furthermore, discuss the outputs obtained in order to make
some conclusions. To achieve the objective, some stages to do are stated as follow:

• To understand the concept of recurrence plot and time series.

• To learn how to use the “CRP toolbox” inside MATLAB application and acquire
desired outputs.

• To visually analyse the plotted graphs and perform recurrence quantification
analysis.

• To apply recurrence analysis technique on electroencephalogram (EEG) data and
discuss the presented outputs.

1-3 Project Scope

Recurrence plot is a nonlinear time series analysing method which is applicable to
various types of nonlinear dynamical systems in the real world (Marwan et al. 2007,
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Webber & Marwan 2015). Based on recurrence analysis technique on a data set con-
sisting time series, states of nonlinearity can be determined and further by interpreting
some quantification measures of a given data, the state of occurrence can be determined
in the future time. In this project, the electroencephalogram (EEG) time series data is
used. Analysing EEG data through this recurrence analysis technique is the main scope
of this subject. By plotting recurrence plot and computing various recurrence quantifi-
cation measures on human subjects EEG time series, the EEG recording patterns of
patients with certain brain diseases (e.g. brain tumour, stroke, epileptic seizures etc.)
may be identified. The brain disease concerned in this project is epileptic seizures.

1-4 Methodology and Project Planning

A list of five EEG time series data sets (A-E) is obtained from the website of University
Hospital of Bonn. Each data set contains 100 text files and each text file is a recording
of single channel EEG segment with time length 23.6 seconds. One text file consists
of N=4096 samples of one EEG time series. Sets A and B are surface EEG recordings
collected from five healthy volunteers who relaxingly remained awake with opening
and closing their eyes respectively. Set C is intracranial EEG recordings from five
patients diagnosed for suffering epilepsy during seizure free intervals from outside the
seizure generating area whereas set D is from within the seizure generating area. Set E
only comprised intracranial EEG recordings of epileptic seizures activity from epilepsy
patients (Andrzejak et al. 2001). The electrode placement scheme that consistently
used in EEG recordings of sets A and B is illustrated as Fig(1.2). The surgically
implanted intracranial electrodes used to record EEG of set C, D and E are shown in
Fig(1.3).

Figure 1.2: Electrode placement scheme of surface EEG
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Figure 1.3: Implanted electrodes for intracranial EEG

Several types of recurrence plots are plotted by randomly selecting some time se-
ries recordings from EEG set to get the visualization of recurrent behaviours of selected
data series. In EEG test, epilepsy may be diagnosed if there is an appearance of certain
patterns in the recurrence plot. Next, recurrence quantification analysis (RQA) is im-
plemented to compute the recurrences of EEG data in some measures, hence analyse
the outputs attained and sum up a conclusion about the EEG time series recurrent pat-
terns of healthy people and patients. The variety of RQA measures include recurrence
rate, determinism, laminarity, trapping time, entropy and others.

In this project, the software application used to plot the RP and calculate all the
measures in RQA is Matlab. The “CRP Toolbox 5.5” by Norbert Marwan is an
extended feature of Matlab which can be downloaded from website http://tocsy.pik-
potsdam.de/CRPtoolbox/. It possesses functions such as to generate cross recurrence
plot and joint recurrence plot as well as calculate recurrence quantification.

Project Planning



CHAPTER 2: LITERATURE REVIEW

2-1 Phase Space Trajectory

A phase space is a multidimensional space consisting of all possible states of a par-
ticular system (Nolte 2010). Every single state is one-to-one compatible with another
special point in the phase space. A system with k state variables

x1(t), x2(t), . . . , xk(t)

at time t can form a unit of vector x(t) in a phase space of k-dimensional. Linking the
successive phase space vectors together will result in a phase space trajectory. The dy-
namics of a system can be revealed from the trajectory after a period of time evolution
(Webber & Marwan 2015).

Phase space trajectory of a system is usually constructed at the beginning of many
approaches used in nonlinear data analysis. The shape of the trajectory depicts some
clue and information about the system, e.g. the phase space trajectories of periodic
or chaotic system have certain characteristics (Webber & Marwan 2015). A determin-
istic dynamical system can eventually lead to a possibility to make forecasting to the
upcoming states of the system.

2-2 Typical Dynamical System Examples of Recurrence

2-2-1 Lorenz System

In 1960s, Edward N. Lorenz invented a simple weather model in which small changes
at the starting conditions brought about apparent changes in the outcome. It also can
be called the butterfly effect. This indicates the impossibility to predict a long range of
inaccurate measured system. The notable Lorenz system is a three ordinary differential
equations system as follows (Peitgen et al. 2004):

ẋ1 = −σ(x1 − x2)

ẋ2 = −x1x3 + rx1 − x2 (2.1)

ẋ3 = x1x2 − bx3

This system is associated with the Rayleigh-Bernard convection under rough ap-
proximations. The variable x1 is proportional to the velocity of circulatory fluid parti-

5
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cle; x2 and x3 are related to the temperature profile; σ, b, r are the physical parameters
of Lorenz system. In Lorenz system (Eq2.1) , σ = 10, b = 8

3
, r = 28 is fixed (Lorenz

1963). With the revolution of today’s science, there is abundant literature on chaotic
properties of Lorenz system. The meaning of chaos was summarized by Ed Lorenz
(Danforth 2013):

“When the present determines the future, but the approximate present does
not approximately determine the future.”

Figure 2.1: The chaotic attractor produced by Lorenz system

The phase space of Lorenz system’s attractor and a recurrence plot of Lorenz System
is illustrated in Fig(2.1) and Fig(1.1b) respectively.

