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A STUDY ON GRAPHS OF RINGS

LAU ZHOU SHENG

ABSTRACT

In this project, we are studied about the connection between ring and graph theory.

This project will involve some knowledge on ring and graph theories. We said a ring

R satisfied the properties which are abelian group under addition and closed under

multiplication operation. On the other hand, graph theory is a study of the graph which

made up of vertices, edges and its properties. The relationship between commutative

ring and graph theory were firstly introduced by Beck in 1988. Later, N.Ashrafi(2010)

has carried a research on unit graphs associated with rings. Let x and y be arbitrary

vertices in R, such that x and y are adjacent if and only if x+ y is a unit in R. Besides,

an element x is said to be clean if there exists an idempotente ∈ R such that x − e is

a unit in R. Clean rings is firstly defined by Nicholson in 1977. In 2013, Diesel(2013)

has introduced nil clean rings and strongly nil clean rings. A ring R is called nil clean

ring if for each x ∈ R such that x = n + e, for some idempotente ∈ R and nilpotent

n ∈ R. Further later, Danchev(2015) has introduced weakly nil clean ring.If r ∈ R

and there exists an idempotent e ∈ R and nilpotentn ∈ R such that r = n ± e. In

2017, Basnet(2017) conducted a research on nil clean ring with graph. He denoted

nil clean graph of ring R as GN(R). Let x and y to be distinct vertices of elements

from nil clean ring R, such that x adjacent to y if and only if x + y is a nil clean

element in R. The g(x)-nil clean is firstly introduced by L.Fan(2008). An element

r ∈ R is called g(x)-nil clean if r = n + s for some nilpotent n ∈ R and s ∈ R such

that g(s) = 0, where g(x) ∈ Z(R)[x]. We then conduct a research on specifically on

g(x) = x2− 2x, which is x(x− 2)-nil clean graph of ring. Let R beg(x)-nil clean ring

where g(x) = x(x − 2) and p and q to be distinct vertices of elements from R, such

that p is adjacent to q if and only if p+q ∈ R for some nilpotentp and g(q) = 0. In this

project, we generalized the properties of g(x)-nil clean graph such as connectedness,

completeness, cycle, path and diameter and the adjacency matrix.
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CHAPTER 1: INTRODUCTION

A Ring R is a set with 2 operations, addition and multiplication, (R,+, ·). Besides

that, R is also satisfied 2 important properties which is abelian group under addition

and closed under multiplicative. We note that an abelian group closed under addition,

(R,+), indicates that the ring R is closed under addition and every element has an ad-

ditive inverse. Furthermore, a ring is closed under multiplicative property. Moreover,

in the multiplicative property it fulfils the properties of multiplication are associative

and distributive. All the rings we considered are commutative with identity.

A graph is defined as to be a ordered pair of (V,E), where V is the finite set of

vertices or points of the graph and E is set of unordered pair of elements of V that

called edges or lines. For example, let V = {1, 2, 3, 4}, if it exists an edges or a line

between vertices 1 and 3, then E will be {(1, 3)} or {(3, 1)}, and will be written as

E = {(1, 3)} or E = {(3, 1)}. To avoid ambiguity, this type of graph can be called

undirected graph. For illustration, we consider the graph below.

In this project, we focus on the study of the relationship between commutative nil

clean rings and its graph properties (in Basnet(2017)). We note that girth, diameter,

chromatic index and other related graph properties will be the parts of this research

studies in the project that related to graph theory.

1-1 Objectives

In project I, we will be learning some basic knowledges on ring theory and graph

theory. Moreover, the main task of this project is to learn and understand the proving

methods in the paper by Basnet(2017) on nil clean graph of rings.

In project II, we will be applying the knowledge and methods of proving from the

paper by Basnet(2017) on nil clean graph of rings into other type of ring. In this project,

1



Chapter 1. Introduction 2

we will be applying the knowledge on x(x − 2)-nil clean graph of rings with some

extension of other knowledges by using the appropriate methods from Basnet(2017)

on nil clean graph of rings.

1-2 Project Scopes

In this project I, we will focus on the property of the nil clean graph of rings and its

relationship with the graph properties. For example, girth of graphs, chromatic index

of graphs and diameter of graphs which related to the graph theory.

In project II, we will focus on the properties of other type of rings, specifically

x(x − 2)-nil clean graph of rings, and its relationship with the graph properties. In

this project, we have investigate about the properties of graph which related to graph

theory such as connectedness of graphs, completeness of graphs, paths and cycles of

graphs and diameter of graphs with the extension of properties of adjacency matrix of

the x(x− 2)-nil clean graph of rings.

1-3 Planning

The following Table 1 and Table 2 show the action plan for project I and project II.

The highlighted part represented the tasks that carried out during the particular week.

The main focus in Project I is reading and collecting the research materials.

Besides, Project I provides a good opportunity in learning the proving methods and

skill of writing from published research paper, in this project we will be referencing

from the paper published by Basnet(2017) on nil clean graph of rings, that will be

helpful in our Project II.

Furthermore, in project II, we continue our research on a different structured rings

with the application of the proving methods that we have learn from the Basnet(2017)

on nil clean graph of rings. With the help of the existing theorems and lemmas in the

Bastnet(2017) on nil clean graph of rings, we are able to have some extensions of our

own theorems and lemmas in the continuation of this project.
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CHAPTER 2: LITERATURE REVIEW

Let G(R) be an undirected graph, let V (G) be the set of vertices and let E(G) be the

set of edges. If x and y in V (G), and represent elements in R and edges between the

points will have an edge if an only if xy = 0. The relationships between a commutative

ring and graph theory are first introduced by Beck (in Beck(1988)). In this paper, Beck

has presented the idea of coloring of a commutative rings.

Later, N.Ashrafi(2010) has carried a research on unit graphs associated with rings.

Let G(R) denotes an unit graph with a set of vertices comes from the set elements of

R. Let x and y be arbitrary distinct vertices from R, such that x and y are adjacent

if and only if x + y is a unit of R. In addition, N.Ashrafi(2010) also investigated

other properties of graph such as connectedness, chromatic index, diameter, girth and

planarity of G(R).

Let the sets of idempotents and nilpotents of R to be denoted by Idem(R) and

Nil(R), respectively. Nicholson(1977) has defined that an element x in a ring R is

said to be clean if there exist an e ∈ Idem(R) such that x − e is a unit of R. Later

in 2013, Diesel(2013) introduced a new variants, nil clean rings and strongly nil clean

rings. A ring R is called nil clean ring if for each x ∈ R such that x = n+ e, for some

n ∈ Nil(R) and e ∈ Idem(R).

Further later in 2015, Danchev(2015) generalized the notion of nil clean ring into

weakly nil clean ring. An element r ∈ R is called weakly nil clean if there exists an

e ∈ Idem(R) and n ∈ Nil(R) such that r = n+ e or r = n− e.

Furthermore, in 2017, Basnet(2017) did a research on a relationship between nil

clean ring and graph. In the paper, Basnet(2017) denoted a nil clean graph by GN(R),

let the set of nil clean elements denote by N(R). He further investigates the properties

of graph of GN(R), such as girth, diameter, dominating sets and other related proper-

ties. Let x and y to be distinct vertices of the elements from nil clean ring R, such that

x adjacent to y if and only if x + y ∈ N(R). In the same year, Basnet(2017) carried

out another research on the relationship between weakly nil clean ring and graph. The

weakly nil clean graph denoted by GWN(R) and let a set of weakly nil clean elements

denote by WN(R). If x and y to be the distinct vertices of the elements from the

5



Chapter 2. Literature Review 6

weakly nil clean ring R such that x adjacent to y if and only if x + y ∈ WN(R) or

x− y ∈ WN(R).

On the other hand, there are some notations and definition used in this project. Let

G denote the graph, for any x ∈ V (G), the degree of x denotes by deg(x) which

defined as the number of edges that connected to x. Besides, the neighbours set of x is

denoted asNG(x) := {y ∈ V (G)|y is adjacent to x} and the setNG[x] = NG(x)∪{x}.

Next, a complete graph is a simple undirected graph which have no loops and

every distinct vertices are connected by a unique edges. For illustration, we consider

the graphs below.

v2 v3

v4v1

v7 v8

v10v5

v6 v9

Figure 1: Graph with 4 and 6 vertices with unique edges for every vertices

v12 v13

v14v11

v17 v18

v20v15

v16 v19

Figure 2: Graph with 4 and 6 vertices with multiple edges for every vertices
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From the graphs above, we can see that every vertices in Figure 1 have an unique edges

connected to it, for example, only have one edge between v2 and v3. So, Figure 1 is

a complete graph. However, Figure 2 is not a complete graph because there exists at

least one vertices that have at least one edges connected to it, for example, there are

multiple edges connected between v6 and v7.

A nil clean graph of a ring R, denoted by GN(R), is defined by setting R as vertex

set and 2 distinct vertices x and y are adjacent if x + y is a nil clean element in R.

Moreover, loops not considered. For illustration, we consider GF (25) and GF (27)

which is a finite field with 25 and 27 elements.

