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A STUDY ON GRAPHS OF RINGS

LAU ZHOU SHENG

ABSTRACT

In this project, we are studied about the connection between ring and graph theory.
This project will involve some knowledge on ring and graph theories. We said a ring
R satisfied the properties which are abelian group under addition and closed under
multiplication operation. On the other hand, graph theory is a study of the graph which
made up of vertices, edges and its properties. The relationship between commutative
ring and graph theory were firstly introduced by Beck in 1988. Later, N.Ashrafi(2010)
has carried a research on unit graphs associated with rings. Let x and y be arbitrary
vertices in R, such that x and y are adjacent if and only if x + y is a unit in R. Besides,
an element z is said to be clean if there exists an idempotente € R such that z — e is
a unit in 1. Clean rings is firstly defined by Nicholson in 1977. In 2013, Diesel(2013)
has introduced nil clean rings and strongly nil clean rings. A ring R is called nil clean
ring if for each € R such that z = n + e, for some idempotente € I and nilpotent
n € R. Further later, Danchev(2015) has introduced weakly nil clean ring.If r € R
and there exists an idempotent e € R and nilpotentn € R such that r = n £ e. In
2017, Basnet(2017) conducted a research on nil clean ring with graph. He denoted
nil clean graph of ring R as Gy (R). Let z and y to be distinct vertices of elements
from nil clean ring R, such that = adjacent to y if and only if x + y is a nil clean
element in R. The g(z)-nil clean is firstly introduced by L.Fan(2008). An element
r € Ris called g(z)-nil clean if » = n + s for some nilpotent n € R and s € R such
that g(s) = 0, where g(x) € Z(R)[x]. We then conduct a research on specifically on
g(z) = x* — 2z, which is x(x — 2)-nil clean graph of ring. Let R beg(x)-nil clean ring
where g(z) = x(z — 2) and p and ¢ to be distinct vertices of elements from R, such
that p is adjacent to ¢ if and only if p+ ¢ € R for some nilpotentp and g(q) = 0. In this
project, we generalized the properties of g(z)-nil clean graph such as connectedness,

completeness, cycle, path and diameter and the adjacency matrix.

vi
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CHAPTER 1: INTRODUCTION

A Ring R is a set with 2 operations, addition and multiplication, (R, +,-). Besides
that, R is also satisfied 2 important properties which is abelian group under addition
and closed under multiplicative. We note that an abelian group closed under addition,
(R, +), indicates that the ring R is closed under addition and every element has an ad-
ditive inverse. Furthermore, a ring is closed under multiplicative property. Moreover,
in the multiplicative property it fulfils the properties of multiplication are associative
and distributive. All the rings we considered are commutative with identity.

A graph is defined as to be a ordered pair of (V, E'), where V is the finite set of
vertices or points of the graph and E' is set of unordered pair of elements of V' that
called edges or lines. For example, let V' = {1, 2, 3,4}, if it exists an edges or a line
between vertices 1 and 3, then E will be {(1,3)} or {(3,1)}, and will be written as
E ={(1,3)} or E = {(3,1)}. To avoid ambiguity, this type of graph can be called

undirected graph. For illustration, we consider the graph below.

A

In this project, we focus on the study of the relationship between commutative nil
clean rings and its graph properties (in Basnet(2017)). We note that girth, diameter,
chromatic index and other related graph properties will be the parts of this research

studies in the project that related to graph theory.

1-1 Objectives

In project I, we will be learning some basic knowledges on ring theory and graph
theory. Moreover, the main task of this project is to learn and understand the proving
methods in the paper by Basnet(2017) on nil clean graph of rings.

In project II, we will be applying the knowledge and methods of proving from the

paper by Basnet(2017) on nil clean graph of rings into other type of ring. In this project,
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we will be applying the knowledge on x(x — 2)-nil clean graph of rings with some
extension of other knowledges by using the appropriate methods from Basnet(2017)

on nil clean graph of rings.

1-2 Project Scopes

In this project I, we will focus on the property of the nil clean graph of rings and its
relationship with the graph properties. For example, girth of graphs, chromatic index
of graphs and diameter of graphs which related to the graph theory.

In project II, we will focus on the properties of other type of rings, specifically
x(z — 2)-nil clean graph of rings, and its relationship with the graph properties. In
this project, we have investigate about the properties of graph which related to graph
theory such as connectedness of graphs, completeness of graphs, paths and cycles of
graphs and diameter of graphs with the extension of properties of adjacency matrix of

the x(x — 2)-nil clean graph of rings.

1-3 Planning

The following Table 1 and Table 2 show the action plan for project I and project II.
The highlighted part represented the tasks that carried out during the particular week.
The main focus in Project I is reading and collecting the research materials.

Besides, Project I provides a good opportunity in learning the proving methods and
skill of writing from published research paper, in this project we will be referencing
from the paper published by Basnet(2017) on nil clean graph of rings, that will be
helpful in our Project II.

Furthermore, in project II, we continue our research on a different structured rings
with the application of the proving methods that we have learn from the Basnet(2017)
on nil clean graph of rings. With the help of the existing theorems and lemmas in the
Bastnet(2017) on nil clean graph of rings, we are able to have some extensions of our

own theorems and lemmas in the continuation of this project.
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CHAPTER 2: LITERATURE REVIEW

Let G(R) be an undirected graph, let V(G) be the set of vertices and let F(G) be the
set of edges. If z and y in V(G), and represent elements in R and edges between the
points will have an edge if an only if 2y = 0. The relationships between a commutative
ring and graph theory are first introduced by Beck (in Beck(1988)). In this paper, Beck
has presented the idea of coloring of a commutative rings.

Later, N.Ashrafi(2010) has carried a research on unit graphs associated with rings.
Let G(R) denotes an unit graph with a set of vertices comes from the set elements of
R. Let x and y be arbitrary distinct vertices from R, such that x and y are adjacent
if and only if x + y is a unit of R. In addition, N.Ashrafi(2010) also investigated
other properties of graph such as connectedness, chromatic index, diameter, girth and
planarity of G(R).

Let the sets of idempotents and nilpotents of R to be denoted by /dem(R) and
Nil(R), respectively. Nicholson(1977) has defined that an element x in a ring R is
said to be clean if there exist an e € Idem(R) such that z — e is a unit of R. Later
in 2013, Diesel(2013) introduced a new variants, nil clean rings and strongly nil clean
rings. A ring R is called nil clean ring if for each « € R such that z = n + e, for some
n € Nil(R) and e € Idem(R).

Further later in 2015, Danchev(2015) generalized the notion of nil clean ring into
weakly nil clean ring. An element » € R is called weakly nil clean if there exists an
e € Idem(R) and n € Nil(R) suchthatr =n+eorr=n—e.

Furthermore, in 2017, Basnet(2017) did a research on a relationship between nil
clean ring and graph. In the paper, Basnet(2017) denoted a nil clean graph by Gy (R),
let the set of nil clean elements denote by N (R). He further investigates the properties
of graph of Gy (R), such as girth, diameter, dominating sets and other related proper-
ties. Let x and y to be distinct vertices of the elements from nil clean ring R, such that
x adjacent to y if and only if z + y € N(R). In the same year, Basnet(2017) carried
out another research on the relationship between weakly nil clean ring and graph. The
weakly nil clean graph denoted by Gy v (R) and let a set of weakly nil clean elements

denote by WN(R). If = and y to be the distinct vertices of the elements from the
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weakly nil clean ring R such that x adjacent to y if and only if z +y € WN(R) or
r—y e WN(R).
On the other hand, there are some notations and definition used in this project. Let
G denote the graph, for any x € V(G), the degree of = denotes by deg(x) which
defined as the number of edges that connected to z. Besides, the neighbours set of x is
denoted as Ng(x) := {y € V(G)|y is adjacent to =} and the set Ng[z] = Ng(z)U{z}.
Next, a complete graph is a simple undirected graph which have no loops and

every distinct vertices are connected by a unique edges. For illustration, we consider

the graphs below.
(% U3 U7 Ug
Ve
U1 V4 Us V10

Figure 1: Graph with 4 and 6 vertices with unique edges for every vertices

V16

V11 V14 V15 V20

Figure 2: Graph with 4 and 6 vertices with multiple edges for every vertices

%)

V19



Chapter 2. Literature Review 7

From the graphs above, we can see that every vertices in Figure 1 have an unique edges
connected to it, for example, only have one edge between vy and v3. So, Figure 1 is
a complete graph. However, Figure 2 is not a complete graph because there exists at
least one vertices that have at least one edges connected to it, for example, there are
multiple edges connected between vg and v7.

A nil clean graph of a ring R, denoted by G (R), is defined by setting R as vertex
set and 2 distinct vertices x and y are adjacent if x + y is a nil clean element in R.
Moreover, loops not considered. For illustration, we consider GF'(25) and GF'(27)

which is a finite field with 25 and 27 elements.

GF(25) & Zs[x]/(x® + 2 4+ 1)

={az+b+ (2 +x+1):0a,b€Zs}

B4+ B8,14+2B,2+28,34+2B8,4+28,14+38,2+35,3+38,4+35,1+45,2+
46,3 4+ 46,4+ 45}

0 1 4 2 3
{ @ @ @ @
3 48 +1 B+4 48 + 2 B+3
{ @ @
@ @ L
48 B+1 48 +4 B+2 48 + 3
28 38+1 28 + 4 3842 28+ 3
@ @ @
@ @ L
33 28+ 1 38+4 28+ 2 38+ 3

Figure 3: Nil clean graph of GF'(25)
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GF(27) = Zslx] /(2 + 22% + 1)

={ar® +bx+c+ (2®+22°+ 1) : a,b,c € Zs}

Lety = 22+ {23+ 222 +1) and § = z+ (23 +22%+1). Then GF(27) = {0,1,2,6, 5+
1,0+2,20,204+1,20+2, v, v+ 1, v+2,7+0,v+0+1, v +0+2,7+20,v+20+1,v+
204+2,279,2v+1,29+2, 27468, 27+ + 1,27 +0+2, 2y +25, 2y + 25+ 1, 2y +20 + 2}

0 1 2
® @ L ]
) 20+ 1 d+2 g 2y +1 v+ 2
@ @
L 4 L 4
20 d+1 20 + 2 2 v+1 2y +2

Y+S 29 +2041 A+6+2 29+ A+20+1 2y+6+2
{ { J

{ L
27y +20 y+0+1 2942642  y+20 2y+0+1 A+25+2

Figure 4: Nil clean graph of GF'(27)

A girth is the shortest cycle that can be found in the graph. For illustration, we
consider the Nil clean graph of GF'(25) from Figure 3 and GF(27) from from Figure
4. From the Nil clean graph of GF'(25), it has the shortest cycle of 10 cycles. On the
other hand, Nil clean graph of GF(27) has the shortest cycle of 6 cycles. Therefore,
the girth of GF'(25) is 10 and the girth of GF'(27) is 6.