2-2-2 Rössler System

Rössler System was designed by Otto E. Rössler in 1976. The particular attractor
was intended to have identical functions as Lorenz attractor but can be analysed eas-
ier (Rössler 1976). The orbit of the attractor (as shown in Fig(2.2)) spirals outwards
around an unstable fixed point but remain in a plane near the (x, y)-plane. When the
graph spirals enough, the trajectory leaps in the z-dimension. Eventually, the trajectory
will land close to the (x, y)-plane again. Chaotic oscillations appear in the orbit within
the attractor. The ordinary differential equations of his system are (Peitgen et al. 2004):
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ẋ = −y − z

ẏ = ay + x (2.2)

ż = b+ xz − cz

where a, b, c are three adjustable constants and Rössler studied with a = 0.2, b = 0.2,
c = 5.7 (Rössler 1976).

Figure 2.2: The chaotic attractor pro-
duced by Rössler System

Figure 2.3: A recurrence plot of
Rössler System

2-3 Structures in Recurrence Plot

Recurrence plot exhibits patterns based on similarity characteristics. The typology
based on formal patterns is categorised into homogeneous, periodic, drift and disrupted
(Eckmann et al. 1987, Marwan et al. 2007).

• Homogeneous RPs are uniformly covered in grey in overall despite some exis-
tences of texture. A randomly generated time series is an example of homoge-
neous RP.

• Periodic RPs consist of certain repeating patterns and have more diagonal lines.
If there is a difference between diagonal lines distances, it is a quasi-periodic
system.

• Recurrence points fading away from the line of identity (LOI), i.e. the upper-left
and lower-right corners of RP being brightened along with steady changes over
time is called drift.
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• An RP is disrupted if there exist abrupt changes in the dynamic and causes white
areas or bands.

Figure 2.4: Identification of patterns
(A) homogeneous, (B) periodic, (C) drift, (D) disrupted

Turning to small scale patterns i.e. texture, it includes isolated points, diagonal
lines as well as horizontal and vertical lines. These are the basis for quantitative anal-
ysis of RPs.

• An isolated recurrence point can occur if the state is uncommon, if it does not
preserve for any time or it fluctuates heavily.

• A diagonal line Ri+k,j+k = 1 (for k = 1, . . . , l, l is the diagonal line length)
appears when the trajectory visits the same areas in the phase space at different
time.

• A vertical (horizontal) line Ri,j+k = 1 (for k = 1, . . . , v, v is the vertical line
length) is formed when a state remains constant or changes very steadily.

To sum up the characteristics mentioned, we can get the interpretations of RPs as
below:

1. Homogeneity: more randomness

2. Fading corner lines: nonstationary trend

3. Disruptions: the process is nonstationary; uncommon states exist; transitions
within may have occurred

4. Periodic/quasi-periodic patterns: the process contains cyclicities which their
length of periods equal to the time distance between repeating periodic patterns;
for quasi-periodic process, there will be different distances between every long
diagonal line

5. Single isolated points: heavy fluctuation within the process; if an only single
isolated point is found, the process may be uncorrelated random.
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6. Diagonal lines (parallel to the LOI): the evolution of states occurs similarly at
different epochs; the process could be deterministic or else be chaotic if single
isolated points occur beside diagonal lines

7. Diagonal lines (orthogonal to the LOI): the evolution of states occurs similarly
at different time in a reversing way

8. Vertical and horizontal lines: some states remain unchanged or slowly change
during certain periods of time; laminar states is indicated

9. Long bowed line structures: the similar evolution of states exist at different time
periods but with distinct velocity; changing dynamics in the system

Experiences are required to have a precise visual interpretation of recurrence plots.

2-4 Recurrence Quantification Analysis (RQA)

Recurrence quantification analysis (RQA) is a nonlinear data analysing approach ap-
plied on recurrence plots to quantify the recurrent behaviour of dynamical systems.
Several measures to determine the characteristics of different small scale structures in
RPs are defined as follows.

Definition:

i. Recurrence Rate, RR

RR =
1

N2

N∑
i,j=1

Ri,j

is the percentage of recurrence points in an RP where Ri,j equal to one or zero
as stated in Eq(1.1), N is the number of points on the phase space trajectory. It
shows the density of recurrences in a time series.

ii. Determinism, DET

DET =

∑N
l=lmin

lP (l)∑N
l=1 lP (l)

is the percentage of recurrence points forming diagonal lines. l is the length of
diagonal line and P (l) is histogram value of diagonal lines with length l. lmin

is the threshold set to exclude diagonal lines which are formed by the tangential
motion of phase space trajectory. Normally, lmin is set to 2. The larger deter-
minism value indicates the more diagonal line in an RP and hence the stronger
predictability of the system.

iii. Ratio, RATIO

RATIO = N2

∑N
l=lmin

lP (l)

(
∑N

l=1 lP (l))
2
=
DET

RR
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is the ratio between DET and RR. It can help to disclose dynamic transitions;
e.g. during certain types of transitions the RR decreases while the DET does not
vary.

iv. Average diagonal line length, L

L =

∑N
l=lmin

lP (l)∑N
l=lmin

P (l)

also measures the determinism of a system. The bigger the value L, the smaller
the randomness, i.e. easier to determine the behaviour of a system trait.

v. Longest diagonal line, Lmax

Lmax = max({li : i = 1, . . . , Nl})

where Nl is the number of diagonal lines in RP reflects information about the
stability of a system. The larger the value, the more stable the system (Yao &
Lin 2017).

vi. Divergence, DIV

DIV =
1

Lmax

is the inverse of Lmax. It relates to the divergent property of phase space trajec-
tory. The smaller the value of Lmax, the greater the value DIV and hence the
faster the divergence of trajectory segments (Marwan et al. 2007).

vii. Entropy, ENTR

ENTR = −
N∑

l=lmin

p(l)lnp(l)

where p(l) = P (l)
Nl

is the probability distribution of diagonal line lengths. It re-
veals the variety of diagonal lines as well as the complexity of a system. A large
entropy value implies the periodicity of a system while low implies chaoticity
(FABRETTI & AUSLOOS 2005). In other words, the larger entropy follows a
more complex system.

