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ABSTRACT 

Pipeline leakage in air conditioner has always been a problem accompanied with air 

conditioner. Leakage detection has therefore become a popular study to stop this 

problem. A much better and accurate leakage detection method is needed as high rise 

building and large commercial building uses centralized air conditioner system where 

pipelines are concealed in concrete walls making traditional leakage detection methods 

such as bubble soap test to be impossible. This experiment aims to mitigate refrigerant 

leakage through localization of leakage using optical sensors working together with 

machine learning (ML) algorithms. Optical sensor collects data of acoustic vibration 

of the pipeline system and uses a NI DAQ as interface to connect with LABVIEW. 

LABVIEW is used to collect the data from the optical sensors and to process the data 

with three ML module known as Support Vector Machine (SVM), Neural, and Logistic 

Regression. Three conditions are considered in this experiment which is no leakage, 

small leakage, and leakage. Therefore, this experiment focuses on detecting leakage 

through optical sensors and classification with machine learning. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Ever since air conditioner has been invented in 1902 by Willis Haviland Carrier (Willis 

Carrier, 2018), it has been evolving from a premium luxurious equipment into more of 

a necessity throughout this century. Based on Arnold (1999), majority of air 

conditioner users in United States (US) was “commercial comfort” air conditioning 

from 1920 to 1960 with the motive of attracting more customers. However, Grieser 

(2012) states that with the hotter summer trends and record-warm overnight 

temperatures becoming more frequent, air conditioning has become a must for our 

health and well-being. Besides, research shows that human being’s efficiency of 

working capacity has increased due to the presence of air conditioner (Khemani and 

Stonecypher, 2007). The comfort environment created by the air conditioner allows 

the person to have a peace mind and produce a qualitative work. Hence, the 

exponential growth of usage in air conditioner is unavoidable when 84% of US citizens 

have air conditioner installed in their house which is more than half of the population 

(Warner Service, 2018).   

 A problem that is always associated with air conditioner is refrigerant pipeline 

leakage. Symptoms of refrigerant leakage includes (Signs And Effects Of Refrigerant 

Leak In Air Conditioners, 2018): 

i) Lower cooling capacity 

ii) Air conditioner not producing cold air 

iii) Noisy air conditioner 

Refrigerant leakage is normally caused by the wear and tear due to constant usage of 

air conditioner. Inefficient operation during the usage of air conditioner produces 

excess vibration that forces the refrigerant to tear a hole. Another reason is corrosion 

caused by presence of air and oxygen that is unpreventable which produces holes in 

the pipeline (What Causes Refrigerant Leaks?, 2017). Furthermore, formicary 

corrosion occurs when formaldehyde is present that forms formic acid in air 

conditioner coil and creates pin holes in the copper tube over time causing leakage  (3 

Common Causes of AC System Refrigerant Leaks, 2013). Goodman (2015) states that 
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formaldehyde originates from building products such as plywood, fibreboard, glues 

and adhesives.  

 Refrigerant contains freon which is a colourless gas that is harmful to human 

body and the environment. According to Carey and Cafasso (2015), excessive 

inhalation of freon can lead to breathing problems, organ damage and even sudden 

death to humans. A case happened in recent past years at a business in Hammonton, 

where eight people had inhalation injuries with symptoms such as tightening of chests 

and a burning sensation due to refrigerant leakage (Post, 2015). Furthermore, freon is 

recognised to be one of the main contribute to depletion of Earth’s ozone layer due to 

the chlorine, Cl, in the refrigerant. The interaction between Cl and ozone is described 

using the equation below (Baum, 2017): 

𝐶𝑙 +  𝑂3 → 𝑂2 + 𝐶𝑙𝑂 

This equation shows the breakdown of ozone layer into oxygen and another molecule. 

Another impact of refrigerant on the environment is global warming. The release of 

CFC, HCFCs and HFCs during refrigeration leakage is part of greenhouse gases. 

Hence, pipeline leakage will not only cause fatality to human but also damages to the 

environment. 

These problems have led to the case where leakage detection and monitoring 

is required to prevent all these hazards from occurring. One of the common traditional 

detection includes the bubble leak testing where soap solutions are applied over the 

pipeline to detect leakage. If there is any leakage at the pipelines, bubbles will be 

formed around it (Air/Soap Test, 2018). However, this detection works only when 

leakage has already occurred and does not provide any monitoring. Development of 

technology has produced advanced detection method used currently which are 

separated into software based and hardware based as shown in Table 1.1 (Penner et al., 

n.d.).  Software based focuses on the internal parameters of the pipeline meanwhile 

hardware based focuses on inspection on external of the pipeline. 

Table 1.1: Types of leakage detection 

Software based detection Hardware based detection 

Volume balance Acoustic emission 

Transient Models Fibre optic sensing 

Pressure Analysis Vapor Sensing Method 
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Basically, fibre optic sensing is performed through fibre optic sensors. Fibre 

optic sensors uses optical fibre to detect physical quantities such as pressure and 

mechanical strain (AZoSensors, 2014). As shown in Figure 1.1, optical fibre is defined 

as  thin rod of high-quality glass (Sending information, 2018), made from three parts: 

Core, cladding and coating (Fidanboylu and Efendioglu, 2009).  The core is the main 

part where all signal transmission occurs, cladding causes reflection of waves to 

produce a path for signal to pass through and lastly the coating is added to protect the 

optical fibre (Cable Basics: Fiber Optic Cable, 2018). Fibre-optic cable allows light to 

travel in it through the phenomenon total internal reflection. Light contains the 

information required to be processed or analysed and bounces through the walls until 

its targeted destination (Woodford, 2018). Optical fibre is used in this study as the 

sensor to detect pipeline leakage.  

 

Figure 1.1: Parts of Optical Fibre 

 

 This study aims to produce a monitoring system that detects leakage and 

position of leakage using optical sensor that detects acoustic vibration through utilising 

LABVIEW’s machine learning algorithms. 

 

1.2 Importance of the Study 

Main focus of this project is to mitigate refrigerant leakage and to locate the position 

of leakage in air conditioners using optical sensors through utilisation of LABVIEW. 