Chromatic index of G (R), X' (Gn(R)), is the minimum number of colours needed

for E(Gn(R)) suchthatife, f € E(Gn(R))and e and f are adjacent, then colour of e
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will not same as the colour of f. Let A be the maximum vertex degree of G (R), then
Vizings theorem says that A < x/(Gn(R)) < A + 1; graphs that satisfied \'(G) = A
are called graphs of class 1, those that satisfied x'(G) = A+ 1 are called graph of class
2. For illustration, we consider part of the nil clean graph of GF'(25) with multiple

edges connected between vertices.

Figure 5: Part of Nil clean graph of GF'(25)

From the figure above, we notice that vertex 2 have 3 edges connected to it, ey, ey
and eg, this means the 3 edges are adjacent to each other. So, edges e1, e; and ez will
not have the same colour. However, edges e; and e4 can have the same colour because
they are not adjacent to each other. Next, according to Vizings Theorem, the maximum
vertex degree will be vertices 0 and 1 which have a vertex degree of 6. So, A = 6, and
the graph satisfies 6 < x'(G) < 7.

The diameter of the Gy (R) is the shortest path between 2 vertices and if =,y €
V(Gn(R)) and the shortest path between = and y is denoted by d(z,y). If there is
no path between = and y is said that d(x,y) = oco. The diam(G y(R)) indicates the

maximum of distances of each pair of distinct vertices in Gy (R).



CHAPTER 3: PRELIMINARY RESULTS

3-1 Methodology

Preliminary methods will involve reading and understanding of various concepts in
ring theory. This will be followed by reading of the research article Basnet (2017) and
understanding of techniques used by others. The main work on research problems,
which will form the contain of this project, will involve analytical thinking. Besides,

in the construction of graphs of rings, we will be using MATLAB as our primary tool.

3-2 Some properties of nil-clean graphs

In the following, we study and investigate on the properties of nil-clean graphs.

Theorem 3.1 The nil clean graph G (R) is a complete graph if and only if R is a nil

clean ring.

Proof: (=): Let Gn(R) be a complete nil clean graph of ring R. Then it implies that
for all » € R are nil clean elements. Without lose of generality of nil clean elements,
there exists one path from 7 is connected to 0 such that » = r + 0 which is nil clean,

hence R is nil clean.

(<=): Conversely, let R be a nil clean ring. To form a graph from the R, let the arbitrary
elements z,y € R and x and y are connected if and only if = +y is a nil clean element.
So, this implies that every pairs of distinct element » € R must have a unique edges

and it form the complete nil clean graph G (R).

Lemma 3.1 Let Gy (R) be the nil clean graph of a ring R. For x € R we have the
following:

(1) If 2x is nil clean, then deg(x) = [NC(R)| — 1.
(I1) If 2z is not nil clean, then deg(x) = |[NC(R)|.

Proof: Let © € R, but clearly x + R = R. Then for every y € NC(R), there exists a

unique element =, € R such that = + z,, = y. Thus, we have deg(z) < |[NC(R)|

10
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For (I): Now, we let {x1, 29, 23,...,2} C R and {z; + z,29 + 2,23 + x,...,20} C
NC(R). Since we are not considering any loops, we illustrate the graph in the follow-
ing:

Zs3

T2 @

L1
Figure 6: Nil clean graph with = elements including x

By the definition of N¢, (r)(z) = {y € V(Gn(R))|y is adjacent to 2}, we know
that y = {1,2,3,...,x}. We have deg(z) = |Ngym(x)] = |[Noymlz]l —1 =
INC(R)[ -1

For (1I): Now, we let {x1, 3, 73, ..., z,,, } C Rand {z1+x, o+, 3+, ..., 247, } C

NC(R) but 2z ¢ NC(R). Since we are not considering any loops, we have

€3

T2 @

x

Figure 7: Nil clean graph with = elements excluding x

From the definition of N¢ () () = {y € V(Gn(R))ly is adjacent to x}, we know
that y = {x1, 29, 23, ..., 2, }. We have deg(x) = |Ngy(r)(2)| = [INC(R)|

Lemma 3.2 A ring R is a finite commutative reduced ring with no non trivial idempo-

tents if and only if R is a finite fields.

Proof: Let 12 be a finite commutative reduced ring. This implies that R has no non-
zero nilpotent element. If R is a finite commutative reduced ring with no non trivial

idempotents implies nilpotent is 0 and idempotents are 0 and 1.
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(=): Let 0 # x € R. We have a set A = {z* : k € N} is a finite set. Therefore there

exists m > [ such that #' = 2™. We illustrate the example in the following.

Example 1 Let Zs = {0, 1,2, 3,4}, since 0 is too obvious to be calculate, so we ignore
0 from the set. So, Zs = {1,2,3,4}. Let z = 3, then there exists m > [ such that

b =2 Weletm =5and ] = 1.

So,
3'=3 mod5=3
3°=243 mod 5=3 mod 5=3
Therefore,
31 — 35
Note that:
gt =™

— xm—o—l—l

— mmfl ill'l

— :Em—l xm

— o 2m=D=l+l

2l gl

— mQ(mfl) LM

_ (3m=2D)—1+l

_ x3(m—l) . l’l

= gkm=D+ L e N (3.1
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Now we have:

[l,l(m—l)]2 _ l,l(m—l) . xl(m—l)

_ xl(m—l)-ﬁ-l(m—l)—i—l—l

_ xl(m—l)—l—l . xl(m—l)—l

= 2! 2" D7 (From (3.1):2 = 2*m0H)

_ :L,l(m—l)
which indicate 2!(™~) € Idem(R). Thus, z!(™~") = 1. This gives that x is a unit in R.
Since we know that 2/(™~Y = T, we also know that z* - 2!(m=Y~! = T, 5o this indicates
that 2!(™=Y=! is an inverse for . Therefore, R is a finite field.

(<): Let R be a finite field. Then that every elements in R will have an inverse. Let
x € R has its inverse. Let z # 0 € R as a nilpotent element. Then x™ = 0 for some
n € N. Since z has an inverse, then we can say that " (z~')"~! = 0(z~!)"~!. This
implies that x = 0, which is a contradiction. Therefore, R has no non-zero nilpotent

element. So, R will be a finite commutative ring with no non trivial idempotents.

3-2-1 Invariants of nil clean graphs

In this section, we study the properties of nil-clean graphs related to invariants of graph

theory.

3-2-1-1 Girth of nil-clean graphs

In the following, we show the theorems that studied by Basnet (2017) that related to

girth.

Theorem 3.2 The following hold true for nil clean graph G x(R) of R:
(I) If R is not a field, then girth of Gn(R) is equal to 3.
(Il) If R is a field, then

(a) girth is 2p if R = GF(p*)(field of order p*), where p is a odd prime and
k>1;
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(b) girth is infinite, in fact G n(R) is a path, otherwise.

Proof: For (I): from Lemma 3.2, we know that if R is not a field, then R will not be a
finite commutative reduced rings with no non trivial idempotents. This implies that R

will have at least one non trivial nilpotent or non trivial idempotent.

Case 1: If there exists a non trivial nilpotent, says, n € R, then we have

1

Figure 8: Girth of G (R) with non trivial nilpotent

So, the girth of Gy (R) is 3.
Case 2: If there exists a non trivial idempotent, says, e € R, then we have

(1—e)

Figure 9: Girth of G y(R) with non trivial idempotent

So, the girth of Gy (R) is also 3.

For (1I): note that the set of nil clean elements of finite field is {0, 1}, so, the nil clean

graph for Z,, where p is prime, is shown as the following:

p—1 2 p—2 3 bt P i
@ @ @ @ @ @ o o o [ ] @ L ]

ol
=

Figure 10: Nil clean graph of Z,
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From Figure 10, we can see that the girth of G (Z,) is infinite. Hence, (b) holds
true. From the characteristic of finite field that the nil clean graph of G F(p*) for p > 2,

we can clearly see that the graph will be disconnected. Furthermore, the disconnected

pk—l_l
2

Let A C GF(p*) where GF(p*) = Z,[x]/(f(z)), f(x) is a irreducible polynomial of

graph will be consisting of a path of length p — 1 and ( ) number of 2p cycles.

degree k over Z,. Now, A will consist all the linear combination of z, 2, ..., "1 with

coefficient of from Z, such that g(x) + (f(x)) € Athen —g(z) + (f(x)) ¢ A. Next,

we can express A as A = {g;(x) = g;(x) + (f(2))|1 <i < (pk;l_l)}. So, we have

0 1 p—1 3 el pil
@ @ @ @ e o o Py °
a(@) o)+ Vo) +p—D-g@) +2) (—g1(2) + 55 g1 () + 2H)
@ @ { J e o o P
I L L @ ° o o TN
ol @)+ Deal) +p = Do@) +2) @) + () + P
2@ (gal) + Dga(@) + p— I—galz) +2) (—g2(2) + 55 ga(x) + 25
@ @ { J e o o ®
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D = gpk—2171 (SL’) + p%l’ E = —gpkf;,l (.77) + ;%1,

From Figure 11, we can see that the girth will be 2p provided p is odd prime for
R=GF(p")

Theorem 3.3 Gy (R) is bipartite if and only if R is a field.

Proof: (=): Let G y(R) be bipartite, so girth of G y(R) will be a even number. Hence,
by Theorem 3.2, R is a field.