viii. Longest vertical line, Vmax

Vmax = max({vi : i = 1, . . . , Nv})

where Nv is the number of vertical lines, can be considered similar to the stan-
dard measure Lmax.
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ix. Laminarity, LAM

LAM =

∑N
v=vmin

vP (v)∑N
v=1 vP (v)

is the percent rate of recurrence point that forms vertical lines. v is the length
of vertical (horizontal) lines, P (v) is the histogram value of vertical lines with
length v. vmin is the threshold that usually set to 2 to exclude vertical lines with
a certain length. Laminarity calculates the probability that a state will remain for
the next time step.

x. Trapping Time, TT

TT =

∑N
v=vmin

vP (v)∑N
v=vmin

P (v)

is the average length of the vertical (horizontal) lines. It indicates the average
time of a system staying at each particular state or the length of time that each
state is trapped.

xi. Trend, TREND

TREND =

∑Ñ
i=1(i−

Ñ
2
)(RRi − 〈RRi〉)∑Ñ

i=1(i−
Ñ
2
)2

is the brightening of RP to the direction of its edges. Ñ is the maximal num-
ber of diagonals parallel to the LOI which will be considered for computing
TREND, i.e. excluding the edges of RP (Ñ < N). Trend measures the drift and
non-stationarity of a time series. In a homogeneous RP, it is stationary as there
are almost the same amount of recurrent points on both sides of the central line.
When recurrent points on the RHS is less than that of LHS, trend will get a neg-
ative value (FABRETTI & AUSLOOS 2005). A trend value around 0 signifies
a quasi-stationary dynamics whereas value far from 0 implies that drift is in the
dynamics (Webber & Marwan 2015).

2-5 Cross Recurrence Plot (CRP)

Cross recurrence plot (CRP) is an extension of RP in which involved the comparison of
two time series. It allows the study of the relationship between two different systems.
The dynamical behaviour of both time series are investigated and they are embedded
in the phase space at the same time (Marwan & Kurths 2002). The distances between
each point of the trajectories xi(i = 1, . . . , Nx) and yj(j = 1, . . . , Ny) are tested
whether they are within the threshold value εi. The way that the results supposed to be
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acquired is analogous to Eq(1.1). The equation for CRP is shown below:

CRi,j = Θ(εi − ‖−→x i −−→y j‖), −→x i,
−→y jεRm i = 1, . . . , N, j = 1, . . . ,M (2.3)

Briefly speaking, CRP reveals all the times that a state of one dynamical system occurs
simultaneously in another dynamical system.

In CRP, the length of xi and yj are not necessarily needed to be the same. Hence
may lead to a non-square matrix. The difference between CRP and RP is that the
main diagonal of CRP may not be filled with all black dots as the value of main diag-
onal CRi,i may not be 1. However, the interpretation to structures of plot mentioned
in Sec(2-3) is still applicable. The diagonal lines in CRP represent two trajectories
having the same states at a period of time and reflect the similarities between the two
dynamical systems.

2-6 Joint Recurrence Plot (JRP)

Joint recurrence plot (JRP) is a multivariate approach invented by Romano et al. (2004).
It investigates whether recurrence occurs simultaneously on distinct trajectories. This
means: on one trajectory, if a state x occurs at time j is inside the neighbourhood of the
previous state at time i which causes recurrence, and meanwhile on another trajectory,
it happens that a state y which occurred at time i also recurs at time j, a joint recurrence
is found (N. Marwan, M. C. Romano, M. Thiel 2000). It is the element-wise product
of single RPs:

JRi,j = Θ(εx−‖−→x i−−→x j‖)·Θ(εy−‖−→y i−−→y j‖), −→x iεRm ,−→y iεRn , i, j = 1, . . . , N

(2.4)
In short, JRP depicts all the times that a recurrence happens in one dynamical system
simultaneously with a recurrence in another dynamical system.

In JRP, the thresholds εx and εy can be set to distinct values and it is unnecessary
that the recurrence states of both systems should be identical. In addition, the diagonal
lines in JRP represent that recurrence occurs continuously in time in two trajectories.



CHAPTER 3: PRELIMINARY RESULTS

3-1 Some Examples of Recurrence Plot

i. Sine and cosine functions can be presented in recurrence plots. Their RPs are
periodic graph.

Figure 3.1: Recurrence plot of sine function

Figure 3.2: Recurrence plot of cosine function

13
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ii. The data set ’cycles.dat’ applied in this example is taken from the web-
site http://www.recurrence-plot.tk/rp-tutorial.php. Here, unthresholded distance
matrix is implemented to plot the recurrence plot.

Figure 3.3: Example of periodic RP

From the RP above, we can observe that the RP possesses some periodical patterns.
The cyclicities in the time series can be discovered by the distances between periodic
patterns. The periodic structures are obviously shown and having 100 and 200 time
units. In addition, small substructures with the size of 20 and 40 time units also exist
in the RP.

3-2 Example of cross recurrence plot

The graph below is the CRP of harmonic oscillations which involves a comparison of
two time series. It is plotted in distance matrix, i.e. unthresholded.
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Figure 3.4: Recurrence plot of harmonic oscillations

This is a periodic graph which contains structure with some long bowed lines,
implies that similar evolution of states exists in the two time series but with distinct
velocity.