LABVIEW provide simple graphical user interface (GUI) setup with the capability of 

performing real-time monitoring and detection through data collection, processing, 

and analysis. This study exploits the capability of optical sensor to be applicable in 

leakage detection and monitoring field. 
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1.3 Problem Statement 

Pipeline leakage being not a nuisance unnoticed, but it becomes detectable rapidly to 

be solved. 

Exponential evolution of air conditioner usage in shopping complexes or large 

buildings has led to complicated pipeline system. This complicated pipeline system 

has caused the detection of pipeline leakage to become more difficult. Furthermore, 

the refrigerant pipeline is normally concealed in the concrete wall or ceiling partition 

which causes the conventional detection method become rather impossible. Pipeline 

leakage can cause the air conditioner to be less cold in the shopping complexes and 

cause losses for their owners. To overcome this, pipeline leakage detection is 

performed through optical sensors in compliance with LABVIEW for constant 

monitoring of pipeline system. Machine learning is deployed where classifications for 

various status of leakages are performed.  

 

1.4 Aims and Objectives 

This study has three main objectives to be achieved. First, this study strives to detect 

leakage and position of leakage in pipeline using optic sensors. The next objective is 

to monitor pipeline system of air conditioner. Lastly, it is to optimize the detection and 

reduce false alarm. 

 

1.5 Scope and Limitation of the Study 

This study uses only a small pipeline system as compared to complex pipeline system. 

Besides, only one brand and specific type of air conditioner is used, which is a wall 

mounted Daikin. Furthermore, Universal Serial Bus (USB) is required for monitoring 

which means this is not suited for long distance monitoring.  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Air conditioner 

Air conditioner as its name implies is a machine that conditions our air which means 

to control the temperature and humidity of the surrounding to suit out needs. 

Components of air conditioner can be separated into the hot side located outside the 

home which includes the condenser, compressor and fan whereas the cool side located 

inside the home has the evaporator and another fan as shown in Figure 2.1 

(Components of an air conditioning system, 2013).The functions of the following 

components are shown in Table 2.1 below (Brain, Bryant and Elliot, 2018): 

Table 2.1: Component of air conditioner and their functions 

Components Functions 

Evaporator coil Holds the cold refrigerant and evaporate to absorb heat from 

surrounding. 

Condenser coil Warmed refrigerant from evaporator coil is passed here to be 

condensed and release the excess heat. 

Expansion valve Controls the flow of refrigerant flow. 

Compressor An electrical pump that utilize high pressure to compress the 

refrigerant gas into liquid. 

Fan Pushes the air from evaporator coil and condenser coil. 

Refrigerant A chemical that transforms from liquid to gas easily (The 

Purpose of Refrigerant in Air Conditioning Systems, 2018). 

 

 

Figure 2.1: Evaporation Cycle 
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2.2 Leakage detection 

Refrigerant leakage frequently occurs on the evaporator coil (Evaporator Coil, 2018). 

Evolution of the modern world has led to the exponential growth in usage of pipeline, 

whether in transportation, industrial and residential. All these pipelines regardless of 

their usage categories eventually faces one similar problem which is pipeline leakage. 

Pipeline leakage is an unwanted effect that not only affects us human and also the 

environment. However, removing this issue is an impossible task and has resulted in 

researches regarding the detection and localization of leakage being a trending topic. 

Techniques of leakage detection can be separated into hardware and software based 

on Table 1. Then, according to Walk (2010), leakage detection system (LDS) can be 

separated into two categories, internal and external detection system. Internal LDS 

focuses on usage of mathematical algorithm that integrates to form a control system 

using SCADA. External LDS use hardware such as optic fibre and thermostats to 

collect data work in parallel with the internal LDS. Leak detection system differs from 

leakage detection as it consists of monitoring and collection of data from the pipeline.  

 

2.2.1 Negative Pressure Wave 

Negative pressure wave (NPW) operates using the conservation of energy principle, 

gas is released to the surrounding whenever a leak occurs resulting in a pressure drop 

in the pipeline. This pressure drop generates a wave to both ends of the pipeline known 

as the NPW(Negative Pressure Wave Description, 2018). NPW commonly works 

together with pressure transducer to collect data. 

 

2.2.1.1 Challenges and Algorithms 

Based on Table 2.2, NPW have the following data quality issues which is missing data, 

data duplication and noise.  

Table 2.2: Data issues and their description 

Data Issue Description 

Missing data Missing of data during transmission due to clock synchronization 

Data duplication Few values duplicated during transmission due to clock 

synchronization 

Noise Two sources: 

i) Spike noise – Comes from data collection 
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ii) Stationary noise – Comes from circuit or pipe 

hydraulics 

 

The autoregressive-moving average model (ARMA) filtering method is used for this 

case where it shows that filtering affects the accuracy of the position. A higher signal 

to noise ratio (SNR) would also affect the accuracy of the detection of leakage position. 

Hence, filtering method needs to consider a balance in between the effectiveness of 

the SNR and accuracy of leakage detection.  

To determine leakage from the data collected, threshold method is used where 

values exceeding the threshold set would be a possible leakage point. However, this 

method is not accurate as different pipeline has different threshold value and is easily 

affected by external factors. Statistical Process Control (SPC) which is another method 

is used where large quantity of samples is required to overcome this problem. 

Few ideas were proposed to reduce the false alarm rate that includes using other 

leak detection method (such as optic fibre), flow meter to determine the downstream 

or upstream operation condition change, and pattern matching algorithm. The author 

uses multiple sensor pairing method to reduce the false alarm rate. Accuracy of this 

detection is affected by the assumption of constant NPW speed and time 

synchronization of the device. In practical case, the NPW speed is around 0.9 – 1.2 

km/s. In most of the cases, NPW speed is always assumed constant due to practical 

limitation and the cost (Tian et al., 2012). 