(<): By Theorem 3.2, if R is a field, then R = GF(p*) and G (R) will have girth
with even length. In fact, Gy (R) can be in a form of bipartite graph.

g1(x)

<

(g1(z) + 1) (91()"‘]9—1) (91(z) +2)

—01(2) (@) +D o) +p =D oi(@) +2) (—9:1(@) + 551 (—aa(2) + 25D

92()

3
—

(@) +1) (@) +p—1D () +2) (92(2) + 550 (go(w) + 22D

w|

P e L ]

—g2(2) (—g2(2) + D (=g2(2) +p =D (=gz(2) +2) (—g2(0) + 55 (—galw) + 51

Figure 12: Bipartite nil clean graph of G F'(p¥)

From the definition of bipartite graph, letsubset V; = {0,p — 1, ”T, g1(), (g1 (2)+
T),...} and subset V = {I,2, &% . —g1(z), (—g1(x)+1), ...} and every edge in G (GF (p*))
has the form e = (z,y) € E(Gn(GF(p*))), where z € V; and y € V,. Moreover,

there are no two vertices both in V) or both in V5 are adjacent.
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3-2-1-2 Chromatic Index of nil-clean graph

In the following, we show the theorem that studied by Basnet (2017) that related to

chromatic index.

Theorem 3.4 Let R be a finite commutative ring then nil clean graph of R is of class

1.

Proof: We colour the edge ab with the colour a + b. By this colouring, every 2
distinct edges ab and ac has different colour. Let C' be the set of colours and let
{z, 21,29, 23, ..., 2, } C R suchthat {z + x1,2 + 29,2+ x3,...,x + x,} C NC(R),

we will have

T2 @

Figure 13: Gy(R) with n + 1 elements

So, we have C' = {z + x1,x + z2, 2 + x3,...,x + ,}. Then, X' (Gn(R)) < |C|
which indicates nil clean graph have |C|-edges colouring. Since C C NC(R), this
indicates that |C'| < |[NC(R)| and result in X'(Gn(R)) < |C| < |[NC(R)|. By
Lemma 3.1, we know that deg(xz) < |NC(R)| and deg(z) < |[NC(R)| — 1, then
implies deg(z) < deg(z) + 1 < [NC(R)|. So, it is true for deg(x) = A = |C| and
A < |NC(R)|, then x'(Gn(R)) < A. By Vizings theorem, we have x'(Gn(R)) > A.
This will result in ' (Gn(R)) = A, so Gy(R) is class 1.

3-2-1-3 Diameter of nil clean graph

In the following, we show some results that studied by Basnet (2017) that related to

diameter.

Lemma 3.3 R is nil clean ring if and only if diam(Gy(R)) = 1.
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Proof: (=-): Let R be a nil clean ring, then Vr € R must be nil clean elements. We

know that r = n + e where n € Nil(R) and e € Idem(R). So, we have

n e

® C

Figure 14: Nil clean graph of elements n and e

which give the result of diam(Gy(R)) = 1.

(<): Let diam(Gn(R)) = 1, which indicates the maximum distances of each pair of

distinct vertices in Gy (R) must be 1. Let arbitrary =, y € R and since diam(Gy(R)) =

1, so r = x 4 y must be nil clean element. So, Vr € R must be nil clean elements.

Therefore, R is nil clean ring.

Theorem 3.5 Let R be a non nil clean, weak nil clean ring with no non trivial idem-

potents then diam(Gy(R)) = 2.

Proof: At first, let R be a weak nil clean ring with no non trivial idempotents.

Then, we let arbitrary a,b € R and for some ny,ny € Nil(R). We have a = ny,ny +

lorny; —1and b = ny,no + 1 or no — 1. We have the following table

n ny+ 1 ny—1
n2 (n1) (n2) (n1+1) (n2) (1 — Dee(1)—(n2)
d(a,b) =1 d(a,b) =1 d(a,b) =2
na+1| (m) (n2+1) | (n + Dee=(=De=(n2 + 1) | (n1 — 1) (ng +1)
d(a,b) =1 d(a,b) =2 d(a,b) =1
ng— 1| (n)—D)—Mm2 -1 | (n+1) (e —1) | (1 = D—=(D)—(n2 — 1)
d(a,b) =2 d(a,b) =1 d(a,b) =2

Table 3: All combination of d(a, b)

Thus, from Table 3 we can conclude that diam(Gy(R)) < 2.

Now, let i be a non nil clean ring with no non trivial idempotents. Since non nil

clean indicates n,n + 1 ¢ R, then we have at least one z € R such that z = n — 1.

So, d(0, z) will be equal to 2 since (0)—(1)—(n — 1), therefore diam(G y(R)) > 2.
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So, if R is weak nil clean ring with no non trivial idempotents, diam(Gy(R)) < 2
and if R is non nil clean ring with no non trivial idempotents, diam(Gy(R)) > 2.
Hence, a non nil clean, weak nil clean ring with no non trivial idempotents will

have diam(Gn(R)) = 2.

Theorem 3.6 Let R = A x B, such that A is nil clean and B is weak nil clean with

no non trivial idempotents, then diam(Gy(R)) = 2.

Proof: Since A has non trivial idempotents, let e € Idem(A), then we have Idem(R) =
{(6, OB), (6, 1B)|€ S [dem(A)} Now let (al, bl), (ag, bg) S R, if (0,1, bl) + (CLQ, bg) is
(ag, bg), then d((al, bl), (ag, bg)) =1in GN(R)

nil clean indicates that (as, b;)
However, if (a1, b) + (as, by) is not nil clean, it will be a result from b; + by is not nil
clean, because R is closed under addition. i.e Let n,n+¢ € A where n € Nil(A),e €
Idem(A). So, now we have a; = ny,ny + e; and ag = ng, ny + eo. Clearly, a; + as

must be nil clean.

Since B is weak nil clean with no non trivial idempotents, let by = ny,n; + 1,77y — 1

and by = ny, ny + 1,n9 — 1, where ny, ny € Nil(B). So, we have the following cases:

CASEL: If by = ny+1 and by = ny+ 1, we have the path (ay, by) —(0, —1)—(az, b2)
in GN(R), thus d((al, bl), ((12, bg)) < 2.

CASEI1I: If bl =Ny — 1 and bQ = N9 — 1, we have the path (al, bl) _(O, 1)—(&2, bg)
in GN(R), thus d((CL1, bl), (ag, bg)) <2

CASE III: If b; = n; — 1 and by = ny, we have the path (a1, b1) —(0, 1)—(az, bs) in
GN(R), thus d((al, bl), ((12, bg)) S 2.

CASE 1V: If by = n; and by = ny — 1, we have the path (a1, b;) —(0, 1)—(asg, bo) in
GN(R), thus d((al, bl), (ag, bg)) S 2.

Therefore diam(Gn(R)) < 2, R is not nil clean implies diam(Gy(R)) > 2. Thus,
diam(Gn(R)) =2



CHAPTER 4: g(z)-NIL CLEAN GRAPH

4-1 Introduction

Let R be aring and let g(x) be a polynomial in Z(R)[z], where Z(R) denote as center
of R. In L. Fan(2008), an element € R is called g(x)-nil clean if = n + s for
some n € Nil(R) and s € R such that g(s) = 0. The ring R is g(z)-nil clean if every
element in R is g(x)-nil clean.

2

Clearly, if g(z) = x* — x, then g(x)-nil clean rings are nil clean. However, in gen-

eral, g(x)-nil clean rings are not necessarily nil clean. We note this with the following

example,

Example 2 Let Zi) = {m/n | m,n € Z,gcd(7,n) = 1} and let Cs be the cyclic
group of order 3. By Wang and Chen (2004), the group ring Z7)Cs is (2° — 1)-clean.
However, Z7)Cs is not clean by Hans and Nicholson (2001).

Let g(x)-nil clean graph of ring R denote by Gn«(R) and a set of g(z)-nil clean
elements of ring R denote by N*(R). Let x and y to be distinct vertices of the elements

from g(z)-nil clean ring R, such that = adjacent to y if and only if x +y € N*(R).

4-2  On z(x — 2)-nil clean graphs

In this section, we mainly focus on the g(z) = 2> — 2z € Z(R)[z]. Hence, all the g(x)
mentioned in the remaining of this chapter, the g(z) is defined by g(x) = 2? — 2x €

Z(R)[z]. Next, we will provide some examples on z(z — 2)-nil clean graphs.

Example 3 We denoted that GF'(25) is a finite field with 25 elements. We show that
the GF'(25) is a x(z — 2)-nil clean graph.

GF(25) & Zs[x]/(x® + 2 4+ 1)

={ax+b+ (x*+x+1):a,b€eZs}

20
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B,3+B,4+B8,14+28,2+23,3+28,4+28,1+35,2+38,3+38,4+38,1+

46,24+ 46,3+ 45,4 + 48}

0 2 3 4 1
[ { { { { ]
i 4842 B+3 48 + 4 B+1
@ { {
{ { {

48 B+2 48+ 3 B+4 48 +1
23 3842 28+ 3 38 +4 28+ 1
@ L {

{ { {

33 28 + 2 3843 28+ 4 38+ 1

Figure 15: g(x)-nil clean graph of GF(25)

Example 4 We denoted that GF'(27) is a finite field with 27 elements. We show that

the GF'(27) is a x(z — 2)-nil clean graph.

={ar® +bx +c+ (2° +22°+ 1) : a,b,c € Zs}

GF(27) & Zs[x] /(x® + 22% + 1)

Lety = 2*+ (234222 +1) and § = v+ (2*+22*+1). Then GF(27) = {0,1,2,4,0+

1,042,20,204+1,2042,v, v+ 1,v+2, 7+, 7+0+1,v+0+2,v+25, v+20+1,v+

2042,27,2v+1,29+2,2748, 27+ 0+ 1,27+ 42, 2y +20, 27+ 25+ 1, 2y + 26 + 2}
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0 2 1
[ °
) 20 + 2 o0+1 0l 2y +2 v+1
° °
@ @
26 0+ 2 20 + 1 27y v+ 2 2yv+1

T+ 2942042 y+6+1 29+ 442042 2y+6+1
@ @

{ L J
2y +20 A +0+2 2942041 4420 2y+6+2 A+20+41

Figure 16: g(x)-nil clean graph of GF'(27)
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Example 5 We denoted that GF'(49) is a finite field with 49 elements. We show that

the GF'(49) is a x(z — 2)-nil clean graph.