GF (25) ∼= Z5[x]/〈x2 + x+ 1〉

= {ax+ b+ 〈x2 + x+ 1〉 : a, b ∈ Z5}

Let β = x+〈x2 +x+1〉. ThenGF (25) = {0, 1, 2, 3, 4, β, 2β, 3β, 4β, 1+β, 2+β, 3+

β, 4 + β, 1 + 2β, 2 + 2β, 3 + 2β, 4 + 2β, 1 + 3β, 2 + 3β, 3 + 3β, 4 + 3β, 1 + 4β, 2 +

4β, 3 + 4β, 4 + 4β}

0 1 4 2 3

β 4β + 1 β + 4 4β + 2 β + 3

4β β + 1 4β + 4 β + 2 4β + 3

2β 3β + 1 2β + 4 3β + 2 2β + 3

3β 2β + 1 3β + 4 2β + 2 3β + 3

Figure 3: Nil clean graph of GF (25)
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GF (27) ∼= Z3[x]/〈x3 + 2x2 + 1〉

= {ax2 + bx+ c+ 〈x3 + 2x2 + 1〉 : a, b, c ∈ Z3}

Let γ = x2+〈x3+2x2+1〉 and δ = x+〈x3+2x2+1〉. ThenGF (27) = {0, 1, 2, δ, δ+

1, δ+2, 2δ, 2δ+1, 2δ+2, γ, γ+1, γ+2, γ+δ, γ+δ+1, γ+δ+2, γ+2δ, γ+2δ+1, γ+

2δ+2, 2γ, 2γ+1, 2γ+2, 2γ+δ, 2γ+δ+1, 2γ+δ+2, 2γ+2δ, 2γ+2δ+1, 2γ+2δ+2}

0 1 2

δ 2δ + 1 δ + 2

2δ δ + 1 2δ + 2

γ 2γ + 1 γ + 2

2γ γ + 1 2γ + 2

γ + δ 2γ + 2δ + 1 γ + δ + 2

2γ + 2δ γ + δ + 1 2γ + 2δ + 2

2γ + δ γ + 2δ + 1 2γ + δ + 2

γ + 2δ 2γ + δ + 1 γ + 2δ + 2

Figure 4: Nil clean graph of GF (27)

A girth is the shortest cycle that can be found in the graph. For illustration, we

consider the Nil clean graph of GF (25) from Figure 3 and GF (27) from from Figure

4. From the Nil clean graph of GF (25), it has the shortest cycle of 10 cycles. On the

other hand, Nil clean graph of GF (27) has the shortest cycle of 6 cycles. Therefore,

the girth of GF (25) is 10 and the girth of GF (27) is 6.

Chromatic index ofGN(R), χ′(GN(R)), is the minimum number of colours needed

forE(GN(R)) such that if e, f ∈ E(GN(R)) and e and f are adjacent, then colour of e
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will not same as the colour of f . Let ∆ be the maximum vertex degree of GN(R), then

Vizings theorem says that ∆ ≤ χ′(GN(R)) ≤ ∆ + 1; graphs that satisfied χ′(G) = ∆

are called graphs of class 1, those that satisfied χ′(G) = ∆+1 are called graph of class

2. For illustration, we consider part of the nil clean graph of GF (25) with multiple

edges connected between vertices.

0 1

4

23

e2

e1

e4

e3

Figure 5: Part of Nil clean graph of GF (25)

From the figure above, we notice that vertex 2 have 3 edges connected to it, e1, e2

and e3, this means the 3 edges are adjacent to each other. So, edges e1, e2 and e3 will

not have the same colour. However, edges e1 and e4 can have the same colour because

they are not adjacent to each other. Next, according to Vizings Theorem, the maximum

vertex degree will be vertices 0 and 1 which have a vertex degree of 6. So, ∆ = 6, and

the graph satisfies 6 ≤ χ′(G) ≤ 7.

The diameter of the GN(R) is the shortest path between 2 vertices and if x, y ∈

V (GN(R)) and the shortest path between x and y is denoted by d(x, y). If there is

no path between x and y is said that d(x, y) = ∞. The diam(GN(R)) indicates the

maximum of distances of each pair of distinct vertices in GN(R).



CHAPTER 3: PRELIMINARY RESULTS

3-1 Methodology

Preliminary methods will involve reading and understanding of various concepts in

ring theory. This will be followed by reading of the research article Basnet (2017) and

understanding of techniques used by others. The main work on research problems,

which will form the contain of this project, will involve analytical thinking. Besides,

in the construction of graphs of rings, we will be using MATLAB as our primary tool.

3-2 Some properties of nil-clean graphs

In the following, we study and investigate on the properties of nil-clean graphs.

Theorem 3.1 The nil clean graph GN(R) is a complete graph if and only if R is a nil

clean ring.

Proof: (⇒): Let GN(R) be a complete nil clean graph of ring R. Then it implies that

for all r ∈ R are nil clean elements. Without lose of generality of nil clean elements,

there exists one path from r is connected to 0 such that r = r + 0 which is nil clean,

hence R is nil clean.

(⇐): Conversely, letR be a nil clean ring. To form a graph from theR, let the arbitrary

elements x, y ∈ R and x and y are connected if and only if x+y is a nil clean element.

So, this implies that every pairs of distinct element r ∈ R must have a unique edges

and it form the complete nil clean graph GN(R).

Lemma 3.1 Let GN(R) be the nil clean graph of a ring R. For x ∈ R we have the

following:

(I) If 2x is nil clean, then deg(x) = |NC(R)| − 1.

(II) If 2x is not nil clean, then deg(x) = |NC(R)|.

Proof: Let x ∈ R, but clearly x + R = R. Then for every y ∈ NC(R), there exists a

unique element xy ∈ R such that x+ xy = y. Thus, we have deg(x) ≤ |NC(R)|

10
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For (I): Now, we let {x1, x2, x3, ..., x} ⊆ R and {x1 + x, x2 + x, x3 + x, ..., 2x} ⊆

NC(R). Since we are not considering any loops, we illustrate the graph in the follow-

ing:

x

x1

x2

x3 x

Figure 6: Nil clean graph with x elements including x

By the definition of NGN (R)(x) = {y ∈ V (GN(R))|y is adjacent to x}, we know

that y = {1, 2, 3, ..., x}. We have deg(x) = |NGN (R)(x)| = |NGN (R)[x]| − 1 =

|NC(R)| − 1

For (II): Now, we let {x1, x2, x3, ..., xy, x} ⊆ R and {x1+x, x2+x, x3+x, ..., x+xy} ⊆

NC(R) but 2x /∈ NC(R). Since we are not considering any loops, we have

x

x1

x2

x3 xy

x

Figure 7: Nil clean graph with x elements excluding x

From the definition ofNGN (R)(x) = {y ∈ V (GN(R))|y is adjacent to x}, we know

that y = {x1, x2, x3, ..., xy}. We have deg(x) = |NGN (R)(x)| = |NC(R)|

Lemma 3.2 A ring R is a finite commutative reduced ring with no non trivial idempo-

tents if and only if R is a finite fields.

Proof: Let R be a finite commutative reduced ring. This implies that R has no non-

zero nilpotent element. If R is a finite commutative reduced ring with no non trivial

idempotents implies nilpotent is 0 and idempotents are 0 and 1.
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(⇒): Let 0 6= x ∈ R. We have a set A = {xk : k ∈ N} is a finite set. Therefore there

exists m > l such that xl = xm. We illustrate the example in the following.

Example 1 Let Z5 = {0, 1, 2, 3, 4}, since 0 is too obvious to be calculate, so we ignore

0 from the set. So, Z5 = {1, 2, 3, 4}. Let x = 3, then there exists m > l such that

xl = xm. We let m = 5 and l = 1.

So,

31 = 3 mod 5 = 3

35 = 243 mod 5 = 3 mod 5 = 3

Therefore,

31 = 35

Note that:

xl = xm

= xm+l−l

= xm−l · xl

= xm−l · xm

= x(2m−l)−l+l

= x2m−l−l · xl

= x2(m−l) · xm

= x(3m−2l)−l+l

= x3(m−l) · xl

...

= xk(m−l)+l, k ∈ N (3.1)
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Now we have:

[xl(m−l)]2 = xl(m−l) · xl(m−l)

= xl(m−l)+l(m−l)+l−l

= xl(m−l)+1 · xl(m−l)−1

= xl · xl(m−l)−l (From (3.1):xl = xk(m−l)+l)

= xl(m−l)

which indicate xl(m−l) ∈ Idem(R). Thus, xl(m−l) = 1. This gives that x is a unit in R.

Since we know that xl(m−l) = 1, we also know that xl · xl(m−l)−l = 1, so this indicates

that xl(m−l)−l is an inverse for x. Therefore, R is a finite field.

(⇐): Let R be a finite field. Then that every elements in R will have an inverse. Let

x ∈ R has its inverse. Let x 6= 0 ∈ R as a nilpotent element. Then xn = 0 for some

n ∈ N. Since x has an inverse, then we can say that xn(x−1)n−1 = 0(x−1)n−1. This

implies that x = 0, which is a contradiction. Therefore, R has no non-zero nilpotent

element. So, R will be a finite commutative ring with no non trivial idempotents.

3-2-1 Invariants of nil clean graphs

In this section, we study the properties of nil-clean graphs related to invariants of graph

theory.

3-2-1-1 Girth of nil-clean graphs

In the following, we show the theorems that studied by Basnet (2017) that related to

girth.

Theorem 3.2 The following hold true for nil clean graph GN(R) of R:

(I) If R is not a field, then girth of GN(R) is equal to 3.