 

2.2.1.2  NPW with PZT sensors 

Lead zirconate titanate which is commonly known as PZT is used as a sensor in this 

research to detect pipeline leakage. PZT is commonly used in medical imaging 

processes (Piezoelectric Effect, 2018). PZT material can either generate electric charge 

upon mechanical strain or undergo deformation when there is an electric field applied 

upon it (What is PZT?, 2018).  

PZT sensor is used to detect the variation of hoop strain when leakage occurs 

in this research. Variation of hoop strain occurs when NPW is generated as the pressure 

drop causes a contraction of pipe wall. Strain detected by the PZT causes it to generate 

an output voltage based on the equation below: 

𝑉𝑜 = (1 − 𝑉)(𝑙𝑒𝑓𝑓𝑏𝑒𝑓𝑓)
𝑑31𝐸𝑐𝑙𝑐𝑏𝑐

𝐶𝐹
𝜀11 − (1) 
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Based on the equation above, the lc affects the sensitivity of the sensor towards the 

hoop strain whereas the bc controls the signal strength that is the response duration of 

the signal. Therefore, it is recommendable for the lc to be much greater than bc. When 

there is no NPW, the output voltage would always be in the condition of 0 V as there 

is no deformation or mechanical strain detected.  

 Experimental setup of this research was done with flat patched PZT sensors 

mounted directly on the pipeline. Results obtained indicates that the maximum error 

was 2% while using a 55 meter pipeline and repeatable location of 4% variance for 5 

leakage points. Superposition of incident and reflected NPW has resulted in the delay 

in the result obtained when the sensor is too close to the end of the pipelines. This 

effect has caused the leakage closer to the end of the pipelines have the largest error 

than other leakages.  

 Improvements that could be performed to improve the experimental result 

includes using lc that is so much higher than bc. Besides, the PZT sensors could be 

made to bend and wrap around the pipeline. PZT sensors are also not that practical to 

be installed along long distance of pipelines (Zhu et al., 2017).  

 

2.2.1.3 Using FBG Based Strain Sensor 

Fiber Bragg grating (FBG) sensor offers more advantageous benefits as compared to 

pressure sensor. Pressure sensor has larger signal attenuation and interference as their 

sensors are only attached at ends of pipeline system. As the pipeline system becomes 

longer, it is unavoidable that the accuracy of the detection will decrease together while 

the rate of false alarm will be increased. As compared to pressure sensor, FBG is 

immune to electromagnetic interference, responds very quickly to temperature change, 

do not corrode, and can measure up to 30,000 micro strain (What are the Specific 

Advantages of FBG Sensors?, 2018).  

 FBG sensor is used as a strain sensor and wrapped around the pipeline to 

measure the change in the hoop strain of the pipeline when there is a leakage. Appendix 

A shows the experimental setup of this experiment. Common leak location formula 

that assumes velocity of NPW is always assumed constant is shown below: 

𝑡1 =
𝑥

(𝑣 − 𝑢)
 

𝑡2 =
(𝐿 − 𝑥)

(𝑣 + 𝑢)
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∆𝑡 = 𝑡1 − 𝑡2 − (2) 

𝑥 =
1

2𝑣
[𝐿(𝑣 − 𝑢) + ∆𝑡(𝑣2 − 𝑢2)] − (3) 

where t1 and t2 represents the time signal is received by each signal representatively, x 

is the distance between the leak point and its upstream sensor, v which represents speed 

of NPW, and u is the velocity of natural gas.  

𝑡1 = ∫
1

𝑣(𝑥) − 𝑢(𝑥)
𝑑𝑥

𝑥

0

− (4) 

𝑡2 = ∫
1

𝑣(𝑥) + 𝑢(𝑥)
𝑑𝑥 − (5)

𝐿

𝑥

 

Equation 2 is modified into Equation (4) and (5) where it has become a continuous 

function where Compound Simpson formula is used to calculate this integration above 

and obtain the time difference. Later on, the Dichotomy Searching is used to locate the 

leaking point. Lastly, wavelet transform is applied to find the sharp transition of 

pressure drop as it can easily scale up the signal to find the sharp transition of pressure 

drop. Results obtained shows that as the scale increases for wavelet transform, the fake 

singularities obtained becomes less frequent and the real singularities become more 

obvious. Final results of this experiment prove that there was only a relative error of 

4.8%, considering the fact that the pipeline was very short which means the leakage 

detected is near to its actual leakage (Hou et al., 2013).  

 Another research where an array of FBG-based pressure sensors are used to 

detect the bending of the beam to monitor the wavelength shifts between two FBGs in 

opposite direction. This helps to reduce the cross-sensitivity of the FBG towards 

temperature variation. As the leakage is closer to the sensor, leakage would be detected 

much faster. NPW propagation velocity is calculated using a new formula as the actual 

propagation velocity is never constant. The new formula uses the distance of a set of 

sensors from leakage point and the time difference in receiving the signal. A new 

technique to reduce false alarm is proposed where the output of another sensor is 

considered. Leakage is determined by using sensors placed in adjacent and the time 

difference between these sensors determines whether there is an intense noise effect. 

From the experiment, traditional NPW shows a trend of increasing relative error when 

there is a decrease in the pressure. However, the Novel NPW-based method does not 

show this significance and has a lower relative error. For instance, during the leak 
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position of 7.8 m, Novel NPW-based method has a relative error of 0.10% whereas the 

tradition NPW-based method has a 0.49% relative error (Wang et al., 2017).  

 

2.2.2 Acoustic Detection 

Acoustic detection in pipeline leakage field is performed where high pressure 

difference between the internal and external of the pipeline generates an acoustic 

vibration.  

 

2.2.2.1 Using Wavelet Packet Transformation and FSVM 

Intensity of acoustic vibration is affected by the leakage diameter, which the 

leakage diameter increases with the increase in intensity of the acoustic vibration. 