GF(49) = Zq[a]/(2® + 2 + 1)

={ar+b+ (2> +x+1):a,b€ Z;}

B,2408,34+8,4+06,5+3,6+05,1+28,2+23,34+25,4+26,5+25,6+28,1+35, 2+
33,34+36,4+33,5+33,6+38,1+43,24+46,3+45,44+46,5+43,64+45,1+
58,2+53,3+55,4+56,5+58,6+58,1+65,24+65,3+63,4+65,5+60, 6+66}
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0 2 5 4 3 6 1
° ° ° ° ° ° °
g 65+ 2 B+5 68+ 4 B+3 68+ 6 B+1
@ @ L 4 @ L 4
@ @ @ L g @

643 B+2 66 +5 B+4 66 + 3 B+6 68 + 1
206 58 + 2 28+5 50 +4 28+3 5846 28+1
° ° ° ° 3
@ @ @ @ @

56 28+ 2 56 +5 20 +4 56+ 3 28+6 50+ 1
36 48 4 2 36+ 5 48 4+ 4 36+ 3 48 46 30+1
° ° ° ° °
L 2 L g @ L g @

453 36+ 2 4845 36+4 48 4+ 3 36+6 48+ 1

Figure 17: g(x)-nil clean graph of GF'(49)

Next, we will investigate about the z(x — 2)-nil clean graph from Zs to Z34 where

Zy =40,1,2,3, ...,k — 1} for 3 < k < 34. The following illustration will be on the

x(x — 2)-nil clean graph form from Z3 to Zs,.



Chapter 4. g(z)-nil clean graph 24

Graph of z, Graph of zZ,
0 0
/ 2
3
1

Graph of Z5 Graph of Zs

/ | 4
5
1 0
Graph of z, Graph of z,

\

Graph of Zg

N
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Graph of Z,I 1

Graph c:fZ12
10

Graph of 213

Graph of Z 14

Graph of 215

Graph o:)fz16

Graph of Zﬂ,

10
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Graph of Z19 Graph of Zzu

Graph of Z21 Graph of Z22

Graph of Z23 GraphofZ,,

Graph of 225 Graph of Zzs
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Graph of 227 Graph of Z25

Graph of Z29 Graph of Zzo

Graph of Z:’1 Graph of Zsz

Graph of Z33 Graph of 234
7 A
33 2 o
3 4
37 30
5 6
29 28
7 g
27 26
9 0
25 e
77 2
23 22
73 9
27 20
5 6
79 8

Figure 18: g(x)-nil clean graph of Z3 to Zs4
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4-3 Some properties of g(x)-nil clean graph

In the following, we mainly study and investigate on some properties of x(xz — 2)-nil

clean graph. We first note the following for any ¢g(z) € Z(R).

Theorem 4.1 The g(x)-nil clean graph G n+«(R) is a complete graph if and only if R

is a g(x)-nil clean ring.

Proof: (=): Let G+« (R) be a complete g(x)-nil clean graph of ring R. Then it implies
that for all » € R are g(x)-nil clean elements. Without lose of generality of g(z)-nil
clean elements, there exists a path from r and it is connected to 0, such thatr = r + 0

which is g(x)-nil clean. Hence R is g(x)-nil clean.

(«<): Conversely, let R be a g(x)-nil clean ring. To form a graph in R, we let anyq
arbitrary elements x,y € R, x and y are connected if and only if  + y is a g(z)-nil
clean element. So, this implies that every pairs of distinct element € R must have a

unique edges and it form the complete g(x)-nil clean graph Gy« (R).

Lemma 4.1 Let G y+(R) be the g(x)-nil clean graph of a ring R. Then we have the
following:

(I) If 2z is g(x)-nil clean where © € R, then deg(z) = |[N*(R)| — 1.
(1) If 2x is not g(x)-nil clean where x € R, then deg(z) = |[N*(R)]|.

Proof: Let x € R and clearly x + R = R. Then for every y € N*(R), there exists a
unique element =, € R such that = 4+ x,, = y. Thus, we have deg(x) < |[N*(R)]

For (I): Now, we let {z1, 22, 23,....,2} C Rand {x; + z,29 + x,23 + x,...,22} C
N*(R). Since we are not considering any loops, we illustrate the graph in the follow-

ing:

T2 @

Figure 19: g(x)-nil clean graph with x elements including x
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By the definition of Ng . (r)(z) = {y € V(Gn+(R))|y is adjacent to x}, we know
that y = {1,2,3,...,2}. We have deg(z) = [Ngy.(n)(®)| = |Nop.mlz]l —1 =
IN*(R)| - 1.

For (1I): Now, we let {x1, 3, 73, ..., x,,, v} C Rand {214z, xo+x, 3+, ..., x+7,} C

N*(R) but 2z ¢ N*(R). Since we are not considering any loops, we have

€3

T2 @

T
Figure 20: g(x)-nil clean graph with = elements excluding

From the definition of N¢ ., (r)(xz) = {y € V(Gn+(R))|y is adjacent to z'}, we
know that y = {1, xa, x3, ..., x, }. We have deg(x) = |Ne . (r)(2)| = |[N*(R)|.

4-3-1 Invariants of g(x)-nil clean graphs

In this section, we provide some properties of g(x)-nil clean graphs related to invariants
of graph theory.

4-3-1-1 Connected and disconnected graph of ¢(z)-nil clean graph

Proposition 4.1 For all n > 3, then the following hold for 7,

(1) If n = 2k, for all k > 2. Then G y+(Z,,) is a disconnected graph (in particular,
it can be built up into 2 parts, one part fills by even integers and the other part

is filled by odd integers).

(a) Let n = 2k, where k = p?, and p is an odd prime and for all integer q > 1.

Then G n+(Z,,) is a disconnected path graph.
(I) If n =2k + 1, forall k > 1, then G n+(Z,,) is a connected graph.

(a) Letn = pi, where p is an odd prime and for all integer ¢ > 1. Then G n+(Zy,)
is a path graph.
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Proof: (I): It is obvious by taking Z,, (n is even) as a example in Figure 18. Further-
more, it built up into 2 parts which are the even integers part and odd integers part, it

exists two path that can be illustrate in the Figure 21.

1 n—1 3 n—3 5 n—>5 k-2 k+2 %
@ @ @ @ @ — o o o —@ @ 'Y

0 2 n—2 4 n—4 6 E+3 k-1 k+1

[ J @ @ @ @ o— e o o —@ @ 'Y

Figure 21: disconnected path graph for g(z)-nil clean graph of Zo

(D(a): Let n = 2k, where £ = p?, and p is an odd prime and for all integer ¢ > 1.
Then G n+(Z,) is a disconnected path graph and the illustration can refer to Figure 21.
(II): It is obvious by taking Z, (n is odd) as a example in Figure 18. Furthermore, it

exists a path that can be illustrate in the Figure 22.

|
3

|
)
S

|
S
wl
=

N]]
N}
|
S

|
—_

Figure 22: path graph for g(x)-nil clean graph of Zgy. 4

(Il)(a): In particular, if n = p?, where p is an odd prime and for all integer ¢ > 1. Then
Gn+(Z,) is a path graph and it can be illustrate in Figure 22.
4-3-1-2 Hamiltonian Path and Cycle of ¢(x)-nil clean graph

In the following, we prove the theorem that related to the hamiltonian path and hamil-

tonian cycle.

Theorem 4.2 Let n > 3, then the following hold for Z,,

(1) If n = 2k, for all k > 2, then G n+(7Z,,) consists no hamiltonian path (In partic-

ular, G y+(Zy,) is built by two distinct, symmetry connected graphs).
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(a) If we consider either one of the part of G n+(Zy,), then Gn+(Zy,) consists at

least one hamiltonian path or hamiltonian cycle.

(1) Ifn = 2k~+1, forallk > 1, then G n+«(Z,,) must consists at least one hamiltonian

path.

Proof: (I): By Proposition 4.1, If n = 2k, for all k > 2, Gy+(Z,,) is a disconnected
graph. Therefore, it consists no hamiltonian path in the graph.
(a) We now consider one of the part of Gy+«(Z,) where n = 2k and k = 2a, for all

a > 2 (a € 7). We can obtain a hamiltonian cycle in G y+(Zy) and illustrate the cycle

in the Figure 23.

0 2 n—2 1 n—4 6 E—2 k+2 k

1 n—1 3 n—3 5 n—>5 E+3 k—1 Ek+1
@ @ @ L @— o o o —@ o

Figure 23: hamiltonian cycle for g(x)-nil clean graph of Zo;, where k = 2a

For k = 2a + 1, for all a > 1 (a € 7Z). We can obtain a hamiltonian path for
G n+(Zsy) and refer the illustration in Figure 21.
(II): By Proposition 4.1, for n = 2k + 1, for all £ > 1, there exists at least one
hamiltonian path in Gy+(Z,,) and illustration of hamiltonian path for Gx+«(Z,) is in
Figure 22. Hence, G y+(Z,,) is a connected graph.
This completes the proof. Furthermore, the illustration of hamiltonian paths and hamil-
tonian cycles of g(x)-nil clean graphs are presented in Figure 18. We note the hamil-

tonian path or cycle with darker line.

4-3-1-3 Diameter of g(z)-nil clean graph

In the following, we prove a theorem that related to the diameter.

Theorem 4.3 Let n be a positive integer. Then the following holds for Z.,,
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(1) Ifn = 2%, for all integer k > 3 k € Z, then diam(G n+(Z,)) = oco. In particular,
if we consider either one of the part of G n+(Zy,), then diam(Gn+(Z,)) = 2¥2—
1.

(II) Ifn = p*, where p is a odd prime, for all k > 1, then diam(GN*(Zpk)) =pF—1.

(IIl) Ifn = 2p*, where p is a odd prime and for all integer k > 1, then diam(G y+ (Zigpr)) =
oo. However, if we consider either one of the part of the disconnected graph, then

diam(Gn+(Zgyr)) = p* — 1.

Proof: (I): By hypothesis, we have n = 2%, for all k£ > 3, then Gy~ (Zy,) is a discon-
nected graph by Proposition 4.1. Therefore, diam(G y+(Z,,)) = oo. (I) follows from
the graph Gy« (Z,,) in Figure 24.

n n n n n n 3n n 3n

0 2 n—2 4 n—4 6 T2 %+2 4
n n n n n n n 3n n
"4l T_-1 T{3 T_-3 Ty5 Z_5 P13 g T

I n-1 3 =n=-3 5 n-5% iy T-1 Iy

Figure 24: g(x)-nil clean graph of Z,,

(II): By Proposition 4.1, for any integer, n = p*, where p is a odd prime, for all k > 1,
then G+ (Z,x) is a path graph. Therefore, (II) follows from the graph G y«(Z,) in
Figure 22.