3-3 Preliminary Results of EEG Data

To acquire some preliminary results from the given EEG data sets, here we randomly
choose two text files, i.e. the 30th and 80th text file, which represent two channels
of EEG segments from each of the five data sets. Then, load the text files into CRP
toolbox and create a cross recurrence plot. Meanwhile, compute the corresponding
recurrence quantification analysis. Fig(3.5) - Fig(3.9) show the CRP obtained and
Table(3.1) is the corresponding RQA.
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Figure 3.5: CRP of two selected time series from set A

Figure 3.6: CRP of two selected time series from set B
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Figure 3.7: CRP of two selected time series from set C

Figure 3.8: CRP of two selected time series from set D
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Figure 3.9: CRP of two selected time series from set E

Set RR DET L Lmax ENTR LAM TT Vmax

A 0.5213 0.9439 4.7398 56 2.1695 0.9897 7.5570 63
B 0.5293 0.9825 5.8277 70 2.4408 0.9914 7.2255 60
C 0.5348 0.9887 9.5978 106 3.0854 0.9889 11.1593 85
D 0.5671 0.9889 10.0761 129 3.1352 0.9891 10.5530 108
E 0.5095 0.9833 6.5493 70 2.5697 0.9997 9.4714 28

Table 3.1: RQA of selected EEG time series

From the graphs above, we may conclude that all graphs tend to be homogenous
except for that graph of set D, i.e. Fig(3.8) which is visually quasi-periodic. Turning to
the RQA, obviously we can see that the average diagonal line lengths L of CRPs from
set C, D, E are greater than that of set A and B. Thus, we may conclude that the time
series from set C, D, E is less random and hence more deterministic. Moreover, the
value of entropy from the latter 3 sets is also higher than the formal two sets. Hence,
they may be dynamically more complex than set A and B. However, the conclusion is
not necessarily true as this is just a simple preliminary result. The investigation will
be further carried out towards more of the data sets of time series to attain an accurate
conclusion.



CHAPTER 4: ELECTROENCEPHALOGRAM

(EEG) AND EPILEPTIC SEIZURE

4-1 Electroencephalogram (EEG)

Electroencephalogram (EEG) is a special and precious measure of the electrical func-
tion of brain generated by nerve cells of brain cortex. It is a precious clinical tool to
diagnose epilepsy diseases and provide treatments (Fu et al. 2015). It is a graph il-
lustrating the recordings different in voltage from left and right sites of brain function
over a period of time. Extracranial EEG supplies recording of electrocerebral activity
throughout both left and right side of the brain. Intracranial EEG contributes focused
EEG recording through surgically implanted electrodes at specifically targeted regions
of the brain in a direct manner (Tatum et al. 2015).

The main implementation of EEG is to diagnose epilepsy. This symptom can be
assumed if abnormalities are found in the EEG readings. However, EEG can also be
utilised to detect sleep disorders, head injuries, brain tumors and etc.

Figure 4.1: Actual recording of normal EEG

4-1-1 Abnormality on EEG

Abnormality on EEG can be distinguished into two categories which are epileptiform
and nonepileptiform. If the brain activity is abruptly changed or interrupted from
normal, epileptiform abnormality takes place. Interictal epileptiform discharges are
a group of special brain waveforms which can be found from epilepsy patients (Tatum
et al. 2015). Focal epileptiform discharges can represent the possibility that epilep-
tic seizures happen in an area of brain. Whereas generalized epileptiform discharges
normally suggest generalized epilepsy patients.

19
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A general change in the look of brain wave such as abnormal amplitude, frequency,
shape manifests a nonepileptiform abnormal activity. Its existence usually refers to the
dysfunction of brain (Tatum et al. 2015). The diffuse slowing patterns that appear on
EEG exhibit abnormal brain function.

Figure 4.2: Epileptiform abnormality on EEG

Figure 4.3: Diffuse slowing nonepileptiform abnormality on EEG

4-2 Epileptic Seizure

Epilepsy is a diverse family of brain disorders that leads a patient to the generating
of epileptic seizures. By definition, epilepsy is determined only if there is a seizure
exists. Furthermore, the brain must have a long-term alteration that may enhance the
probability of next seizures to occur. Other than the recurrence of seizures, some
conditions for instance the neurobiologic and social disturbances that are suffered by
patients are also associated with epilepsy (Fisher et al. 2005). Seizures are stimulated
by excessive electrical impulses generated and delivered from an epileptic patients’
brain nerve cells (Sree et al. 2011).
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An epileptic seizure is a short-lived symptom caused by synchronous or extremely
large amount of neuronal activity in the brain (Fisher et al. 2005). There are provoked
and unprovoked seizures. Temporary events like fever and low blood sugar can trigger
a provoked seizure whereas events like stress or sleep deprivation may bring about
unprovoked seizures which happen unawares. When focal seizures occur, solely part
of the brain is affected. The brain is affected wholly when generalized seizures take
place.



CHAPTER 5: RESULTS AND DISCUSSIONS

For the aim of this project, EEG data sets are analysed through recurrence analysis
of time series. The major aspects involved are the inspection through visualisation on
several types of recurrence plots constructed by EEG data as well as calculating some
of the recurrence quantification measures on different EEG time series data.

5-1 Analysis by Inspection on RP

In this section, there are three types of recurrence plots being constructed for analysis.
The first one is the simple recurrence plot, which involves only a single time series
i.e. the recurrence is being identified when a state in the time series matches a state
occurred in the previous time. Cross recurrence plot is the second type of RPs being
discussed and examined here. It compares whether the states in two different time
series simultaneously occur to be almost the same. All the cross recurrence plots are
made by comparing two time series data that come from the same EEG set. The last
one is the multi-dimensional RP, which is plotted by a matrix of data consisting of
multiple columns. In the matrix, the first column is the increasing numbers start from
one that indicates the time while the rest are two or three time series data obtained
from different groups of EEG sets. Here, we group set A and B together as they were
acquired from healthy volunteers. Set C, D and E are grouped since they all came from
patients with epileptic seizures.

With respect to all the figures plotted, the dimension, delay and threshold values
are consistently set to be 1. All the figures shown include an underlying time series
line graph and the corresponding recurrence plot. Due to the large number of data files
inside each set, we only randomly select several time series from every set for plotting.

5-1-1 Recurrence Plot of EEG

The samples chosen to make simple recurrence plots are the (i) 30th and (ii) 70th time
series data of each EEG set.