Another trend that is observed is the decrease in intensity of acoustic signal when the 

propagation distance becomes further as diffusion occurs. Advantages of using 

acoustic detection is the short delay time and physical information is carried. Wavelet 

Packet Transform (WPT) is applied to produce a higher resolution and increased 

accuracy of the leakage detection as it helps to denoise the signal obtained. Then, 

Support Vector Machine (SVM) is applied to analyse the filtered signal from WPT to 

predict the location of leakage. Through comparison with other SVM method, Fuzzy 

Kernel Function (FSVM) is concluded to be the best with an accuracy of 99%. Position 

error obtained is always less than 1% which means this method is effective in detecting 

leakage. In actual field practice at Donglin gas pipeline, the positioning error varied 

from +100m to +400m with an overall length of 156 km. This means that the error is 

considered rather small, taking the overall length into account. Response time of the 

detection is also very fast from 1 – 2 minutes only. Besides leakage quantity is also 

discovered to be from 0.9% to 1.75% (Xu, Zhang and Liang, 2013). 

 

2.2.2.2 LMD envelope spectrum entropy and SVM to detect leakage aperture 

Acoustic vibration that occurs during leakage is detected to determine the gap of the 

leakage size. This study uses the pressure sensor to collect leakage signals and 

decomposes it into smaller several product function (PF) components using local mean 

decomposition (LMD). Kurtosis is then applied where the first three PF components 

obtained has the highest sum over 90%. This results in the selection of the three PF 

component to be the main component. Kurtosis is chosen as it is used to narrate the 
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effective sharpness of a waveform resulting in collection of signals with most leakage 

data. Verification of the accuracy of these PF’s were conducted through the Pearson 

correlation where the correlation coefficient for the first three PF components were 

proven to be highest. Pearson’s correlation helps to prove that the data under Kurtosis 

is related to its original signal. Then, these three PF is reconstructed using wavelet 

packet decomposition based on its energy distribution characteristics. Results show 

that 90% of the energy is concentrated on the first two PF. After that, this reconstructed 

PF undergoes Hilbert transformation to produce an envelope spectrum and its 

normalized entropy. Lastly, SVM is applied to calculate the gap of its leakage size. 

The test shows that the accuracy of detection ranges around from 79% to 89% for small 

leak sizes of 2 – 5 mm.  

 Through this experiment, it is observed that the envelope spectrum entropy is 

affected by the internal pressure of the pipeline and distance between the leakage and 

sensor. Another scenario noticeable in this experiment is the reduction in accuracy of 

leakage detection when the distance between the sensor and leakage increases (Wang, 

Gao and Liu, 2016). 

 

2.2.2.3 Experimental study on denoising 

Comparing between median filtering, Wiener filtering, wavelet filtering, band-pass 

filtering by FIR and IIR, wavelet filtering method is chosen for Gaussian white noise 

as it has the highest signal to noise ratio (SNR) as well as the root mean square error 

(RMSE) and amplitude loss of pressure drop (ALPD) lowest. If signal obtained is 

within same frequency band with the noise, the blind source separation method is 

suggested. Fast independent component analysis (FastICA) is used in this method to 

filter noise for same frequency band case. However, this method poses the threat of 

amplitude loss between leakage signal and the post signal. This method is not 

considered as the best filtering method as it requires dynamic pressure sensors that 

costs heavily but it will be used in this experiment. FastICA is affected by the number 

of sensors used in the experiment where as the number of sensors increase, more source 

signals are obtained resulting in the increased effectiveness of this method. Leak 

detection is then performed where the time differences were calculated using the cross-

correlation algorithm. 
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 Methods above were used in a pipeline with an inner diameter of 42 mm and 

the largest location error obtained was 0.874% under 0.4 MPa for gas (Liu et al., 2017). 

 

2.2.2.4 VMD and CTFS with piezoelectric vibration sensor 

Common acoustic emission detection technique utilises cross-correlation which 

assumes propagation velocity of the acoustic wave is constant that has a poor accuracy 

due to dispersive nature of wave along pipe and signals collected are non-stationary. 

Variational mode decomposition (VMD) is a useful non-stationary signal processing 

method where centre frequencies and bandwidth of mode components are determined 

through the decomposition process. Main advantage of this method is its ability to 

eliminate mode mixing and has strong noise immunity. Certain mode components 

produced from VMD exists as sensitive components that are highly connected to the 

leakage signal while some others just interferences. Due to this reason, mutual 

information is applied between original signal and decomposed signal to get only the 

sensitive components while ignoring the interferences. Cross-time-frequency 

spectrum (CTFS) is proposed as a method to process non-stationary signal. CTFS 

works based on cross-correlation where the function of delay and corresponding 

frequency is joint together to describe spectral components of signals during different 

time delays. Different kernel function in CTFS has different results, research is carried 

on the Wigner-Ville Distribution (WVD), Polynomial Wigner-Ville Distribution 

(PWVD) and smoothed pseudo Wigner-Ville Distribution (SPWVD) to process the 

signal from VMD. SPWVD shows the best result for delay and frequency information 

whereas WVD has the poor results due to serious cross-term interference.  

Based on the data collected, empirical mode decomposition (EMD) method has 

an error around three times higher than the VMD method due to its high cross-term 

interference. VMD has an error of around 0.34 – 1.29 m only whereas EMD has an 

error from 1.17 – 2.95 m. Another group of data processed shows that the average 

relative error for EMD is 8.34 due to mode mixing while VMD only has an average of 

2.78 as it decomposes non-stationary signal and solves mode mixing (Xiao et al., 2018).   

 

2.2.3 Volume Mass Balance 

One of the common methods for software leak detection where the mass and volume 

flow into and out of the system is required to be in equilibrium. Leakage is detected 
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when this equilibrium is broken which means that the mass exiting is more than the 

estimated mass entering the pipeline. Normally, this method works with a Supervisory 

Control and Data Acquisition (SCADA) system for monitoring and efficient control 

of the system.  

 

2.2.3.1 Online Simulation Method 

Experiment conducted under no steady state as it operates on a demand basis. This 

experiment uses a modified volume mass balance to predict leakage. An assumption 

where potential leakage occurs for every mismatch in mass balance is made. First, 

pressure balance and flowrate in pipeline is collected by SCADA. Then, potential 

leakage is compared with its threshold to determine whether leakage occurs or not. 

When the potential leakage is higher than its threshold, it is deduced that leakage 

occurs.  