(II) If R is a field, then

(a) girth is 2p if R ∼= GF (pk)(field of order pk), where p is a odd prime and

k > 1;
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(b) girth is infinite, in fact GN(R) is a path, otherwise.

Proof: For (I): from Lemma 3.2, we know that if R is not a field, then R will not be a

finite commutative reduced rings with no non trivial idempotents. This implies that R

will have at least one non trivial nilpotent or non trivial idempotent.

Case 1: If there exists a non trivial nilpotent, says, n ∈ R, then we have

1

0

n

Figure 8: Girth of GN(R) with non trivial nilpotent

So, the girth of GN(R) is 3.

Case 2: If there exists a non trivial idempotent, says, e ∈ R, then we have

(1− e)

0

e

Figure 9: Girth of GN(R) with non trivial idempotent

So, the girth of GN(R) is also 3.

For (II): note that the set of nil clean elements of finite field is {0, 1}, so, the nil clean

graph for Zp, where p is prime, is shown as the following:

0 1 p− 1 2 p− 2 3
p+3
2

p−1
2

p+1
2

Figure 10: Nil clean graph of Zp
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From Figure 10, we can see that the girth of GN(Zp) is infinite. Hence, (b) holds

true. From the characteristic of finite field that the nil clean graph ofGF (pk) for p > 2,

we can clearly see that the graph will be disconnected. Furthermore, the disconnected

graph will be consisting of a path of length p − 1 and (p
k−1−1

2
) number of 2p cycles.

Let A ⊆ GF (pk) where GF (pk) = Zp[x]/〈f(x)〉, f(x) is a irreducible polynomial of

degree k over Zp. Now, A will consist all the linear combination of x, x2, ..., xk−1 with

coefficient of from Zp such that g(x) + 〈f(x)〉 ∈ A then −g(x) + 〈f(x)〉 /∈ A. Next,

we can express A as A = {gi(x) = gi(x) + 〈f(x)〉|1 ≤ i ≤ (p
k−1−1

2
)}. So, we have

0 1 p− 1 2
p−1
2

p+1
2

g1(x) (−g1(x) + 1)(g1(x) + p− 1)(−g1(x) + 2) (−g1(x) + p−1
2

)(g1(x) + p+1
2

)

−g1(x) (g1(x) + 1)(−g1(x) + p− 1)(g1(x) + 2) (g1(x) + p−1
2

)(−g1(x) + p+1
2

)

g2(x) (−g2(x) + 1)(g2(x) + p− 1)(−g2(x) + 2) (−g2(x) + p−1
2

)(g2(x) + p+1
2

)

−g2(x) (g2(x) + 1)(−g2(x) + p− 1)(g2(x) + 2) (g2(x) + p−1
2

)(−g2(x) + p+1
2

)

g pk−1−1
2

(x)
A B C D E

−g pk−1−1
2

(x) A′ B′ C ′ D′ E ′

Figure 11: Nil clean graph of GF (pk)

Here, A = −g pk−1−1
2

(x) + 1, B = g pk−1−1
2

(x) + p− 1, C = −g pk−1−1
2

(x) + 2,

D = −g pk−1−1
2

(x) + p−1
2

, E = g pk−1−1
2

(x) + p+1
2

,

A′ = g pk−1−1
2

(x) + 1, B′ = −g pk−1−1
2

(x) + p− 1, C ′ = g pk−1−1
2

(x) + 2,
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D′ = g pk−1−1
2

(x) + p−1
2

, E ′ = −g pk−1−1
2

(x) + p+1
2

,

From Figure 11, we can see that the girth will be 2p provided p is odd prime for

R ∼= GF (pk)

Theorem 3.3 GN(R) is bipartite if and only if R is a field.

Proof: (⇒): LetGN(R) be bipartite, so girth ofGN(R) will be a even number. Hence,

by Theorem 3.2, R is a field.

(⇐): By Theorem 3.2, if R is a field, then R ∼= GF (pk) and GN(R) will have girth

with even length. In fact, GN(R) can be in a form of bipartite graph.

0

1

p− 1

2
p−1
2

p+1
2

g1(x)

(−g1(x) + 1)

(g1(x) + p− 1)

(−g1(x) + 2) (−g1(x) + p−1
2

)

(g1(x) + p+1
2

)

−g1(x)

(g1(x) + 1)

(−g1(x) + p− 1)

(g1(x) + 2) (g1(x) + p−1
2

)

(−g1(x) + p+1
2

)

g2(x)

(−g2(x) + 1)

(g2(x) + p− 1)

(−g2(x) + 2) (−g2(x) + p−1
2

)

(g2(x) + p+1
2

)

−g2(x)

(g2(x) + 1)

(−g2(x) + p− 1)

(g2(x) + 2) (g2(x) + p−1
2

)

(−g2(x) + p+1
2

)

Figure 12: Bipartite nil clean graph of GF (pk)

From the definition of bipartite graph, let subset V1 = {0, p− 1, p+1
2
, g1(x), (g1(x)+

1), ...} and subset V2 = {1, 2, p−1
2
,−g1(x), (−g1(x)+1), ...} and every edge inGN(GF (pk))

has the form e = (x, y) ∈ E(GN(GF (pk))), where x ∈ V1 and y ∈ V2. Moreover,

there are no two vertices both in V1 or both in V2 are adjacent.
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3-2-1-2 Chromatic Index of nil-clean graph

In the following, we show the theorem that studied by Basnet (2017) that related to

chromatic index.

Theorem 3.4 Let R be a finite commutative ring then nil clean graph of R is of class

1.

Proof: We colour the edge ab with the colour a + b. By this colouring, every 2

distinct edges ab and ac has different colour. Let C be the set of colours and let

{x, x1, x2, x3, ..., xn} ⊆ R such that {x + x1, x + x2, x + x3, ..., x + xn} ⊂ NC(R),

we will have

x

x1

x2

x3 xn

Figure 13: GN(R) with n+ 1 elements

So, we have C = {x + x1, x + x2, x + x3, ..., x + xn}. Then, χ′(GN(R)) ≤ |C|

which indicates nil clean graph have |C|-edges colouring. Since C ⊂ NC(R), this

indicates that |C| ≤ |NC(R)| and result in χ′(GN(R)) ≤ |C| ≤ |NC(R)|. By

Lemma 3.1, we know that deg(x) ≤ |NC(R)| and deg(x) ≤ |NC(R)| − 1, then

implies deg(x) ≤ deg(x) + 1 ≤ |NC(R)|. So, it is true for deg(x) = ∆ = |C| and

∆ ≤ |NC(R)|, then χ′(GN(R)) ≤ ∆. By Vizings theorem, we have χ′(GN(R)) ≥ ∆.

This will result in χ′(GN(R)) = ∆, so GN(R) is class 1.

3-2-1-3 Diameter of nil clean graph

In the following, we show some results that studied by Basnet (2017) that related to

diameter.

Lemma 3.3 R is nil clean ring if and only if diam(GN(R)) = 1.



Chapter 3. Preliminary Results 18

Proof: (⇒): Let R be a nil clean ring, then ∀r ∈ R must be nil clean elements. We

know that r = n+ e where n ∈ Nil(R) and e ∈ Idem(R). So, we have

n e

Figure 14: Nil clean graph of elements n and e

which give the result of diam(GN(R)) = 1.

(⇐): Let diam(GN(R)) = 1, which indicates the maximum distances of each pair of

distinct vertices inGN(R) must be 1. Let arbitrary x, y ∈ R and since diam(GN(R)) =

1, so r = x + y must be nil clean element. So, ∀r ∈ R must be nil clean elements.

Therefore, R is nil clean ring.

Theorem 3.5 Let R be a non nil clean, weak nil clean ring with no non trivial idem-

potents then diam(GN(R)) = 2.

Proof: At first, let R be a weak nil clean ring with no non trivial idempotents.

Then, we let arbitrary a, b ∈ R and for some n1, n2 ∈ Nil(R). We have a = n1, n1 +

1 or n1 − 1 and b = n2, n2 + 1 or n2 − 1. We have the following table

n1 n1 + 1 n1 − 1

n2 (n1) (n2) (n1 + 1) (n2) (n1 − 1) (1) (n2)

d(a, b) = 1 d(a, b) = 1 d(a, b) = 2

n2 + 1 (n1) (n2 + 1) (n1 + 1) (−1) (n2 + 1) (n1 − 1) (n2 + 1)

d(a, b) = 1 d(a, b) = 2 d(a, b) = 1

n2 − 1 (n1) (1) (n2 − 1) (n1 + 1) (n2 − 1) (n1 − 1) (1) (n2 − 1)

d(a, b) = 2 d(a, b) = 1 d(a, b) = 2

Table 3: All combination of d(a, b)

Thus, from Table 3 we can conclude that diam(GN(R)) ≤ 2.

Now, let R be a non nil clean ring with no non trivial idempotents. Since non nil

clean indicates n, n + 1 /∈ R, then we have at least one x ∈ R such that x = n − 1.

So, d(0, x) will be equal to 2 since (0) (1) (n− 1), therefore diam(GN(R)) ≥ 2.
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So, if R is weak nil clean ring with no non trivial idempotents, diam(GN(R)) ≤ 2

and if R is non nil clean ring with no non trivial idempotents, diam(GN(R)) ≥ 2.