22
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Figure 5.1: Recurrence plot of sample (i) data in set A

Figure 5.2: Recurrence plot of sample (ii) data in set A
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Figure 5.3: Recurrence plot of sample (i) data in set B

Figure 5.4: Recurrence plot of sample (ii) data in set B
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Figure 5.5: Recurrence plot of sample (i) data in set C

Figure 5.6: Recurrence plot of sample (ii) data in set C
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Figure 5.7: Recurrence plot of sample (i) data in set D

Figure 5.8: Recurrence plot of sample (ii) data in set D
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Figure 5.9: Recurrence plot of sample (i) data in set E

Figure 5.10: Recurrence plot of sample (ii) data in set E

From Fig(5.1) to Fig(5.4), we can see that the underlying time series of these data
appear to be randomly fluctuating. The corresponding recurrence plots of them also
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present in almost covered in grey. It means that it matches the statement that these
time series contain more randomness. However, it is hard to determine the differences
between recurrence plots of data from set A and set B.

On the other hand, from Fig(5.5) to Fig(5.10), all plotted by data received from
epilepsy patients, we can observe a periodic pattern on most of them. The periodic-
ity can be most obviously seen from the plot of data from set D, which is the EEG
recordings from within the seizure generating area during seizure free interval. The
underlying time series of them have depicted the existence of cyclicities within the
time series. The typologies of the matching recurrence plots also show that the data is
periodic. The recurrence plots consist of a lot of diagonal lines as well as vertical and
horizontal lines. It conveys to the meaning that the EEG recordings could be deter-
ministic and have laminar states. The underlying time series of data from set E exhibit
heavy fluctuations. Their recurrence plots also appear to be periodic but with small
structures.

5-1-2 Cross Recurrence Plot of EEG

To plot cross recurrence plots, we randomly select two data from the same EEG set.
Thereby, make comparisons to the selected data. Here, we have chosen (i) 2nd&28th

and (ii) 40th&93rd data from each EEG set as the sample data.

Figure 5.11: Cross recurrence plot of sample (i) data in set A
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Figure 5.12: Cross recurrence plot of sample (ii) data in set A

Figure 5.13: Cross recurrence plot of sample (i) data in set B
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Figure 5.14: Cross recurrence plot of sample (ii) data in set B

Figure 5.15: Cross recurrence plot of sample (i) data in set C
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Figure 5.16: Cross recurrence plot of sample (ii) data in set C

Figure 5.17: Cross recurrence plot of sample (i) data in set D
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Figure 5.18: Cross recurrence plot of sample (ii) data in set D

Figure 5.19: Cross recurrence plot of sample (i) data in set E
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Figure 5.20: Cross recurrence plot of sample (ii) data in set E

In this section, the cross recurrence plots obtained from data of sets A and B (Fig
5.11 - Fig 5.14) present in homogeneous typology which is similar to their simple
recurrence plots since the corresponding underlying time series also possess random
fluctuations.

Figures of set C do not exhibit any significant patterns however Fig(5.17) plotted
from data of set D has some noticeable periodic patterns. The cross recurrence plot of
set E data which underlying time series varies in a repeating same pattern occur to be
small structures periodic.

5-1-3 Multi-dimensional Recurrence Plot of EEG

We let sets A, B and sets C, D, E be two respective groups. Then, we plot the multi-
dimensional recurrence plot by a matrix containing values of data from sets within
each of the group. The (i) 1st and (ii) 95th data from each set is chosen and grouped
for plotting. To provide a clear understanding on multi-dimension, a 2D or 3D plot is
also graphed below accordingly.
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Figure 5.21: 2D visualisation plot of sample (i) data from sets A&B

Figure 5.22: Multi-dimensional recurrence plot involving sample (i) data from sets
A&B
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Figure 5.23: 2D visualisation plot of sample (ii) data from sets A&B

Figure 5.24: Multi-dimensional recurrence plot involving sample (ii) data from sets
A&B
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Figure 5.25: 3D visualisation plot of sample (i) data from sets C&D&E

Figure 5.26: Multi-dimensional recurrence plot involving sample (i) data from sets
C&D&E
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Figure 5.27: 3D visualisation plot of sample (ii) data from sets C&D&E

Figure 5.28: Multi-dimensional recurrence plot involving sample (ii) data from sets
C&D&E

Expectedly, the multi-dimensional recurrence plots of the first group, i.e. sets A and
B, are observed to be in homogeneity despite having some inapparent textures. This
recurrence plot interpretation is the same as in single recurrence and cross recurrence
plot sections.
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In the group including sets C, D and E, the multi-dimensional recurrence plots
have some insignificant periodic patterns. Moreover, Fig(5.28) even contains some
white bands which may indicate that there exist abrupt changes in the data series.

5-2 Analysis on RQA Measures

To analyse the EEG data in a more detailed manner, we further carry out a series of
recurrence quantification analysis. In this section, tables containing values of vari-
ous RQA measures are constructed. Five samples are arbitrarily selected from each
EEG data set or group for calculations of different types of RQA. The RQA mea-
sures included in this analysis are recurrence rate (RR), determinism (DET ), average
diagonal line length (L), longest diagonal line (Lmax), entropy (ENTR), laminarity
(LAM ), trapping time (TT ) and longest vertical length (Vmax). In all the calculations,
we set the dimension and delay to be 1 and the threshold to be 0.1.

5-2-1 Recurrence Quantification Analysis of EEG

The random samples selected from every EEG data set for calculating RQA measures
are the 6th, 19th, 30th, 67th and 89th data. There is only a single time series involved
in one calculation.