 Some problems faced during this research includes the unreliable data 

acquisition, unexpected low resolution of pressure sensor and uncontrolled fluctuation. 

Results obtained in this research shows that the average location error is around 4 – 

20% from maximum load to minimum load. However, under extreme transient 

condition the average location error is around 6% (Fukushima et al., 2000).  

 

2.2.4 Optic Fibre Detection 

One of the famous detection methods for optic fibre is the temperature-based leak 

detection where it detects a change in the temperate of the pipeline during leakage. 

Leakage of gas results in the Joule-Thompson effect where temperature of the 

surrounding would be decreased due to expansion of gas (Omnisens, 2001).  Two 

famous distributed sensing technique known as the Raman and Brillouin technique 

where their differences are shown in Table 2.3 below. 

Table 2.3: Difference between Raman and Brillouin distributed sensing technique 

Raman Brillouin 

Measures temperature profile only Measures temperature or strain  

Generated by thermally influenced 

molecular vibrations 

Combination formed from interaction 

between propagating optical signal and 

thermally acoustic waves 

Depends on intensity Depends on frequency 
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Applicable with multimode fibres Applicable with single mode optical 

fibres 

High sensitivity only for short distance Higher accuracy and sensitivity for 

longer distance 

In addition, Raman scattered light consists of two frequency shifted components 

known as the Stokes and Anti-Stokes component where the former has its amplitude 

related to temperature while the other does not. Therefore, Raman method requires 

filtering to remove this Anti-Stoke that is unnecessary signal (Mishra, Soni and Delhi, 

2011). Figure 2.2 below also shows the difference between the wavelength 

propagation for the Brillouin and Raman method. 

 Based on the results from Nikles et al. (2004), leakage that occurred in the 

pipeline resulted in a local temperature increase of 8 °C by using DiTeSt analyser that 

operates based on Brillouin scattering.  

 

Figure 2.2: Wavelength Propagation for Raman and Brillouin method 

 

2.3 Cross-correlation 

According to Bourke (1996), cross-correlation can be defined as a statistical 

measurement degree of similarity between two functions or series. Cross-correlation 

formula is shown below (Cross-Correlation, 2018): 

𝑓(𝑡)𝑔(𝑡) = ∫ 𝑓(
∞

−∞

𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 

where f(t) and g(t) are continuous function. 
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Cross-correlation determines the time delay between acoustic vibrations produced by 

leakages(Gao et al., 2017). This time delay is then used to determine its position of 

leakage by utilizing the propagation speed of the acoustic wave.  

Cross-correlation can be used to detect multiple leakage signals where it is very 

effective during a high SNR. Two sensors are placed at both ends of the pipeline and 

the results collected for multiple leakage signals are collected as shown in Table 2.4. 

Exact location of leakage is done at 20 m, 40 m, 60 m and 90 m which is very close to 

the leakage positions obtained from cross-correlation method (Elandalibe, Jbari and 

Bourouhou, 2016).  

Table 2.4: Number of leakage and their estimated leakage location 

  

2.3.1 Non-dispersive guided wave mode 

An improvement that could be done to traditional cross-correlation is explained below. 

Basically, single mode waveform is extracted from cross spectrum in leakage using 

weighing window with parameters related to its wavenumber of the consequent mode. 

Then, this single mode waveform undergoes Inverse Fourier Transform to get its 

single-mode cross-correlation for approximating a more accurate time delay. 

 Comparison between results for traditional cross-correlation method and 

single-mode cross-correlation method is done where the first one has a relative error 

of 2 m meanwhile the latter one only has a relative error of 0.74 m which is less than 

1 m. Besides, average relative location error obtained from single- mode cross-

correlation method is around 1.38% meanwhile traditional cross-correlation method 

exceeds it by more than 7% ranging mostly from 10% to 19.31% (Fukushima et al., 

2000).  

 First Leakage 

Estimated (m) 

Second 

Leakage 

Estimated (m) 

Third Leakage 

Estimated (m) 

Fourth 

Leakage 

Estimated (m) 

One Leakage 19.985 - - - 

Two Leakage 19.985 39.985 - - 

Three Leakage 19.985 39.985 60.005 - 

Four Leakage 19.985 39.985 60.005 90.02 
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2.4 Summary 

Section 2.1 of this section talks about air-conditioner and its functions. Besides, 

highlight of our study is also known here which is the location where pipeline leakage 

occurs. Section 2.2 focuses on the recent trends of leakage detection over the recent 

years. Section 2.3 explains about cross-correlation and recent researches on it. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This experiment uses a National Instrument (NI) Data Acquisition (DAQ) 9234 to 

obtain data from two Single Mode Fiber (SMF) optical sensor mounted on two sides 

of the pipeline. DAQ is used to measure electrical parameters such as voltage with a 

computer (What Is Data Acquisition?, 2018). DAQ acts as an interface that connects 

the sensor with the computer for data collection. Data collected are then processed and 

analysed through LABVIEW to perform leakage detection. 

  

3.2 Experimental Setup 

A pair of optical sensors are attached on a pipeline for a single 1.5 horsepower air-

conditioner. DAQ is connected to the optical sensors and a laptop for data collection. 

LABVIEW is used to monitor and record the voltage data. Leakage is produced 

manually through opening of valves at the pipeline to see the difference in the data 

collected. A simplified block diagram of the experimental setup is shown below in 

Figure 3.1. 

 

Figure 3.1: Block diagram of experiment 
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Figure 3.2: Practical setup of experiment
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Figure 3.3: Experimental setup connected to Laptop 

 

 

Figure 3.4: Initial leakage valve used 

 

 

NI DAQ 

Flowmeter 

Globe valve 
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Figure 3.2 and 3.3 shows the practical setup of the experiment. Functions of the 

equipment used are shown in the Table 3.1. 

Table 3.1: Functions of equipment used in experiment 

Equipment Function 

Inhouse dual 980 nm pump 

laser source 

Generates two laser sources of 980 nm.  