Hence, a non nil clean, weak nil clean ring with no non trivial idempotents will

have diam(GN(R)) = 2.

Theorem 3.6 Let R = A × B, such that A is nil clean and B is weak nil clean with

no non trivial idempotents, then diam(GN(R)) = 2.

Proof: SinceA has non trivial idempotents, let e ∈ Idem(A), then we have Idem(R) =

{(e, 0B), (e, 1B)|e ∈ Idem(A)}. Now let (a1, b1), (a2, b2) ∈ R, if (a1, b1) + (a2, b2) is

nil clean indicates that (a1, b1) (a2, b2), then d((a1, b1), (a2, b2)) = 1 in GN(R).

However, if (a1, b1) + (a2, b2) is not nil clean, it will be a result from b1 + b2 is not nil

clean, because R is closed under addition. i.e Let n, n+ e ∈ A where n ∈ Nil(A), e ∈

Idem(A). So, now we have a1 = n1, n1 + e1 and a2 = n2, n2 + e2. Clearly, a1 + a2

must be nil clean.

Since B is weak nil clean with no non trivial idempotents, let b1 = n1, n1 + 1, n1 − 1

and b2 = n2, n2 + 1, n2 − 1, where n1, n2 ∈ Nil(B). So, we have the following cases:

CASE I: If b1 = n1+1 and b2 = n2+1, we have the path (a1, b1) (0,−1) (a2, b2)

in GN(R), thus d((a1, b1), (a2, b2)) ≤ 2.

CASE II: If b1 = n1− 1 and b2 = n2− 1, we have the path (a1, b1) (0, 1) (a2, b2)

in GN(R), thus d((a1, b1), (a2, b2)) ≤ 2.

CASE III: If b1 = n1− 1 and b2 = n2, we have the path (a1, b1) (0, 1) (a2, b2) in

GN(R), thus d((a1, b1), (a2, b2)) ≤ 2.

CASE IV: If b1 = n1 and b2 = n2 − 1, we have the path (a1, b1) (0, 1) (a2, b2) in

GN(R), thus d((a1, b1), (a2, b2)) ≤ 2.

Therefore diam(GN(R)) ≤ 2, R is not nil clean implies diam(GN(R)) ≥ 2. Thus,

diam(GN(R)) = 2



CHAPTER 4: g(x)-NIL CLEAN GRAPH

4-1 Introduction

Let R be a ring and let g(x) be a polynomial in Z(R)[x], where Z(R) denote as center

of R. In L. Fan(2008), an element r ∈ R is called g(x)-nil clean if r = n + s for

some n ∈ Nil(R) and s ∈ R such that g(s) = 0. The ring R is g(x)-nil clean if every

element in R is g(x)-nil clean.

Clearly, if g(x) = x2 − x, then g(x)-nil clean rings are nil clean. However, in gen-

eral, g(x)-nil clean rings are not necessarily nil clean. We note this with the following

example,

Example 2 Let Z(7) = {m/n | m,n ∈ Z, gcd(7, n) = 1} and let C3 be the cyclic

group of order 3. By Wang and Chen (2004), the group ring Z(7)C3 is (x6 − 1)-clean.

However, Z(7)C3 is not clean by Hans and Nicholson (2001).

Let g(x)-nil clean graph of ring R denote by GN?(R) and a set of g(x)-nil clean

elements of ringR denote byN?(R). Let x and y to be distinct vertices of the elements

from g(x)-nil clean ring R, such that x adjacent to y if and only if x+ y ∈ N?(R).

4-2 On x(x− 2)-nil clean graphs

In this section, we mainly focus on the g(x) = x2−2x ∈ Z(R)[x]. Hence, all the g(x)

mentioned in the remaining of this chapter, the g(x) is defined by g(x) = x2 − 2x ∈

Z(R)[x]. Next, we will provide some examples on x(x− 2)-nil clean graphs.

Example 3 We denoted that GF (25) is a finite field with 25 elements. We show that

the GF (25) is a x(x− 2)-nil clean graph.

GF (25) ∼= Z5[x]/〈x2 + x+ 1〉

= {ax+ b+ 〈x2 + x+ 1〉 : a, b ∈ Z5}

Let β = x+ 〈x2 + x+ 1〉. Then GF (25) = {0, 1, 2, 3, 4, β, 2β, 3β, 4β, 1 + β, 2 +

20
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β, 3 + β, 4 + β, 1 + 2β, 2 + 2β, 3 + 2β, 4 + 2β, 1 + 3β, 2 + 3β, 3 + 3β, 4 + 3β, 1 +

4β, 2 + 4β, 3 + 4β, 4 + 4β}.

0 2 3 4 1

β 4β + 2 β + 3 4β + 4 β + 1

4β β + 2 4β + 3 β + 4 4β + 1

2β 3β + 2 2β + 3 3β + 4 2β + 1

3β 2β + 2 3β + 3 2β + 4 3β + 1

Figure 15: g(x)-nil clean graph of GF (25)

Example 4 We denoted that GF (27) is a finite field with 27 elements. We show that

the GF (27) is a x(x− 2)-nil clean graph.

GF (27) ∼= Z3[x]/〈x3 + 2x2 + 1〉

= {ax2 + bx+ c+ 〈x3 + 2x2 + 1〉 : a, b, c ∈ Z3}

Let γ = x2+〈x3+2x2+1〉 and δ = x+〈x3+2x2+1〉. ThenGF (27) = {0, 1, 2, δ, δ+

1, δ+2, 2δ, 2δ+1, 2δ+2, γ, γ+1, γ+2, γ+δ, γ+δ+1, γ+δ+2, γ+2δ, γ+2δ+1, γ+

2δ+2, 2γ, 2γ+1, 2γ+2, 2γ+δ, 2γ+δ+1, 2γ+δ+2, 2γ+2δ, 2γ+2δ+1, 2γ+2δ+2}
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0 2 1

δ 2δ + 2 δ + 1

2δ δ + 2 2δ + 1

γ 2γ + 2 γ + 1

2γ γ + 2 2γ + 1

γ + δ 2γ + 2δ + 2 γ + δ + 1

2γ + 2δ γ + δ + 2 2γ + 2δ + 1

2γ + δ γ + 2δ + 2 2γ + δ + 1

γ + 2δ 2γ + δ + 2 γ + 2δ + 1

Figure 16: g(x)-nil clean graph of GF (27)

Example 5 We denoted that GF (49) is a finite field with 49 elements. We show that

the GF (49) is a x(x− 2)-nil clean graph.

GF (49) ∼= Z7[x]/〈x2 + x+ 1〉

= {ax+ b+ 〈x2 + x+ 1〉 : a, b ∈ Z7}

Let β = x+ 〈x2 +x+ 1〉. Then GF (49) = {0, 1, 2, 3, 4, 5, 6, β, 2β, 3β, 4β, 5β, 6β, 1 +

β, 2+β, 3+β, 4+β, 5+β, 6+β, 1+2β, 2+2β, 3+2β, 4+2β, 5+2β, 6+2β, 1+3β, 2+

3β, 3 + 3β, 4 + 3β, 5 + 3β, 6 + 3β, 1 + 4β, 2 + 4β, 3 + 4β, 4 + 4β, 5 + 4β, 6 + 4β, 1 +

5β, 2+5β, 3+5β, 4+5β, 5+5β, 6+5β, 1+6β, 2+6β, 3+6β, 4+6β, 5+6β, 6+6β}



Chapter 4. g(x)-nil clean graph 23

0 2 5 4 3 6 1

β 6β + 2 β + 5 6β + 4 β + 3 6β + 6 β + 1

6β β + 2 6β + 5 β + 4 6β + 3 β + 6 6β + 1

2β 5β + 2 2β + 5 5β + 4 2β + 3 5β + 6 2β + 1

5β 2β + 2 5β + 5 2β + 4 5β + 3 2β + 6 5β + 1

3β 4β + 2 3β + 5 4β + 4 3β + 3 4β + 6 3β + 1

4β 3β + 2 4β + 5 3β + 4 4β + 3 3β + 6 4β + 1

Figure 17: g(x)-nil clean graph of GF (49)

Next, we will investigate about the x(x− 2)-nil clean graph from Z3 to Z34 where

Zk = {0, 1, 2, 3, . . . , k − 1} for 3 ≤ k ≤ 34. The following illustration will be on the

x(x− 2)-nil clean graph form from Z3 to Z34.
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Figure 18: g(x)-nil clean graph of Z3 to Z34
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4-3 Some properties of g(x)-nil clean graph

In the following, we mainly study and investigate on some properties of x(x − 2)-nil

clean graph. We first note the following for any g(x) ∈ Z(R).

Theorem 4.1 The g(x)-nil clean graph GN?(R) is a complete graph if and only if R

is a g(x)-nil clean ring.

Proof: (⇒): LetGN?(R) be a complete g(x)-nil clean graph of ringR. Then it implies

that for all r ∈ R are g(x)-nil clean elements. Without lose of generality of g(x)-nil

clean elements, there exists a path from r and it is connected to 0, such that r = r+ 0

which is g(x)-nil clean. Hence R is g(x)-nil clean.