(III) follows from the graph G y+(Zy, ) in Figure 25.
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0 2 -2 7 -4 3§

[ { { @ @ @ — o o o
1 2pk — 1 3 2pk — 3 5 2pk — 5

[ { { @ @ @ — o o o

33
pr=3 pFr+3 pr-1 pr+l
—@ @ L 4 @
P4 ph-2 phe2 b
—@ @ @ L ]

Figure 25: g(x)-nil clean graph of Zs,

A matrix is said to be a shift matrix if a matrix with ones only on the superdiagonal

or subdiagonal, and zeros elsewhere. For illustration, we let matrix U,, where the

superdiagonal that contains n — 1 ones which is an upper shift matrix and matrix L,,

where the subdiagonal that contains n — 1 ones which is a lower shift matrix, as follow

In this project, we define anti-shift matrix as a matrix with ones only on the anti-

superdiagonal or anti-subdiagonal, and zeros elsewhere. For illustration, we let matrix

U where the anti-superdiagonal that contains 7 — 1 ones which is an upper anti-shift

matrix and matrix L} where the anti-subdiagonal that contains n — 1 ones which is a

lower anti-shift matrix, as follow

4-3-1-4 Adjacency Matrix of g(x)-nil clean graph

Theorem 4.4 Let n be a positive integer. Then the following holds for Z.,,
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(1) If n = 2%, for all integer k > 3,k € Z, then Gn+(Zy) follow the adjacency
matrix of My (G y+(Zar)).

(1) If n = p~, where p is a odd prime, for all k > 1, then Gn+(Z,) follow the
adjacency matrix of My(G n+(Z,r)) which follows form of the sum of two anti-

shift matrices.

(II1) If n = 2p*, where p is a odd prime and for all integer k > 1, then G N+ (Zigyr)
follow the adjacency matrix of Mis(G n+(Zogyr)).

Proof: (I): For illustration, we find the adjacency matrix of G y«(Zqx) where k =

3, 4 and 5, which are MI(GN* (Zg)), Ml (GN* (ZlG)) and M1<GN* (ZgQ)) as follows

M (Gn+(Zg)) =

O = O = O = OO
_ O = O = O OO O
O = O = OO O
_ o = O O O = O
O R O O O - O
_ O O O = O = O
O OO = O = O
OO = O = O = O

M1 (GN* (ZlG)) =

O PR OO DO OO, O P, OOOoOo oo
_ O = OO OO oo+ Ok, OoOOoOooOo
SO R O R OO OO O, OOOOoOo
SO R O, OO0 o+, OOoOo oo
S OO R O O OO oo o oo o
SO OO R O OO OO o~k OoOFOo
S OO OO H O, OO0 OO oo
_ O O O OO OO0 oo oo
_ O = OO OO oo O OO ooOo
SO R O R OO OO ROk, OOOoOo
SO OO R O OO oo OO
O OO OO, O R OO o O

SO R O OO DD DODOOoO OO oo o
SO R O OO OO oo —~=HOF,OOoOOo
S OO OO H OO OO oo OO Oo
O O DD DD OO O OO oo
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M1<GN* (Zgg)) =

[00000000000000101000000000000010T
0ooooooo00000001010000000000000101
00000000000010100000000000001010
00000000000101000000000000010100
00000000001010000000000000101000
00000000010100000000000001010000
00000000101000000000000010100000
00000000010000000000000101000000
00000010000000000000001010000000
00000101000000000000010100000000
00001010000000000000101000000000
00010100000000000001010000000000
00101000000000000010100000000000
01010000000000000101000000000000
10100000000000001010000000000000
01000000000000000100000000000001
100000000000001000000000000000160
00o000000000001010000000000000101
00000000000010100000000000001010
00000000000101000000000000010100
00000000001010000000000000101000
00000000010100000000000001010000
00000000101000000000000010100000
00000001010000000000000001000000
00000010100000000000001000000000
00000101000000000000010100000000
00001010000000000000101000000000
00010100000000000001010000000000
00101000000000000010100000000000
01010000000000000101000000000000
10100000000000001010000000000000

 10100000000000001010000000000000 04

Therefore, in general, M; (G n+«(Zyr)) follows the matrix shape as follow

M (Gn+(Zor)) =
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2thyrow

(2’“‘1)“”7"011)

(2F=1 — 1)t row

(21 4 2)throw

(281 + 1) throw

(2% — D) row

(II): For illustration, we find the adjacency matrix of G+ (Z,x ) where (3, 1), (3,2) and (7,1) €
(p, k), which are MQ(GN* (Zg)), MQ(GN* (Zg)) and MQ(GN* (Z7>> as follows

0 1 0
My (Gn+(Z3)) = |1 0 1
0 1 0
0o 0 0 0 0O 0 0 1 0]
o 0 0 0 0 o0 1 0 1
O 0 0 0 O 1 0 1 0
O 0 0 0 1 0 1 0 O
My(Gn«(Zg))=10 0 0 1 0 1 0 0 0
o 0 1 0 1 0 0 0 O
o 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
o 1 0 0 0 0 0 0 0]
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My (Gn+(Zr)) =

SO = O O O o o
_ o = O O O O
SO = O = OO O
OO R O = OO
O OO = O = O
(=il eNel el
[l el el ool s

Therefore, in general, My(Gn+(Z,)) follows the matrix shape as follow

2thyrow

My (G N+ (Zyr )

(* — 1) row

Coincidently, it is the sum of two anti-shift matrices which can be express as M (G« (Z,r)) =
U;k + L;k where p is a odd prime, for all £ > 1.

(IIT): For illustration, we find the adjacency matrix of G y«(Zg,x ) where (3,2), (5,1) and (7,1) €
(p, k), which are Mi3(G n+(Z13)), M3(Gn+(Z1o)) and M3(G y+(Z14)) as follows
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S —H O O O O O O OO OO oo oo oo
— O - O OO OO OO oo oo oo oo
O = O - O O O O OO oo oo oo oo
OO = O O O OO oo oo o oo oo
S OO - O —H O O O O OO oo oo oo
S OO O —H O O OO OO oo oo oo
S OO O O —H O —H O O OO o o oo oo
S OO O OO —H O A O O OO o oo oo
S OO O OO O —H OO OO oo oo oo
O O O OO O OO OO HOO O oo oo
DO DD DD DD DD DD DO OO HO HO OO o oo
S O O OO oo oo oo —H O A OO o oo
= eleleolholhaolaolalalalall =l o el hl vl an]
SO OO oo oo o oc oo H oA O oo
S O O O O O oo oo oo oo Ao —A OO
S OO O OO OO oo o oo oo Ao —AO
S O O oo oo o oo oo oo oo Ao H
S OO O OO O OO o oo oo oo Ao
1
Il
~—
N
0
i
N
S~—
x
Z
S
=

o —H O O O O O o o o
— o — O O O O O o O
SO —H O 1 O O O O o O
S o 14 O 1 O O O o o
S OO - O O O o o o
S o oo oo o oo
SO o oo +H o +H OO
S OO OO o —H O - O
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L oo oo oo o
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=
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S o O —H O —H O O O o o o oo
SO OO O —H O +H 0O O oo oo o
O O O O O —H O O oo o o oo
S OO O O OO o —H O O o oo
O OO OO OO —+H O —+H O o oo
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Therefore, in general, Mlg(G n+(Zq,x)) follows the matrix shape as follow

M3 (G n+ (Zgyr)) =

(2p* — 1)tProw

Theorem 4.5 All adjacency matrix M (G n+(Zar)), Ma(Gn+(Zy,)) and M3(G N+ (Zagyr))

are symmetry.

Proof: Obvious.

A matrix is said to be a block matrix if a matrix can be partitioned into several part
of blocks or submatrices which are a collections of smaller matrices. For illustration,

we let matrix P be a 7 X 7 matrix with the entries as shown below

N A~ R s
co Ut N o Ot N
O O W o O W

10 11 12

13 14 15 16

1 2 3 4
5 6 7 8
9 10 11 12
1 2 3 4
5 6 7 8
9 10 11 12

2th

row
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P can be partitioned into submatrices P, P, P; and P, as shown below

1 2 3

Pr=14 5 6| =

78 9

1 2 3 4
5 6 7
9 10 11 12

The partitioned P can be written as

Then, a matrix is said to be a block diagonal matrix if a matrix is a n X n block matrix
and having main diagonal blocks square matrices with other entries off-diagonal blocks

are zero matrices. For illustration, we let () be a 8 x 8 matrix with the entries as shown

below

( can be partitioned in submatrices of one ()1, one ()5, one ()3 and six (), which

denotes zeros matrix with different size as shown below

P =

S OO O OO =
S OO OO OO ==

8| 3=

S O NN DNNDNOO
S O NN DNNDNOO
S O DN NN OO

2 2 2 2
2 2 2 2
2 2 2 2

2 2 2 2

The partitioned can be written as

S O NN NN OO

Q-
OF
OF

W w o O oo oo
W w o O o o oo

1 3
1 6
Py =
7 9
10 11 12

0000
0000

1 2 3
5 6 7
9 10 11

13 14 15 16

0 0
0 0

o o o o

o o o o
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which have the general form that can be express as

41

A 0 0 O
0 A 0 . . : L :
A= , where A, is a square matrix of n X n in the main diagonal of matrix A
o . .0
o 0 0 A,
In this project, we defined block anti-diagonal matrix as a matrix that is n X n ma-
trix and having main anti-diagonal blocks square matrices with other entries off anti-
diagonal blocks are zeros matrices which can be express in the general as
o 0 0 A
) 0 0 , . ) . . . o
A= , where A, is a square matrix of n X n in the main anti-diagonal of matrix A
0 A 0
A0 0 O

Theorem 4.6 Let n, p, k be a positive integer, p is a odd prime and for all k > 1. For

every Mis(G n+(Zgyr)) will be a block anti-diagonal matrix.

Proof: From theorem 4.4(III), we obtain the general form of M3(G n+(Z,)) as follow

2throw

(2pF — 1)throw

Coincidently, Mj5(G n+(Zy,)) having two p* x p* block in the main anti-diagonal
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0 A
A 0
For illustration, we find the adjacency matrix of G'n«(Z,+) where (3,2), (5,1) and (7,1) €

(p, k), which are Mi3(G y+(Z13)), M3(G N+ (Z10)) and M3(G y+(Z14)) as follows

where A

which can form a block anti-diagonal matrix of

My (G N+ (Zypr)).