Wavelength Division 

Multiplexer (WDM) 

Multiplexes multiple optical signal with different 

wavelength into one optical fiber (THE BASICS 

OF WAVELENGTH DIVISION 

MULTIPLEXING, WDM, 2019) 

Erbium Doped Fiber (EDF) Reduces loss of optical fiber and multiply optical 

signals simultaneously working together with the 

WDM (Erbium-Doped Fiber Amplifier (EDFA), 

2019) 

Single Mode Fiber (SMF) 

Sensor 

To detect the changes in acoustic vibration during 

leakage and no leakage condition.   

Fiber Bragg Grating (FBG) It helps to reflect specified wavelength in its 

narrow spectral width making it a type of narrow 

band filter (What is a Fiber Bragg Grating?, 

2019).  

Optical Band Pass Filter Attenuate the noises produced from the 1550nm 

optical signal before fed into the photodetector. 

Photodetector Changes light photons or optical signals into 

electrical signals (PIN PHOTODETECTOR 

CHARACTERISTICS FOR OPTICAL FIBER 

COMMUNICATION, 2019).  

NI DAQ Allows the monitoring and collecting of optical 

sensor data through LABVIEW. 

 

Figure 3.4 shows the initial valve used to produce leakage and a flowmeter to record 

the flowrate of the leakage. This needle valve was later replaced into a ball valve as 

shown in Figure 3.2.  
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3.3 Data Analysis 

 

Figure 3.5: Flowchart of data processing 

 

Figure 3.5 shows a simplified process done in this experiment to predict leakage. First, 

data is collected by the optical sensor and fed into LABVIEW through DAQ. Before 

processing any of the data, both the laser source is adjusted to have the same resonance 

of 20 kHz to prevent any difference in their Power Spectral Density (PSD). After the 

laser source has the same resonance, the data undergo wavelet denoise to remove 

background noises. Then, they are saved as LVM files to be later processed on by 

MATLAB using the code in Appendix 2. Processed files from MATLAB undergo 
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training in a LABVIEW module. Lastly, these trained data are used to predict new test 

files for leakage.  

 

3.4 LABVIEW 

 

Figure 3.6: LABVIEW setup diagram for collection of data 

 

Data collection and processing of this experiment was done using Figure 3.6 setup 

diagram. The DAQ assistant collects the data from the optical sensor and feeds it into 

the Spectral Measurement signal first to ensure that both the optical sensors have a 

20kHz resonance frequency. Figure 3.7 shows the setting of DAQ used in this 

experiment where a sampling rate of 51.2 kHz were used. A timer of 155 equivalent 

to 30 seconds was set for the collection of data. Then, the signals were split into two 

where each of them represents a sensor and undergoes wavelet denoise to cut off 

unnecessary background noises in the surrounding. The settings used for the wavelet 

denoise was a DWT type transform with a db02 wavelet with a level of 2 as shown in 

Figure 3.8. The level and wavelet were set at a low level to prevent the original signal 

to be cleaned till it loses its characteristics.  The signals are then fed into the “Write 

To Measurement File” to be written into LVM files. A sample of LVM files is shown 

in Appendix 3. These LVM files will be processed later on by MATLAB into comma-

separated values (CSV) files. MATLAB processes the data from the LVM files into 
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kurtosis, skewness, root mean square (RMS), variance, standard deviation, mean and 

also their Fourier Fast Transform (FFT) as shown in Appendix 4. Later on, these CSV 

files are compiled and classified by the machine learning in LABVIEW. Figure 3.9 till 

3.11 displays the configuration of how to train the data. As shown in Figure 3.10, three 

machine learning (ML) algorithms were used in this experiment which were Support 

Vector Machine (SVM), Neural and Logistic Regression. Trained model file would be 

saved in a JSON file based on Figure 3.11. Figure 3.12 shows the deployment module 

that will predict whether there is a leakage or not. In this experiment, small leakage is 

considered to be around 0.1-0.5 kg/hr flowrate meanwhile normal leakage is 

considered to be around 7-8 kg/hr flowrate.   

 

Figure 3.7: DAQ setting 
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Figure 3.8: Configuration of wavelet denoise 

 

 

Figure 3.9: Selecting CSV file to be trained 
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Figure 3.10: Choosing the machine learning algorithm preferred 

 

 

Figure 3.11: Saving JSON file of trained data 
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Figure 3.12: Testing data to predict accuracy of trained data 

 

Training models are classified into 6 categories as shown in the Table 3.2 below where 

Sensor 1 is classified in terms of even numbers while Sensor 2 is classified in terms of 

odd numbers. Three types of condition named as no leakage, small leakage and leakage 

are considered in this experiment.  

 

Table 3.2: Classification of leakage statuses of each sensor 

Categories Classification 

Sensor 1: No leakage  0 

Sensor 2: No leakage 1 

Sensor 1: Small leakage 2 

Sensor 2: Small leakage 3 

Sensor 1:  Leakage 4 

Sensor 2: Leakage 5 
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3.5 Summary 

The methodology proposed uses DAQ to connect between optical sensors and a laptop 

for monitoring of the pipeline system. Signal processing such as wavelet denoise is 

performed to improve the accuracy of the result obtained. Leakage detection is 

performed through machine learning algorithms to predict occurrence of leakage or 

not.   
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CHAPTER 4 

 

4 PREMINARY RESULTS  

 

4.1 Introduction 

Three ML algorithms were used to compare the accuracy of these ML algorithms 

which were SVM, Neural, and Logistic Regression. Results obtained in this section 

can be separated into including small leakage and not including small leakage into the 

ML algorithm.  

 

4.2 Overall Results Obtained 

Results obtained in this project can be separated into four categories as shown in the 

tables below. First, results obtained by testing data with trained data where both are 

obtained on same day as shown in Table 4.1. Next, as shown in Table 4.2 where data 

from 18/2/2019, 20/2/2019 and 12/3/2019 are trained together into a model and 

separate days are tested on this trained model. Table 4.3 depicts various dates of test 

data deployed on different dates of trained model that does not include small leakage. 