(⇐): Conversely, let R be a g(x)-nil clean ring. To form a graph in R, we let anyq

arbitrary elements x, y ∈ R, x and y are connected if and only if x + y is a g(x)-nil

clean element. So, this implies that every pairs of distinct element r ∈ R must have a

unique edges and it form the complete g(x)-nil clean graph GN?(R).

Lemma 4.1 Let GN?(R) be the g(x)-nil clean graph of a ring R. Then we have the

following:

(I) If 2x is g(x)-nil clean where x ∈ R, then deg(x) = |N?(R)| − 1.

(II) If 2x is not g(x)-nil clean where x ∈ R, then deg(x) = |N?(R)|.

Proof: Let x ∈ R and clearly x + R = R. Then for every y ∈ N?(R), there exists a

unique element xy ∈ R such that x+ xy = y. Thus, we have deg(x) ≤ |N?(R)|

For (I): Now, we let {x1, x2, x3, ..., x} ⊆ R and {x1 + x, x2 + x, x3 + x, ..., 2x} ⊆

N?(R). Since we are not considering any loops, we illustrate the graph in the follow-

ing:

x

x1

x2

x3 x

Figure 19: g(x)-nil clean graph with x elements including x
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By the definition of NGN? (R)(x) = {y ∈ V (GN?(R))|y is adjacent to x}, we know

that y = {1, 2, 3, ..., x}. We have deg(x) = |NGN? (R)(x)| = |NGN? (R)[x]| − 1 =

|N?(R)| − 1.

For (II): Now, we let {x1, x2, x3, ..., xy, x} ⊆ R and {x1+x, x2+x, x3+x, ..., x+xy} ⊆

N?(R) but 2x /∈ N?(R). Since we are not considering any loops, we have

x

x1

x2

x3 xy

x

Figure 20: g(x)-nil clean graph with x elements excluding x

From the definition of NGN? (R)(x) = {y ∈ V (GN?(R))|y is adjacent to x}, we

know that y = {x1, x2, x3, ..., xy}. We have deg(x) = |NGN? (R)(x)| = |N?(R)|.

4-3-1 Invariants of g(x)-nil clean graphs

In this section, we provide some properties of g(x)-nil clean graphs related to invariants

of graph theory.

4-3-1-1 Connected and disconnected graph of g(x)-nil clean graph

Proposition 4.1 For all n ≥ 3, then the following hold for Zn

(I) If n = 2k, for all k ≥ 2. Then GN?(Zn) is a disconnected graph (in particular,

it can be built up into 2 parts, one part fills by even integers and the other part

is filled by odd integers).

(a) Let n = 2k, where k = pq, and p is an odd prime and for all integer q ≥ 1.

Then GN?(Zn) is a disconnected path graph.

(II) If n = 2k + 1, for all k ≥ 1, then GN?(Zn) is a connected graph.

(a) Let n = pq, where p is an odd prime and for all integer q ≥ 1. ThenGN?(Zn)

is a path graph.
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Proof: (I): It is obvious by taking Zn (n is even) as a example in Figure 18. Further-

more, it built up into 2 parts which are the even integers part and odd integers part, it

exists two path that can be illustrate in the Figure 21.

1 n− 1 3 n− 3 5 n− 5 k − 2 k + 2 k

0 2 n− 2 4 n− 4 6 k + 3 k − 1 k + 1

Figure 21: disconnected path graph for g(x)-nil clean graph of Z2k

(I)(a): Let n = 2k, where k = pq, and p is an odd prime and for all integer q ≥ 1.

Then GN?(Zn) is a disconnected path graph and the illustration can refer to Figure 21.

(II): It is obvious by taking Zn (n is odd) as a example in Figure 18. Furthermore, it

exists a path that can be illustrate in the Figure 22.

0

2

n− 2

4

n− 4

6

3

n− 1

1

Figure 22: path graph for g(x)-nil clean graph of Z2k+1

(II)(a): In particular, if n = pq, where p is an odd prime and for all integer q ≥ 1. Then

GN?(Zn) is a path graph and it can be illustrate in Figure 22.

4-3-1-2 Hamiltonian Path and Cycle of g(x)-nil clean graph

In the following, we prove the theorem that related to the hamiltonian path and hamil-

tonian cycle.

Theorem 4.2 Let n ≥ 3, then the following hold for Zn

(I) If n = 2k, for all k ≥ 2, then GN?(Zn) consists no hamiltonian path (In partic-

ular, GN?(Zn) is built by two distinct, symmetry connected graphs).
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(a) If we consider either one of the part of GN?(Zn), then GN?(Zn) consists at

least one hamiltonian path or hamiltonian cycle.

(II) If n = 2k+1, for all k ≥ 1, thenGN?(Zn) must consists at least one hamiltonian

path.

Proof: (I): By Proposition 4.1, If n = 2k, for all k ≥ 2, GN?(Zn) is a disconnected

graph. Therefore, it consists no hamiltonian path in the graph.

(a) We now consider one of the part of GN?(Zn) where n = 2k and k = 2a, for all

a ≥ 2 (a ∈ Z). We can obtain a hamiltonian cycle in GN?(Z2k) and illustrate the cycle

in the Figure 23.

0 2 n− 2 4 n− 4 6 k − 2 k + 2 k

1 n− 1 3 n− 3 5 n− 5 k + 3 k − 1 k + 1

Figure 23: hamiltonian cycle for g(x)-nil clean graph of Z2k where k = 2a

For k = 2a + 1, for all a ≥ 1 (a ∈ Z). We can obtain a hamiltonian path for

GN?(Z2k) and refer the illustration in Figure 21.

(II): By Proposition 4.1, for n = 2k + 1, for all k ≥ 1, there exists at least one

hamiltonian path in GN?(Zn) and illustration of hamiltonian path for GN?(Zn) is in

Figure 22. Hence, GN?(Zn) is a connected graph.

This completes the proof. Furthermore, the illustration of hamiltonian paths and hamil-

tonian cycles of g(x)-nil clean graphs are presented in Figure 18. We note the hamil-

tonian path or cycle with darker line.

4-3-1-3 Diameter of g(x)-nil clean graph

In the following, we prove a theorem that related to the diameter.

Theorem 4.3 Let n be a positive integer. Then the following holds for Zn
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(I) If n = 2k, for all integer k ≥ 3 k ∈ Z, then diam(GN?(Zn)) =∞. In particular,

if we consider either one of the part ofGN?(Zn), then diam(GN?(Zn)) = 2k−2−

1.

(II) If n = pk, where p is a odd prime, for all k ≥ 1, then diam(GN?(Zpk)) = pk−1.

(III) If n = 2pk, where p is a odd prime and for all integer k ≥ 1, then diam(GN?(Z2pk)) =

∞. However, if we consider either one of the part of the disconnected graph, then

diam(GN?(Z2pk)) = pk − 1.

Proof: (I): By hypothesis, we have n = 2k, for all k ≥ 3, then GN?(Zn) is a discon-

nected graph by Proposition 4.1. Therefore, diam(GN?(Zn)) = ∞. (I) follows from

the graph GN?(Zn) in Figure 24.

n
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n
2

+ 2 n
2
− 2 n
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4
+ 2 3n

4
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4
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n
4

n
2
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2
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2
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2
− 3 n

2
+ 5 n

2
− 5 n

4
+ 3 3n

4
− 1 n

4
+ 1

1 n− 1 3 n− 3 5 n− 5 3n
4

+ 3
n
4
− 1 3n

4
+ 1

Figure 24: g(x)-nil clean graph of Zn

(II): By Proposition 4.1, for any integer, n = pk, where p is a odd prime, for all k ≥ 1,

then GN?(Zpk) is a path graph. Therefore, (II) follows from the graph GN?(Zpk) in

Figure 22.

(III) follows from the graph GN?(Z2pk) in Figure 25.
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0 2 2pk − 2 4 2pk − 4 6 pk − 3 pk + 3 pk − 1 pk + 1

1 2pk − 1 3 2pk − 3 5 2pk − 5 pk + 4 pk − 2 pk + 2 pk

Figure 25: g(x)-nil clean graph of Z2pk

A matrix is said to be a shift matrix if a matrix with ones only on the superdiagonal

or subdiagonal, and zeros elsewhere. For illustration, we let matrix Un where the

superdiagonal that contains n − 1 ones which is an upper shift matrix and matrix Ln

where the subdiagonal that contains n−1 ones which is a lower shift matrix, as follow

0 1

0 1

0
. . .
. . . 1

0 1

0 1

0





n−
1 copies of 1Un =

0

1 0

1 0

1
. . .
. . . 0

1 0

1 0




n−

1 copies of 1

Ln =

In this project, we define anti-shift matrix as a matrix with ones only on the anti-

superdiagonal or anti-subdiagonal, and zeros elsewhere. For illustration, we let matrix

U?
n where the anti-superdiagonal that contains n− 1 ones which is an upper anti-shift

matrix and matrix L?
n where the anti-subdiagonal that contains n − 1 ones which is a

lower anti-shift matrix, as follow

1 0

1 0

... 0

1
...

1 0

1 0

0




n
− 1 co

pies
of 1

U?
n =

0

0 1

0 1

... 1

0
...

0 1

0 1




n
− 1 co

pies
of 1L?

n =

4-3-1-4 Adjacency Matrix of g(x)-nil clean graph

Theorem 4.4 Let n be a positive integer. Then the following holds for Zn
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(I) If n = 2k, for all integer k ≥ 3 ,k ∈ Z, then GN?(Z2k) follow the adjacency

matrix of M1(GN?(Z2k)).