Set A RR DET L Lmax ENTR LAM TT Vmax

6th 0.0567 0.2844 2.3109 13 0.7179 0.3858 2.4516 9
19th 0.0645 0.3734 2.3849 10 0.8184 0.4972 2.5194 10
30th 0.0604 0.1884 2.1191 6 0.3793 0.2426 2.1686 6
67th 0.0550 0.2926 2.2963 10 0.6967 0.3925 2.4297 8
89th 0.0551 0.2807 2.3105 9 0.7174 0.3793 2.4086 9

Mean 0.0583 0.2839 2.2843 9.6 0.6659 0.3795 2.3956 8.4

Table 5.1: RQA of randomly selected samples data from set A

Set B RR DET L Lmax ENTR LAM TT Vmax

6th 0.0620 0.2827 2.2912 9 0.6893 0.3817 2.4153 8
19th 0.0586 0.2723 2.5884 16 1.0469 0.3699 2.6476 8
30th 0.0532 0.2663 2.4299 13 0.8741 0.3520 2.5505 10
67th 0.0612 0.2496 2.2164 8 0.5695 0.3269 2.2764 6
89th 0.0610 0.2455 2.2372 7 0.6046 0.3362 2.3163 7

Mean 0.0592 0.2633 2.3526 10.6 0.7569 0.3533 2.4412 7.8

Table 5.2: RQA of randomly selected samples data from set B
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Set C RR DET L Lmax ENTR LAM TT Vmax

6th 0.0619 0.5413 2.8081 19 1.2419 0.6971 3.0831 20
19th 0.0565 0.5159 2.5896 13 1.0479 0.6581 2.8106 14
30th 0.0623 0.5577 2.6515 15 1.1075 0.7027 2.9368 12
67th 0.0493 0.3985 2.3416 14 0.7610 0.5140 2.5125 10
89th 0.0579 0.6705 3.0394 35 1.4064 0.8126 3.3979 19

Mean 0.0576 0.5368 2.6860 19.2 1.1129 0.6769 2.9482 15

Table 5.3: RQA of randomly selected samples data from set C

Set D RR DET L Lmax ENTR LAM TT Vmax

6th 0.0622 0.4362 2.4069 11 0.8458 0.5678 2.6366 12
19th 0.0713 0.5122 2.5646 15 1.0221 0.6609 2.8186 14
30th 0.0982 0.8949 4.1637 130 1.9660 0.9479 5.3780 38
67th 0.0540 0.5015 2.6630 15 1.1175 0.6480 2.9329 14
89th 0.0640 0.4090 2.4168 13 0.8582 0.5309 2.6158 9

Mean 0.0699 0.5508 2.8430 36.8 1.1619 0.6711 3.2764 17.4

Table 5.4: RQA of randomly selected samples data from set D

Set E RR DET L Lmax ENTR LAM TT Vmax

6th 0.0558 0.3831 2.7418 19 1.1863 0.5275 2.9983 12
19th 0.0697 0.5327 3.0543 51 1.4193 0.6691 3.4670 28
30th 0.0634 0.3826 2.8685 21 1.2820 0.5639 3.3107 18
67th 0.0643 0.4110 2.8295 27 1.2547 0.5671 3.2173 17
89th 0.0562 0.5609 3.5068 86 1.6143 0.7186 3.8709 47

Mean 0.0619 0.4541 3.0002 40.8 1.3513 0.6092 3.3728 24.4

Table 5.5: RQA of randomly selected samples data from set E

From the five tables above, we can see that the average DET values of data from
sets A and B are slightly lower than those from sets C, D and E although the recurrence
rate values of all are almost the same. This may indicate that the data from the latter
3 sets have stronger predictability than the formal 2 sets. On the measure of average
diagonal line length, epileptic patients’ EEG have smaller randomness than normal
people as L values of sets C, D and E are smaller than sets A and B. The means of
longest diagonal and vertical line of sets A, B data are around 10 whereas the means of
sets C, D, E are excessively larger than 10. It means that the EEG data from epileptic
patients are more stable than normal people. The entropy values means of sets A and B
are around 0.7 whereas those of sets C, D and E are greater than 1. It implies that EEG
data of healthy people and epileptic patients possess chaotic and periodic behaviours
respectively. On average, the laminarity values of the latter 3 sets are higher than the
formal 2 sets around 0.3. Trapping time of data from patients are also averagely higher
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than normal people on a small scale. This shows that more laminar states exist in the
EEG of patients.

5-2-2 Cross Recurrence Quantification Analysis of EEG

We randomly selected the 2nd&28th, 15th&58th, 36th&90th, 45th&70th and 50th&100th

data from each of the five sets EEG data to make a cross recurrence quantification
analysis. It analyses the recurrent behaviours between two distinct time series data
from the same set.

Set A RR DET L Lmax ENTR LAM TT Vmax

2nd&28th 0.0574 0.2934 2.3046 11 0.7090 0.4370 2.4780 7
15th&58th 0.0572 0.2626 2.1894 8 0.5215 0.3083 2.2460 6
36th&90th 0.0565 0.2616 2.2465 11 0.6198 0.3241 2.3180 8
45th&70th 0.0569 0.2894 2.2702 10 0.6573 0.4099 2.4007 9
50th&100th 0.0573 0.2854 2.2683 9 0.6545 0.3551 2.3388 7

Mean 0.0571 0.2785 2.2558 9.8 0.6324 0.3669 2.3563 7.4

Table 5.6: CRQA of randomly selected samples data with each consisting two time
series from set A

Set B RR DET L Lmax ENTR LAM TT Vmax

2nd&28th 0.0569 0.2814 2.3351 11 0.7522 0.3632 2.4313 10
15th&58th 0.0563 0.2365 2.2631 9 0.6463 0.3071 2.2730 6
36th&90th 0.0569 0.2289 2.1568 7 0.4586 0.2819 2.1736 5
45th&70th 0.0577 0.2492 2.2754 9 0.6654 0.3097 2.2814 7
50th&100th 0.0563 0.2434 2.4419 12 0.8886 0.2838 2.5865 11

Mean 0.0568 0.2479 2.2945 9.6 0.6822 0.3091 2.3492 7.8

Table 5.7: CRQA of randomly selected samples data with each consisting two time
series from set B