Lastly, Table 4.4 shows various dates of test data deployed on different dates of trained 

model that includes small leakage into the machine learning.  Italic word data in Table 

4.3 and 4.4 represents the same results as shown in Table 4.1 where the test data date 

used is same with its trained data.  

 

Table 4.1: Results obtained from testing data obtained on same day with trained model 

Trained 

Date   

ML Algorithm 

SVM Neural Log SVM Neural Log 

without small leak with small leak 

18/2/2019 90.53 80.096 66.613 62.246 66.845 58.503 

20/2/2019 89.263 85.897 74.039 51.403 51.403 46.752 

12/3/2019 79.487 57.265 76.282 52.436 47.051 27.564 

Average 86.427 74.42 72.311 55.362 55.1 44.273 
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Table 4.2: Results obtained from testing data based on overall trained model 

Test Date   

ML Algorithm 

SVM Neural Log SVM Neural Log 

without small leak accuracy with small leak accuracy 

18/2/2019 75.602 78.17 67.416 52.513 50.374 47.059 

20/2/2019 64.904 67.147 70.513 49.412 37.968 45.775 

12/3/2019 40.385 44.444 40.812 43.077 35.769 49.744 

Average 60.297 63.254 59.58 48.334 41.37 47.526 

 

 

 

Figure 4.1: Average accuracy of different machine learning algorithms against 

different type of deployment methods 

 

Based on results from Table 4.1, it can be concluded that SVM has the highest overall 

accuracy among these ML. Without taking the consideration of small leakage in ML, 

SVM has an average accuracy of 86.427% followed on by neural with 74.42% and 

lastly logistic with only 72.311%. Furthermore, even when including small leakage, 

SVM still has the highest average accuracy of 69.97% followed on by neural and also 

logistic. Based on Table 4.2, neural ML has the highest accuracy of around 63.254% 

followed by SVM 60.297% and logistic of 59.58%. when small leakage is not 
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considered. When small leakage is considered, the highest accuracy obtained is from 

SVM again which is close to half around 48.334% followed by logistic 47.526% and 

lastly neural 41.37%. Figure 4.1 shows a simple summary of the average accuracy 

from Table 4.1 and 4.2. 

 

Table 4.3: Different test data deployed on different trained model dates (without 

small leakage) 

Training 

Date 

Test Data Date Test Data Date Test Data Date 

18/2/2019 20/2/2019 12/3/2019 

SVM Neural Log SVM Neural Log SVM Neural Log 

18/2/2019 90.53 80.096 66.613 27.564 28.526 25 4.701 5.128 33.333 

20/2/2019 26.806 30.979 12.36 89.263 85.897 74.039 17.949 23.718 10.684 

12/3/2019 39.005 35.634 19.904 31.891 31.891 31.41 79.487 57.265 76.282 

 

 

Table 4.4: Different test data deployed on different trained model dates (with small 

leakage) 

Training 

Date 

Test Data Date Test Data Date Test Data Date 

18/2/2019 20/2/2019 12/3/2019 

SVM Neural Log SVM Neural Log SVM Neural Log 

18/2/2019 62.246 66.845 58.503 14.836 9.703 10.826 17.821 13.974 2.308 

20/2/2019 25.134 18.075 9.626 51.403 51.403 46.752 8.333 7.949 9.872 

12/3/2019 23.85 22.46 16.898 18.925 13.633 34.082 52.436 47.051 27.564 

 

 From Table 4.3 and Table 4.4, it is observed that test data deployed on different trained 

model dates without including its trained data of same date has remarkably low 

accuracy with the highest only reaching 39.005%. while the lowest can be 2.3008%.  
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4.3 Discussion 

 

Figure 4.2: 18/2/2019 SVM model deployed on 18/2/2019 test data without small 

leak 

 

 

Figure 4.3: 18/2/2019 Neural model deployed on 18/2/2019 test data with small leak 

 

Figure 4.2 and 4.3 shows the deployment of different ML algorithm on different types 

of data. Figure 4.2 does not include small leakage during training and deployment of 

the ML while Figure 4.3 includes small leakage. From Figure 4.2, it can be observed 
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that it has a rather high accuracy as the blue line which is the prediction of the ML 

algorithm matches closely with the red line. It only includes 4 categories in this case 

as small leakages are all exempted from this ML training and deployment. Based on 

Figure 4.2, it can be observed most errors occur on the sensor 1 for both no leakage 

and leakage conditions. Sensor 1 might have a higher error as it is closer to the wall of 

the building resulting in slight vibration in building affecting the accuracy of acoustic 

vibration collected. Figure 4.3 on the other hand shows that errors occur mostly on 

sensor 1: no leakage and also sensor 2: leakage condition. Predicted values are mostly 

on 2 or 4 for sensor 1: no leakage condition as sensor 1 is too close to the wall. Sensor 

2: small leakage condition has trouble in differentiating between small leakage and no 

leakage as the difference in vibration might be too small to be detected. A large hissing 

sound and vibration sound can be heard when it is under leakage condition meanwhile 

small leakage only has a barely detectable hiss sound released and the vibration noticed 

is not that much difference as compared with no leakage condition.  

Every experiment is sure to face trouble or problems and this experiment 

conducted is no exception. As Robert Schuller once said: “Problems are not stop signs, 

they are guidelines.”  Through this experiment, it can be deduced that five types of 

problems were encountered. 

 First, uncontrolled behaviour of the building’s lift system affects the overall 

accuracy of the data obtained. As the experiment is setup on above 10th floor, the lifts 

motor which is located at 10th floor is very close to the experiment setup area. When 

the lift in the building moves, strong vibrations are produced which can be heard. 

These strong vibrations pose possibility of affecting the acoustic vibration collected 

from the optical sensors as the pipeline system is in contact with the walls. This 

inconsistent vibration produced by the lift causes the experiment to collect different 

results each time it is conducted reducing the accuracy of data collected.  