(II) If n = pk, where p is a odd prime, for all k ≥ 1, then GN?(Zp) follow the

adjacency matrix of M2(GN?(Zpk)) which follows form of the sum of two anti-

shift matrices.

(III) If n = 2pk, where p is a odd prime and for all integer k ≥ 1, then GN?(Z2pk)

follow the adjacency matrix of M3(GN?(Z2pk)).

Proof: (I): For illustration, we find the adjacency matrix of GN?(Z2k) where k =

3, 4 and 5, which are M1(GN?(Z8)), M1(GN?(Z16)) and M1(GN?(Z32)) as follows

M1(GN?(Z8)) =



0 0 1 0 1 0 1 0

0 0 0 1 0 1 0 1

1 0 0 0 1 0 1 0

0 1 0 0 0 1 0 1

1 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1

1 0 1 0 1 0 0 0

0 1 0 1 0 1 0 0



M1(GN?(Z16)) =



0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0

0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0


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M1(GN?(Z32)) =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Therefore, in general, M1(GN?(Z2k)) follows the matrix shape as follow

M1(GN?(Z2k)) =
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0 1 1 1 0

0
... 1 1 0 1

. . . 1 1 1 0 1

0
... 1 0 1

1
. . . 1

... 0 1

... 0 1
... ... 1

1 1
. . . 1 0 1 1

... 0 0 1 1

1 1 0 0
...

1 1 0 1
. . . 1 1

1
... ... 1 0

...

1 0
... 1

. . . 1

1 0 1
... 0

1 0 1 1 1
. . .

1 0 1 1
... 0

0 1 1 1 0





2
k−

2 −
1

co
pie

s of
1

2
k−

2 −
1

co
pie

s of
1

2
k−

2 co
pie

s of
1

2
k−

2 co
pie

s of
1

2
k−

1 −
1

co
pie

s of
1

2
k−

1 −
1

co
pie

s of
1

2
k−

1 −
1

co
pie

s of
1

2
k−

1 −
1

co
pie

s of
1

2
k−

2 co
pie

s of
1

2
k−

2 co
pie

s of
1

2
k−

2 −
1 co

pies
of 1

2
k−

2 −
1

co
pie

s of
1

(2k−1 − 1)throw

(2k−1 + 1)throw

(2k − 1)throw

2throw

(2k−1)throw

(2k−1 + 2)throw

(II): For illustration, we find the adjacency matrix ofGN?(Zpk) where (3, 1), (3, 2) and (7, 1) ∈

(p, k), which are M2(GN?(Z3)), M2(GN?(Z9)) and M2(GN?(Z7)) as follows

M2(GN?(Z3)) =

0 1 0

1 0 1

0 1 0



M2(GN?(Z9)) =



0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0 0

0 0 0 1 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0


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M2(GN?(Z7)) =



0 0 0 0 0 1 0

0 0 0 0 1 0 1

0 0 0 1 0 1 0

0 0 1 0 1 0 0

0 1 0 1 0 0 0

1 0 1 0 0 0 0

0 1 0 0 0 0 0


Therefore, in general, M2(GN?(Zp)) follows the matrix shape as follow

1 0

1 0 1

1 0 1

1 0 1

... 0 1

... ... ...

1
... ...

1 0 1

1 0 1

1 0 1

0 1





p
k −

1 copies
of 1

p
k −

1 copies
of 1M2(GN?(Zpk)) =

(pk − 1)throw

2throw

Coincidently, it is the sum of two anti-shift matrices which can be express as M2(GN?(Zpk)) =

U?
pk

+ L?
pk

where p is a odd prime, for all k ≥ 1.

(III): For illustration, we find the adjacency matrix ofGN?(Z2pk) where (3, 2), (5, 1) and (7, 1) ∈

(p, k), which are M3(GN?(Z18)), M3(GN?(Z10)) and M3(GN?(Z14)) as follows



Chapter 4. g(x)-nil clean graph 38

M3(GN?(Z18)) =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



M3(GN?(Z10)) =



0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0



M3(GN?(Z14)) =



0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0


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Therefore, in general, M3(GN?(Z2pk)) follows the matrix shape as follow

0 1 0

0 1 0 1

0 1 0 1

0
... ... 1

0
... ... ...

. . . 1 0
...

0 0 1

1 0 0

... 0 1
. . .

... ... ... 0

1
... ... 0

1 0 1 0

1 0 1 0

0 1 0




p
k −

1 co
pie

s of
1

p
k −

1 co
pie

s of
1

p
k −

1 co
pie

s of
1

p
k −

1 co
pies

of 1

M3(GN?(Z2pk)) =

(2pk − 1)throw

2throw

Theorem 4.5 All adjacency matrix M1(GN?(Z2k)), M2(GN?(Zp)) and M3(GN?(Z2pk))

are symmetry.

Proof: Obvious.

A matrix is said to be a block matrix if a matrix can be partitioned into several part

of blocks or submatrices which are a collections of smaller matrices. For illustration,

we let matrix P be a 7× 7 matrix with the entries as shown below

P =



1 2 3 1 2 3 4

4 5 6 5 6 7 8

7 8 9 9 10 11 12

1 2 3 1 2 3 4

4 5 6 5 6 7 8

7 8 9 9 10 11 12

10 11 12 13 14 15 16


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P can be partitioned into submatrices P1, P2, P3 and P4 as shown below

P1 =


1 2 3

4 5 6

7 8 9

P2 =


1 2 3 4

5 6 7 8

9 10 11 12

P3 =


1 2 3

4 5 6

7 8 9

10 11 12

P4 =


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16


The partitioned P can be written as

P =

P1 P2

P3 P4


Then, a matrix is said to be a block diagonal matrix if a matrix is a n× n block matrix

and having main diagonal blocks square matrices with other entries off-diagonal blocks

are zero matrices. For illustration, we let Q be a 8× 8 matrix with the entries as shown

below

Q =



1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 2 2 2 2 0 0

0 0 2 2 2 2 0 0

0 0 2 2 2 2 0 0

0 0 2 2 2 2 0 0

0 0 0 0 0 0 3 3

0 0 0 0 0 0 3 3


Q can be partitioned in submatrices of one Q1, one Q2, one Q3 and six Qz which

denotes zeros matrix with different size as shown below

Q1 =

1 1

1 1

Q2 =


2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

Q3 =

3 3

3 3

Qz =

0 0 0 0

0 0 0 0

 =

0 0

0 0

 =


0 0

0 0

0 0

0 0


The partitioned can be written as 

Q1 Qz Qz

Qz Q2 Qz

Qz Qz Q3


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which have the general form that can be express as

A =


A1 0 0 0

0 A2
. . . 0

0
. . . . . . 0

0 0 0 An

 , where An is a square matrix of n× n in the main diagonal of matrix A

In this project, we defined block anti-diagonal matrix as a matrix that is n × n ma-

trix and having main anti-diagonal blocks square matrices with other entries off anti-

diagonal blocks are zeros matrices which can be express in the general as

A′ =


0 0 0 A′n

0
... ... 0

0 A′2
... 0

A′1 0 0 0

 , where A′n is a square matrix of n× n in the main anti-diagonal of matrix A′

Theorem 4.6 Let n, p, k be a positive integer, p is a odd prime and for all k ≥ 1. For

every M3(GN?(Z2pk)) will be a block anti-diagonal matrix.

Proof: From theorem 4.4(III), we obtain the general form of M3(GN?(Z2pk)) as follow

0 1 0

0 1 0 1

0 1 0 1

0
... ... 1

0
... ... ...

. . . 1 0
...

0 0 1

1 0 0

... 0 1
. . .

... ... ... 0

1
... ... 0

1 0 1 0

1 0 1 0

0 1 0




p
k −

1 co
pie

s of
1

p
k −

1 co
pie

s of
1

p
k −

1 co
pie

s of
1

p
k −

1 co
pies

of 1

(2pk − 1)throw

2throw

Coincidently, M3(GN?(Z2pk)) having two pk × pk block in the main anti-diagonal
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which can form a block anti-diagonal matrix of

0 A

A 0

 where A = M2(GN?(Zpk)).

For illustration, we find the adjacency matrix ofGN?(Z2pk) where (3, 2), (5, 1) and (7, 1) ∈

(p, k), which are M3(GN?(Z18)), M3(GN?(Z10)) and M3(GN?(Z14)) as follows

M3(GN?(Z18)) =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


=

 0 M2(GN?(Z9))

M2(GN?(Z9)) 0



M3(GN?(Z10)) =



0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0


=

 0 M2(GN?(Z5))

M2(GN?(Z5)) 0


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M3(GN?(Z14)) =



0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0


=

 0 M2(GN?(Z7))

M2(GN?(Z7)) 0


4-3-1-5 Complete graph of g(x)-nil clean graph

Theorem 4.7 Let n be a positive integer. Then the following holds for Zn

(I) If n = 2k, for all integer k ≥ 3 ,k ∈ Z, then GN?(Z2k) will follow the ad-

jacency matrix of M1(GN?(Z2k)). In particular, [M1(GN?(Z2k))]2
k−2−1 form a

disconnected graph which build up of two complete graph with same size.