I I R e i e B e Bl o Bl e Bl < Wl e Wl e i e Bl e Bl e Bl e Wi e Wl e Sl e
T e T I B B e Bl e Bl e Bl s Wl e Wi e i e Bl e Bl Bl o Wi e Wl e Sl
e R R R e B B e B = Wl e Wl e i e Bl e Bl Bl e Wi e Bl e Sl
COoOH OO 0000000000 OO
cCooOH O T 0000000000 OO
CoOoc o HOoO OO0 O0O0CO0O0O0 0O O
cCoOoc oo~ 0O HO0OO0O0O0O0O0O0 0O O
CoOo0c oo OO HNO0OO0O0O0O0CO0 0O O
CoOooc o0 oo o HO0OO0O0O0cO0O0O0O0 0SS ——
—~
—~
SCoocococococ~ooooooo (@
cCco oo oo 00O 0O H000CO0 0O (*N\O
cCooc oo oo oo o Ao A0co0co0coo O
N—
(]
SCoccocoooococo-o—~oocoo ¥
OO0 OO0 0000000 A0 A0 OO .
e
COoO OO0 o000 O HO O S
N—
ScCooccococoocoooo o ~o ¢
0000000000000 O — &)
[\
R =R=R=R=R=E=R=R=R=R=R=E=R=R=R= = =
L
I Il
—~
—~
0
—
N
SN—
*
Z,
S
s

O o000 o0 oo o —m—
~—~
~—~

O~ 0000 oo o ZB
SN—

o1 o 1000 oo o X
= o

co—~o oo ococo U
S~—

[\
cCoo—~ooocooo ¥
cCoocococo -0 oo

—
—
OO oo o HO H OO Z5
S~—

cCoococooco—~0 O X
S 2,

CoOoc o000 Ao mu\

[a\]
cCoococoococooco —~O =

L

I Il
—~
—~
o
—
N
SN—
x
Z,
O
SN—
=
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Mg(GN* (ZM)) =

S O O OO OO oo oo oo
—_ O R O OO OO oo oo oo
SO RF O R OO OO oo oo oo
SO R O, OO OO o oo oo
S OO R O OO OO oo oo
O O OO R O OO oo oo
SO O DD OO OO OO oo oo

SO DOD DD DO DO Do OO0 Oo oo
O DO DD DD DO OO O OOOoOOo
(>l el eoleNeleoleolell el el
(>l el eoleleleleolelall el ]
el eleoleolBeleolBeolBelelBell el
S OO O OO OO0 oo oo 0o

0 My (Gn+(Z7))
MQ(GN* (Z7)) 0

L— 1 O OO DO DD DD DD OO OOoOo

4-3-1-5 Complete graph of g(z)-nil clean graph
Theorem 4.7 Let n be a positive integer. Then the following holds for Z.,,

(I) If n = 2%, for all integer k > 3,k € 7Z, then Gy+(Zy) will follow the ad-
jacency matrix of My (Gy+(Zo)). In particular, My (G n+(Zox)))2* > form a

disconnected graph which build up of two complete graph with same size.

(II) If n = p*, where p is a odd prime, for all k > 1, then G y+(Z,) follow the
adjacency matrix of My (G y+(Zyx)). In particular, [My(G n+ (Zpk))]pk*1 form a

disconnected graph which build up of two complete graph with different size.

(L) Ifn = 2p*, where p is a odd prime and for all integer k > 1, then G n+(Zy,) fol-
low the adjacency matrix of Mi3(G n+(Zgyr)). In particular, [My (G y+ (ZQPk))]pk_l
form a disconnected graph which build up of four complete graph with different

size.

Proof: (I): From theorem 4.4(I), we obtain the general form of M, (Gn+(Zqx)) as
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follow
[0 1 1 10
0 1 1 0 1| 2"row
1 1 10 1
0 1 0 1
1 1 0 1
0 | R 1| 2YHT"row
(281 — D)row | 1 1 1 0 1 1
0 0 1 1
1 1 0 O
1 1 0 1 1 1| (2t +2)"row
(251 + )hrow | 1 | 0
1 0 1 1
1 0 1 0
1 0 1 1 1
(2% — 1)"row 1 0 1 1 0
i 0 1 1 1 0 |

As we raise the adjacency matrix to the power of m = {1 < o0 < 2’“*2—1|k, o€l k>
3, 0is odd}, the anti-upper triangular of row r; = {1 < r < m|m,r is odd and m,r €
ZY,rg = {291 —m < r <281 4 m|k,m € Z,k > 3, andm,ris odd } and
rg = {28 —m < r <28 —1lk,m € Z,k > 3, and m,risodd } and the anti-
lower triangular of row ] = {2 < r < m + 1|misodd,ris evenand m,r € Z},
rh={281—(m—1)<r <281+ (m+1)|k,m € Z, k> 3,misodd,ris even}
and 7 = {28 — (m—1) <r < 2%|k,m € Z,k > 3,m is odd , r is even} will contains
all positive integers. Since loops and multiple edges are not in our consideration, so

entries a;; = 0and a,; = 1 foralla,; > 1,forall1 < # j < 2k otherwise 0. In

short,asm = {1 <0 <22 —1|k,0 € Z,k > 3,0is odd }, then
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1 ,1<r<m

. . 1 2l —m<r<2tem
row of anti-upper triangular

1 ,2F—m<r<2F—1

0 ,otherwise.

1 2<r<m+1

1 2l (m—1)<r<2F1 4 (m+1)
row of anti-lower triangular

1 28— (m—1)<r<2k

\ 0 ,otherwise.

Eventually, [M (G y+(Zy))]?**~! will have a form as follow
After [M (G y+(Zor))]?" 1 is form, if we construct the graph from [My (G y+ (Zo )] 71,

it depicted a disconnected graph which build up of two Kor-1.

Example 6 we consider n = 2%, k = 4, so [M;(Gn+(Zs))]® eventually depicts a
disconnected graph which build up of two K.

First, we find the adjacency matrix of G n+(Z1s), M;(Gn+(Z16)), then we raise it to

the power 3.
000000101 00000°T10-
0000010100000101
00001010000010°10
0000010000010100
00100000001 01000
0101000001010000
S
1 1
Mi(Gne(Z16)) =11 00000100000001 0
0000010100000710°1
0000101000001010
0001010000000°100
00101000001 0000 0
010100000101000 0
1010000010100000
0100000101 0000°0 0]
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I
OO0 OO0 OO —O—OO

— OO 1O OO 1O OO
OO0 —O—1O—O—O OO O
OO0 A0 O OO —HO
OO — OO0 —0O0O—O
OO O —O—O0 OO —O—O
OCrHO OO 1000 —HO O
OO —H OO0 —O—O—O
Or—1O—1 OO0 —O—O—O
—O—O—1O0 0O —O—O—O—O
OO0 OO —O—O—O—O
— O OO0 OO OO —HO
Or—1 OO O —1O—O—O—O—O
— OO OO A HO O 1O —O
COO—O—O—O—O—O—O

OCOr—O0O—1O—O0O—O—O0—0O—O
L

My (G i+ (Zas))) =

))]? as follow

GN* (ZIG

(

, we construct the graph from [M;

Then

Graph of Z16

451

10

Figure 26: disconnected graph which build up of two K
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Example 7 we consider n = 2F, k = 5, so [M;(Gx+(Zs3,))]” eventually depicts a

First, we find the adjacency matrix of G n«(Z32), M (Gn+(Z32)), then we raise it to

Next, we illustrate another example on G y+(Z32) below.

disconnected graph which build up of two K.

Chapter 4. g(x)-nil clean graph

the power 7.

mUlOOOOOOOOOOOOOl0100000000000000
HO—HOOOOOODOODODO OO HOHOODDODODODDODDODDODDODDODDOooOo
OrHOHTOOOOOOOOO O OO HOHOOODDODDODDODODDDODOoOOoOOo
CO—HO 10O O OO O OO0 OOOOIO—OOOOOOOOOoOoOOoOO
COO—HO—TO OO OO0 OO OO OoOOoOoOO
COOOO—T1O0O—HOOOOOOOOOOOOO—HO—TOOOOOoOOoOoOOoOO
OO —TOrT10O0OOOOO OO OO0 HOOOOOOoOOoOO
OO0 OOO—HOT—TOOOOOODOOOOOOOHHOOODODDODOoOOoOOoOo
OO OOOOO—1O—HOOOOODOOODOOOOOOOoO—HOODOOoOOoO
COOOCOOOO—HO—TOOOOOOO OO0 OOOO—O—HOOOOO
COOOOCOOOOO—HO 10O OO OOOOOOOOO—O—OOOO
COOOOCOOOOOO—IOr—1OOOOOOOOOCOOOO—HO—OOO
COOOOCOOOOOOOTTIO0OTOOOCOOOOOCOOOOoOoO—HO—OO
COOOOCOOOOOOOOT—HOTOOOOOOOOOOoOoOoOOoO—O—HO
[elelslelelslelelslalelelel plel olelelslelelslaleloalaleloalal el ]
—HOOOOOOOOOOOOO—TOOODOODOODODOOOOooOoo—O
OCrHOO OO OO O OO O OO O OO OO oo H
OO OOOOOOOOOO OO HO OO ODODDODDODDODDODDODDODOoOOoOOo
OO HOOOOOOOOOOOOO—T1OHOODODODDODODDODDODOOoOOoOO
CO—HOTOOOOOOOOOOOOOIO—OOOOOOOOoOoOOoOO
OO OO0 OOOOOOOOOOOT—1O0OrT100DOOOOoOOoOoOoO
OCOOOT1O0O—HOOOOOOOOOOOOO—TIO0O—OOOODOoOOoOOoOOoO
OCOOOO OO0 O—1O—HOOOOOOOO
OO OO O—O OO O OO0 OO0 OCOOOO—O—OOOOoOOoOOoOO
COOOOCOOOOOT—HOOOOOOOOCOOOOO—HO OO OoOOoOOoOO
COOOOCOOOO—HO—TOOOOOOOOOOOCOO—O—OOOOO
COOOOCOOOOO—OTOO OO0 OOOOOCOOO—IO—HOOOO
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OO0 O—HOTHODODDODDODDODDODDODDODDODOoOooOo—HOH
OO OO OO OO TIOrHOODODDODODODDODDODOoODOoOoOoooHO
L