Set C RR DET L Lmax ENTR LAM TT Vmax

2nd&28th 0.0592 0.4782 2.4650 13 0.9149 0.5694 2.6071 11
15th&58th 0.0611 0.4344 2.3803 10 0.8125 0.7437 3.1893 20
36th&90th 0.0586 0.5192 2.5727 14 1.0313 0.5900 2.6755 11
45th&70th 0.0609 0.4630 2.5825 14 1.0408 0.5817 2.8457 13
50th&100th 0.0592 0.4238 2.3450 12 0.7656 0.6689 2.9400 15

Mean 0.0598 0.4637 2.4691 12.6 0.9130 0.6307 2.8515 14

Table 5.8: CRQA of randomly selected samples data with each consisting two time
series from set C
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Set D RR DET L Lmax ENTR LAM TT Vmax

2nd&28th 0.0625 0.5534 2.7512 17 1.1922 0.5767 2.7874 13
15th&58th 0.0567 0.4239 2.4821 11 0.9344 0.5129 2.5910 10
36th&90th 0.0577 0.5036 2.7578 18 1.1998 0.7008 3.1241 20
45th&70th 0.0625 0.4499 2.4572 14 0.9064 0.8179 3.6873 21
50th&100th 0.0586 0.4912 2.5457 15 1.0034 0.5485 2.6034 12

Mean 0.0596 0.4844 2.5988 15 1.0472 0.6314 2.9586 15.2

Table 5.9: CRQA of randomly selected samples data with each consisting two time
series from set D

Set E RR DET L Lmax ENTR LAM TT Vmax

2nd&28th 0.0524 0.2830 2.4938 13 0.9465 0.4904 2.9021 20
15th&58th 0.0583 0.4536 2.8631 26 1.2784 0.5541 3.0436 21
36th&90th 0.0572 0.2993 2.3759 13 0.8013 0.3648 2.4591 13
45th&70th 0.0617 0.3976 2.6753 15 1.1270 0.4079 2.6783 10
50th&100th 0.0587 0.3822 2.7635 16 1.2052 0.4752 2.8466 14

Mean 0.0577 0.3631 2.6343 16.6 1.0717 0.4585 2.7859 15.6

Table 5.10: CRQA of randomly selected samples data with each consisting two time
series from set E

In cross recurrence quantification analysis, the obtained results are almost identical
with the previous section. Despite that EEG of epileptic patients are indistinguish-
able in recurrence rate measure, all the other involved measures indicate noticeable
differences in value. The determinism and average diagonal line length are higher in
patients’ EEG than in healthy people’s EEG. Lmax and Vmax are again obviously larger
in EEG of patients which means they are less in randomness. Entropy means of the
latter 3 sets are still larger than the formal 2 sets although here the average entropy in
set C does not exceed 1. Laminar states and the average time each state is trapped are
also more in patients’ EEG than the norms’ as LAM and TT values are greater at the
formal in this CRQA.

5-2-3 Multi-dimensional Recurrence Quantification Analysis of EEG

To analyse the EEG data, here we separate the five sets of data into two groups, i.e.
sets A and B in one group, sets C, D and E in one group. The 1st, 25th, 55th, 75th

and 95th data are the selected random samples from each sets to calculate the multi-
dimensional recurrence quantification. The multi-dimensional time series are as stated
in Sec(5-1-3).
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Sets A&B RR DET L Lmax ENTR LAM TT Vmax

1st 0.0611 0.3125 2.3652 11 0.7928 0.4192 2.5291 12
25th 0.0609 0.3282 2.3513 9 0.7741 0.4430 2.4944 10
55th 0.0568 0.2379 2.2398 8 0.6078 0.3222 2.3198 8
75th 0.0584 0.3075 2.3394 9 0.7580 0.4021 2.4790 13
95th 0.0577 0.2751 2.3070 11 0.7124 0.3651 2.4160 9

Mean 0.0590 0.2922 2.3205 9.6 0.7292 0.3903 2.4477 10.4

Table 5.11: Multi-dimensional RQA of randomly selected samples data from both sets
A&B

Sets
C&D&E

RR DET L Lmax ENTR LAM TT Vmax

1st 0.0532 0.4696 2.6433 15 1.0994 0.6034 2.2882 13
25th 0.0603 0.4683 2.6511 16 1.1061 0.6016 2.8472 14
55th 0.0514 0.4194 2.5031 17 0.9578 0.5504 2.7364 10
75th 0.0572 0.4471 2.4305 11 0.8748 0.5868 2.6585 10
95th 0.0633 0.6099 2.8024 16 1.2382 0.7568 3.1025 15

Mean 0.0571 0.4829 2.6061 15 1.0553 0.6198 2.8453 12.4

Table 5.12: Multi-dimensional RQA of randomly selected samples data from all sets
C&D&E

From the above two tables, we can see that all the RQA measures have greater
value on the EEG data of epileptic patients than healthy people except the recurrence
rate. However, there are some very significantly different in value measures such as
entropy, longest diagonal line and longest vertical line. The entropy values of the
sample data from patients group are around 1 whereas those from normal people group
are only approximately 0.7. This suggests that the unpredictability of fluctuation is
higher in the normal people’s EEG time series. Lmax and Vmax values of normal EEG
are about 10 but those of patients’ EEG are larger. The acquired results are similar
to the previous two sections, which means we may conclude that if a person’s EEG
data have abnormally high value compared to ordinary individuals in most of the RQA
measures, the person is potentially suffered from epilepsy which may cause epileptic
seizures.



CHAPTER 6: CONCLUSION

In conclusion, recurrence analysis technique is capable of providing some indications
on whether one possibly suffers epilepsy. By reviewing various type of recurrence plots
plotted on Sec(5-1), we are able to make some inferences on commonly how to define
an epileptic patient when we own the EEG data of the patient. Recurrence plots that
appear to be periodic have a greater possibility to represent that the particular person
possesses epilepsy than to represent a normal person. Furthermore, the EEG plot of
patients may exist longer vertical and diagonal lines. On the other hand, homogenous
EEG RPs usually indicate a healthy person. This implies that EEG of a normal person
consists more randomness than epileptic patients as the brain of patients may generate
and send more signal with periodic patterns as a normal person will do. This also
corresponds to that epileptic patients’ brain produce more epileptical signals from their
brain nerve cells than the normal. The effects brought about are that their brains will
abnormally work faster and they will feel more tensed than normal people.