(II) If n = pk, where p is a odd prime, for all k ≥ 1, then GN?(Zpk) follow the

adjacency matrix of M2(GN?(Zpk)). In particular, [M2(GN?(Zpk))]p
k−1 form a

disconnected graph which build up of two complete graph with different size.

(III) If n = 2pk, where p is a odd prime and for all integer k ≥ 1, thenGN?(Z2pk) fol-

low the adjacency matrix of M3(GN?(Z2pk)). In particular, [M2(GN?(Z2pk))]p
k−1

form a disconnected graph which build up of four complete graph with different

size.

Proof: (I): From theorem 4.4(I), we obtain the general form of M1(GN?(Z2k)) as
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follow

(2k−1 − 1)throw

(2k−1 + 1)throw

(2k − 1)throw



0 1 1 1 0

0
... 1 1 0 1

. . . 1 1 1 0 1

0
... 1 0 1

1
. . . 1

... 0 1
... 0 1

... ... 1

1 1
. . . 1 0 1 1

... 0 0 1 1

1 1 0 0
...

1 1 0 1
. . . 1 1

1
... ... 1 0

...

1 0
... 1

. . . 1

1 0 1
... 0

1 0 1 1 1
. . .

1 0 1 1
... 0

0 1 1 1 0



2throw

(2k−1)throw

(2k−1 + 2)throw

As we raise the adjacency matrix to the power ofm = {1 ≤ o ≤ 2k−2−1|k, o ∈ Z, k ≥

3, o is odd}, the anti-upper triangular of row r1 = {1 ≤ r ≤ m|m, r is odd and m, r ∈

Z}, r2 = {2k−1 − m ≤ r ≤ 2k−1 + m|k,m ∈ Z, k ≥ 3, and m, r is odd } and

r3 = {2k − m ≤ r ≤ 2k − 1|k,m ∈ Z, k ≥ 3, and m, r is odd } and the anti-

lower triangular of row r′1 = {2 ≤ r ≤ m + 1|m is odd, r is even and m, r ∈ Z},

r′2 = {2k−1 − (m − 1) ≤ r ≤ 2k−1 + (m + 1)|k,m ∈ Z, k ≥ 3,m is odd , r is even}

and r′3 = {2k− (m− 1) ≤ r ≤ 2k|k,m ∈ Z, k ≥ 3,m is odd , r is even} will contains

all positive integers. Since loops and multiple edges are not in our consideration, so

entries ai,i = 0 and ai,j = 1 for all ai,j ≥ 1, for all 1 ≤ i 6= j ≤ 2k, otherwise 0. In

short, as m = {1 ≤ o ≤ 2k−2 − 1|k, o ∈ Z, k ≥ 3, o is odd }, then
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row of anti-upper triangular



1 , 1 ≤ r ≤ m

1 , 2k−1 −m ≤ r ≤ 2k−1 +m

1 , 2k −m ≤ r ≤ 2k − 1

0 , otherwise.

row of anti-lower triangular



1 , 2 ≤ r ≤ m+ 1

1 , 2k−1 − (m− 1) ≤ r ≤ 2k−1 + (m+ 1)

1 , 2k − (m− 1) ≤ r ≤ 2k

0 , otherwise.

Eventually, [M1(GN?(Z2k))]2
k−2−1 will have a form as follow

After [M1(GN?(Z2k))]2
k−2−1 is form, if we construct the graph from [M1(GN?(Z2k))]2

k−2−1,

it depicted a disconnected graph which build up of two K2k−1 .

Example 6 we consider n = 2k, k = 4, so [M1(GN?(Z16))]
3 eventually depicts a

disconnected graph which build up of two K8.

First, we find the adjacency matrix of GN?(Z16), M1(GN?(Z16)), then we raise it to

the power 3.

M1(GN?(Z16)) =



0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0


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[M1(GN?(Z16))]
3 =



0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0


Then, we construct the graph from [M1(GN?(Z16))]

3 as follow

Figure 26: disconnected graph which build up of two K8
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Next, we illustrate another example on GN?(Z32) below.

Example 7 we consider n = 2k, k = 5, so [M1(GN?(Z32))]
7 eventually depicts a

disconnected graph which build up of two K16.

First, we find the adjacency matrix of GN?(Z32), M1(GN?(Z32)), then we raise it to

the power 7.

M1(GN?(Z32)) =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


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[M1(GN?(Z32))]
3 =



0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1
1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1
1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0



[M1(GN?(Z32))]
5 =



0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0
0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1
1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1
1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0
0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1
1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0
0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1
1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1
1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1
1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1
1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0
0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0


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[M1(GN?(Z32))]
7 =



0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0


Then, we construct the graph from [M1(GN?(Z32))]

7 as follow

Figure 27: disconnected graph which build up of two K16
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(II): From theorem 4.4(II), we obtain the general form of M2(GN?(Zpk)) as follow

1 0

1 0 1

1 0 1

1 0 1

... 0 1

... ... ...

1
... ...

1 0 1

1 0 1

1 0 1

0 1



(pk − 1)throw

2throw

As we raise the adjacency matrix to the power of n = {2 ≤ e ≤ pk − 1|k ≥

1, p is prime, e is even and e, p, k ∈ Z}, the lower triangular of row r1 = {1 ≤ r ≤

n + 1|n is even, r is odd and r, n ∈ Z} and upper triangular of row r′1 = {pk − n ≤

r ≤ pk|p is prime, n is even, r is odd, k ≥ 1 and p, k, n, r ∈ Z} will contains all pos-

itive integers. Since loops and multiple edges are not in our consideration, so en-

tries ai,i = 0 and ai,j = 1 for all ai,j ≥ 1, for all 1 ≤ i 6= j ≤ p, otherwise 0.

Since the diagonal of the even power raised adjacency matrix will only contain ze-

ros, then we can further conclude that the lower triangular of row r1 = {3 ≤ r ≤

n + 1|n is even, r is odd and r, n ∈ Z} and upper triangular of row r′1 = {pk − n ≤

r ≤ pk − 2|p is prime, n is even, r is odd and p, k, n, r ∈ Z} will contains all ones. In

short, as n = {2 ≤ e ≤ pk − 1|p is prime, e is even and e, p, k ∈ Z}, then

row of lower triangular

1 , 3 ≤ r ≤ n+ 1

0 , otherwise.

row of upper triangular

1 , pk − n ≤ r ≤ pk − 2

0 , otherwise.

After [M2(GN?(Zpk))]p
k−1 is form, if we construct the graph from [M1(GN?(Zpk))]p

k−1,

it depicted a disconnected graph which build up of one K pk+1
2

and one K pk+1
2
−1.

Example 8 we consider n = pk, where p = 3 and k = 2, so [M2(GN?(Z9))]
8 eventu-

ally depicts a disconnected graph which build up of one K5 and one K4.
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First, we find the adjacency matrix of GN?(Z9), M2(GN?(Z9)), then we raise it to the

power 8.

M2(GN?(Z9)) =



0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0 0
0 0 1 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0



[M2(GN?(Z9))]
2 =



0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0



[M2(GN?(Z9))]
4 =



0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 1 0
1 0 1 0 0 0 1 0 1
0 1 0 1 0 0 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0



[M2(GN?(Z9))]
6 =



0 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0
1 0 0 0 1 0 1 0 1
0 1 0 0 0 1 0 1 0
1 0 1 0 0 0 1 0 1
0 1 0 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1
0 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 0



[M2(GN?(Z9))]
8 =



0 0 1 0 1 0 1 0 1
0 0 0 1 0 1 0 1 0
1 0 0 0 1 0 1 0 1
0 1 0 0 0 1 0 1 0
1 0 1 0 0 0 1 0 1
0 1 0 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1
0 1 0 1 0 1 0 0 0
1 0 1 0 1 0 1 0 0


Then, we construct the graph from [M2(GN?(Z9))]

8 as follow



Chapter 4. g(x)-nil clean graph 52

Figure 28: disconnected graph which build up of one K5 and one K4

Next, we illustrate another example on GN?(Z11) below.

Example 9 we consider n = p, where p = 11 and k = 1, so [M2(GN?(Z11))]
10

eventually depicts a disconnected graph which build up of one K6 and one K5.

First, we find the adjacency matrix of GN?(Z11), M2(GN?(Z11)), then we raise it to

the power 10.

M2(GN?(Z11)) =



0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0


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[M2(GN?(Z11))]
2 =



0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0



[M2(GN?(Z11))]
4 =



0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 1 0 0 0
1 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0 1 0 1
0 0 0 1 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0



[M2(GN?(Z11))]
6 =



0 0 1 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0
1 0 0 0 1 0 1 0 1 0 0
0 1 0 0 0 1 0 1 0 1 0
1 0 1 0 0 0 1 0 1 0 1
0 1 0 1 0 0 0 1 0 1 0
1 0 1 0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0 1
0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 1 0 0



[M2(GN?(Z11))]
8 =



0 0 1 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0 1 0
1 0 0 0 1 0 1 0 1 0 1
0 1 0 0 0 1 0 1 0 1 0
1 0 1 0 0 0 1 0 1 0 1
0 1 0 1 0 0 0 1 0 1 0
1 0 1 0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0 0 1 0
1 0 1 0 1 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 1 0 0



[M2(GN?(Z11))]
10 =



0 0 1 0 1 0 1 0 1 0 1
0 0 0 1 0 1 0 1 0 1 0
1 0 0 0 1 0 1 0 1 0 1
0 1 0 0 0 1 0 1 0 1 0
1 0 1 0 0 0 1 0 1 0 1
0 1 0 1 0 0 0 1 0 1 0
1 0 1 0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0 0 1 0
1 0 1 0 1 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0 0 0
1 0 1 0 1 0 1 0 1 0 0


Then, we construct the graph from [M2(GN?(Z11))]

10 as follow
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Figure 29: disconnected graph which build up of one K6 and one K5

(III): From theorem 4.4(III), we obtain the general form of M3(GN?(Z2pk)) as follow

0 1 0

0 1 0 1

0 1 0 1

0
... ... 1

0
... ... ...