 Next, constant flowrate is hard to be produced in this experiment due to the 

valve used. Initially, a needle valve was used in this experiment to collect data but the 

flowrate fluctuates around the desired value of the experiment and it is not able to 

reach a large leakage value. For example, when the desired value is 1 kg/hr, the 

flowrate reaches around 1.1-1.2 kg/hr but after a few seconds it will start to drop to 

about 0.1-0.2 kg/hr then rise back to 0.5-0.6 kg/hr. The inconsistent of the flowrate 

produces an unstable vibration resulting in an inaccurate data collected.  This might be 
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caused by the freezing of the valve when the leakage is opened too long resulting in 

blockage in the valve preventing the R410 gas to be leaked.  

 Another issue faced in this experiment is the setting up of the experiment. The 

equipment needs to be installed and removed each day after the experiment in case of 

losing it. As the sensors are detached and reattached each time after use, there is a 

possibility the sensor is not attached the exact same way as on different days causing 

signal collected for each day to differ.  This effect is observed from the power spectral 

density (PSD) graph as each day the sensor has a different resonance that needs to be 

reconfigured to 20 kHz.  Basically, the condition of the experiment varies from day to 

day due to the setting up of experiment for each day.  

 One possible factor contributing to the poor accuracy in Table 4.4 might be 

caused by the different surrounding parameters on each day. As air conditioner 

produces more work done when the surrounding temperature is higher, vibration 

produced varies with the surrounding temperature. Surrounding humidity and air flow 

can also cause a different vibration produced by the pipeline as the air conditioner will 

try to adjust to the humidity set by the remote.  

 Besides, SMF sensor lacks the sufficient sensitivity required in this experiment. 

From the data obtained, it can be observed that the sensor fails to differentiate between 

the data obtained from micro leakage or small leakage to no leakage condition. The 

sensor has the ability and capability to differentiate between large leakages and no 

leakages only as it is very significance when compared to small leakage and no leakage 

condition. 

 

4.4 Summary 

In general, this experiment has a very high accuracy in detecting leakage condition for 

ML algorithm with SVM with an average accuracy of 86.427% leading followed by 

neural (74.42%) and lastly logistic regression (72.311%) when the trained model used 

is the same date as its test data obtained. When the training models of these three days 

are compiled together and deployed on different test date, the accuracy is around 59%-

63% without considering small leakage. However, when small leakage is considered 

the accuracy decreases to around 41%-48%. Lastly, different trained model deployed 

on different test date has a very low accuracy in determining whether there is leakage 

or not with the highest attaining 39.005%. while the lowest 2.3008 
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CHAPTER 5 

 

5 RECOMMENDATIONS AND CONCLUSIONS 

 

5.1 Recommendations 

Improvements that can be done to this experiment includes using a more sensitive 

optical sensor. From the results obtained it can be observed the sensor has a problem 

differentiating between no leakage condition and small leakage. This might be because 

the vibration produced for these cases are too similar and the sensor lacks the sufficient 

sensitivity to collect these data.  

 Another improvement for this experiment that can be done is installing a mass 

flow controller. This flowrate meter and sensor controls the flowrate of the leakage 

and ensures it is at a desired value without any fluctuation. When the flowrate exceeds 

or is below the desired value, it will adjust the flowrate to its desired value. A constant 

flowrate enables a much more precise data collected which in the end improves the 

overall accuracy of this experiment.  

 Lastly, constant and early monitoring can be done for this experiment to 

improve its accuracy. This experiment can start perform the monitoring of the pipeline 

system early and collect data of the background noise to be filtered out later. Constant 

monitoring should be done to accumulate the trained model of this experiment to 

predict the appearance of leakage or not.  

 

5.2 Conclusion 

Generally, this experiment is proven to be successful as it manages to predict and 

localize leakages with a very high accuracy with the highest reaching 90.53% when 

training model is conducted on same date with test data. When small leak is considered, 

the highest accuracy that can be obtained is 66% which is more than half making it 

quite accurate. SVM is proven to be one of the most accurate ML algorithm followed 

by neural and logistic regression. Accuracy of this experiment can be further improved 

by using a much more sensitive optic fiber and using a mass flow controller to control 

the flow rate of the leakage at a constant value.  
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APPENDICES 

 

Appendix 1: Schematic of NPW Propagation 

 

d=dir('*.lvm'); 

for i=1:length(d) 

    data{i}=lvm_import(d(i).name,0); 

end 

for i=1:length(d) 

      

    m(i,6)=kurtosis(data{i}.Segment1.data(:,2)); 

    m(i,5)=skewness(data{i}.Segment1.data(:,2)); 

    m(i,4)=rms(data{i}.Segment1.data(:,2)); 

    m(i,3)=var(data{i}.Segment1.data(:,2)); 

    m(i,2)=std(data{i}.Segment1.data(:,2)); 

    m(i,1)=mean(data{i}.Segment1.data(:,2)); 

     
[b,a]=pwelch(data{i}.Segment1.data(:,2),[],[],[],512

00); 

   for j=0:79 

    m(i,7+j)=b(2+10*j); 

   end 

end 

m(:,4)=m(:,4)./max(m(:,4)); 

m(:,1)=m(:,1)/max(m(:,1)); 

csvwrite('near small leak.csv',m) 

clear m 

for i=1:length(d) 

      

    m(i,6)=kurtosis(data{i}.Segment1.data(:,3)); 

    m(i,5)=skewness(data{i}.Segment1.data(:,3)); 

    m(i,4)=rms(data{i}.Segment1.data(:,3)); 

    m(i,3)=var(data{i}.Segment1.data(:,3)); 

    m(i,2)=std(data{i}.Segment1.data(:,3)); 

    m(i,1)=mean(data{i}.Segment1.data(:,3)); 
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[b,a]=pwelch(data{i}.Segment1.data(:,3),[],[],[],512

00); 

   for j=0:79 

    m(i,7+j)=b(2+10*j); 

   end 

end 

m(:,4)=m(:,4)./max(m(:,4)); 

m(:,1)=m(:,1)/max(m(:,1)); 

csvwrite('far small leak.csv',m) 

 

Appendix 2: MATLAB code to process LVM to CSV files 

 

 

Appendix 3: Sample of LVM file 
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Appendix 4: Sample of training CSV file 

 

 