M, (Gn+(Zs2))



48

Chapter 4. g(x)-nil clean graph

T
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11

(M (G v+ (Zs2)))? =

My (G v+ (Zss)))” =
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I
OO OO 101 OO 1010010100010 —HO O

—HO—O OO —"1O—O0O—1O—"1O0O—O—O—1O0O—O0O—O—O—O0O0 O
Or—1O—O—O—1O0O—1O0O—O0O—"10—1O0 OO0 —1O0—O0O—O—OOO
—HO—TO O A0 OO0 "0 OO0 —O0O O 00O —O
OO0 OO 1000100000000 —O
OO O OO — O OO0 —O0O—0O—O0O—0O0O0O—O—O
OrA0—1O0—O—1O0O—O0—0O 100 —O—0—0O—0O0O—O—O
OO O —1O—O—1O—1O—O 10O —1O—1O—1O0O0O—O—O—O
O O0—O0O— 0 —O0O—0—0O0O—O0—0O0—0O0—0O0—00O0—O—O—O
—HO— OO0 —1O—O0O OO0 OO 1000 —O—O—O—O
O OO OO0 OO0 10O 00O O —O0O—O—O
—HO—TO A0 A0 1O "0 A0 10O 00O O OO0 —O—O
OO0 —O—10O0— 0 —O 10 —0O—00O—0O—O—O0O—O— O
OO 1O OO 1O —O—10O0—10O0O—O0O—0O—0O—O—O—O
OO0 —1O—HO—1O—1O—O—1O0O—OO0O—1O0—O—1O—O—O—O
—HO—O OO —"1O—O—1O—1O0O0O—O—1O0—O0O—O—O—O—O
Or—1O—O OO0 OO 100000 —1O0—O0O—O—O—O
—HO—TO O A0 1O OO0 OO 10O OO0 —O—O
OO0 OO 1010000100010 OO 1O —O
OO OO —O—1 00O —0O 10 —O0O—0O—O0—0O—O—O—O
OrAO0—1O0—O—0O0O—1O0O0O0—10—O0O—O0O—0—0O—O—O0O—O—O
—O—HO—1O—1O OO —1O—O 10 —O—1O0O—O0O—O—O—O—O
O O0O—O0O 0000 —O0O—O0—0O0—O0—0O0—O0O—0O0—O—O—O
—HO—O OO0 OO0 —O OO0 —O0O—O—0O—O—O
O OO OO OO0 1000000 —O—O
—HO—1O OO0 1O OO0 "1 "0 OO0 OO0 —O—O
OO0 —10 0O —0O0— 10— OO0 —O—O0O— 0 —0O—O—O—O— O
—HO—OOO—O OO —O0O 10 —O0O—O0O—0O0—0O—O—O—O—O
OO0 OO —HO—1O—HO—O—1O0O—1O—1O0O—1O0—O0O—1O—O—O—O
— OO —O—AO—1O—O—1O—"1O0O—O—O—1O0—O0O—O—O—O—O
OO O—O—HO—1O—1O O 10— OO0 —"1O0—O0O—O—O—O
OO —HO OO 1O OO 10O OO0 O OO —O—O
L

~

—

)

GN* (Zgg

(

(M,

Then, we construct the graph from [M (G y+(Zs2))]" as follow

Graph of Z32

14

12

10

Figure 27: disconnected graph which build up of two K4
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(II): From theorem 4.4(II), we obtain the general form of M (G n+(Z,x)) as follow

1
1 0 1 2t ow
1 1
1 0 1
0 1
1
1 0 1
1 0 1
(p* — 1) row r 0 1
1
As we raise the adjacency matrix to the power of n = {2 < e < pf — 1]k >
1,pis prime, e is even and e, p, k € Z}, the lower triangular of row r; = {1 < r <
n + 1|n is even, r is odd and 7,n € Z} and upper triangular of row r; = {pF —n <

r < p’“|p is prime, n is even, r is odd, k > 1 and p, k,n,r € Z} will contains all pos-
itive integers. Since loops and multiple edges are not in our consideration, so en-
tries a;; = O and a;; = 1 forall a;; > 1, forall 1 < i # j < p, otherwise 0.
Since the diagonal of the even power raised adjacency matrix will only contain ze-
ros, then we can further conclude that the lower triangular of row r; = {3 < r <
n + 1|n is even, 7 is odd and 7,n € Z} and upper triangular of row 7} = {p* —n <

r < p* — 2|p is prime, n is even, r is odd and p, k. n,r € Z} will contains all ones. In
p pisp b,R,n,

short, as n = {2 < e < p* — 1|p is prime, e is even and e, p, k € Z}, then

1 3<r<n+1
row of lower triangular

0 ,otherwise.

1 pFr—n<r<ph-2
row of upper triangular

0 ,otherwise.

After [My (G y+(Z,))]P* " is form, if we construct the graph from [M; (G y (Z))]”" ',

it depicted a disconnected graph which build up of one K ,x,, and one K ,x,, X
2 2

Example 8 we consider n = p*, where p = 3 and k = 2, so [My(G n+(Zy))]® eventu-

ally depicts a disconnected graph which build up of one K5 and one Kj.
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First, we find the adjacency matrix of G y+(Zg), My(Gn+(Zg)), then we raise it to the

power 8.

I
OO OO OOoOOO

OO0 OoOOoOoOO
OO OO O
SO HOHOODOO
OO —HO—HOOO
SO OHOHOO
COOOOOO—HO—HO
SO —O

COOCOOOOoO—HO
1

My (Gn+(Zo)) =

T
OO OO—OO

OO O—HOOO
SO OOHOOO A
OO —HOOOHO
CO—HOOO—OO
OO —HOOO
— OO —HOOOO
OO0 OOoOO

OSO—1OODODOoOOoOO
L

T
SO OoOHO OO

SCOO—HO—HOOO
SO —HOHO OO A
SHO OO O—HO
—O—OoOOoOO—O
OO OO —=O—O
—OoOoOoO—O—OO
COO—O OO O

ODO—O—HDODDODDOO
L

T
SO—HOHO OO

Or—HO—O—HOOO
—O—O—0O0 OO
Sr—HO OO —HO
—O—OoOOoOO—O
OO OO —O—O
—AOOoOO—HO—HO A
OO O—HO—HO—HO

OCO—HO—HO OO
L

T
—O—AO—O—O O

Or—HO—HO—=HOOO
—O—O—O0O OO
O O—HOOO—HO
—O—OOoOO— O
OO OO —O—O
— OO O A
COO—HO—O—O

OCO—HO—HO—O
L

MLy (Gn+(Zo)))? =

MLy (G n+(Zo))]* =

My (Gn+(Zg)))® =

M (G v+ (Zo))]* =

Then, we construct the graph from [My (G n+(Zg))]® as follow
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Graph of Z9

Figure 28: disconnected graph which build up of one K5 and one K,

Next, we illustrate another example on G y+(Z;) below.

Example 9 we consider n = p, where p = 11 and k¥ = 1, so [My(Gn+(Z11))]*°
eventually depicts a disconnected graph which build up of one K and one K.
First, we find the adjacency matrix of G n+«(Z11), Ma(Gn+(Z11)), then we raise it to

the power 10.

My (Gn+(Z11)) =

OO OO O
HORFROOOOoOOoOOoOOoOo
OHRORrROOOOoOOoOoOOo
SO OHHOOODOOoOoOO
SO OROODOOO
OO OHOHHOODOOO
SO OO OHOOO
OO OOoOrROHROO
SO OO oo OoO—O
OO OO OoOOoOOoOROH
SO oOo+—O
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SO OOOoOooOoOoOo—HOO
COOOOOOOoO—HOOO
SO OOoO—HOOoOOH
SO OO HODODO—HO
SO O—HOODOHOO
OCOO—HOOO—HOOO
CO—HO OO OO O
Or—HOODO—HODODDODOO
—OOoOO—HOOOOoOOoOO
SO O—HODODODODDOOO
OCOr—HOODODODOOoOoOO

r
SO OOOOOoO—O—=HOO

OO OO HOHOOO
OO O—HO—OOO
OO —HOHODODO—HO
CO—O—1O OO —O
OO0 OO —O—O
—O—OO0O—O—O O
Or—HOOO—HO—HOOO
—OOoOOoO—HO—OOOO
OO —O—HDODDODDODDOO

OCOr—HO—HOOOOOO
L

I
OO HOHO—HOO

OO HOHOHOOO
CO—HO—HO—=HOOOH
OrHOHO OO —HO
—O—O—O0 0O —O
OO0 0O —O—O
—O—OoOO0O—O—O
OO OO —HO—HO—HO
—OOoOOoO—O—O—O O
COO—O—O OO O

OCO—HOHO OO OO
L

I
OO —O—O—OO

OSCrHOHOHOHOOO
—O—H OO OO O A
OrHOHO—HOOO—HO
—O—O 00O —O
OO0 OO —O—O
—O—O0O0O—O—O
OHOOOHO O HO
—OOoOOoO—HO O —HO
COO—O—O—O—O

OO —O—O—O O
L

My (G« (Zn1)))* =

My (Gn+ (Zn1))]* =

My (Gn+ (Zn1))]° =

My (G e (Znn)))* =

T
—HO—O—O—O—O O

OO —HOHO—HOOO
—O— OO0 OO
OO0 —O—O0O0O—O
—O— OO0 OO —O
OO OO0 O—O—O
—O—OO0O—O —O
OO OO —O—O—O
—OOoOO—O—O— O
OO HOHOHOHO

CO—HO—AO—HO—O
L

(Mo (G n+(Z11))]"

Then, we construct the graph from [My(Gn+(Z11))]'° as follow
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Graph of Z11

(IIT): From theorem 4.4(III), we obtain the general form of M(G n+ (Zg,

(2p* — 1)trrow

Figure 29: disconnected graph which build up of one K¢ and one Kj

0

1
0 0 1
0 O
1

1

1
1 0

1
1
0

0

0
1

)) as follow

2th

row
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From theorem 4.6, we also know that M3 (G n+(Zy,r)) is a block anti-diagonal matrix

0
which can be viewed as where A = My (Gn+(Zyx)). In fact, as we raise

A 0
M3(G n+(Zsg,)) to even power, we obtain the block diagonal matrix as follow

[M3(G N+ (Zogp)))? = M (G (Zgyr)) x M3(Gy+(Zop))

0 A 0 A
= X

A 0 A 0

A% 0

0 A2

[Ms(G v (Zops ))]* = [Mi3(G e (Zigy))]? X [Mi3(G e (Zigyi))]?