. . . 1 0
...

0 0 1

1 0 0

... 0 1
. . .

... ... ... 0

1
... ... 0

1 0 1 0

1 0 1 0

0 1 0



(2pk − 1)throw

2throw
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From theorem 4.6, we also know that M3(GN?(Z2pk)) is a block anti-diagonal matrix

which can be viewed as

0 A

A 0

 where A = M2(GN?(Zpk)). In fact, as we raise

M3(GN?(Z2pk)) to even power, we obtain the block diagonal matrix as follow

[M3(GN?(Z2pk))]2 = M3(GN?(Z2pk))×M3(GN?(Z2pk))

=

0 A

A 0

×
0 A

A 0


=

A2 0

0 A2



[M3(GN?(Z2pk))]4 = [M3(GN?(Z2pk))]2 × [M3(GN?(Z2pk))]2

=

A2 0

0 A2

×
A2 0

0 A2


=

A4 0

0 A4


...

[M3(GN?(Z2pk))]n =

An 0

0 An

 ,where n ∈ Z, n ≥ 2 and n must be even

Since, pk−1 is always even and we know the general calculation of (M3(GN?(Z2pk)))p
k−1

from theorem 4.7(II), so, we know that

[M3(GN?(Z2pk))]p
k−1 =

Apk−1 0

0 Apk−1


=

(M2(GN?(Zpk)))p
k−1 0

0 (M2(GN?(Z2pk)))p
k−1

 (4.6a)
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After [M3(GN?(Z2pk))]p
k−1 is form, if we construct the graph from [M3(GN?(Z2pk))]p

k−1,

it depicted a disconnected graph which build up of two K pk+1
2

and two K pk+1
2
−1.

Example 10 We consider n = 2pk, where p = 3 and k = 2, so [M2(GN?(Z18))]
8

eventually depicts a disconnected graph which build up of two K5 and two K4.

From example 8, we know that

[M2(GN?(Z9))]
8 =



0 0 1 0 1 0 1 0 1

0 0 0 1 0 1 0 1 0

1 0 0 0 1 0 1 0 1

0 1 0 0 0 1 0 1 0

1 0 1 0 0 0 1 0 1

0 1 0 1 0 0 0 1 0

1 0 1 0 1 0 0 0 1

0 1 0 1 0 1 0 0 0

1 0 1 0 1 0 1 0 0


So, we can obtain [M3(GN?(Z18))]

8 by using (4.6a)

[M3(GN?(Z18))]
8 =

(M2(GN?(Z9)))
8 0

0 (M2(GN?(Z9)))
8



=



0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0


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Then, we construct the graph from [M3(GN?(Z18))]
8 as follow

Figure 30: disconnected graph that build up of two K5 and two K4

Next, we illustrate another example on GN?(Z22) below

Example 11 We consider n = 2pk, where p = 11 and k = 1, so [M2(GN?(Z22))]
10

eventually depicts a disconnected graph which build up of two K6 and two K5.

From example 9, we know that

[M2(GN?(Z11))]
10 =



0 0 1 0 1 0 1 0 1 0 1
0 0 0 1 0 1 0 1 0 1 0
1 0 0 0 1 0 1 0 1 0 1
0 1 0 0 0 1 0 1 0 1 0
1 0 1 0 0 0 1 0 1 0 1
0 1 0 1 0 0 0 1 0 1 0
1 0 1 0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0 0 1 0
1 0 1 0 1 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0 0 0
1 0 1 0 1 0 1 0 1 0 0


So, we can obtain [M3(GN?(Z22))]

10 by using (4.6a)
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[M3(GN?(Z22))]
10 =

(M2(GN?(Z11)))
10 0

0 (M2(GN?(Z11)))
10



=



0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0


Then, we construct the graph from [M3(GN?(Z22))]

10 as follow

Figure 31: disconnected graph that build up of two K6 and two K5



CHAPTER 5: CONCLUSION

In conclusion, the highlight of this project is to study and apply the proving method to

another types of rings. In the Project I, we have investigated on the published paper

by Basnet(2017) on nil clean graph of rings. In the process of investigation, we have

learned thoroughly about the theorems and lemmas stated with the proving methods

used to explained it. In Chapter 3, we took some theorems and lemmas from Bas-

net(2017) on nil clean graph of rings and explained in details in order to understand the

way of proving done by Basnet(2017). The theorems and lemmas that we is explained

in Chapter 3 is about the girth of graphs, chromatic index of graphs and diameter of

graphs which is strongly related to our ring which have a different structure from the

nil clean graph of rings.

In Project II, we are able to extend from Basnet(2017) on nil clean graph of rings

to x(x− 2)-nil clean graph of rings which have a different structure than than nil clean

graph of rings. With the help of those existing theorems and lemmas in the published

paper by Basnet(2017), we are able to form our own theorems and lemmas with the

proving methods learned from the paper that are presented in Chapter 4. By making

Basnet(2017) as our main reference, we have form our own theorem on connectedness

of graphs, completeness of graphs, hamiltonian cycles and paths of graphs and diame-

ter of graphs which strongly describe our x(x − 2)-nil clean graph of rings. Besides,

we form our own theorems in generalizing the adjacency matrix on the x(x − 2)-nil

clean graph of rings which is not presented in the paper of Basnet(2017).

As the main results of this project, we can conclude that our proving methods is

just one of the possible way to prove the theorem but not in general. However, there

should be another way that can be used more effectively in proving those theorems and

lemmas in the future.
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APPENDIX

single_graph_generator.m

1 nodes_num = 3; % define the number of the nodes

2 Z = 1:nodes_num;

3 from =[];

4 to = [];

5 x = calc(Z,2) % return an array consists of result from X^2=2X

6 for x1 = Z

7 for x2 = Z

8 if ismember(mod(x1+x2,nodes_num),x)==1 && x1~=x2

9 from = [from, x1];

10 to = [to, x2];

11 end

12 end

13 end

14 G = simplify(graph(from,to));

15 h = plot(G,’k’,’Layout’,’force’); % graph generated

16 Adj = full(adjacency(G)); %adjacency matrix of graph generated

17 labelnode(h,nodes_num,{’0’});

18 str = strcat(’Graph of ’,’ \bf{Z}_’,’{’,num2str(nodes_num),’}’);

19 title(str);

20

21 %% finding path or cycle within the graph generated

22 path_e = [];

23 path_o = [];

24 odd = [];

25 even = [];

26

27 if mod(nodes_num,2) == 0

28 for j = 1:nodes_num

29 if mod(j,2)==0

30 even = [even,j];

31 else

32 odd = [odd,j];

33 end

34 end
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35 even_f = fliplr(even);

36 odd_f = fliplr(odd);

37 for v=1:length(even)

38 drawnow;

39 path_o = [path_o,[odd(v),odd_f(v)]];

40 highlight(h,path_o,’EdgeColor’,’k’,’NodeColor’,’k’,’LineWidth’,3)

41 path_e = [path_e,[even_f(v),even(v)]];

42 highlight(h,path_e,’EdgeColor’,’k’,’NodeColor’,’k’,’LineWidth’,3)

43 end

44 drawnow;

45 path_o = [path_o,

46 [min(odd_f(1:((nodes_num/2)/2))),

47 min(odd(1:((nodes_num/2)/2)))]];

48

49 highlight(h,path_o,’EdgeColor’,’k’,’NodeColor’,’k’,’LineWidth’,3)

50 path_e = [path_e,

51 [max(even(1:((nodes_num/2)/2))),

52 max(even_f(1:((nodes_num/2)/2)))]];

53

54 highlight(h,path_e,’EdgeColor’,’k’,’NodeColor’,’k’,’LineWidth’,3)

55 else

56 for j = 1:nodes_num

57 if mod(j,2)==0

58 even = [even,j];

59 else

60 odd = [odd,j];

61 end

62 end

63 even = fliplr(even);

64 for v=1:length(even)

65 drawnow;

66 path_o = [path_o,[odd(v),even(v)]];

67 highlight(h,path_o,’EdgeColor’,’k’,’NodeColor’,’k’,’LineWidth’,3)

68 end

69 drawnow;

70 path_o = [path_o,[2,nodes_num]]

71 highlight(h,path_o,’EdgeColor’,’k’,’NodeColor’,’k’,’LineWidth’,3)

72 end
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calc.m

1 function condition = calc(arr,number)

2

3 arr_square = mod((arr-1).^2,length(arr));

4 arr_2x = mod((arr-1)*number,length(arr));

5 same = (arr_square == arr_2x);

6 pos = find(same==1) ;

7

8 condition = pos-1;