Turning to recurrence quantification analysis on EEG, measures including deter-
minism, longest diagonal line, entropy, laminarity, trapping time, and longest vertical
line can be different in EEG of epileptic patients and healthy people. As shown in
Sec(5-2), we may conclude that the higher the values of these measures, the larger
the probability that epileptic seizures may occur to a particular individual. This also
indicates that the EEG of epileptic patients can be recognized as a periodic time series
whereas the normal EEG has less predictability. Other than that, more laminarities
will exist in patient’s EEG. Hence, to determine a new EEG data series, we may assure
that a patient will be diagnosed as suffering epilepsy if the recurrence quantification
analysis on his/her EEG data meets the conditions mentioned.

The prospective of this project is to apply the methodology used to other appli-
cations, for instance, the human-machine interface (HMI) based on EEG, EEG game
control and dream recorder. This methodology may help to convert human brain sig-
nals to computer signals so that a controller based on the brain current flows can be
developed.
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APPENDIX A: MATLAB CODES

Code of Fig(1.1a) and Fig(1.1b)

x = load(’lorenz.dat’);

a = x(1:4000,2); b = x(1:4000,3); c = x(1:4000,4);

X = crp(y(:,1),3,4,5,’euc’,’nonorm’);

phasespace(a,b,c)

Code of Fig(2.1)

sigma = 10; beta = 8/3; rho = 28;

f = @(t,a) [-sigma*a(1) + sigma*a(2); ...

...rho*a(1) - a(2) - a(1)*a(3);...

...-beta*a(3) + a(1)*a(2)];

[t,a] = ode45(f,[0 100],[1 1 1]);

plot3(a(:,1),a(:,2),a(:,3),’red’)

figure;

subplot(3,1,1); plot(a(:,1),a(:,2),’blue’)

subplot(3,1,2); plot(a(:,1),a(:,3),’green’)

subplot(3,1,3); plot(a(:,2),a(:,3),’magenta’)

Code of Fig(2.2) and Fig(2.3)

x=load(’roessler.dat’);

t = x(1:5:900,1); y = x(1:5:900,2);

crp(y(:,1),3,4,2,’euc’,’nonorm’);

a = x(1:902,2); b = x(1:902,3); c = x(1:902,4);

phasespace(a,b,c)

Code of Fig(3.1)

x=sin(2*pi*linspace(1,11,2000));crp(x)

Code of Fig(3.2)

x=cos(2*pi*linspace(1,11,2000));crp(x)

Code of Fig(3.3)

x=load(’cycles.dat’); crp(x,’distance’)

A-1



Appendix A. Matlab Codes A-2

Code of Fig(3.4)

a = sin((1:1000) * 2 * pi/67);

b = sin(.01 * ([1:1000] * 2 * pi/67) .^ 2);

crp(a,b,’distance’)

Code of Fig(3.5) and first row results in Table(3.1)

a=load(’Z030.txt’); b=load(’Z080.txt’);

x=a(1:4096,1); y=b(1:4096,1);

crp(x,y,1,1,1)

crqa(x,y,1,1,1)

Code of Fig(3.6) and second row results in Table(3.1)

a=load(’O030.txt’); b=load(’O080.txt’);

x=a(1:4096,1); y=b(1:4096,1);

crp(x,y,1,1,1)

crqa(x,y,1,1,1)

Code of Fig(3.7) and third row results in Table(3.1)

a=load(’N030.txt’); b=load(’N080.txt’);

x=a(1:4096,1); y=b(1:4096,1);

crp(x,y,1,1,1)

crqa(x,y,1,1,1)

Code of Fig(3.8) and fourth row results in Table(3.1)

a=load(’F030.txt’); b=load(’F080.txt’);

x=a(1:4096,1); y=b(1:4096,1);

crp(x,y,1,1,1)

crqa(x,y,1,1,1)

Code of Fig(3.9) and last row results in Table(3.1)

a=load(’S030.txt’); b=load(’S080.txt’);

x=a(1:4096,1); y=b(1:4096,1);

crp(x,y,1,1,1)

crqa(x,y,1,1,1)

Sample code of RPs in Sec(5-1-1) and RQA results in Sec(5-2-1)



Appendix A. Matlab Codes A-3

a=load(’S030.txt’);

x=a(1:4096,1);

crp(x,1,1,1)

crqa(x)

Sample code of CRPs in Sec(5-1-2) and CRQA results in Sec(5-2-2)

a=load(’S002.txt’); b=load(’S028.txt’);

x=a(1:4096,1); y=b(1:4096,1);

crp(x,y,1,1,1)

crqa(x,y)

Sample code of 2D visualisation plots in Sec(5-1-3)

a=load(’Z095.txt’); b=load(’O095.txt’);

x=a(1:4096,1); y=b(1:4096,1);

plot(x,y)

Sample code of 3D visualisation plots in Sec(5-1-3)

a=load(’N095.txt’); b=load(’F095.txt’);

c=load(’S095.txt’);

x=a(1:4096,1); y=b(1:4096,1); z=c(1:4096,1);

plot3(x,y,z)

figure;

subplot(3,1,1); plot(x,y,’red’)

subplot(3,1,2); plot(y,z,’green’)

subplot(3,1,3); plot(x,z,’blue’)

Sample code of multi-dimensional RPs in Sec(5-1-3) and multi-dimensional RQA re-
sults in Sec(5-2-3)

a=load(’N095.txt’); b=load(’F095.txt’);

c=load(’S095.txt’);

x=a(1:4096,1); y=b(1:4096,1); z=c(1:4096,1);

t=[1:4096]’; m=[t,x,y,z];

crp(m,1,1,1)

crqa(m)