Claz o] [z oo
oo “looa
lat o]
oA
M3 (G N+ (Zigyr )| = f(l)n jn ,where n € Z, n > 2 and n must be even

Since, p*—1 is always even and we know the general calculation of (M3 (G v+ (ngk)))pk_l

from theorem 4.7(1I), so, we know that

& _Apk_l 0
(M5 (G n+ (Zgyr ))]P = k1
L 0 Ar
| M (G (2 0 k (4.62)
_ 0 (Ma(Gn+ (Zgpr)) )P 1
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After [Ms (G n+ (Zgyr) )]?* = is form, if we construct the graph from [M3 (G y+ (Zigpi ) )P,

-1

2

2

it depicted a disconnected graph which build up of two K« ,, and two K x,

Example 10 We consider n = 2p*, where p = 3 and k = 2, so [My(Gn+(Z1s))]®

eventually depicts a disconnected graph which build up of two K5 and two K.

From example 8, we know that

N o "4 O -4 O — OO
O 4 O 4 O +HA O O O
—\ O - O — O O O
o4 O 4 O O o H O
— O 4 O O O A O -
oA O O O 4 O A O
—N O OO 4 O A O
oo o 4o 4 O —H O
O o 4 O 4 O A O
L 1

Il

0

—

—

=2

N

N~—

x

Z

O

N~—

s

So, we can obtain [M(G y+(Z1g))]® by using (4.6a)

0
(My(G+(Zo)))"
001010101000000000

6ooo010101O0O0O0O0OO0O0OO0OO0TO0O0

0101 0O0O0O0OO0O0OO0O00O0

1
0610001O01O0O0O0O0OO0OO0OO0OO0OTO0O0

1 010001 O01O0O0O0O0O0OO0OO0OGO0FO0
61 0100O01TO0OO0O0OO0OO0O0OTO0OO0OO0OOQO0

1 0 0 O

0001 0O0O0O0OO0O0OO0TO0°0O0

1
610101O0O0O0O0O0O0OO0OO0O0OO0O0O0
1 010101O0O0O0O0O0OO0OO0OO0O®O0OO0OO

o0 00O0O0O0OO0OO0OO0OO0OT1TO0OT1TTO0T1TQO01

1 01 0

0 1 0

1

6oo0oo000O0OO0OO0OO0OT1TTO0OO0OO0OT1TQG0T1TQO01

000 00O0O0O0OO0O0OO0OO0OT1F®O0

0o o0oo000O0OO0OO0OO0OO0OT1TO0OO0OO0OT1TO0T1F®O0

000 0O0O0OO0OO0OO0OT1TTO0T1TG0TUO0O0OT1IO01

oo000O0O0O0OO0OO0OO0OT1TUO0OT1TTUO0OTO0O0OT10O0

1 01 01 00 01
o o0oo000O0OO0OO0OO0OO0O1O0OT1TO0T1TQO0TQG0O0

000 00 O0O0O0O0

0o o0000O0OO0OO0OO0O1O0T1O0T1TQO0T1TTG0O0

My (G« (Zg)))®
[Mis(Gn+ (Z1s)))® = (M (Gn+(Zy)))
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Then, we construct the graph from [M3(G y+(Zs))]® as follow

Graph of Z18

Figure 30: disconnected graph that build up of two K5 and two K

Next, we illustrate another example on G y+(Zs2) below

Example 11 We consider n = 2p*, where p = 11 and k = 1, so [My(G n+(Z2))]*°
eventually depicts a disconnected graph which build up of two K¢ and two K.

From example 9, we know that

MLy (G (Z1))]"° =

—RORRORORrRORrROO
OO ORORHrRROOO
HOROROF,ROOOR
OO OrRROOOrO
RO ORROOoOOoO—O
OO OOORO—O
RO OOORRO—FO
OO OORrRORrRORO
RO OoOO—ROFROFO
OO O—ROHROHRO RO
SO ORORORrRRO

So, we can obtain [M3(G y+(Z22))]'° by using (4.6a)
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(Ma(Gy+(Z11))) "

T 1
S OO OO OO OO HOHO O —HOHO O

OO0 OO—IO—HO—HO—OOO
SO0 OHOHO HOHOOO
OO OOOOOOOOO—O—HO—HO OO —HO
SO0 OoOHOHO OO O HO
OO OO OO OO —HO—HOOO—O—HO
OO OO OO OO HOHO OO HOHO
OO OO OO OO 1O OOHO O —HO
OO OOOOOOOCO—HOOO—O—HO—O
OO OO0 O—HO—HO—O—O
SO O OO OO0 OoO—HO—O—HO O
FHO OO —TO 1O OO0 OOOOoOOoO
OO OO 100000 OO0 OO0 OoOoOOO
HO—T OO 100010000000 OoOOoO0O
OO0 OO0 0O TO0OOOOOOOOOOoOoOOoOO
OO OO0 —HO—TOOOOOOOoOOoOOoOOoOO
OO —TOOO 1O —TOOOOODODOOOOoOoOOoO0O
—HO—AOOO OO 000000 OoOoOOO
OO0 OO 1O —O 100000 OoOoOOoOoO
—HOOO OO0 1000000000 OoOoOOoOO
COO—HO—HO O 1O OO ODODDODODODOoODOoOoOO

COr—1O 1O OO0 OO0 OoOoOOoOOo
1L 1

o (G (Zy1)))'0
[M3(G v (Z32))] "0 = (M3(Gy+(Zn1)))

0 as follow

Dk

ZZQ
Graph of Z22

Then, we construct the graph from [M(G y+(

Figure 31: disconnected graph that build up of two K¢ and two K5



CHAPTER 5;: CONCLUSION

In conclusion, the highlight of this project is to study and apply the proving method to
another types of rings. In the Project I, we have investigated on the published paper
by Basnet(2017) on nil clean graph of rings. In the process of investigation, we have
learned thoroughly about the theorems and lemmas stated with the proving methods
used to explained it. In Chapter 3, we took some theorems and lemmas from Bas-
net(2017) on nil clean graph of rings and explained in details in order to understand the
way of proving done by Basnet(2017). The theorems and lemmas that we is explained
in Chapter 3 is about the girth of graphs, chromatic index of graphs and diameter of
graphs which is strongly related to our ring which have a different structure from the
nil clean graph of rings.

In Project II, we are able to extend from Basnet(2017) on nil clean graph of rings
to x(x — 2)-nil clean graph of rings which have a different structure than than nil clean
graph of rings. With the help of those existing theorems and lemmas in the published
paper by Basnet(2017), we are able to form our own theorems and lemmas with the
proving methods learned from the paper that are presented in Chapter 4. By making
Basnet(2017) as our main reference, we have form our own theorem on connectedness
of graphs, completeness of graphs, hamiltonian cycles and paths of graphs and diame-
ter of graphs which strongly describe our x(z — 2)-nil clean graph of rings. Besides,
we form our own theorems in generalizing the adjacency matrix on the z(x — 2)-nil
clean graph of rings which is not presented in the paper of Basnet(2017).

As the main results of this project, we can conclude that our proving methods is
just one of the possible way to prove the theorem but not in general. However, there
should be another way that can be used more effectively in proving those theorems and

lemmas in the future.
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APPENDIX

single_graph_ generator.m

nodes_num = 3; % define the number of the nodes

7Z = l:nodes_num;

from =[1];

to = [];

x = calc(Z,2) % return an array consists of result from X"2=2X

for x1 = 27

for x2 = 7

if ismember (mod(x1+x2,nodes_num),x)==1 && x1l~=x2
from = [from, x1];
to = [to, x2];

end

end

G = simplify (graph (from,to));

h = plot (G,’k’,’'Layout’,’" force’); % graph generated
Adj = full (adjacency (G)); %adjacency matrix of graph generated

labelnode (h,nodes_num, {"0"});

str = strcat ('Graph_of_ /' ,’ \bf{Z}_’,’{’,num2str (nodes_num),’}’);

title(str);

%% finding path or cycle within the graph generated

path_e = [];
path_o = [];
odd = [];
even = [];
if mod(nodes_num,2) == 0
for j = l:nodes_num
if mod(j,2)==0
even = [even, jl;
else
odd = [odd, j];
end
end
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else

end

even_f = fliplr(even);
odd_f = fliplr(odd);
for v=1:1length (even)
drawnow;
path_o = [path_o, [odd(v),odd_f(v)1];
highlight (h,path_o,’EdgeColor’,’k’,’NodeColor’,’'k’,’LineWidth’, 3)
path_e = [path_e, [even_£f (v),even(v)]l];

highlight (h,path_e,’EdgeColor’,’k’,’NodeColor’,’'k’,’”LineWidth’, 3)

end

drawnow;

path_o = [path_o,
[min (odd_£f (1: ((nodes_num/2)/2))),
min (odd (1: ((nodes_num/2)/2)))11;

highlight (h, path_o,’EdgeColor’,’k’, " NodeColor’,’k’,’LineWidth’, 3)

path_e = [path_e,
[max (even (1: ( (nodes_num/2)/2))),
max (even_f (1: ((nodes_num/2)/2)))11;

highlight (h,path_e,’EdgeColor’,’k’,’NodeColor’,’k’, " LineWidth’, 3)

for j = l:nodes_num
if mod(j,2)==0
even = [even, jl;
else
odd = [odd, jI;
end
end
even = fliplr (even);
for v=1:1length (even)
drawnow;
path_o = [path_o, [odd(Vv),even(v)]];
highlight (h,path_o,’EdgeColor’,’k’,’NodeColor’,’'k’,’ LineWidth’, 3)
end
drawnow;
path_o = [path_o, [2,nodes_num] ]
highlight (h, path_o,’EdgeColor’, "k’ , " NodeColor’,’k’,’LineWidth’, 3)
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calc.m

function condition = calc(arr,number)

arr_square = mod((arr-1) .72, length (arr));
arr_2x = mod((arr-1) xnumber, length(arr));
same = (arr_square == arr_2x);

pos = find(same==1) ;

condition = pos-1;
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